The present invention relates to devices for measuring temperature, and more specifically, to non-contact infrared thermometers for medical applications incorporating shielding to reduce the effects of stray radiation.
A thermal radiation or infrared (IR) thermometer is a device capable of measuring temperature without physically contacting the object of measurement. Thus, such thermometers are often called “non-contact” or “remote” thermometers. In an IR thermometer, the temperature of an object is taken by detecting an intensity of the IR radiation which is naturally emanated from the object's surface. For objects between 0 and 100° C., this requires the use of IR sensors for detecting radiation having wavelengths from approximately 3 to 40 micrometers. Typically, IR radiation in this range is referred to as thermal radiation.
One example of an IR thermometer is an “instant ear” medical thermometer, which is capable of making non-contact temperature measurements of the tympanic membrane and surrounding tissues of the ear canal of a human or animal. Instant ear thermometers are exemplified by U.S. Pat. No. 4,797,840 to Fraden (“the '840 Patent”), which is incorporated by reference herein in its entirety. Other examples include medical thermometers for measuring surface skin temperatures (for example, a skin surface temperature of the forehead) as exemplified by U.S. Pat. No. 6,789,936 to Kraus et al., which is incorporated by reference herein in its entirety.
In order to measure the surface temperature of an object by its IR radiation emissions, the IR radiation is detected and converted into electrical signal suitable for processing by conventional electronic circuits. The task of detecting the IR radiation is accomplished by an IR sensor or detector.
Conventional thermal IR sensors typically include a housing with an infrared transparent window and at least one sensing element which is responsive to a thermal radiation energy flux Φ emanating from the object's surface to pass through the IR window of the IR sensor. The IR sensor functions to generate an electric signal which is representative of the net IR flux Φ existing between the sensing element and the object of measurement. The electrical signal can be related to the object's temperature by appropriate data processing as is for example further described below.
Thermal flux Φ is a function of two temperatures: a sensing element surface temperature Ts and a surface temperature of the object Tb (measured in degrees Kelvin). Theoretically, thermal radiation is known to be governed by Planck's law. However, for a broad optical spectral range, which may be determined by an optical system of the IR thermometer, the relationship between the two temperatures Ts, Tb and the flux Φ may be approximated by a fourth-order parabola. In physics, this approximation is known as the Stefan-Boltzmann law:
Φ=κεbκsσ(Tb4−Ts4) (1)
where εb and εs are the surface emissivities of the object and sensing element, respectively, σ is the Stefan-Boltzmann constant, and k is an optical constant which may be determined by measurement during calibration of the IR thermometer.
For a relatively small difference between the true object's temperature Tb and sensor's temperature Ts Eq. (1) can be simplified as:
Φ≈4κεbεsσTs3(Tb−Ts) (2)
An ultimate purpose of an IR thermometer is to determine the surface temperature of the object (Tb), which may be calculated as Tbc from inverted Eq. 2:
Ideally, the computed temperature Tbc should be equal to the true temperature Tb. Practically, these temperatures may differ as the result of error. It can seen from Equation (3) that, in order to calculate temperature Tbc, two values need to be determined: the magnitude of the IR flux Φ and the IR sensing element's surface temperature Ts. The accuracy of the temperature computation depends on the measurement accuracy for all variables at the right side of Eq. (3). The first summand Ts can be measured quite accurately by a number of techniques known in the art, for example, by employing a thermistor or RTD temperature sensor. The second summand can be more problematic, especially due to a generally unknown and unpredictable value of the object's emissivity εb,. For example, in medical thermometry, the emissivity εb. is a skin emissivity that is defined by the skin properties and shape. The skin emissivity may, for example, range from 0.93 to 0.99. To determine how emissivity affects accuracy, a partial derivative of Eq. (2) may be calculated as:
The partial derivative represents the measurement error due to an unknown emissivity εb of an object. Eq. (4) shows that the error essentially approaches zero when temperature Ts of the sensor approaches temperature Tb; of the object, that is when Tb≈Ts. Thus, to minimize errors, it is desirable to keep the temperature Ts of the IR sensor as close as is practical to the object's temperature Tb. For an instant ear thermometer, for example, U.S. Pat. No. 5,645,349 to Fraden teaches a heated sensing element for bringing the temperatures Ts, Tb into proximity U.S. Pat. No. 7,014,358 issued to Kraus et al. alternatively teaches a heating element for warming the IR sensor housing. U.S. Pat. No. 5,645,349 and U.S. Pat. No. 7,014,358 are each incorporated by reference in its entirety herein.
When temperature is measured from a surface, it is important to direct the associated IR radiation flux Φ to the IR sensor only from the measured surface, and not from any stray objects that may appear in the field of view of the optical system. IR radiation from stray objects alters the measured flux, and thereby contributes to error.
One way to minimize the chance of picking up flux from stray objects is to narrow the optical field of view of the IR thermometer. One method of using IR lenses to narrow the optical field of view is exemplified by U.S. Pat. No. 5,172,978 to Nomura et al. (radiant thermometer including a lens barrel mounting a condensing lens at one end and an IR detector at the other end) and U.S. Pat. No. 5,655,838 to Ridley et al. (radiation thermometer with multi-element focusing lens, eye piece, beam splitter and IR detector), each of which is incorporated by reference in its entirety herein.
Another method for minimizing the chance of picking up flux from stray objects employs curved mirrors to narrow the field of view. This approach is exemplified by U.S. Pat. No. 4,494,881 to Everest, which is incorporated by reference in its entirety herein.
These methods successfully solve the problem of eliminating stray IR signals from surrounding objects, but remain ineffective in further preventing stray radiation from interior components of the IR thermometer that surround the IR sensor. This source of stray radiation is unaffected by efforts to limit the optical field of view. It would be of significant benefit to develop an IR thermometer having an IR sensor that is unaffected by stray radiation from interior components of the IR thermometer that surround the IR sensor.
A non-contact infrared (IR) thermometer according to the present invention includes an IR radiation sensor thermally coupled to a heating element and a thermal shield having an interior surface positioned within the sensor's field of view, such interior surface has a high emissivity. An electronic circuit controlling the heating element maintains the temperatures of the sensor and shield substantially close to an anticipated surface temperature of the object. The IR radiation sensor is further thermally coupled to a reference temperature sensor. An optical system positioned in front of the shield focuses thermal radiation from the object on the surface of the sensor, while the shield prevents stray radiation from reaching the sensor from the thermometer parts. Signals from the IR and reference temperature sensors are used to calculate the object's surface temperature.
The thermal shield is configured to reduce stray thermal generation emanating from the interior surface positioned within the thermal radiation sensor's field of view, in part by maintaining the temperatures of the thermal radiation sensor and the thermal shield to be substantially equal. In addition, the interior surface may be treated to be non-reflective of IR radiation (for example, by coating the surface with an organic paint having an emissivity of 0.9 or higher).
The optical system may preferably comprise a lens. Alternatively, the optical system may preferably comprise a curved mirror.
The thermometer may also comprise a shutter that is movable to shield the interior surface of the thermal shield and thermal radiation sensor from thermal radiation emanating externally from the shield (for example, thermal radiation emanating from the object). When shielded, a baseline output of the thermal radiation sensor can be obtained for calibrating the sensor. In the thermometer comprising the curved mirror, the curved mirror is preferably rotable configured as the movable shutter.
The thermometer is also preferably provided with an illuminator for illuminating at least a portion of the field of view of the thermal radiation sensor on the surface of the object. In the thermometer comprising the curved mirror, the illuminator may preferably project a light beam that off an ancillary surface of the curved mirror toward the surface of the object.
The foregoing and other features of the present invention will be more readily apparent from the following detailed description and drawings of illustrative embodiments of the invention in which:
Like reference numerals are used in the drawing figures to connote like components of the thermometer.
An IR thermometer is disclosed that includes a thermal shield having a surface that is covered by the sensor's field of view. The surface preferably includes a high-emissivity coating that minimizes stray radiation from the shield. For the purpose of illustrating principles of the present invention, several non-limiting embodiments of the IR thermometer and thermal shield are described below. Accordingly, the invention is to be limited only by the scope of the claims and their equivalents.
As further shown in
The button 15 of
Inner surface 11 of the thermal shield 10 is configured to be in the field of view of the sensing element 8. Thermal shield 10 is preferably fabricated using a metal with good thermal conductivity (for example, copper or aluminum), and preferably includes an inner surface 11 coated with a heat absorbing (non-reflecting) coating 19, such as organic paint having an emissivity greater than 0.9, for example KRYLON. The outer surface of the shield 10 may be covered by a thermal insulating layer (not shown), and/or made reflective in the IR spectral range. The insulating layer maybe a urethane foam and the reflective property can be achieved by polishing the outer surface of the shield 10. The shield 10 is sized to substantially prevent any stray radiation from an interior surface 6 of the housing 3 from reaching the aperture 9. As a result, only the IR rays 18 passing through the focusing optical device (lens 5) and IR rays emanating from the inner surface 11 of the shield 10 are able to reach the sensing element 8.
A preferred embodiment of the present invention operates as follows. IR rays 18 are naturally emanated from the surface of the object 1 (for example, a human skin surface). The IR rays 18 are received by the focusing optical device (lens 5). The sensing element 8 is positioned at or near the focal point of the lens 5. As a result, a substantial portion of the thermal IR energy radiated from the field of view 2 toward the lens 5 is focused on the sensing element 8, which converts the thermal IR flux into an electrical signal. In order to calculate a surface temperature of the surface in the field of view 2 (for example, using Equation (3) or an approximation or variation thereof), a reference temperature (that of the sensing element 8) also must be measured. This may be accomplished by the reference sensor 30 that is thermally coupled to the IR sensing element 8. Such arrangements coupling a sensing element with a reference sensor are well known in alt.
In addition, according to the present invention, the thermal shield 10 is provided and configured to surround the IR rays 18 radiated from the field of view 2 in such a way as to substantially prevent any stray rays from reaching the sensing element 8.
To further improve measurement accuracy, the temperature of the sensing element 8 is preferably controlled to be substantially equal to an anticipated surface temperature of object 1 within the field of view 2. For example, if object 1 is a human forehead, its surface temperature may range from 31 to 38° C. for the group including healthy and febrile patients. In this case, the temperature for the heating element 12 is preferably set near 34-35° C. To reach and maintain this temperature, the reference sensor 30 monitors the temperature of the sensing element 8 and provides feedback to the circuit 14 which, in turn, provides energy to the heating element 12. In effect, this arrangement operates thermostatically. In addition, the thermal shield 10 is preferably maintained at or near the same controlled temperature, which may be significantly different from temperatures of the housing 3 and the inside surface 6.
By maintaining the temperature of the shield's 10 inner surface 11 close to that of the sensing element 8, in accordance with Equation (2), little or no IR radiation is emanated from the surface 11 toward the sensing element 8. As a result, the thermal shield 10 effectively becomes thermally “invisible” to the sensing element 8.
The lens 5 may be fabricated of any suitable IR transmissive material, including for example germanium, silicon, and zinc selenide. Surfaces of the lens 5 may preferably be coated with an IR antireflective coatings for the spectral range from 4 to 15 micrometers of wavelength. Such coatings are well known in art and generally comprise thin multiple layers (5-40 nm) of metal nitrides, such a titanium nitride, niobium nitride and others deposited in vacuum on both sides of the lens. In low cost applications, for example, the lens 5 may be a Fresnel lens molded of a high-density polyethylene (HDPE) sheet having thickness in the range from 0.2 to 0.6 mm.
Alternatively to the configuration depicted in
In another embodiment of the present invention, the focusing optical device is provided in the form of a focusing mirror 20 as shown in
In
For accurate temperature measurement, it may be desirable to establish a thermal baseline of the IR sensing element 8 response. The baseline is to be established under conditions where no IR flux from any external object reaches the sensing element 8. This can be accomplished by several methods. One preferred method includes the use of shutter 31 as shown in
To establish a baseline, the shutter 31 is set in a first position 34 which substantially blocks external IR rays from entering inner space 37 of thermal shield 10 to reach sensor 7. A surface 32 that faces an interior space 37 is coated with aluminum or gold to be highly reflective in the IR spectral range (that is, having a coefficient of reflectivity be no less than 0.9). After a baseline output of the sensing element 8 is established from temperature measurements made for this configuration, and when a temperature measurement of the object 1 is to be made, shutter 31 is moved in a direction 36 to a second position 35, out of the path of the IR rays. This action opens the space 37 to allow external IR radiation from the field of view 2 of the object to reach the sensor 7. After the temperature measurement of the object 1 is complete, shutter 31 returns to the closed position that is first position 34. The shutter 31 is preferably moved by a shutter mechanism 33 that is controlled by operation of the button 15 or the circuit 14. Such shutter mechanisms are well known in the art (see, for example, the '840 Patent). As an alternative to the configuration of
An alternative embodiment of the present invention, a baseline of the sensing element 8 may be established by using a rotatable tilted mirror 20 as shown in
For a better identification of the field of view 2, it is preferable to illuminate the area from which temperature is to be measured. One way to accomplish this is shown in
An alternative method of illuminating the field of view 2 is depicted in
After a value for the surface temperature for the field of view 2 is computed, it is preferably displayed directly on the display 16 and/or used as an input for further data processing. An example of further data processing in medical thermometry is computing an inner (core) temperature of a patient from the skin temperature by means of a conventional algorithm known in art, which may then be displayed on the display 16.
With reference to
1. Elevate the temperature of the heating element 12 to maintain a temperature of the infrared sensor 7 substantially at a constant level of about 34 OC. The thermal shield 10 assures that thermal radiation is received only from the focusing device.
2. Turn on the light source 44, directing the light beam 51 toward the field of view 2 of the object 1
3. Operate the button 15 to initiate the measurement cycle.
4. Turn off the heating element 12 to prevent its interference with the thermal radiation measurement process.
5. Process signals provided by the sensing element 8 and reference sensor 30 in the circuit 14 to compute the surface temperature of the object
6. Provide the computed surface temperature at the display 16.
While the invention has been particularly shown and described with reference to a number of preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. Accordingly, the invention is to be limited only by the scope of the claims and their equivalents.
This application is a national phase application under §371 of PCT/US2009/61842, filed Oct. 23, 2009, which claims priority to Provisional Patent Application No. 61/197,023, filed Oct. 23, 2008, the entire content of which is expressly incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/061842 | 10/23/2009 | WO | 00 | 6/2/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/048505 | 4/29/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4005605 | Michael | Feb 1977 | A |
4290182 | Lawrence | Sep 1981 | A |
4722612 | Junkert et al. | Feb 1988 | A |
4797840 | Fraden | Jan 1989 | A |
4900162 | Beckman et al. | Feb 1990 | A |
5018872 | Suszynski et al. | May 1991 | A |
5169234 | Bohm | Dec 1992 | A |
5169235 | Tominaga et al. | Dec 1992 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5325863 | Pompei | Jul 1994 | A |
RE34789 | Fraden | Nov 1994 | E |
5419312 | Arenberg et al. | May 1995 | A |
5645349 | Fraden | Jul 1997 | A |
6015234 | Gourrier et al. | Jan 2000 | A |
6203194 | Beerwerth et al. | Mar 2001 | B1 |
6556852 | Schulze et al. | Apr 2003 | B1 |
6694174 | Kraus et al. | Feb 2004 | B2 |
7014358 | Kraus et al. | Mar 2006 | B2 |
20020123690 | Fraden | Sep 2002 | A1 |
20030060717 | Kraus et al. | Mar 2003 | A1 |
20030222218 | Nozu | Dec 2003 | A1 |
20100195697 | Hollander et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
1341207 | Mar 2002 | CN |
A-H04-028341 | Jan 1992 | JP |
A-2001-054505 | Feb 2001 | JP |
A-2002-333370 | Nov 2002 | JP |
Entry |
---|
Office Action from Chinese Patent Application No. 200980151773.7, mailed on May 10, 2013. |
Mexican Patent Office Action issued in applicaton No. MX/A/2011/004364, dated Sep. 12, 2012. |
Number | Date | Country | |
---|---|---|---|
20110228811 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61197023 | Oct 2008 | US |