1. Field of the Invention
This invention relates to endpoint detection in a semiconductor process utilizing a neural network.
2. Background
Today in semiconductor processing, different structures, such as trenches and vias in semiconductor devices are formed by etching processes.
Then, as shown in
In semiconductor device manufacturing processes, dry etching is one technique for forming micropatterns. Dry etching is a method of generating plasma in a vacuum using a reactive gas and removing an etching target by using ions, neutral radicals, atoms, and molecules in the plasma. Etching is performed on an etching target until an underlying layer is reached. If etching is continued after the etched target is completely removed, the underlying material may be excessively etched, or the etching shape may be undesirably changed. Therefore, to obtain a desired structure, it is advantageous to detect the endpoint in the etching process accurately.
As shown in
The point at which the etching process is stopped is called the endpoint. There are several methods in determining the endpoint in an etching process. Optical emission spectroscopy is one method for endpoint detection. Optical emission spectroscopy is easy to implement and offers high sensitivity. Optical emission spectroscopy relies on the change in the emission intensity of characteristic optical radiation from either a reactant or by-product in a plasma. Light is emitted by excited atoms or molecules when electrons relax from a higher energy state to a lower one. Atoms and molecules emit a series of spectral lines that are unique to each individual reactant or by-product.
A known system 400 utilized for endpoint detection is shown in
Optical emissions spectroscopy also has some drawbacks. Oftentimes, it is difficult to determine the exact endpoint of an etching process. Such is the case when an endpoint curve contains abnormal features that may be hard to detect by conventional optical spectroscopy. Many times an over-etching is required. However, in the case of overetching, the underlying materials may be damaged.
In certain aspects consistent with the present invention, there is provided a system and method for determining an endpoint of an etching process by utilizing a neural network. By learning the features of a group of endpoint curves containing normal and abnormal features for an etch process, the neural network may determine the endpoint of the etch process through pattern recognition.
In one aspect consistent with the present invention, there is provided a system and method for pattern recognition of an endpoint curve for a dry etch process. The system trains a neural network with a group of training curves corresponding to the dry etch process, wherein the training curves contain normal and abnormal features. The system receives an endpoint curve at the neural network representing a dry etch process and detects an abnormal feature in the endpoint curve.
Additional features and advantages consistent with the present invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages consistent with the present invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate certain aspects consistent with the present invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to aspects and features consistent with the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Certain aspects of the present invention overcome disadvantages of known endpoint detection systems and methods by utilizing a neural network. By learning the features of a group of endpoint curves containing normal and abnormal features for an etch process, the neural network may determine the endpoint of the etch process through pattern recognition.
A neural network is an interconnected assembly of simple processing elements, called nodes, whose functionality is loosely based on the human brain, in particular, the neuron. The processing ability of the network is stored in inter-node connection strengths, called weights, obtained by learning from a set of training patterns. Learning in the network is achieved by adjusting the weights based on a learning rule and training patterns to cause the overall network to output desired results.
The basic unit of a neural network is a node.
A neural network is composed of multiple nodes arranged in layers.
One advantage of neural networks is the ability to learn. The learning process of neural networks is facilitated by updating the weights associated with each node of a layer. The weights for each node in a layer may be updated based on a particular learning rule. One type of learning rule is a back-propagation (BP) learning rule. The BP learning rule dictates that changes in the weights associated with the learning process are based on errors between actual outputs and desired outputs. In the network, an error associated with the output of a node is determined and then back propagated to the weights of that node. A number of training sets are inputted into the network in order to train the network. The neural network processes each training set and updates the weights of the nodes based on the error between the output generated by the neural network and the desired output. BP learning rule neural networks may be used for pattern matching and classification.
Neural network 900 comprises layers 910, 920, and 930. Layer 910 is an input layer and contains an l number of nodes. Layer 910 receives vector X[x1 . . . xi,xn]. Layer 920 is a hidden layer and contains a K number of nodes. Layer 920 is connected to input layer 910. Layer 930 is an output layer and contains a J number of nodes. Layer 930 is connected to layer 920 and serves to output the results of the neural network processing. The nodes of both layers may be LTG, as illustrated in
In order to train network 900 according to the BP learning rule, a series of training endpoint curves with characteristic features are fed to network 900. Network 900 processes the endpoint curves, in order to learn, by updating the weights. The learning process is described with reference to
where α is a gain factor and s is a sum of the weighted inputs. One skilled in the art would realize that the transfer function is not limited to a sigmoid function, but may be another transfer function, for example, hyperbolic tangent given by ƒ(s)=tanh(βs), where β is a gain factor and s is a sum of the weighted inputs.
The weights wkj and Wik of layers 920 and 910 are updated by minimizing the following error function.
where Yj is the output for the jth node of layer 930 and Tj is the desired output for the jth node of layer 930.
The weights for node 920 are updated according to the following equation:
where ρ is the learning rate,
which is the weighted sum otherwise known as s, ƒ′ is the derivative of ƒ where f is given by equation 1 with respect to weight sum,
is the partial derivative of E(w) give by equation 2, and wkjnew and wkjc are the updated and current weight values, respectively. The zk values are determined by propagating the input vector X through layer 920 according to
The weight for node 910 are updated according to the following equation:
Δwik=ph[Σ(Tk−Yk)ƒ′(netj)wkj]ƒ′(netk)xi (5)
where Tk is an “estimated target” for the kth node of layer 920 and ρh is a learning rate. One skilled in the art would realized that the above equation may be adapted for other transfer functions, f(s).
Network 900 is trained by inputting sample endpoint curves and training the network to recognize the endpoint curves by the characteristic features.
Network 900 is trained by setting the desired output Tj to classify the desired features and then inputting endpoint curves 1000 as vector X repeatedly until the output of the network approaches the desired output.
The method begins by setting up network 900 to use a back propagation learning rule such as the rule illustrated in
where Vm are the transformed values for the curves, Vin are the collect values for the curves undergoing transformation, Vmax is the select maximum value for the curves, and Vmin is the selected minimum value for the curves. In the case of
Classification involves selecting the desired output Tj for each curve in the group of curves. In the case of
Next, the group curves that have been transformed for classification are divided into a first set of curves and a second set of curves (stage 1330). The first set of curves is used to train network 900 (stage 1340) by inputting the curves as vector X into network 900. Training of network 900 continues until a desired learning is achieved. In network 900, training stops when the root mean square errors between desired output Tj and outputs Yj are reduced to a predetermined error. The predetermined error is selected based on required accuracy of network. For high accuracy, the predetermined error is set to a small value.
When training comes to an end, weights of network 900 will be set, through learning, to values that will allow classification of curves. Network 900 may be tested by inputting the first set of curves which is used for training network 900 (1350). Since the first set of curves was used to train network 900, network 900 should be able to classify the curves of the first set with 100% accuracy. If the accuracy is not 100%, an error in the classification of the learning samples is present. For example, identical types of curves may be given different classifications and different desired outputs Tj, thus producing inaccuracy.
After the first set of curves is verified with network 900, the second set of curves are inputted in the network 900 for classification and detection of the endpoints (stage 1360). If the recognition percentage is high for the second set, network 900 weights are reliable. Thus, network 900 is set to process curves in an etching process for endpoint detection.
If there is a need to add a new classification to network 900, a new group of training curves may be collected representing the new classification (stage 1370). Network 900 is then retrained using the new group of curves and the first group of curves.
Once network 900 has been trained (stage 1380) with the endpoint curves, an experimental endpoint curve may be input as vector X into network 900. Because network 900 has been trained, network 900 can recognize the endpoint curves from the characteristic features. One skilled in the art would realize that network 900 may be input with parts of the endpoint curve instead of the entire curve. Thus, an experimental endpoint may be processed in part and in real-time. For example, a selected portion representing a portion of the endpoint curve may be input as vector X. Thus, as the endpoint curve is received in real time, the portions which have been received may be input into network 900 to determine if a characteristic feature is present.
For such a classification, each of the experimental curves 1600, 1610, 1620, 1630, 1640, and 1650 are input separately as vector X into network 900. Network 900 will determine match features of the experimental curves with features contained in the example training endpoint curves used in the training of the network 900. Once a feature has been matched by network 900, the matched pattern is output. One skilled in the art would realize that network 900 may be input with parts of endpoint curves 1600, 1610, 1620, 1630, 1640, and 1650 instead of the entire curve. Thus, an experimental endpoint may be processed in part and in real-time.
Computer unit 1760 may contain standard components for inputting, outputting, processing, manipulating, and storing data. For example, the computer unit may comprise a central processing unit (CPU), random access memory (RAM), video card, sound card, magnetic storage devices, optical storage devices, input/output (I/O) terminals, monitor, and a network interface card (NIC) (all not shown). Computer unit 1760 may optionally be connected to a printer (not shown) through the I/O terminals. Examples of the I/O terminals to which the printer may be connected are parallel, serial, universal serial bus, and IEEE 1394.
ADC 1750 may also be connected to the I/O terminals. Alternately, ADC 1750 may be a component in computer unit 1760. For example, ADC 1750 may be located on an expansion card which is internally contained in computer unit 1760.
Also, computer unit 1760 may be connected to the other computing units through a network (not shown). For example, the network may be a local area network (LAN) or wide area network (WAN), such as the Internet, or wireless network.
Computer unit 1760 is configured to perform endpoint determination using a neural network, such as the one illustrated in
One skilled in the art would realize that neural network 900 may be implemented in different forms on computer unit 1760. For example, neural network 900 may be implemented in hardware in computer unit 1760. In such an example, neural network 900 would be configured as a group of logic and processor units contained internally in computer unit 1760 or externally located and connected to computer unit 1760 via the I/O terminals.
The method begins by setting up a neural network at computer unit 1760 (stage 1800). The neural network is set up by creating the design of the network and determining a learning rule for the network. For example, the neural network can be designed, such as network 900 illustrated in
Next, a group of endpoint training curves are collected (stage 1810). These curves may be collected, for example, by detector 1730. These curves may also be prerecorded and stored at computer unit 1760 or generated by computer unit 1760.
Then, the group of endpoint training curves are converted from analog data to digital data (stage 1820). This may be achieved by, for example, ADC 1750. Once the data is converted, the endpoint training curves are used to train the neural network (stage 1830). Training is achieved by using a using a network training method, such as the one illustrated in
Next, a group of experimental curves are collected (stage 1840). These curves may be collected, for example, by detector 1730. Then, the group of endpoint training curves are converted from analog data to digital data (stage 1850). This may be achieved by, for example, ADC 1750.
Once the data is converted, the experimental curves are input into the trained neural network (stage 1860). Based on the training from stage 1830, the neural network determines the endpoint of the experimental curves (stage 1870). Since the network has been trained to recognize different features for multiple curves, the endpoint may be determined with high accuracy.
Other aspects consistent with the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. For example, other neural network learning rules which operate as pattern classifiers may be used instead of the BP learning rule. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of co-pending U.S. application Ser. No. 10/176,065 filed Jun. 21, 2002 now abandoned, entitled “Neural Network For Determining The Endpoint In A Process,” the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4317698 | Christol et al. | Mar 1982 | A |
4945257 | Marrocco, III | Jul 1990 | A |
5220202 | Isono et al. | Jun 1993 | A |
5343081 | Nakamura | Aug 1994 | A |
5393994 | Kobayashi et al. | Feb 1995 | A |
5467883 | Frye et al. | Nov 1995 | A |
5475341 | Reed | Dec 1995 | A |
5589692 | Reed | Dec 1996 | A |
5653894 | Ibbotson et al. | Aug 1997 | A |
5677783 | Bloom et al. | Oct 1997 | A |
5737496 | Frye et al. | Apr 1998 | A |
5859964 | Wang et al. | Jan 1999 | A |
5961923 | Nova et al. | Oct 1999 | A |
6320200 | Reed et al. | Nov 2001 | B1 |
6329139 | Nova et al. | Dec 2001 | B1 |
6340588 | Nova et al. | Jan 2002 | B1 |
6608386 | Reed et al. | Aug 2003 | B2 |
6641746 | Houge et al. | Nov 2003 | B2 |
6844582 | Ueda et al. | Jan 2005 | B2 |
6889216 | Nugent | May 2005 | B2 |
7015336 | Reed et al. | Mar 2006 | B2 |
7028017 | Nugent | Apr 2006 | B2 |
7039619 | Nugent | May 2006 | B2 |
7107252 | Nugent | Sep 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20070214098 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10176065 | Jun 2002 | US |
Child | 11646205 | US |