Stryer Biochemistry Third Ed. p. 72, 1988.* |
Perryman et al.; A cloned gene of Cryptosporidium parvum encodes neutralization-sensitive epitopes, Molecular and Biochemical Parasitology:80-137-147 (1996). |
Riggs, MW; Immunology: Host Response and Development of Passive Immunotherapy and Vaccines, In: Cryptosporidium and Cryptosporidiosis, CRC Press: (1997). |
Jenkins et al.; Serum and colostrum antibody responses induced by jet-injection of sheep with DNA encoding a Cryptosporidium parvum antigen, Vaccine:13:17:1658-1664 (1995). |
Peterson et al., Identification and Initial Characterization of Five Cryptosporidium parvum Sporozoite Antigen Genes, Infection and Immunity 60(6): 2343-2348 (Jun. 1992). |
Arrowood et al.; Effects of Immune Colostrum and Orally Administered Antisporozoite MonoclonalAntibodies on the Outcome of Cryptosporidium parvum Infections in Neonatal Mice, Infection and Immunity 57:8 2283-2288 (Aug. 1989). |
Arrowood et al.; Immunoflourescent Microscopical Visualization of Trails Left by Gliding Cryptosporidium parvum Sporozoites, J. Parasitol. 77:315-317 (1991). |
Riggs et al.; Neutralization-Sensitive Epitopes are Exposed on the Surface of Infectious Cryptosporidium parvum Sporozoites, The Journal of Immunology 143:4 1340-1345 (Aug. 15, 1989). |
Tilley et al.; Identification of a 15-Kilodalton Surface Glycoprotein on Sporozoites of Cryptosporidium parvum, Infection and Immunity 59:3 1002-1007 (Mar. 1991). |
Baehr et al.; “The virulence-associated gonococcal H.8 gene encodes 14 tandemly repeated pentapeptides,” Molecular Microbiology 3:1 49-55 (1989). |
Woods et al.; “Conserved lipoprotein H.8 of pathogenic Neisseria consists entirely of pentapeptide repeats,” Molecular Microbiology 3:1 43-48 (1989). |