Any and all applications for which a domestic priority claim is identified in the Application Data Sheet of the present application are hereby incorporated by reference under 37 CFR 1.57. This application is related to U.S. application Ser. No. 16/802,434, filed on Feb. 26, 2020, titled “Respiratory Core Body Temperature Measurement Systems and Methods” and U.S. application Ser. No. 16/546,667, filed on Aug. 1, 2019, titled “Core Body Temperature Measurement.” Each of the above-referenced applications is hereby incorporated by reference in its entirety.
The present disclosure relates to systems and methods of calculating estimated core body temperature.
Temperature is often a good indicator of patient health. Temperatures that are too low or high can negatively impact patient's metabolic rate, organ function, or cause tissue damage. Accurately measurement and monitoring of temperature of a patient, therefore, can be vital to care providers. Although one's temperature in peripheral regions (including, for example, hands, feet, legs, and arms) can vary (between 27° C. and 32° C.), the core temperature of deep tissues and internal organs remain relatively constant (between 36.5° C. and 37.2° C.). By measuring or observing changes in core temperature, harmful conditions such as infections, cardiac arrest, stroke, or other types of trauma can be observed.
The present disclosure provides systems and methods of determining estimated core body temperature without direct physical contact with the patient. A sensor system can include a temperature sensor that determines skin temperature of a patient. In some examples, the sensor system also measures an ambient temperature. The sensor system can use the skin temperature or ambient temperature to calculate an estimated core body temperature. The sensor system can include a display module that can display the estimated core body temperature in different color schemes based on the estimated core body temperature reading. The sensor system can include one or more indicators that allow care providers to orient the sensor system at a correct distance away from the patient for more accurate measurements.
According to an aspect, a method for calibrating a sensor is disclosed. The method can include measuring, using a sensor, a first observed temperature of a first reference object having a first actual temperature, a second observed temperature of a second reference object having a second actual temperature, a third observed temperature of a third reference object having a third actual temperature, and a fourth observed temperature of a fourth reference object having a fourth actual temperature. The method can further include determining a difference between the first actual temperature and the first observed temperature as a first bias, a difference between the second actual temperature and the second observed temperature as a second bias, a difference between the third actual temperature and the third observed temperature as a third bias, and a difference between the fourth observed temperature and the fourth actual temperature as a fourth bias. The method can further include determining an offset for the sensor based at least on the first bias, the second bias, the third bias, and the fourth bias.
The first reference object can be a physical body at a thermal equilibrium. The second reference object can be a gallium triple point black body. The third reference object can be water in a water bath. The fourth reference object can be an infrared reference source with controlled temperature.
According to another aspect, a system for displaying a distance indicator associated with a distance between a temperature measurement system and a patient is disclosed. The system can include a first display module that can generate a first indicator. The first indicator can be projected at a first angle from a temperature measurement system towards a patient. The system can further include a second display module that can generate a second indicator. The second indicator can be projected at a second angle from the temperature measurement system towards the patient. The first indicator and the second indicator can intersect at a predetermined distance from the temperature measurement system such that the first indicator and the second indicator generate a third indicator projected on the patient when the temperature measurement system is positioned at the predetermined distance from the patient. The first indicator and the second indicator can be separately projected on the patient when the temperature measurement system is not positioned at the predetermined distance from the patient.
The first display module and the second display module can be positioned a first distance apart from each other. The first distance can be based at least on the first angle, the second angle, and the predetermined distance. The first indicator can be a first beam of light in a first color and the second indicator can be a second beam of light in a second color. The third indicator can be in a third color different from the first color and the second color. The first indicator and the second indicator can be associated with temperature of a patient.
According to another aspect, a system for displaying a distance indicator associated with a distance between a temperature measurement system and a patient is disclosed. The system can include one or more sensors that can collect a first plurality of data associated with temperature of a patient. The system can further include a processor that can calculate estimated core body temperature of the patient using the first plurality of data. The system can further include a first display module that can generate a first indicator that can be projected on the patient. The first indicator can display a first display when a temperature measurement system is at a first distance from a patient. The first indicator can display a second display when the temperature measurement system is at a second distance from the patient. The first indicator can be associated with the estimated core body temperature of the patient. The second distance can be different from the first distance. The first display can be illegible and the second display can be legible.
The first indicator can be in a first color. The first color can be based at least on the estimated core body temperature of the patient.
According to another aspect, a system for determining an estimated core body temperature is disclosed. The system can include a hardware processor programmed to execute software instructions. The hardware processor can cause the system to receive a first plurality of data from a first sensor. The hardware processor can further cause the system to discard a first subset of the first plurality of data based at least on signal density distribution of the first plurality of data. The hardware processor can further cause the system to discard a second subset of the first plurality of data based at least on signal quality index of the first plurality of data. The hardware processor can further cause the system to receive a second plurality of data from a second sensor. The second plurality of data can be associated with ambient temperature. The hardware processor can further cause the system to calculate an estimated core body temperature based at least on a remainder of the first plurality of data and the second plurality of data.
The first plurality of data can be associated with skin temperature of a patient. The first subset of the first plurality of data can represent data within the first plurality of data that is not within a predetermined range of signal density of the first plurality of data. The second subset of the first plurality of data can represent data within the first plurality of data that has signal quality index lower than a predetermined value.
According to another aspect, a system for generating a display associated with temperature of a patient is disclosed. The system can include one or more sensors that can generate a plurality of data associated with temperature of a patient. The system can further include a processor operatively connected to the one or more sensors to receive the plurality of data from the one or more sensors. The processor can be programmed to execute software instructions to calculate an estimated core body temperature of the patient. The system can further include a display module operatively connected to the processor. The display module can generate and display an indicator associated with the estimated core body temperature. The indicator can include a first variable characteristic based at least on the estimated core body temperature.
The first variable characteristic can be a color of the indicator. The indicator can have a second variable characteristic based at least on the estimated core body temperature. The second variable characteristic can be a frequency at which the indicator is displayed. The indicator can blink at a predetermined frequency when the estimated core body temperature is above a threshold temperature.
According to another aspect, a temperature measurement system for determining an estimated core body temperature is disclosed. The temperature measurement system can include a first sensor that can collect a first plurality of data associated with temperature of a patient. The temperature measurement system can further include a light emitter for emitting a first beam of light towards the patient. The temperature measurement system can further include a light detector for detecting a second beam of light from the patient. The temperature measurement system can further include an aperture. The temperature measurement system can further include a cover for the aperture, the cover having an open configuration and a closed configuration, the cover in the open configuration allowing the first beam of light and the second beam of light to travel between the temperature measurement system and the patient, the cover in the closed configuration preventing the first beam of light and the second beam of light from travelling between the temperature measurement system and the patient. The temperature measurement system can further include a processor in electronic communication with the first sensor, the light emitter, and the light detector, the processor can calculate an estimated core body temperature of the patient based at least on the first plurality of data, the processor can determine a distance between the temperature measurement system and the patient based at least on the second beam of light. The temperature measurement system can further include a display module that can generate a first indicator projected on the patient, the first indicator having a first configuration when the temperature measurement system is at a predetermined distance from the patient and having a second configuration when the temperature measurement system is not at the predetermined distance from the patient.
The second beam of light can include at least a portion of the first beam of light reflected by the patient. The cover can provide a waterproof or water-resistant seal for the aperture. The cover can be a mechanical flap. The light detector can determine an intensity of the second beam of light. The light detector can determine an incident position of the second beam of light. The processor can determine the distance between the temperature measurement system and the patient based at least on the intensity or the incident position of the second beam of light.
The first sensor can be an infrared light sensor. The light emitter can be an infrared light sensor. The first indicator can represent an estimated core body temperature of the patient. The first indicator can be legible when in the first configuration and illegible when in the second configuration. The first indicator in the first configuration and the first indicator in the second configuration can differ in color. The light emitter and the light detector can be housed within the aperture. The aperture can have a substantially parabolic cross-section. The substantially parabolic cross-section of the aperture can aid in focusing the second beam of light towards the light detector.
According to another aspect, a method of generating a display indicative that a temperature measurement system is at a recommended distance from a patient is disclosed. The method can include actuating a cover to expose the aperture. The method can further include emitting, using a light emitter, a first beam of light towards the patient. The method can further include detecting, using a light detector, a second beam of light from the patient. The method can further include analyzing the second beam of light to determine a first distance between the temperature measurement system and the patient. The method can further include comparing the first distance to a predetermined range. The method can further include generating and displaying a first indicator upon determination that the first distance is not within the predetermined range. The method can further include generating and displaying a second indicator upon determination that the first distance is not within the predetermined range.
The analyzing the second beam of light can include determining an intensity of the second beam of light. The analyzing the second beam of light cam include determining an incident position of the second beam of light. The actuating the cover can include changing a configuration of the cover from a closed configuration to an open configuration. The cover in the open configuration can allow the first beam of light and the second beam of light to travel between the temperature measurement system and the patient, and the cover in the closed configuration can prevent the first beam of light and the second beam of light from travelling between the temperature measurement system and the patient.
The systems and methods for obtaining and monitoring estimated core body temperature disclosed herein have several features, no single one of which is solely responsible for their desirable attributes. Without limiting the scope as expressed by the claims that follow, certain features of the temperature system will now be discussed briefly. One skilled in the art will understand how the features of the disclosed technology provide several advantages over traditional systems and methods.
Various examples will be described hereinafter with reference to the accompanying drawings. The drawings and the associated descriptions are provided to illustrate examples of the present disclosure and do not limit the scope of the claims. In the drawings, similar elements have similar reference numerals.
While the foregoing “Brief Description of the Drawings” references generally various examples of the disclosure, an artisan will recognize from the disclosure herein that such examples are not mutually exclusive. Rather, the artisan would recognize a myriad of combinations of some or all of such examples.
Although certain examples of temperature measurement system are described herein, this disclosure extends beyond the specifically disclosed examples and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of this disclosure should not be limited by any particular examples described below.
In some examples, the temperature measurement system 110 may be in contact with a patient when determining temperature of a patient. Various examples of contact-based temperature measurement systems are disclosed in U.S. application Ser. No. 16/802,434, filed on Feb. 26, 2020, titled “Respiratory Core Body Temperature Measurement Systems and Methods,” entirety of which is incorporated by reference in its entirety herein.
The display module 140 can receive signals from the processor 120 and generate displays associated with temperature of a patient. The displays generated by the display module 140 may be based at least in part on the signals transmitted by/from the processor 120. For example, the display module 140 can generate and display numerical temperature readings of the patient. Optionally, the display module 140 can generate displays with different characteristics including, but not limited to, color, blinking frequency, and the like. For example, when patient temperature is above a recommended value or a predetermined threshold, the display module 140 may display temperature readings in red. In this regard, care providers and others can advantageously identify temperature readings greater than a recommended value or a predetermined threshold. Likewise, the display module 140 may display temperature readings in green when patient temperature is at or below the recommended value or the predetermined threshold. In other examples, the display module 140 can use different types or patterns of blinking to display temperature readings above the recommended value or the predetermined threshold.
The display module 140 can further display information associated with the orientation of the temperature measurement system 110. The orientation of the temperature measurement system 110 may be determined with respect to the patient 100. The display module 140 can generate displays that indicate whether the temperature measurement system 110 is at a recommended distance from the patient 100. This can be advantageous since some sensors require the sensor to be at a certain, recommended distance from a heat source to accurately measure temperature of the heat source. Further information regarding the display module 140 and the displays generated by the display module 140 is described herein.
In some examples, the display module 140 may generate displays that may be legible when the distance between the temperature measurement system 110 and the patient satisfies a condition. The condition may be associated with a predetermined distance value (for example, 10 inches). The condition may be changed by users, for example, care providers.
The communication module 150 can allow the temperature measurement system 110 to communicate with other sensor systems 110 or devices. For example, the temperature measurement system 110 can communicate with nearby pulse oximeter sensors via the communication module 150 to receive data related to patient blood perfusion. This can be advantageous since blood perfusion can be related to core body temperature of the patient and therefore affect calculation of the estimated core body temperature. The communication module 150 may be capable of establishing one or more types of wireless communications including, but not limited to, near-field communication, Wi-Fi, Li-Fi, LTE, 3G, 4G, and the like. In some examples, the temperature measurement system 110 may wirelessly store data in a remote server via wireless communication established by the communication module 150.
The sensor(s) 130, as described herein, may be able to generate data associated with the temperature of a patient. The sensor 130 may be an infrared (IR) sensor capable of detecting or measuring infrared radiation from an object. In a non-limiting example, the sensor 130 can detect infrared radiation and convert that infrared radiation into an electronic signal (including, for example, current or voltage) that correspond to the amount of infrared radiation. The sensor 130 can be an active or passive infrared sensor.
In some examples, the sensor 130 may be an infrared thermometer for non-contact temperatures measurements (for example, MLX090614 manufactured by Melexis Technologies NV, Tessenderlo, Belgium). In some examples, the sensor 130 may include a thermal relay that can allow an easy and cost effective implementation in temperature alert applications. A temperature threshold associated with temperature alerts may be programmable by a user, for example, a care provider. In some examples, the sensor 130 may include an optical filter to filter the visible or near infrared radiant flux. Such optional filter may be integrated into the sensor 130.
As discussed above, the sensor 130 may measure infrared radiation from an object. In the example shown in
In some examples, the sensor 130 may measure ambient temperature in addition to measuring infrared radiation from a patient. The ambient temperature and the temperature of the patient can be used to calculate estimated core body temperature of the patient. Calculation of the estimated core body temperature using the ambient temperature and the patient temperature is further described herein.
As discussed above, core body temperature serves as an important indicator of one's health. However, core body temperature can be difficult to measure or estimate. Although there are many methods to measure temperature that are proxy to core body temperature, their accuracy, latency, and invasiveness can vary greatly. For example, while measuring temperature in the pulmonary artery can often provide the great accuracy in estimating core body temperature, it is one of the most invasive methods. In another example, while measuring temperature at the eardrum provides low latency, low invasiveness, and great comfort for patients, it suffers from low accuracy. Therefore, it may be advantageous to provide a non-invasive method that can accurately estimate core body temperature.
In some examples, ambient temperature measurements and skin temperature measurements may be used to estimate core body temperature. Skin temperature measurements may be taken at a forehead of a patient as shown in
Referring to
As shown in
At block 230, the processor 120 can calculate signal quality index for filtering the temperature data collected by the sensor 130. The signal quality index may be compared to a predetermined condition to determine whether to remove or keep respective, corresponding data points. If the predetermined condition is not satisfied, the data point may not be used to estimate core body temperature. On the other hand, if the predetermined condition is satisfied, the data point may be used to estimate the core body temperature. In some examples, the predetermine condition may be satisfied if the signal quality index is above a threshold.
At block 240, the processor 120 can determine corrected (or adjusted) surface temperature (for example, skin temperature at the forehead of a patient) based at least in part on the processed temperature data. Optionally, the correction may also be based at least in part on temperature data indicative of ambient temperature (for example, Taux in
At block 250, the processor 120 can calculate estimated core body temperature (for example, Tb in
The patient temperature data, for example, Ts as shown in
The processor 120 of the temperature measurement system 110 may process the raw temperature data (for example, Ts in
At block 208, the temperature measurement system 110 can receive temperature data indicative of ambient temperature of the area surrounding the patient. The temperature data indicative of the ambient temperature may be the actual ambient temperature or a proxy representative of the ambient temperature. The proxy representative of the ambient temperature may be, for example, a thermal gradient within the sensor 130 that can be used to adjust or compensate temperature measurements (for example, Ts). Optionally, one or more sensors different from the sensor 130, for example, separate from the temperature measurement system 110, may measure and provide temperature data indicative of the ambient temperature. In some examples, the ambient temperature may be measured or estimated by the sensor 130.
At block 209, the temperature measurement system 110 (or the processor 120 of the temperature measurement system 110) may calculate corrected skin temperature, as generally described herein in reference to block 240 of
In some examples, multiple temperature measurements may be used to estimate core body temperature. In some examples, the multiple temperature measurements may be taken at one or more different parts or locations of a patient's body. Various examples of systems and methods of estimating core body temperature using multiple temperature measurements is disclosed in U.S. application Ser. No. 16/546,667, filed on Aug. 1, 2019, titled “Core Body Temperature Measurement,” entirety of which is incorporated by reference herein.
Although an IR sensor may provide a non-invasive method to measure temperature, its measurements can include noise that may not accurately represent patient temperature. Therefore, it may be advantageous to identify and remove noise from temperature data (including, for example, ambient temperature measurements and skin temperature measurements) using notice reduction methods.
At block 318, a subset of the patient temperature data may be identified, for example, the subset 304. In some examples, standard deviation from the mean may be used to identify data points to be included in the subset. For example, the subset may include data points that are within plus/minus one standard deviation from the mean, two standard deviations from the mean, three standard deviations from the mean, and the like. Once the subset is identified, data points that are not within the subset may be discarded at block 320. At block 322, another mean may be calculated using the subset identified at block 318. The mean calculated at block 322 may be used to determine a patient temperature reading.
In some examples, the patient temperature data can be filtered using signal quality index (SQI). Using SQI to filter temperature data can be advantageous by discarding relatively inaccurate data and thereby achieving more accurate temperature reading of a patient.
In the equation shown above, SQI increases as standard deviation of the data becomes less than the tolerance of the sensor 130. On the other hand, SQI decreases as standard deviation of the data becomes greater than the tolerance of the sensor 130. At block 408, SQI of the patient temperature data may be compared to a predetermined threshold value. For example, the predetermined value can be 100. In some examples, care providers can provide or change the predetermined threshold value for SQI. If SQI is greater or equal to the predetermined threshold value, the patient temperature data may not be discarded at block 414. If SQI is less than the predetermined threshold value, the patient temperature data can be discarded at block 412. In some examples, the predetermined threshold value for SQI may vary over time or depend on patients or types of sensors used for temperature data measurement.
Referring to
At block 502, Ts and Ta are used to calculate convection heat transfer between the patient (for example, forehead of the patient) and the ambient surrounding. At block 504, Ts and Ta are used to calculate radiation heat transfer. At block 508, a core body temperature can be estimated using the convection heat transfer and the radiation heat transfer.
Optionally, a local heat flux may be estimated or calculated using a local skin perfusion rate at block 506. Local skin perfusion rate (for example, at a forehead of a patient) can change the amount of heat transfer between the skin and the air. For example, an increase in core body temperature can increase skin perfusion rate, thereby increasing heat transfer between the body and the skin and between the skin and the air.
where kγ represents thermal conductivity of human skin, L represents thickness 534 of the skin 536, hra represents convective heat transfer coefficient of an ambient air, ϵγ represents emissivity coefficient of human skin, and σ represents the Stefan-Boltzmann Constant (i.e., 5.6703*10−8 (W/m2K4). Under a thermal equilibrium between the body, the skin, and the ambient surrounding, any heat transfer between the body and the skin can be equal to heat transfer between the skin and the ambient air. In other words, under thermal equilibrium, q1 can be equal to a sum of q2 and q3. Using the above equations and known coefficients, core body temperature (Tb) may be calculated using equations shown below.
Different methods may be used to estimate core body temperature of a patient. In a non-limiting example, linear regression may be used to estimate core body temperature of a patient.
Tb=aN*TsN+aN−1*TsN−1+ . . . +a2*Ts2+a1*Ts+btas
Once the coefficients (for example, an, an−1, an−2, . . . a2, a1) and the bias is determined, skin temperature may be used to estimate body temperature at block 588. In some examples, the coefficients and the bias may be specific to a patient. In other words, the coefficients and the bias may vary between different patients. In this regard, reference temperatures may be needed to determine the coefficients and the bias for an estimation model.
Once estimated core body temperature is determined, it may be advantageous to display the estimated core body temperature to allow care providers and others to easily identify a temperature reading that is not within the normal range (for example, between 36.1° C. and 37.2° C. or 97° F. and 99° F.). In some examples, the estimated core body temperature may be displayed on a screen on the temperature measurement system 110 or projected on the patient 100 while collecting the temperature measurements. For example, the estimated core body temperature may be displayed or projected on a patient's forehead while the temperature measurement system 110 measures temperature at the patient's forehead. This configuration can be advantageous because it allows care providers to measure and record patient temperature without having to take their eyes off of the patient.
In some examples, one or more characteristics of the display, for example, generated by the display module 140, may vary depending on the estimated core body temperature. When the estimated core body temperature is above the normal range (for example, hyperthermia), the display of the estimated core body temperature may be in red. On the other hand, when the estimated core body temperature is below the normal range (for example, hypothermia), the display of the estimated core body temperature may be in blue. When the estimated core body temperature is within the normal range, the display of the estimated core body temperature may be in green. In some examples, different visible blinking or flashing patterns may be used for different estimated core body temperatures. The display of the estimated core body temperature may be steady and not blink when the estimated core body temperature is within the normal range. However, the display may blink when the estimated core body temperature is not within the normal range. In other examples, the display may blink at a variable rate depending on the difference between the measured estimated core body temperature and the normal range. Of course, other suitable colors and patterns not described above may be used to display the estimated core body temperature.
The frequency at which the display of the estimated core body temperature blink or flash may be between about 1 Hz and about 50 Hz, between about 2 Hz, and about 45 Hz, between about 5 Hz, and about 40 Hz, between about 10 Hz, and about 35 Hz, between about 15 Hz and about 30 Hz, between about 20 Hz and about 25 Hz, or about 1 Hz, 2 Hz, 5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz, or range between any two of aforementioned values.
In some examples, the color schemes (or blinking or flashing patterns) may be provided by the processor 120 of the temperature measurement system 110. In other examples, such schemes or patterns may be provided by care providers. For example, care providers may be able to configure the temperature measurement system 110 or the display module 140 to change the color schemes or blinking (or flashing) patterns. Care providers may be able to remotely configure the temperature measurement system 110 or the display module 140 via the communication module 150. For example, care providers may transmit signals that include color (or blinking) schemes or patterns to the temperature measurement system 110 via the communication module 150 using mobile devices including, but not limited to, tablets, mobile communication devices, personal computers, and the like.
As described herein, the sensor 130 can be an IR sensor. Typically, IR sensors have a recommended measuring range. For example, when the sensor 130 is too close or too far from a patient, the temperature measurement system 110 may not be able to accurately estimate core body temperature of the patient. Therefore it may be advantageous to provide systems or methods for indicating when the sensor 130 is located at an adequate or recommended distance from the patient. The recommended distance for the sensor 130 may be determined at the time of manufacture or changed by a user, for example, a care provider, at any time.
In a non-limiting example, the distance indicator can include a first light beam in a first color and a second light beam in a second color. The first light beam and the second light beam may be generated by the same light source or different light sources. For example, the first color can be blue and the second color can be yellow. The first light source and the second light source can be oriented such that the first beam of light and the second beam of light can intersect at a predetermined distance.
At block 708, the processor 120 may determine whether the distance indicator indicates that the temperature measurement system 110 is at the recommended distance from the patient. The process of determining whether the distance indicator indicates that the temperature measurement system 110 is at the recommended distance from the patient may include determining the distance between the temperature measurement system 110 and an object, for example, a patient, and comparing the determined distance with a threshold distance value. When the temperature measurement system 110 is too close to the patient (including, for example, the distance between the temperature measurement system 110 and the patient is less than the recommended distance), the first beam and the second beam may be projected onto the patient at two different locations. Likewise, when the temperature measurement system 110 is too far from the patient (including, for example, the distance between the temperature measurement system 110 and the patient is greater than the recommended distance), the first beam and the second beam may be projected onto the patient at two different locations. However, when the temperature measurement system 110 is at the recommended distance from the patient, the two beams may be projected on the patient at the same location, displaying a third color different from the first color and the second color. For example, the third color can be green, which is a mix of blue and yellow. In this regard, care providers will be able to easily reorient the temperature measurement system 110 by monitoring where the two beams are on the patient.
In another example, the distance indicator projected on the patient may be visible or legible when the temperature measurement system 110 is positioned at a predetermined distance from the patient. The distance indicator, in some examples, may not be visible or legible when the temperature measurement system 110 is not positioned at the predetermined distance from the patient (including, for example, too close or too far from the patient). The distance indicator may be a temperature reading of the patient. According to one example, the distance indicator may be blurry when the temperature measurement system 110 is not positioned at a predetermined distance from the patient 100 and not blurry (including, for example, clearly legible or visible) when the temperature measurement system 110 is positioned at the predetermined distance from the patient 100. According to another example, the distance indicator may be out of focus when the temperature measurement system 110 is not positioned at a predetermined distance from a patient and in focus when the temperature measurement system 110 is positioned at the predetermined distance from the patient.
If the temperature measurement system 110 is not at the recommended distance, the temperature measurement system 110 can be re-positioned at block 710. In some examples, the temperature measurement 110 may generate and display a message, for example, via the display module 140, prompting a user to re-position the temperature measurement system 110. After the temperature measurement system 110 is re-positioned, the distance indicator can be monitored again to determine whether the temperature measurement system 110 is positioned at the recommended distance from the patient. If the temperature measurement system 110 is at the recommended distance, the estimated core body temperature displayed by the temperature measurement system 110 can be recorded at block 712.
The light source 820 and the light detecting module 830 can be used to calculate the distance between the temperature measurement system 110 and the patient 100. The light emitted by the light source 820 can be reflected by the patient 100. The light detecting module 830 can detect the light reflected by the patient 100. The light detecting module 830 can detect one or more characteristics of the reflected light to determine the distance between the patient 100 and the temperature measurement module system 110. In some implementations, the light source 820 is a light emitter that generates infrared light.
The light detecting module 830 can detect the intensity of the reflected light. The intensity of the reflected light can inversely correspond to the distance between the patient 100 and the temperature measurement system 110. By determining the intensity of the reflected light (that is, reflected from the patient), the distance between the patient 100 and the temperature measurement system 110 can be calculated.
Additionally or alternatively, the light detecting module 830 can be a position-sensible photo detector that can determine light incident position of the reflected light. In some implementations, the conductivity of the light detecting module 830 can vary based on the incident position of the reflected light (for example, light reflected from or by the patient 100). In this regard, the conductivity of the light detecting module 830 can be used to calculate the distance between the patient 100 and the temperature measuring system 110.
The cover 840 can be coupled to the aperture 810. The cover 840 can be a closure mechanism for the aperture 810. The cover 840 can be a flap, a lid, a sliding panel, and the like. The cover 840 can include an open configuration and a closed configuration. When in the open configuration, the cover 840 can allow light emitted by the light source 820 (or light emitter) to travel between the temperature measurement system 110 to the patient 100. Moreover, the cover 840 in the open configuration can allow light to travel between the temperature measurement system 110 and the patient 100 such that the detecting module 830 can detect light reflected from the patient 100. When in the closed configuration, the cover 840 can prevent light from travelling between the temperature measurement system 110 and the patient 100.
In some examples, the cover 840 may be a lever arm that can be used to determine the distance between the temperature measurement system 110 and the patient. When actuated (for example, in an open configuration), the cover 840 can extend from the temperature measurement system 110 towards the patient. The length of the cover 840 may be substantially similar to the recommended distance between the sensor 130 and the patient as described herein. In some examples, the cover 840 may be extendable. When the cover 840 is not actuated (for example, in a closed configuration), it may cover the aperture 810.
The cover 840 can be actuated by an actuator, which may be actuated by a button, a switch, or a control knob, for example, on the temperature measurement system 110. Examples of actuators to open and close the cover 840 are mechanical actuators (such as a jack screw, spring, cam, wheel and axle, and the like), hydraulic actuators, magnetic actuators, piezoelectric actuators, twisted and coiled polymer (TCP) or supercoiled (SCP) actuators, thermal actuators, pneumatic actuators, and electro-mechanical actuators that can include a motor to actuate a mechanical actuator.
In some implementations, the cover 840 can be actuated automatically. For example, the actuator for the cover 840 can be actuated when the light source 820 is powered on (that is, generate a beam of light). In this regard, the cover 840 opens automatically when the user powers on the light source 820 to emit a beam of light towards the patient 100. Optionally, the cover 840 can be actuated automatically when the sensor 130 is powered on to detect infrared radiation from the patient 100.
The cover 840 can provide a waterproof or a water resistant barrier for the aperture 810, which can be advantageous in wet environments. Such feature can be especially helpful in hospital settings. In some implementations, the cover 840 can be manually actuated or removed. The cover 840 can be modular or integrated to the temperature measurement system 110.
At block 910, a distance between the temperature measurement system 110 and the patient 100 is determined. The distance can be calculated using the incident position of the reflected light or the intensity of the reflected light. At block 912, the distance between the temperature measurement system 110 and the patient 100 is compared to a predetermined range. The predetermined range can be indicative of recommended distance between the temperature measurement system 110 and the patient 100. The predetermined range can be varied for different sensors, different conditions, or different applications. For example, the predetermined range can be different when estimating core body temperature at different areas of the patient 100. In some implementations, the distance between the temperature measurement system 110 and the patient 100 is compared to a predetermined value (instead of a range).
At block 914, when the distance between the temperature measurement system 110 and the patient 100 is within the predetermined range, the temperature measurement system 110 can generate, for example, using a display module 140, a display indicating that the temperature measurement system 110 is at a recommended distance from the patient 100. On the other hand, when the distance between the temperature measurement system 110 and the patient 100 is not within the predetermined range, the temperature measurement system 110, at block 916, can generate a display indicating that the temperature measurement system 110 is not at a recommended distance from the patient 100. The method can return to the block 904 to emit another beam of light towards the patient 100.
Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain examples, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines or computing systems that can function together.
The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.
The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry that can process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the systems, devices or methods illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
The term “and/or” herein has its broadest, least limiting meaning which is the disclosure includes A alone, B alone, both A and B together, or A or B alternatively, but does not require both A and B or require one of A or one of B. As used herein, the phrase “at least one of” A, B, “and” C should be construed to mean a logical A or B or C, using a non-exclusive logical or.
The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.
Although the foregoing disclosure has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the description of the preferred embodiments, but is to be defined by reference to claims.
Number | Name | Date | Kind |
---|---|---|---|
3933045 | Fox et al. | Jan 1976 | A |
4183248 | West | Jan 1980 | A |
4245500 | Malang | Jan 1981 | A |
4541728 | Hauser et al. | Sep 1985 | A |
4553852 | Derderian et al. | Nov 1985 | A |
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5377676 | Vari et al. | Jan 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
5436499 | Namavar et al. | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5671914 | Kalkhoran et al. | Sep 1997 | A |
5726440 | Kalkhoran et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5747806 | Khalil et al. | May 1998 | A |
5750994 | Schlager | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5816706 | Heikkila et al. | Oct 1998 | A |
5890929 | Mills et al. | Apr 1999 | A |
5919134 | Diab | Jul 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6010937 | Karam et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6048304 | Koch | Apr 2000 | A |
6066204 | Haven | May 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6196714 | Bellifemine et al. | Mar 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6255708 | Sudharsanan et al. | Jul 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6280397 | Yarden et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6292685 | Pompei | Sep 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6411373 | Garside et al. | Jun 2002 | B1 |
6415167 | Blank et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6487429 | Hockersmith et al. | Nov 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6527439 | Bellofemine | Mar 2003 | B1 |
6534012 | Hazen et al. | Mar 2003 | B1 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587196 | Stippick et al. | Jul 2003 | B1 |
6587199 | Luu | Jul 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6635559 | Greenwald et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6640117 | Makarewicz et al. | Oct 2003 | B2 |
6658276 | Kiani et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
RE38492 | Diab et al. | Apr 2004 | E |
6738652 | Mattu et al. | May 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6788965 | Ruchti et al. | Sep 2004 | B2 |
6816241 | Grubisic | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6876931 | Lorenz et al. | Apr 2005 | B2 |
6886978 | Tokita et al. | May 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6929611 | Koch | Aug 2005 | B2 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6943348 | Coffin, IV | Sep 2005 | B1 |
6956649 | Acosta et al. | Oct 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990364 | Ruchti et al. | Jan 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
7001066 | Bellifemine | Feb 2006 | B1 |
7003338 | Weber et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
D526719 | Richie, Jr. et al. | Aug 2006 | S |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
D529616 | Deros et al. | Oct 2006 | S |
7133710 | Acosta et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali et al. | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7299090 | Koch | Nov 2007 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7356365 | Schurman et al. | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7377794 | Al-Ali et al. | May 2008 | B2 |
7395158 | Monfre et al. | Jul 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509153 | Blank et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7519406 | Blank et al. | Apr 2009 | B2 |
D592507 | Wachman et al. | May 2009 | S |
7530942 | Diab | May 2009 | B1 |
7593230 | Abul-Haj et al. | Sep 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7606608 | Blank et al. | Oct 2009 | B2 |
7620674 | Ruchti et al. | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7629039 | Eckerbom et al. | Dec 2009 | B2 |
7640140 | Ruchti et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
7697966 | Monfre et al. | Apr 2010 | B2 |
7698105 | Ruchti et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
RE41333 | Blank et al. | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7789554 | Sattler et al. | Sep 2010 | B2 |
7791155 | Diab | Sep 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7976472 | Kiani | Jul 2011 | B2 |
7981046 | Yarden et al. | Jul 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8229532 | Davis | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8584345 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8670811 | O'Reilly | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8688183 | Bruinsma et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8808343 | Koch | Aug 2014 | B2 |
8821010 | Bellifemine | Sep 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8950935 | Khachaturian et al. | Feb 2015 | B1 |
8965090 | Khachaturian et al. | Feb 2015 | B1 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
D738757 | Gross et al. | Sep 2015 | S |
9131881 | Diab et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9262826 | Khachaturian et al. | Feb 2016 | B2 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9282896 | Crawley et al. | Mar 2016 | B2 |
9305350 | Crawley et al. | Apr 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
9324144 | Khachaturian et al. | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9364181 | Kiani et al. | Jun 2016 | B2 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9649054 | Lamego et al. | May 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986952 | Dalvi et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10048134 | Yildizyan | Aug 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10111591 | Dyell et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123729 | Dyell et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188348 | Al-Ali et al. | Jan 2019 | B2 |
RE47218 | Ai-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10279247 | Kiani | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299720 | Brown et al. | May 2019 | B2 |
10327337 | Schmidt et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
D864120 | Forrest et al. | Oct 2019 | S |
10441181 | Telfort et al. | Oct 2019 | B1 |
10441196 | Eckerbom et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10448871 | Al-Ali et al. | Oct 2019 | B2 |
10456038 | Lamego et al. | Oct 2019 | B2 |
10463340 | Telfort et al. | Nov 2019 | B2 |
10471159 | Lapotko et al. | Nov 2019 | B1 |
10505311 | Al-Ali et al. | Dec 2019 | B2 |
10524738 | Olsen | Jan 2020 | B2 |
10532174 | Al-Ali | Jan 2020 | B2 |
10537285 | Shreim et al. | Jan 2020 | B2 |
10542903 | Al-Ali et al. | Jan 2020 | B2 |
10555678 | Dalvi et al. | Feb 2020 | B2 |
10568553 | O'Neil et al. | Feb 2020 | B2 |
RE47882 | Al-Ali | Mar 2020 | E |
10575779 | Poeze et al. | Mar 2020 | B2 |
10608817 | Haider et al. | Mar 2020 | B2 |
D880477 | Forrest et al. | Apr 2020 | S |
10617302 | Al-Ali et al. | Apr 2020 | B2 |
10617335 | Al-Ali et al. | Apr 2020 | B2 |
10637181 | Al-Ali et al. | Apr 2020 | B2 |
D886849 | Muhsin et al. | Jun 2020 | S |
D887548 | Abdul-Hafiz et al. | Jun 2020 | S |
D887549 | Abdul-Hafiz et al. | Jun 2020 | S |
10667764 | Ahmed et al. | Jun 2020 | B2 |
D890708 | Forrest et al. | Jul 2020 | S |
10721785 | Al-Ali | Jul 2020 | B2 |
10736518 | Al-Ali et al. | Aug 2020 | B2 |
10750984 | Pauley et al. | Aug 2020 | B2 |
D897098 | Al-Ali | Sep 2020 | S |
10779098 | Iswanto et al. | Sep 2020 | B2 |
10827961 | Iyengar et al. | Nov 2020 | B1 |
10828007 | Telfort et al. | Nov 2020 | B1 |
10832818 | Muhsin et al. | Nov 2020 | B2 |
10849554 | Shreim et al. | Dec 2020 | B2 |
10856750 | Indorf | Dec 2020 | B2 |
D906970 | Forrest et al. | Jan 2021 | S |
D908213 | Abdul-Hafiz et al. | Jan 2021 | S |
10918281 | Al-Ali et al. | Feb 2021 | B2 |
10932705 | Muhsin et al. | Mar 2021 | B2 |
10932729 | Kiani et al. | Mar 2021 | B2 |
10939878 | Kiani et al. | Mar 2021 | B2 |
10956950 | Al-Ali et al. | Mar 2021 | B2 |
D916135 | Indorf et al. | Apr 2021 | S |
D917046 | Abdul-Hafiz et al. | Apr 2021 | S |
D917550 | Indorf et al. | Apr 2021 | S |
D917564 | Indorf et al. | Apr 2021 | S |
D917704 | Al-Ali et al. | Apr 2021 | S |
10987066 | Chandran et al. | Apr 2021 | B2 |
10991135 | Al-Ali et al. | Apr 2021 | B2 |
D919094 | Al-Ali et al. | May 2021 | S |
D919100 | Al-Ali et al. | May 2021 | S |
11006867 | Al-Ali | May 2021 | B2 |
D921202 | Al-Ali et al. | Jun 2021 | S |
11024064 | Muhsin et al. | Jun 2021 | B2 |
11026604 | Chen et al. | Jun 2021 | B2 |
D925597 | Chandran et al. | Jul 2021 | S |
D927699 | Al-Ali et al. | Aug 2021 | S |
11076777 | Lee et al. | Aug 2021 | B2 |
11114188 | Poeze et al. | Sep 2021 | B2 |
D933232 | Al-Ali et al. | Oct 2021 | S |
D933233 | Al-Ali et al. | Oct 2021 | S |
D933234 | Al-Ali et al. | Oct 2021 | S |
11145408 | Sampath et al. | Oct 2021 | B2 |
11147518 | Al-Ali et al. | Oct 2021 | B1 |
11185262 | Al-Ali et al. | Nov 2021 | B2 |
11191484 | Kiani et al. | Dec 2021 | B2 |
D946596 | Ahmed | Mar 2022 | S |
D946597 | Ahmed | Mar 2022 | S |
D946598 | Ahmed | Mar 2022 | S |
D946617 | Ahmed | Mar 2022 | S |
11272839 | Al-Ali et al. | Mar 2022 | B2 |
11289199 | Al-Ali | Mar 2022 | B2 |
RE49034 | Al-Ali | Apr 2022 | E |
11298021 | Muhsin et al. | Apr 2022 | B2 |
D950580 | Ahmed | May 2022 | S |
D950599 | Ahmed | May 2022 | S |
D950738 | Al-Ali et al. | May 2022 | S |
D957648 | Al-Ali | Jul 2022 | S |
11382567 | O'Brien et al. | Jul 2022 | B2 |
11389093 | Triman et al. | Jul 2022 | B2 |
11406286 | Al-Ali et al. | Aug 2022 | B2 |
11417426 | Muhsin et al. | Aug 2022 | B2 |
11439329 | Lamego | Sep 2022 | B2 |
11445948 | Scruggs et al. | Sep 2022 | B2 |
D965789 | Al-Ali et al. | Oct 2022 | S |
D967433 | Al-Ali et al. | Oct 2022 | S |
11464410 | Muhsin | Oct 2022 | B2 |
11504058 | Sharma et al. | Nov 2022 | B1 |
11504066 | Dalvi et al. | Nov 2022 | B1 |
D971933 | Ahmed | Dec 2022 | S |
D973072 | Ahmed | Dec 2022 | S |
D973685 | Ahmed | Dec 2022 | S |
D973686 | Ahmed | Dec 2022 | S |
D974193 | Forrest et al. | Jan 2023 | S |
D979516 | Al-Ali et al. | Feb 2023 | S |
D980091 | Forrest et al. | Mar 2023 | S |
11596363 | Lamego | Mar 2023 | B2 |
11627919 | Kiani et al. | Apr 2023 | B2 |
11637437 | Al-Ali et al. | Apr 2023 | B2 |
D985498 | Al-Ali et al. | May 2023 | S |
11653862 | Dalvi et al. | May 2023 | B2 |
D989112 | Muhsin et al. | Jun 2023 | S |
D989327 | Al-Ali et al. | Jun 2023 | S |
11678829 | Al-Ali et al. | Jun 2023 | B2 |
11679579 | Al-Ali | Jun 2023 | B2 |
11684296 | Vo et al. | Jun 2023 | B2 |
11692934 | Normand et al. | Jul 2023 | B2 |
11701043 | Al-Ali et al. | Jul 2023 | B2 |
D997365 | Hwang | Aug 2023 | S |
11721105 | Ranasinghe et al. | Aug 2023 | B2 |
11730379 | Ahmed et al. | Aug 2023 | B2 |
D998625 | Indorf et al. | Sep 2023 | S |
D998630 | Indorf et al. | Sep 2023 | S |
D998631 | Indorf et al. | Sep 2023 | S |
D999244 | Indorf et al. | Sep 2023 | S |
D999245 | Indorf et al. | Sep 2023 | S |
D999246 | Indorf et al. | Sep 2023 | S |
11766198 | Pauley et al. | Sep 2023 | B2 |
D1000975 | Al-Ali et al. | Oct 2023 | S |
11803623 | Kiani et al. | Oct 2023 | B2 |
11832940 | Diab et al. | Dec 2023 | B2 |
D1013179 | Al-Ali et al. | Jan 2024 | S |
11872156 | Telfort et al. | Jan 2024 | B2 |
11879960 | Ranasinghe et al. | Jan 2024 | B2 |
11883129 | Olsen | Jan 2024 | B2 |
D1022729 | Forrest et al. | Apr 2024 | S |
11951186 | Krishnamani et al. | Apr 2024 | B2 |
11974833 | Forrest et al. | May 2024 | B2 |
11986067 | Al-Ali et al. | May 2024 | B2 |
11986289 | Dalvi et al. | May 2024 | B2 |
11986305 | Al-Ali et al. | May 2024 | B2 |
12004869 | Kiani et al. | Jun 2024 | B2 |
12014328 | Wachman et al. | Jun 2024 | B2 |
D1036293 | Al-Ali et al. | Jul 2024 | S |
12029844 | Pauley et al. | Jul 2024 | B2 |
12048534 | Vo et al. | Jul 2024 | B2 |
20010034477 | Mansfield et al. | Oct 2001 | A1 |
20010039483 | Brand et al. | Nov 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020038080 | Makarewicz et al. | Mar 2002 | A1 |
20020058864 | Mansfield et al. | May 2002 | A1 |
20020133080 | Apruzzese et al. | Sep 2002 | A1 |
20030013975 | Kiani | Jan 2003 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030032893 | Koch | Feb 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030156288 | Barnum et al. | Aug 2003 | A1 |
20030212312 | Coffin, IV et al. | Nov 2003 | A1 |
20030225323 | Kiani et al. | Dec 2003 | A1 |
20040039271 | Blank et al. | Feb 2004 | A1 |
20040106163 | Workman, Jr. et al. | Jun 2004 | A1 |
20050024583 | Neuberger | Feb 2005 | A1 |
20050043631 | Fraden | Feb 2005 | A1 |
20050055276 | Kiani et al. | Mar 2005 | A1 |
20050101843 | Quinn et al. | May 2005 | A1 |
20050234317 | Kiani | Oct 2005 | A1 |
20050277819 | Kiani et al. | Dec 2005 | A1 |
20060073719 | Kiani | Apr 2006 | A1 |
20060189871 | Al-Ali et al. | Aug 2006 | A1 |
20070073116 | Kiani et al. | Mar 2007 | A1 |
20070107736 | Karasek | May 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070244377 | Cozad et al. | Oct 2007 | A1 |
20070282218 | Yarden | Dec 2007 | A1 |
20080064965 | Jay et al. | Mar 2008 | A1 |
20080077044 | Nakayama | Mar 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080103375 | Kiani | May 2008 | A1 |
20080200783 | Blank et al. | Aug 2008 | A9 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20090036759 | Ault et al. | Feb 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090095926 | MacNeish, III | Apr 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275813 | Davis | Nov 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20090296773 | Sattler | Dec 2009 | A1 |
20090299682 | Yarden | Dec 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100099964 | O'Reilly et al. | Apr 2010 | A1 |
20100121217 | Padiy et al. | May 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100268113 | Bieberich | Oct 2010 | A1 |
20100270257 | Wachman et al. | Oct 2010 | A1 |
20100292605 | Grassl et al. | Nov 2010 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110028809 | Goodman | Feb 2011 | A1 |
20110040197 | Welch et al. | Feb 2011 | A1 |
20110051776 | Bieberich et al. | Mar 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110087081 | Kiani et al. | Apr 2011 | A1 |
20110118561 | Tari et al. | May 2011 | A1 |
20110137297 | Kiani et al. | Jun 2011 | A1 |
20110144527 | He et al. | Jun 2011 | A1 |
20110158284 | Goto | Jun 2011 | A1 |
20110172498 | Olsen et al. | Jul 2011 | A1 |
20110230733 | Al-Ali | Sep 2011 | A1 |
20110249699 | Bieberich et al. | Oct 2011 | A1 |
20120065540 | Yarden et al. | Mar 2012 | A1 |
20120083710 | Yarden | Apr 2012 | A1 |
20120123231 | O'Reilly | May 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120172748 | Dunn | Jul 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120226117 | Lamego et al. | Sep 2012 | A1 |
20120238901 | Augustine | Sep 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130030316 | Popov et al. | Jan 2013 | A1 |
20130041591 | Lamego | Feb 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130331728 | Sun et al. | Dec 2013 | A1 |
20130345921 | Al-Ali et al. | Dec 2013 | A1 |
20140081100 | Muhsin | Mar 2014 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140275808 | Poeze et al. | Sep 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150073241 | Lamego | Mar 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150106121 | Muhsin et al. | Apr 2015 | A1 |
20150282457 | Yarden | Oct 2015 | A1 |
20160196388 | Lamego | Jul 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170000347 | Meftah et al. | Jan 2017 | A1 |
20170000391 | Wasson | Jan 2017 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170042488 | Muhsin | Feb 2017 | A1 |
20170055896 | Al-Ali | Mar 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20170311891 | Kiani et al. | Nov 2017 | A1 |
20180103874 | Lee et al. | Apr 2018 | A1 |
20180199871 | Pauley et al. | Jul 2018 | A1 |
20180213583 | Al-Ali | Jul 2018 | A1 |
20180242850 | Ellis et al. | Aug 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247353 | Al-Ali et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180256087 | Al-Ali et al. | Sep 2018 | A1 |
20180281286 | Vilajosana | Oct 2018 | A1 |
20180289325 | Poeze et al. | Oct 2018 | A1 |
20180296161 | Shreim et al. | Oct 2018 | A1 |
20180300919 | Muhsin et al. | Oct 2018 | A1 |
20180310822 | Indorf et al. | Nov 2018 | A1 |
20180310823 | Al-Ali et al. | Nov 2018 | A1 |
20180317826 | Muhsin et al. | Nov 2018 | A1 |
20190015023 | Monfre | Jan 2019 | A1 |
20190117070 | Muhsin et al. | Apr 2019 | A1 |
20190200941 | Chandran et al. | Jul 2019 | A1 |
20190224434 | Silver et al. | Jul 2019 | A1 |
20190239787 | Pauley et al. | Aug 2019 | A1 |
20190320906 | Olsen | Oct 2019 | A1 |
20190374139 | Kiani et al. | Dec 2019 | A1 |
20190374173 | Kiani et al. | Dec 2019 | A1 |
20190374713 | Kiani et al. | Dec 2019 | A1 |
20200021930 | Iswanto et al. | Jan 2020 | A1 |
20200060545 | Maher et al. | Feb 2020 | A1 |
20200060869 | Telfort et al. | Feb 2020 | A1 |
20200111552 | Ahmed | Apr 2020 | A1 |
20200113435 | Muhsin | Apr 2020 | A1 |
20200113488 | Al-Ali et al. | Apr 2020 | A1 |
20200113496 | Scruggs et al. | Apr 2020 | A1 |
20200113497 | Triman et al. | Apr 2020 | A1 |
20200113520 | Abdul-Hafiz et al. | Apr 2020 | A1 |
20200138288 | Al-Ali et al. | May 2020 | A1 |
20200138368 | Kiani et al. | May 2020 | A1 |
20200163597 | Dalvi et al. | May 2020 | A1 |
20200196877 | Vo et al. | Jun 2020 | A1 |
20200253474 | Muhsin et al. | Aug 2020 | A1 |
20200253544 | Belur Nagaraj et al. | Aug 2020 | A1 |
20200288983 | Telfort et al. | Sep 2020 | A1 |
20200321793 | Al-Ali et al. | Oct 2020 | A1 |
20200329983 | Al-Ali et al. | Oct 2020 | A1 |
20200329984 | Al-Ali et al. | Oct 2020 | A1 |
20200329993 | Al-Ali et al. | Oct 2020 | A1 |
20200330037 | Al-Ali et al. | Oct 2020 | A1 |
20210022628 | Telfort et al. | Jan 2021 | A1 |
20210104173 | Pauley et al. | Apr 2021 | A1 |
20210113121 | Diab et al. | Apr 2021 | A1 |
20210117525 | Kiani et al. | Apr 2021 | A1 |
20210118581 | Kiani et al. | Apr 2021 | A1 |
20210121582 | Krishnamani et al. | Apr 2021 | A1 |
20210161465 | Barker et al. | Jun 2021 | A1 |
20210236729 | Kiani et al. | Aug 2021 | A1 |
20210256267 | Ranasinghe et al. | Aug 2021 | A1 |
20210256835 | Ranasinghe et al. | Aug 2021 | A1 |
20210275101 | Vo et al. | Sep 2021 | A1 |
20210290060 | Ahmed | Sep 2021 | A1 |
20210290072 | Forrest | Sep 2021 | A1 |
20210290080 | Ahmed | Sep 2021 | A1 |
20210290120 | Al-Ali | Sep 2021 | A1 |
20210290177 | Novak, Jr. | Sep 2021 | A1 |
20210290184 | Ahmed | Sep 2021 | A1 |
20210296008 | Novak, Jr. | Sep 2021 | A1 |
20210330228 | Olsen et al. | Oct 2021 | A1 |
20210386382 | Olsen et al. | Dec 2021 | A1 |
20210402110 | Pauley et al. | Dec 2021 | A1 |
20220026355 | Normand et al. | Jan 2022 | A1 |
20220039707 | Sharma et al. | Feb 2022 | A1 |
20220053892 | Al-Ali et al. | Feb 2022 | A1 |
20220071562 | Kiani | Mar 2022 | A1 |
20220096603 | Kiani et al. | Mar 2022 | A1 |
20220151521 | Krishnamani et al. | May 2022 | A1 |
20220218244 | Kiani et al. | Jul 2022 | A1 |
20220287574 | Telfort et al. | Sep 2022 | A1 |
20220296161 | Al-Ali et al. | Sep 2022 | A1 |
20220361819 | Al-Ali et al. | Nov 2022 | A1 |
20220379059 | Yu et al. | Dec 2022 | A1 |
20220392610 | Kiani et al. | Dec 2022 | A1 |
20230028745 | Al-Ali | Jan 2023 | A1 |
20230038389 | Vo | Feb 2023 | A1 |
20230045647 | Vo | Feb 2023 | A1 |
20230058052 | Al-Ali | Feb 2023 | A1 |
20230058342 | Kiani | Feb 2023 | A1 |
20230069789 | Koo et al. | Mar 2023 | A1 |
20230087671 | Telfort et al. | Mar 2023 | A1 |
20230110152 | Forrest et al. | Apr 2023 | A1 |
20230111198 | Yu et al. | Apr 2023 | A1 |
20230115397 | Vo et al. | Apr 2023 | A1 |
20230116371 | Mills et al. | Apr 2023 | A1 |
20230135297 | Kiani et al. | May 2023 | A1 |
20230138098 | Telfort et al. | May 2023 | A1 |
20230145155 | Krishnamani et al. | May 2023 | A1 |
20230147750 | Barker et al. | May 2023 | A1 |
20230210417 | Al-Ali et al. | Jul 2023 | A1 |
20230222805 | Muhsin et al. | Jul 2023 | A1 |
20230222887 | Muhsin et al. | Jul 2023 | A1 |
20230226331 | Kiani et al. | Jul 2023 | A1 |
20230284916 | Telfort | Sep 2023 | A1 |
20230284943 | Scruggs et al. | Sep 2023 | A1 |
20230301562 | Scruggs et al. | Sep 2023 | A1 |
20230346993 | Kiani et al. | Nov 2023 | A1 |
20230368221 | Haider | Nov 2023 | A1 |
20230371893 | Al-Ali et al. | Nov 2023 | A1 |
20230389837 | Krishnamani et al. | Dec 2023 | A1 |
20240016418 | Devadoss et al. | Jan 2024 | A1 |
20240016419 | Devadoss et al. | Jan 2024 | A1 |
20240047061 | Al-Ali et al. | Feb 2024 | A1 |
20240049310 | Al-Ali et al. | Feb 2024 | A1 |
20240049986 | Al-Ali et al. | Feb 2024 | A1 |
20240081656 | DeJong et al. | Mar 2024 | A1 |
20240122486 | Kiani | Apr 2024 | A1 |
20240180456 | Al-Ali | Jun 2024 | A1 |
20240188872 | Al-Ali et al. | Jun 2024 | A1 |
20240245855 | Vo et al. | Jul 2024 | A1 |
20240260894 | Olsen | Aug 2024 | A1 |
20240267698 | Telfort et al. | Aug 2024 | A1 |
Number | Date | Country |
---|---|---|
0 979 394 | Oct 2001 | EP |
Entry |
---|
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn) |
US 2024/0016391 A1, 01/2024, Lapotko et al. (withdrawn) |
Tan, Li. Multirate DSP, part 1: Upsampling and downsampling EE Times Designline. https://www.eetimes.com/multirate-dsp-part-1-upsampling-and-downsampling/ (Year: 2008). |
“Multirate DSP, part 1: Upsampling and downsampling”, Tan, Li; EE Times, Signal Processing | Designlines, Published Apr. 21, 2008; https://www.eetimes.com/multirate-dsp-part-1-upsampling-and-downsampling/ (Year: 2008). |
Haugk et al., “Temperature Monitored on the Cuff Surface of an Endotracheal Tube Reflects Body Temperature”, Critical Care Medicine, 2010, vol. 38, No. 7, pp. 1569-1573. |
Jay et al., “Skin Temperature Over the Carotid Artery Provides an Accurate Noninvasive Estimation of Core Temperature in Infants and Young Children During General Anesthesia”, Pediatric Anesthesia, vol. 23, No. 12, Dec. 2013, pp. 1109-1116. |
Number | Date | Country | |
---|---|---|---|
20200275841 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62840584 | Apr 2019 | US | |
62810718 | Feb 2019 | US |