Network named fragments in a content centric network

Information

  • Patent Grant
  • 10419345
  • Patent Number
    10,419,345
  • Date Filed
    Monday, October 23, 2017
    6 years ago
  • Date Issued
    Tuesday, September 17, 2019
    4 years ago
Abstract
A system facilitates efficient and secure transportation of content. An intermediate node receives a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments. One or more fragments of the plurality of fragments indicate a unique name that is a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level. The received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment. In response to determining that the received fragment is a first fragment, the system identifies a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment.
Description
BACKGROUND
Field

This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a system and method for secure and efficient transportation of content in a content centric network based on a fragmentation protocol.


Related Art

The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level. Generally, interests and content objects travel through a number of links before they can reach their destination. Each link can have its own maximum transmission unit (MTU), where the differing MTU limits impose different fragmentation requirements. End-to-end CCN fragmentation is described in U.S. patent application Ser. Nos. 14/065,691 and 14/067,587, and cut-through forwarding of CCN message fragments with IP encapsulation is described in U.S. patent application Ser. No. 14/309,681.


Fragmentation protocols related to CCN continue to evolve. One secure fragmentation protocol for CCN is known as Fragmentation with Integrity Guarantees and Optional Authentication (FIGOA), described in Ghali et al., “Secure Fragmentation for Content-Centric Networks,” Computing Research Repository, 1405.2861 (2014), which disclosure is herein incorporated by reference in its entirety. The FIGOA protocol operates by creating fragments that are chained via hash computation, transmitting fragments with a name that match an interest for the name, and including a signature in the final fragment. However, under the FIGOA protocol, a content producer signs the final fragment, which creates a delayed verification of the signature by a requesting entity until all fragments have been received. This delayed verification may decrease the overall throughput of data and may also result in the injection of malicious packets, which can create inefficiencies and introduce security issues in the network. In addition, the FIGOA protocol does not provide a method to selectively request re-transmission of a specific fragment. When a fragment is dropped, the requesting entity re-requests the entire data stream, resulting in further inefficiencies in the network.


SUMMARY

One embodiment provides a system that facilitates efficient and secure transportation of content over a network. During operation, the system receives, by an intermediate node, a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments. One or more fragments of the plurality of fragments indicate a unique name. The received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment. In response to determining that the received fragment is a first fragment, the system identifies a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment, and creates a second entry in the pending interest table based on a digest or a segment identifier for the content object message.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary network facilitating efficient and secure transportation of content over a network, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary format for a first fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary format for a subsequent fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 2C illustrates an exemplary format for a first fragment of a content object message, where the content object message is part of a live stream, in accordance with an embodiment of the present invention.



FIG. 2D illustrates an exemplary format for a subsequent fragment of a content object message, where the content object message is part of a live stream, in accordance with an embodiment of the present invention.



FIG. 2E illustrates an exemplary format for a final fragment of a content object message, where the content object message is part of a live stream, in accordance with an embodiment of the present invention.



FIG. 3A illustrates a fragmented content object, in accordance with an embodiment of the present invention.



FIG. 3B presents a table illustrating a chained hash calculation of the intermediate state corresponding to the fragments of the content object of FIG. 3A, in accordance with an embodiment of the present invention.



FIG. 4A presents a flow chart illustrating a method by a content producing device for fragmenting a content object message, in accordance with an embodiment of the present invention.



FIG. 4B presents a flow chart illustrating a method by a content producing device for fragmenting a content object message, in accordance with an embodiment of the present invention.



FIG. 5A presents a flow chart illustrating a method by a content producing device for fragmenting a content object message, where the data stream is a live stream, in accordance with an embodiment of the present invention.



FIG. 5B presents a flow chart illustrating a method by a content producing device for fragmenting a content object message, where the data stream is a live stream, in accordance with an embodiment of the present invention.



FIG. 6A presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 6B presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 6C presents a table illustrating an exemplary algorithm for processing a fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 6D presents a table illustrating an exemplary algorithm for processing a fragment of a content object message in a pending interest table, in accordance with an embodiment of the present invention.



FIG. 7 presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message, where the data stream is a live stream, in accordance with an embodiment of the present invention.



FIG. 8 illustrates an exemplary apparatus that facilitates efficient and secure transportation of content over a network, in accordance with an embodiment of the present invention.



FIG. 9 illustrates an exemplary computer system that facilitates efficient and secure transportation of content over a network, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention provide a system which facilitates transportation of content over a content centric network based on a fragmentation protocol which uses efficient signature verification and allows for selective retransmission of individual fragments. One fragmentation scheme for transporting CCN content is known as Fragmentation with Integrity Guarantees and Optional Authentication (FIGOA). Under the FIGOA scheme, a content producer can fragment a content object and chain the fragments with a hash chain, where each fragment contains an intermediate state that is calculated based on the intermediate state from the previous fragment and the data from the respective fragment. Each fragment in FIGOA includes the full name of the content object message, while the signature of the producer is included only in the final fragment. The signature verification relies on the final state of the hash chain, which can only be computed when the final fragment is received. In addition, because the same name is included in each fragment, FIGOA does not provide a way to perform retransmission requests for a specific fragment or group of fragments.


Embodiments of the present invention address these inefficiencies by providing a fragmentation protocol also known as the Network Named Fragments (NNF) protocol that allows for more efficient signature verification and directly addressing individual CCN content object fragments. In the NNF protocol, the signature of the content producer is included in the first fragment, which makes the signature immediately verifiable. Subsequent fragments each contain an intermediate state which is based on a hash of the data of the respective fragment and the intermediate state from the previous fragment. Thus, the signature on the first fragment creates the root of a trusted hash chain for the remainder of the fragments.


In addition, the NNF protocol uniquely identifies each fragment based on certain state characteristics, such as overall digest, payload offset, and intermediate state (as described below in relation to FIGS. 2A-2B). These state characteristics can be encoded into the name of the fragment to allow selective retransmission of a specific fragment. The encoded name allows a content requestor (or an intermediate node), upon determining that a specific fragment of a stream has not been received, to selectively request the fragment by its unique name, thus obviating the need to re-request the entire stream.


The overall length of the fragmented content is not limited to a specific length, which allows for the transmission of large payloads. Content sent based on the NNF protocol can be very long content with a known digest (e.g., a video file), or can be segments where the digest is not known until the end of the segment (e.g., a live video stream). In the case of a segmented stream, a content producer sending data based on the NNF protocol can generate and include a same segment identifier in each segment. The producer signs the final fragment only after the overall digest is known (e.g., has been calculated based on the intermediate state of the previous hash chain), thus binding the segment identifier to the overall digest.


The following terms describe elements of a CCN architecture:


Content Object or “content object”: A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document.


In some embodiments, the name can include a non-hierarchical identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814 (entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013), which is hereby incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest or “interest”: A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175 (entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008), which is hereby incorporated by reference.


Exemplary Network and Communication



FIG. 1 illustrates an exemplary network 100 that facilitates efficient and secure transportation of content over a network, in accordance with an embodiment of the present invention. Network 100 can be a content centric network (CCN) and can include a client device 116, a content producing device 118, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. A CCN router can be a CCN forwarding device residing on top of an IP router. In other words, CCN can be implemented as an overlay on top of IP. Other CCN overlay architecture is also possible. A node can be a computer system, an end-point representing users, and/or a device that can generate interests or originate content.


A requesting entity (such as device 116) can generate an interest in a piece of content and send it to node 102. Intermediate nodes (such as CCN routers 102, 104, 112, and 114) can receive and forward the interest. A content producer (such as device or content producer 118) can satisfy the requested interest. Producer 118 can fragment a responsive content object 130 into x number of fragments, e.g., fragments 130.1-130.x. Producer 118 can sign the first fragment (as described below in relation to FIGS. 2A and 2B), and create a trusted hash chain of the remaining fragments (as described below in relation to FIGS. 3A and 3B). Producer 118 can immediately begin forwarding fragments 130.1-130.x, which fragments will travel the reverse path as the interest (e.g., to nodes 114, 112, 104, and 102) and reach device 116. Upon receiving the first fragment (e.g., fragment 130.1), device 116 can immediately verify the signature for the first fragment, which creates the root of the trusted hash chain for the remainder of the fragments. Device 116 can efficiently continue to receive the remainder of the trusted fragments without the delay incurred from a signature verification that can only occur when the final fragment has been received (as under the FIGOA protocol). Note that in CCN, intermediate nodes can, but are not required to, perform signature verification. Thus, the same efficiencies can be gained for signature verification performed by an intermediate node as for a requesting device. Device 116 can receive content object fragments 130.1-130.x and reassemble content object 130.


It is important to note the benefit for the consumer of signing the first fragment, when the overall digest and overall length are known ahead of time. If the last fragment is signed, instead, then a consumer must buffer all the prior fragments and wait for all the content to be received and the signature verified before using the data. Firewall systems checking signatures must likewise either buffer all fragments or pass them and only drop the last fragment if it fails verification. Because the first fragment is signed, the consumer can begin signature verification in parallel with receiving later fragments, as opposed to the last fragment begin signed where the signature verification time cannot be amortized over network time. One example can be seen in Guneysu et al., “Software Speed Records for Lattice-Based Signatures,” Post-Quantum Cryptography, Volume 7932:67-82, Lecture Notes in Computer Science (“Guneysu”). Guneysu finds that RSA 2048-bit signature verification takes 77,032 CPU cycles, elliptical curve takes 209,328 CPU cycles, and an optimized lattice signature verification takes 45,036 CPU cycles. Assuming a 3 GHz CPU, these times are 25.6 usec, 69.8 usec, and 15.0 usec, respectively. On a 10 Gbps link, a 1500 byte packet takes approximately 1.2 usec, so these delays are between 12.5 to 58 packet times.


Exemplary Format of CCN Content Object Message Fragments



FIG. 2A illustrates an exemplary format for a first fragment 210 of a content object message, in accordance with an embodiment of the present invention. First fragment 210 can include the following fields: a name 211 that can indicate the name of the content object and also contain encoded information to specifically identify the fragment; an overall digest 212 that is the digest of the entire fragmented payload for the CCN content object message; a payload offset 213 that is the byte offset where this fragment begins; an intermediate state 214 that is a value calculated based on the initialization vector and the payload or data associated with this fragment (e.g., data 216); an overall length 215 that is the total length of the entire fragmented payload; a data 216 that is the payload of this fragment and one of the input fields for the hash function to calculate intermediate state 214); and a signature 217 that is the signature of the producer of the content object message. First fragment 210 cannot be re-fragmented by an intermediate node, as described below in relation to FIG. 6A. Thus, first fragment 210 may contain no payload (e.g., no data 216) or a payload with a size smaller than a known MTU of the network.



FIG. 2B illustrates an exemplary format for a subsequent fragment 220 of a content object message, in accordance with an embodiment of the present invention. Subsequent fragment 220 can include similar fields as first fragment 210 of FIG. 2A. For example, subsequent fragment 220 can include the following fields: a name 221; an overall digest 222; a payload offset 223; an intermediate state 224; and a data 225. Name 221 can be optional in subsequent fragments when CCNx Nameless Objects are supported (as described in U.S. patent application Ser. No. 14/337,026). Under the NNF protocol, the name is included in the first fragment. Intermediate state 224 for subsequent fragment 220 is calculated based on a hash function performed on the intermediate state 214 of the previous fragment (e.g., intermediate state 214 of first fragment 210).


Overall digests 212 and 222 can be included in first fragment 210 and subsequent fragment 220, respectively, when the hash chain and the final overall digest is known in advance, e.g., when fragmenting a known file. The NNF protocol provides a slightly different format for the case of an unterminated data stream transmitted in segments of known length with a deferred digest computation, e.g., a live stream. FIG. 2C illustrates an exemplary format for a first fragment 230 of a content object message, where the content object message is part of a live stream, in accordance with an embodiment of the present invention. First fragment 230 can include similar fields as first fragment 210 of FIG. 2A. For example, first fragment 230 can include the following fields: a name 231; a payload offset 233; an intermediate state 234; and a data 236. First fragment 230 can also include a segment identifier 232 that is generated by a content producer and is included in all fragments of, e.g., a live data stream. In addition, first fragment 230 can include an overall length 235 that, as the total length of the stream is unknown, can include the length of the current segment. Unlike first fragment 210, first fragment 230 does not include a signature.



FIG. 2D illustrates an exemplary format for a subsequent fragment 240 of a content object message, where the content object message is part of a live stream, in accordance with an embodiment of the present invention. Subsequent fragment 240 can include similar fields as first fragment 230. For example, subsequent fragment can include a name 241, a segment identifier 242, a payload offset 243, an intermediate state 244, and a data 245. Subsequent fragment 240 does not include a signature or an overall length.



FIG. 2E illustrates an exemplary format for a final fragment 250 of a content object message, where the content object message is part of a live stream, in accordance with an embodiment of the present invention. Final fragment 250 can include similar fields as first fragment 230. For example, final fragment 250 can include a name 251, a segment identifier 252, a payload offset 253, an intermediate state 254, and a data 255. In addition to these fields, final fragment 250 can include an overall digest 256 that is calculated by the producer based on the hash chain of all of the fragmented data (as described below in relation to FIG. 5B). Final fragment 250 can also include a signature 257 of the producer of the content, where signature 257 binds the overall digest to the segment identifier for the content object message.



FIG. 3A illustrates a fragmented content object 300, in accordance with an embodiment of the present invention. Content object 300 includes a first fragment 310, which includes a name 311, an overall digest 312, a payload offset 313, an intermediate state 314 (“IS0”), a data 315 (“DATA0”), and a signature 316. Fragments 320, 330, 340, and 350 include similar fields as first fragment 310, but do not include a signature field.



FIG. 3B presents a table 360 illustrating a chained hash calculation of the intermediate state corresponding to fragments 310-350 of content object 300 of FIG. 3A, in accordance with an embodiment of the present invention. In first fragment 310, intermediate state 314 (ISo) is calculated based on a hash of an initialization vector and data 315 (DATA0) of first fragment 310. In subsequent fragment 320, intermediate state 324 (ISi) is calculated based on a hash of the intermediate state of the previous fragment (ISo of fragment 310) and data 325 (DATAi) of fragment 320. Each subsequent fragment includes an intermediate state that is calculated based on a hash of the intermediate state of the previous fragment and the data of that subsequent fragment. Finally, an overall digest 352 of fragment 350 is calculated based on a function of the intermediate state of the final fragment (IS4 of fragment 350). The function can be a hash function or any other function which finalizes the output based on the input.


Selective Retransmission of a Fragment or Fragments


Because the NNF protocol uniquely identifies each fragment based on, e.g., {Name, OverallDigest, PayloadOffset, IntermediateState}, certain of these characteristics can be encoded into the name to uniquely address a fragment for selective retransmission. For example, Overall Digest (“OD”), Payload Offset (“PO”), and IntermediateState (“IS”) can be encoded in the name for a fragment:

/parc.com/movie.alto.mkv/OD=123abc/P0=4096/IS=653efa  (1)

By using this naming convention, a requesting entity or intermediate node can selectively request a specific fragment.


It is not required to name every fragment. A producer may, for example, name every 3rd fragment. If the MTU is 1500 bytes, then the retransmission window in this case would be 4500 bytes. When a consumer loses one or more fragments in such a block, it only needs to send an interest for the closest prior named fragment and it will receive a retransmission of all fragments in that named block.


Note that the first fragment has two names. There is the general name, e.g. “/parc/com/movie.alto.mkv”, which retrieves all fragments, and there is the fragment name, e.g. “/parc/com/movie.alto.mkv/OD=123abc/P0=0/IS=6a09e667 . . . ” where the IS in this case is the SHA-256 Initialization Vector. The fragment name would only retrieve the first fragment or first fragment block, not the entire set of fragments like the general name.


Similar to Name (1) above, a producer can name fragments of a segment with a Segment ID instead of an OverallDigest:

/parc/com/movie.alto.mkv/SID=444ddd/P0=4096/IS=135ace  (2)

An interest with a name similar to Name (2) enables retransmission of individual segment fragments or segment fragment blocks if not all fragments carry a name.


In addition, a requesting entity can selectively request a subset or chain of fragments by including the name and an additional payload size. For example, consider an interest with the following name:

/parc.com/movie.alto.mkv/OD=123abc/P0=4096/IS=653efa/PS=8192  (3)

If the size of each individual fragment is 1024B, an interest with Name (3) returns a chain of four fragments starting at byte offset 4096. Re-fragmentation can also occur. For example, consider an interest with the following name:

/parc.com/movie.alto.mkv/OD=123abc/P0=4096/IS=653efa/PS=7680  (4)

Similar to an interest with Name (3), an interest with name (4) returns a chain of four fragments. However, the fourth fragment of the chain is re-fragmented to 512B.


Fragmenting a Content Object of a Known Length



FIG. 4A presents a flow chart 400 illustrating a method by a content producing device for fragmenting a content object message, in accordance with an embodiment of the present invention. During operation, the system generates, by a content producing device or a content producer, a content object message that is responsive to an interest message (operation 402). The content producer fragments the content object message into a plurality of fragments, where one or more fragments indicate a unique name that is an HSVLI that comprises contiguous name components ordered from a most general level to a most specific level (operation 404). The content producer computes an intermediate state for a first fragment based on a hash function performed on an initialization vector for the content object message and the payload or data for the first fragment (operation 406). The content producer signs the first fragment by including a digital signature for the content producer in the first fragment (operation 408). The content producer computes an intermediate state for a subsequent fragment based on a hash function performed on the intermediate state from the previous fragment and the payload or data for the subsequent fragment (operation 410). The content producer determines whether the subsequent fragment is the final fragment (decision 412). If it is not, then the content producer repeats operation 410 on the next subsequent fragment. If it is the final fragment, then the operation continues as described by Label A in FIG. 4B.



FIG. 4B presents a flow chart 450 illustrating a method by a content producing device for fragmenting a content object message, in accordance with an embodiment of the present invention. During operation, the system calculates, by a content producing device or a content producer, the overall digest for the content object message based on the intermediate state for the final fragment (operation 452). The content producer includes the overall digest in the first fragment and all subsequent fragments (operation 454). The content producer then forwards all fragments by sending each fragment to the next-hop CCN node based on the reverse path of the interest message (described in operation 402 of FIG. 4A).


Fragmenting a Content Object of an Unknown Length



FIGS. 4A and 4B depict fragmentation under the NNF protocol when the digest is known in advance, e.g., for a file of a known length like a video file. In some embodiments, the digest is not known in advance, e.g., for a file of an unknown length like a live data stream. FIG. 5A presents a flow chart 500 illustrating a method by a content producing device for fragmenting a content object message, where the data stream is a live stream, in accordance with an embodiment of the present invention. During operation, the system generates, by a content producing device or a content producer, a content object message that is responsive to an interest message (operation 502). The content producer fragments the content object message into a plurality of fragments, where one or more fragments indicate a unique name that is an HSVLI that comprises contiguous name components ordered from a most general level to a most specific level (operation 504). The content producer computes an intermediate state for a first fragment based on a hash function performed on an initialization vector for the content object message and the payload or data for the first fragment (operation 506). The content producer generates a segment identifier for the content object message (operation 508), and includes the segment identifier in the first fragment (operation 510). The content producer forwards the first fragment by sending the first fragment to the next-hop CCN node based on the reverse path of the interest message (operation 512). The operation continues as described by Label B in FIG. 5B.



FIG. 5B presents a flow chart 550 illustrating a method by a content producing device for fragmenting a content object message, where the data stream is a live stream, in accordance with an embodiment of the present invention. During operation, the content producer computes an intermediate state for a subsequent fragment based on a hash function performed on an intermediate state from a previous fragment and a payload or data for the subsequent fragment (operation 552). The content producer includes the segment identifier in the subsequent fragment (operation 554). The content producer forwards the subsequent fragment by sending it to the next-hop CCN node based on the reverse path of the interest message (operation 556).


The content producer then determines whether the subsequent fragment is the final fragment (decision 558). If it is not, then the content producer repeats operations 552, 554, and 556 for the next subsequent fragment. If it is the final fragment, then the content producer calculates the overall digest for the content object message based on the intermediate state for the final fragment (operation 560), and includes the overall digest in the final fragment (operation 562). The content producer signs the final fragment by including a digital signature for the content producer in the final fragment, where the digital signature creates a relationship or a binding between the segment identifier and the overall digest (operation 564). The final fragment can be a tail object that contains no payload and can be transmitted after the processing delay of calculating the overall digest. Because the tail object is signed, the size of the tail object remains small to avoid re-fragmentation by an intermediate node.


The content producer then forwards the final fragment by sending it to the next-hop CCN node based on the reverse path of the interest message (operation 566). Note that while operation 512 is depicted as occurring before operations 556 and 566, the first fragment may not arrive before the other fragments (e.g., the subsequent and final fragments). A requesting entity such as a content consumer processes the first fragment as the root of the hash chain before trusting, processing, and reassembling the remaining fragments.


Processing a Fragment of a Content Object of a Known Length



FIG. 6A presents a flow chart 600 illustrating a method by an intermediate node for processing a fragment of a content object message, in accordance with an embodiment of the present invention. During operation, the system receives, by an intermediate node, an interest message with a name that is an HSVLI (operation 602). The interest may also include a content object hash restriction. For example, the name can be a hash-based name that includes the content object hash restriction. The intermediate node adds an entry in its pending interest table (PIT) for the interest message, including the name and, if included, the content object hash (operation 604). The intermediate node subsequently receives a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments (operation 606). One or more of the plurality of fragment indicate a unique name that is an HSVLI. The received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment.


The intermediate node determines if the received fragment is the first fragment (decision 608). If the received fragment is the first fragment, the intermediate node identifies a corresponding entry in the PIT (“first entry”) based on the name or the content object hash for the first fragment (operation 610). The first fragment can be a signed content object that includes the name, the KeyId, the content object hash, the overall length, and the overall digest. The intermediate node creates a new entry in the PIT (“second entry”) based on the overall digest included in the first fragment, and removes the first entry from the PIT (operation 612). The second PIT entry can also include the overall length. Because the signature is included in the first fragment, the intermediate node can optionally perform a signature verification procedure (operation 614). The intermediate node can also verify the content by computing the hash of the initialization vector and the data from the first fragment, and comparing the result with the intermediate state included in the first fragment (not shown in FIG. 6A). The hash is computed over the first fragment, unlike in FIGOA where the content object hash of an interest matches the overall digest value, which can only be verified after all fragments are received. Thus, under the NNF protocol, the first fragment contains no payload or a payload of a small size such that an intermediate node will not re-fragment the first fragment.


If the received fragment is not the first fragment, the intermediate node identifies the corresponding entry in the PIT (e.g., the second entry) based on the name or the overall digest (operation 616). The intermediate node can verify the content by computing the hash of the intermediate state from the previous fragment and the data from the received fragment, and comparing the result with the intermediate state included in the received fragment (operation 618). The operation then continues as described by Label C in FIG. 6B.



FIG. 6B presents a flow chart 650 illustrating a method by an intermediate node for processing a fragment of a content object message, in accordance with an embodiment of the present invention. During operation, the intermediate node forwards the received fragment by sending it to the next-hop CCN node based on the faces listed in the identified PIT entry (e.g., the second entry) (operation 652). The intermediate node updates the total number of bytes forwarded based on a length and a position for the received fragment (operation 654). The intermediate node determines whether the total number of bytes forwarded is equal to the overall length for the content object message (as indicated in the second PIT entry) (operation 656). If it does not, the operation returns. If it does, the intermediate node clears the corresponding PIT entry (e.g., the second PIT entry) (operation 658).


Exemplary Algorithms for Processing a Fragment of a Content Object



FIG. 6C presents a table 670 illustrating an exemplary algorithm 1 for processing a fragment of a content object message, in accordance with an embodiment of the present invention. Note that the intermediate node is not required to cache any fragments, as the reassembly buffer “Buffer” only stores a chain of entries with {CurrentIS, NextlS, PayloadOffset, PayloadEnd}. The intermediate node stores the entries in order of PayloadOffset. The intermediate node creates an initial buffer entry with the SHA-256 initialization value and PayloadOffset of 0 and PayloadEnd of 0. All received fragments form a chain from the initial buffer entry. The next four rules are as per FIGOA: the first rule stores a singleton without predecessor or successor (steps 6-7); the second rule stores a fragment that continues a previous fragment (steps 8-9); the third rule stores a fragment that precedes a fragment (steps 10-11); and the fourth rule stores a fragment in between two existing fragments (steps 12-13). Upon storing and verifying a fragment, the intermediate node updates the “in-order” verified length to track the number of bytes verified in the hash chain. Upon verifying OverallLength bytes (indicating receipt of all fragments), the intermediate may verify the OverallDigest. If the current fragment is the fragment on which the intermediate node verified the OverallDigest, the intermediate node can locally mark this packet as the “last fragment” to indicate that the PIT may clear its state.



FIG. 6D presents a table 680 illustrating an exemplary algorithm 2 for processing a fragment of a content object message in a pending interest table, in accordance with an embodiment of the present invention. If the fragments are received in order, the first fragment has a name that matches an existing PIT entry. The intermediate node then creates a new PIT entry by OverallDigest and removes the PIT entry by name. Subsequent fragments output by Algorithm 1 will match on OverallDigest. However, if the fragments are not received in order, Algorithm 2 covers several conditions. If a PIT entry by OverallDigest exists, the intermediate node forwards along that PIT entry (steps 4-7). If the fragment has fragment state in the name, it may be a retransmission and can be matched against its own PIT entry by name (steps 8-12). If the previous lookup fails, the intermediate node creates the PIT entry by OverallDigest (steps 13-20). If a named fragment arrives before a chunk named fragment and the named fragment contains the fragment state in the name, the intermediate node strips the fragment state from the name and proceeds as for a chunk named fragment (steps 21-25).


Processing a Fragment of a Content Object of an Unknown Length



FIG. 7 presents a flow chart 700 illustrating a method by an intermediate node for processing a fragment of a content object message, where the data stream is a live stream, in accordance with an embodiment of the present invention. The first three operations (702, 704, and 706) of FIG. 7 are similar to operations 602, 604, and 606 of FIG. 6A. The main difference is that in step 706, the received fragment includes a segment identifier instead of the overall digest, and the signature is included in the final fragment instead of in the first fragment. Upon receiving the fragment, the intermediate node identifies a corresponding entry in the PIT (“second entry”) based on the name, the segment identifier, or the content object hash for the first fragment (operation 708). In some embodiments, if the received fragment is the first fragment, the intermediate node identifies a first entry in the PIT based on the name, creates the second entry based on the segment identifier, and removes the first entry from the PIT (not shown). The intermediate node verifies the content by computing the hash of the intermediate state from the previous fragment and the data from the received fragment, and comparing the result with the intermediate state included in the received fragment (operation 710). The intermediate node determines if the received fragment is a final fragment (decision 712). If the received fragment is not the final fragment, the operation continues as described by Label C in FIG. 6B. If the received fragment is the final fragment, because the signature is included in the final fragment and the intermediate node can optionally perform a signature verification procedure (operation 714) before continuing as described by Label C in FIG. 6B.


Exemplary Apparatus and Computer System



FIG. 8 illustrates an exemplary apparatus 800 that facilitates efficient and secure transportation of content over a network, in accordance with an embodiment of the present invention. Apparatus 800 can comprise a plurality of modules which may communicate with one another via a wired or wireless communication channel. Apparatus 800 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 8. Further, apparatus 800 may be integrated in a computer system, or realized as a separate device which is capable of communicating with other computer systems and/or devices. Specifically, apparatus 800 can comprise a communication module 802, a pending interest table maintenance module 804, a content-fragmenting module 806, a state-calculating module 808, and a security module 810.


In some embodiments, communication module 802 can send and/or receive data packets to/from other network nodes across a computer network, such as a content centric network, where a data packet can correspond to a fragment of a content object message that is fragmented into a plurality of fragments. In response to determining that the received fragment is a first fragment, PIT maintenance module 804 can: identify a first entry in a PIT for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment; create a second entry in the PIT based on a digest or a segment identifier for the content object message; and remove the first entry from the PIT. In response to determining that the received fragment is a subsequent fragment, PIT maintenance module 804 can identify an entry in the pending interest table for an interest with a digest or a segment identifier that corresponds to the subsequent fragment. In response to determining that the received fragment corresponds to an entry in the pending interest table, PIT maintenance module 804 can update the total number of bytes forwarded based on a length and a position for the received fragment. In response to determining that the total length of bytes forwarded is equal to the overall length, PIT maintenance module 804 can also remove the corresponding entry from the PIT.


Content-fragmenting module 806 can generate, by a content producing device, a content object message that is responsive to an interest message, and can fragment the content object message into a plurality of fragments. Content-fragmenting module 806 can also include in the first fragment no payload or a payload with a size smaller than a predetermined threshold that does not require re-fragmentation. State-calculating module 808 can compute an intermediate state for a first fragment based on a hash function performed on an initialization vector for the content object message. State-calculating module 808 can also compute an intermediate state for a subsequent fragment based on a hash function performed on an intermediate state from a previous fragment and a payload for the subsequent fragment.


Security module 810 can include in the first fragment a digital signature of the content producing device. Content-fragmenting module 806 can generate a segment identifier for the content object message, and can include the segment identifier in each fragment of the plurality of fragments. In response to determining that the content object message is completely generated, content-fragmenting module 806 can generate a final fragment. State-calculating module 808 can compute a digest for the complete content object message based on a hash function performed on the intermediate state from a previous fragment and a payload for the final fragment. Security module 810 can include in the final fragment a digital signature of the content producing device.



FIG. 9 illustrates an exemplary computer system that facilitates efficient and secure transportation of content over a network, in accordance with an embodiment of the present invention. Computer system 902 includes a processor 904, a memory 906, and a storage device 908. Memory 906 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 902 can be coupled to a display device 910, a keyboard 912, and a pointing device 914. Storage device 908 can store an operating system 916, a content-processing system 918, and data 930.


Content-processing system 918 can include instructions, which when executed by computer system 902, can cause computer system 902 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 918 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 920). For example, content-processing system 918 can include instructions for receiving, by an intermediate node, a data packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments (communication module 920).


Content-processing system 918 can include instructions for, in response to determining that the received fragment is a first fragment, identifying a first entry in a PIT for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment (PIT maintenance module 922). Content-processing system 918 can also include instructions for creating a second entry in the PIT based on a digest or a segment identifier for the content object message, and removing the first entry from the PIT (PIT maintenance module 922). Content-processing system 918 can include instructions for, in response to determining that the received fragment is a subsequent fragment, identifying an entry in the pending interest table for an interest with a digest or a segment identifier that corresponds to the subsequent fragment (PIT maintenance module 922). Content-processing system 918 can also include instructions for, in response to determining that the received fragment corresponds to an entry in the pending interest table, updating the total number of bytes forwarded based on a length and a position for the received fragment. Content-processing system 918 can additionally include instructions for, in response to determining that the total length of bytes forwarded is equal to the overall length, removing the corresponding entry from the PIT (PIT maintenance module 922).


Content-processing system 918 can include instructions for generating a content object message that is responsive to an interest message, and can fragment the content object message into a plurality of fragments (content-fragmenting module 924). Content-processing system 918 can include instructions for including in the first fragment no payload or a payload with a size smaller than a predetermined threshold that does not require re-fragmentation (content-fragmenting module 924).


Content-processing system 918 can include instructions for computing an intermediate state for a first fragment based on a hash function performed on an initialization vector for the content object message, and for computing an intermediate state for a subsequent fragment based on a hash function performed on an intermediate state from a previous fragment and a payload for the subsequent fragment (state-calculating module 926).


Content-processing system 918 can also include instructions for including in the first fragment a digital signature of the content producing device (security module 928). Content-processing system 918 can include instructions for generating a segment identifier for the content object message, and for including the segment identifier in each fragment of the plurality of fragments (content-fragmenting module 924). Content-processing system 918 can include instructions for, in response to determining that the content object message is completely generated, generating a final fragment (content-fragmenting module 924). Content-processing system 918 can include instructions for computing a digest for the complete content object message based on a hash function performed on the intermediate state from a previous fragment and a payload for the final fragment (state-calculating module 926), and for including in the final fragment a digital signature of the content producing device (security module 928).


Data 930 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 930 can store at least: a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments; a unique name that is an HSVLI that comprises contiguous name components ordered from a most general level to a most specific level; a name that is based on a hash of a content object or that indicates a digest; an intermediate state for a fragment which is based on a hash function performed on an intermediate state from a previous fragment and data included in the fragment; a pending interest table; a digest for a content object; a segment identifier; a byte offset that corresponds to a starting byte for a fragment; an overall length for a content object; a payload size; an entry in a pending interest table; a digital signature of a content producing device; a total number of bytes forwarded; and a name that indicates the intermediate state, the byte offset, and the digest.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


In summary, in one aspect, a system is provided, comprising: a processor; and a storage device storing instructions that, when executed by the processor, cause the processor to perform a method, the method comprising: receiving, by an intermediate node, a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments, wherein one or more fragments of the plurality of fragments indicate a unique name, wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state form a previous fragment and data included in the received fragment; and in response to determining that the received fragment is a first fragment: identifying a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment; and creating a second entry in the pending interest table based on a digest or a segment identifier for the content object message.


In another aspect, a computer-implemented method for forwarding packets is provided, comprising: receiving, by an intermediate node, a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments, wherein one or more fragments of the plurality of fragments indicates a unique name, wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment; and in response to determining that the received fragment is a first fragment: identifying a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment; and creating a second entry in the pending interest table based on a digest or a segment identifier for the content object message.


In yet another aspect, non-transitory computer readable media encoded with instructions are provided. The instructions, when executed by a processor, cause the processor to perform a method of: receiving, by an intermediate node, a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments, wherein one or more fragments of the plurality of fragments indicate a unique name, wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state form a previous fragment and data included in the received fragment; and in response to determining that the received fragment is a first fragment: identifying a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment; and creating a second entry in the pending interest table based on a digest or a segment identifier for the content object message.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer system for facilitating forwarding of packets, the computer system comprising: a processor; anda storage device storing instructions that, when executed by the processor, cause the processor to perform a method, the method comprising: receiving, by an intermediate node, a packet that corresponds to a received fragment of a content object message that is fragmented into a plurality of fragments,wherein one or more fragments of the plurality of fragments indicate a unique name,wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state form a previous fragment and data included in the received fragment;in response to determining that the received fragment is a first fragment: identifying a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment, and removing the first entry from the pending interest table; andcreating a second entry in the pending interest table based on a digest or a segment identifier for the content object message; andin response to determining that the received fragment is a subsequent fragment, identifying an entry in the pending interest table for an interest with a digest or a segment identifier that corresponds to the subsequent fragment.
  • 2. The computer system of claim 1, wherein a name for the received fragment indicates the intermediate state and a number indicating a byte offset that corresponds to a starting byte for the received fragment.
  • 3. The computer system of claim 1, wherein a name for the received fragment indicates a digest or a segment identifier for the content object message.
  • 4. The computer system of claim 1, wherein the first fragment indicates a digital signature of a producer of the content object message.
  • 5. The computer system of claim 1, wherein the first fragment includes no payload or a payload with a size smaller than a predetermined threshold that does not require re-fragmentation.
  • 6. The computer system of claim 1, wherein the received fragment indicates a segment identifier that is indicated in the other fragments of the content object message and identifies the received fragment and other fragments of the plurality of fragments as corresponding to the content object message.
  • 7. The computer system of claim 6, wherein the received fragment is a final fragment of the content object message and includes a digital signature of a producer of the content object message, wherein the digital signature creates a relationship between the segment identifier and a digest for the content object message.
  • 8. The computer system of claim 1 wherein the first fragment includes an overall length for the content object message, wherein a corresponding entry in the pending interest table includes the overall length and a total number of bytes forwarded, and wherein the method further comprises: in response to determining that the received fragment corresponds to an entry in the pending interest table, updating the total number of bytes forwarded based on a length and a position for the received fragment; andin response to determining that the total number of bytes forwarded is equal to the overall length, removing the corresponding entry from the pending interest table.
  • 9. A computer-implemented method for forwarding packets, the method comprising: receiving, by an intermediate node, a packet that corresponds to a received fragment of a content object message that is fragmented into a plurality of fragments,wherein one or more fragments of the plurality of fragments indicates a unique name,wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment;in response to determining that the received fragment is a first fragment: identifying a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment, and removing the first entry from the pending interest table; andcreating a second entry in the pending interest table based on a digest or a segment identifier for the content object message; andin response to determining that the received fragment is a subsequent fragment, identifying an entry in the pending interest table for an interest with a digest or a segment identifier that corresponds to the subsequent fragment.
  • 10. The method of claim 9, wherein a name for the received fragment indicates the intermediate state and a number indicating a byte offset that corresponds to a starting byte for the received fragment.
  • 11. The method of claim 9, wherein a name for the received fragment indicates a digest or a segment identifier for the content object message.
  • 12. The method of claim 9, wherein the first fragment indicates a digital signature of a producer of the content object message.
  • 13. The method of claim 9, wherein the first fragment includes an overall length for the content object message, and wherein a corresponding entry in the pending interest table includes the overall length and a total number of bytes forwarded, the method further comprising: in response to determining that the received fragment corresponds to an entry in the pending interest table, updating the total number of bytes forwarded based on a length and a position for the received fragment; andin response to determining that the total number of bytes forwarded is equal to the overall length, removing the corresponding entry from the pending interest table.
  • 14. Non-transitory computer readable media encoded with instructions that, when executed by a processor, cause the processor to perform: receiving, by an intermediate node, a packet that corresponds to a received fragment of a content object message that is fragmented into a plurality of fragments,wherein one or more fragments of the plurality of fragments indicate a unique name,wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state form a previous fragment and data included in the received fragment;in response to determining that the received fragment is a first fragment: identifying a first entry in a pending interest table for an interest with a name that is based on a hash of a content object and that corresponds to the first fragment, and removing the first entry from the pending interest table; andcreating a second entry in the pending interest table based on a digest or a segment identifier for the content object message; andin response to determining that the received fragment is a subsequent fragment, identifying an entry in the pending interest table for an interest with a digest or a segment identifier that corresponds to the subsequent fragment.
  • 15. The non-transitory computer readable media of claim 14, wherein a name for the received fragment indicates the intermediate state and a number indicating a byte offset that corresponds to a starting byte for the received fragment.
  • 16. The non-transitory computer readable media of claim 14, wherein a name for the received fragment indicates a digest or a segment identifier for the content object message.
  • 17. The non-transitory computer readable media of claim 14, wherein the first fragment includes an overall length for the content object message, wherein a corresponding entry in the pending interest table includes the overall length and a total number of bytes forwarded, and further comprising instructions to cause the processor to perform: in response to determining that the received fragment corresponds to an entry in the pending interest table, updating the total number of bytes forwarded based on a length and a position for the received fragment; andin response to determining that the total number of bytes forwarded is equal to the overall length, removing the corresponding entry from the pending interest table.
  • 18. The non-transitory computer readable media of claim 14, wherein the first fragment includes no payload or a payload with a size smaller than a predetermined threshold that does not require re-fragmentation.
  • 19. The non-transitory computer readable media of claim 14, wherein the received fragment indicates a segment identifier that is indicated in the other fragments of the content object message and identifies the received fragment and the other fragments of the plurality of fragments as corresponding to the content object message.
  • 20. The non-transitory computer readable media of claim 19, wherein the received fragment is a final fragment of the content object message and includes a digital signature of a producer of the content object message, wherein the digital signature creates a relationship between the segment identifier and a digest for the content object message.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 14/851,894, filed Sep. 11, 2015, the entirety of which is incorporated herein by reference.

US Referenced Citations (607)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6021464 Yao Feb 2000 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6834272 Naor Dec 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7233948 Shamoon Jun 2007 B1
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7535926 Deshpande May 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8239331 Shanmugavelayutham Aug 2012 B2
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8375420 Farrell Feb 2013 B2
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20040267902 Yang Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050066121 Keeler Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20060288237 Goodwill Dec 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070156998 Gorobets Jul 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070255947 Choudhury Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090015599 Bennett et al. Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307286 Laffin Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100316052 Petersen Dec 2010 A1
20100322249 Thathapudi Dec 2010 A1
20100332595 Fullagar Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120013746 Chen Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120079056 Turanyi et al. Mar 2012 A1
20120102136 Srebrny Apr 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120317655 Zhang Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091237 Ambalavanar Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130275544 Westphal Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140237095 Petker May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160162691 Arnold Jun 2016 A1
20160171184 Solis Jun 2016 A1
20160182192 Milbar Jun 2016 A1
20170078185 Yao Mar 2017 A1
Foreign Referenced Citations (31)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2005041527 May 2005 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2013123410 Aug 2013 WO
2014023072 Feb 2014 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (175)
Entry
Extended European Search Report in counterpart European Application No. 16186454.1, dated Jan. 23, 2017, 5 pages.
Ghali, et al., “Secure Fragmentation for Content-Centric Networks,” arXiv:1405.2861v3, Aug. 19, 2015, 30 pages.
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003].
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]-[006], [0011], [0013]* *figures 1,2*.
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* *Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 * The Whole Document*.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*.
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. IEEE, Aug. 29, 2000, pp. 3-10.
Vangelis et al.: “On the Role of Semantic Descriptions for Adaptable Protocol Stacks in the Internet of Things”, 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section II.B*.
Smetters et al. “Securing Network Content” Technical Report, PARC TR-2009-1, Oct. 1 2009, Retrieved from the internet URL:http//www.parc.com/content/attachments/TR-2009-01.pdf [retrieved Nov. 1, 2016].
Marc Mosko “CCNx Label Forwarding (CCNLF)” Jul. 21, 2014.
Gallo Alcatel-Lucent Bell Labs “Content-Centric Networking Packet Header Format” Jan. 26, 2015.
Huard J-F et al. “A Programmable Transport Architecture with QOS Guarantees” IEEE Communications Magazine, vol. 36, No. 10, Oct. 1, 1998.
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23.
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009).
“PBC Library—Pairing-Based Cryptography—About,” http://crypto.stanford.edu/pbc. downloaded Apr. 27, 2015.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights Management, Jun. 2004.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Sciencevol. 5443 (2009).
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: An architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM Wkshps), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim Hj Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
https://code.google.com/p/ccnx-trace/screenshot-2019-6-19 Google Code Archive—Long term storage for Google Code Project Hosting.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 (2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Related Publications (1)
Number Date Country
20180048570 A1 Feb 2018 US
Continuations (1)
Number Date Country
Parent 14851894 Sep 2015 US
Child 15790893 US