Negative voltage testing methodology and tester

Information

  • Patent Grant
  • 9823294
  • Patent Number
    9,823,294
  • Date Filed
    Thursday, May 15, 2014
    11 years ago
  • Date Issued
    Tuesday, November 21, 2017
    8 years ago
Abstract
A negative voltage testing including a monitoring and triggering circuit coupled to a supply voltage rail of a device under test (DUT) and a switching circuit coupled to the monitoring and triggering circuit. The monitoring and triggering circuit is configured to cause the switching circuit to provide a first negative voltage to the supply voltage rail when a supply voltage on the supply voltage rail decays below a predetermined level during a first test of the DUT.
Description
BACKGROUND

In an environment where a data storage device, such as a hard disk drive (HDD), a hybrid drive (comprising rotating magnetic media and non-volatile semiconductor memory), or a network attached storage (NAS) device, receives power from a host, negative voltages (such as negative voltages) on the host supply line may result in catastrophic failures depending on the amplitude of the negative voltage. For example, negative voltages have been an issue for certain HDDs and have been linked to heads-on-media failures.


In an effort to test for susceptibility to negative voltages, some HDD manufacturers have used poorly designed consumer power supplies to generate the negative voltages. However, the poorly designed consumer power supplies generally provide inconsistent negative voltages that are undesirable for a reliable negative voltage test process. Thus, it is desirable to provide a negative voltage testing methodology and tester for reliable negative voltage testing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a test system according to an embodiment of the invention comprising a negative voltage tester coupled to a supply voltage source and a device under test (DUT), and test equipment coupled to the DUT, wherein the supply voltage source provides power to the DUT.



FIG. 2 shows a test system according to an embodiment of the invention comprising a negative voltage tester coupled to a DUT, and test equipment coupled to the negative voltage tester and the DUT, and wherein the negative voltage tester comprises a supply voltage source for providing power to the DUT.



FIG. 3 shows a negative voltage tester according to an embodiment of the invention comprising a comparator, a pulse generator, a buffer, and a switching circuit.



FIG. 4 shows a flow diagram according to an embodiment of the invention wherein a negative voltage tester, a supply voltage source, and test equipment are coupled to a DUT, and the negative voltage tester provides a negative voltage to the DUT that is increased in negative amplitude until a failure condition in the DUT is detected by the test equipment and the amplitude and energy of the negative voltage that caused the failure condition is recorded.





DETAILED DESCRIPTION

Various embodiments of the present disclosure are directed to negative voltage systems, methods, and testers for testing data storage devices (e.g., disk drives, hybrid drives comprising rotating magnetic media and non-volatile semiconductor memory, or solid state drives) for susceptibility to negative voltages. In various embodiments, a negative voltage tester provides a negative voltage to a supply voltage rail of a device under test (DUT) when the DUT is powered off during each of one or more negative voltage tests of a negative voltage test process for testing the DUT. In various embodiments, an occurrence of a failure condition in the DUT is detected by monitoring (via test equipment) one or more output lines of a power device in the DUT.


While various embodiments are described herein, these embodiments are presented by way of example only, and not intended to limit the scope of protection. Indeed, the novel methods and devices described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and devices described herein may be made without departing from the scope of protection. To illustrate some of the embodiments, reference will now be made to the figures.



FIG. 1 shows a test system 100 according to an embodiment of the invention. As shown in FIG. 1, the test system 100 includes a negative voltage tester 102, a DUT 104, a supply voltage source 106, and test equipment 108. In the embodiment shown in FIG. 1, the DUT 104 may be a data storage device (e.g., a hard disk drive (HDD), hybrid drive (which comprises rotating magnetic media and non-volatile semiconductor memory), network attached storage (NAS) device or solid state drive). In one embodiment, the DUT 104 may be a printed circuit board assembly (PCBA) for a data storage device, wherein the PCBA comprises, for example, a power device (e.g., a power Application-Specific Integrated Circuit (ASIC) or a Power Large Scale Integration (PLSI). In the embodiment shown in FIG. 1, the negative voltage tester 102 (which provides a negative voltage to the DUT 104 during a negative voltage test process) comprises a monitoring and triggering circuit 110, a switching circuit 112, and a negative voltage source 114. As shown in FIG. 1, the DUT 104 comprises a power device 116 (e.g., a power ASIC, a PLSI or a power and motor control IC), a System on a Chip (SoC) 118, disk drive mechanics 120, and a supply voltage rail 122.


As shown in FIG. 1, the supply voltage source 106 is coupled to the supply voltage rail 122 of the DUT 104 via a supply line 124. The supply voltage source 106 provides a supply voltage that is used to power on the DUT 104. For example, the supply voltage can be 5V, 12V, or other suitable voltage as required to power on the DUT. In one embodiment, the supply voltage source 106 is turned on to power on the DUT 104 by providing a supply voltage to the supply voltage rail 122 of the DUT 104 prior to the start of a negative voltage test and turned off at the start of the negative voltage test to power off the DUT 104 and cause the supply voltage on the supply voltage rail 122 to decay. In one embodiment, a switch (not shown in FIG. 1) can be provided in the supply line 124 to couple the supply voltage at the output of the supply voltage source 106 to the supply voltage rail 122, wherein the switch is closed to power on the DUT 104 prior to the start of a negative voltage test and opened to power off the DUT 104 at the start of the negative voltage test.


As shown in FIG. 1, the monitoring and triggering circuit 110 is coupled to the supply voltage rail 122 of the DUT 104 and the switching circuit 112. In one embodiment, the monitoring and triggering circuit may comprise a comparator coupled to a pulse generator, wherein the pulse generator is configured to generate a pulse that is used to trigger the switching circuit 112. In an embodiment of the invention, the monitoring and triggering circuit 110 is configured to monitor a supply voltage on the supply voltage rail 122 and to activate the switching circuit 112 (e.g., via a pulse) when the supply voltage decays below a predetermined level during a negative voltage test of the DUT 104. In one embodiment, the predetermined level may be changed by adjusting one or more components (e.g., variable resistors) in the monitoring and triggering circuit 110.


As shown in the embodiment in FIG. 1, the switching circuit 112 is coupled to the negative voltage source 114, the monitoring and triggering circuit 110 and the supply voltage rail 122 of the DUT 104, and may comprise, for example, a relay or other type of switching device or one or more transistors configured to operate as a switch. In an embodiment, the switching circuit 112 is configured to provide a negative voltage from the negative voltage source 114 when triggered (e.g., via a pulse) from the monitoring and triggering circuit 110 during a negative voltage test of the DUT 104.


In an embodiment in which the switching circuit 112 is controlled by a pulse from the monitoring and triggering circuit 110, the width of the pulse determines the duration that the switch circuit 112 is open to receive a negative voltage from the negative voltage source 114 and, consequently, the duration of the negative voltage that is applied to the supply voltage rail 122 during a negative voltage test of the DUT 104. Thus, in an embodiment of the invention, by controlling the duration (i.e., the length of time) that the switching circuit 112 is open, the switching circuit 112 may be configured to provide a negative voltage having a short duration (i.e., a negative transient voltage) to the supply rail 122 during a negative voltage test of the DUT 104. In one embodiment, the switching circuit 112 may be activated by a signal having constant amplitude so as to cause the switching circuit 112 to provide a negative voltage having a corresponding constant amplitude to the voltage supply rail 122 during a negative voltage test of the DUT 104.


In an embodiment, the negative voltage source 114 is configured to provide a negative voltage to the switching circuit 112 during a negative voltage test process, wherein the negative voltage is increased in amplitude for each subsequent test in the test process until a failure condition occurs in DUT 104. For example, the negative voltage source 114 may provide a negative voltage that starts at −0.1V for a first test and increases in amplitude by −0.1V for each subsequent test in the test process until a failure condition in the DUT 104 is detected. Thus, for example, the negative voltage may have an amplitude of −0.1V in a first test, −0.2V in a second test, and so forth.


As shown in the embodiment in FIG. 1, the power device 116 is coupled to the SoC 118 via one or more output lines 126, coupled to the disk drive mechanics 120 via one or more output lines 128, coupled to the test equipment 108, and coupled to the supply voltage source 106 and the negative voltage tester 102 via the supply voltage rail 122. The power device 116 may comprise, for example, one or more voltage regulators and other circuitry for providing power to the SoC 118 and the disk drive mechanics 120, as well as other circuitry in the DUT 104 not shown in FIG. 1. In an embodiment, the SoC 118 may comprise, for example, a controller for reading data from and writing data to non-volatile memory (not shown in FIG. 1) (e.g., rotating magnetic media). In an embodiment, disk drive mechanics 120 comprises a VCM and a spindle motor. Although FIGS. 1 and 2 show the SoC 118 and the disk drive mechanics 120 within the DUT 104, those skilled in the art will appreciate that, in some embodiments, other electrical and/or mechanical components may be within DUT 104 (e.g., communications and/or data storage related components) in place of SoC and disk drive mechanics.


In the embodiment shown in FIG. 1, the test equipment 108 is coupled to one or more of output lines 126, 128 (i.e., one or more of output lines 126 and/or one or more of output lines 128) of the power device 116 and is configured to monitor the one or more output lines 126, 128 and detect a failure condition in the power device 116 in the DUT 104 as indicated on the monitored output line(s). For example, an occurrence of a failure condition in the power device 116 in the DUT 104 may be determining by detecting an unexpected change in a profile on the monitored output line(s). For example, a profile may comprise one or signals that are used to perform a particular function in the DUT 104 (such as retracting a head during a power fail occurrence). In one embodiment, the test equipment 108 may comprise an oscilloscope which provides a visual indication of the failure condition as indicated on the one or more monitored output line 126, 128. In one embodiment, the test equipment 108 also records the amplitude and energy of the negative voltage that caused the failure in the power device 116 in the DUT 104 for future analysis.


The operation of a negative voltage test process according to an embodiment of the invention in which the negative voltage tester 102 is utilized to perform one or more negative voltage tests on the DUT 104 will now be discussed. Prior to the first negative voltage test, the negative voltage tester 102, the supply voltage source 106, and the test equipment 108 are coupled to the DUT 104 and the DUT 104 is powered on. In an embodiment, the DUT 104 is powered on when the supply voltage source 106 is turned to provide a supply voltage on the supply voltage rail 122 of the DUT 104. The supply voltage may be, for example, 5V, 12V or other voltage as required to power on the DUT 104.


In one embodiment, prior to the negative voltage test process, an initial zero voltage (0V) test may be performed to ensure that 0V on the supply voltage rail 122 does not cause a failure condition in the power device 116 in the DUT 104. In an embodiment, the DUT 104 is powered off at the beginning of the initial 0V test, thereby causing the supply voltage to decay (i.e., decrease). The monitoring and triggering circuit 110 in the negative voltage tester 102 monitors the supply voltage rail 122, and when the supply voltage on the supply voltage rail 122 decays below a predetermined level, causes the switching circuit 112 to provide 0V from the negative voltage source 114 to the supply voltage rail 122. The test equipment 108 monitors the one or more output lines 126, 128 of the power device 116 to detect an occurrence of a failure condition in the power device 116 in the DUT 104. For example, the failure condition may be indicated by an unexpected change in a profile on one of the monitored output lines of the power device 116.


In one embodiment in which the initial 0V test has been performed, the negative voltage test process starts after the initial 0V test ends without a failure condition in the DUT 104 being detected. For example, the initial 0V test may end if a failure condition has not been detected on the monitored output lines 126, 128 of the power device 116 after a predetermined amount of time has expired from the start of the initial 0V test. In an embodiment in which the initial 0V test has been performed without causing a failure condition in the DUT 104, or in an embodiment in which the initial 0V test is not used, the DUT 104 is powered on prior to the start of the first negative voltage test.


At the beginning of the first negative voltage test, the DUT 104 is powered off to cause the supply voltage on the supply voltage rail 122 to start to decay. The monitoring and triggering circuit 110 monitors the supply voltage rail 122, and when the supply voltage decays below a predetermined level, causes the switching circuit 112 to provide a first negative voltage (e.g., −0.1V) from the negative voltage source 114 to the supply voltage rail 122. The test equipment 108 monitors the one or more output lines 126, 128 of the power device 116 to detect the occurrence of a failure condition in the power device 116 in the DUT 104. If the test equipment 108 detects the occurrence of a failure condition, the negative voltage test process ends. If the first negative voltage test ends without the test equipment 108 detecting the occurrence of a failure condition, a second negative test is performed. In an embodiment, a negative voltage test is designated as ending if a failure condition has not been detected on the monitored output line(s) of the power device 116 after expiration of a predetermined duration from the start of the negative voltage test.


Assuming that the first negative voltage test ends without the first negative voltage causing a failure condition in the power device 116, the DUT 104 is powered on prior to the second negative voltage test. At the beginning of the second negative voltage test, the DUT 104 is powered to cause the supply voltage on the supply voltage rail 122 to start to decay. Similar to the first negative voltage test, the monitoring and triggering circuit 110 monitors the supply voltage rail 122 and causes the switching circuit 112 to provide a second negative voltage to the supply voltage rail 122 when the supply voltage decays below the predetermined level. In an embodiment, the second negative voltage has a higher amplitude than the first negative voltage. For example, if the first negative voltage was −0.1V, the second negative voltage may be −0.2V. In one embodiment, the negative voltage is incremented by a predetermined amount after each negative voltage test that did not result in a failure condition being detected on the monitored output line(s) of the power device 116.


Similar to the first negative voltage test, the test equipment 108 monitors the one or more output lines 126, 128 of the power device 116 for the occurrence of a failure condition in the power device 116 in the DUT 104. If the second negative voltage test causes a failure condition, the negative voltage test process ends. If the second negative voltage test ends without detection of a failure condition in the DUT 104, the negative voltage test process continues until a negative voltage test results in a failure condition being detected in the DUT 104. In one embodiment, the negative voltage test process ends when a predetermined number of negative voltage tests end without a failure condition being detected on the one or more monitored output lines 126, 128 of the power device 116. In one embodiment, the negative voltage test process ends when the amplitude of the negative voltage increases to a predetermined level in a negative voltage test without that test resulting in a failure condition being detected on the one or more monitored output lines 126, 128 of the power device 116.



FIG. 2 shows a test system 200 according to an embodiment of the invention. To avoid duplicate description and preserve brevity, only the differences between the test system 200 in FIG. 2 and the test system 100 in FIG. 1 will be described herein. As shown in FIG. 2, the test system 200 includes a negative voltage tester 202, a DUT 104, and test equipment 208. In the embodiment shown in FIG. 2, the negative voltage tester 202 comprises a monitoring and triggering circuit 110, a switching circuit 112, a supply voltage source 206, a negative voltage source 214, and control circuitry 230. In the embodiment shown in FIG. 2, the control circuitry 230 is coupled to the supply voltage source 206, the negative voltage source 214 and the test equipment 208.


In an embodiment of the invention, the control circuitry 230 is configured to cause a supply voltage to be applied to the supply voltage rail 122 of the DUT 104 to power on the DUT 104 prior to the start of a negative voltage test by turning on the supply voltage source 206. The control circuitry 230 is further configured to cause the supply voltage on the supply voltage rail 122 to decay at the start of the negative voltage test by powering off the DUT 104 by turning off the supply voltage source 206, and is further configured to cause the negative voltage provided by the negative voltage source 214 to be increased in amplitude after each negative voltage test of a negative voltage test process that requires more than one negative voltage test to cause a failure condition in the DUT 104.


In an embodiment of the invention, the test equipment 208 is configured to notify the control circuitry 230 when an indication of a failure condition is detected on the one or more output lines 126, 128 that are monitored by the test equipment 208. In an embodiment, the test equipment 208 is configured to notify the control circuitry 230 when a negative voltage test ends without causing a failure condition in the power device 116 in the DUT 104. In one embodiment, the test equipment 208 is configured to determine that a negative voltage test ends without causing a failure condition when a predetermined amount of time has expired since the start of the negative voltage test without an indication of a failure condition on the one or more monitored output lines 126, 128 of the power device 116.



FIG. 3 shows a circuit diagram of a negative voltage tester 302 according to an embodiment of the invention. In the embodiment shown in FIG. 3, the negative voltage tester 302 comprises a monitoring and triggering circuit 310 and a switching circuit 312. In the embodiment shown in FIG. 3, the monitoring and triggering circuit 310 comprises a comparator 332 (e.g., an operational amplifier (op-amp) configured as a comparator), a pulse generator 334 (e.g., a multivibrator), and a buffer 336 (e.g., an op-amp configured as a buffer). In one embodiment, the monitoring and triggering circuit 310 comprises only the comparator 332 and the pulse generator 334. In one embodiment, the monitoring and triggering circuit 310 comprises only the comparator 332, wherein the comparator 332 provides an output pulse that has sufficient power to drive the switching circuit 312.


As shown in FIG. 3, the negative input of the comparator 332 is coupled to the supply voltage rail 122 of the DUT 104 (shown in FIGS. 1 and 2), first terminals of resistors 338, 340, and 342 are coupled to the positive input of the comparator 332, a second terminal of resistor 338 is coupled to tester supply voltage 344, a second terminal of resistor 340 is coupled to ground, and a second terminal of resistor 342 is coupled to the output of the comparator 332. In the embodiment shown in FIG. 3, resistors 338, 340, and 342 determine a reference voltage that is applied to the positive input of the comparator 332. In one embodiment, one of resistors 338 and 340 can be a variable resistor to enable the reference voltage at the positive input of the comparator 332 to be adjustable. In the embodiment shown in FIG. 3, the comparator 332 is configured to change logic states at its output when the supply voltage on the supply voltage rail 122 at its negative input exceeds the reference voltage at its positive input, or vice versa.


As shown in FIG. 3, the output of the comparator 332 is coupled to the B input of the pulse generator 334 and the Q output of the pulse generator 334 is coupled to the positive input of the buffer 336. In the embodiment in FIG. 3, the pulse generator 334 is configured to provide a positive output pulse at the Q output when the B input from the output of the comparator 332 transitions from low-to-high. As shown in FIG. 3, the output of the buffer 336 is coupled to a first terminal of an inductor 346 in the switching circuit 312, a second terminal of the inductor 346 is coupled to ground, a first terminal of a switch 348 in the switching circuit 312 is coupled to the supply voltage rail 122 of the DUT 104 (shown in FIGS. 1 and 2), and a second terminal of the switch 348 is coupled to a negative voltage source 314 (e.g., negative voltage source 114 in FIG. 1 or negative voltage source 214 in FIG. 2). In the embodiment shown in FIG. 3, the switching circuit 312 comprises a relay. In other embodiments, the switching circuit 312 can comprise, for example, one or more semiconductor devices (e.g., one or more transistors) configured to operate as a switch.


In the embodiment shown in FIG. 3, the buffer 336 is configured to match the high impedance of the Q output of the pulse generator 334 to the low impedance of the inductor 346 in the switching circuit 312 and drive the switching circuit 312. In the embodiment shown in FIG. 3, the switch circuit 312 is configured to provide a negative voltage from the negative voltage source 314 on the second terminal of the switch 348 to the supply voltage rail 122 of the DUT 104 when the inductor 346 is energized from a pulse from the Q output of the pulse generator 334 via the buffer 336.


The operation of the negative voltage tester 302 during a negative voltage test of a DUT (e.g., the DUT 104 shown in FIGS. 1 and 2) will now be discussed. In one embodiment, the comparator 332 compares the supply voltage on the supply voltage rail 122 of the DUT 104 (which is coupled to the negative input of the comparator 332) with the reference voltage (which is coupled to the positive input of the comparator 332). At the start of the negative voltage test, the supply voltage on the supply voltage rail 122 begins to decay when, in an embodiment, the DUT 104 is powered off. When the supply voltage decays below the reference voltage at the positive input of the comparator 332 (which is set at a lower voltage level than the supply voltage), the output (which is coupled to the B input of the pulse generator 334) transitions from a low-to-high voltage level, thereby causing a positive pulse to be generated at the Q output of the pulse generator 334.


The positive pulse from the pulse generator is transmitted via the buffer 336 to the inductor 346 in the switching circuit 312 and causes it (the inductor 346) to energize. When the inductor 346 is energized, it causes the switch 348 in the switching circuit 312 to close, thereby providing a negative voltage from the negative voltage source 314 to the supply voltage rail 122 of the DUT 104. The positive pulse from the pulse generator has a relatively short duration, which causes the negative voltage from the negative voltage source 314 to have a correspondingly short duration, since the switch 348 remains closed (and providing the negative voltage to the supply voltage rail 122) only as long as the inductor 346 (which magnetically controls the switch 348) remains energized by the positive pulse. The effect of the negative voltage on the power device 116 in the DUT 104 during the negative voltage test is determined in a similar manner as described above with respect to test system 100 in FIG. 1.



FIG. 4 is a flow diagram of a negative voltage test process according to an embodiment of the invention, wherein a negative voltage tester (e.g., negative voltage tester 102), a supply voltage source (e.g., supply voltage source 106), and test equipment (e.g., test equipment 108) are coupled to a DUT (e.g., DUT 104) (block 402). In one embodiment, the supply voltage source (e.g., supply voltage source 206) located inside the negative voltage tester (e.g., negative voltage tester 202). The DUT is powered on and one or more output lines (e.g., one or more output lines 126, 128) of a power device (e.g., power device 116) in the DUT are monitored by the test equipment (block 404). For example, the DUT may be powered on by turning on the supply voltage source to provide a supply voltage on the supply voltage rail (e.g., supply voltage rail 122). In one embodiment, the supply voltage source (e.g., supply voltage source 206) is turned on by control circuitry (e.g., control circuitry 230) in the negative voltage tester (e.g., negative voltage tester 202).


The DUT is powered off to begin a negative voltage test and a negative voltage is applied to the supply voltage rail of the DUT when a supply voltage on the supply voltage rail decays below a predetermined level (block 406). For example, the DUT may be powered off by turning off the supply voltage source (which provides the supply voltage to the supply voltage rail to power on the DUT). In one embodiment, the DUT may be powered off by opening a switch that is inserted in the supply line (e.g., supply line 124) that couples the supply voltage source to the supply voltage rail of the DUT. In one embodiment, the supply voltage source is turned off by control circuitry (e.g., control circuitry 230) in the negative voltage tester (e.g., negative voltage tester 202).


During the negative voltage test, when an occurrence of a failure condition is determined in the power device in the DUT (block 408), the amplitude and energy of the negative voltage that caused the failure condition is recorded (block 412). For example, an occurrence of a failure condition in the power device may be determined by detecting an unexpected change in a profile on the one or more output lines of the power device that are monitored by the test equipment. In one embodiment, the unexpected change in a profile on the one or more output lines that indicates the occurrence of a failure condition may be visually displayed by the test equipment.


However, if a failure condition in the power device is not detected during the negative voltage test (i.e., the negative voltage test ends without a failure condition being detected), the amplitude of the negative voltage is increased (block 410) and the DUT is powered on prior to the start of a next negative voltage test in the negative voltage test process (block 404). The negative voltage test process as described above continues by increasing the amplitude of the negative transition voltage in each successive test until an occurrence of a failure condition has been detect on the one or more monitored output lines of the power device in the DUT. In one embodiment, the negative voltage test process ends when a predetermined number of negative voltage tests end without a failure condition being detected in the DUT. In one embodiment, the negative voltage test process ends when the amplitude of the negative voltage increases to a predetermined level in a negative voltage test without that test resulting in a failure condition being detected in the DUT.


It is noted that the blocks (i.e., steps) in the flow diagram in FIG. 4 are shown in a particular order to illustrate an embodiment of the invention. In other embodiments, the blocks in the flow diagram in FIG. 4 may be performed in a different order.


While some embodiments of the invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and devices described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and devices described herein may be made without departing from the spirit of the disclosure. For example, the various components described may be implemented as software and/or firmware on a processor, ASIC/FPGA, or dedicated hardware. As an additional example, some of the above described negative voltage tester embodiments may be used to test power devices in electronic devices other than data storage devices for failure conditions resulting from negative voltages.


Also, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the present disclosure provides certain preferred embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of protection is defined only by the claims.

Claims
  • 1. A negative voltage tester comprising: a monitoring and triggering circuit coupled to a positive supply voltage rail that supplies a positive supply voltage greater than zero to a device under test (DUT); anda switching circuit coupled to the monitoring and triggering circuit;wherein the monitoring and triggering circuit is configured to: perform a negative voltage test of the DUT by causing the switching circuit to provide a first negative voltage to the positive supply voltage rail when the positive supply voltage on the positive supply voltage rail decays below a predetermined level, andrepeat the negative voltage test until failure of the DUT, an amplitude of the negative voltage being increased for each repetition of the negative voltage test,wherein the DUT comprises a power device coupled to the positive supply voltage rail,wherein the power device is coupled to test equipment via one or more output lines, and the test equipment is configured to detect a failure condition in the DUT by monitoring the one or more output lines,wherein the DUT further comprises disk drive mechanics coupled to at least a first one of the output lines of the power device and a system on a chip (SoC) coupled to at least a second one of the output lines of the power device, and wherein the test equipment is coupled to at least one of the first one and the second one of the output lines of the power device.
  • 2. The negative voltage tester as recited in claim 1, further comprising a negative voltage source coupled to the switching circuit and configured to provide the negative voltage to the switching circuit during the negative voltage test.
  • 3. The negative voltage tester as recited in claim 1, wherein the switching circuit is configured to provide the negative voltage to the positive supply voltage rail in response to a signal from the monitoring and triggering circuit.
  • 4. The negative voltage tester as recited in claim 1, wherein the positive supply voltage rail is coupled to a supply voltage source, and wherein the supply voltage source is turned off when the negative voltage test begins to cause the positive supply voltage to decay below the predetermined level.
  • 5. The negative voltage tester as recited in claim 4, wherein the supply voltage source is situated inside the negative voltage tester.
  • 6. The negative voltage tester as recited in claim 1, wherein the DUT is powered on by providing the positive supply voltage on the positive supply voltage rail prior to the start of each negative voltage test, and wherein in the each negative voltage test the DUT is powered off to cause the positive supply voltage on the positive supply voltage rail to decay below the predetermined level.
  • 7. The negative voltage tester as recited in claim 1, wherein the monitoring and triggering circuit comprises a comparator having an output coupled to an input of a pulse generator, and wherein the pulse generator causes the switching circuit to provide the negative voltage to the positive supply voltage rail.
  • 8. A test system for testing a response of a device under test (DUT) to negative voltage, the test system comprising: a negative voltage tester comprising: a monitoring and triggering circuit coupled to a positive supply voltage rail to receive a positive supply voltage that is greater than zero; anda switching circuit coupled to the monitoring and triggering circuit;wherein the monitoring and triggering circuit is configured to: perform a negative voltage test of the DUT by causing the switching circuit to provide a negative voltage to the positive supply voltage rail when the positive supply voltage on the positive supply voltage rail decays below a predetermined level, andrepeat the negative voltage test until failure of the DUT, an amplitude of the negative voltage being increased for each repetition of the negative voltage test, andwherein the DUT comprises a power device coupled to the positive supply voltage rail; andtest equipment coupled to one or more output lines of the power device, and configured to detect a failure condition in the DUT by monitoring the one or more output lines,wherein the DUT further comprises disk drive mechanics coupled to at least a first one of the output lines of the power device and a system on a chip (SoC) coupled to at least a second one of the output lines of the power device, and wherein the test equipment is coupled to at least one of the first one and the second one of the output lines of the power device.
  • 9. The test system as recited in claim 8, wherein the negative voltage tester further comprises a negative voltage source coupled to the switching circuit and configured to provide the negative voltage to the switching circuit during the negative voltage test.
  • 10. The test system as recited in claim 9, further comprising a supply voltage source coupled to the positive supply voltage rail, and wherein in the negative voltage test the supply voltage source is turned off to cause the positive supply voltage to decay below the predetermined level.
  • 11. The test system as recited in claim 10, wherein the supply voltage source is situated inside the negative voltage tester.
  • 12. The test system as recited in claim 8, wherein the DUT is powered on prior to each negative voltage test performed.
  • 13. The test system as recited in claim 8, wherein the supply voltage source is turned on to power on the DUT prior to the start of each negative voltage test and is turned off at the start of each negative voltage test.
  • 14. The test system as recited in claim 8, wherein the monitoring and triggering circuit comprises a comparator having an output coupled to an input of a pulse generator, and wherein the pulse generator causes the switching circuit to provide the negative voltage to the positive supply voltage rail.
  • 15. A method of using a negative voltage tester to test a device under test (DUT) in a test system comprising the negative voltage tester and the DUT, the DUT comprising a positive supply voltage rail for receiving a positive supply voltage that is greater than zero and a power device coupled to the positive supply voltage rail, the negative voltage tester comprising a monitoring and triggering circuit coupled to the positive supply voltage rail and a switching circuit coupled to the monitoring and triggering circuit and the supply voltage rail, the method comprising: causing the switching circuit to provide a negative voltage to the positive supply voltage rail when an initial supply voltage on the positive supply voltage rail decays below a predetermined level during a negative voltage test of the DUT;repeating the negative voltage test until failure of the DUT, an amplitude of the negative voltage being increased for each repetition of the negative voltage test, wherein the test system further comprises test equipment coupled to one or more output lines of the power device; anddetecting a failure condition in the DUT by monitoring the one or more output lines of the power device,wherein the DUT further comprises drive mechanics coupled to at least a first one of the output lines of the power device and a system on a chip (SoC) coupled to at least a second one of the output lines of the power device, and wherein the test equipment is coupled to at least one of the first one and the second one of the output lines of the power device.
  • 16. The method as recited in claim 15, wherein: the negative voltage tester further comprises a negative voltage source coupled to the switching circuit; andthe method further comprises providing the negative voltage to the switching circuit during the test.
  • 17. The method as recited in claim 16, wherein: the test system further comprises a supply voltage source; andthe method further comprises, in the negative voltage test, turning off the supply voltage source to cause the positive supply voltage to decay below the predetermined level.
  • 18. The method as recited in claim 17, wherein the supply voltage source is situated inside the negative voltage tester.
  • 19. The method as recited in claim 15, further comprising powering on the DUT prior to the start of each negative voltage test.
  • 20. The method as recited in claim 15further comprising turning on the supply voltage source to power on the DUT prior to the start of each negative voltage test and turning off the supply voltage source to power off the DUT at the start of each negative voltage test.
  • 21. The method as recited in claim 15, wherein: the monitoring and triggering circuit comprises a comparator having an output coupled to an input of a pulse generator; andthe method further comprises causing the switching circuit to provide the negative voltage to the positive supply voltage rail by providing a pulse from the pulse generator.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Application No. 61/897,152, filed Oct. 29, 2013, for “NEGATIVE VOLTAGE TESTING METHODOLOGY AND TESTER”, which is incorporated herein by reference.

US Referenced Citations (333)
Number Name Date Kind
3657555 Hoffman Apr 1972 A
5006807 Blum Apr 1991 A
6014283 Codilian et al. Jan 2000 A
6052076 Patton, III et al. Apr 2000 A
6052250 Golowka et al. Apr 2000 A
6067206 Hull et al. May 2000 A
6078453 Dziallo et al. Jun 2000 A
6091564 Codilian et al. Jul 2000 A
6094020 Goretzki et al. Jul 2000 A
6101065 Alfred et al. Aug 2000 A
6104153 Codilian et al. Aug 2000 A
6122133 Nazarian et al. Sep 2000 A
6122135 Stich Sep 2000 A
6141175 Nazarian et al. Oct 2000 A
6147523 Hojabri Nov 2000 A
6160368 Plutowski Dec 2000 A
6181502 Hussein et al. Jan 2001 B1
6195222 Heminger et al. Feb 2001 B1
6198584 Codilian et al. Mar 2001 B1
6198590 Codilian et al. Mar 2001 B1
6204988 Codilian et al. Mar 2001 B1
6243223 Elliott et al. Jun 2001 B1
6281652 Ryan et al. Aug 2001 B1
6285521 Hussein Sep 2001 B1
6292320 Mason et al. Sep 2001 B1
6310742 Nazarian et al. Oct 2001 B1
6320718 Bouwkamp et al. Nov 2001 B1
6342984 Hussein et al. Jan 2002 B1
6347018 Kadlec et al. Feb 2002 B1
6369972 Codilian et al. Apr 2002 B1
6369974 Asgari et al. Apr 2002 B1
6462896 Codilian et al. Oct 2002 B1
6476996 Ryan Nov 2002 B1
6484577 Bennett Nov 2002 B1
6493169 Ferris et al. Dec 2002 B1
6496324 Golowka et al. Dec 2002 B1
6498698 Golowka et al. Dec 2002 B1
6507450 Elliott Jan 2003 B1
6534936 Messenger et al. Mar 2003 B2
6538839 Ryan Mar 2003 B1
6545835 Codilian et al. Apr 2003 B1
6549359 Bennett et al. Apr 2003 B1
6549361 Bennett et al. Apr 2003 B1
6560056 Ryan May 2003 B1
6568268 Bennett May 2003 B1
6574062 Bennett et al. Jun 2003 B1
6577465 Bennett et al. Jun 2003 B1
6614615 Ju et al. Sep 2003 B1
6614618 Sheh et al. Sep 2003 B1
6636377 Yu et al. Oct 2003 B1
6690536 Ryan Feb 2004 B1
6693764 Sheh et al. Feb 2004 B1
6707635 Codilian et al. Mar 2004 B1
6710953 Vallis et al. Mar 2004 B1
6710966 Codilian et al. Mar 2004 B1
6714371 Codilian Mar 2004 B1
6714372 Codilian et al. Mar 2004 B1
6724564 Codilian et al. Apr 2004 B1
6731450 Codilian et al. May 2004 B1
6735041 Codilian et al. May 2004 B1
6738220 Codilian May 2004 B1
6747837 Bennett Jun 2004 B1
6760186 Codilian et al. Jul 2004 B1
6788483 Ferris et al. Sep 2004 B1
6791785 Messenger et al. Sep 2004 B1
6795268 Ryan Sep 2004 B1
6819518 Melkote et al. Nov 2004 B1
6826006 Melkote et al. Nov 2004 B1
6826007 Patton, III Nov 2004 B1
6847502 Codilian Jan 2005 B1
6850383 Bennett Feb 2005 B1
6850384 Bennett Feb 2005 B1
6867944 Ryan Mar 2005 B1
6876508 Patton, III et al. Apr 2005 B1
6882496 Codilian et al. Apr 2005 B1
6885514 Codilian et al. Apr 2005 B1
6900958 Yi et al. May 2005 B1
6900959 Gardner et al. May 2005 B1
6903897 Wang et al. Jun 2005 B1
6914740 Tu et al. Jul 2005 B1
6914743 Narayana et al. Jul 2005 B1
6920004 Codilian et al. Jul 2005 B1
6924959 Melkote et al. Aug 2005 B1
6924960 Melkote et al. Aug 2005 B1
6924961 Melkote et al. Aug 2005 B1
6934114 Codilian et al. Aug 2005 B1
6934135 Ryan Aug 2005 B1
6937420 McNab et al. Aug 2005 B1
6937423 Ngo et al. Aug 2005 B1
6952322 Codilian et al. Oct 2005 B1
6954324 Tu et al. Oct 2005 B1
6958881 Codilian et al. Oct 2005 B1
6963465 Melkote et al. Nov 2005 B1
6965488 Bennett Nov 2005 B1
6967458 Bennett et al. Nov 2005 B1
6967811 Codilian et al. Nov 2005 B1
6970319 Bennett et al. Nov 2005 B1
6972539 Codilian et al. Dec 2005 B1
6972540 Wang et al. Dec 2005 B1
6972922 Subrahmanyam et al. Dec 2005 B1
6975480 Codilian et al. Dec 2005 B1
6977789 Cloke Dec 2005 B1
6980389 Kupferman Dec 2005 B1
6987636 Chue et al. Jan 2006 B1
6987639 Yu Jan 2006 B1
6989954 Lee et al. Jan 2006 B1
6992848 Agarwal et al. Jan 2006 B1
6992851 Cloke Jan 2006 B1
6992852 Ying et al. Jan 2006 B1
6995941 Miyamura et al. Feb 2006 B1
6999263 Melkote et al. Feb 2006 B1
6999267 Melkote et al. Feb 2006 B1
7006320 Bennett et al. Feb 2006 B1
7016134 Agarwal et al. Mar 2006 B1
7023637 Kupferman Apr 2006 B1
7023640 Codilian et al. Apr 2006 B1
7027256 Subrahmanyam et al. Apr 2006 B1
7027257 Kupferman Apr 2006 B1
7035026 Codilian et al. Apr 2006 B2
7046472 Melkote et al. May 2006 B1
7050249 Chue et al. May 2006 B1
7050254 Yu et al. May 2006 B1
7050258 Codilian May 2006 B1
7054098 Yu et al. May 2006 B1
7061714 Yu Jun 2006 B1
7064918 Codilian et al. Jun 2006 B1
7068451 Wang et al. Jun 2006 B1
7068459 Cloke et al. Jun 2006 B1
7068461 Chue et al. Jun 2006 B1
7068463 Ji et al. Jun 2006 B1
7088547 Wang et al. Aug 2006 B1
7095579 Ryan et al. Aug 2006 B1
7110208 Miyamura et al. Sep 2006 B1
7110214 Tu et al. Sep 2006 B1
7113362 Lee et al. Sep 2006 B1
7113365 Ryan et al. Sep 2006 B1
7116505 Kupferman Oct 2006 B1
7126781 Bennett Oct 2006 B1
7158329 Ryan Jan 2007 B1
7180703 Subrahmanyam et al. Feb 2007 B1
7184230 Chue et al. Feb 2007 B1
7196864 Yi et al. Mar 2007 B1
7199966 Tu et al. Apr 2007 B1
7203021 Ryan et al. Apr 2007 B1
7209321 Bennett Apr 2007 B1
7212364 Lee May 2007 B1
7212374 Wang et al May 2007 B1
7215504 Bennett May 2007 B1
7224546 Orakcilar et al. May 2007 B1
7248426 Weerasooriya et al. Jul 2007 B1
7251098 Wang et al. Jul 2007 B1
7253582 Ding et al. Aug 2007 B1
7253989 Lau et al. Aug 2007 B1
7265933 Phan et al. Sep 2007 B1
7287169 Youssef Oct 2007 B2
7289288 Tu Oct 2007 B1
7298574 Melkote et al. Nov 2007 B1
7301717 Lee et al. Nov 2007 B1
7304819 Melkote et al. Dec 2007 B1
7330019 Bennett Feb 2008 B1
7330327 Chue et al. Feb 2008 B1
7333280 Lifchits et al. Feb 2008 B1
7333290 Kupferman Feb 2008 B1
7339761 Tu et al. Mar 2008 B1
7348836 Velmurugan Mar 2008 B1
7365932 Bennett Apr 2008 B1
7388728 Chen et al. Jun 2008 B1
7391583 Sheh et al. Jun 2008 B1
7391584 Sheh et al. Jun 2008 B1
7433143 Ying et al. Oct 2008 B1
7440210 Lee Oct 2008 B1
7440225 Chen et al. Oct 2008 B1
7450334 Wang et al. Nov 2008 B1
7450336 Wang et al. Nov 2008 B1
7453661 Jang et al. Nov 2008 B1
7457071 Sheh Nov 2008 B1
7466509 Chen et al. Dec 2008 B1
7468855 Weerasooriya et al. Dec 2008 B1
7477471 Nemshick et al. Jan 2009 B1
7480116 Bennett Jan 2009 B1
7489464 McNab et al. Feb 2009 B1
7492546 Miyamura Feb 2009 B1
7495857 Bennett Feb 2009 B1
7499236 Lee et al. Mar 2009 B1
7502192 Wang et al. Mar 2009 B1
7502195 Wu et al. Mar 2009 B1
7502197 Chue Mar 2009 B1
7505223 McCornack Mar 2009 B1
7542225 Ding et al. Jun 2009 B1
7548392 Desai et al. Jun 2009 B1
7551390 Wang et al. Jun 2009 B1
7558016 Le et al. Jul 2009 B1
7573670 Ryan et al. Aug 2009 B1
7576941 Chen et al. Aug 2009 B1
7580212 Li et al. Aug 2009 B1
7583470 Chen et al. Sep 2009 B1
7595954 Chen et al. Sep 2009 B1
7602575 Lifchits et al. Oct 2009 B1
7616399 Chen et al. Nov 2009 B1
7619844 Bennett Nov 2009 B1
7626782 Yu et al. Dec 2009 B1
7630162 Zhao et al. Dec 2009 B2
7639447 Yu et al. Dec 2009 B1
7656604 Liang et al. Feb 2010 B1
7656607 Bennett Feb 2010 B1
7660067 Ji et al. Feb 2010 B1
7663835 Yu et al. Feb 2010 B1
7675707 Liu et al. Mar 2010 B1
7679854 Narayana et al. Mar 2010 B1
7688534 McCornack Mar 2010 B1
7688538 Chen et al. Mar 2010 B1
7688539 Bryant et al. Mar 2010 B1
7697233 Bennett et al. Apr 2010 B1
7701661 Bennett Apr 2010 B1
7710100 Xiong May 2010 B2
7710676 Chue May 2010 B1
7715138 Kupferman May 2010 B1
7729079 Huber Jun 2010 B1
7733189 Bennett Jun 2010 B1
7746592 Liang et al. Jun 2010 B1
7746594 Guo et al. Jun 2010 B1
7746595 Guo et al. Jun 2010 B1
7760461 Bennett Jul 2010 B1
7800853 Guo et al. Sep 2010 B1
7800856 Bennett et al. Sep 2010 B1
7800857 Calaway et al. Sep 2010 B1
7839591 Weerasooriya et al. Nov 2010 B1
7839595 Chue et al. Nov 2010 B1
7839600 Babinski et al. Nov 2010 B1
7843662 Weerasooriya et al. Nov 2010 B1
7852588 Ferris et al. Dec 2010 B1
7852592 Liang et al. Dec 2010 B1
7864481 Kon et al. Jan 2011 B1
7864482 Babinski et al. Jan 2011 B1
7869155 Wong Jan 2011 B1
7876522 Calaway et al. Jan 2011 B1
7876523 Panyavoravaj et al. Jan 2011 B1
7916415 Chue Mar 2011 B1
7916416 Guo et al. Mar 2011 B1
7916420 McFadyen et al. Mar 2011 B1
7916422 Guo et al. Mar 2011 B1
7929238 Vasquez Apr 2011 B1
7961422 Chen et al. Jun 2011 B1
8000053 Anderson Aug 2011 B1
8030959 Franco Oct 2011 B2
8031423 Tsai et al. Oct 2011 B1
8054022 Ryan et al. Nov 2011 B1
8059357 Knigge et al. Nov 2011 B1
8059360 Melkote et al. Nov 2011 B1
8072703 Calaway et al. Dec 2011 B1
8077428 Chen et al. Dec 2011 B1
8078901 Meyer et al. Dec 2011 B1
8081395 Ferris Dec 2011 B1
8085020 Bennett Dec 2011 B1
8116023 Kupferman Feb 2012 B1
8145934 Ferris et al. Mar 2012 B1
8179626 Ryan et al. May 2012 B1
8189286 Chen et al. May 2012 B1
8213106 Guo et al. Jul 2012 B1
8254222 Tang Aug 2012 B1
8300348 Liu et al. Oct 2012 B1
8315005 Zou et al. Nov 2012 B1
8320069 Knigge et al. Nov 2012 B1
8351174 Gardner et al. Jan 2013 B1
8358114 Ferris et al. Jan 2013 B1
8358145 Ferris et al. Jan 2013 B1
8390367 Bennett Mar 2013 B1
8432031 Agness et al. Apr 2013 B1
8432629 Rigney et al. Apr 2013 B1
8451697 Rigney et al. May 2013 B1
8482873 Chue et al. Jul 2013 B1
8498076 Sheh et al. Jul 2013 B1
8498172 Patton, III et al. Jul 2013 B1
8508881 Babinski et al. Aug 2013 B1
8531798 Xi et al. Sep 2013 B1
8537486 Liang et al. Sep 2013 B2
8542455 Huang et al. Sep 2013 B2
8553351 Narayana et al. Oct 2013 B1
8564899 Lou et al. Oct 2013 B2
8576506 Wang et al. Nov 2013 B1
8605382 Mallary et al. Dec 2013 B1
8605384 Liu et al. Dec 2013 B1
8610391 Yang et al. Dec 2013 B1
8611040 Xi et al. Dec 2013 B1
8619385 Guo et al. Dec 2013 B1
8630054 Bennett et al. Jan 2014 B2
8630059 Chen et al. Jan 2014 B1
8634154 Rigney et al. Jan 2014 B1
8634283 Rigney et al. Jan 2014 B1
8643976 Wang et al. Feb 2014 B1
8649121 Smith et al. Feb 2014 B1
8654466 McFadyen Feb 2014 B1
8654467 Wong et al. Feb 2014 B1
8665546 Zhao et al. Mar 2014 B1
8665551 Rigney et al. Mar 2014 B1
8670206 Liang et al. Mar 2014 B1
8687312 Liang Apr 2014 B1
8693123 Guo et al. Apr 2014 B1
8693134 Xi et al. Apr 2014 B1
8699173 Kang et al. Apr 2014 B1
8711027 Bennett Apr 2014 B1
8717696 Ryan et al. May 2014 B1
8717699 Ferris May 2014 B1
8717704 Yu et al. May 2014 B1
8724245 Smith et al. May 2014 B1
8724253 Liang et al. May 2014 B1
8724524 Urabe et al. May 2014 B2
8737008 Watanabe et al. May 2014 B1
8737013 Zhou et al. May 2014 B2
8743495 Chen Jun 2014 B1
8743503 Tang et al. Jun 2014 B1
8743504 Bryant et al. Jun 2014 B1
8749904 Liang et al. Jun 2014 B1
8760796 Lou et al. Jun 2014 B1
8767332 Chahwan et al. Jul 2014 B1
8767343 Helmick et al. Jul 2014 B1
8767354 Ferris et al. Jul 2014 B1
8773787 Beker Jul 2014 B1
8779574 Agness et al. Jul 2014 B1
8780473 Zhao et al. Jul 2014 B1
8780477 Guo et al. Jul 2014 B1
8780479 Helmick et al. Jul 2014 B1
8780489 Gayaka et al. Jul 2014 B1
8792202 Wan et al. Jul 2014 B1
8797664 Guo et al. Aug 2014 B1
8804267 Huang et al. Aug 2014 B2
20050218903 Reddy Oct 2005 A1
20070090820 Kodera Apr 2007 A1
20100035085 Jung et al. Feb 2010 A1
20120187969 Hess Jul 2012 A1
20120284493 Lou et al. Nov 2012 A1
20130120870 Zhou et al. May 2013 A1
20130148240 Ferris et al. Jun 2013 A1
Foreign Referenced Citations (1)
Number Date Country
2013093431 Dec 2012 WO
Provisional Applications (1)
Number Date Country
61897152 Oct 2013 US