Not Applicable.
The present application relates generally to diffractive optical elements, and in particular to non-etched and flat polarization-selective diffractive optical elements.
Diffraction gratings and more complex thin holograms, encoded onto programmable liquid crystal (LC)-based spatial light modulators (SLMs), have been actively researched as a way to alter the wavefront of an optical beam. For example, these LC/SLMs may be used for adaptive-optic phase correction, in a synthetic phase array, or in a telecommunication beam steering switch. The LC/SLMs are based typically on either a transmissive or reflective type micro-display panel in order to provide the small pixel pitch requirement. LCs with both in-plane (e.g., such as in-plane-switching (IPS) using nematic LC and ferroelectric LC) and out-of-plane (e.g., planar or parallel aligned (PA) and vertical aligned (VA) nematic LC) rotation of LC director are utilized. The ferroelectric LC (FLC) will be polarization insensitive if the hologram is configured with two phase levels. Polarization insensitivity can be important for systems where the light source has unknown or scrambled polarization, such as for a beam-steering switch used in telecommunication networks. On the other hand, since out-of-plane switching nematic LCs (e.g., PA and VA nematic LC) are known to be polarization sensitive, holograms recorded onto these LC/SLMs generally require a known polarization. Accordingly, these types of LC holograms are typically only useful in optical systems and instrumentation where the light sources are polarized.
Although programmable thin holograms encoded onto LC/SLMs are very versatile, these active components are not cost effective for many applications. In addition, these programmable thin holograms are known to provide relatively small steering angles. For example, a state-of-the art LC on Silicon (LCoS) panel may have less than 10 μm pixel pitch, which at a wavelength of 0.5 μm and utilizing a minimum of two pixels per grating period, provides a maximum beam deflection angle of about 1.4 degrees. All other programmable hologram output (e.g., termed the replay) will have even smaller deflection angles.
Nevertheless, there has been interest in forming passive diffraction gratings or holograms based on these active device. For example, in U.S. Pat. No. 6,304,312, a diffraction grating is formed by injecting liquid crystal monomer between two transparent substrates, each of which is coated with an alignment layer. In one example, the alignment layer is uniform and the diffraction grating is effected by applying a voltage to patterned electrodes provided on the transparent substrates. In another example, the diffraction grating is effected with a patterned alignment layer (e.g. patterned using a photolithography technique). After the liquid crystal layers are aligned, they are then polymerized and/or cross-linked to fix the alignment. Note that the liquid crystal polymer pixels in this reference are limited to having either homeotropic alignment (i.e., perpendicular to the substrate) or planar alignment (i.e., parallel to the substrate). The resulting binary grating (e.g., having a pitch of about 8 μm) is reported to provide only about forty percent diffraction efficiency.
More recently, patterned photo-alignment layers having an even smaller pixel pitch (e.g., 1 μm or shorter) have been proposed. For example, in U.S. Pat. No. 7,375,784 a micro-patterned alignment layer is disclosed. While the alignment layer is limited to having only homeotropic alignment (i.e., perpendicular to the substrate) and planar alignment (i.e., parallel to the substrate), the liquid crystal may be aligned with a range of out-of-plane angles. More specifically, local alignment of the liquid crystal is stated to be determined by the average areas of underlying homeotropic alignment and planar alignment regions. Unfortunately, since the alignment of the liquid crystal is related to an average of different regions it cannot be patterned with precision and thus, is not suitable for many applications.
In fact, in order to optimize precision and cost effectiveness, most applications requiring passive holograms use diffractive optical elements with physical steps. Unfortunately, the etching and/or molding processes used to form these diffractive optical elements are relatively complex and time consuming. In addition, the surface relief structure generally requires complex optical thin-film coating processes to protect the delicate structures.
It would be advantageous to provide a method of fabricating thin film gratings or holograms that is relatively simple, low cost, and/or that is suitable for a wide range of applications.
The instant invention relates to a method of forming diffraction gratings and/or holograms with thin liquid crystal polymer layers. In one embodiment a thin liquid crystal polymer is formed on an alignment layer, which has been irradiated with linearly polarized light at non-normal incidence through a photo-mask. In this embodiment, the photo-mask is patterned such that the light is incident on different areas of the alignment layer with different energy densities. Advantageously, each region of the alignment layer irradiated with a different energy density provides a different out-of-plane tilt angle in the overlying region of the liquid crystal polymer coated thereon. Accordingly, a hologram having a plurality of tilt-angles between zero and ninety degrees is easily formed with precision. As a result, relatively complex hologram structures are easily designed for a wide range of applications. In addition, since the liquid crystal polymer film is coated on a single substrate and patterned without etching and/or molding, the resulting holograms are flat and can be provided at low cost.
The instant invention also relates to diffractive optical elements formed using these non-etched and flat (NEF) holograms, wherein the liquid crystal (LC) out-of-plane tilt varies with transverse spatial coordinate in a predetermined manner. In one embodiment, the resulting NEF thin diffractive optical element has the LC director in each pixel of the hologram aligned along a given azimuthal plane. The plane containing the LC director distribution is also the tilt plane. Only light rays polarized along the tilt plane are affected by the variable amount of retardance encoded continuously or in a pixelated manner. The variable amount of retardance is a manifestation of variable optical path length modulation as a function of transverse spatial coordinate. Conversely, the light rays polarized along a direction orthogonal to the tilt plane sample only the ordinary index of refraction regardless of the LC direct tilt. The variable optical path length modulation is absent and this orthogonal polarization essentially experiences a zeroth-order grating. In other words, these high-efficiency gratings are polarization-selective. For a first linear polarization, the incident light rays are allowed to diffract to non-zeroth order locations while for a second orthogonal linear polarization, the incident light rays are not diffracted and their light energy is preserved within the zeroth diffraction order.
The instant invention is also related to the use of the NEF diffraction gratings and/or holograms in various applications.
In accordance with one aspect of the instant invention there is provided a polarization-selective diffractive optical element comprising: a substrate; an alignment layer disposed on the substrate; and a liquid crystal polymer film disposed on the alignment layer, the liquid crystal polymer film including a plurality of liquid crystal directors aligned parallel to a first plane, the first plane perpendicular to a surface of the liquid crystal polymer film, an out-of-plane tilt of the plurality of liquid crystal directors varying with transverse spatial coordinate in a predetermined pattern, the predetermined pattern selected such that the liquid crystal polymer film forms a polarization-selective phase hologram, whereby linearly polarized light having a first polarization is transmitted through first and second spatially distinct regions of the liquid crystal polymer film with a relative phase delay to provide a non-zeroth order diffraction output, and linearly polarized light having a second polarization is transmitted through the first and second spatially distinct regions with substantially zero relative phase delay to provide a zeroth order diffraction output, the first polarization parallel to the first plane, the second polarization orthogonal to the first polarization, the first region including a first liquid crystal director, the second region including a second liquid crystal director, the first and second liquid crystal directors having different out-of-plane tilts.
In accordance with another aspect of the instant invention there is provided a method of fabricating a polarization-selective diffractive optical element comprising: irradiating an alignment layer at oblique angle through a photo-mask with linearly polarized UV light; coating a liquid crystal layer on the irradiated alignment layer, the liquid crystal layer including a liquid crystal polymer precursor; irradiating the liquid crystal layer to form a liquid crystal polymer film, the liquid crystal polymer film including a plurality of liquid crystal directors aligned parallel to a first plane, the first plane perpendicular to a surface of the liquid crystal polymer film, an out-of-plane tilt of the plurality of liquid crystal directors varying with transverse spatial coordinate in a predetermined pattern, the predetermined pattern selected such that the liquid crystal polymer film forms a polarization-selective phase hologram, whereby linearly polarized light having a first polarization is transmitted through first and second spatially distinct regions of the liquid crystal polymer film with a relative phase delay to provide a non-zeroth order diffraction output, and linearly polarized light having a second polarization is transmitted through the first and second spatially distinct regions with substantially zero relative phase delay to provide a zeroth order diffraction output, the first polarization parallel to the first plane, the second polarization orthogonal to the first polarization, the first region including a first liquid crystal director, the second region including a second liquid crystal director, the first and second liquid crystal directors having different out-of-plane tilts.
In accordance with another aspect of the instant invention there is provided a polarization-selective diffractive optical element comprising: a substrate; a liquid crystal layer supported by the substrate in the form of a thin planar film having an array of pixel regions that have been encoded with a finite number of differing liquid crystal director alignments, wherein the liquid crystal director alignment in each pixel region is substantially uniform and permanent throughout the pixel, wherein the liquid crystal director alignment in each pixel region lies in a common plane perpendicular to a surface of the substrate in order to impart a phase delay to linearly polarized light incident on the array that is polarized parallel to the said plane of the liquid crystal directors and to have substantially no phase delay effect on linearly polarized light incident on the array that is polarized perpendicular to the plane of the liquid crystal directors, and wherein an arrangement of phase delays in the pixel array, pixel size, and pixel shape, are predetermined so that the liquid crystal layer provides non-zeroth order diffractive output for light polarized parallel to the plane of the liquid crystal directors and zeroth-order diffractive output for light polarized perpendicular to the plane of the liquid crystal directors.
In accordance with another aspect of the instant invention there is provide an optical pick-up unit comprising: a light source for emitting linearly polarized light having a first polarization; a collimating lens for collimating the linearly polarized light; an objective lens for focusing the collimated linearly polarized light onto an optical disc; a quarter-wave plate disposed between the collimating lens and the objective lens for providing quarter-wave retardance such that light reflected from the optical disc is transmitted towards the first lens as linearly polarized light having a second polarization, the second polarization orthogonal to the first polarization; and a polarization-selective diffractive optical element disposed between the collimating lens and the quarter-wave plate, the polarization-selective diffractive optical element including a substrate, an alignment layer disposed on the substrate, and a liquid crystal polymer film disposed on the alignment layer, the liquid crystal polymer film including a plurality of liquid crystal directors aligned parallel to a first plane, the first plane perpendicular to a surface of the liquid crystal polymer film, an out-of-plane tilt of the plurality of liquid crystal directors varying with transverse spatial coordinate in a predetermined pattern, the predetermined pattern selected such that the liquid crystal polymer film forms a polarization-selective phase hologram, wherein the polarization-selective diffractive optical element is disposed such that the first polarization is polarized perpendicular to the first plane and such that the polarization-selective phase hologram provides zero order diffraction for the linearly polarized light having the first polarization and non-zeroth order diffraction for the linearly polarized light having the second polarization, the non-zeroth order diffraction providing a beam deflection sufficient to redirect the linearly polarized light having the second polarization away from the light source and towards a detector.
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
a is a side-view of index indicatrix projection of a prior art LC hologram with azimuthal angle distribution;
b is a plan-view of the LC hologram shown in
a is a side-view of index indicatrix of an LC hologram with polar angle distribution in accordance with one embodiment of the present invention;
b is a plan-view of the LC hologram shown in
c is a plan-view of director orientations of an LC hologram with polar angle distribution wherein the tilt-plane does not coincide with the grating vector;
a illustrates a spatial phase profile of a binary LC grating with σ=±½ fractional order where the dark/bright stripes represent two LC polar angle tilts having an optical path difference (OPD) of π phase;
b illustrates a spatial phase profile of a binary hologram for a symmetric spot array generator, where σ=±½ and τ=±½ fractional order;
c illustrates a spatial phase profile of a binary hologram for a non-equal spacing spot array generator, where σ=±⅛, τ=±⅜ fractional order;
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
A prior-art thin liquid crystal (LC) hologram structure is illustrated in
In operation, a light ray incident along the Z-axis 20 is spatially sampled by the hologram, wherein the spatial phase encoding causes the beam to be steered at an angle 22 as output ray 21. It is noted that, depending on the hologram design, other diffraction orders, in addition to 21 may also be present at the output. The output may also contain the zeroth order (undiffracted) light, as a result of diffraction inefficiency.
A key feature of this prior-art LC hologram is that all the pixels are configured as either A-plates (i.e., an optical retardation element having its extraordinary axis oriented parallel to the plane of the layer) or O-plates (i.e., an optical retardation element having its extraordinary axis oriented obliquely to the plane of the layer), with variable LC director azimuthal orientations. In other words, there is no variation in the out-of-plane tilt of the LC directors. Referring to FIG. 1b, the variation in LC director azimuthal orientation across several pixels is shown. The four discrete pixel states, 11, 12, 13 and 14, have their LC directors aligned approximately at 0, 45, 90 and 135 degrees, respectively, relative to the hologram vector 25.
Note that the hologram configuration illustrated in
Referring to
In operation, X-polarized input light 50 incident along the Z-axis is steered to the main diffraction order 51 with a deflection angle of 52. It is noted that, depending on the hologram design, other diffraction orders in addition to 51 may also be present at the output. The output may also contain the zeroth order (undiffracted) light, as a result of diffraction inefficiency. With the orthogonal linear polarization input (for example Y-polarization), the LC hologram 30 presents no optical path length modulation. This light is not diffracted and is contained in the zeroth-order output. In other words, by configuring the LC hologram as an array of variable-tilt encoded pixels, the thin hologram is made polarization-selective. With one linear polarization, the hologram diffracts. With the orthogonal linear polarization, the hologram is highly transparent.
Referring to
Referring to
Referring to
In operation, the light source 71 provides LPUV light at an oblique angle to the surface of the substrate 66. In this embodiment, the light source is shown to be tilted relative to the horizontal substrate. In other embodiments, the substrate is tilted relative to the light source. The non-normal LPUV light incidence and its energy density dose induce a change in the alignment layer 67 that causes the LC director in a subsequently deposited LCP pre-cursor layer to be aligned at an oblique angle (tilted out of the plane of the substrate at some azimuthal angle). In this embodiment, the UV polarizer 73 is oriented to transmit, with high transmission, UV light polarized parallel to the plane of drawing (e.g., which is the plane of incidence). Depending on the chemistry of the LPP material, this configuration will typically result in the LC director of the subsequently deposited LCP layer to be aligned in an azimuthal plane that is parallel or orthogonal to the LPUV plane of incidence. The actual out-of-plane tilt of the LC director is dependent on the LPUV energy density dose delivered to the LPP alignment layer 67. Since the photo-mask 75 provides various energy densities to the alignment layer 67 in a predetermined pattern a spatially variable tilt LCP film, which has variable in-plane retardance, results. Although the out-of-plane tilt of the LC director varies in a predetermined manner across the film, the azimuthal angle of the LC directors is constant as for example, illustrated in
Note that this fabrication technique has been described with reference to a LCP precursor, which is preferably cross-linked with a subsequent UV irradiation to convert it to LCP. In general, the LCP layer may be formed using any of the LPP and liquid crystalline compounds known in the art, the latter of which may be polymerized and/or cross-linked with UV irradiation and/or thermally. For example in one embodiment, the LPP layer is formed by spin-coating a 2 wt % solution of a LPP in cyclopentanone on a glass substrate (e.g., for 60 seconds at 3000 RPM) to obtain a 50 nm thick alignment layer. In other embodiments, the LPP layers are formed using another coating method such as wire-coating, gravur-coating, slot-coating, etc. LPP layers, which often include cinnamic acid derivatives and/or ferulic acid derivatives, are well known in the art. In accordance with the instant invention, the LPP layer will be of the type to generate an out-of-plane tilt in the subsequently applied LC or LCP layers. Various compounds suitable for forming the LPP layer are available from Rolic (Allschwil, CH). In one embodiment, the LPP coated glass is baked for a predetermined time (e.g., 5 minutes) at a predetermined temperature (e.g., 180 degrees) before being LPUV irradiated through the photo-mask. In one embodiment, the LPP is irradiated in a two step process. In the first step, the layer is exposed to linearly polarized light without the photo-mask (e.g., through a standard aperture, to set the lowest tilt-angle at all locations). In a second step, the layer is exposed to the linearly polarized light through the photo-mask (e.g., to set the higher tilt-angles at select locations corresponding to the transmitting areas of the photo-mask). In this embodiment, the total energy density (i.e. dose) delivered will be higher at those regions exposed in the first and second irradiation steps, as compared to those regions only exposed in the first irradiation step. In general, the required energy density and wavelength of illumination will be dependent on the LPP material. In general, the energy density will be typically between 30-300 mJ/cm2, while the wavelength range will be typically between 280 and 365 nm. In the embodiment shown above, the photo-mask is patterned to provide varying amounts of energy. In other embodiments, the photo-mask is moved relative to the substrate to provide the varying amounts of energy. In each case, the incident angle of LPUV will be typically between 20 and 60 degrees. As discussed above, the irradiated LPP layer is used as an orientation layer for the subsequently coated LCP layer. In one embodiment, the LCP layer is formed from liquid crystalline material that includes a liquid crystal polymer precursor. LCP precursor materials, which for example may include a cross-linkable diacrylate nematic liquid crystalline compound, are well known in the art. In accordance with the instant invention, the LCP material will be of the type that will appropriately respond to the tilt inducing LPP layer. Various LCP precursor compounds suitable for forming the LCP layer are available from Rolic (Allschwil, CH). In one embodiment the LCP precursor layer is spin-coated on the LPP layer as a 15 wt % solution in anisole. In other embodiments, the LCP layers are formed using another coating method such as wire-coating, gravur-coating, slot-coating, etc. The resulting LLP/LCP device is then typically baked (i.e annealed) for a predetermined time to promote good alignment of the LCP to the LPP alignment layer. Advantageously, the subsequent photochemical cross-linking of the LCP layer is believed to provide improved reliability under high power illumination and short wavelength laser exposure.
An example of a response curve of LPUV exposure dose for a LPP/LCP system is shown in
In general, the photo-mask 75 will be patterned in dependence upon the intended application. In one embodiment, the photo-mask 75 is patterned to provide varying energy densities to the alignment layer 67 in a pixelated manner. In other embodiments, the photo-mask 75 is patterned to provide varying energy densities to the alignment layer 67 in a continuously graded manner. In one embodiment, the pixels are periodic (e.g., at regular intervals). In another embodiment, the pixels are non-periodic (e.g., random or in a predetermined pattern). Advantageously, the use of the photo-mask 75 allows the LCP layer to be patterned with a large number of phase profile levels and with increased precision. In one embodiment, the photo-mask 75 is patterned to provide two levels of phase profile. In another embodiment, the photo-mask 75 is patterned to provide more than two levels of phase profile. In general, most applications will require at least 4 levels of phase profile in order provide reasonable diffraction efficiency. The level of phase profile on diffraction efficiency is described below.
The simplest thin hologram is a regular grating, where the grating period has as many pixels as there are distinct phase levels. A phase-only grating is also called a kinoform. The diffraction expression predicts that a m-level grating produces p-order diffraction output with an efficiency, ηpm, of
where sinc(x) is sin(x)/x, sinc(0)=1, and p= . . . −2m+1, −m+1, 1, m+1, 2m−1, . . . .
The p-order diffracted angle is governed by,
where λ is the wavelength of illumination and Λ is the grating period (i.e., the pitch). Taking a small angle approximation (e.g., sin(θ)˜θ) and a Fourier transform lens of focal length f,
where Δx is the spatial translation of the diffracted output, and w is the pixel pitch, the expression above can be generalized as,
for 1D and 2D hologram replay, respectively, where (σ,τ) represents the fractional hologram main diffraction order location within the zeroth-order replication region, and fλ/w is the physical size centered at the optical axis (e.g., see K. L. Tan et al., “Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A, 18(1), pp. 205-215, 2001). The fractional orders lie within ±½ replication region. In this notation, the spatial sampling and replication (i.e., artifacts of hologram recording device and hologram replay) is decoupled from the hologram generation. For each grating recording, unless all m level phase steps are present in the grating and the total available phase range is 2π*(m−1)/m, and each encoding cell has 100% pixel-fill duty cycle ratio, the diffraction efficiency of the first replay order will be lower than predicted in eq. (1).
Assuming that the LC hologram recording and replay operation is idealized (lossless), the ideal first order diffraction efficiencies for several phase-only gratings are given as follows:
m=2, η1=40.5%, m=4, η1=81.1%, m=8, η1=95.0%, m=12, η1=97.7% and m=16, η1=98.7 (5)
Accordingly, for a highly efficient hologram replay, the number of distinct phase levels should be greater than 8.
A four-level phase-only hologram is illustrated in
where ne(λ) and no(λ) are the dispersion of the extraordinary and ordinary indices of the uniaxial material. In terms of advancing phase, relative to an A-plate aligned pixel (θt=0), Eq. (6) gives a non-linear increase of phase ramp with increasing of out-of-plane tilt. The phase difference relative to an A-plate configured pixel (i.e., na(θt;λ)−ne(λ)) is plotted in
Referring to
One application of a polarization-selective hologram in accordance with one embodiment of the instant invention is in an optical pick-up unit (OPU). For example, consider the prior art OPU system illustrated in
In operation, the main beam in each of the LD sources is steered along the common path 180 towards the information layer (IL) within the disc media 150. Prior to reaching the achromatic quarter-waveplate (QWP) 145, the beam is substantially linearly polarized. The achromatic QWP 145 transforms the linear polarization (LP) into circular polarization (CP), the handedness of which is dependent on the orientation of the optic axis of the achromatic QWP 145 (e.g., for a given S- or P-polarization input). In this example, where ‘S’ polarization is input to the achromatic QWP 145, left-handed circular polarization will result if the optic axis (i.e., slow-axis) of the achromatic QWP 145 is aligned at 45° counter clockwise (CCW) with respect to the P-plane of the PBC (e.g., with the assumption of intuitive RH-XYZ coordinate system while looking at the beam coming to the observer). When the rotating disc media 150 is a pre-recorded compact disc (CD) or digital versatile disc (DVD), where there is a physical indentation of a recorded pit, the optical path length difference between a pit and its surrounding “land”, at ⅙ to ¼ wave, causes destructive interference (e.g., at least partial) and reduces the light detected by the main photodiode 170 positioned at the second port of the PBC cube array 130. In the absence of a pit, there is no destructive interference and the light will be effectively transformed by the achromatic QWP 145, upon double-passing there through, from the initially S-polarization to P-polarization, such that substantially the same light power returns towards the PBC cube array 130.
When the rotating disc medium 150 includes more than one information layer per single side of disc, such as a DVD dual-layer (DL) disc, the separation between the two IL layers is typically between 20-30 μm in order to reduce coherent crosstalk when accessing the disc. Although the objective lens 161 is readily adjusted to focus onto the required IL depth, this refocusing causes spherical aberrations. For the DVD legacy system with an objective lens having about 0.6 numerical aperture (NA) and utilizing 650 nm of illumination wavelength, the change in IL depth may not be critical. However, in other DL formats (e.g., Blu-ray (BD) and high definition (HD)-DVD), the corresponding increase in NA (e.g., 0.85 NA for BD) and decrease in wavelength of illumination (e.g., approximately 405 nm) causes spherical aberrations of roughly 200-300 mλ when the high NA objective lens is refocused onto a second IL depth (e.g., for dual-layer disc format having an approximately 20 μm spacer layer with ˜1.5 index of refraction). There are various ways to reduce this aberration. For example, it is common to mechanically adjust the elements in a compound objective lens and/or adjusting the position of the collimation lens to alter the vergence of the entrance beam to the objective lens. Alternatively, various non-mechanical aberration correction schemes have been proposed.
Referring to
In operation, the beam that is deflected 90-degrees by the PBC 131 is S-polarized with respect to the PBC hypotenuse plane. This beam is passed through the active LC cell 210 such that one of the two orthogonal linear polarizations is output (e.g., S-polarization and P-polarization with respect to the PBC hypotenuse (also parallel to Y-axis and X-axis, respectively)). Depending on the LC mode of operation, the electrical driving state (on or off) for producing a given output (for example S-polarization shown in
In
When the objective lens is at the nominal focus (e.g., to be focussed on the inner information layer 154 at depth ˜100 μm), the LC cell 210 transmits P-polarized light (not shown) that passes through the quarter waveplate 145 and is reflected back and focussed on the detector 170 via lens 163. When reading/writing to the outer information layer 153 (e.g., at ˜80 μm depth), the objective lens is refocused. Refocusing without changing the vergence of the beam coming to the objective lens causes spherical aberrations. In order to reduce the spherical aberrations, the LC cell 210 is used to transmit S-polarization when the focal position is changed from the nominal value. The S-polarization samples the no index in the phase mask 220, to produce the desired wavefront.
Note that the phase mask 220 is a surface-relief structure (SRS) including a series of annular zones. For example, consider the prior art phase mask 250 illustrated in
Referring again to
Unfortunately, since the phase mask 220 is typically fabricated by etching a birefringent element, it is generally considered to be a relatively expensive optical element. In accordance with one embodiment of the instant invention, a photo-cured LCP layer encoded with a predetermined phase profile (e.g., formed by patterning the effective in-plane birefringence using the oblique photo-alignment technique described with reference to
Referring to
In operation, a collimated beam of light is coupled as S-polarization 231 into the common path through the reflection port of a PBC 131. The LC switch 210 converts the S-polarization to the orthogonal P-polarization 232 (e.g., with respect to the PBC hypotenuse). This P-polarization is parallel to the plane of drawing and is also parallel to the uniform azimuthal orientation of the thin NEF LC phase mask 310. The NEF phase mask has a variable LC out-of-plane tilt, as a function of the pupil position. The effective extraordinary index changes with LC director tilt. Hence, the optical path length is tailored by configuring the LC tilt. In the active phase correction case, the P-polarization samples the phase of each encoding pixel differently, in a manner required to create the complementary phase profiles associated to changing the nominal focal point of the objective lens, when a second information layer is to be accessed, at a different depth than the first information layer where the objective lens has been configured aberration-free. In the non-active phase correction case with the second linear polarization output from the LC cell (not shown), the beam samples the no index regardless of the tilt within each encoding pixel. The LC hologram is a transparent zeroth-order grating and no phase preconditioning of the beam is effected.
This preconditioned beam then traverses a quarter-waveplate 145 which converts the first linear polarization 232 into a first circular polarization 233. Upon reflection at the information layer, a second (opposite handedness) circular polarization 234 is obtained. This beam is again converted to the second linear polarization 235 by the quarter-waveplate 145. The phase correction is active in the first pass but the phase correction is inactive in the second pass and vice versa, depending on the LC cell switching. The second pass phase correction does not matter since the beam is not refocused tightly on the way to the photodetector.
The LC director tilt profile across the pupil coordinate is shown in
In the embodiments described with reference to
In other embodiments, a polarization-selective hologram in accordance with the instant invention is used as a beam steering element in an OPU. For example, consider the prior art OPU system 400 illustrated in
The OPU system 400 includes a co-packaged laser diode and detector module 305. The laser diode section of the module 305 launches a divergent beam towards a collimating lens 162, which produces a parallel beam of a first linear polarization 231 (i.e., which for, illustrative purposes shown to be orthogonal to the plane of drawing). The linear polarization 231 is converted to a first circular polarization 233 upon passing through a quarter-waveplate 145. For a preferred cholesteric helical twist having the opposite handedness as the circular polarization input, this circular polarization 233 is not impacted by the periodic grating 410. The beam is then focused on the disc media 150 by a high NA objective lens 161. More specifically, the beam is focussed on an information layer 153 in the disc, which is covered with a protective layer 152 and disposed on a substrate 151. Reflection off the disc changes the handedness of the circular polarization such that the reflected beam 234 has a second circular polarization that is opposite to the first. Since this second circular polarization has the same handedness as the cholesteric helical twist, the beam is steered by the cholesteric/isotropic periodic grating 410 on return pass. When the beam is transmitted through the quarter-waveplate 145 for a second time, and a second linear polarization results 236 (e.g., which is orthogonal to the first linear polarization). Depending on the grating pitch and wavelength of operation, the return beam is deflected by an angle 320, according to the grating equation (2). The angular deflection is converted to spatial offset by lens 162, resulting in a beam offset Δx 321.
In other words, the polarization-selective periodic grating 410 functions as a holographic beam splitter, which in a forward propagating direction does not provide beam steering so as to preserve beam energy transmitted to the disc 150, and in a backward propagating direction provides beams steering so as to separate the information-bearing beam from the input beam. While this scheme is promising, there are several drawbacks related to the polarization-selective periodic grating 410. First, the wavelength-selectivity of the periodic grating 410 means that only one wavelength of a multiple-wavelength OPU system (e.g., the BD/DVD/CD system illustrated in
Referring to
In operation, a co-packaged laser diode and detector module 305 launches a divergent beam towards a collimating lens 162, which produces a parallel beam of a first linear polarization 231 (e.g., which for illustrative purposes is shown orthogonal to the plane of drawing). This linear polarization 231 is orthogonal to the tilt-plane of the polarization-selective LC hologram 510. Since the LC hologram is transparent to this linear polarization, the transmitted light is contained in the zeroth order and is converted to a first circular polarization 233 upon passing through a quarter-waveplate 145. The beam is then focused on the disc media 150 by high numerical aperture (NA) objective lens 161. Reflection at the disc 150 changes the handedness of the circular polarization and upon return, beam 234 has the second (opposite) handedness of beam 233. The second circular polarization then passes through the quarter-waveplate 145 for a second time to provide a second linear polarization 236. This second linear polarization is steered by the polarization-selective LC periodic grating 510 on return pass. Depending on the grating pitch and wavelength of operation, the return beam is deflected by an angle 320, according to the grating equation (2). The angular deflection is converted to spatial offset by lens 162, resulting in a beam offset Δx 321.
In contrast to the prior-art circular-polarization-selective grating 410 discussed above, the polarization-selective LC periodic grating 510 is selectively a hologram and a transparent device, depending on the state of linear polarization input. In contrast to the narrow-band characteristics of a near band-edge cholesteric alternating with isotropic-filling grating 410, the polarization-selective LC periodic grating 510 is operational over a relatively broad band.
As an example, simple grating structures intending to steer light to only the first diffraction order for three discrete wavelength of Blu-ray Disc(BD) or High-definition (HD)-DVD/DVD/CD OPU system is illustrated in
In US Pat. Appl. No. 2006/0239171, the overall thickness of their binary cholesteric/isotropic grating was approximately 10 μm (e.g., which is similar to the above described 5.9 μm). However, the symmetric replay meant that the first order DE is at best 40%. In some other wavelength bands, the reported theoretical DE is less than 10%, due to the phase encoding inefficiency of the dye-based material. With the low circular birefringence in the prior-art techniques, coupled with the requirement to perform photolithography and etching, the aspect-ratio constraint will not permit more than several phase steps. Furthermore, a single grating fabricated this way will not permit simultaneous steering of multiple channels because the circular birefringence is derived close to the absorption/reflection band edges.
Advantageously, the use of the polarization-selective hologram 510 resolves the above-described problems with the prior art (e.g., inadequate phase modulation, severe aspect ratio, low diffraction efficiency, lack of multiple channel operation, etching of material, etc.).
Referring to
Referring to
where Φ is the total phase range available for encoding up to m levels of phase steps, sinc(x)=sin(x)/x and sinc(0)=1. For a binary phase hologram, the DC undiffracted light fraction is cos2(Φ/2). A binary hologram may be the most suitable for tracking purpose in an OPU, where the symmetric replay orders may be useful in detecting geometric skewing and most of the light has to be contained in the zeroth order (i.e., where the diffracted orders do not have to be efficient). For example, if 90% of the light is to be retained as the zeroth order, a binary grating only has to have a phase modulation of ˜37 degrees. Under ideal encoding condition, including equal pixel widths of 0 and 37-deg, phase steps, the ±1st orders can be expected to yield about 4% light output for tracking purpose. In other embodiments, the polarization-selective LC hologram may be configured to replay the signal beam to the first diffraction order and the tracking beams to other replay orders.
In the embodiments described above, the polarization-selective thin LC holograms provide a phase map for one linear polarization and appear transparent for the orthogonal linear polarization. For example, in one embodiment, the phase map is an aberration correcting non-periodic wavefront map. In another embodiment, the phase map is a periodic grating or hologram that provides beam steering. In these embodiments, the polarization-selective thin LC holograms are supported by a single substrate mounted separately in the corresponding OPU systems. As described above, it is also possible for the polarization-selective thin LC holograms to be supported by another optical element. For example, referring to
Referring to
In operation, a light beam incident parallel to the Z-axis 920 is spatially modulated by the encoded phase profile in 1010. The exiting beam deviates from the specular direction by a small angle. The beam is passed through the QWP 1120, which converts the linear polarization to a circular polarization. This beam then exits the assembly as 921 having an angle offset of 922.
Referring to
In operation, an incoming light beam 920 is transmitted through the device 1200 such that wavefront is sampled in the first pass towards the reflector, and a second time on its return from the reflector. Accordingly, the required phase range is half that of a transmissive LC grating device. The output beam 1221 is steered towards the angular direction having the denser pixels (i.e., pixels having A-plate or ne index of refraction within a grating period). For an identical LC hologram configuration (e.g., same pixel size, phase range, phase encoding at each pixel and wavelength of operation) as the transmissive LC grating device 500 illustrated in
In the embodiments described above, the NEF thin LC holograms function as linear polarization-selective beam steering devices. When configured as a single-spot high efficiency grating replay, the LC hologram transmits the ordinary wave unaffected and steers the extraordinary wave by a small angle. The angle offset is approximately the ratio of the wavelength and grating pitch length (eq. 2). Within the visible and NIR wavelength bands and with practical micron-size pixels, a 16-pixel grating can be configured to steer the main beam to about 2 degrees at >98% efficiency (sin−1(0.55/16) as steering angle). This quantum of walk-off angle is useful in many applications.
Referring to
In operation, an unpolarized light beam of light 1320 is incident on the left side of the device 1300. The unpolarized beam of light 1320 includes equal amounts of light polarized parallel to the LC tilt plane and light polarized orthogonal to the LC tilt plane, as indicated by 1321. As the unpolarized beam of light 1320 passes through the LC grating 1310, the linear polarization orthogonal to the LC tilt plane samples the o-wave index of the grating pixels and is transmitted unaffected. This o-beam exits as 1330 having a linear polarization perpendicular to the tilt plane 1331. On the other hand, the linear polarization parallel to the LC tilt plane samples the effective e-wave index of the grating pixels. The spatial phase profile of the grating 1310 creates a differential-phase wavefront, which steers the e-wave to non-zero output angles along a direction parallel to the grating vector plane. The e-wave 1340 exits the LC grating device 1300 having a linear polarization 1341 parallel to the tilt-plane. The steering angle is given by 1345. It is noted that in general the tilt-plane does not have to be parallel to the grating vector plane. The tilt-plane selects the diffracted linear polarization whereas the grating vector selects the plane of diffraction.
Notably, this single-stage LC hologram device 1300 is functionally equivalent to a prior-art Rochon polarizer made of two crystal wedges. A schematic diagram of a Rochon polarizer is shown
Another application of a polarization-selective hologram in accordance with one embodiment of the instant invention is as a beam-steering element in external cavity lasers. In external-cavity laser systems, a linear polarizer is often used to preferentially select the lasing polarization. The polarizer absorbs/reflects the unwanted polarization and allows the required polarization to continue to build up the round trip amplification before exiting the cavity. Organic absorptive polarizers often lack the reliability requirements for high power operation. A reflective type wiregrid based polarizer creates other issues such as grid cleaning and metal layer absorption.
Referring to
In operation, a diode-pump launches a light beam 1510 (e.g., λ=808 nm) into the laser crystal 1501 through the pump-light HT (high transmission) coating 1502. This light is absorbed by the laser crystal 1501, which causes an emission of the fundamental frequency light (e.g., λ=1064 nm). The emitted light propagates forward as light ray direction 1520 having a mixture of two orthogonal linear polarizations which are parallel to the plane of drawing 1521 and perpendicular to the plane of drawing 1522. The polarization-selective LC grating 1503 allows the o-wave (e.g., linear polarization perpendicular to the plane of drawing) to transmit through without deviation as beam 1530, while diffracting the e-wave (e.g., linear polarization parallel to the plane of drawing) as beam 1540 having small deflection 1545. The equivalent deflection angle in air, after the first pass through the LC grating, θ1, is sin−1(λ/Λ). Upon reflection from the high reflector 1506 at the fundament frequency light, the deflected beam travels at −θ1 to the system axis as beam 1550. This beam is again incident on the polarization-selective grating 1503, and is transmitted through as beam 1560 which is steered further from the system axis. This second pass beam maintains the linear polarization parallel to the plane of drawing 1561, at an equivalent deflection angle in air, sin(θ2)=sin(−θ1)−λ/Λ; sin(θ2)=−2λ/Λ. The beam that has passed the LC grating twice is reflected at the front facet reflector 1502 and propagates as beam 1570 at −θ2 with respect to the system axis towards the LC grating. This beam is again deflected a third time, giving 1580 and having a deflection angle 1585 given by sin(θ3)=sin(−θ2)+λ/Λ; sin(θ3)=3λ/Λ. It can be seen that the linear polarization parallel to the plane of drawing is deflected away from the optical system of the laser system with each transmission through the polarization-selective LC grating. As a result, light having this polarization is highly deviated from the gain segment of the laser crystal such that a coherent lasing action is not permitted. The linear polarization corresponding to the e-wave of the LC grating is suppressed in the laser system and the second harmonic light generation at this polarization is also suppressed. While the linear polarization parallel to the plane of drawing is progressively deflected away from the optical axis of the laser system, the linear polarization perpendicular to the plane of drawing is reflected multiple times along the principal axis as beam 1530. With each reflection of the front facet 1502 and the rear-facet 1506 reflectors, the amplitude of the fundament frequency light, polarized perpendicular to the plane of drawing is built up. Some of this fundamental frequency light is converted into its second harmonic light by the non-linear crystal 1505. The second harmonic light exits the laser via a high-transmission rear-facet coating 1506.
Advantageously, the NEF polarization-selective LC hologram works as a polarization discriminator in the external cavity laser by steering off the unwanted linear polarization. The linear polarization that is suppressed in the system can be chosen by the tilt-plane. The LC hologram is fully flat and aids integrating, handling, and cleaning. In this application, the functionality of the LC hologram is analogous to that of a Rochon polarizer (e.g., where one beam of the first linear polarization is undeflected while the orthogonal beam is diffracted slightly). For a laser system amplification, a very slight angle deflection with each round trip traversing is enough to decrease gain and result in no lasing action for the polarization that is deflected. In addition, the NEF polarization-selective LC grating has a large aperture and a relatively thin form-factor. Note that the grating vector-plane selection is less of importance in a radially-symmetric laser system.
In the above described embodiments, the NEF diffractive optical elements have been single-layer LC grating films, which for example have been used for aberration correction and holographic beam-splitting in OPU systems and lasing polarization selection in external-cavity lasers. In other embodiments, the NEF diffractive optical elements are formed from more than one LC grating layer.
Referring to
In operation, a light beam 1320 including both linear polarizations 1321 is split by LC grating 1310 as o-wave 1330 and e-wave 1340. The second LC grating 1610 placed after the first LC grating 1310 then steers the e-wave a second time, giving a compound deflection angle sin(θ)=2λ/Λ, where λ is the wavelength of illumination and A is the grating pitch. The e-wave output 1640 from the two-stage device has the linear polarization 1641 parallel to the plane of drawing, with the deflection angle 1645. The unaffected linear polarization perpendicular to the plane of drawing exits as beam 1630 with polarization 1631. This two-stage configuration may be useful if the LC grating thickness cannot be configured to provide a single-stage steering at the required angle of deflection.
Referring to
In operation, a light beam 1320 including both linear polarizations 1321 is split by LC grating 1310 as o-wave 1330 and e-wave 1340. The e-wave output from the first stage LC grating 1310 is deflected with an angle sin(θ)=λ/Λ and this becomes the angle of incidence in the second stage LC grating 1710. The e-wave output of the second stage hologram now steers the incoming beam by −sin−1(λ/Λ) which restores the input beam direction. However, due to the propagation at angle θ between stage 1 and stage 2 for a given distance l 1750 the beam undergoes a lateral translation Δx. This lateral translation 1751 is approximately given by Δx=l*tan(θ) in air. Accordingly, this two-stage device 1700 functions as a beam walk-off element or a beam displacer.
Accordingly, another application of a polarization-selective hologram in accordance with one embodiment of the instant invention is as a beam displacer in an optical circulator, isolator, optical low-pass filter, etc. Advantageously, the polarization-selective hologram, used as a walk-off device with parallel ordinary-ray (o-ray) and extraordinary-ray (e-ray) outputs, is fabricated by cascading two similar gratings. In particular, a first linear grating (1D) sets up a high-efficiency single-order grating replay such that the exiting beam propagates forwards at a characteristic deflection angle until a second, inverse signed angle steering 1D grating corrects for the non-normal beam angle. For a given grating geometry and depending on the gap between the two hologram stages, the lateral offset between the parallel o-ray and e-ray is set accordingly.
Referring to
Referring to
Each of the four dual-stage configurations 1600, 1700, 1800 and 1900 discussed above, the devices have been configured to have parallel grating vectors in stage one and stage two. In other embodiments, a dual-stage configuration having arbitrary first stage and second stage steering planes (dictated by the grating vectors) is provided. In this case, the LC tilt planes in the first and second gratings will be either parallel or perpendicular to accept both linear polarization inputs.
The two-stage LC holograms have been simulated with an RCWA [rigorous coupled-wave analysis, GSolver by Grating Solver Development Company, Allen, Tex., version 4.20b] program at λ=550 nm, by representing the LC grating as non-polarization-selective air/dielectric blazed grating having 16 phase pixels of 1 μm width each. The results are shown in
Referring to
Referring to
Δx=l*tan(sin−1(λ/(nΛ))), (9)
where l is the layer thickness of the inter-grating layer having an index of refraction n, λ is the wavelength of illumination, and Λ is the grating pitch.
Another application of the NEF diffractive optical elements of the instant invention is as a two-dimensional (2D) walk-off element in an optical low pass filter (OLPF). For example in one embodiment, multiple stages of a walk-off device similar to that shown in
When the polarization scrambler 2120 is a quarter-waveplate, the fast/slow axis of the quarter-waveplate (QWP) is aligned typically at ±45 degree with respect to the plane of drawing. The two beams 1730 and 1740 exiting the first walk-off LC grating device are converted to circular polarization by the QWP (i.e. there is equal amount of linear polarizations along any two orthogonal directions). It may be common to choose the tilt-plane to be either parallel (shown in
The beam walk-off pattern is shown as plot (a) in
In case of walk-off via 45-degree cut crystal plate and without the use of a polarization scrambler, the second stage walk-off may be arranged to have the e-wave axis at ±45 degree with respect to the first walk-off stage output. Each first stage walk-off output beam is resolved into half e-wave and half o-wave. The e-wave is further displaced along the ±45 degree diagonal, resulting a diamond shape walk-off pattern (e.g., see plot (b) in
In the case of the walk-off via polarization-selective LC gratings, the polarization scrambler stage may be omitted without sacrificing the ideal square walk-off pattern. The plan view of the two-stage walk-off OPLF with a quarter-waveplate polarization scrambler is depicted in
As discussed above, it is also possible to configure the OPLF without the intermediate polarization scrambler. This scheme is illustrated with reference to
In the embodiments of the instant invention described above, the NEF polarization-selective diffractive optical element provides a thin hologram element, operating within the paraxial diffraction limit, by judicially arranging the LC out-of-plane tilt across a transverse spatial coordinate in a predetermined manner. The resultant NEF thin hologram has the LC directors aligned homogeneously along a given azimuthal plane. The plane containing the LC director distribution is also the tilt plane. Only light rays polarized along the tilt plane are affected by the variable amount of retardance encoded continuously or in a pixelated manner. The variable amount of retardance is a manifestation of variable optical path length modulation as a function of transverse spatial coordinate. Conversely, light rays polarized along a direction orthogonal to the tilt-plane sees only the ordinary index of refraction regardless of LC director tilt. The variable optical path length modulation is absent and this orthogonal polarization essentially experiences a zeroth-order grating.
Advantageously, the polarization-selectivity of these NEF thin holograms is exploited in various applications that use linearly polarized light. Some applications related to the polarization-selectivity have been outlined, which include aberration compensation and holographic beam splitting in OPU systems, beam steering based polarization-selection in an external-cavity solid-state laser, and beam walk-off device in optical low-pass filter. Obviously, more applications can be identified with either a single-layer LC hologram or multiple-layer or multiple-stage LC holograms which are polarization-selective. The polarization selectivity is inherent in the LC device with a homogeneous azimuthal orientation. However, in some applications, the selectivity is deliberately turned off, for example by coupling two LC hologram layers with orthogonal tilt plane orientations. Further advantageously, the fabrication technique used to create the NEF diffractive optical elements allows for multi-level phase-only holograms to be recorded such that high diffraction efficiencies are obtained.
Yet another application of the NEF diffractive optical elements is as a variable magnitude birefringent compensator. For example, consider the prior art Babinet-Soleil compensator, which includes two birefringent crystal wedges (e.g., quartz) disposed adjacent to another birefringent plate of the orthogonal birefringent axis alignment. By mechanically translating one of the wedges, a variable amount of retardance is presented to the narrow-diameter probing beam.
A conventional Babinet-Soleil compensator is illustrated in
In accordance with an embodiment of the instant invention, a NEF diffractive optical element is used as a variable magnitude birefringent compensator. In particular, the LC out-of-plane director distribution is patterned to provide a precise and accurate variable magnitude birefringence. Referring to
Advantageously, this tunable retarder, which is obtained by continuously splaying the LC out-of-plane tilt as a function of linear position while maintaining a given azimuthal direction, provides variable retardance up to small multiples of lambda with appropriate selection of the device thickness.
Further advantageously, the large substrate handling capability of a non-etched, flat retarder technology allows for multiple retarder magnitude ramps to be patterned and exposed onto a large format substrate. At the wafer level, a grating/hologram type coarse resolution pattern is obtained. Each “period” within the large wafer substrate can be diced into a discrete variable retarder at singulation stage. In general, the slow/fast-axis of the monolithic variable retarder will be anchored homogeneously along a required azimuth, such as ±45 degree versus the rectangular geometry of the retarder. Although polarization selectivity is inherent this NEF diffractive optical element due to the homogeneous azimuthal orientation, in use, the probing beam typically will be small relative to the dimension of the variable retarder (e.g., 1 mm beam size versus 10 mm end-to-end translation range), such that the variable retarder will not necessarily function as a polarization-selective diffractive optical element.
In each of the above-described embodiments, the fabrication technique used to create the NEF diffractive optical elements only requires a single substrate, and thus produces thinner passive optical elements that are relatively inexpensive, and that are suitable for a wide range of applications. In comparison, prior art references U.S. Pat. No. 7,375,784 and U.S. Pat. No. 6,304,312 both require two transparent substrates, which cooperate to induce alignment of the liquid crystal in the relatively thick liquid crystal cell. In addition, these prior art fabrication techniques are not compatible with providing multi-level phase-only holograms. In contrast, the instant invention provides multi-level phase-only holograms having features that are 1 μm or smaller (e.g., when an array of variable optical path regions are provided in a predetermined manner). Notably, the fabrication techniques used to for the NEF diffractive optical elements do not require the traditional masked and etched processes that provides a surface relief structure (SRS). The fabrication techniques for the present invention also do not require the fabrication of Liquid Crystal cells as an intermediate step and no transparent electrodes for applying electrical pulses for LC alignment are needed. In addition, unlike absorption-based (e.g., intensity modulation) holograms, the resultant phase-only holograms can be made lossless. These passive phase-only LC holograms are also expected to yield higher diffraction efficiencies due to better control of the pixel-fill duty cycle ratio when compared to the actively switched LC hologram, where the SLM pixel array requires row/column addressing lines and pixel addressing circuitry.
Of course, the above embodiments have been provided as examples only. It will be appreciated by those of ordinary skill in the art that various modifications, alternate configurations, and/or equivalents will be employed without departing from the spirit and scope of the invention. For example, various periodic and non-periodic patterns can be used to form the polarization-selective phase holograms (e.g., used for beam steering). In some embodiments, these polarization-selective phase holograms have a pixelated phase profile. In other embodiments, the polarization selective phase holograms have a continuous phase profile. Accordingly, the scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
This application claims priority from U.S. Provisional Application No. 60/947,690, filed Jul. 3, 2007, Which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60947690 | Jul 2007 | US |