Networked television and method thereof

Information

  • Patent Grant
  • 9278283
  • Patent Number
    9,278,283
  • Date Filed
    Thursday, November 15, 2012
    12 years ago
  • Date Issued
    Tuesday, March 8, 2016
    8 years ago
Abstract
A television includes a display, a first network interface to a packet-based network, and a decoder operable to process a multimedia data stream received via the first network interface. The television is operable to display content of the multimedia data stream on the display promptly upon receipt of a user request to power up the television. A method includes receiving a multimedia data stream at a network interface of a television, processing the multimedia data stream to generate content, and providing the video content to a display of the television.
Description
FIELD OF THE DISCLOSURE

The present application relates generally to processing and displaying multimedia data received via a network at a television.


BACKGROUND

Television has become integral to the daily experience of most consumers. Until recently, television content was provided only as an analog signal either by means of a wireless transmission (e.g., network television) or via coaxial cable (e.g., cable television). However, as viewers turn to higher-quality video and begin to demand additional features, such as video-on-demand, content providers have begun to rely on digital solutions, such as video streaming over networks or digital cable transmissions. While these digital solutions often provide many of the features sought by consumers, they typically require the consumer to invest in expensive and complex equipment.


To illustrate, consumers typically must utilize a personal computer (PC) to receive and display video content streamed or otherwise provided via a computer network. However, PCs are designed to support a wide variety of functions, from Internet browsing and word processing to the processing of detailed scientific data. As such, PCs implement complex hardware architectures and sophisticated operating systems in order to be capable of supporting the widely divergent tasks expected of them. The complexity of PCs results in a user experience that is different from the traditional television experience in that they often require a substantial amount of time to “boot up” before they can be operated by a user, whereas conventional televisions typically are ready to provide video content almost immediately. Moreover, with their multitude of exposed cables and constant fan noise, PCs often present an aesthetically unappealing solution for television viewing. Similarly, the set-top boxes typically required for receiving and processing digital cable transmissions often detract from the visual appeal of the television setting. Moreover, as opposed to PCs, conventional set-top boxes typically are of limited functionality in that they typically interface only with coaxial cable connections and provide functions directed to processing video and audio content of a cable television transmission.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is pointed out with particularity in the appended claims. However, other features are described in the following detailed description in conjunction with the accompanying drawings in which:



FIG. 1 is a diagram illustrating an exemplary networked television in accordance with at least one embodiment of the present disclosure.



FIG. 2 is a block diagram illustrating an exemplary architecture of the networked television of FIG. 1 in accordance with at least one embodiment of the present disclosure.



FIG. 3 is a block diagram illustrating an exemplary multimedia decoder modular card architecture in accordance with at least one embodiment of the present disclosure.



FIG. 4 is a flow diagram illustrating an exemplary method for processing multimedia data at a networked television in accordance with at least one embodiment of the present disclosure.



FIG. 5 is a flow diagram illustrating an exemplary method for providing multimedia data to a networked television in accordance with at least one embodiment of the present disclosure.



FIG. 6 is a diagram illustrating an exemplary distribution of processed multimedia content via a network in accordance with at least one embodiment of the present disclosure.



FIG. 7 is a diagram illustrating an exemplary distribution of processed multimedia data content via a wireless medium in accordance with at least one embodiment of the present disclosure.



FIG. 8 is a flow diagram illustrating an exemplary method for distributing processed distributing multimedia content in accordance with at least one embodiment of the present disclosure.



FIG. 9 is a block diagram illustrating an exemplary audio receiver modular card architecture in accordance with at least one embodiment of the present disclosure.



FIG. 10 is a diagram illustrating an exemplary distribution of audio content to speakers via a wireless medium in accordance with at least one embodiment of the present disclosure.



FIG. 11 is a flow diagram illustrating an exemplary method for processing audio data at a networked television in accordance with at least one embodiment of the present disclosure.



FIG. 12 is a flow diagram illustrating an exemplary method for providing audio data to a networked television for processing in accordance with at least one embodiment of the present disclosure.



FIG. 13 is a block diagram illustrating an exemplary video game console modular card architecture in accordance with at least one embodiment of the present disclosure.



FIG. 14 is a flow diagram illustrating an exemplary method for processing video game data at a networked television in accordance with at least one embodiment of the present disclosure.



FIG. 15 is a diagram illustrating an exemplary provision of video game data via one or more television channels in accordance with at least one embodiment of the present disclosure.



FIG. 16 is a diagram illustrating an exemplary video game download selection display screen in accordance with at least one embodiment of the present disclosure.



FIG. 17 is a flow diagram illustrating an exemplary method for providing video game data via one or more transmission channels in accordance with at least one embodiment of the present disclosure.



FIG. 18 is a flow diagram illustrating an exemplary method for obtaining video game data at a networked television in accordance with at least one embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE DRAWINGS

In accordance with one aspect of the present disclosure, a television is provided. The television includes a display, a first network interface to a packet-based network, and a decoder operable to process a multimedia data stream received via the first network interface. The television is operable to display video content of the multimedia data stream on the display promptly upon receipt of a user request to power up the television.


In accordance with another aspect of the present disclosure, the television includes a display, a first network interface to a packet-based network, a processor to process data transmitted via the first network interface, a first modular card interface coupled to the processor and a multimedia decoder card coupled to the first modular card interface. The multimedia decoder card processes multimedia data received via the first network interface. The television is operable to display video content represented by at least a portion of the multimedia data promptly upon receipt of a request to power up the television.


In accordance with yet another aspect of the present disclosure, a method is provided. The method includes receiving a multimedia data stream at a network interface of a television. The network interface is coupled to a packet-based network. The method further includes processing the multimedia data stream at a decoder of the television to generate video content and providing the video content to a display of the television. The television displays video content of the multimedia data stream promptly upon receipt of a request to power up the television.


In accordance with an additional embodiment of the present disclosure, the method includes receiving a first multimedia data stream at a first network interface of a television and processing the first multimedia data stream at a decoder of the television to generate a second multimedia stream. The method further includes providing the second multimedia data stream for reception by a separately located networked device via a second network interface of the television. The first network interface is coupled to a packet-based network. The television displays video content of a multimedia data stream promptly upon receipt of a request to power up the television.


In accordance with another aspect of the present disclosure, the method includes providing a first data stream including multimedia data to a television via a packet-based network. The television includes a network interface to the packet-based network to receive the multimedia data and a decoder to process the multimedia data.


Referring to FIG. 1, an exemplary networked television 100 is illustrated in accordance with at least one embodiment of the present disclosure. As depicted, the television 100 includes a housing 101 that contains a display 102, e.g., a liquid crystal display or a plasma display. Further, the housing 101 includes a plurality of user interface buttons 104, such as a power button, channel change buttons, volume control buttons, and the like. The housing 101 also includes a remote control interface 106, e.g., an infrared interface or a radio frequency (RF) interface, to receive remote control commands from a remote control 108. In a particular embodiment, one or more operations of the television 100 are responsive to the remote control commands. The television 100 further includes an interface panel 110 that is accessible via an external surface of the housing 101, at a top, back or side surface of the housing 101. The interface panel 110 includes one or more interfaces for receiving or outputting various forms of multimedia data. As shown, the interface panel 110 includes an IN component 112 that includes, for example, an S-video receptacle 122 or audio/visual receptacles 124 or a digital versatile disk (DVD) IN component 114 that is configured to receive video data and audio data from an external DVD player or other multimedia source. In particular, the DVD IN component 114 includes a plurality of receptacles 126 that can receive component video and audio. The panel 110 also can include an OUT component 116 that has receptacles 128 to provide video data and/or audio data to another television or recording device, such as a personal video recorder (PVR) or an external DVD player/recorder. An RF antenna receptacle 120 also can be incorporated into the panel 110 to receive multimedia data via RF transmissions.


In at least one embodiment, the panel 110 further includes a network interface 118 that includes a network receptacle 130 that can be connected to any of a variety of packet-based data networks. The receptacle 130 can be connected to an Internet Protocol (IP)-based network, e.g., an Ethernet network or an asynchronous transfer mode (ATM)-based network. Further, in a particular embodiment, the network interface 118 can include an Ethernet interface and as such, the network receptacle 130 can be an RJ-45 receptacle that is configured to receive an Ethernet cable that is connected to an Ethernet-based network. The television 100 can utilize the network interface 118 to receive multimedia data, e.g., video data, audio data, or videogame data, over a packet-based network for processing at the television 100. Moreover, the network interface 118 may be used by the television 100 to forward information to another networked device, such as another networked television 100. The forwarded information may include, for example, processed multimedia data or information associated with the multimedia data, information associated with a video game being played at the television 100, and the like.


As illustrated in FIG. 1, the panel 110 further can include one or more modular card receptacles 132 (also commonly referred to as “expansion slots”) to interface with one or more modular cards (also commonly referred to as “expansion cards”) to enhance the functionality of the television 100. The modular cards can include, for example, a multimedia decoder modular card 140, a wireless network interface modular card 142, an audio receiver modular card 144, a video game console modular card 146, and the like. In a particular embodiment, the modular card receptacles 132 and the corresponding modular cards 140, 142, 144 and 146 may be implemented using a standard architecture, such as a Peripheral Component Interconnect (PCI)-compliant architecture, an Industry Standard Architecture (ISA)-compliant architecture, or a Personal Computer Memory Card International Association (PCMCIA)-compliant architecture. Alternately, the modular card receptacles 132 and the corresponding modular cards 140, 142, 144 and 146 may be implemented using a proprietary architecture, or a combination of standard and proprietary architectures.


To customize the functionality of the television 100, modular cards may be added to or removed from the television by inserting or removing the modular cards from their corresponding modular card receptacles. For example, the panel 110 may include an opening in the housing for each modular card receptacle 132 and each modular card receptacle 132 may receive a modular card that is inserted through the corresponding opening so that the contacts of the modular card receptacle interface are brought into secure contact with the contacts of the receiving modular card receptacle 132. Alternately, part or all of the panel 110 can be temporarily removed to install the modular card in a modular card receptacle 132. In at least one embodiment, some or all of the modular cards may include one or more interface receptacles that are accessible at the panel 110 to interface with other components.


In a particular embodiment, the incorporation of one or more modular cards into the television 100 allows for an expansion of the available functionality of the television 100. For example, the television 100 can incorporate the wireless network interface modular card 142 to provide wireless connectivity for the transmission of information to other networked devices. Moreover, the television 100 may incorporate the multimedia decoder modular card 140 to process multimedia data. The processing performed by the multimedia decoder modular card 140 may include, for example, decoding or transcoding encoded multimedia data, encoding unencoded multimedia data, decrypting encrypted multimedia data, and the like.


In an illustrative embodiment, the multimedia data processed by the decoder modular card 140 may be obtained from an external multimedia device, such as a DVD player, via the interfaces 122-128. Alternatively, the multimedia data may be received as a multimedia data stream via the network interface 118 or via the wireless interface modular card 142. The video content of the resulting processed multimedia data may be displayed on the display 102 or the resulting processed multimedia data may be provided to one or more networked devices via the network interface 118 or the wireless network interface modular card 142. Various exemplary techniques for processing multimedia data using the multimedia decoder modular card 140 are discussed in greater detail herein with respect to FIGS. 3-8.


The television 100 can also incorporate the audio receiver modular card 144 to process audio data for output to one or more speakers. In one embodiment, the audio receiver modular card 144 provides many of the features commonly found in separate stereo receivers. The audio data may be received from an external audio device, e.g., a portable music player, via one or more audio inputs 150. Alternately, the audio data may be received via the network interface 118 or the wireless network interface modular card 142. The resulting processed audio data may be provided to one or more wired speakers via speaker outputs 152 or the resulting processed audio data may be provided to one or more wireless speakers via, for example, the wireless network interface modular card 142. Various exemplary techniques for processing audio data using the audio receiver modular card 144 are discussed in greater detail herein with respect to FIGS. 9-12.


The television 100 further may incorporate the video game console modular card 146 to process video game data in response to controller input in order to generate game play for display at the display 102 and output via one or more speakers. The controller input relevant to the game play may be received via one or more controller interfaces 156 connected to corresponding game controllers, commonly referred to as “game pads” or “joysticks”, via wired or wireless connections. Video game data processed by the video game console modular card 146 may be obtained from an external device, such as a DVD player that is capable of obtaining video game data from game CDs or DVDs. Additionally, the video game data may be obtained a networked device via the network interface 118 or the wireless network interface modular card 142. Moreover, the network interface 118 or the wireless network interface modular card 142 may be used to transmit game play information to other networked devices for use in, for example, a real-time multiple player video game. Various exemplary techniques for obtaining video game data and for video game processing by the video game console modular card 146 are discussed in greater detail herein with reference to FIGS. 14-18.


Referring to FIG. 2, an exemplary implementation 200 of the television 100 is illustrated in accordance with at least one embodiment of the present disclosure. The television 100 includes one or more processors 202, one or more storage devices, such as a random access memory (RAM) 204, a read only memory or flash memory 206 or a hard disk 208, a direct memory access (DMA) controller 210 and a display controller 212 coupled to the display 102 (FIG. 1). The television 100 also can include an overlay graphics generator 214, a network communications processor 216 connected to the network interface 118, a conditional access unit 218, an audio output 220. The television 100 further can include modular card receptacles 222, 224, 226 and 228 connected to the multimedia decoder modular card 140, the audio receiver modular card 144, the video game console modular card 146 and the wireless network interface modular card 142, respectively. As depicted in FIG. 2, the television 100 can further include the remote control interface 106, the RF antenna interface 120, the IN component 112, the OUT component 114 and the DVD IN component 114 of the panel 110 (FIG. 1). In the illustrated example, some components of the television 100 can be connected via a first bus 232 while other components can be connected via a second bus 234. Further, the busses 232, 234 can be connected by a bus bridge 236.


The processor 202 can perform multimedia processing routines in accordance with an operating system (OS) 230 and facilitates the functions performed by the modular cards that are connected to the modular card receptacles 222-228 of the television 100 by routing information between the components or by handling various aspects of the functions performed by the modular cards. In a particular embodiment, in order to provide prompt, real-time interaction with a television user, e.g., by displaying video content promptly upon request, the OS 230 is a real-time OS having specific functionality that is configured to streamline the operations of the processor 230 and limit the delay between receiving a user request and providing the requested action.


For example, in one embodiment, the OS 230 is stored in the flash memory 206 when the television is powered down, and upon a user request to power up the television, e.g., via the user control buttons 104 or the remote control interface 106, at least a portion of the OS 230 is loaded into a cache of the processor 230 so that the video content of a video data source selected at power up is provided for display within at least ten seconds of receiving the request, or within five seconds or within two seconds of receiving the user request. Additionally, the streamlined OS 230 can allow the television 100 to display video content promptly upon receiving other types of user requests, such as a user request to change television channels or a user request to activate game play associated with video game data processed by the video game console modular card 146. As such, the television 100 can provide the traditional television experience in which changes in the video content displayed and/or the audio content output occur promptly in response to the user's input as one or more requests.


During operation, the various components of the television 100 communicate information via the busses 232 and 234 in order to perform various multimedia-related functions. For example, the communications processor 216 provides communications protocol-specific processing for data received via the network interface 118 and for data to be transmitted on a packet-based network via the network interface 118. Further, the communications processor 216 may implement one or more functions associated with, the Open Systems Interconnection (OSI) seven-layer model or the Telecommunications Protocol/Internet Protocol (TCP/IP) stack. During operation, incoming data that is processed by the communications processor 216 can be routed to one or more of the components of the television 100 as appropriate. The DMA controller 210 can control access to the RAM 204 and/or the ROM 206 by the components of the television 100. Moreover, the overlay graphics generator 214 can generates overlay graphics that overlay the display graphics that are output to the display 102 by the display controller 212.


In a particular embodiment, the modular cards 140-146 may communicate information with each other and with other components of the television, e.g., the processor 202 or the display controller 212, using the modular card receptacles 222-228 and the bus 234. For example, the wireless network interface modular card 142 or the network interface 118 may be used to receive/transmit multimedia data for the decoder modular card 140, receive/transmit audio data for the audio receiver modular card 144, or receive/transmit video game data and related information for the video game console modular card 146. Alternately, multimedia data or video game data may be received via one or more of the RF antenna interface 120, the IN component 112, or the DVD IN component 114. Further, video data that represents video content may be provided from the decoder modular card 140 or the video game console modular card 146 to the display controller 212 so that the video content is displayed by the display 102. Similarly, audio data representing audio content may be provided from the audio receiver modular card 144 to the audio output 220 for output of the audio content by one or more speakers of the television 100.


Referring to FIG. 3, an exemplary implementation of the multimedia decoder modular card 140 is illustrated in accordance with at least one embodiment of the present disclosure. In the example depicted, the multimedia decoder modular card 140 includes a modular card receptacle interface 302, an input buffer 304, a decryption module 305, a parser 306, a video decoder 308, a video output buffer 310, an audio decoder 312 and an audio output buffer 314. In a particular embodiment, the incoming buffer 304 and the output buffers 310 and 314 may be implemented together as a single buffer.


During operation, incoming multimedia data that is to be processed by the decoder modular card 140 is buffered in the incoming buffer 304. In at least one embodiment, the multimedia data is part of an MPEG data stream. Accordingly, the parser 306 parses the multimedia data to identify the relevant video and/or audio data to be processed. Then, the parser 306 provides the video data to the video decoder 308. The 308 decodes, or transcodes the video data and the resulting decoded/transcoded data can be stored in the outgoing video buffer 310 before being provided to the bus 234 (FIG. 2) for transmission to one or more components of the television 100. Similarly, the audio decoder 312 decodes or transcodes the audio data. Audio data is decoded/transcoded by the audio decoder 312 and the resulting decoded/transcoded audio data is buffered in the outgoing audio buffer 314 before being provided to the bus 234 for transmission to one or more other components of the television 100.


Alternately, in one embodiment, the received multimedia data includes unencoded multimedia data. In this instance, the video decoder 308 also may provide a video encoder to encode the video data to generate encoded video data (e.g., MPEG data) and the audio decoder 312 may include an audio encoder to encode the audio data to generate encoded audio data.


In at least one embodiment, the received multimedia data is encrypted or otherwise protected to prevent unauthorized access to the multimedia content. Accordingly, in at least one embodiment the integrated decoder modular card 140 further comprises a decryption module 305 to process the protected multimedia data to generate unprotected multimedia data using a decryption key 307 supplied by, for example, a provider of the protected multimedia data. In one embodiment, the decryption module 305 processes the protected multimedia data before it is provided to the parser 306. Alternately, the decryption module 305 could be implemented at the output of the parser 306 or as part of the decoders 308 and 312.


Referring to FIG. 4, an exemplary method 400 for processing multimedia data at a networked television is illustrated in accordance with at least one embodiment of the present disclosure. The method 400 includes receiving a multimedia data stream at the network interface 118 of the television 100 at block 402. At block 404, video data from the multimedia data stream is processed at a multimedia decoder of the television to generate video content. At block 406, audio data from the multimedia data stream is processed at the multimedia decoder of the television to generate audio content. The multimedia decoder may include a multimedia decoder that is integrated into a core processing component of the television (e.g., an MPEG decoder chip) or the multimedia decoder may include a multimedia decoder modular card 140, as illustrated in FIGS. 1-3. Further, in one embodiment, the audio data and video data are processed by separate components. To illustrate, the audio data can be processed by, for example, the audio receiver modular card 144 whereas the video data can be processed by an integrated multimedia decoder or the multimedia decoder modular card 140. At block 408, the video content is provided to the display 102 of the television 100 for viewing by a user. At block 410, the audio content is provided for output to one or more speakers. The speakers receiving the audio content may be speakers integrated with the television 100 or they may include, for example, speakers wired to the speaker outputs 152 (FIG. 1) or speakers wirelessly connected to the television 100 via the wireless network interface modular card 142 (FIG. 1).


Referring to FIG. 5, an exemplary method 500 for providing multimedia data to the television 100 is illustrated in accordance with at least one embodiment of the present disclosure. The method 500 includes providing a first data stream including multimedia data from a content provider to the television 100 via a packet-based network, such as, for example, an IP-compliant network at block 502. As noted above, the television 100, in one embodiment, includes a network interface 118 (FIG. 1) to a packet-based network to receive multimedia data and a multimedia decoder to process the multimedia data. As noted above, the content provider may seek to limit distribution of the multimedia content represented by the multimedia data. Accordingly, at block 504, the content provider can provide an indicator of a maximum number of televisions authorized to receive the multimedia content represented by the first data stream. In response to this indicator, the television 100 can provide data representative of the multimedia content to a number of networked devices at block 506, where the number of networked devices receiving the multimedia content is limited based on the indicator. Further, in one embodiment, the content provider may bill the user of the television 100 for services that include providing the first data stream.


Referring to FIGS. 6-8, an exemplary technique for redistributing multimedia data is illustrated in accordance with at least one embodiment of the present disclosure. As depicted by FIG. 6, a multimedia content provider 602 (e.g., an operation maintained by a cable television provider or telecommunications company) may be coupled to television 606 via a packet-based network 604, such as, for example, the Internet or a private network. As part of a broadcast, or in response to a user request, the content provider 602 provides encoded multimedia data 612 to the television 606 via the network 604. The encoded multimedia data 612 is received at the television 606 via a network interface (e.g., network interface 118, FIG. 1) connected to the network 604. The multimedia data 612 can be processed by a multimedia decoder of the television 606 (e.g., multimedia decoder modular card 140, FIG. 1) to generate processed multimedia data 614. Various operations performed on the multimedia data 612 by the television 606 to generate the processed multimedia data 614 may include decoding or transcoding the multimedia data 612, decrypting the multimedia data 612, and the like.


The resulting processed multimedia data 614 can be provided to one or more networked devices for further processing and/or display. In the example illustrated by FIG. 6, the processed multimedia data 614 is transmitted to another television 608 via the network 604. The television 608 may further process the multimedia data 614 for display or for storage. In the example illustrated by FIG. 7, the processed multimedia data 614 may be communicated wirelessly between the television 606 and the television 608 using wireless transceivers 702 and 704, respectively. The wireless transceivers 702 and 704 may be implemented as, for example, the wireless network interface modular card 142 (FIG. 1).



FIG. 8 illustrates an exemplary method 800 for redistributing multimedia content as described with respect to FIGS. 6 and 7. The method 800 includes receiving a first multimedia data stream at a first network interface of a television at block 802, wherein the first network interface is coupled to a packet-based network. The first multimedia data stream may be provided as a scheduled broadcast or may be provided by a content provider in response to a user request for the first multimedia data stream. At block 804, the first multimedia data stream is processed at a multimedia decoder of the television to generate a second multimedia data stream. The multimedia decoder can include, for example, an integrated multimedia decoder or the multimedia decoder modular card 140 (FIG. 1). The processing performed on the first multimedia data stream can include, for example, decoding the first multimedia data stream or transcoding the first multimedia data stream. Moreover, in one embodiment, the first multimedia data stream may include protected multimedia data. Accordingly, the processing performed on the first multimedia data stream further may include decrypting the first multimedia data stream including the protected multimedia data. At block 806, the second multimedia data stream is provided to a networked device via a second network interface of the television. The second multimedia data stream may be provided via the same packet-based network used to receive the first multimedia data stream. In this case, the second network interface and the first network interface may be the same network interface. Alternately, the second multimedia data stream may be provided via another packet-based network (e.g., a wireless network) and therefore may be a different network interface than the first network interface.


The exemplary techniques illustrated in FIGS. 6-8 allow a single television to act as the distribution point for multimedia content received from a content provider. To illustrate, because the television 100, in one embodiment, decodes and/or decrypts the encoded multimedia data 612 to generate unencoded and/or decrypted multimedia data 614, the networked devices receiving the multimedia data 614 (e.g., television 608) do not need to utilize a decoder and/or decryption module to process the multimedia data for display as video and/or audio content. As a result, the decoding/decryption components of the networked devices receiving the multimedia data 614 may be disabled, thereby reducing the power consumption of the networked devices. Moreover, the networked devices may be supplied without decoding/decryption components, thereby reducing their complexity and cost.


Referring to FIGS. 9 and 10, an exemplary implementation of the audio receiver modular card 144 is illustrated in accordance with at least one embodiment of the present disclosure. As illustrated, the audio receiver modular card 144, in one embodiment, includes a modular card receptacle interface 902, a buffer 904, one or more digital signal processors (DSPs) 906, a digital-to-analog converter (DAC) 908, an RF interface 910, an analog-to-digital converter (ADC) 912, a display control module 914, the audio input 150 and one or more speaker outputs 922-930.


In operation, audio data to be processed can be received from other components of the television via the modular card receptacle interface 902 or from an external audio source via the audio input 150 or via an RF transmission received at the RF interface 910 and converted to digital data by the ADC 912. The received audio data can be buffered in the buffer 904 until accessed by the DSP 906 for processing. Processing operations performed by the DSP 906 can include, for example, decoding (e.g., decoding from an MPEG or MP3 format), decryption, filtering, stereo enhancement, equalization and the like. For example, in one embodiment the DSP 906 performs surround sound processing of the audio data consistent with one or more surround sound standards, such as Dolby Digital 5.1, Dolby Digital Theater System (DTS) Surround, THX Surround EX™, and the like.


The resulting processed audio data may be provided to one or more other components of the television via the modular card receptacle interface 902. For example, the processed audio data may be provided for output to one or more wired speakers via the speaker outputs 922-930 after digital-to-analog conversion by the DAC 908. In the illustrated example, the speaker output 922 connects to a right rear (RR) speaker, the speaker output 924 connects to a right front (RF) speaker, the speaker output 926 connects to a center speaker, the speaker output 928 connects to a left front (LF) speaker and the speaker output 930 connects to a left rear (LR) speaker. Alternately, as illustrated with reference to FIG. 10, the processed audio data (illustrated as audio data 1001) can be provided from the audio receiver modular card 144 to the wireless network interface modular card 142 for transmission to one or more wireless speakers 1002-1008.


In at least one embodiment, the display control module 914 provides display content representing information about the audio receiver modular card 144 for display on the display 102 (FIG. 1). For example, the display control module 914 may provide graphical data representing equalization settings, where the graphical content of the graphical data is laid over video content from another source on the display 102. Other information for display can include, for example, volume settings, speaker setup, artist and track information, and the like. Moreover, in one embodiment, the operation of the audio receiver card module 144 is responsive to user commands (e.g., remote control commands). For example, after displaying the current equalization settings on the display 102, remote control commands from a user representing a desired change in equalization settings can be received by the display control module 914. In response, the display control module 914 can send a signal to the DSP 906 to change the equalization settings as well as provide updated equalization settings graphical display information for display by the display 102 so that the user can visual confirm that the requested changes are made. Other operations affected by user input can include, for example, volume settings, channel selection, track selection, speaker setup, surround sound settings, and the like.


Referring to FIG. 11, an exemplary method 1100 for providing audio data for processing at a networked television is illustrated in accordance with at least one embodiment of the present disclosure. The method 1100 includes providing an audio data stream to the television via a packet-based network at block 1102. In one embodiment, the television comprises an exterior interface panel including a plurality of interface connections, a network interface to the packet based network to receive the multimedia data, and an audio receiver modular card (e.g., audio receiver modular card 144, FIG. 1) to process the audio data stream. In certain instances, a content provider may attempt to protect the audio data stream by encrypting the audio data. In such instances, the audio receiver modular card may have access to a decryption key provided by the content provider, at block 1104, or otherwise made available to the audio receiver modular card. The audio receiver modular card thus may use this decryption key to decrypt or otherwise decode the protected audio data. At block 1106, a user of the television is billed for services including providing the audio data stream to the television. For example, the user may have subscribed to a service and may receive a monthly bill.


Referring to FIG. 12, an exemplary method 1200 for processing audio data using the audio receiver modular card 142 is illustrated in accordance with at least one embodiment of the present disclosure. The method 1200 includes receiving first audio data at an audio receiver modular card of a television via a first network interface of the television (e.g., network interface 118 of television 100, FIG. 1) at block 1202. At block 1204, the first audio data is processed at the audio receiver modular card to generate second audio data. Processing operations performed by the audio receiver modular card may include, for example, decoding, filtering, formatting, and the like. At block 1206, the second audio data is provided for output to one or more speakers. In one embodiment, the second audio data is provided to one or more speakers via one or more speaker outputs of the audio receiver modular card. In an alternate embodiment, the second audio data is wirelessly transmitted to one or more wireless speakers via a wireless network interface of the television (e.g., wireless network interface modular card 142, FIG. 1).


Referring to FIG. 13, an exemplary implementation of the video game console modular card 146 is illustrated in accordance with one embodiment of the present disclosure. In the depicted example, the game console modular card 146 includes a modular card receptacle interface 1302 for connecting to a modular card receptacle of the networked television 100 (FIG. 2), flash memory 1304, one or more processors 1306, RAM 1308, ROM 1310, a hard disk 1312, a graphics engine 1314, a video game tuner 1316, and one or more game controller interfaces 156.


In operation, video game data is provided to the television 100 via a network or by an external video game data source, such as a DVD player. The video game data is forwarded to the game console modular card 146 via the modular card receptacle interface 1302. The video game data may be stored in flash memory 1304, RAM 1308 and/or the hard disk 1312. The video game tuner 1316 manages the storage of video game data supplied to the television via one or more transmission channels.


The processor 1306 executes instructions represented by the video game data in response to user game controller signals received via the game controller interfaces 156. As noted above, the game controller interfaces 156 may include interfaces to wired game controllers or may include wireless interfaces to wireless game controllers. Data representing the video content of the game play is provided to the graphics engine 1314 whereupon the data is rendered into display data for output to the display 102 (FIG. 1) of the television. Data representing the audio content is processed by the processor 1306 or by an audio decoder (not shown) of the modular card 146. Alternately, the audio data is provided to the audio receiver card 144 or to the multimedia decoder card 140 for processing. The resulting audio content is output to one or more speakers associated with the television (e.g., integrated speakers or speakers connected via the audio receiver modular card 144, FIG. 1). The data representative of the video/audio content can be provided to a core component of the television 100 (e.g., the processor 202 or a dedicated television graphics engine) via the modular card receptacle interface 1302 for rendering into display data and output audio content.


In some instances, the game play represented by the video game data may be multiplayer game play that occurs among multiple players in separate locations. Accordingly, in at least one embodiment, the processor 1306 provides game play information for transmission by other game consoles involved in the same game play. To illustrate, the game play information is provided to the other components of the television 100 via the modular card receptacle interface 1302, whereby the game play information may be communicated to other networked game consoles via the network interface 118 (FIG. 1) or wirelessly communicated to other wireless game consoles via the wireless network interface modular card 142 (FIG. 1).


Referring to FIG. 14, an exemplary method 1400 for processing video game data at a video game console modular card of a television is illustrated in accordance with at least one embodiment of the present disclosure. The method 1400 includes receiving video game data at the television via a network interface to a packet-based network at block 1402. In one embodiment, the video game data is received as part of a multimedia data stream transmitted by a multimedia content provider via the packet-based network. For example, the video game data could be represented by one or more transmission channels of the multimedia data stream. At block 1404, at least a portion of the video game data is provided to the game console modular card (e.g., the game console modular card 146) via a first modular card receptacle of the television. At block 1406, the video game data is processed to provide game play content for display by the television, wherein the game play content is based on user control signals received via one or more game controller interfaces of the game console modular card. At block 1408, video game data associated with the game play is rendered at a graphics engine of the game console modular card to generate rendered display data, and, at block 1410, the rendered display data is provided for display via the first modular card receptacle. At block 1412, game play information is communicated with one or more networked devices (e.g., other networked televisions having game console modular cards) via the first network interface or via a second network interface, such as a wireless network interface modular card.


Referring to FIGS. 15-18, exemplary techniques for providing video game data via one or more transmission channels are illustrated in accordance with at least one embodiment of the present disclosure. FIG. 15 illustrates an exemplary video game distribution system 1500 including a video game provider 1502 and a networked device 1504 connected via a network 1506. The networked device 1504 may include any of a variety of devices capable of receiving and processing multimedia transmissions comprising a plurality of transmission channels (such as, for example, a digital cable transmission or a satellite television transmission). For ease of illustration, the networked device 1504 is discussed in the context of a networked television as described in detail above.


In the illustrated embodiment, the video game provider 1502 includes video game data storage 1510 for storing video game data associated with one or more video games, a list generator 1512, a multimedia stream generator 1514, and an authentication module 1516.


In operation, the multimedia stream generator 1514 generates one or more multimedia data streams 1520 for transmission to the networked device 1504. In addition to transmission channels having conventional video and/or audio data representative of television programs or radio programs, such as video channels 1521 and 1522, one or more transmission channels of the multimedia data stream 1520 can include video game data, such as game channels 1523-1525. Accordingly, to download the video game data associated with a particular video game, the networked device 1504 may select the game channel of the multimedia data stream 1520 associated with a desired video game and may store video game data transmitted via the selected channel.


To illustrate, a user of the networked device 1504 may provide a remote control command or other user input that causes the networked device to “tune” to a transmission channel selected by the user. Once “tuned” to this channel, the networked device 1504 may provide a request for the associated video game data from the video game provider 1502. The authentication module 1516 authenticates an identifier associated with the user request to determine whether the user is authorized to access the video game data. If so authorized, the multimedia stream generator 1514 obtains the requested video game data from the video game data storage 1510 and inserts the requested video game data into the appropriate game channel of the multimedia data stream 1520. The authentication module 1516 further may store the request for video game data for billing purposes associated with providing the requested video game data.


Alternately, the video game data associated with one or more video games may be inserted by the multimedia stream generator 1514 in a repeating manner. In this instance, once the networked device 1504 is “tuned” to the selected game channel, the networked device 1504 may delay storing the video game data in the selected game channel until the starting byte of the video game data is retransmitted in the next iteration. Rather than waiting for the starting byte of the video game data, the networked device 1504 instead can identify an entry point where the networked device 1504 began storing video game data transmitted in the selected game channel and can cease storing video game data when the identified entry point is encountered again during the next transmit iteration of the video game data. For example, if the networked device 1504 tunes to the selected channel and starts recording the video game data at byte 1000, the networked device 1504 would continue to record the video game data through the end byte of the present iteration until byte 999 of the next iteration is encountered. Thus, the networked device 1504 can store the entire video game data without delaying until the start of the next iteration of the transmission of the video game data in the selected transmission channel.


The association of video games and their corresponding transmission channels may be provided to a user in any of a variety of ways. For example, a printed publication could be provided that indicates which transmission channels are used to carry the video game data of certain video games. However, the use of a printed publication typically results in a static assignment of channels and may cause inconvenience on the part of the user if the printed publication is misplaced or otherwise unavailable. Accordingly, in at least one embodiment, the list generator 1512 generates one or more lists for display as video content, where the lists, when displayed, provide an indication of available video games and identifiers (e.g., channel numbers) of their corresponding transmission channels. An exemplary display of a list is discussed below with reference to FIG. 16. The lists of available video games may be organized by any of a variety of characteristics, such as rankings, genres, costs, system requirements, and the like. To illustrate, the list generator 1512 can generate, for example, a list of the top five video game rentals, a list of the top ten best selling video games, a list of newly introduced video games, a list of action/adventure video games, a list of role-playing video games, a list of video games suitable for children, and other lists.


Multimedia data representative of the one or more generated lists can be provided to the networked device 1504 as one or more list channels, such as list channels 1526 and 1527, of the multimedia data stream 1520. Accordingly, when the networked device 1504 is “tuned” to a list channel, the network device 1504 may provide the video content representative of the list associated with the selected list channel for display at the networked device. The user, upon viewing the video content representative of the list, may ascertain the transmission channel carrying data for the video game in which the user is interested. The user then can direct the networked device 1504 to “tune” to the identified transmission channel (using, for example, remote control commands) so that the video game data can be obtained from the identified transmission channel and stored (e.g., at the hard disk 1312 of the video game console modular card 146, FIG. 13) for subsequent use.


Referring to FIG. 16, an exemplary display of a list of video games at a networked device (e.g., the television 100, FIG. 1) is illustrated in accordance with at least one embodiment of the present disclosure. In the depicted example, the displayed list 1600 provides a listing of five available video games (video games A, B, C, D and E) identified as being the top five in rental frequency. Each video game listed also includes a visual indicator of the transmission channel that carries the video game data representing the video game. For example, the visual indicator may include “select channel” icons 1602-1610 corresponding to video games A-E, respectively, where the icons 1602-1610 provide a visual representation of the corresponding transmission channels (e.g., channels 101-105). The displayed list 1600 further may include screen shots 1612-1620 for one or more of the listed video games, as well as written descriptions, critic reviews or ratings of the listed video games (not shown).


Referring to FIG. 17, an exemplary method 1700 for providing video game data as one or more transmission channels of a multimedia data stream is illustrated in accordance with at least one embodiment of the present disclosure. At block 1702, a multimedia data stream is provided for reception by a display device, where the multimedia data stream includes a first channel having video content representing a first list of available video games and their corresponding channel identifiers and a second channel having video game data associated with a first video game of the first list and where the second channel is associated with a first channel identifier corresponding to the first video game. The multimedia data stream also can include other channels associated with other video games. The multimedia data stream can be provided as, for example, a digital cable television transmission or a satellite television transmission, a multimedia data stream transmitted over a packet-switched network. In at least one embodiment, the display device is a networked device, such as a networked television as discussed above.


To discourage unauthorized access, the video game data can be encrypted, such as at the video game content provider, prior to providing the multimedia data stream or prior to inserting the video game data into the multimedia data stream. Accordingly, a decryption key that is used to decrypt the encrypted video game data may be provided by the video game content provider or otherwise made available to the networked device. In one embodiment, the identification of the networked device is verified prior to providing or making the decryption key available. This verification process may include verifying that the particular display device and/or a particular user are authorized to use the video game data.


In one embodiment, the video game data associated with the first video game is provided in a continuous loop as the second transmission channel. Alternately, the video game data associated with the first video game is provided by a video game content provider in response to a user request for the video game data from the networked device. The user request may be initiated by a user remote control command directing the networked device to tune to the transmission channel identified by the first channel identifier.


As noted above, the multimedia data stream may represent the transmission of multimedia content in accordance with a service agreement or arrangement between a user and a content provider. Accordingly, at block 1704 the user's access of the video game data from the second channel is noted at the content provider and a charge is included in a billing statement sent to the user for the service that includes providing the multimedia data stream.


Referring to FIG. 18, an exemplary method 1800 for obtaining video game data from one or more channels of a multimedia data stream is illustrated in accordance with at least one embodiment of the present disclosure. The method 1800 includes receiving a multimedia data stream at a system including a display device at block 1802. The multimedia data stream includes a first channel having video content representing a first list of available video games and their corresponding channel identifiers and a second channel having video game data associated with a first video game of the first list. The second channel is associated with a first channel identifier corresponding to the first video game. In one embodiment, the system includes a networked television (e.g., television 100, FIG. 1) having a game console modular card (e.g., game console modular card 146, FIG. 1) to process the received data. In one embodiment, the storage of video game data at a hard disk 1312 (FIG. 13) of the game console modular card 146 is handled by the video game tuner 1316.


At block 1804, the video content representing the first list of games is provided for display at the display device. In the event that the system includes a networked television as described above, the networked television may include a decoder, such as an integrated decoder or a decoder modular card 140 (FIG. 1) to generate display data representative of the video content of the first channel for viewing by the user. At block 1806, user input indicating a selection of the first channel identifier associated with the first video game of the first list is received in response to display of the video content. The user input may include, for example, a request to “tune” the system to the transmission channel associated with the first channel identifier, where the request may be a remote control command or input received via, for example, a channel change button.


At block 1808, the video game data associated with the first video game from the second channel is obtained for storage at the system in response to receiving the user input. As noted above, the video game data may be provided in a single transmission at a predetermined time or in a continuous loop or the video game data can be added to the multimedia data stream in response to a request by the user. In the event that the data is provided in a continuous loop, obtaining the video game data can include identifying a start position within a present loop of the video game data and continuing to store the video game data until a corresponding position to the start position is encountered for the next loop of the video game data. In the event that the video game data is encrypted, at block 1810, a decryption key can be received at the system in response to a verification of an identification of the system. At block 1812, the video game data can be decrypted using the decryption key. In the event that the system includes the networked television 100, the obtained video game data can be stored at the hard disk 1312 (FIG. 13) of the video game console modular card 146 of the television 100 for subsequent processing to provide game play to a user.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims
  • 1. A television comprising: a display;a first network interface to a packet-based network, wherein the first network interface is configured to receive a multimedia data stream from the packet-based network, wherein the multimedia data stream comprises content representing a first list of available video games and video game data associated with a first video game of the first list;a decoder operable to generate display data representative of the content at a first region of the display, the display data displayable on the display within ten seconds of receipt of a user request for the multimedia data stream, wherein the display data comprises a listing of titles of the available video games from the first list in a first column and an indicator associated with each game in the listing of the available video games in a second column adjacent to the first column; anda game console modular card operable to receive the video game data from the decoder in response to user selection of the first video game via a remote control and operable to process the video game data to display game play content, wherein the game play content is based on user control signals received via a game controller coupled to a controller interface of the game console modular card.
  • 2. The television of claim 1, further comprising a modular card interface coupled to the first network interface of the television, wherein the decoder includes a decoder modular card coupled to the modular card interface, and wherein the television is operable to display the display data on the display upon receipt of a user request to power up the television.
  • 3. The television of claim 2, further comprising a wireless network interface card coupled to the modular card interface.
  • 4. The television of claim 1, further comprising a second network interface, wherein the second network interface is a wireless network interface supported by a wireless network interface modular card coupled to the decoder via a modular card interface.
  • 5. The television of claim 1, wherein the multimedia data stream includes protected multimedia data and wherein the decoder processes the protected multimedia data to generate unprotected multimedia data and provides the unprotected multimedia data to a networked device via the first network interface.
  • 6. The television of claim 5, wherein the unprotected multimedia data is provided to a second networked device via a second network interface of the television.
  • 7. The television of claim 6, wherein the second network interface comprises a wireless network interface that includes a wireless network interface modular card coupled to the decoder via a modular card interface.
  • 8. The television of claim 1, wherein the game console modular card includes a second controller interface configured to receive a second game controller, and wherein the game play content is further based on second user control signals received via the second game controller.
  • 9. The television of claim 1, wherein the display data representative of the content is displayed within five seconds of receiving the user request.
  • 10. The television of claim 1, wherein the display data further comprises a screen shot for an available game of the available video games from the listing at a second region of the display separate from the first region.
  • 11. The television of claim 1, wherein: the first network interface is disposed at an exterior surface of a housing of the television, at least a portion of the first network interface exterior to the housing; andthe decoder is disposed interior to the housing.
  • 12. The television of claim 1, further comprising a remote control interface to receive a remote control command communicated wirelessly, wherein an operation of the television is responsive to the remote control command.
  • 13. A television comprising: a television housing;a display within the television housing;a first network interface to a packet-based network, wherein the first network interface is within the television housing and wherein the first network interface is configured to receive multimedia data from the packet-based network, wherein the multimedia data comprises content representing a first list of available video games and corresponding identifiers;a processor to process data transmitted via the first network interface, wherein the processor is within the television housing;modular card interfaces coupled to the processor, wherein the modular card interfaces are within the television housing;a game console modular card coupled to a first modular card interface of the modular card interfaces, the game console modular card operable to process second content to display game play content in response to selection of a video game via a remote control, wherein the game play content is based on user control signals received via a game controller coupled to a controller interface of the game console modular card; anda multimedia decoder card coupled to a second modular card interface of the modular card interfaces, the multimedia decoder card to generate display data representative of the content, wherein the multimedia decoder is within the television housing;wherein the television is operable to display the display data upon receipt of a request to power up the television.
  • 14. The television of claim 13, further comprising a second network interface that comprises a wireless network interface card coupled to a third modular card interface of the modular card interfaces.
  • 15. The television of claim 13, wherein the multimedia data comprises protected multimedia data and wherein the multimedia decoder card processes the protected multimedia data to generate unprotected multimedia data.
  • 16. The television of claim 13, further comprising a remote control interface to receive a remote control command, wherein an operation of the television is responsive to the remote control command.
  • 17. A method comprising: receiving a multimedia data stream at a network interface of a television, wherein the network interface is coupled to a packet-based network, wherein the multimedia data stream comprises content representing a first list of available video games and corresponding identifiers and video game data associated with a first video game of the first list;generating, at a decoder, display data representative of the content;providing the display data to a display of the television;generating, at the decoder, audio content from the multimedia stream;providing the audio content for output by a speaker of the television;receiving a selection of the first video game via a remote control; andsending the video game data to a game console modular card in response to the selection of the first video game, wherein the game console modular card processes the video game data to display game play content, wherein the game play content is based on user control signals received via a game controller coupled to a controller interface of the game console modular card;wherein the television displays the display data upon receipt of a request to power up the television.
  • 18. The method of claim 17, further comprising receiving user input, wherein the multimedia stream is received in response to the request, and wherein the television displays the display data within ten seconds of receipt of the user input.
  • 19. A method comprising: receiving a first multimedia data stream at a first network interface of a television, wherein the first multimedia stream comprises a content representing a first list of available video games and corresponding identifiers and video game data associated with a first video game of the first list;generating, at a decoder, display data representative of the content;sending the display data to a display of the television in response to receipt of a request to power up the television, wherein the display data comprises a listing of the available video games from the first list and an indicator associated with each game in the listing of the available video games;receiving, at the television, input corresponding to the first video game and identification of a number of separately located networked devices to receive the first video game;receiving an indicator of a threshold number of devices authorized to receive the first video game; andsending a second multimedia data stream of the first video game for reception by each of the separately located networked devices to receive the first video game via a second network interface of the television in response to determining that the number does not exceed the threshold number.
  • 20. The method of claim 19, wherein generating the display data at the decoder comprises decrypting the first multimedia data stream.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of, and claims priority to, U.S. patent application Ser. No. 11/166,909, filed on Jun. 24, 2005, entitled “Networked Television and Method Thereof,” which is hereby incorporated by reference in its entirety. The present application is related to U.S. patent application Ser. No. 11/166,785, filed on Jun. 24, 2005, and entitled “Multimedia-Based Video Game Distribution,” now issued as U.S. Pat. No. 8,282,476, and U.S. patent application Ser. No. 11/166,908, filed on Jun. 24, 2005, and entitled “Video Game Console Modular Card and Method Thereof,” and U.S. patent application Ser. No. 11/166,907, filed on Jun. 24, 2005, and entitled “Audio Receiver Modular Card and Method Thereof,” assigned to the current assignee hereof.

US Referenced Citations (514)
Number Name Date Kind
4243147 Twitchell et al. Jan 1981 A
4356509 Skerlos et al. Oct 1982 A
4768926 Gilbert, Jr. Sep 1988 A
4907079 Turner et al. Mar 1990 A
5126731 Cromer, Jr. et al. Jun 1992 A
5144438 Kim Sep 1992 A
5163340 Bender Nov 1992 A
5355162 Yazolino et al. Oct 1994 A
5475835 Hickey Dec 1995 A
5532748 Naimpally Jul 1996 A
5541917 Farris Jul 1996 A
5577735 Reed et al. Nov 1996 A
5583560 Florin et al. Dec 1996 A
5589892 Knee et al. Dec 1996 A
5592212 Handelman Jan 1997 A
5592477 Farris et al. Jan 1997 A
5610916 Kostreski et al. Mar 1997 A
5613012 Hoffman et al. Mar 1997 A
5630757 Gagin et al. May 1997 A
5644354 Thompson et al. Jul 1997 A
5650831 Farwell Jul 1997 A
5651332 Moore et al. Jul 1997 A
5654746 McMullan, Jr. et al. Aug 1997 A
5656898 Kalina Aug 1997 A
5675390 Schindler et al. Oct 1997 A
5675828 Stoel Oct 1997 A
5708961 Hylton et al. Jan 1998 A
5722041 Freadman Feb 1998 A
5724106 Autry et al. Mar 1998 A
5729825 Kostreski et al. Mar 1998 A
5734853 Hendricks et al. Mar 1998 A
5737029 Ohkura et al. Apr 1998 A
5740246 Saito Apr 1998 A
5752082 Staples May 1998 A
5752160 Dunn May 1998 A
5768539 Metz et al. Jun 1998 A
5774357 Hoffberg et al. Jun 1998 A
5793438 Bedard Aug 1998 A
5805719 Pare, Jr. et al. Sep 1998 A
5818438 Howe et al. Oct 1998 A
5838384 Schindler et al. Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5864757 Parker Jan 1999 A
5867223 Schindler et al. Feb 1999 A
5867227 Yamaguchi Feb 1999 A
5874986 Gibbon et al. Feb 1999 A
5887243 Harvey et al. Mar 1999 A
5892508 Howe et al. Apr 1999 A
5900867 Schindler et al. May 1999 A
5900868 Duhault et al. May 1999 A
5905942 Stoel et al. May 1999 A
5910970 Lu Jun 1999 A
5916024 Von Kohorn Jun 1999 A
5926175 Sturgeon et al. Jul 1999 A
5933498 Schneck et al. Aug 1999 A
5953318 Nattkemper et al. Sep 1999 A
5956024 Strickland et al. Sep 1999 A
5956081 Katz et al. Sep 1999 A
5956716 Kenner et al. Sep 1999 A
5970088 Chen Oct 1999 A
5987061 Chen Nov 1999 A
5990927 Hendricks et al. Nov 1999 A
5995155 Schindler et al. Nov 1999 A
5999518 Nattkemper et al. Dec 1999 A
5999563 Polley et al. Dec 1999 A
6002722 Wu Dec 1999 A
6005561 Hawkins et al. Dec 1999 A
6014184 Knee et al. Jan 2000 A
6021158 Schurr et al. Feb 2000 A
6021167 Wu Feb 2000 A
6028600 Rosin et al. Feb 2000 A
6029045 Picco et al. Feb 2000 A
6029046 Khan et al. Feb 2000 A
6038251 Chen Mar 2000 A
6044107 Gatherer et al. Mar 2000 A
6052120 Nahi et al. Apr 2000 A
6055268 Timm et al. Apr 2000 A
6055560 Mills et al. Apr 2000 A
6058430 Kaplan May 2000 A
6072483 Rosin et al. Jun 2000 A
6084584 Nahi et al. Jul 2000 A
6111582 Jenkins Aug 2000 A
6118498 Reitmeier Sep 2000 A
6122660 Baransky et al. Sep 2000 A
6124799 Parker Sep 2000 A
6137839 Mannering et al. Oct 2000 A
6166734 Nahi et al. Dec 2000 A
6177931 Alexander et al. Jan 2001 B1
6181335 Hendricks et al. Jan 2001 B1
6192282 Smith et al. Feb 2001 B1
6195692 Hsu Feb 2001 B1
6208326 Frederick et al. Mar 2001 B1
6215483 Zigmond Apr 2001 B1
6229532 Fujii May 2001 B1
6237022 Bruck et al. May 2001 B1
6252588 Dawson Jun 2001 B1
6252989 Geisler et al. Jun 2001 B1
6260192 Rosin et al. Jul 2001 B1
6269394 Kenner et al. Jul 2001 B1
6275268 Ellis et al. Aug 2001 B1
6275989 Broadwin et al. Aug 2001 B1
6281813 Vierthaler et al. Aug 2001 B1
6286142 Ehreth Sep 2001 B1
6295057 Rosin et al. Sep 2001 B1
6311214 Rhoads Oct 2001 B1
6314409 Schneck et al. Nov 2001 B2
6330021 Devaux Dec 2001 B1
6343366 Okitaka Jan 2002 B1
6344882 Shim et al. Feb 2002 B1
6357043 Ellis et al. Mar 2002 B1
6359636 Schindler et al. Mar 2002 B1
6363149 Candelore Mar 2002 B1
6385693 Gerszberg et al. May 2002 B1
6396480 Schindler et al. May 2002 B1
6396531 Gerszberg et al. May 2002 B1
6396544 Schindler et al. May 2002 B1
6397387 Rosin et al. May 2002 B1
6400407 Zigmond et al. Jun 2002 B1
6411307 Rosin et al. Jun 2002 B1
6442285 Rhoads et al. Aug 2002 B2
6442549 Schneider Aug 2002 B1
6449601 Friedland et al. Sep 2002 B1
6450407 Freeman et al. Sep 2002 B1
6460075 Krueger et al. Oct 2002 B2
6463585 Hendricks et al. Oct 2002 B1
6481011 Lemmons Nov 2002 B1
6486892 Stern Nov 2002 B1
6492913 Vierthaler et al. Dec 2002 B2
6496983 Schindler et al. Dec 2002 B1
6502242 Howe et al. Dec 2002 B1
6505348 Knowles et al. Jan 2003 B1
6510519 Wasilewski et al. Jan 2003 B2
6510553 Hazra Jan 2003 B1
6515680 Hendricks et al. Feb 2003 B1
6516467 Schindler et al. Feb 2003 B1
6519011 Shendar Feb 2003 B1
6522769 Rhoads et al. Feb 2003 B1
6526577 Knudson et al. Feb 2003 B1
6529949 Getsin et al. Mar 2003 B1
6535590 Tidwell et al. Mar 2003 B2
6538704 Grabb et al. Mar 2003 B1
6542740 Olgaard et al. Apr 2003 B1
6557030 Hoang Apr 2003 B1
6557756 Smith May 2003 B1
6567982 Howe et al. May 2003 B1
6587127 Leeke et al. Jul 2003 B1
6587873 Nobakht et al. Jul 2003 B1
6598231 Basawapatna et al. Jul 2003 B1
6599199 Hapshie Jul 2003 B1
6607136 Atsmon et al. Aug 2003 B1
6609253 Swix et al. Aug 2003 B1
6611537 Edens et al. Aug 2003 B1
6614987 Ismail et al. Sep 2003 B1
6622148 Noble et al. Sep 2003 B1
6622307 Ho Sep 2003 B1
6631523 Matthews, III et al. Oct 2003 B1
6640239 Gidwani Oct 2003 B1
6643495 Gallery et al. Nov 2003 B1
6643684 Malkin et al. Nov 2003 B1
6650761 Rodriguez et al. Nov 2003 B1
6658568 Ginter et al. Dec 2003 B1
6664459 Lee et al. Dec 2003 B2
6675388 Beckmann et al. Jan 2004 B1
6678215 Treyz et al. Jan 2004 B1
6678733 Brown et al. Jan 2004 B1
6690392 Wugoski Feb 2004 B1
6693236 Gould et al. Feb 2004 B1
6701523 Hancock et al. Mar 2004 B1
6704929 Ozer et al. Mar 2004 B1
6704931 Schaffer et al. Mar 2004 B1
6714264 Kempisty Mar 2004 B1
6721881 Bian et al. Apr 2004 B1
6725281 Zintel et al. Apr 2004 B1
6731393 Currans et al. May 2004 B1
6732179 Brown et al. May 2004 B1
6745223 Nobakht et al. Jun 2004 B1
6745392 Basawapatna et al. Jun 2004 B1
6754206 Nattkemper et al. Jun 2004 B1
6756997 Ward, III et al. Jun 2004 B1
6760918 Rodriguez et al. Jul 2004 B2
6763226 McZeal, Jr. Jul 2004 B1
6765557 Segal et al. Jul 2004 B1
6766305 Fucarile et al. Jul 2004 B1
6769028 Sass et al. Jul 2004 B1
6769128 Knee et al. Jul 2004 B1
6771317 Ellis et al. Aug 2004 B2
6773344 Gabai et al. Aug 2004 B1
6778559 Hyakutake Aug 2004 B2
6779004 Zintel Aug 2004 B1
6781518 Hayes et al. Aug 2004 B1
6784804 Hayes et al. Aug 2004 B1
6785716 Nobakht Aug 2004 B1
6788709 Hyakutake Sep 2004 B1
6804824 Potrebic et al. Oct 2004 B1
6826173 Kung et al. Nov 2004 B1
6826775 Howe et al. Nov 2004 B1
6828993 Hendricks et al. Dec 2004 B1
6839705 Grooters Jan 2005 B1
6870570 Bowser Mar 2005 B1
6870573 Yeo et al. Mar 2005 B2
6909874 Holtz et al. Jun 2005 B2
6938021 Shear et al. Aug 2005 B2
7120926 Safadi et al. Oct 2006 B1
7180511 Shigeta Feb 2007 B2
7205891 McGlothlin et al. Apr 2007 B1
7253732 Osann, Jr. Aug 2007 B2
7307574 Kortum et al. Dec 2007 B2
7310807 Pearson et al. Dec 2007 B2
7379655 Koyabu et al. May 2008 B1
7429191 Diaz et al. Sep 2008 B2
7436346 Walter et al. Oct 2008 B2
7474359 Sullivan et al. Jan 2009 B2
7571453 Knudson Aug 2009 B2
7653614 Smith Jan 2010 B2
7657910 McAulay Feb 2010 B1
7685616 Virdi et al. Mar 2010 B2
7716714 Kortum et al. May 2010 B2
7850526 Zalewski et al. Dec 2010 B2
7850527 Barney et al. Dec 2010 B2
7857701 Murphy Dec 2010 B2
7873102 Van Vleck et al. Jan 2011 B2
7908627 Ansari et al. Mar 2011 B2
7917937 Fernandez et al. Mar 2011 B1
8042132 Carney et al. Oct 2011 B2
8054849 Nadarajah Nov 2011 B2
8086261 Radpour Dec 2011 B2
8092307 Kelly Jan 2012 B2
8113955 Bae et al. Feb 2012 B1
8166498 Walter Apr 2012 B2
8190688 Kortum et al. May 2012 B2
8214859 Kortum et al. Jul 2012 B2
8282476 Walter Oct 2012 B2
8365218 Walter et al. Jan 2013 B2
20010004769 Simon Jun 2001 A1
20010011261 Mullen-Schultz Aug 2001 A1
20010016945 Inoue Aug 2001 A1
20010016946 Inoue Aug 2001 A1
20010034257 Weston et al. Oct 2001 A1
20010034664 Brunson Oct 2001 A1
20010044794 Nasr et al. Nov 2001 A1
20010048677 Boys Dec 2001 A1
20010049826 Wilf Dec 2001 A1
20010054008 Miller et al. Dec 2001 A1
20010054009 Miller et al. Dec 2001 A1
20010054067 Miller et al. Dec 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020001303 Boys Jan 2002 A1
20020001310 Mai et al. Jan 2002 A1
20020002496 Miller et al. Jan 2002 A1
20020003166 Miller et al. Jan 2002 A1
20020007307 Miller et al. Jan 2002 A1
20020007313 Mai et al. Jan 2002 A1
20020007485 Rodriguez et al. Jan 2002 A1
20020010639 Howey et al. Jan 2002 A1
20020010745 Schneider Jan 2002 A1
20020010935 Sitnik Jan 2002 A1
20020016736 Cannon et al. Feb 2002 A1
20020022963 Miller et al. Feb 2002 A1
20020022970 Noll et al. Feb 2002 A1
20020022992 Miller et al. Feb 2002 A1
20020022993 Miller et al. Feb 2002 A1
20020022994 Miller et al. Feb 2002 A1
20020022995 Miller et al. Feb 2002 A1
20020023959 Miller et al. Feb 2002 A1
20020026357 Miller et al. Feb 2002 A1
20020026358 Miller et al. Feb 2002 A1
20020026369 Miller et al. Feb 2002 A1
20020026475 Marmor Feb 2002 A1
20020029181 Miller et al. Mar 2002 A1
20020030105 Miller et al. Mar 2002 A1
20020032603 Yeiser Mar 2002 A1
20020035404 Ficco et al. Mar 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020042915 Kubischta et al. Apr 2002 A1
20020046093 Miller et al. Apr 2002 A1
20020049635 Mai et al. Apr 2002 A1
20020054087 Noll et al. May 2002 A1
20020054750 Ficco et al. May 2002 A1
20020059163 Smith May 2002 A1
20020059425 Belfiore et al. May 2002 A1
20020059599 Schein et al. May 2002 A1
20020065717 Miller et al. May 2002 A1
20020067438 Baldock Jun 2002 A1
20020069220 Tran Jun 2002 A1
20020069282 Reisman Jun 2002 A1
20020069294 Herkersdorf et al. Jun 2002 A1
20020072970 Miller et al. Jun 2002 A1
20020078442 Reyes et al. Jun 2002 A1
20020078453 Kuo Jun 2002 A1
20020097261 Gottfurcht et al. Jul 2002 A1
20020104099 Novak Aug 2002 A1
20020106119 Foran et al. Aug 2002 A1
20020112239 Goldman Aug 2002 A1
20020116392 McGrath et al. Aug 2002 A1
20020124055 Reisman Sep 2002 A1
20020128061 Blanco Sep 2002 A1
20020129094 Reisman Sep 2002 A1
20020133402 Faber et al. Sep 2002 A1
20020138840 Schein et al. Sep 2002 A1
20020144265 Connelly Oct 2002 A1
20020147982 Naidoo et al. Oct 2002 A1
20020152264 Yamasaki Oct 2002 A1
20020157113 Allegrezza Oct 2002 A1
20020157115 Lu Oct 2002 A1
20020169611 Guerra et al. Nov 2002 A1
20020170063 Ansari et al. Nov 2002 A1
20020173344 Cupps et al. Nov 2002 A1
20020188955 Thompson et al. Dec 2002 A1
20020193997 Fitzpatrick et al. Dec 2002 A1
20020194601 Perkes et al. Dec 2002 A1
20020198874 Nasr et al. Dec 2002 A1
20030005445 Schein et al. Jan 2003 A1
20030009771 Chang Jan 2003 A1
20030012365 Goodman Jan 2003 A1
20030014750 Kamen Jan 2003 A1
20030018975 Stone Jan 2003 A1
20030023435 Josephson Jan 2003 A1
20030023440 Chu Jan 2003 A1
20030028890 Swart et al. Feb 2003 A1
20030033416 Schwartz Feb 2003 A1
20030043915 Costa et al. Mar 2003 A1
20030046091 Arneson et al. Mar 2003 A1
20030046689 Gaos Mar 2003 A1
20030056223 Costa et al. Mar 2003 A1
20030058277 Bowman-Amuah Mar 2003 A1
20030061611 Pendakur Mar 2003 A1
20030068155 Vasilevsky et al. Apr 2003 A1
20030071792 Safadi Apr 2003 A1
20030093793 Gutta May 2003 A1
20030097661 Li et al. May 2003 A1
20030100340 Cupps et al. May 2003 A1
20030106069 Crinon Jun 2003 A1
20030110161 Schneider Jun 2003 A1
20030110503 Perkes Jun 2003 A1
20030126136 Omoigui Jul 2003 A1
20030135771 Cupps et al. Jul 2003 A1
20030141987 Hayes Jul 2003 A1
20030145321 Bates et al. Jul 2003 A1
20030149989 Hunter et al. Aug 2003 A1
20030153353 Cupps et al. Aug 2003 A1
20030153354 Cupps et al. Aug 2003 A1
20030159026 Cupps et al. Aug 2003 A1
20030159143 Chan Aug 2003 A1
20030160830 DeGross Aug 2003 A1
20030163601 Cupps et al. Aug 2003 A1
20030163666 Cupps et al. Aug 2003 A1
20030167472 Barbanson et al. Sep 2003 A1
20030172380 Kikinis Sep 2003 A1
20030182237 Costa et al. Sep 2003 A1
20030182420 Jones et al. Sep 2003 A1
20030185232 Moore et al. Oct 2003 A1
20030187641 Moore et al. Oct 2003 A1
20030187646 Smyers et al. Oct 2003 A1
20030187800 Moore et al. Oct 2003 A1
20030189509 Hayes et al. Oct 2003 A1
20030189589 LeBlanc et al. Oct 2003 A1
20030194141 Kortum et al. Oct 2003 A1
20030194142 Kortum et al. Oct 2003 A1
20030208396 Miller et al. Nov 2003 A1
20030208758 Schein et al. Nov 2003 A1
20030216181 Danieli et al. Nov 2003 A1
20030220140 Leung Nov 2003 A1
20030221198 Sloo Nov 2003 A1
20030226044 T. Cupps et al. Dec 2003 A1
20030226145 Marsh Dec 2003 A1
20030229900 Reisman Dec 2003 A1
20040003041 Moore et al. Jan 2004 A1
20040003403 Marsh Jan 2004 A1
20040003412 Halbert Jan 2004 A1
20040006769 Ansari et al. Jan 2004 A1
20040006772 Ansari et al. Jan 2004 A1
20040010602 Van Vleck et al. Jan 2004 A1
20040015997 Ansari et al. Jan 2004 A1
20040028391 Black et al. Feb 2004 A1
20040030750 Moore et al. Feb 2004 A1
20040031058 Reisman Feb 2004 A1
20040031856 Atsmon et al. Feb 2004 A1
20040034877 Nogues Feb 2004 A1
20040049728 Langford Mar 2004 A1
20040064351 Mikurak Apr 2004 A1
20040068740 Fukuda et al. Apr 2004 A1
20040068753 Robertson et al. Apr 2004 A1
20040070491 Huang et al. Apr 2004 A1
20040073918 Ferman et al. Apr 2004 A1
20040090391 Kondo May 2004 A1
20040093619 Cox May 2004 A1
20040098571 Falcon May 2004 A1
20040103439 Macrae May 2004 A1
20040107125 Guheen et al. Jun 2004 A1
20040107439 Hassell et al. Jun 2004 A1
20040111745 Schein et al. Jun 2004 A1
20040111756 Stuckman et al. Jun 2004 A1
20040116045 Coleman Jun 2004 A1
20040116183 Prindle Jun 2004 A1
20040117813 Karaoguz et al. Jun 2004 A1
20040117824 Karaoguz et al. Jun 2004 A1
20040128342 Maes et al. Jul 2004 A1
20040139173 Karaoguz et al. Jul 2004 A1
20040143600 Musgrove et al. Jul 2004 A1
20040143652 Grannan et al. Jul 2004 A1
20040143838 Rose Jul 2004 A1
20040148408 Nadarajah Jul 2004 A1
20040150676 Gottfurcht et al. Aug 2004 A1
20040163134 Willis Aug 2004 A1
20040166939 Leifer et al. Aug 2004 A1
20040168185 Dawson et al. Aug 2004 A1
20040183839 Gottfurcht et al. Sep 2004 A1
20040194136 Finseth et al. Sep 2004 A1
20040198386 Dupray Oct 2004 A1
20040201600 Kakivaya et al. Oct 2004 A1
20040205821 Yamada et al. Oct 2004 A1
20040210633 Brown et al. Oct 2004 A1
20040210935 Schein et al. Oct 2004 A1
20040213271 Lovy et al. Oct 2004 A1
20040221302 Ansari et al. Nov 2004 A1
20040223485 Arellano et al. Nov 2004 A1
20040226035 Hauser, Jr. Nov 2004 A1
20040228175 Candelore et al. Nov 2004 A1
20040234088 McCarty et al. Nov 2004 A1
20040239624 Ramian Dec 2004 A1
20040252119 Hunleth et al. Dec 2004 A1
20040252120 Hunleth et al. Dec 2004 A1
20040252769 Costa et al. Dec 2004 A1
20040252770 Costa et al. Dec 2004 A1
20040260407 Wimsatt Dec 2004 A1
20040261116 McKeown et al. Dec 2004 A1
20040267729 Swaminathan et al. Dec 2004 A1
20040268393 Hunleth et al. Dec 2004 A1
20040268400 Barde et al. Dec 2004 A1
20050026700 Blanco Feb 2005 A1
20050027851 McKeown et al. Feb 2005 A1
20050038814 Iyengar et al. Feb 2005 A1
20050044280 Reisman Feb 2005 A1
20050060759 Rowe et al. Mar 2005 A1
20050071782 Barrett et al. Mar 2005 A1
20050083412 Murphy Apr 2005 A1
20050086706 Kasamatsu et al. Apr 2005 A1
20050097612 Pearson et al. May 2005 A1
20050123136 Shin et al. Jun 2005 A1
20050132295 Noll et al. Jun 2005 A1
20050132414 Bentley et al. Jun 2005 A1
20050149654 Holloway et al. Jul 2005 A1
20050149973 Fang Jul 2005 A1
20050149988 Grannan Jul 2005 A1
20050155083 Oh et al. Jul 2005 A1
20050166253 Fairhurst et al. Jul 2005 A1
20050193322 Lamkin et al. Sep 2005 A1
20050195961 Pasquale et al. Sep 2005 A1
20050206513 Fallon Sep 2005 A1
20050222820 Chung Oct 2005 A1
20050270151 Winick Dec 2005 A1
20050273815 Orr et al. Dec 2005 A1
20050276567 Okuyama et al. Dec 2005 A1
20060010199 Brailean et al. Jan 2006 A1
20060022816 Yukawa Feb 2006 A1
20060026663 Kortum et al. Feb 2006 A1
20060037043 Kortum et al. Feb 2006 A1
20060037083 Kortum et al. Feb 2006 A1
20060041923 McQuaide, Jr. Feb 2006 A1
20060048178 Kortum et al. Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060078309 Chen et al. Apr 2006 A1
20060085831 Jones, III et al. Apr 2006 A1
20060085859 Okamoto et al. Apr 2006 A1
20060090079 Oh et al. Apr 2006 A1
20060114360 Kortum et al. Jun 2006 A1
20060136964 Diez Jun 2006 A1
20060150237 Mesut et al. Jul 2006 A1
20060156372 Cansler, Jr. et al. Jul 2006 A1
20060161953 Walter et al. Jul 2006 A1
20060168610 Noil Williams et al. Jul 2006 A1
20060174279 Sullivan et al. Aug 2006 A1
20060174309 Pearson Aug 2006 A1
20060174609 Heath Aug 2006 A1
20060179466 Pearson et al. Aug 2006 A1
20060179468 Pearson et al. Aug 2006 A1
20060184973 de Heer et al. Aug 2006 A1
20060184991 Schlamp et al. Aug 2006 A1
20060190402 Patron et al. Aug 2006 A1
20060216181 Yanagisawa et al. Sep 2006 A1
20060218590 White Sep 2006 A1
20060230421 Pierce et al. Oct 2006 A1
20060230427 Kunkel et al. Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060236354 Sutardja Oct 2006 A1
20060242670 Teichner et al. Oct 2006 A1
20060273831 Maksimovic et al. Dec 2006 A1
20060282785 McCarthy et al. Dec 2006 A1
20060290814 Walter Dec 2006 A1
20060293100 Walter Dec 2006 A1
20060294553 Walter et al. Dec 2006 A1
20060294561 Grannan et al. Dec 2006 A1
20060294568 Walter Dec 2006 A1
20060294572 Walter Dec 2006 A1
20070011133 Chang Jan 2007 A1
20070011702 Vaysman Jan 2007 A1
20070021211 Walter Jan 2007 A1
20070061831 Savoor et al. Mar 2007 A1
20070081551 Oishi et al. Apr 2007 A1
20070089145 Medford et al. Apr 2007 A1
20070150930 Koivisto et al. Jun 2007 A1
20070162979 Kamperman et al. Jul 2007 A1
20070180485 Dua Aug 2007 A1
20070190857 Galang et al. Aug 2007 A1
20070192791 Sullivan et al. Aug 2007 A1
20070192816 Collet et al. Aug 2007 A1
20070245391 Pont Oct 2007 A1
20070250896 Parker et al. Oct 2007 A1
20070256111 Medford et al. Nov 2007 A1
20080279179 Baker Nov 2008 A1
20080316367 Vasella Dec 2008 A1
20100141851 Kendall Jun 2010 A1
20130012318 Walter Jan 2013 A1
20130079129 Walter et al. Mar 2013 A1
Foreign Referenced Citations (17)
Number Date Country
10257401 Sep 1998 JP
9963759 Dec 1999 WO
0028689 May 2000 WO
0036812 Jun 2000 WO
0055769 Sep 2000 WO
0160066 Aug 2001 WO
0178381 Oct 2001 WO
0217627 Feb 2002 WO
02058382 Jul 2002 WO
03003710 Jan 2003 WO
03025726 Mar 2003 WO
03047710 Jun 2003 WO
2004018060 Mar 2004 WO
2004032514 Apr 2004 WO
2004062279 Jul 2004 WO
2004068855 Aug 2004 WO
2005045554 May 2005 WO
Non-Patent Literature Citations (20)
Entry
Burfield, P. “The Advantages of Using the IBM PowerPC Processor in the Set-Top Box,” IBM Power Architecture Community Newsletter, http://www-03.ibm.com-/technology/power/newsletter/december2004/article5.html, Dec. 2004, pp. 1-3.
Nicklin, D. “Xilinx at Work in Set-Top Boxes,” Xilinx WP1000, Mar. 28, 2000, pp. 1-11, V. 1.0, Xilinx, Inc.
Wittress, B. “Windows CE.NET 4.2 and Windows XP Embedded-Scalable Software Platforms for Building Flexible, IP Set-Top Boxes,” Microsoft Windows Embedded Internet Protocol (IP) Set-Top Boxes, Sep. 2003, pp. 1-19.
“Digital Set-Top Boxes & Integrated Digital Television Systems,” http://www.altera.com/solutions/consumer/dtv/csm-digititaltv.html?f=sscon&k=g2, 2005, pp. 1-3, Altera Corporation, San Jose, CA.
“DTT STB system solution,” Philips Semiconductors, Doc. Order No. 9397 750 11803, Aug. 2003, pp. 1-4, Koninklijke Philips Electronics, Netherlands.
Non-Final Rejection for U.S. Appl. No. 11/166,785 mailed Jul. 1, 2009, 18 pages.
Final Rejection for U.S. Appl. No. 11/166,785 mailed Dec. 9, 2009, 24 pages.
Non-Final Rejection for U.S. Appl. No. 11/166,785 mailed Apr. 27, 2010, 24 pages.
Final Rejection for U.S. Appl. No. 11/166,785 mailed Oct. 4, 2010, 26 pages.
Non-Final Rejection for U.S. Appl. No. 11/166,785 mailed Apr. 6, 2011, 26 pages.
Non-Final Rejection for U.S. Appl. No. 11/116,785 mailed Sep. 28, 2011, 27 pages.
Notice of Allowance for U.S. Appl. No. 11/166,785 mailed Mar. 5, 2012, 8 pages.
Notice of Allowance for U.S. Appl. No. 11/166,786 mailed May 31, 2012, 16 pages.
Non-Final Rejection for U.S. Appl. No. 11/166,909 mailed Jan. 8, 2009, 28 pages.
Final Rejection for U.S. Appl. No. 11/166,909 mailed Jun. 23, 2009, 23 pages.
Non-Final Rejection for U.S. Appl. No. 11/166,909 mailed Oct. 2, 2009, 34 pages.
Final Rejection for U.S. Appl. No. 11/166,909 mailed May 13, 2010, 38 pages.
Non-Final Rejection for U.S. Appl. No. 11/166,909 mailed Dec. 20, 2011, 38 pages.
Notice of Allowance for U.S. Appl. No. 11/166,909 mailed Oct. 4, 2012, 9 pages.
Kapinos, S., “Accenda Universal Remote Control Targets Needs of Elderly, Visually Impaired, Physically Challenged . . . and the Rest of Us,” Press Release, Dec. 15, 2002, Innotech Systems Inc., Port Jefferson, NY, 4 pages.
Related Publications (1)
Number Date Country
20130079129 A1 Mar 2013 US
Continuations (1)
Number Date Country
Parent 11166909 Jun 2005 US
Child 13677487 US