The present invention relates to needles and more particularly a needle protection assembly in which the needle is first protected by a needle sheath prior to use, and protected after use by a housing.
There are a number of needle protection devices disclosed in the prior art. Among them are a number of patents assigned to the same assignee as the instant invention. Without limitations, some of those patents are: U.S. Pat. Nos. 4,982,842; 5,139,489; 5,154,285; 5,232,454; 5,277,311; 5,993,426; 6,328,713; 6,334,857; RE37,110 and RE37,252. Some other patents that describe needle protection devices, or parts thereof, include U.S. Pat. Nos. 4,664,259; 5,037,401; 5,171,303; 5,188,611; 5,490,841; 5,509,907; 5,584,816; 5,599,313; 5,599,318; 5,632,732; 5,643,219; 5,662,617; 5,665,075; 5,669,889; 5,681,295; 5,697,908; 5,733,265; 5,868,716; 5,891,103; 5,913,846; 5,919,165 and 6,440,104.
The needle protection assembly of the instant invention is made up of parts that are radically different from the prior art, as exemplified by the above-noted patents.
The needle protection assembly of the instant invention has a specially designed needle hub that has a distal portion and a proximal portion. Provided at the proximal portion are two sets of flanges for defining a space onto which the collar of a needle protection housing is fitted. The respective sets of flanges may have different dimensions, with those flanges to which the collar is to be press-fitted being chamfered or beveled on the side that first meets the collar, so as to enable easy fitting of the collar onto the space defined by the flanges. The front flanges, assuming those are the beveled flanges, each have a back end that is formed to prevent the collar from being removed, once the collar is fitted past those front end flanges. The back end flanges provide a stop for the collar, so that, once the collar is fitted within the space, it will remain fitted thereat, although being rotatable about the body of the needle hub. At the distal portion of the needle hub there are a number of arms or stubs extending therefrom for forming at least one slot and at least one catch. A needle is attached to, and extends from, the distal end of the distal portion of the needle hub.
The collar to which a needle protection housing is connected comprises a proximal portion and a distal portion. There are a number of protrusions formed at the interior surface or wall of the collar at the proximal portion. The protrusions have dimensions that enable them to fit into the space defined by the flanges at the needle hub. The inherent elastic properties of the materials, such as ABS plastic or polypropylene, that made up the needle hub and the collar of the instant invention enable the collar, and more particularly the protrusions at the interior surface of the proximal portion thereof, to be press-fitted over the front flanges of the needle hub, so that the collar is rotatably mounted onto the space defined by the flanges about the needle hub.
At the distal portion of the collar there are a number of fingers, or catch members formed for removably retaining a needle sheath. Channels or slots are provided at the distal portion of the collar to enable the retention of the needle sheath to the collar for covering the needle from the needle hub before its use. The needle sheath is removed when the needle is to be used.
Connected to the collar by a hinge is a needle protection housing that has an open proximal end and a closed distal end. Formed substantially along the length of the housing is an opening that is off centered. The opening is formed by two lips or flaps that extend substantially along the length of the housing, with the first or upper lip overlapping the second or lower lip. The respective lips each are angled toward the interior of the housing, but with varying angles along the lengths of the lips. As a consequence, when the housing is pivoted to cover a used or contaminated needle, the needle would enter into the housing guided by the lips at angles that ensure that it smoothly enters into the housing. This prevents flickering of any contaminated fluid that may have adhered to the needle. The lips, particularly the lower lip, are designed such that, once fully enters into the housing, the needle is prevented from escaping from the housing. For added safety, respective portions of a locking mechanism are provided at the proximal portion of the housing and the outer surface of the distal portion of the collar.
Before use and for shipping purposes, a needle sheath is coupled to the collar, with the fingers at the distal portion of the collar gripping the proximal portion, or lower end, of the needle sheath where a rim is formed. Although securely held for shipping purposes to ensure that no accidental force would dislodge the needle sheath from the collar, the coupling of the needle sheath to the collar is designed to be removable so that when the needle is to be used, the needle sheath may be readily removed from the collar by the application of a predetermined force.
To mate the needle hub to a conventional syringe, the needle hub of the instant invention assembly may be directly inserted over a slip type luer. To thread the needle hub onto a luer lock end of a conventional syringe, at least one integral spline is provided at the inner wall of the needle sheath for coacting with a catch formed by a number of arms extending from the distal portion of the needle hub. Once the spline of the needle sheath makes contact with the catch at the distal portion of the needle hub, when the needle sheath is rotated, the needle hub likewise is rotated. Accordingly, the needle hub could be readily threaded onto a conventional luer lock end of a conventional syringe.
To remove the needle protection assembly of the instant invention from the syringe after use, an internal spline provided in the interior wall of the needle protection housing is used. When the housing is pivoted to cover the contaminated needle, as the needle enters into the housing, the internal spline of the housing will fit into a slot formed by some of the arms extending at the distal portion of the needle hub. Once thus fitted into the slot, when the housing is rotated, the needle hub likewise is rotated. Accordingly, once the needle is fully covered by the housing and it is desired to remove the needle protection assembly from the syringe, a user only needs to rotate the housing to remove the needle protection assembly from the syringe.
The needle protection assembly of the instant invention therefore includes a needle hub having a longitudinal axis and a needle extending from one of its ends, a collar rotatably mounted about the needle hub, and a needle sheath removably attached to the collar for covering the needle extending from the needle hub. Moreover, the inventive apparatus includes a housing connected to the collar and pivotable to a position substantially in alignment along the longitudinal axis of the needle hub for covering the needle after the needle sheath is removed from the collar.
The present invention will become apparent and the invention itself will be best understood with reference to the following description of an embodiment of the present invention taken in conjunction with the accompanying drawings, wherein:
With reference to
With reference to
Further shown at proximal end 12 of needle hub 2 are a plurality of flanges, divided into a first set of upper flanges 18 and a second set of lower flanges 20. Flanges 20a and 20b extend orthogonally from the body of needle hub 2, and act as a retainer base for collar 6. The upper or the first set of flanges 18 also extend transversely from the body of needle hub 2 at the fore section of proximal portion 12. There are four flanges 18a-18d in the exemplar needle hub 2 shown in
Distal portion 14 of needle hub 2 may also be referred to as the neck of the needle hub. A plurality of arms or stubs, shown as three exemplar sets, extend transversely from distal portion 14 of needle hub 2. A first set of arms 32a-32d are formed at the proximal end of distal portion 14. A second set of arms 34a-34c are formed at the mid section of distal portion 14. The first and second sets of arms 34 and 32 are in alignment with each other so that a number of v-shaped slots 36a, 36b and 36c are formed by aligned arms 32 and 34. As will be discussed later, These v-shaped slots or channels are to be fitted with a spline integral of needle sheath 8 for rotation purposes. Additional arms or stubs 38a and 38b are provided at the distal end of distal portion 14 of the needle hub 2. Arms 38a and 38b are used as stops for coacting against an integral spline in housing 4. The orientation of the respective sets of arms 32, 34 and 38, relative to distal portion 14 of needle hub 2, are such that slots 36a-36c are oriented not to interfere with arms 38a and 38b. A needle such as 10 shown in
With reference to
Connected to collar 6, by a hinge 58, is a needle protection housing 4. Hinge 58 is a newly designed living hinge that has a widened bent area 60, as well as groove 62 to enable needle housing 4 to be pivoted a great number of times relative to collar 6 without breaking off.
Needle protection housing 4 has an open proximal end 64 and a closed end 66. Housing 4 is cylindrical in shape and has an opening 68 (
Opening 68, due to its formation by lips 70 and 72, is off centered to one side of housing 4. To enhance the entry of needle 10 into the housing 4, as best shown in
As best shown in
To ensure that needle protection housing 4 would remain fixedly retained along the longitudinal axis 13, a lock mechanism is provided at the proximal end 64 of needle housing 4 and the exterior surface of collar 6. This ensures that once needle housing 4 is pivoted to the position along longitudinal axis 13, it will remain in alignment thereat. This lock mechanism is shown in
Needle sheath 8 is described herein with reference to
To enable collar 6 to be rotated in synchronization with needle sheath 8, two integral splines 92a and 92b extend from the inner wall of needle sheath 8. These splines coact with slots 36 to thereby enable the rotating of needle hub 2, by the turning of needle sheath 8.
In operation, a user removes needle sheath 8 by applying a predetermined, or greater, force in the direction opposite to that of the directional arrow 92 (
This application is a divisional of application Ser. No. 10/649,837, filed on Aug. 28, 2003, now U.S. Pat. No. 7,201,736.
Number | Name | Date | Kind |
---|---|---|---|
4664259 | Landis | May 1987 | A |
4931048 | Lopez | Jun 1990 | A |
4982842 | Hollister | Jan 1991 | A |
5037401 | DeCamp | Aug 1991 | A |
5139489 | Hollister | Aug 1992 | A |
5154285 | Hollister | Oct 1992 | A |
5171303 | DeCamp | Dec 1992 | A |
5188611 | Orgain | Feb 1993 | A |
5232454 | Hollister | Aug 1993 | A |
5277311 | Hollister | Jan 1994 | A |
5490841 | Landis | Feb 1996 | A |
5509907 | Bevilacqua | Apr 1996 | A |
5584816 | Gyure et al. | Dec 1996 | A |
5599313 | Gyure et al. | Feb 1997 | A |
5599318 | Sweeney et al. | Feb 1997 | A |
5632732 | Szabo et al. | May 1997 | A |
5662617 | Odell et al. | Sep 1997 | A |
5665075 | Gyure et al. | Sep 1997 | A |
5669889 | Gyure et al. | Sep 1997 | A |
5681295 | Gyure et al. | Oct 1997 | A |
5697908 | Imbert et al. | Dec 1997 | A |
5733265 | Bachman et al. | Mar 1998 | A |
5746726 | Sweeney et al. | May 1998 | A |
5868716 | Sweeney et al. | Feb 1999 | A |
5891103 | Burns | Apr 1999 | A |
5913846 | Szabo | Jun 1999 | A |
5919165 | Benson | Jul 1999 | A |
5993426 | Hollister | Nov 1999 | A |
RE37110 | Hollister | Mar 2001 | E |
RE37252 | Hollister | Jul 2001 | E |
6328713 | Hollister | Dec 2001 | B1 |
6440104 | Newby et al. | Aug 2002 | B1 |
6719737 | Kobayashi | Apr 2004 | B2 |
7156825 | Hudon | Jan 2007 | B2 |
20030078548 | Kobayashi | Apr 2003 | A1 |
20030212369 | Kobayashi | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20070156088 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10649837 | Aug 2003 | US |
Child | 11712939 | US |