Non-contact surgical adapter electrical interface

Information

  • Patent Grant
  • 11670964
  • Patent Number
    11,670,964
  • Date Filed
    Monday, May 10, 2021
    3 years ago
  • Date Issued
    Tuesday, June 6, 2023
    11 months ago
Abstract
A surgical instrument includes a handle, an adaptor, and a non-contact electrical interface. A proximal end of the adaptor is releasably coupled to a distal end of the handle. The non-contact electrical interface is configured to wirelessly transmit energy from the handle to the adaptor and is configured to wirelessly transmit data from the adaptor to the handle. The electrical interface may include a proximal coil disposed within the handle and a distal coil disposed within the adaptor. When the adaptor is coupled to the handle, the proximal coil may be disposed adjacent the distal coil to form a transformer to inductively transfer energy from the handle to the adaptor and inductively transmit data from the adaptor to the handle.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical instruments and, more specifically, to non-contact electrical interfaces for surgical instruments.


2. Discussion of Related Art

Powered surgical instruments generally have a handle portion and a working portion extending from the handle portion that contacts a patient. The working portion may require energy to power elements thereof and may gather data from a plurality of sensors thereof. Power may be transferred from the handle portion to the working portion and data may be transferred from the working portion to the handle portion through an electrical interface. Traditionally the electrical interface includes galvanic electrical connections allowing the working portion to detach from the handle portion. After each use, the powered surgical instrument is disposed of, reused, or partially disposed of and partially reused. Any part of a powered surgical instrument that is reused must be sterilized, by autoclaving, to neutralize potentially infectious agents before being reused.


The autoclave process has been used for many years to sterilized reusable surgical instruments. However, galvanic electrical connections are susceptible to damage from the steam and the high-pressure used in the autoclave process. For example, during the autoclave process the galvanic electrical connections can corrode, form dendtric growths, or electro-plate.


Accordingly, a continuing need exists for electrical contacts that are not susceptible to the autoclave process that can pass electrical power and data signals between a working portion and a handle portion of a surgical instrument.


SUMMARY

In the following aspects of the present disclosure, a non-contact electrical interface may pass power from a handle portion to a working portion of a surgical instrument and simultaneously pass a data signal from the working portion to the handle portion and/or from the handle portion to the working portion.


In an aspect of the present disclosure, a surgical instrument includes a handle, an adaptor, and a non-contact electrical interface formed therebetween. The adaptor includes a proximal end that is releasably coupled to a distal end of the handle. The non-contact electrical interface is configured to wirelessly transfer energy from the handle to the adaptor and to wirelessly transmit data from the adaptor to the handle.


In aspects, the handle includes a protrusion and the adaptor defines a recess. The recess of the adaptor receives the protrusion of the handle when the adaptor is coupled to the handle. The electrical interface includes a proximal electrical coil that is disposed within the protrusion of handle and a distal electrical coil disposed within the adaptor at a location adjacent the recess. When the adaptor is coupled to the handle, the proximal and distal electrical coils may form a transformer. The proximal electrical coil may inductively transfer a constant supply of energy to the distal electrical coil. In embodiments, an energy source is disposed within the handle that is electrically coupled to the proximal electrical coil. In some embodiments, an energy storage device is disposed within the adapter that is electrically coupled to the distal electrical coil. The energy storage device may be configured to store energy from the energy source. In certain embodiments, the electrical interface includes a signal processor disposed within the adaptor. The energy storage device may be configured to energize the signal processor.


In some aspects, the electrical interface includes a signal processor disposed within the adaptor that is configured to transmit high frequency signals data signals to the distal electrical coil. The energy storage device may be configured to energize a plurality of sensors. Each of the plurality of sensors may provide data signals to the signal processor.


In certain aspects, the electrical interface includes a control circuit that is configured to wirelessly transmit control signals from the handle to the adaptor. The control circuit may include a proximal control coil that is disposed within the protrusion of the handle and a distal control coil disposed within the adaptor at a location adjacent to the recess. The proximal and distal control coils may form a control transformer when the adaptor is coupled to the handle. The control transformer may inductively transmit control signals from the handle to the adaptor. In embodiments, the handle includes a control interface and the electrical interface includes a processor disposed within the handle. The processor may be configured to receive control inputs from the control interface and to receive data from the adaptor. The processor may be configured to generate control signals from the control inputs and from the data. The processor may transmit the control signals to the proximal control coil.


In particular aspects, the surgical instrument includes a loading unit that is releasably coupled to a distal end of the adaptor. The loading unit and the adaptor form a second electrical interface. The second electrical interface is configured to inductively transfer energy from the adaptor to the loading unit and is configured to inductively transmit data signals from the loading unit to the adaptor.


In other aspects of the present disclosure, a method of communication between components of a surgical instrument includes providing a surgical instrument including a handle and an adaptor, coupling a proximal end of the adaptor to a distal end of the handle to form a non-contact electrical interface, using the non-contact electrical interface to wirelessly transfer energy from the handle to the adaptor, and using the non-contact electrical interface to wirelessly transmit data from the adaptor to the handle. The surgical instrument may be any of the surgical instruments disclosed herein.


In aspects, forming the non-contact electrical interface includes positioning a proximal coil disposed within the handle adjacent a distal coil disposed within the adaptor to form a transformer. Wirelessly transferring energy from the energy source may include inductively transferring energy across the transformer from the handle to the adaptor. Wirelessly transmitting data from the adaptor to the handle may include inductively transmitting data across the transformer from the adaptor to the handle.


Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are described hereinbelow with reference to the drawings, wherein:



FIG. 1 is a perspective view of a surgical instrument provided in accordance with the present disclosure;



FIG. 2 is an exploded view of the components of the surgical instrument of FIG. 1;



FIG. 3 is a cross-sectional view taken along the section line 3-3 of FIG. 1 illustrating an electrical interface between the handle and the adaptor of the instrument of FIG. 1;



FIG. 4 is a cut-away perspective view of the adaptor receiver of the handle of FIG. 2;



FIG. 5 is an enlarged view of the area of detail of FIG. 2 illustrating the handle connector of the adaptor of FIG. 2;



FIG. 6 is a schematic view of the electrical interface between the handle and the adaptor of FIG. 3; and



FIG. 7 is a cross-sectional view taken along section line 7-7 of FIG. 1 illustrating an electrical interface between the adaptor and the loading unit of FIG. 1.





DETAILED DESCRIPTION

Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician.


Referring now to FIGS. 1-3, a surgical instrument 10 is provided in accordance with the present disclosure including a handle 20, an adaptor 30, and a disposable loading unit 40. The adaptor 30 includes a handle connector 32 at a proximal end thereof and the handle 20 defines an adaptor receiver 26 for receiving the handle connector 32 to releasably couple the adaptor 30 to the handle 20. The disposable loading unit 40 includes a loading unit connector 42 at a proximal end thereof and the adaptor 30 defines a loading unit receiver 36 adjacent a distal end thereof to releasably couple the disposable loading unit 40 to the adaptor 30. The disposable loading unit 40 includes an end effector assembly 140 including first and second jaw members 142, 144 that are moveable relative to one another and are configured to act on tissue.


An exemplary embodiment of a surgical instrument is disclosed in commonly owned and co-pending U.S. patent application Ser. No. 13/484,975 filed May 31, 2012, and now published as U.S. Patent Publication No. 2012/0253329 on Oct. 4, 2012 the contents of which are hereby incorporated by reference in its entirety.


With particular reference to FIG. 3, an electrical interface 50 is disposed within the adaptor receiver 26 and the handle connector 32. The electrical interface 50 is a non-contact electrical interface that transmits energy from the handle 20 to the adaptor 30 and transmits data signals from the adaptor 30 and/or the disposable loading unit 40 to the handle 20, between the adaptor receiver 26 and the handle connector 32, as detailed below. It is contemplated that control signals are transmitted by the electrical interface 50 from the handle 20 to the adaptor 30. The handle 20 may include a display 25 (FIG. 2) configured to display information from the data signals from the adaptor 30 and/or the disposable loading unit 40 to a user of the surgical instrument 10.


Referring now to FIGS. 2-5, the handle 20 is operatively associated with an energy source 24 that provides energy to the handle 20 and the adaptor 30. It is within the scope of this disclosure that the handle 20 includes a first energy source for the handle 20 and a second energy source for the adaptor 30. The energy source 24 may be disposed within the handle 20 or disposed external to the handle 20. The energy source 24 may be a battery, a wall outlet, or an electrosurgical generator. The energy source 24 is electrically connected to a proximal coil 52 of the electrical interface 50 to provide the proximal coil 52 with a substantially constant supply of energy. The energy source 24 may be directly wired to the proximal coil 52.


The adaptor receiver 26 of the handle 20 includes a protrusion 27 extending distally therefrom. The proximal coil 52 of the electrical interface 50 is disposed within the protrusion 27 of the handle 20. The adaptor receiver 26 may include one or more drive shafts 23 configure to mechanically manipulate (e.g., rotate or translate) internal components of the adaptor 30.


The handle connector 32 of the adaptor 30 includes one or more input shafts 33 extending therefrom, and defines a recess 34 formed therein. The input shafts 33 are configured to non-rotatably interface with the one or more drive shafts 23 of the handle 20. The handle connector 32 of the adaptor 30 includes a distal coil 54 of the electrical interface 50 that is positioned adjacent the recess 34. The recess 34 of the adaptor 30 is sized and configured to receive the protrusion 27 of the handle 20.


The distal coil 54 or the electrical interface 50 is electrically connected to an energy storage device 56 of the adapter 30 to provide energy, typically as a constant current, to the energy storage device 56 as detailed below. The energy storage device 56 of the handle 20 is configured to energize a plurality of sensors 55 of the adaptor 30. The energy storage device 56 may be a capacitor, a capacitive circuit, or a battery.


The plurality of sensors 55 are disposed about the adaptor 30 to detect various conditions of the adaptor 30 or of the environment (e.g., if loading unit is connected, if the adaptor 30 is connected to a handle, if the drive shafts 23 are rotating, the torque of the drive shafts 23, the temperature within the adaptor 30, etc.). The plurality of sensors 55 provides input to a data signal processor 57 in the form of data signals. The data signals may be digital or analog signals. The data signal processor 57 may be a voltage to current converter that converts data signals of the plurality of sensors to high frequency signals for transmission across the electrical interface 50, as detailed below. The data signal processor 57 transmits the data signals to the distal coil 54 of the adaptor 30. It is contemplated that the data signal processor 57 may be directly wired to the distal coil 54.


With reference to FIGS. 3 and 6, when the handle connector 32 of the adaptor 30 is received within the adaptor receiver 26 of the handle 20, the recess 34 receives the protrusion 27. When the recess 34 of the adaptor 20 is received within the protrusion 27 of the handle 20, the proximal and distal coils 52, 54 form a data transformer 58 to wirelessly transfer energy (e.g., inductively transfer) from the proximal coil 52 to the distal coil 54 and to wirelessly transfer (e.g., inductively transfer) the data signals from the distal coil 54 to the proximal coil 52. It will be appreciated that, when the adaptor 30 is coupled to the handle 20, a gap is defined between the proximal and distal coils 52, 54.


The energy source 24 of the handle 20 provides energy to the proximal coil 52. The energy provided by the energy source 24 may be constant or fluctuate at a low frequency (i.e., fluctuate below 100 Hz). It will be appreciated that the high frequency signals fluctuate at a high frequency (i.e., over 20 KHz) relative to the frequency of any fluctuation in the energy provided by the energy source 24 to avoid interference between the provided energy and the high frequency signals. The energy received by the proximal coil 52 is inductively transferred across the gap and across the data transformer 58 to the distal coil 54. The transferred energy may be stored in the energy storage device 56 and/or used to energize components of the adaptor 30 including but not limited to the data signal processor 57 and the plurality of sensors 55.


The data signals from the plurality of sensors 55 of the adaptor 30 are generated as a voltage that is passed through the data signal processor 57 of the adaptor 30 before being sent to the distal coil 54. The data signal processor 57 converts the data signals from the plurality of sensors to a high frequency signal using voltage to current conversion. The secondary current circuit affords the opportunity to measure the primary current modulated by R1 to receive signals from the secondary circuit. The high frequency current signals are inductively transferred across the gap and across the data transformer 58 (i.e., from the distal coil 54 to the proximal coil 52). The high frequency signals from the proximal coil 52 may pass through a filter 53 that reconstructs the data signals of the plurality of sensors 55 from the high frequency signals. The filter 53 may be a high-pass filter that detects the high frequency signals and reconstructs the data signals from the detected high frequency signals. The filter 53 may have a low corner frequency to filter the high frequency signals from fluctuations in the energy provided by the energy source 24.


The reconstructed data signals are then transmitted to a processor 22 disposed within the handle 20, as shown in FIG. 2. The processor 22 may be electrically coupled or wirelessly coupled to the display 25 of the handle 20 and configured to transmit information from the data signals of the sensors 55 to the display 25. It is contemplated that the processor 22 and/or the display are remote to the surgical instrument 10. When the processor 22 is remote to the surgical instrument 10, the reconstructed data signal may be transmitted wirelessly from the handle 20 to the processor 22.


The handle 20 may include a control interface 21 for activating various components of the adaptor 30 or loading unit 40. The control interface 21 is in electrical communication with the processor 22 to provide input from a user to the processor 22. The processor 22 may wirelessly transmit (e.g., inductively transfer) control signals to the adaptor 30 or loading unit 40 based on the input from the control interface 21 and/or the reconstructed data signals (e.g., real-time feedback from the operation of the surgical instrument 10). The control signals may be digital or analog signals.


The electrical interface 50 may include a control circuit 60 for transmitting the control signals. The control circuit 60 includes a proximal control coil 62 and a distal control coil 64 which form a control transformer 68 when the handle connector 32 of the adaptor 30 is received within the adaptor receiver 26 of the handle 20. The proximal control coil 62 is disposed within the protrusion 27 of the handle 20 adjacent to but electrically shielded from the proximal coil 52. The distal control coil 64 is positioned adjacent to the recess 34 of the adaptor 30 and to the distal coil 54 but is electrically shielded from the distal coil 54. It will be appreciated that the control transformer 68 is electrically shielded or isolated from the data transformer 58 such that the data signals do not interfere with the control signals.


The control signals from the processor 22 of the handle 20 are transmitted to a control signal processor 67 thereof. The control signal processor 67 is substantially similar to the data signal processor 57 and converts the control signals from the processor 22 to high frequency control signals for transmission across the control transformer 68. The high frequency control signals are transmitted from the control signal processor 67 to the proximal control coil 62. The proximal control coil 62 receives energy from the energy source 24 of the handle 20. It is also contemplated that the proximal control coil 62 receives energy from a separate and distinct energy source (not shown). The energy received by the proximal control coil 62 is inductively transferred across the control transformer 68 to the distal control coil 64.


The high frequency control signals are inductively transmitted across the control transformer 68 from the proximal control coil 62 to the distal control coil 64. The distal control coil 64 transmits the high frequency control signals to the control filter 63 that detects the high frequency control signals within the energy transmitted across the control transformer 68 and reconstructs the control signals therefrom. The reconstructed control signals are then transmitted to various components of the adaptor 30 and/or the loading unit 40.


Referring to FIG. 7, the surgical instrument 10 may include an electrical interface 80 formed between the loading unit receiver 36 of the adaptor 30 and the loading unit connector 42 of the loading unit 40. The electrical interface 80 is substantially similar to the electrical interface 50, as such, for reasons of brevity, electrical interface 80 will not be detailed herein. The electrical interface 80 is a non-contact interface that inductively transfers energy from the adaptor 30 to the loading unit 40 and inductively transfers data signals from the loading unit 40 to the adaptor 30. It is also contemplated that the electrical interface 80 includes a control circuit 90 that inductively transfers control signals from the adaptor 30 to the loading unit 40 substantially similar to the control circuit 60 detailed above, as such for reasons of brevity control circuit 90 will not be detailed herein. The electrical interface 80 may transmit and receive signals (e.g., data signals and control signals) from the electrical interface 50 and/or the processor 22.


With additional reference to FIG. 2, the loading unit 40 may also include a plurality of sensors 85 disposed thereabout. The plurality of sensors 85 of the loading unit 40 are substantially similar to the plurality of sensors 55 of the adaptor 30 and are configured to detect various conditions of the loading unit 40 or of the environment (e.g., if the end effector 140 (FIG. 2) is open, thickness of tissue within the end effector 140, the temperature within the loading unit 40, etc.). The plurality of sensors 85 provides input to the electrical interface 80 in the form of data signals.


It is also contemplated that a surgical instrument (not shown) includes only a handle substantially similar to handle 20 and a disposable loading unit substantially similar to disposable loading unit 40 connectable to the handle 20 (i.e., no adaptor 30 is used). The surgical instrument may include an electrical interface substantially similar to the electrical interface 50 disposed within the handle and the disposable loading unit to transmit energy from the handle to the disposable loading unit and to transmit data signals from the disposable loading unit to the handle.


The wireless transmission detailed herein may be radio frequency, optical, WIFI, Bluetooth® (an open wireless protocol for exchanging data over short distances (using short length radio waves) from fixed and mobile devices, ZigBee® (a specification for a suite of high level communication protocols using small, low-power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area networks (WPANs)), etc.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical instrument comprising: a receiving portion including a protrusion and an energy source;an attachment including: an energy storage device;a proximal end releasably coupled to a distal end of the receiving portion, the attachment defining a recess configured to receive the protrusion; anda signal processor disposed within the attachment and energizable by the energy storage device; anda non-contact electrical interface configured to wirelessly transfer energy from the receiving portion to the attachment and configured to wirelessly transmit data between the attachment and the receiving portion, the non-contact electrical interface including a proximal electrical coil coupled to the signal processor and the energy source and disposed within the protrusion, and a distal electrical coil electrically coupled to the energy storage device and disposed within the attachment adjacent the recess.
  • 2. The surgical instrument of claim 1, wherein when the attachment is coupled to the receiving portion the proximal and distal electrical coils form a transformer.
  • 3. The surgical instrument of claim 1, wherein the proximal electrical coil inductively transfers energy to the distal electrical coil, and the distal electrical coil inductively transmits data to the proximal electrical coil.
  • 4. The surgical instrument of claim 1, wherein the electrical interface includes a signal processor disposed within the attachment, the signal processor configured to create high frequency signals from data signals and transmit the high frequency signals to the distal electrical coil.
  • 5. The surgical instrument of claim 4, wherein the electrical interface further includes a plurality of sensors disposed within the attachment, the plurality of sensors configured to generate and transmit data signals to the signal processor.
  • 6. The surgical instrument of claim 5, wherein the energy storage device is configured to energize the plurality of sensors.
  • 7. The surgical instrument of claim 4, wherein the electrical interface includes a filter disposed within the receiving portion, wherein the filter is electrically coupled to the proximal electrical coil, and wherein the filter is configured to reconstruct the data signals from the high frequency signals.
  • 8. The surgical instrument of claim 7, wherein the receiving portion includes a display configured to display information from the reconstructed data signals to a user.
  • 9. A surgical instrument comprising: a receiving portion including a protrusion;an attachment including: a proximal end releasably coupled to a distal end of the receiving portion, the attachment defining a recess configured to receive the protrusion; anda signal processor disposed within the attachment; anda non-contact electrical interface configured to wirelessly transfer energy from the receiving portion to the attachment and to wirelessly transmit data between the attachment and the receiving portion, the non-contact electrical interface including: a proximal electrical coil coupled to the signal processor and disposed within the protrusion;a distal electrical coil disposed within the attachment adjacent the recess; anda control circuit configured to wirelessly transmit control signals from the receiving portion to the attachment, wherein the control circuit includes a proximal control coil disposed within the protrusion and a distal control coil disposed within the attachment at a location adjacent to the recess, the proximal and distal control coils forming a control transformer when the attachment is coupled to the receiving portion to inductively transmit control signals from the receiving portion to the attachment.
  • 10. The surgical instrument of claim 9, wherein the receiving portion includes a control interface and the electrical interface includes a processor disposed within the receiving portion, the processor configured to receive control inputs from the control interface and to receive data from the attachment, the processor configured to generate control signals from the control inputs and from the data, the processor configured to transmit the control signals to the proximal control coil.
  • 11. A surgical instrument further comprising: a receiving portion including a protrusion;an attachment including: a proximal end releasably coupled to a distal end of the receiving portion, the attachment defining a recess configured to receive the protrusion; anda signal processor disposed within the attachment; anda non-contact electrical interface configured to wirelessly transfer energy from the receiving portion to the attachment and configured to wirelessly transmit data between the attachment and the receiving portion, the non-contact electrical interface including a proximal electrical coil coupled to the signal processor and disposed within the protrusion, and a distal electrical coil disposed within the attachment adjacent the recess; anda loading unit releasably coupled to a distal end of the attachment and to form a second electrical interface, the second electrical interface configured to inductively transfer energy from the attachment to the loading unit and configured to inductively transmit data signals from the loading unit to the attachment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/227,552, filed Dec. 20, 2018, now U.S. Pat. No. 11,005,291, which is a continuation of U.S. patent application Ser. No. 14/522,873, filed Oct. 24, 2014, now U.S. Pat. No. 10,164,466, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/980,724, filed Apr. 17, 2014. The entire contents of each of the above applications are hereby incorporated by reference.

US Referenced Citations (403)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5632432 Schulze et al. May 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6326884 Wohlrabe Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7042596 Yoshida May 2006 B1
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8443476 Hilscher et al. May 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100076455 Birkenbach Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20100268250 Stuart et al. Oct 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110174861 Shelton, IV Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110208170 Hafner et al. Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110251606 Kerr Oct 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130075443 Giordano et al. Mar 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140005681 Gee et al. Jan 2014 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140144970 Aranyi et al. May 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160329614 Madan Nov 2016 A1
Related Publications (1)
Number Date Country
20210265866 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
61980724 Apr 2014 US
Continuations (2)
Number Date Country
Parent 16227552 Dec 2018 US
Child 17315473 US
Parent 14522873 Oct 2014 US
Child 16227552 US