Non-integrating HIV-1 comprising mutant RT/IN proteins and the SARS-CoV-2 spike protein

Information

  • Patent Grant
  • 11129890
  • Patent Number
    11,129,890
  • Date Filed
    Tuesday, May 19, 2020
    4 years ago
  • Date Issued
    Tuesday, September 28, 2021
    3 years ago
Abstract
The present invention is directed to recombinant lentiviral particles that array the SARS-CoV-2 spike (S) protein on their surface (“SARS-CoV-2 S Protein Lentiviral Particles”), and that optionally comprise an additional copy of a polynucleotide encoding the SARS-CoV-2 spike (S) protein in their viral genome, and to methods for the production of such lentiviral particles. The invention particularly pertains to such SARS-CoV-2 S Protein Lentiviral Particles that have been engineered to be incapable of mediating the integration of their lentiviral genome into the chromosomes of infected cells and/or to be incapable of mediating the reverse transcription of their lentiviral genome. The present invention is also directed to “SARS-CoV-2 S Protein Lentiviral Vaccine” pharmaceutical compositions that comprise such SARS-CoV-2 S Protein Lentiviral Particles. The present invention is additionally directed to the use of such SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions for providing immunity to COVID-19 infection to humans and other mammals, either directly or as an inactivated form.
Description
REFERENCE TO SEQUENCE LISTING

This application includes one or more Sequence Listings pursuant to 37 C.F.R. 1.821 et seq., which are disclosed in computer-readable media (file name: 2650-0005US1_ST25.txt, created on May 18, 2020, and having a size of 206,750 bytes), which file is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present invention is directed to recombinant lentiviral particles that array the SARS-CoV-2 spike (S) protein on their surface (“SARS-CoV-2 S Protein Lentiviral Particles”), and that optionally comprise an additional copy of a polynucleotide encoding the SARS-CoV-2 spike (S) protein in their viral genome, and to methods for the production of such lentiviral particles. The invention particularly pertains to such SARS-CoV-2 S Protein Lentiviral Particles that have been engineered to be incapable of mediating the integration of their lentiviral genome into the chromosomes of infected cells and/or to be incapable of mediating the reverse transcription of their lentiviral genome. The present invention is also directed to “SARS-CoV-2 S Protein Lentiviral Vaccine” pharmaceutical compositions that comprise such SARS-CoV-2 S Protein Lentiviral Particles. The present invention is additionally directed to the use of such SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions for providing immunity to COVID-19 infection to humans and other mammals, either directly or as an inactivated form.


BACKGROUND OF THE INVENTION
I. Lentiviruses

Lentiviruses are members of the retroviridae family of viruses. They include primate and non-primate retroviruses (such as HIV and SIV (simian immunodeficiency virus), FIV (feline immunodeficiency virus), BIV (bovine immunodeficiency virus), CAEV (caprine arthritis-encephalitis virus), EIAV (equine infectious anemia virus) and visnavirus) (Escors, D. et al. (2011) “Lentiviral Vectors In Gene Therapy: Their Current Status And Future Potential,” Arch. Immunol. Ther. Exp. (Warsz.) 58(2):107-119). The most widely studied lentivirus is HIV-1, the causative agent of AIDS (Danforth, K. et al. (2017) “Global Mortality and Morbidity of HIV/AIDS,” In: MAJOR INFECTIOUS DISEASES, Vol. 6 (Holmes, K. K. et al. (Eds.)) The World Bank, Washington, D.C.; Engelman, A. et al. (2012) “The Structural Biology Of HIV-1: Mechanistic And Therapeutic Insights,” Nat. Rev. Microbiol. 10(4):279-290; Freed, E. O. (2015) “HIV-1 Assembly, Release And Maturation,” Nat. Rev. Microbiol. 13(8):484-496; Soliman, M. et al. (2017) “Mechanisms of HIV-1 Control,” Curr. HIV/AIDS Rep. 14(3):101-109; Elsinger, R. W. et al. (2018) “Ending the HIV/AIDS Pandemic,” Emerg. Infect. dis. 24(3):413-416).


Although wildtype lentiviruses are capable of causing disease, it has been possible to modify their genomes to produce lentiviral vectors and vaccines that have proven to be safe and effective in the laboratory and therapeutically (Keeler, A. M. et al. (2017) “Gene Therapy 2017: Progress and Future Directions,” Clin. Trasl. Sci. 10:242-248; Milone, M. C. et al. (2018) “Clinical Use of Lentiviral Vectors,” Leukemia 32:1529-1541; Escors, D. et al. (2011) “Lentiviral Vectors In Gene Therapy: Their Current Status And Future Potential,” Arch. Immunol. Ther. Exp. (Warsz.) 58(2):107-119; Schambach, A. et al. (2013) “Biosafety Features of Lentiviral Vectors,” Human Gene Ther. 24:132-142; Shirley, J. L. et al. (2020) “Immune Responses to Viral Gene Therapy Vectors,” Molec. Ther. 28(3):709-722). Lentiviruses have thus evolved into highly efficient vehicles for in vivo gene delivery (Chen, S.-H. et al. (2019) “Overview: Recombinant Viral Vectors as Neuroscience Tools,” Curr. Protoc. Neurosci. 87(1):e67:1-16; Lundstrom, K. (2019) “RNA Viruses as Tools in Gene Therapy and Vaccine Development.” Genes (Basel) 10(3):1-24).


The wildtype lentiviral genome consists of two linear, single-stranded, positive-sense RNA molecules of 9.75 kb, whose ends are flanked by long terminal repeated sequences (LTR). These 5′ and 3′ LTR sequences are required for viral transcription, reverse transcription, and integration of the viral genome. The lentiviral genome comprises at least nine genes: gag, pol, env, tat, rev, vpu, vpr, vif and nef (Hope, T. J. et al. (2000) “Structure, Expression, and Regulation of the HIV Genome,” HIV InSite Knowledge Base Chapter, pages 1-12). The basic structure of the lentivirus genome is shown in FIG. 1.


The lentiviral LTRs are composed of three subregions: U3 (for unique 3′ sequence), R (for repeated sequence), and U5 (for unique 5′ sequence) (Starcich, B. et al. (1985) “Characterization Of Long Terminal Repeat Sequences Of HTLV-III,” Science 227(4686):538-540). The U3 region is approximately 450-basepairs (bp) in length and is located at the 5′ end of each LTR. The U3 region contains cis-acting binding sites for cellular transcription factors. The R region of each LTR contains a 100-bp repeated sequence. Transcription begins at the first base of the R region and polyadenylation occurs immediately after the last base of R. The U5 region is 180-bp in length and contains the Tat binding site and packaging sequences of HIV. The 3′ end of the U5 region is defined by the location of a lysyl tRNA binding site. The lysyl tRNA acts as a primer for the reverse transcription of the lentivirus.


Transcription of the gag gene occurs in two reading frames at a ratio of approximately 20:1 due to a ribosomal frame-shifting event that is triggered by a specific cis-acting RNA motif in the distal region of the gag RNA. The more abundant gag transcript encodes a 55 kD Gag precursor protein that is cleaved into four smaller proteins, designated MA (matrix (p17)), CA (capsid (p24)), NC (nucleocapsid (p9)), and p6, by a virally encoded protease (p10; PRO)) (Gottlinger, H. G. et al. (1989) “Role Of Capsid Precursor Processing And Myristoylation In Morphogenesis And Infectivity Of Human Immunodeficiency Virus Type 1,” Proc. Natl. Acad. Sci. (U.S.A.) 86:5781-5785. The frame-shifting causes the less abundant gag transcript to include pol gene sequences, so that a 160 kD Gag-Pol fusion protein is expressed. This fusion protein is cleaved into Gag and Pol proteins by the viral protease (p10 (PRO)). The Pol cleavage product is further digested to yield the viral protease (p10 (PRO)), a reverse transcriptase (p50; RT) that is needed for the reverse transcription of the genomic RNA into DNA, an RNase H (p15), and an integrase (p31, IN)) that is needed to effect the integration of the lentivirus into the chromosome of infected cells. The env gene encodes 160 kD protein that is cleaved by cellular enzymes into a gp120 surface glycoprotein (SU) and a gp41 transmembrane protein (TM). These proteins associate with one another to form trimeric structures on the surface of the mature lentivirus. Tat encodes a transcriptional trans-activator critical for activating viral transcription. Rev encodes a 13-kD sequence-specific RNA binding protein that regulates the splicing and export of viral transcripts (Pollard, V. W. et al. (1998) “The HIV-1 Rev Protein,” Annu. Rev. Microbiol. 52:491-532). The rev and tat genes both contain untranscribed intervening sequences. Tat and rev are the first proteins to be synthesized following integration and are required to accelerate the production of viral mRNAs. The vpu, vpr, vif and nef genes encode accessory proteins, and are not required for viral replication in in vitro systems (Klimatcheva, E. et al. (1999) “Lentiviral Vectors And Gene Therapy,” Front. Biosci. 4:D481-D496). Among these gene, vpr is a virion-associated protein present only in primate lentiviruses. Vpr can act as a weak transcriptional trans-activator of the LTRs and participates in enabling infection of non-dividing cells (Heinzinger, N. K. et al. (1994) “The vpr Protein Of Human Immunodeficiency Virus Type 1 Influences Nuclear Localization Of Viral Nucleic Acids In Nondividing Host Cells,” Proc. Natl. Acad. Sci. (U.S.A.) 91(15):7311-7315). The 16-kD Vpu polypeptide is an integral membrane phosphoprotein that is primarily localized in the internal membranes of the cell. It functions to down-modulate CD4 and to enhance virion release (Willey, R. L. et al. (1992) “Human Immunodeficiency Virus Type 1 Vpu Protein Induces Rapid Degradation Of CD4,” J. Virol. 66(12):7193-7200; Schubert, U. et al. (1996) “The Two Biological Activities Of Human Immunodeficiency Virus Type 1 Vpu Protein Involve Two Separable Structural Domains,” J. Virol. 70(2):809-819). Nef acts post-translationally to decrease the cell-surface expression of CD4, the primary receptor for HIV (Foster, J. L. et al. (2011) “Mechanisms Of HIV-1 Nef Function And Intracellular Signaling,” J. Neuroimmune Pharmacol. 6(2):230-246; Garcia, J. V. et al. (1992) “Downregulation of Cell Surface CD4 by nef,” Res. Virol. 143(1):52-55). Vif is a 23-kD polypeptide that is essential for the replication of HIV in peripheral blood lymphocytes, macrophages, and certain cell lines (Strebel, K. et al. (1987) “The HIV ‘A’ (sor) Gene Product Is Essential For Virus Infectivity,” Nature 328(6132):728-730).


Located between the 5′-LTR and the gag gene is ψ, which is a region that serves as a signal for genome dimerization and packaging. In addition to these major genes, the viral genome also contains regulatory genes (tat and rev) as well as accessory genes (e.g., vif, vpr, vpu, p7, and nef).


Lentiviral particles are highly structured. FIG. 2 illustrates the structure of a wildtype lentivirus particle. The particle is composed of a central core that contains two copies of the viral RNA genome complexed with the nucleocapsid proteins. The central core also contains the viral integrase, reverse transcriptase, and accessory proteins. The central core is enclosed within a protein shell that is formed through the self-assembly of lentiviral p24 capsid proteins. A layer of matrix proteins surrounds the capsid shell. Envelope glycoproteins (env proteins) are incorporated into the matrix protein layer. When the virus is released from infected cells (“budding”), a portion of the cell's lipid membrane envelopes the matrix protein layer. The envelope glycoproteins extend beyond this lipid membrane envelope and are capable of binding to receptor molecules that are present on the surfaces of new potential host cells, thereby enabling the infection of such cells. The nature of a lentivirus' env proteins thus determines the lentivirus' host range (i.e., the species that the virus are capable of infecting) and tropism (i.e., the specific cell types that the virus is capable of infecting).


The Lentivirus lifecycle can be summarized by six major steps: First, envelope glycoproteins on the surface of the lentiviral particle bind to cell receptors, permitting the virus to enter into the cell. Then, the matrix and capsid proteins disassemble, releasing the viral genome and viral proteins into the cytoplasm of the infected cell. The reverse transcriptase then uses the viral RNA as a template for the synthesis of viral DNA. The viral DNA is then transported to the nucleus where it is integrated into the host genome via the action of viral integrase (Fanales-Belasio, E. et al. (2010) “HIV Virology And Pathogenetic Mechanisms Of Infection: A Brief Overview,” Ann. I. Super. Sanita. 46(1):5-14). The 5′ LTR of the integrated viral genome acts as a combined enhancer and promoter, enabling the host cell's RNA polymerase II to begin transcription of the viral genome. The 3′ LTR stabilizes newly synthesized transcripts by regulating their polyadenylation. Tat, Rev, and Nef proteins are produced that facilitate the production of other viral transcripts necessary for progression through the viral lifecycle (Wei, P. et al. (1998) “A Novel CDK9-Associated C-Type Cyclin Interacts Directly With HIV-1 Tat And Mediates Its High-Affinity, Loop-Specific Binding To TAR RNA,” Cell 92(4):451-462). Rev facilitates the nuclear export of the viral mRNA molecules by binding to a Rev-responsive element (RRE) on such transcripts (Malim, M. H. et al. (1989) “The HIV-1 Rev Trans-Activator Acts Through A Structured Target Sequence To Activate Nuclear Export Of Unspliced Viral mRNA,” Nature 338(6212):254-257). Finally, the exported viral genome and proteins are assembled at the cell's plasma membrane and released from the host cell (Fanales-Belasio, E. et al. (2010) “HIV Virology And Pathogenetic Mechanisms Of Infection: A Brief Overview,” Annali Dell'istituto Superiore Di Sanita. 46(1):5-14).


II. Lentiviral Vectors

Lentiviruses cannot be directly employed as vaccines because their capacity to integrate into cellular chromosomes of infected cells is potentially oncogenic. Thus, lentiviral vector systems have been developed that do not permit chromosomal integration to occur. Most recombinant lentivirus vectors are derived from HIV-1. In order to comport with the constraints that certain lentiviral elements, such as the LTRs, ψ, and RRE (Rev response element required for processing and transport of viral RNAs) are required in cis, whereas other lentiviral elements, such as genes: gag, pol, env, tat, rev, vpu, vpr, vif and nef function in trans, such vector systems entail the co-transfection of multiple plasmids.


Multiple generations of such lentiviral vector systems have been described (Pincha, M. et al. (2010) “Lentiviral Vectors For Immunization: An Inflammatory Field,” Expert Rev. Vaccines 9(3):309-321). Their basic principle is to avoid the formation of replication-competent species (Schambach, A. et al. (2013) “Biosafety Features of Lentiviral Vectors,” Human Gene Ther. 24:132-142). To accomplish these goals, sequences that encode lentiviral proteins are deleted from the transgene-containing vector, and sequences that are required for highly efficient packaging into nascent particles are moved to a separate plasmid. In order to be able to more easily vary tropism, sequences encoding the envelope protein are provided on a further plasmid.


Thus, in the first generation of lentiviral vectors, three vectors were employed to produce lentiviral particles:

  • (1) a packaging plasmid that encoded the required gag and pol sequences, the viral regulatory genes tat and rev and the accessory genes vif, vpr, vpu and nef;
  • (2) an envelope vector that encoded a non-lentiviral, heterogenous envelope protein (“pseudotyped” envelope protein) that determines the host range (tropism) of the lentiviral particle; and
  • (3) a transfer vector that comprised the 5′ and 3′ LTR sequences, W, the RRE, the central polypurine tract (cPPT) (derived from the Pol reading frame) that increases the efficiency of reverse transcription (RT), and a desired exogenous gene for expression (transgene) under the control of a promoter, such as the cytomegalovirus (CMV) immediate-early enhancer and promoter (Barrow, K. M. (2006) “Use Of The Cytomegalovirus Promoter For Transient And Stable Transgene Expression In Mouse Embryonic Stem Cells,” Methods Mol Biol. 329:283-294) or the Rous sarcoma virus (RSV) (Yaguchi, M. et al. (2013) “Characterization Of The Properties Of Seven Promoters In The Motor Cortex Of Rats And Monkeys After Lentiviral Vector-Mediated Gene Transfer,” Hum. Gene Ther. Methods 24(6):333-344).


    Co-transfection with all three vectors thus results in the production of lentiviral particles that express the pseudo-envelope protein on their surfaces. By replacing the native lentiviral envelope protein with a heterogenous “pseudotyped” envelope protein, such vector systems alter the tropism of the lentivirus so that it targets desired host cells. For example, the native lentiviral envelope protein can be replaced with the vesicular stomatitis virus glycoprotein G (VSV-G) to create a pseudotyped lentiviral vectors having extensive host cell infectivity (see, Gruber, A. et al. (2000) “Dendritic Cells Transduced By Multiply Deleted HIV-1 Vectors Exhibit Normal Phenotypes And Functions And Elicit An HIV-Specific Cytotoxic T-Lymphocyte Response in vitro,” Blood 96:1327-1333; Zufferey, R. et al. (1997) “Multiply Attenuated Lentiviral Vector Achieves Efficient Gene Delivery in vivo,” Nat. Biotechnol. 15:871-875).


Second generation lentiviral vector systems deleted the four accessory genes, vif, vpr, vpu and nef, thereby improving the safety profile of the lentiviral vector, since any replication-competent lentivirus would be devoid of all virulence factors (Hope, T. J. et al. (2000) “Structure, Expression, and Regulation of the HIV Genome,” HIV InSite Knowledge Base Chapter, pages 1-12; Escors, D. et al. (2011) “Lentiviral Vectors In Gene Therapy: Their Current Status And Future Potential,” Arch. Immunol. Ther. Exp. (Warsz.) 58(2):107-119).


Third generation lentiviral systems further improved the safety profile of the lentiviral vector by deleting the U3 region of the 3′-LTR (Pincha, M. et al. (2010) “Lentiviral Vectors For Immunization: An Inflammatory Field,” Expert Rev. Vaccines 9(3):309-321). The deletion results in the Transcriptional Self-Inactivation (SIN) of potentially packageable viral genomes in transduced cells (Schambach, A. et al. (2013) “Biosafety Features of Lentiviral Vectors,” Human Gene Ther. 24:132-142; Yu, S. F. et al. (1986) “Self-Inactivating Retroviral Vectors Designed For Transfer Of Whole Genes Into Mammalian Cells,” Proc. Natl. Acad. Sci. (U.S.A.) 83(10):3194-3198; Miyoshi, H. (1998) “Development Of A Self-Inactivating Lentivirus Vector,” J. Virol. 72(10):8150-8157). Additionally, the rev gene (which encodes a gene product that promotes the transport of unspliced and singly spliced viral transcripts into the cytoplasm, thereby allowing late viral proteins to be produced) is expressed from a separate plasmid. The 5′ LTR is modified to delete its U3 region and to place the 5′ LTR under the control of a strong tat-independent constitutive promoter (Dull, T. et al. (1998) “A Third-Generation Lentivirus Vector With A Conditional Packaging System,” J. Virol. 72:8463-8471). FIG. 3 illustrates the four vectors of third generation lentiviral systems.


III. Lentiviral Vaccines

Lentiviral vectors have been primarily employed as delivery vehicles for gene therapy due to the low incidence of pre-existing anti-lentivirus immunity in the population and their capacity to integrate into the genome of recipient cells (thus providing persistent, long term expression of the therapeutic gene being delivered by the vector) (Keeler, A. M. et al. (2017) “Gene Therapy 2017: Progress and Future Directions,” Clin. Trasl. Sci. 10:242-248; Milone, M. C. et al. (2018) “Clinical Use of Lentiviral Vectors,” Leukemia 32:1529-1541; Shirley, J. L. et al. (2020) “Immune Responses to Viral Gene Therapy Vectors,” Molec. Ther. 28(3):709-722; Escors, D. et al. (2011) “Lentiviral Vectors In Gene Therapy: Their Current Status And Future Potential,” Arch. Immunol. Ther. Exp. (Warsz.) 58(2):107-119; Chen, S.-H. et al. (2019) “Overview: Recombinant Viral Vectors as Neuroscience Tools,” Curr. Protoc. Neurosci. 87(1):e67:1-16; Klimatcheva, E. et al. (1999) “Lentiviral Vectors And Gene Therapy,” Front. Biosci. 4:D481-D496).


The use of lentiviral vectors as vaccines for providing long term active immunity against pathogens has been encumbered by low infectivity (Huisman, W. et al. (2009) “Vaccine-Induced Enhancement Of Viral Infections,” Vaccine 27(4):505-512) and by concerns regarding that lentiviral integration into the chromosomes of recipient cells may be oncogenic. Although the risk of insertional mutagenesis is considered to be very low (Norton, T. D. et al. (2016) “Recent Advances in Lentiviral Vaccines for HIV-1 Infection,” Front. Immunol. 7:243:1-8), incidences of leukemia were observed when a retroviral vector derived from the Murine Moloney Leukemia Virus (MoMLV) was used in two SCID-X1 lentiviral gene therapy trials (Gaspar, H. B. et al. (2011) “Long-Term Persistence Of A Polyclonal T Cell Repertoire After Gene Therapy For X-Linked Severe Combined Immunodeficiency,” Sci. Transl. Med. 3:97ra79:1-7; Hacein-Bey-Abina, S. et al. (2003) “LMO2-Associated Clonal T Cell Proliferation In Two Patients After Gene Therapy For SCID-X1,” Science 302:415-419).


In order to address such concerns, integrase-defective lentiviral vectors (IDLV) have been developed (Fontana, J. M. et al. (2014) “Mucosal Immunization With Integrase Defective Lentiviral Vectors Protects Against Influenza Virus Challenge In Mice,” PLoS One 9(5):1-12; Banasik, M. B. et al. (2010) “Integrase-Defective Lentiviral Vectors: Progress And Applications,” Gene Ther 17:150-157; Michelini, Z. et al. (2009) “Development And Use Of SIV-Based Integrase Defective Lentiviral Vector For Immunization,” Vaccine (2009) 27(34):4622-4629; Norton, T. D. et al. (2016) “Recent Advances in Lentiviral Vaccines for HIV-1 Infection,” Front. Immunol. 7:243:1-8). A number of mutations in the HIV integrase gene have been described, particularly within the protein's catalytic triad (Banasik, M. B. et al. (2010) “Integrase-Defective Lentiviral Vectors: Progress And Applications,” Gene Ther 17:150-157). As a result, IDLV accumulate in the nuclei of transduced cells as stable, transcriptionally-active, episomal DNA circles that persist in slowly dividing and terminally differentiated cells. A single immunization with an IDLV capable of delivering influenza hemagglutinin (HA) and nucleoprotein (NP) antigens provided high and persistent levels of antiviral neutralizing antibodies in mice (Fontana, J. M. et al. (2014) “Mucosal Immunization With Integrase Defective Lentiviral Vectors Protects Against Influenza Virus Challenge In Mice,” PLoS One 9(5):1-12; Gallinaro, A. et al. (2018) “Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens,” Front. Immunol. 9:171). Measles virus glycoproteins (MVGs), hemagglutinin (H) and fusion (F), have also been used to pseudotype lentiviral vectors for vaccines targeting dendritic cells (Norton, T. D. et al. (2016) “Recent Advances in Lentiviral Vaccines for HIV-1 Infection,” Front. Immunol. 7:243:1-8). Lentiviral vectors that are designed to target dendritic cells have been developed as cancer vaccines (Arce, F. et al. (2011) “Targeting Lentiviral Vectors For Cancer Immunotherapy,” Curr. Cancer Ther. Rev. 7(4):248-260).


IV. SARS-CoV-2 Coronavirus

Coronaviruses (CoVs) are enveloped, single-stranded, RNA viruses that possess a positive-sense RNA genome of 26 to 32 kilobases in length. Coronaviruses belong to the subfamily Orthocoronavirinae in the family Coronaviridae and the order Nidovirales. Four genera of coronaviruses have been identified, namely, Alphacoronavirus (αCoV), Betacoronavirus (βCoV), Deltacoronavirus (δCoV), and Gammacoronavirus (γCoV) (Chan, J. F. et al. (2013) “Interspecies Transmission And Emergence Of Novel Viruses: Lessons From Bats And Birds,” Trends Microbiol. 21(10):544-555). Evolutionary analyses have shown that bats and rodents are the gene sources of most αCoVs and βCoVs, while avian species are the gene sources of most δCoVs and 7CoVs. Prior to 2019, only six coronavirus species were known to be pathogenic to humans. Four of these species were associated with mild clinical symptoms, but two coronaviruses, Severe Acute Respiratory Syndrome (SARS) coronavirus (SARS-CoV) (Marra, M. A. et al. (2003) “The Genome Sequence of the SARS-Associated Coronavirus,” Science 300(5624):1399-1404) and Middle East Respiratory Syndrome (MERS) coronavirus (MERS-CoV) (Mackay, I. M. (2015) “MERS Coronavirus: Diagnostics, Epidemiology And Transmission,” Virol. J. 12:222. doi: 10.1186/s12985-015-0439-5) were associated with human mortalities approaching 10% (Su, S. et al. (2016) “Epidemiology, Genetic Recombination, And Pathogenesis Of Coronaviruses,” Trends Microbiol. 24:490-502; Al Johani, S. et al. (2016) “MERS-CoV Diagnosis: An Update,” J. Infect. Public Health 9(3):216-219).


Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a newly identified coronavirus species (the virus was previously provisionally named “2019 novel coronavirus” or “2019-nCoV”) (Fang, Y. et al. (2020) “Transmission Dynamics Of The COVID-19 Outbreak And Effectiveness Of Government Interventions: A Data-Driven Analysis,” J. Med. Virol. doi: 10.1002/jmv.25750; Zhao, W. M. et al. (2020) “The 2019 Novel Coronavirus Resource,” Yi Chuan. 42(2):212-221; Zhu, N. et al. (2020) “A Novel Coronavirus from Patients with Pneumonia in China, 2019,” New Engl. J. Med. 382(8):727-733).


The SARS-CoV-2 genome has been sequenced from at least 170 isolates. The reference sequence is GenBank NC_045512 (Wang, C. et al. (2020) “The Establishment Of Reference Sequence For SARS-CoV-2 And Variation Analysis,” J. Med. Virol. 92:667-674; Chan, J. F. et al. (2020) “Genomic Characterization Of The 2019 Novel Human-Pathogenic Coronavirus Isolated From A Patient With Atypical Pneumonia After Visiting Wuhan,” Emerg. Microbes. Infect. 9(1):221-236). Comparisons of the sequences of multiple isolates of the virus (MN988668 and NC_045512, isolated from Wuhan, China, and MN938384.1, MN975262.1, MN985325.1, MN988713.1, MN994467.1, MN994468.1, and MN997409.1) reveal greater than 99.99% identity (Sah, R. et al. (2020) “Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal,” Microbiol. Resource Announcements 9(11): e00169-20, pages 1-3; Brüssow, H. (2020) “The Novel Coronavirus—A Snapshot of Current Knowledge,” Microbial Biotechnology 0:(0):1-6). The SARS-CoV-2 genome is highly similar to that of human SARS-CoV, with an overall nucleotide identity of approximately 82% (Chan, J. F. et al. (2020) “Genomic Characterization Of The 2019 Novel Human-Pathogenic Corona Virus Isolated From A Patient With Atypical Pneumonia After Visiting Wuhan,” Emerg Microbes Infect 9:221-236; Chan, J. F. et al. (2020) “Improved Molecular Diagnosis Of COVID-19 By The Novel, Highly Sensitive And Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-Polymerase Chain Reaction Assay Validated In Vitro And With Clinical Specimens,” J Clin. Microbiol. JCM.00310-20. doi: 10.1128/JCM.00310-20). Based on its homology to related coronaviruses, SARS-CoV-2 is predicted to encode 12 open reading frame (ORFs) coding regions (ORF1ab, S (spike), 3, E (envelope protein), M (matrix), 7, 8, 9, 10b, N, 13 and 14.


The coronavirus spike or S protein, which is arrayed on the virus surface, is considered crucial for determining host tropism and transmission capacity (Lu, G. et al. (2015) “Bat-To-Human: Spike Features Determining ‘Host Jump’ Of Coronaviruses SARS-CoV, MERS-CoV, And Beyond,” Trends Microbiol. 23:468-478; Wang, Q. et al. (2016) “MERS-CoV Spike Protein: Targets For Vaccines And Therapeutics,” Antiviral. Res. 133:165-177). Studies of the S protein of SARS-CoV have found it to be functionally cleaved into two subunits: an S1 domain that mediates receptor binding, and an S2 domain that mediates membrane fusion (He, Y. et al. (2004) “Receptor-Binding Domain Of SARS-CoV Spike Protein Induces Highly Potent Neutralizing Antibodies: Implication For Developing Subunit Vaccine,” Biochem. Biophys. Res. Commun. 324:773-781; Li, F. (2016) “Structure, Function, And Evolution Of Coronavirus Spike Proteins,” Annu. Rev. Virol. 3:237-261; He, Y. et al. (2004) “Receptor-Binding Domain Of SARS-CoV Spike Protein Induces Highly Potent Neutralizing Antibodies: Implication For Developing Subunit Vaccine, Biochem. Biophys. Res. Commun. 324:773-781). The S protein of SARS-CoV-2 shares 76% identity with the S protein of SARS-CoV (Lu, R. et al. (2020) “Genomic Characterisation And Epidemiology Of 2019 Novel Coronavirus: Implications For Virus Origins And Receptor Binding,” Lancet 395(10224):565-574). In light of such similarity, it has been proposed that these S proteins may have similar functions. FIG. 4 illustrates the structure of the SARS-CoV-2 viral particle. The structure is similar to that of lentiviruses in that a glycoprotein spike (the S protein) extends out of the viral particle and is responsible for viral tropism.


Patients infected with SARS-CoV-2 exhibit COVID-19, a condition characterized by fever and cough (Kong, I. et al. (2020) “Early Epidemiological and Clinical Characteristics of 28 Cases of Coronavirus Disease in South Korea,” Osong Public Health Res Perspect. 11(1):8-14). In approximately 20% of patients, COVID-19 progresses to a severe respiratory disease and pneumonia that has a mortality of 5-10% (1-2% overall mortality). No cure for COVID-19 yet exists, and no vaccine is currently available. These deficiencies are exacerbated by the wide susceptibility of individuals to infection (reflecting the absence of prior herd immunity). Since no therapies have been proven to be effective thus far, management of COVID-19 presently consists of a “Four-Anti and Two-Balance” strategy included antivirus, anti-shock, anti-hyoxemia, anti-secondary infection, and maintaining water, electrolyte and acid-base balance and micro-ecological balance (Xu, K. et al. (2020) “Management Of Corona Virus Disease-19 (COVID-19): The Zhejiang Experience,” Zhejiang Da Xue Bao Yi Xue Ban. 49(1):0). In 2020, COVID-19 became a pandemic accounting for over 300,000 ascribed deaths.


In sum, an urgent need exists for a vaccine that could protect populations from COVID-19. The present invention is directed to this and other goals.


SUMMARY OF THE INVENTION

The present invention is directed to recombinant lentiviral particles that array the SARS-CoV-2 spike (S) protein on their surface (“SARS-CoV-2 S Protein Lentiviral Particles”), and that optionally comprise an additional copy of a polynucleotide encoding the SARS-CoV-2 spike (S) protein in their viral genome, and to methods for the production of such lentiviral particles. The invention particularly pertains to such SARS-CoV-2 S Protein Lentiviral Particles that have been engineered to be incapable of mediating the integration of their lentiviral genome into the chromosomes of infected cells and/or to be incapable of mediating the reverse transcription of their lentiviral genome. The present invention is also directed to “SARS-CoV-2 S Protein Lentiviral Vaccine” pharmaceutical compositions that comprise such SARS-CoV-2 S Protein Lentiviral Particles. The present invention is additionally directed to the use of such SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions for providing immunity to COVID-19 infection to humans and other mammals, either directly or as an inactivated form.


In detail, the invention provides a lentiviral particle that comprises a recombinantly engineered lentiviral genome and that arrays a SARS-CoV-2 spike (S) protein on its surface.


The invention further provides the embodiment of such lentiviral particle wherein the recombinantly engineered lentiviral genome is non-integrating.


The invention further provides the embodiment of such lentiviral particle wherein the recombinantly engineered lentiviral genome is incapable of being reverse transcribed.


The invention further provides the embodiment of such lentiviral particle wherein the recombinantly engineered lentiviral genome is non-integrating and incapable of being reverse transcribed.


The invention further provides the embodiment of such lentiviral particles wherein the recombinantly engineered lentiviral genome encodes a heterologous transgene protein.


The invention further provides the embodiment of such lentiviral particles wherein the encoded heterologous transgene protein is an antibiotic resistance determinant, a reporter protein, a protein drug effective in treating SARS-CoV-2 infection, or a protein that comprises the epitope binding domain of an antibody that binds to a SARS-CoV-2 antigen.


The invention further provides the embodiment of such lentiviral particles wherein the encoded heterologous transgene protein is a SARS-CoV-2 protein.


The invention further provides the embodiment of such lentiviral particles wherein the encoded SARS-CoV-2 heterologous transgene protein is a SARS-CoV-2 Spike (S) protein or a SARS-CoV-2 Nucleocapsid (N) protein.


The invention further provides a vaccine for the treatment of COVID-19, wherein the vaccine comprises a prophylactically effective dose of a pharmaceutical composition that comprises any of the above-described lentiviral particles and a pharmaceutically acceptable carrier.


The invention further provides the embodiment of such vaccine wherein the recombinantly engineered lentiviral genome of the lentiviral particle is non-integrating.


The invention further provides the embodiment of such vaccine wherein the recombinantly engineered lentiviral genome of the lentiviral particle is incapable of being reverse transcribed.


The invention further provides the embodiment of such vaccine wherein the recombinantly engineered lentiviral genome of the lentiviral particle is non-integrating and incapable of being reverse transcribed.


The invention further provides the embodiment of such vaccine wherein the recombinantly engineered lentiviral genome of the lentiviral particle encodes a heterologous transgene protein.


The invention further provides the embodiment of such vaccines wherein the encoded heterologous transgene protein is a SARS-CoV-2 Spike (S) protein or a SARS-CoV-2 Nucleocapsid (N) protein.


The invention further provides the embodiment of such vaccines wherein the pharmaceutically acceptable carrier is adapted for intramuscular administration.


The invention further provides the embodiment of such vaccines wherein the pharmaceutically acceptable carrier is adapted for intranasal administration.


The invention further provides a method for producing any of the above-described recombinant lentiviral particles, wherein the method comprises:


(A) transfecting HEK293 cells with:






    • (1) an LTR-containing vector that comprises a deleted 5′ LTR U3 region and a self-inactivating 3′ LTR region;

    • (2) a packaging vector that comprises a polynucleotide that encodes the gag and pol proteins;

    • (3) a REV vector that comprises a polynucleotide that encodes a rev protein; and

    • (4) an envelope vector that comprises a polynucleotide that encodes a SARS-CoV-2 spike (S) protein; and


      (B) permitting the cells to produce the recombinant lentiviral particle.





The invention further provides the embodiment of such method wherein the packaging vector comprises a genome that encodes a mutated integrase, wherein the transfection produces a recombinant lentiviral particle that comprises a genome that is non-integrating.


The invention further provides the embodiment of such method wherein the packaging vector comprises a genome that encodes a mutated reverse transcriptase, wherein the transfection produces a recombinant lentiviral particle that comprises a genome that is incapable of being reverse transcribed.


The invention further provides the embodiment of such method wherein the packaging vector comprises a genome that additionally encodes a mutated integrase, wherein the transfection produces a recombinant lentiviral particle that comprises a genome that is non-integrating and incapable of being reverse transcribed.


The invention further provides the embodiment of such methods wherein the LTR-containing vector comprises the features of any of the LTR-containing vectors:


pLenti-SV40-puro (SEQ ID NO:27);


pLenti-SV40-puro (-att) (SEQ ID NO:28);


pLenti-CMV-IRES-empty (-att) (SEQ ID NO:67);


pLenti-CMV-IRES-Spike (SEQ ID NO:70);


pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (SEQ ID NO:83);


pLenti-IgGκ-nCoV-N-CD8-TM (-att) (SEQ ID NO:84); or


pLenti-IL-2 n-CoV-N(-att) (SEQ ID NO:85).


The invention further provides the embodiment of such methods wherein the packaging vector comprises the features of pGAG (SEQ ID NO:44).


The invention further provides the embodiment of such methods wherein the REV vector comprises the features of pREV (SEQ ID NO:49).


The invention further provides the embodiment of such methods wherein the envelope vector comprises the features of pCMV-SARS-CoV-2 S Protein (SEQ ID NO:61).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates the structure of a wildtype lentivirus genome.



FIG. 2 illustrates the structure of a wildtype lentivirus particle.



FIG. 3 illustrates the four plasmids of third generation lentiviral systems: the transgene-containing vector, the packaging vector, the rev-expressing vector and the envelope protein containing vector. CMV and RSV denote the cytomegalovirus immediate-early enhancer and promoter and the Rous sarcoma virus (RSV) promoter, respectively.



FIG. 4 illustrates the structure of the SARS-CoV-2 viral particle.



FIG. 5 illustrates the structure of the four plasmids employed to produce the SARS-CoV-2 S Protein Lentiviral Vaccine compositions of the present invention.



FIG. 6 provides the structure of pLenti-SV40-puro (SEQ ID NO:27) (7705 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 7 provides the structure of pLenti-SV40-puro (-att) (SEQ ID NO:28) (7701 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 8 provides the structure of pLenti-CMV-IRES-empty (-att) (SEQ ID NO:67) (7267 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 9 provides the structure of pLenti-CMV-IRES-Spike (-att) (SEQ ID NO:70) (11060 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 10 provides the structure of pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (SEQ ID NO:83) (11381 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 11 provides the structure of pLenti-IgGκ-nCoV-N-CD8-TM (-att) (SEQ ID NO:84) (8819 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 12 provides the structure of pLenti-IL-2 n-CoV-N(-att) (SEQ ID NO:85) (8552 nucleotide residues), which is an example of an LTR-containing vector of the present invention.



FIG. 13 provides the structure of pGAG (SEQ ID NO:44) (11282 nucleotide residues), which is an example of a packaging vector of the present invention.



FIG. 14 provides the structure of pREV (SEQ ID NO:49) (5514 nucleotide residues), which is an example of a Rev-containing vector of the present invention.



FIG. 15 provides the structure of pCMV-SARS-CoV-2 S Protein (SEQ ID NO:61) (8602 nucleotide residues), which is an example of an envelope vector of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to recombinant lentiviral particles that array the SARS-CoV-2 spike (S) protein on their surface (“SARS-CoV-2 S Protein Lentiviral Particles”), and that optionally comprise an additional copy of a polynucleotide encoding the SARS-CoV-2 spike (S) protein in their viral genome, and to methods for the production of such lentiviral particles. The invention particularly pertains to such SARS-CoV-2 S Protein Lentiviral Particles that have been engineered to be incapable of mediating the integration of their lentiviral genome into the chromosomes of infected cells and/or to be incapable of mediating the reverse transcription of their lentiviral genome. The present invention is also directed to “SARS-CoV-2 S Protein Lentiviral Vaccine” pharmaceutical compositions that comprise such SARS-CoV-2 S Protein Lentiviral Particles. The present invention is additionally directed to the use of such SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions for providing immunity to COVID-19 infection to humans and other mammals, either directly or as an inactivated form.


The SARS-CoV-2 S Protein Lentiviral Particles of the present invention are lentiviral particle that have been pseudotyped to express and/or array the spike (S) protein of SARS-CoV-2 on their outer surface so as to permit the SARS-CoV-2 S protein to be recognized as an antigen by the immune system of a “recipient subject” (e.g., a mammal, and especially, a human, a non-human primate, or a non-human mammal (e.g., a canine, feline, bovine, equine, ovine, porcine, rodent, bat, pangolin, etc.)). Such SARS-CoV-2 S Protein Lentiviral Particles can be used in SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions that can be administered to recipient subjects to thereby cause such subjects to elicit neutralizing antibodies against the SARS-CoV-2 S protein. The binding of such antibodies to SARS-CoV-2 viral particles decreases the infectivity of SARS-CoV-2 and/or the severity of COVID-19 in such recipients. As used herein, “SARS-CoV-2 infectivity” is defined as the capacity of SARS-CoV-2 to enter a host cell and exploit its resources to replicate and produce progeny infectious viral particles. SARS-CoV-2 infectivity will preferably be decreased by the SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention by at least about one order of magnitude, by at least about two orders of magnitude, by at least about three orders of magnitude, by at least about four orders of magnitude, or by more than at least five orders of magnitude. In one embodiment, such administration is implemented so as to elicit secretory IgA2 antibodies. In a second embodiment, such administration is implemented so as to elicit IgM and/or IgG antibodies.


The present invention provides SARS-CoV-2 S Protein Lentiviral Particles that have been engineered to be incapable of mediating the integration of the lentiviral genome into the chromosomes of infected cells. As discussed above, and as illustrated in FIG. 2, mature lentiviral particles contain the lentiviral integrase protein (encoded by one of the pol gene transcripts). Thus, even though third generation lentiviral vector systems have moved the pol gene to a separate packaging vector, the lentiviral particles produced by such vector systems contain functional integrase proteins. Thus, the LTR-containing genome of the mature lentiviral particles produced by such vector systems is capable of being integrated into the chromosomes of infected cells. In contrast, as discussed below, in one embodiment, the present invention employs packaging vectors whose pol gene has been mutated to render the expressed integrase non-functional. As a consequence, the lentiviral particles that are produced do not contain functional integrase proteins. Accordingly, in such embodiment, the genome present in the LTR-containing vectors of the present invention are non-integrating. As used herein, a genome contained within a lentiviral particle is said to be “non-integrating” if the integrase present within such particle exhibits an ability to mediate integration into the chromosome of an infected cells that is at least two orders of magnitude, more preferably at least three orders of magnitude, more preferably still at least four orders of magnitude less than the ability of a wildtype lentiviral integrase, or most preferably, if integration is undetectable under conditions in which the integration of a wildtype lentiviral genome is detectable. SARS-CoV-2 S Protein Lentiviral Particles of the present invention that comprise such mutated integrase proteins are effectively incapable of inserting their genomes into the chromosomes of transfected cells, and are thus much less likely to cause oncogenic events. Accordingly, such SARS-CoV-2 S Protein Lentiviral Particles of the present invention are safer than wildtype lentiviral vectors.


The present invention also provides SARS-CoV-2 S Protein Lentiviral Particles that have been engineered to be incapable of mediating the reverse transcription of their genome. As discussed above, and as illustrated in FIG. 2, mature lentiviral particles contain the lentiviral reverse transcriptase protein (encoded by one of the pol gene transcripts). Thus, the LTR-containing genome of the mature lentiviral particles produced by such vector systems is capable of being reverse transcribed into DNA upon entry into infected cells. In contrast, as discussed below, in one embodiment, the present invention employs packaging vectors whose pol gene has been mutated to render the expressed reverse transcriptase non-functional. As a consequence, the lentiviral particles that are produced do not contain functional reverse transcriptase integrase. Accordingly, in such embodiment, the genome present in the LTR-containing vectors of the present invention are incapable of being reverse transcribed. As used herein, a genome contained within a lentiviral particle is said to be “incapable of being reverse transcribed” if the reverse transcriptase present within such particle exhibits an ability to mediate reverse transcription within infected cells that is at least two orders of magnitude, more preferably at least three orders of magnitude, more preferably still at least four orders of magnitude less than the ability of a wildtype lentiviral reverse transcriptase, or most preferably, if reverse transcription is undetectable under conditions in which the reverse transcription of a wildtype lentiviral genome is detectable. As discussed below, the lentiviral RT proteins of such lentiviral particles comprise mutations that block reverse transcriptase function. Reverse transcription is required in order for the lentiviral genome to integrate into the chromosomes of transfected cells. Thus, by being incapable of mediating reverse transcription, the SARS-CoV-2 S Protein Lentiviral Particles of the present invention are effectively incapable of inserting their genomes into the chromosomes of transfected cells, and are thus much less likely to cause oncogenic events than wildtype lentiviral particles. Accordingly, such SARS-CoV-2 S Protein Lentiviral Particles of the present invention are safer than wildtype lentiviral vectors.


Additionally, reverse transcription is required for lentiviral replication. Thus, the SARS-CoV-2 S Protein Lentiviral Particles of the present invention that are incapable of mediating reverse transcription are effectively incapable of self-propagation. The genomes of such lentiviral particles will thus be capable of being transcribed and of expressing viral proteins, but will in time passively diminish in recipient subjects (due to cellular aging, cell division, apoptosis, RNA processing and other natural processes). As such, the SARS-CoV-2 S Protein Lentiviral Particles of the present invention are much less likely to be associated with long term adverse consequences than wildtype lentiviral vectors.


The present invention specifically contemplates SARS-CoV-2 S Protein Lentiviral Particles that are both non-integrating and additionally incapable of mediating reverse transcription. Such lentiviral particles are synergistically safer than either lentiviral particles having non-integrating genomes or lentiviral particles having genomes that are incapable of mediating reverse transcription.


I. Preferred Vectors for Producing the SARS-CoV-2 S Protein Lentiviral Particles of the Present Invention

The SARS-CoV-2 S Protein Lentiviral Particles of the present invention are preferably produced by co-transfecting a cell with four plasmids (FIG. 5): (1) an LTR-Containing vector; (2) a packaging vector; (3) a REV vector; and (4) an envelope vector.


A. LTR-Containing Vectors of the Present Invention


1. Features and Components of the LTR-Containing Vectors of the Present Invention


As used herein, the term “LTR-containing vector” is intended to denote a vector that comprises at least one lentiviral LTR regions (which region may be intact, truncated, or contain an internal deletion, relative to a wildtype lentiviral LTR region). Such vectors will additionally comprise a promoter capable of mediating transcription of an R region and U5 region of a 5′ lentiviral LTR, a lentiviral ψ region, a lentiviral Rev response element (RRE), a lentiviral central polypurine tract and central termination sequence (cPPT/CTS), and a self-inactivating 3′ LTR region. The vectors: pLenti-SV40-puro (FIG. 6), pLenti-SV40-puro (-att) (FIG. 7), pLenti-CMV-IRES-empty (-att) (FIG. 8), pLenti-CMV-IRES-Spike (FIG. 9), pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (FIG. 10), pLenti-IgGκ-nCoV-N-CD8-TM (-att) (FIG. 11) and pLenti-IL-2 n-CoV-N(-att) (FIG. 12) illustrate the LTR-containing vectors of the present invention.


The LTR-containing vectors of the present invention comprise multiple preferred features. The first of such preferred features of the LTR vectors of the present invention is a first promoter (and an optional upstream transcriptional enhancer site) that will facilitate and mediate transcription in a mammalian host cell. Suitable promoters include the human cytomegalovirus (CMV) immediate early enhancer site and promoter, the EF1a promoter, the SV40 promoter, the human or murine PGK1 promoter, the α-fetoprotein promoter, the β-interferon promoter, the metallothionein II (MT II) promoter, the mouse mammary tumor virus (MMTV) promoter, the murine leukemia virus (MuLV) long terminal repeat promoter, the Ubc promoter, the human beta-actin promoter, the CAG promoter, the Rous sarcoma virus (RSV) promoter, the tetracycline response element (TRE) promoter, the Ca2+/calmodulin-dependent protein kinase II promoter, the human polymerase III RNA promoter, and the human or murine U6 small nuclear promoter (Colosimo, A. et al. (2000) “Transfer and Expression of Foreign Genes in Mammalian Cells,” BioTechniques 29(2):314-331; Addgene (2014) “Plasmids 101: The Promoter Region—Let's Go!,” Addgene). Illustrative polynucleotides for such purpose comprise the human cytomegalovirus (CMV) immediate early enhancer site and the CMV immediate early promoter site. An illustrative CMV immediate early enhancer site comprises the sequence (SEQ ID NO:1):











gacattgatt attgactagt tattaatagt aatcaattac







ggggtcatta gttcatagcc catatatgga gttccgcgtt







acataactta cggtaaatgg cccgcctggc tgaccgccca







acgacccccg cccattgacg tcaataatga cgtatgttcc







catagtaacg ccaataggga ctttccattg acgtcaatgg







gtggagtatt tacggtaaac tgcccacttg gcagtacatc







aagtgtatca tatgccaagt acgcccccta ttgacgtcaa







tgacggtaaa tggcccgcct ggcattatgc ccagtacatg







accttatggg actttcctac ttggcagtac atctacgtat







tagtcatcgc tattaccatg






A suitable variant CMV immediate early enhancer site comprises the sequence (SEQ ID NO:2) (differences are shown underlined):











gacattgatt attgactagt tattaatagt aatcaattac







ggggtcatta gttcatagcc catatatgga gttccgcgtt







acataactta cggtaaatgg cccgcctggc tgaccgccca







acgacccccg cccattgacg tcaataatga cgtatgttcc







catagtaacg ccaataggga ctttccattg acgtcaatgg







gtggagtatt tacggtaaac tgcccacttg gcagtacatc







aagtgtatca tatgccaagt ccgcccccta ttgacgtcaa







tgacggtaaa tggcccgcct ggcattatgc ccagtacatg







accttacggg actttcctac ttggcagtac atctacgtat







tagtcatcgc tattaccatg






Truncated variants of such illustrative CMV immediate early enhancer sites that lack the first 76 residues of SEQ ID NO:1 or SEQ ID NO:2 may alternatively be employed.


An illustrative CMV immediate early promoter site for the LTR-containing vectors of the present invention comprises the sequence (SEQ ID NO:3):











gtgatgcggt tttggcagta catcaatggg cgtggatagc







ggtttgactc acggggattt ccaagtctcc accccattga







cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac







tttccaaaat gtcgtaacaa ctccgcccca ttgacgcaaa







tgggcggtag gcgtgtacgg tgggaggtct atataagcag






A suitable variant CMV immediate early promoter site comprises the sequence (SEQ ID NO:4) (differences are shown underlined):











gtgatgcggt tttggcagta caccaatggg cgtggatagc







ggtttgactc acggggattt ccaagtctcc accccattga







cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac







tttccaaaat gtcgtaataa ccccgccccg ttgacgcaaa







tgggcggtag gcgtgtacgg tgggaggtct atataagcag









agct








Additional suitable CMV immediate early promoter sites (e.g., SEQ ID NO:52) are discussed below.


A further preferred feature of the LTR-containing vectors of the present invention is a lentiviral 5′ LTR region that has been truncated to delete its U3 region. The lentiviral 5′ LTR region is natively composed of a U3 region, an R region (SEQ ID NO:76) and a U5 region (SEQ ID NO:77).











SEQ ID NO: 76



gggtctctct ggttagacca gatctgagcc tgggagctct



ctggctaact agggaaccca ctgcttaagc ctcaataaag



cttgccttga gtgcttca







SEQ ID NO: 77



agtagtgtgt gcccgtctgt tgtgtgactc tggtaactag



agatccctca gaccctttta gtcagtgtgg aaaatctcta



gca






As discussed above, the deletion of the U3 region results in the transcriptional self-inactivation (SIN) of potentially packageable viral genomes in transduced cells. In preferred embodiments, such lentiviral 5′ LTR region is derived from the 5′ LTR of HIV-1, and comprises the sequence of SEQ ID NO:5, which is composed of an R region (SEQ ID NO:76) (shown in bold) and a U5 region (SEQ ID NO:77) (single underlined).











SEQ ID NO: 5




gggtctctct ggttagacca gatctgagcc tgggagctct









ctggctaact agggaaccca ctgcttaagc ctcaataaag









cttgccttgagtgcttcaagtagtgtgtgcccgtctgttg









tgtgactctggtaactagagatccctcagacccttttagt









cagtgtggaaaatctctagca







An alternative lentiviral 5′ LTR region lacks the two 3′ terminal residues of SEQ ID NO:5, and comprises the sequence of SEQ ID NO:68:












gggtctctct ggttagacca gatctgagcc tgggagctct









ctggctaactagggaaccca ctgcttaagc ctcaataaag









cttgccttga gtgcttca
ag tagtgtgtgcccgtctgttg









tgtgactctggtaactagagatccctcaga cccttttagt









cagtgtggaaaatctctag







A further preferred feature of the LTR-containing vectors of the present invention is a lentiviral ψ region. In preferred embodiments, such lentiviral ψ region is derived from HIV-1, and comprises the sequence of (SEQ ID NO:6):











ctctctcgac gcaggactcg gcttgctgaa gcgcgcacgg







caagaggcga ggggcggcga ctggtgagta cgccaaaaat







tttgactagc ggaggctaga aggagagaga tgggtgcgag







agcgtc






A further preferred feature of the LTR-containing vectors of the present invention is a lentiviral Rev response element (RRE), which allows for Rev-dependent mRNA export from the nucleus to the cytoplasm. In preferred embodiments, such lentiviral RRE region is derived from HIV-1, and comprises the sequence of (SEQ ID NO:7):











aggagctttg ttccttgggt tcttgggagc agcaggaagc







actatgggcg cagcgtcaat gacgctgacg gtacaggcca







gacaattatt gtctggtata gtgcagcagc agaacaattt







gctgagggct attgaggcgc aacagcatct gttgcaactc







acagtctggg gcatcaagca gctccaggca agaatcctgg







ctgtggaaag atacctaaag gatcaacagc tcct






A further preferred feature of the LTR-containing vectors of the present invention is a lentiviral central polypurine tract and central termination sequence (cPPT/CTS). In preferred embodiments, such lentiviral cPPT/CTS region is derived from HIV-1, and comprises the sequence of (SEQ ID NO:8):











ttttaaaaga aaagggggga ttggggggta cagtgcaggg







gaaagaatag tagacataat agcaacagac atacaaacta







aagaattaca aaaacaaatt acaaaaattc aaaatttt






In one embodiment, the LTR-containing vectors of the present invention will contain as a further preferred feature a second promoter that will be operably-linked to a non-lentiviral (i.e., “heterologous”) transgene, so as to be capable of mediating the transcription and expression of the protein encoded by such transgene in a mammalian host cell. Suitable promoters are described above, and particularly include the CMV promoter (with or without its enhancer site). However, an illustrative such second promoter is an SV40 promoter that comprises the sequence of (SEQ ID NO:9), and which comprises an SV40 origin of replication (shown underlined):











gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag







caggcagaag tatgcaaagc atgcatctca attagtcagc







aaccaggtgt ggaaagtccc caggctcccc agcaggcaga







agtatgcaaa gcatgcatct caattagtca gcaaccatag







tcccgcccct aactccgccc atcccgcccc taactccgcc









cagttccgcc cattctccgc cccatggctg actaattttt











tttatttatg

cagaggccga ggccgcctcg gcctctgagc











tattccagaa gtagtgagga

ggcttttttg gaggcc
tagg








cttttgcaaa






In one embodiment, the second promoter will be a regulatable promoter, such that the extent of transcription in a transfected subject may be increased or decreased via the provision of an inducer or repressor agent. Any of numerous regulatable promoters, for example, the EF1a or CAG promoters or the tetracycline(tet) inducible systems (Dogbevia, G. K. et al. (2015) “Inducible And Combinatorial Gene Manipulation In Mouse Brain,” Front. Cell. Neurosci. 9:142:1-8; Dogbevia, G. K. et al. (2016) “Flexible, AAV-Equipped Genetic Modules for Inducible Control of Gene Expression in Mammalian Brain,” Molec. Ther. Nucl. Acids 5:e309:1-8) described in the art may be employed in such manner.


In one embodiment, such operably-linked heterologous transgene may encode an antibiotic resistance determinant, for example an N-acetyltransferase capable of providing recipient host cells with resistance to puromycin. An illustrative antibiotic resistance determinant for such purpose is the N-acetyltransferase of Streptomyces alboniger, which comprises the sequence (SEQ ID NO:10):











MTEYKPTVRL ATRDDVPRAV RTLAAAFADY PATRHTVDPD







RHIERVTELQ ELFLTRVGLD IGKVWVADDG AAVAVWTTPE







SVEAGAVFAE IGPRMAELSG SRLAAQQQME GLLAPHRPKE







PAWFLATVGV SPDHQGKGLG SAVVLPGVEA AERAGVPAFL







ETSAPRNLPF YERLGFTVTA DVEVPEGPRT WCMTRKPGA






An illustrative polynucleotide that encodes such N-acetyltransferase of Streptomyces alboniger comprises the sequence (SEQ ID NO:11):











atgaccgagt acaagcccac ggtgcgcctc gccacccgcg







acgacgtccc ccgggcagta cgcaccctcg ccgccgcgtt







cgccgactac cccgccacgc gccacaccgt cgatccagac







cgccacatcg agcgggtcac cgagctgcaa gaactcttcc







tcacgcgcgt cgggctcgac atcggcaagg tgtgggtcgc







ggacgacggc gccgcggtgg cggtctggac cacgccggag







agcgtcgaag cgggggcggt gttcgccgag atcggcccgc







gcatggccga gttgagcggt tcccggctgg ccgcgcagca







acagatggaa ggcctcctgg cgccgcaccg gcccaaggag







cccgcgtggt tcctggccac cgtcggcgtc tcgcccgacc







accagggcaa gggtctgggc agcgccgtcg tgctccccgg







agtggaggcg gccgagcgcg ccggggtgcc cgccttcctg







gagacctccg cgccccgcaa cctccccttc tacgagcggc







tcggcttcac cgtcaccgcc gacgtcgagg tgcccgaagg







accgcgcacc tggtgcatga cccgcaagcc cggtgcctga






In an alternative embodiment, such operably-linked heterologous transgene may encode a reporter protein, such that the presence of the LTR-containing vector in a recipient cell can be more readily assessed. Examples of suitable reporter genes are well-known and include β-galactosidase, β-glucuronidase, chloramphenicol acetyltransferase, green fluorescent protein, red fluorescent protein, luciferase, etc. (Al Ali, S. et al. (2016) “Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors,” Viruses 8(5):1-18; Thakur, B. et al. (2015) “Molecular Imaging of Therapeutic Potential of Reporter Probes,” Curr. Drug Targets 16(6):645-657; Ghim, C. M. et al. (2010) “The Art Of Reporter Proteins In Science: Past, Present And Future Applications,” BMB Rep. 43(7):451-460; Liu, A. M. et al. (2009) “Reporter Gene Assays,” Meth. Mol. Biol. 486:109-123; Jansson, J. K. (2003) “Marker And Reporter Genes: Illuminating Tools For Environmental Microbiologists,” Curr. Opin. Microbiol. 6(3):310-316; Lewis, J. C. et al. (1998) “Applications Of Reporter Genes,” Anal. Chem. 70(17):579A-585A).


In a further embodiment, such operably-linked heterologous transgene may encode a protein pharmaceutical agent, such as a protein drug (especially a protein drug that is effective in treating a coronavirus infection (especially SARS-CoV-2), e.g., β-interferon, griffithsin (GRFT), etc.) (Spiegel, M. et al. (2004) “The Antiviral Effect Of Interferon-Beta Against SARS-Coronavirus Is Not Mediated By mXA Protein,” J. Clin. Virol. 30(3):211-213; (O'Keefe, B. R. et al. (2010) “Broad-Spectrum in vitro Activity and in vivo Efficacy Of The Antiviral Protein Griffthsin Against Emerging Viruses Of The Family Coronaviridae,” J. Virol. 84(5):2511-2521), a protein that comprises the epitope binding domain of an antibody (e.g., an antibody light or heavy chain, a single chain antibody, etc.), especially a protein that comprises the epitope binding domain of an antibody that binds to a SARS-CoV-2 antigen). For example, a lentiviral particle that arrays the SARS-CoV-2 S protein on its surface will exhibit a tropism for cells that possess the cellular receptor capable of binding such protein. By administering such lentiviral particles that are additionally capable of transcribing a pharmaceutical agent effective against SARS-CoV-2, the present invention provides a means for targeting the pharmaceutical agent to loci of potential infection by actual SARS-CoV-2 viruses.


In a further embodiment, such operably-linked heterologous transgene may encode a viral protein, for example, an influenza HA protein (e.g., GenBank Accession Nos.: QJI52636.1, CY147342.1, etc.), a SARS-CoV S protein (e.g., GenBank Accession Nos.: AB263618.1, BAF42873.1, AAR23250.1, etc.), a MERS-CoV S protein (e.g., GenBank Accession Nos.: QGW51898.1, QGW51909.1, QGW51920.1, etc.), or a SARS-CoV-2 protein, and especially a SARS-CoV-2 S or N protein. In this embodiment of the invention, it is desired that the expressed viral protein be released by the transfected cell into the extracellular environment so that it may be detected by the immune system and aid in developing immunity against the virus. Thus, where the viral protein possesses an endoplasmic reticulum binding site, it is desirable that the encoding polynucleotide be truncated so as to not encode such site.


In a preferred embodiment, the polynucleotide that encodes the viral protein will be preceded by an in-frame signal sequence, such as the IL-2 signal sequence (SEQ ID NO:72):











MYRMQLLSCIALSLALVTNS, 







or the IgGκ signal sequence (SEQ ID NO:81) (Guler-Gane, G. et al. (2016) “Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids,” Plos One 11(5):1-15)











MDMRVPAQLLGLLLLWLSGARC







so as to form a fusion protein. The IL-2 signal (SEQ ID NO:72) may be encoded by a polynucleotide that comprises the sequence (SEQ ID NO:73):











atgtacagga tgcaactcct gtcttgcatt gcactaagtc






ttgcacttgt cacaaacagt







The IgGκ signal sequence (SEQ ID NO:81) may be encoded by a polynucleotide that comprises the sequence (SEQ ID NO:82):











atggacatga gggtccctgc tcagctcctg gggctcctgc






tgctctggct ctcaggtgcc agatgt






The presence of such a signal sequence promotes secretion of the viral protein (Zhang, L. et al. (2005) “Alteration In The IL-2 Signal Peptide Affects Secretion Of Proteins in vitro And in vivo,” J. Gene Med. 7(3):354-365; Owji, H. et al. (2018) “A Comprehensive Review Of Signal Peptides: Structure, Roles, And Applications,” Eur. J. Cell. Biol. 97(6):422-441; Nothwehr, S. F. et al. (1990) “Targeting Of Proteins Into The Eukaryotic Secretory Pathway: Signal Peptide Structure/Function Relationships,” Bioessays 12(10):479-484). The in-frame signal sequence may be preceded by a consensus sequence for strong initiation of translation, such as a Kozak sequence, (Kozak, M. (1987) “An Analysis Of 5′-Noncoding Sequences From 699 Vertebrate Messenger RNAs,” Nucl. Acids Res. 15(20):8125-8148). An illustrative Kozak sequence is (SEQ ID NO:85)











gccaccatgg. 






In a particularly preferred embodiment, such operably-linked heterologous transgene will encode all or part of one or more proteins of SARS-CoV-2, e.g., all or part of the SARS-CoV-2 S protein, all or part of the SARS-CoV-2 nucleocapsid (N) protein, etc. Alternatively, transfection can be conducted using two different LTR-containing vectors, one of which comprises a transgene that encodes all or a portion of the SARS-CoV-2 S gene and the second of which comprises a transgene that encodes all or a portion of the SARS-CoV-2 N gene. The resulting lentiviral particles will array a mixture of S and N proteins on their surface. For example, transfection may be conducted in the presence of the LTR-containing vector pLenti-CMV-IRES-Spike (-att) (FIG. 9) or pLenti-IgG-nCoV-Spike-CD8-TM (-att) (FIG. 10) and in the presence of the LTR-containing vector pLenti-IgGκ-nCoV-N-CD8-TM (FIG. 11) or pLenti-IL-2 n-CoV-N(-att) (FIG. 12).


Polynucleotides encoding SARS-CoV-2 S proteins are described below. The SARS-CoV-2 N protein has the sequence (SEQ ID NO:78):











MSDNGPQNQR NAPRITFGGP SDSTGSNQNG ERSGARSKQR






RPQGLPNNTA SWFTALTQHG KEDLKFPRGQ GVPINTNSSP






DDQIGYYRRA TRRIRGGDGK MKDLSPRWYF YYLGTGPEAG






LPYGANKDGI IWVATEGALN TPKDHIGTRN PANNAAIVLQ






LPQGTTLPKG FYAEGSRGGS QASSRSSSRS RNSSRNSTPG






SSRGTSPARM AGNGGDAALA LLLLDRLNQL ESKMSGKGQQ






QQGQTVTKKS AAEASKKPRQ KRTATKAYNV TQAFGRRGPE






QTQGNFGDQE LIRQGTDYKH WPQIAQFAPS ASAFFGMSRI






GMEVTPSGTW LTYTGAIKLD DKDPNFKDQV ILLNKHIDAY






KTFPPTEPKK DKKKKADETQ ALPQRQKKQQ TVTLLPAADL






DDFSKQLQQS MSSADSTQA






The SARS-CoV-2 N protein (SEQ ID NO:78) may be encoded by the polynucleotide sequence (SEQ ID NO:79):











atgtctgata atggacccca aaatcagcga aatgcacccc






gcattacgtt tggtggaccc tcagattcaa ctggcagtaa






ccagaatgga gaacgcagtg gggcgcgatc aaaacaacgt






cggccccaag gtttacccaa taatactgcg tcttggttca






ccgctctcac tcaacatggc aaggaagacc ttaaattccc






tcgaggacaa ggcgttccaa ttaacaccaa tagcagtcca






gatgaccaaa ttggctacta ccgaagagct accagacgaa






ttcgtggtgg tgacggtaaa atgaaagatc tcagtccaag






atggtatttc tactacctag gaactgggcc agaagctgga






cttccctatg gtgctaacaa agacggcatc atatgggttg






caactgaggg agccttgaat acaccaaaag atcacattgg






cacccgcaat cctgctaaca atgctgcaat cgtgctacaa






cttcctcaag gaacaacatt gccaaaaggc ttctacgcag






aagggagcag aggcggcagt caagcctctt ctcgttcctc






atcacgtagt cgcaacagtt caagaaattc aactccaggc






agcagtaggg gaacttctcc tgctagaatg gctggcaatg






gcggtgatgc tgctcttgct ttgctgctgc ttgacagatt






gaaccagctt gagagcaaaa tgtctggtaa aggccaacaa






caacaaggcc aaactgtcac taagaaatct gctgctgagg






cttctaagaa gcctcggcaa aaacgtactg ccactaaagc






atacaatgta acacaagctt tcggcagacg tggtccagaa






caaacccaag gaaattttgg ggaccaggaa ctaatcagac






aaggaactga ttacaaacat tggccgcaaa ttgcacaatt






tgcccccagc gcttcagcgt tcttcggaat gtcgcgcatt






ggcatggaag tcacaccttc gggaacgtgg ttgacctaca






caggtgccat caaattggat gacaaagatc caaatttcaa






agatcaagtc attttgctga ataagcatat tgacgcatac






aaaacattcc caccaacaga gcctaaaaag gacaaaaaga






agaaggctga tgaaactcaa gccttaccgc agagacagaa






gaaacagcaa actgtgactc ttcttcctgc tgcagatttg






gatgatttct ccaaacaatt gcaacaatcc atgagcagtg






ctgactcaac tcaggcc







or by a codon-optimized variant thereof (SEQ ID NO:80):











atgtctgata atggaccaca aaaccagcgc aatgctccga






ggataacatt cggtgggccc tccgactcta ctggaagcaa






tcaaaatggg gagcggtcag gagccaggtc taaacagagg






cgacctcagg ggctgcctaa taatactgcc agctggttca






ctgctctgac ccagcatggc aaggaggact tgaagttccc






caggggtcag ggtgtaccaa tcaacactaa ttcttcccca






gacgaccaga ttggttatta cagaagggct acccggagga






ttaggggagg ggatggcaag atgaaggatc ttagtccacg






ctggtatttt tactaccttg gtacaggacc agaggctgga






cttccttatg gagcaaacaa agatggaatc atctgggtgg






ccacggaggg agccctcaat accccaaaag accatatcgg






gacccggaac cccgccaata atgccgcgat agtactgcaa






ttgccccaag ggactactct gccaaaaggc ttttatgcag






aagggtctcg aggagggtct caggcctcca gtcgctcatc






ttcccggtcc agaaacagca gccggaattc cacacccggg






agtagcagag gcactagccc tgcacgaatg gctggcaatg






gaggagatgc cgcccttgca ctgctgcttc tggatcgcct






gaaccagttg gagtccaaaa tgagtggcaa ggggcagcaa






cagcagggcc agacagtcac caagaagtct gccgcagaag






cttccaaaaa gccaaggcag aagaggacag caactaaagc






ttataacgtg acgcaggctt tcggtaggcg gggaccagaa






cagacccagg gtaacttcgg cgatcaggag cttattagac






aggggacaga ctataaacac tggccccaga tcgcccaatt






tgcccccagt gcatccgcct tcttcgggat gagtagaatc






ggcatggagg tgactcctag tggcacgtgg ctcacctata






ccggcgctat caagcttgat gacaaagatc ctaatttcaa






agatcaggtc atactgctga ataagcacat tgacgcatac






aaaacctttc cccctaccga accgaagaag gacaagaaga






aaaaggccga tgagacgcaa gctctgcctc agaggcagaa






gaaacagcaa acagtcactc tgttgcctgc ggcggacctt






gatgactttt ctaaacagct gcagcagagt atgagcagcg






ccgactccac ccaggcg






Such vectors will thus cause the SARS-CoV-2 spike (S) protein or nucleocapsid (N) protein to be produced in infected cells. Export of such protein will thus serve to provide such antigens to recipient subjects so that they may elicit neutralizing antibodies to SARS-CoV-2 and become immunized to COVID-19. It is preferred that the polynucleotide be codon optimized for translation in human cells. When the transgene encodes the SARS-CoV-2 S protein, it is preferred that its sequence be different from the sequence of the SARS-CoV-2 S protein-encoding polynucleotide used in the envelope vectors of the present invention in order to minimize recombination between these two sequences. Thus, it is preferred to employ the codon-optimized polynucleotide sequence of SEQ ID NO:71 to encode the SARS-CoV-2 spike protein (SEQ ID NO:54) in the LTR-containing vector embodiment that expresses a SARS-CoV-2 spike protein transgene.











SEQ ID NO: 71



atgtttgtgt tcctggtgct gctgccactg gtgtccagcc






agtgtgtgaa cctgaccacc aggacccaac ttcctcctgc






ctacaccaac tccttcacca ggggagtcta ctaccctgac






aaggtgttca ggtcctctgt gctgcacagc acccaggacc






tgttcctgcc attcttcagc aatgtgacct ggttccatgc






catccatgtg tctggcacca atggcaccaa gaggtttgac






aaccctgtgc tgccattcaa tgatggagtc tactttgcca






gcacagagaa gagcaacatc atcaggggct ggatttttgg






caccaccctg gacagcaaga cccagtccct gctgattgtg






aacaatgcca ccaatgtggt gattaaggtg tgtgagttcc






agttctgtaa tgacccattc ctgggagtct actaccacaa






gaacaacaag tcctggatgg agtctgagtt cagggtctac






tcctctgcca acaactgtac ctttgaatat gtgagccaac






cattcctgat ggacttggag ggcaagcagg gcaacttcaa






gaacctgagg gagtttgtgt tcaagaacat tgatggctac






ttcaagattt acagcaaaca cacaccaatc aacctggtga






gggacctgcc acagggcttc tctgccttgg aaccactggt






ggacctgcca attggcatca acatcaccag gttccagacc






ctgctggctc tgcacaggtc ctacctgaca cctggagact






cctcctctgg ctggacagca ggagcagcag cctactatgt






gggctacctc caaccaagga ccttcctgct gaaatacaat






gagaatggca ccatcacaga tgctgtggac tgtgccctgg






acccactgtc tgagaccaag tgtaccctga aatccttcac






agtggagaag ggcatctacc agaccagcaa cttcagggtc






caaccaacag agagcattgt gaggtttcca aacatcacca






acctgtgtcc atttggagag gtgttcaatg ccaccaggtt






tgcctctgtc tatgcctgga acaggaagag gattagcaac






tgtgtggctg actactctgt gctctacaac tctgcctcct






tcagcacctt caagtgttat ggagtgagcc caaccaaact






gaatgacctg tgtttcacca atgtctatgc tgactccttt






gtgattaggg gagatgaggt gagacagatt gcccctggac






aaacaggcaa gattgctgac tacaactaca aactgcctga






tgacttcaca ggctgtgtga ttgcctggaa cagcaacaac






ctggacagca aggtgggagg caactacaac tacctctaca






gactgttcag gaagagcaac ctgaaaccat ttgagaggga






catcagcaca gagatttacc aggctggcag cacaccatgt






aatggagtgg agggcttcaa ctgttacttt ccactccaat






cctatggctt ccaaccaacc aatggagtgg gctaccaacc






atacagggtg gtggtgctgt cctttgaact gctccatgcc






cctgccacag tgtgtggacc aaagaagagc accaacctgg






tgaagaacaa gtgtgtgaac ttcaacttca atggactgac






aggcacagga gtgctgacag agagcaacaa gaagttcctg






ccattccaac agtttggcag ggacattgct gacaccacag






atgctgtgag ggacccacag accttggaga ttctggacat






cacaccatgt tcctttggag gagtgtctgt gattacacct






ggcaccaaca ccagcaacca ggtggctgtg ctctaccagg






atgtgaactg tactgaggtg cctgtggcta tccatgctga






ccaacttaca ccaacctgga gggtctacag cacaggcagc






aatgtgttcc agaccagggc tggctgtctg attggagcag






agcatgtgaa caactcctat gagtgtgaca tcccaattgg






agcaggcatc tgtgcctcct accagaccca gaccaacagc






ccaaggaggg caaggtctgt ggcaagccag agcatcattg






cctacacaat gagtctggga gcagagaact ctgtggctta






cagcaacaac agcattgcca tcccaaccaa cttcaccatc






tctgtgacca cagagattct gcctgtgagt atgaccaaga






cctctgtgga ctgtacaatg tatatctgtg gagacagcac






agagtgtagc aacctgctgc tccaatatgg ctccttctgt






acccaactta acagggctct gacaggcatt gctgtggaac






aggacaagaa cacccaggag gtgtttgccc aggtgaagca






gatttacaag acacctccaa tcaaggactt tggaggcttc






aacttcagcc agattctgcc tgacccaagc aagccaagca






agaggtcctt cattgaggac ctgctgttca acaaggtgac






cctggctgat gctggcttca tcaagcaata tggagactgt






ctgggagaca ttgctgccag ggacctgatt tgtgcccaga






agttcaatgg actgacagtg ctgcctccac tgctgacaga






tgagatgatt gcccaataca cctctgccct gctggctggc






accatcacct ctggctggac ctttggagca ggagcagccc






tccaaatccc atttgctatg cagatggctt acaggttcaa






tggcattgga gtgacccaga atgtgctcta tgagaaccag






aaactgattg ccaaccagtt caactctgcc attggcaaga






ttcaggactc cctgtccagc acagcctctg ccctgggcaa






actccaagat gtggtgaacc agaatgccca ggctctgaac






accctggtga agcaactttc cagcaacttt ggagccatct






cctctgtgct gaatgacatc ctgagcagac tggacaaggt






ggaggctgag gtccagattg acagactgat tacaggcaga






ctccaatccc tccaaaccta tgtgacccaa caacttatca






gggctgctga gattagggca tctgccaacc tggctgccac






caagatgagt gagtgtgtgc tgggacaaag caagagggtg






gacttctgtg gcaagggcta ccacctgatg agttttccac






agtctgcccc tcatggagtg gtgttcctgc atgtgaccta






tgtgcctgcc caggagaaga acttcaccac agcccctgcc






atctgccatg atggcaaggc tcactttcca agggagggag






tgtttgtgag caatggcacc cactggtttg tgacccagag






gaacttctat gaaccacaga ttatcaccac agacaacacc






tttgtgtctg gcaactgtga tgtggtgatt ggcattgtga






acaacacagt ctatgaccca ctccaacctg aactggactc






cttcaaggag gaactggaca aatacttcaa gaaccacacc






agccctgatg tggacctggg agacatctct ggcatcaatg






cctctgtggt gaacatccag aaggagattg acagactgaa






tgaggtggct aagaacctga atgagtccct gattgacctc






caagaactgg gcaaatatga acaatacatc aagtggccat






ggtacatctg gctgggcttc attgctggac tgattgccat






tgtgatggtg accataatgc tgtgttgtat gacctcctgt






tgttcctgtc tgaaaggctg ttgttcctgt ggctcctgtt






gtaag






The transgene may be fused to a transmembrane domain, such as the CD8 transmembrane domain in order to promote the anchoring of the transgene protein in the lentiviral membrane. The sequence of the CD8 transmembrane domain is (SEQ ID NO:87):











ALSNSIMYFS HFVPVFLPAK PTTTPAPRPP TPAPTIASQP






LSLRPEACRP AAGGAVHTRG LDFACDIYIW APLAGTCGVL






LLSLVIT






A polynucleotide that encodes the CD8 transmembrane domain comprises the sequence (SEQ ID NO:88).











gccctgagca actccatcat gtacttcagc cacttcgtgc






cggtcttcct gccagcgaag cccaccacga cgccagcgcc






gcgaccacca acaccggcgc ccaccatcgc gtcgcagccc






ctgtccctgc gcccagaggc gtgccggcca gcggcggggg






gcgcagtgca cacgaggggg ctggacttcg cctgtgatat






ctacatctgg gcgcccttgg ccgggacttg tggggtcctt






ctcctgtcac tggttatcac ctga






In a further embodiment, the LTR-containing vector of the present invention comprise the above-discussed second promoter and comprise a heterologous transgene that is not translated into a protein. For example, such LTR-containing vector may comprise a polynucleotide that upon transcription provides an siRNA molecule capable of silencing an essential SARS-CoV-2 gene (e.g., the SARS-CoV-2 reverse transcriptase or integrase) (Kanasty, R. et al. (2013) “Delivery Materials for siRNA Therapeutics,” Nat. Mater. 12(11):967-977; Selvam, C. (2017) “Therapeutic Potential Of Chemically Modified siRNA: Recent Trends,” Chem. Biol. Drug Des. 90(5):665-678; Gavrilov, K. et al. (2012) “Therapeutic siRNA: Principles, Challenges, And Strategies,” Yale J. Biol. Med. 85(2):187-200).


In a further alternative embodiment, illustrated by the LTR-containing vector pLenti-CMV-IRES-empty (-att) (FIG. 8), the LTR-containing vector of the present invention lack the above-discussed second promoter and/or lack a heterologous transgene.


A further preferred feature of the LTR-containing vectors of the present invention is a third promoter (and an optional upstream transcriptional enhancer site) that will facilitate and mediate transcription in a mammalian host cell. Promoters for suitable for such use are discussed above. An illustrative transcriptional enhancer site is the variant CMV immediate early enhancer site (SEQ ID NO:2) and the variant CMV immediate early promoter site (SEQ ID NO:4).


A further preferred feature of the LTR-containing vectors of the present invention is a first promoter that will direct transcription in a bacterial host. Suitable promoters include the T7 promoter, the T7 lac promoter, the Sp6 promoter, the araBAD promoter, the trp promoter, the lac promoter, the Ptac promoter, the lambda pL promoter, and the T3 promoter. Sources of such promoters are well known in the art (Zheng, C. et al. (2008) “Evaluation of Promoters for Use in Tissue-Specifc Gene Delivery,” In: GENE THERAPY PROTOCOLS, Humana Press; pp. 205-219; Pance, A. (2013) “Tailoring The Models Of Transcription,” Int. J. Mol. Sci. 14(4):7583-7597; Tolmachov, O. (2009) “Designing Plasmid Vectors;” Methods Mol. Biol. 542:117-129; Addgene (2014) “Plasmids 101: The Promoter Region—Let's Go!,” Addgene). An exemplary polynucleotide for such purpose comprises a T7 promoter site. An illustrative T7 promoter site comprises the sequence (SEQ ID NO:12):











taatacgactcactatagg.






A further preferred feature of the LTR-containing vectors of the present invention is an internal ribosome entry site (IRES), such as the internal ribosome entry site of the encephalomyocarditis virus (EMCV) (SEQ ID NO:69):











gagggcccgg aaacctggcc ctgtcttctt gacgagcatt






cctaggggtc tttcccctct cgccaaagga atgcaaggtc






tgttgaatgt cgtgaaggaa gcagttcctc tggaagcttc






ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag






cggaaccccc cacctggcga caggtgcctc tgcggccaaa






agccacgtgt ataagataca cctgcaaagg cggcacaacc






ccagtgccac gttgtgagtt ggatagttgt ggaaagagtc






aaatggctct cctcaagcgt attcaacaag gggctgaagg






atgcccagaa ggtaccccat tgtatgggat ctgatctggg






gcctcggtgc acatgcttta catgtgttta gtcgaggtta






aaaaacgtct aggccccccg aaccacgggg acgtggtttt






cctttgaaaa acacgatgat aa






A further preferred, but optional, feature of the LTR-containing vectors of the present invention comprises one or more epitope tags that facilitate the recovery of product by immunoadsorption or affinity chromatography (Zhao, X. (2013) “Several Affinity Tags Commonly Used In Chromatographic Purification,” J. Anal. Meth. Chem. 2013:581093:1-8). Illustrative epitope tags include a Myc (human c-Myc oncogene) or FLAG® epitope tag, a combined Myc-FLAG® tag that comprises the sequence (SEQ ID NO:13):











EQKLISEEDL AANDILDYKDDDDKV







(the FLAG® epitope tag portion thereof is underlined) An exemplary polynucleotide encoding such combined epitope tag comprises the sequence (SEQ ID NO:14):











gagcagaaac tcatctcaga agaggatctg gcagcaaatg






atatcctgga ttacaaggat gacgacgata aggtt






A further preferred, but optional, feature of the LTR-containing vectors of the present invention comprises a LoxP site, which permits recombination in the presence of Cre recombinase (McLellan, M. A. (2017) “Cre-LoxP-Mediated Recombination: General Principles And Experimental Considerations,” Curr. Protoc. Mouse Biol. 7(1):1-12), and thus facilitates cloning and modification of the vector. An exemplary polynucleotide encoding such LoxP site comprises the sequence (SEQ ID NO:15):











ataacttcgtatagcatacattatacgaagttat.






A further preferred feature of the LTR-containing vectors of the present invention, optionally present when the LTR-containing vector comprises a heterologous transgene, comprises a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (Higashimoto, T. et al. (2007) “The Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element Reduces Readthrough Transcription From Retroviral Vectors,” Gene Ther. 14:1298-1304). An illustrative polynucleotide encoding such WPRE comprises the sequence (SEQ ID NO:16):











aatcaacctc tggattacaa aatttgtgaa agattgactg






gtattcttaa ctatgttgct ccttttacgc tatgtggata






cgctgcttta atgcctttgt atcatgctat tgcttcccgt






atggctttca ttttctcctc cttgtataaa tcctggttgc






tgtctcttta tgaggagttg tggcccgttg tcaggcaacg






tggcgtggtg tgcactgtgt ttgctgacgc aacccccact






ggttggggca ttgccaccac ctgtcagctc ctttccggga






ctttcgcttt ccccctccct attgccacgg cggaactcat






cgccgcctgc cttgcccgct gctggacagg ggctcggctg






ttgggcactg acaattccgt ggtgttgtcg gggaaatcat






cgtcctttcc ttggctgctc gcctgtgttg ccacctggat






tctgcgcggg acgtccttct gctacgtccc ttcggccctc






aatccagcgg accttccttc ccgcggcctg ctgccggctc






tgcggcctct tccgcgtctt cgccttcgcc ctcagacgag






tcggatctcc ctttgggccg cctccccgc






A further preferred feature of the LTR-containing vectors of the present invention, optionally present when the LTR-containing vector comprises a heterologous transgene, comprises a Factor Xa cleavage site that mediates the cleavage of fusion proteins by Factor Xa protease (Block, H. et al. (2015) “Proteolytic Affinity Tag Cleavage,” Methods Enzymol. 559:71-97). An illustrative polynucleotide encoding such Factor Xa cleavage site comprises the sequence (SEQ ID NO:17):











tcggccctcaat.






A further preferred optional feature of the LTR-containing vectors of the present invention comprises a primer binding site for sequencing. An illustrative polynucleotide encoding such a site is a KS primer binding site that comprises the sequence (SEQ ID NO:18):











cgaggtcgacggtatcg.







Preferably, the primer binding site is introduced into the strand of the vector that does not comprise the transgene-encoding sequences (i.e., it is introduced into the “second” strand of the vector).


A further preferred feature of the LTR-containing vectors of the present invention is a second lentiviral 5′ LTR region that has been truncated to delete its U3 region. In preferred embodiments, such lentiviral 5′ LTR region is derived from the 5′ LTR of HIV-1, and comprises the same sequence (SEQ ID NO:5) as the above-discussed first lentiviral 5′ LTR region.


A further preferred feature of the LTR-containing vectors of the present invention is an origin of replication capable of mediating the replication of the vector in prokaryotic cells. An exemplary origin or replication site for this purpose is the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication that comprises the sequence of SEQ ID NO:19, and is preferably positioned on the second strand of the vector:











ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa 







acaaaaaaac caccgctacc agcggtggtt tgtttgccgg 







atcaagagct accaactctt tttccgaagg taactggctt 







cagcagagcg cagataccaa atactgttct tctagtgtag 







ccgtagttag gccaccactt caagaactct gtagcaccgc







ctacatacct cgctctgcta atcctgttac cagtggctgc 







tgccagtggc gataagtcgt gtcttaccgg gttggactca 







agacgatagt taccggataa ggcgcagcgg tcgggctgaa 







cggggggttc gtgcacacag cccagcttgg agcgaacgac 







ctacaccgaa ctgagatacc tacagcgtga gctatgagaa







agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc 







cggtaagcgg cagggtcgga acaggagagc gcacgaggga 







gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc 







gggtttcgcc acctctgact tgagcgtcga tttttgtgat 







gctcgtcagg ggggcggagc ctatggaaa






A variant of such high-copy-number ColE1/pMB1/pBR322/pUC origin of replication comprises the sequence (SEQ ID NO:20) (the difference with respect to SEQ ID NO:19 is underlined):











ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa 







acaaaaaaac caccgctacc agcggtggtt tgtttgccgg 







atcaagagct accaactctt tttccgaagg taactggctt 







cagcagagcg cagataccaa atactgtcct tctagtgtag 







ccgtagttag gccaccactt caagaactct gtagcaccgc







ctacatacct cgctctgcta atcctgttac cagtggctgc 







tgccagtggc gataagtcgt gtcttaccgg gttggactca 







agacgatagt taccggataa ggcgcagcgg tcgggctgaa 







cggggggttc gtgcacacag cccagcttgg agcgaacgac 







ctacaccgaa ctgagatacc tacagcgtga gctatgagaa







agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc 







cggtaagcgg cagggtcgga acaggagagc gcacgaggga 







gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc 







gggtttcgcc acctctgact tgagcgtcga tttttgtgat 







gctcgtcagg ggggcggagc ctatggaaa






A further preferred feature of the LTR-containing vectors of the present invention is a gene that encodes an antibiotic resistance determinant, such as AmpR, which confers resistance to ampicillin, carbenicillin, and related antibiotics to bacterial cells transfected with the vector. The antibiotic resistance determinant is operably controlled by a promoter, such as the AmpR promoter, and both polynucleotide sequences are preferably positioned on the second stand of the vector. An illustrative AmpR antibiotic resistance determinant comprises the sequence (SEQ ID NO:21) (signal sequence shown underlined):













MSIQHFRVAL
IPFFAAFCLPVFAEPETLVK VKDAEDQLGA 








RVGYIELDLN SGKILESFRP EERFPMMSTF KVLLCGAVLS 







RIDAGQEQLG RRIHYSQNDL VEYSPVTEKH LTDGMTVREL 







CSAAITMSDN TAANLLLTTI GGPKELTAFL HNMGDHVTRL 







DRWEPELNEA IPNDERDTTM PVAMATTLRK LLTGELLTLA







SRQQLIDWME ADKVAGPLLR SALPAGWFIA DKSGAGERGS 







RGIIAALGPD GKPSRIVVIY TTGSQATMDE RNRQIAEIGA 







SLIKHW






An illustrative polynucleotide that encodes the AmpR antibiotic resistance determinant of SEQ ID NO:21 has the sequence of SEQ ID NO:22:











atgagtattc aacatttccg tgtcgccctt attccctttt 







ttgcggcatt ttgccttcct gtttttgctc acccagaaac 







gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 







cgagtgggtt acatcgaact ggatctcaac agcggtaaga 







tccttgagag ttttcgcccc gaagaacgtt ttccaatgat







gagcactttt aaagttctgc tatgtggcgc ggtattatcc 







cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 







actattctca gaatgacttg gttgagtact caccagtcac 







agaaaagcat cttacggatg gcatgacagt aagagaatta 







tgcagtgctg ccataaccat gagtgataac actgcggcca







acttacttct gacaacgatc ggaggaccga aggagctaac 







cgcttttttg cacaacatgg gggatcatgt aactcgcctt 







gatcgttggg aaccggagct gaatgaagcc ataccaaacg 







acgagcgtga caccacgatg cctgtagcaa tggcaacaac 







gttgcgcaaa ctattaactg gcgaactact tactctagct







tcccggcaac aattaataga ctggatggag gcggataaag 







ttgcaggacc acttctgcgc tcggcccttc cggctggctg 







gtttattgct gataaatctg gagccggtga gcgtgggtct 







cgcggtatca ttgcagcact ggggccagat ggtaagccct 







cccgtatcgt agttatctac acgacgggga gtcaggcaac







tatggatgaa cgaaatagac agatcgctga gataggtgcc 







tcactgatta agcattgg






A variant AmpR antibiotic resistance determinant comprises the sequence (SEQ ID NO:23) (signal sequence shown underlined; difference between SEQ ID NO:21 shown double underlined):











MSIQHFRVAL IPFFAAFCLPVFAHPETLVK VKDAEDQLGA 







RVGYIELDLN SGKILESFRP EERFPMMSTF KVLLCGAVLS 







RVDAGQEQLG RRIHYSQNDL VEYSPVTEKH LTDGMTVREL 







CSAAITMSDN TAANLLLTTI GGPKELTAFL HNMGDHVTRL 







DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELLTLA







SRQQLIDWME ADKVAGPLLR SALPAGWFIA DKSGAGERGS 







RGIIAALGPD GKPSRIVVIY TTGSQATMDE RNRQIAEIGA 



SLIKHW






An illustrative polynucleotide that encodes the variant AmpR antibiotic resistance determinant of SEQ ID NO:23 comprises the sequence (SEQ ID NO:24) (differences relative to SEQ ID NO:22 are underlined):











atgagtattc aacatttccg tgtcgccctt attccctttt 







ttgcggcatt ttgccttcct gtttttgctc acccagaaac 







gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 







cgagtgggtt acatcgaact ggatctcaac agcggtaaga 







tccttgagag ttttcgcccc gaagaacgtt ttccaatgat







gagcactttt aaagttctgc tatgtggcgc ggtattatcc 







cgtgttgacg ccgggcaaga gcaactcggt cgccgcatac 







actattctca gaatgacttg gttgagtact caccagtcac 







agaaaagcat cttacggatg gcatgacagt aagagaatta 







tgcagtgctg ccataaccat gagtgataac actgcggcca







acttacttct gacaacgatc ggaggaccga aggagctaac 







cgcttttttg cacaacatgg gggatcatgt aactcgcctt 







gatcgttggg aaccggagct gaatgaagcc ataccaaacg 







acgagcgtga caccacgatg cctgcagcaa tggcaacaac 







gttgcgcaaa ctattaactg gcgaactact tactctagct







tcccggcaac aattaataga ctggatggag gcggataaag 







ttgcaggacc acttctgcgc tcggcccttc cggctggctg 







gtttattgct gataaatctg gagccggtga gcgtgggtct 







cgcggtatca ttgcagcact ggggccagat ggtaagccct 







cccgtatcgt agttatctac acgacgggga gtcaggcaac







tatggatgaa cgaaatagac agatcgctga gataggtgcc 







tcactgatta agcattgg






An illustrative AmpR promoter-containing polynucleotide has the sequence of SEQ ID NO:25:











cgcgggaccc ctatttgttt atttttctaa atacattcaa 







atatgtatcc gctcatgaga caataaccct gataaatgct 







tcaataatat tgaaaaagga agagt






A variant AmpR promoter-containing polynucleotide has the sequence of SEQ ID NO:26 (differences relative to SEQ ID NO:25 are underlined):











cgcggaaccc ctatttgttt atttttctaa atacattcaa 







atatgtatcc gctcatgaga caataaccct gataaatgct 







tcaataatat tgaaaaagga agagt






The double-stranded vector pLenti-SV40-puro (FIG. 6) (7,705 base pairs) is a preferred LTR-containing vector of the present invention that may be used with the packaging vectors, REV vectors and envelope vectors of the present invention to produce lentiviral particles that array a SARS-CoV-2 S protein on their surface. The double-stranded vector pLenti-SV40-puro (-att) (FIG. 7) (7,701 base pairs) is an alternate preferred LTR-containing vector of the present invention that may be used with the packaging, REV and envelope vectors of the present invention to produce lentiviral particles that array a SARS-CoV-2 S protein on their surface. Vector pLenti-SV40-puro (-att) differs in sequence from vector pLenti-SV40-puro in containing:

  • (1) a deletion of the CA residues found at positions 1013-1014 of SEQ ID NO:27, which positions correspond to the two 3′ terminal nucleotides of the 5′ LTR;
  • (2) a deletion of the TG residues found at positions 5391-5392 of SEQ ID NO:27, which correspond to residues 1-2 of the 3′ terminus of the U3 region;
  • (3) an A to C substitution at position 5426, which correspond to residues within the U3 region; and
  • (4) a C to G substitution at position 5428, which correspond to residues within the U3 region.


Such modifications further reduce the ability of the vector to integrate into a chromosome of a transfected mammalian cell.


The sequence of the native 3′ LTR U3 region is SEQ ID NO:62:











tggaagggct aattcactcc caacgaagac aagatatcct 







tgatctgtgg atctaccaca cacaaggcta cttccctgat 







tggcagaact acacaccagg gccagggatc agatatccac 







tgacctttgg atggtgctac aagctagtac cagttgagca 







agagaaggta gaagaagcca atgaaggaga gaacacccgc







ttgttacacc ctgtgagcct gcatgggatg gatgacccgg 







agagagaagt attagagtgg aggtttgaca gccgcctagc 







atttcatcac atggcccgag agctgcatcc ggagtacttc 







aagaactgct gacatcgagc ttgctacaag ggactttccg 







ctggggactt tccagggagg cgtggcctgg gcgggactgg







ggagtggcga gccctcagat cctgcatata agcagctgct 







ttttgcctgt act






The U3 region of vector pLenti-SV40-puro (SEQ ID NO:63) comprises a deletion of 133 residues (corresponding to residues 312-444 of SEQ ID NO:62).











SEQ ID NO: 63:



tggaagggct aattcactcc caacgaagac aagatatcct 







tgatctgtgg atctaccaca cacaaggcta cttccctgat 







tggcagaact acacaccagg gccagggatc agatatccac 







tgacctttgg atggtgctac aagctagtac cagttgagca 







agagaaggta gaagaagcca atgaaggaga gaacacccgc







ttgttacacc ctgtgagcct gcatgggatg gatgacccgg 







agagagaagt attagagtgg aggtttgaca gccgcctagc 







atttcatcac atggcccgag agctgcatcc ggactgtact






The U3 region of vector pLenti-SV40-puro (-att) (SEQ ID NO:64) comprises a deletion of the first two U3 residues and substitutions at positions 36 and 38 relative to SEQ ID NO:62 (underlined below) and the deletion of 133 residues (corresponding to residues 312-444 of SEQ ID NO:62).











SEQ ID NO: 64:




  gaagggct aattcactcc caacgaagac aagatctgct 








tgatctgtgg atctaccaca cacaaggcta cttccctgat 







tggcagaact acacaccagg gccagggatc agatatccac 







tgacctttgg atggtgctac aagctagtac cagttgagca 







agagaaggta gaagaagcca atgaaggaga gaacacccgc







ttgttacacc ctgtgagcct gcatgggatg gatgacccgg 







agagagaagt attagagtgg aggtttgaca gccgcctagc 







atttcatcac atggcccgag agctgcatcc ggactgtact






2. Illustrative LTR-Containing Vectors


(a) pLenti-SV40-Puro


The vector pLenti-SV40-puro (FIG. 6) illustrates the LTR-containing vectors of the present invention. The first strand of vector pLenti-SV40-puro has 7705 nucleotide residues and has the sequence of SEQ ID NO:27 (differences relative to the polynucleotide sequence of the first strand of vector pLenti-SV40-puro (-att) are underlined):











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca
  50






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt
 100





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc
 150





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
 200





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg
 250





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata
 300





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac
 350





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata
 400





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg
 450





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc
 500





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag
 550





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt
 600





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg
 650





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
 700





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg
 750





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg
 800





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga
 850





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta
 900





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg
 950





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg
1000





gaaaatctct agcagtggcg cccgaacagg gacttgaaag cgaaagggaa
1050





accagaggag ctctctcgac gcaggactcg gcttgctgaa gcgcgcacgg
1100





caagaggcga ggggcggcga ctggtgagta cgccaaaaat tttgactagc
1150





ggaggctaga aggagagaga tgggtgcgag agcgtcagta ttaagcgggg
1200





gagaattaga tcgcgatggg aaaaaattcg gttaaggcca gggggaaaga
1250





aaaaatataa attaaaacat atagtatggg caagcaggga gctagaacga
1300





ttcgcagtta atcctggcct gttagaaaca tcagaaggct gtagacaaat
1350





actgggacag ctacaaccat cccttcagac aggatcagaa gaacttagat
1400





cattatataa tacagtagca accctctatt gtgtgcatca aaggatagag
1450





ataaaagaca ccaaggaagc tttagacaag atagaggaag agcaaaacaa
1500





aagtaagacc accgcacagc aagcggccgg ccgctgatct tcagacctgg
1550





aggaggagat atgagggaca attggagaag tgaattatat aaatataaag
1600





tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc aaagagaaga
1650





gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg
1700





gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga
1750





cggtacaggc cagacaatta ttgtctggta tagtgcagca gcagaacaat
1800





ttgctgaggg ctattgaggc gcaacagcat ctgttgcaac tcacagtctg
1850





gggcatcaag cagctccagg caagaatcct ggctgtggaa agatacctaa
1900





aggatcaaca gctcctgggg atttggggtt gctctggaaa actcatttgc
1950





accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca
2000





gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt
2050





acacaagctt aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa
2100





aagaatgaac aagaattatt ggaattagat aaatgggcaa gtttgtggaa
2150





ttggtttaac ataacaaatt ggctgtggta tataaaatta ttcataatga
2200





tagtaggagg cttggtaggt ttaagaatag tttttgctgt actttctata
2250





gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct
2300





cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg
2350





gagagagaga cagagacaga tccattcgat tagtgaacgg atcggcactg
2400





cgtgcgccaa ttctgcagac aaatggcagt attcatccac aattttaaaa
2450





gaaaaggggg gattgggggg tacagtgcag gggaaagaat agtagacata
2500





atagcaacag acatacaaac taaagaatta caaaaacaaa ttacaaaaat
2550





tcaaaatttt cgggtttatt acagggacag cagagatcca gtttggttag
2600





taccgggccc gctctagaat gtgtgtcagt tagggtgtgg aaagtcccca
2650





ggctccccag caggcagaag tatgcaaagc atgcatctca attagtcagc
2700





aaccaggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa
2750





gcatgcatct caattagtca gcaaccatag tcccgcccct aactccgccc
2800





atcccgcccc taactccgcc cagttccgcc cattctccgc cccatggctg
2850





actaattttt tttatttatg cagaggccga ggccgcctcg gcctctgagc
2900





tattccagaa gtagtgagga ggcttttttg gaggcctagg cttttgcaaa
2950





aagctcccgg gagcttgtat atccattttc ggatctgatc aagagacacg
3000





tacgaccatg accgagtaca agcccacggt gcgcctcgcc acccgcgacg
3050





acgtcccccg ggcagtacgc accctcgccg ccgcgttcgc cgactacccc
3100





gccacgcgcc acaccgtcga tccagaccgc cacatcgagc gggtcaccga
3150





gctgcaagaa ctcttcctca cgcgcgtcgg gctcgacatc ggcaaggtgt
3200





gggtcgcgga cgacggcgcc gcggtggcgg tctggaccac gccggagagc
3250





gtcgaagcgg gggcggtgtt cgccgagatc ggcccgcgca tggccgagtt
3300





gagcggttcc cggctggccg cgcagcaaca gatggaaggc ctcctggcgc
3350





cgcaccggcc caaggagccc gcgtggttcc tggccaccgt cggcgtctcg
3400





cccgaccacc agggcaaggg tctgggcagc gccgtcgtgc tccccggagt
3450





ggaggcggcc gagcgcgccg gggtgcccgc cttcctggag acctccgcgc
3500





cccgcaacct ccccttctac gagcggctcg gcttcaccgt caccgccgac
3550





gtcgaggtgc ccgaaggacc gcgcacctgg tgcatgaccc gcaagcccgg
3600





tgcctgattt ctagacatgt ccaatatgac cgccatgttg acattgatta
3650





ttgactagtt attaatagta atcaattacg gggtcattag ttcatagccc
3700





atatatggag ttccgcgtta cataacttac ggtaaatggc ccgcctggct
3750





gaccgcccaa cgacccccgc ccattgacgt caataatgac gtatgttccc
3800





atagtaacgc caatagggac tttccattga cgtcaatggg tggagtattt
3850





acggtaaact gcccacttgg cagtacatca agtgtatcat atgccaagtc
3900





cgccccctat tgacgtcaat gacggtaaat ggcccgcctg gcattatgcc
3950





cagtacatga ccttacggga ctttcctact tggcagtaca tctacgtatt
4000





agtcatcgct attaccatgg tgatgcggtt ttggcagtac accaatgggc
4050





gtggatagcg gtttgactca cggggatttc caagtctcca ccccattgac
4100





gtcaatggga gtttgttttg gcaccaaaat caacgggact ttccaaaatg
4150





tcgtaataac cccgccccgt tgacgcaaat gggcggtagg cgtgtacggt
4200





gggaggtcta tataagcaga gctcgtttag tgaaccgtca gaattttgta
4250





atacgactca ctatagggcg gccgggaatt cgtcgactgg atccggtacc
4300





gaggagatct gccgccgcga tcgccggcgc gccagatctc aagcttaact
4350





agctagcgga ccgacgcgta cgcggccgct cgagcagaaa ctcatctcag
4400





aagaggatct ggcagcaaat gatatcctgg attacaagga tgacgacgat
4450





aaggtttaaa cggccggccg cggtctgtac aagtaggatt cgtcgaggga
4500





cctaataact tcgtatagca tacattatac gaagttatac atgtttaagg
4550





gttccggttc cactaggtac aattcgatat caagcttatc gataatcaac
4600





ctctggatta caaaatttgt gaaagattga ctggtattct taactatgtt
4650





gctcctttta cgctatgtgg atacgctgct ttaatgcctt tgtatcatgc
4700





tattgcttcc cgtatggctt tcattttctc ctccttgtat aaatcctggt
4750





tgctgtctct ttatgaggag ttgtggcccg ttgtcaggca acgtggcgtg
4800





gtgtgcactg tgtttgctga cgcaaccccc actggttggg gcattgccac
4850





cacctgtcag ctcctttccg ggactttcgc tttccccctc cctattgcca
4900





cggcggaact catcgccgcc tgccttgccc gctgctggac aggggctcgg
4950





ctgttgggca ctgacaattc cgtggtgttg tcggggaaat catcgtcctt
5000





tccttggctg ctcgcctgtg ttgccacctg gattctgcgc gggacgtcct
5050





tctgctacgt cccttcggcc ctcaatccag cggaccttcc ttcccgcggc
5100





ctgctgccgg ctctgcggcc tcttccgcgt cttcgccttc gccctcagac
5150





gagtcggatc tccctttggg ccgcctcccc gcatcgatac cgtcgacctc
5200





gatcgagacc tagaaaaaca tggagcaatc acaagtagca atacagcagc
5250





taccaatgct gattgtgcct ggctagaagc acaagaggag gaggaggtgg
5300





gttttccagt cacacctcag gtacctttaa gaccaatgac ttacaaggca
5350





gctgtagatc ttagccactt tttaaaagaa aaggggggac tggaagggct
5400





aattcactcc caacgaagac aagatatcct tgatctgtgg atctaccaca
5450





cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc
5500





agatatccac tgacctttgg atggtgctac aagctagtac cagttgagca
5550





agagaaggta gaagaagcca atgaaggaga gaacacccgc ttgttacacc
5600





ctgtgagcct gcatgggatg gatgacccgg agagagaagt attagagtgg
5650





aggtttgaca gccgcctagc atttcatcac atggcccgag agctgcatcc
5700





ggactgtact gggtctctct ggttagacca gatctgagcc tgggagctct
5750





ctggctaact agggaaccca ctgcttaagc ctcaataaag cttgccttga
5800





gtgcttcaag tagtgtgtgc ccgtctgttg tgtgactctg gtaactagag
5850





atccctcaga cccttttagt cagtgtggaa aatctctagc agcatgtgag
5900





caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg
5950





tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc
6000





aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc
6050





cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc
6100





ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag
6150





ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg
6200





gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt
6250





aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc
6300





agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta
6350





cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta
6400





tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg
6450





tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg
6500





tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct
6550





ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta
6600





agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt
6650





taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact
6700





tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat
6750





ctgtctattt cgttcatcca tagttgcctg actccccgtc gtgtagataa
6800





ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg
6850





cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc
6900





cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc
6950





agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat
7000





agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc
7050





gtcgtttggt atggcttcat tcagctccgg ttcccaacga tcaaggcgag
7100





ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct
7150





ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat
7200





ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt
7250





ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg
7300





cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca
7350





tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa
7400





aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact
7450





cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg
7500





gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga
7550





cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc
7600





atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta
7650





gaaaaataaa caaatagggg tcccgcgcac atttccccga aaagtgccac
7700





ctgac
7705






As will be noted, residues 237-616 of pLenti-SV40-puro (SEQ ID NO:27) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:27 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1014 of SEQ ID NO:27 correspond to the truncated lentiviral 5′ LTR region (SEQ ID NO:5). Residues 1061-1186 of SEQ ID NO:27 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1683-1916 of SEQ ID NO:27 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2443-2560 of SEQ ID NO:27 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2621-2950 of SEQ ID NO:27 correspond to the SV40 promoter and origin of replication (SEQ ID NO:9). Residues 3008-3607 of SEQ ID NO:27 correspond to a polynucleotide sequence (SEQ ID NO:11) that encodes the N-acetyltransferase of Streptomyces alboniger (SEQ ID NO:10). Residues 3640-4019 of SEQ ID NO:27 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 4020-4223 of SEQ ID NO:27 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 4249-4267 of SEQ ID NO:27 correspond to a T7 promoter site (SEQ ID NO:12). Residues 4382-4453 of SEQ ID NO:27 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 4505-4538 of SEQ ID NO:27 correspond to a LoxP site (SEQ ID NO:15). Residues 4594-5182 of SEQ ID NO:27 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 5065-5076 of SEQ ID NO:27 correspond to a Factor Xa cleavage site (SEQ ID NO:17). Residues 5185-5201 of SEQ ID NO:27 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 5391-5891 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 5391-5710 correspond to a modified U3 region (SEQ ID NO:62), residues 5711-5891 correspond to R and the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 5953-6541 of SEQ ID NO:27 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 6712-7572 of SEQ ID NO:27 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 7573-7677 of SEQ ID NO:27 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


(b) pLenti-SV40-Puro (-Att)


The vector pLenti-SV40-puro (-att) (FIG. 7) further illustrates the LTR-containing vectors of the present invention. The first strand of vector pLenti-SV40-puro (-att) has 7701 nucleotide residues and has the sequence of SEQ ID NO:28:











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca
  50






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt
 100





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc
 150





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
 200





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg
 250





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata
 300





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac
 350





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata
 400





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg
 450





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc
 500





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag
 550





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt
 600





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg
 650





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
 700





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg
 750





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg
 800





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga
 850





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta
 900





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg
 950





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg
1000





gaaaatctct aggtggcgcc cgaacaggga cttgaaagcg aaagggaaac
1050





cagaggagct ctctcgacgc aggactcggc ttgctgaagc gcgcacggca
1100





agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg
1150





aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga
1200





gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa
1250





aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt
1300





cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac
1350





tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca
1400





ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat
1450





aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa
1500





gtaagaccac cgcacagcaa gcggccggcc gctgatcttc agacctggag
1550





gaggagatat gagggacaat tggagaagtg aattatataa atataaagta
1600





gtaaaaattg aaccattagg agtagcaccc accaaggcaa agagaagagt
1650





ggtgcagaga gaaaaaagag cagtgggaat aggagctttg ttccttgggt
1700





tcttgggagc agcaggaagc actatgggcg cagcgtcaat gacgctgacg
1750





gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt
1800





gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg
1850





gcatcaagca gctccaggca agaatcctgg ctgtggaaag atacctaaag
1900





gatcaacagc tcctggggat ttggggttgc tctggaaaac tcatttgcac
1950





cactgctgtg ccttggaatg ctagttggag taataaatct ctggaacaga
2000





tttggaatca cacgacctgg atggagtggg acagagaaat taacaattac
2050





acaagcttaa tacactcctt aattgaagaa tcgcaaaacc agcaagaaaa
2100





gaatgaacaa gaattattgg aattagataa atgggcaagt ttgtggaatt
2150





ggtttaacat aacaaattgg ctgtggtata taaaattatt cataatgata
2200





gtaggaggct tggtaggttt aagaatagtt tttgctgtac tttctatagt
2250





gaatagagtt aggcagggat attcaccatt atcgtttcag acccacctcc
2300





caaccccgag gggacccgac aggcccgaag gaatagaaga agaaggtgga
2350





gagagagaca gagacagatc cattcgatta gtgaacggat cggcactgcg
2400





tgcgccaatt ctgcagacaa atggcagtat tcatccacaa ttttaaaaga
2450





aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat
2500





agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc
2550





aaaattttcg ggtttattac agggacagca gagatccagt ttggttagta
2600





ccgggcccgc tctagaatgt gtgtcagtta gggtgtggaa agtccccagg
2650





ctccccagca ggcagaagta tgcaaagcat gcatctcaat tagtcagcaa
2700





ccaggtgtgg aaagtcccca ggctccccag caggcagaag tatgcaaagc
2750





atgcatctca attagtcagc aaccatagtc ccgcccctaa ctccgcccat
2800





cccgccccta actccgccca gttccgccca ttctccgccc catggctgac
2850





taattttttt tatttatgca gaggccgagg ccgcctcggc ctctgagcta
2900





ttccagaagt agtgaggagg cttttttgga ggcctaggct tttgcaaaaa
2950





gctcccggga gcttgtatat ccattttcgg atctgatcaa gagacacgta
3000





cgaccatgac cgagtacaag cccacggtgc gcctcgccac ccgcgacgac
3050





gtcccccggg cagtacgcac cctcgccgcc gcgttcgccg actaccccgc
3100





cacgcgccac accgtcgatc cagaccgcca catcgagcgg gtcaccgagc
3150





tgcaagaact cttcctcacg cgcgtcgggc tcgacatcgg caaggtgtgg
3200





gtcgcggacg acggcgccgc ggtggcggtc tggaccacgc cggagagcgt
3250





cgaagcgggg gcggtgttcg ccgagatcgg cccgcgcatg gccgagttga
3300





gcggttcccg gctggccgcg cagcaacaga tggaaggcct cctggcgccg
3350





caccggccca aggagcccgc gtggttcctg gccaccgtcg gcgtctcgcc
3400





cgaccaccag ggcaagggtc tgggcagcgc cgtcgtgctc cccggagtgg
3450





aggcggccga gcgcgccggg gtgcccgcct tcctggagac ctccgcgccc
3500





cgcaacctcc ccttctacga gcggctcggc ttcaccgtca ccgccgacgt
3550





cgaggtgccc gaaggaccgc gcacctggtg catgacccgc aagcccggtg
3600





cctgatttct agacatgtcc aatatgaccg ccatgttgac attgattatt
3650





gactagttat taatagtaat caattacggg gtcattagtt catagcccat
3700





atatggagtt ccgcgttaca taacttacgg taaatggccc gcctggctga
3750





ccgcccaacg acccccgccc attgacgtca ataatgacgt atgttcccat
3800





agtaacgcca atagggactt tccattgacg tcaatgggtg gagtatttac
3850





ggtaaactgc ccacttggca gtacatcaag tgtatcatat gccaagtccg
3900





ccccctattg acgtcaatga cggtaaatgg cccgcctggc attatgccca
3950





gtacatgacc ttacgggact ttcctacttg gcagtacatc tacgtattag
4000





tcatcgctat taccatggtg atgcggtttt ggcagtacac caatgggcgt
4050





ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt
4100





caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc
4150





gtaataaccc cgccccgttg acgcaaatgg gcggtaggcg tgtacggtgg
4200





gaggtctata taagcagagc tcgtttagtg aaccgtcaga attttgtaat
4250





acgactcact atagggcggc cgggaattcg tcgactggat ccggtaccga
4300





ggagatctgc cgccgcgatc gccggcgcgc cagatctcaa gcttaactag
4350





ctagcggacc gacgcgtacg cggccgctcg agcagaaact catctcagaa
4400





gaggatctgg cagcaaatga tatcctggat tacaaggatg acgacgataa
4450





ggtttaaacg gccggccgcg gtctgtacaa gtaggattcg tcgagggacc
4500





taataacttc gtatagcata cattatacga agttatacat gtttaagggt
4550





tccggttcca ctaggtacaa ttcgatatca agcttatcga taatcaacct
4600





ctggattaca aaatttgtga aagattgact ggtattctta actatgttgc
4650





tccttttacg ctatgtggat acgctgcttt aatgcctttg tatcatgcta
4700





ttgcttcccg tatggctttc attttctcct ccttgtataa atcctggttg
4750





ctgtctcttt atgaggagtt gtggcccgtt gtcaggcaac gtggcgtggt
4800





gtgcactgtg tttgctgacg caacccccac tggttggggc attgccacca
4850





cctgtcagct cctttccggg actttcgctt tccccctccc tattgccacg
4900





gcggaactca tcgccgcctg ccttgcccgc tgctggacag gggctcggct
4950





gttgggcact gacaattccg tggtgttgtc ggggaaatca tcgtcctttc
5000





cttggctgct cgcctgtgtt gccacctgga ttctgcgcgg gacgtccttc
5050





tgctacgtcc cttcggccct caatccagcg gaccttcctt cccgcggcct
5100





gctgccggct ctgcggcctc ttccgcgtct tcgccttcgc cctcagacga
5150





gtcggatctc cctttgggcc gcctccccgc atcgataccg tcgacctcga
5200





tcgagaccta gaaaaacatg gagcaatcac aagtagcaat acagcagcta
5250





ccaatgctga ttgtgcctgg ctagaagcac aagaggagga ggaggtgggt
5300





tttccagtca cacctcaggt acctttaaga ccaatgactt acaaggcagc
5350





tgtagatctt agccactttt taaaagaaaa ggggggacga agggctaatt
5400





cactcccaac gaagacaaga tctgcttgat ctgtggatct accacacaca
5450





aggctacttc cctgattggc agaactacac accagggcca gggatcagat
5500





atccactgac ctttggatgg tgctacaagc tagtaccagt tgagcaagag
5550





aaggtagaag aagccaatga aggagagaac acccgcttgt tacaccctgt
5600





gagcctgcat gggatggatg acccggagag agaagtatta gagtggaggt
5650





ttgacagccg cctagcattt catcacatgg cccgagagct gcatccggac
5700





tgtactgggt ctctctggtt agaccagatc tgagcctggg agctctctgg
5750





ctaactaggg aacccactgc ttaagcctca ataaagcttg ccttgagtgc
5800





ttcaagtagt gtgtgcccgt ctgttgtgtg actctggtaa ctagagatcc
5850





ctcagaccct tttagtcagt gtggaaaatc tctagcagca tgtgagcaaa
5900





aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt
5950





tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt
6000





cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc
6050





tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat
6100





acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca
6150





cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg
6200





tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact
6250





atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca
6300





gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga
6350





gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg
6400





gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc
6450





tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg
6500





caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga
6550





tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg
6600





attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa
6650





ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt
6700





ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt
6750





ctatttcgtt catccatagt tgcctgactc cccgtcgtgt agataactac
6800





gatacgggag ggcttaccat ctggccccag tgctgcaatg ataccgcgag
6850





acccacgctc accggctcca gatttatcag caataaacca gccagccgga
6900





agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc
6950





tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt
7000





tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg
7050





tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac
7100





atgatccccc atgttgtgca aaaaagcggt tagctccttc ggtcctccga
7150





tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca
7200





gcactgcata attctcttac tgtcatgcca tccgtaagat gcttttctgt
7250





gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac
7300





cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc
7350





agaactttaa aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact
7400





ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg
7450





cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga
7500





gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg
7550





gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt
7600





atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa
7650





aataaacaaa taggggtccc gcgcacattt ccccgaaaag tgccacctga
7700





c
7701






As will be noted, residues 237-616 of pLenti-SV40-puro (-att) (SEQ ID NO:28) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:28 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1012 of SEQ ID NO:28 correspond to the truncated lentiviral 5′ LTR region (SEQ ID NO:68). Residues 1059-1184 of SEQ ID NO:28 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1681-1914 of SEQ ID NO:28 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2441-2558 of SEQ ID NO:28 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2619-2948 of SEQ ID NO:28 correspond to the SV40 promoter and origin of replication (SEQ ID NO:9). Residues 3006-3605 of SEQ ID NO:28 correspond to a polynucleotide sequence (SEQ ID NO:11) that encodes the N-acetyltransferase of Streptomyces alboniger (SEQ ID NO:10). Residues 3638-4017 of SEQ ID NO:28 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 4018-4221 of SEQ ID NO:28 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 4247-4265 of SEQ ID NO:28 correspond to a T7 promoter site (SEQ ID NO:12). Residues 4380-4450 of SEQ ID NO:28 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 4503-4536 of SEQ ID NO:28 correspond to a LoxP site (SEQ ID NO:15). Residues 4592-5180 of SEQ ID NO:28 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 5063-5074 of SEQ ID NO:28 correspond to a Factor Xa cleavage site (SEQ ID NO:17). Residues 5183-5199 of SEQ ID NO:28 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 5389-5887 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 5389-5706 correspond to a modified U3 region (SEQ ID NO:64), residues 5707-5888 correspond to R and the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 5949-6537 of SEQ ID NO:28 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 6708-7568 of SEQ ID NO:28 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 7569-7673 of SEQ ID NO:28 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


(c) pLenti-CMV-IRES-Empty (-Att)


The vector pLenti-CMV-IRES-empty (-att) (FIG. 8) further illustrates the LTR-containing vectors of the present invention. The first strand of vector pLenti-CMV-IRES-empty (-att) has 7267 nucleotide residues and has the sequence of SEQ ID NO:67:











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca
50






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt
100





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc
150





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
200





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg
250





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata
300





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac
350





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata
400





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg
450





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc
500





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag
550





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt
600





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg
650





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
700





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg
750





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg
800





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga
850





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta
900





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg
950





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg
1000





gaaaatctct aggtggcgcc cgaacaggga cttgaaagcg aaagggaaac
1050





cagaggagct ctctcgacgc aggactcggc ttgctgaagc gcgcacggca
1100





agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg
1150





aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga
1200





gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa
1250





aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt
1300





cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac
1350





tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca
1400





ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat
1450





aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa
1500





gtaagaccac cgcacagcaa gcggccggcc gctgatcttc agacctggag
1550





gaggagatat gagggacaat tggagaagtg aattatataa atataaagta
1600





gtaaaaattg aaccattagg agtagcaccc accaaggcaa agagaagagt
1650





ggtgcagaga gaaaaaagag cagtgggaat aggagctttg ttccttgggt
1700





tcttgggagc agcaggaagc actatgggcg cagcgtcaat gacgctgacg
1750





gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt
1800





gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg
1850





gcatcaagca gctccaggca agaatcctgg ctgtggaaag atacctaaag
1900





gatcaacagc tcctggggat ttggggttgc tctggaaaac tcatttgcac
1950





cactgctgtg ccttggaatg ctagttggag taataaatct ctggaacaga
2000





tttggaatca cacgacctgg atggagtggg acagagaaat taacaattac
2050





acaagcttaa tacactcctt aattgaagaa tcgcaaaacc agcaagaaaa
2100





gaatgaacaa gaattattgg aattagataa atgggcaagt ttgtggaatt
2150





ggtttaacat aacaaattgg ctgtggtata taaaattatt cataatgata
2200





gtaggaggct tggtaggttt aagaatagtt tttgctgtac tttctatagt
2250





gaatagagtt aggcagggat attcaccatt atcgtttcag acccacctcc
2300





caaccccgag gggacccgac aggcccgaag gaatagaaga agaaggtgga
2350





gagagagaca gagacagatc cattcgatta gtgaacggat cggcactgcg
2400





tgcgccaatt ctgcagacaa atggcagtat tcatccacaa ttttaaaaga
2450





aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat
2500





agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc
2550





aaaattttcg ggtttattac agggacagca gagatccagt ttggttagta
2600





ccgggcccgc tctagacatg tccaatatga ccgccatgtt gacattgatt
2650





attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc
2700





catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc
2750





tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
2800





catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt
2850





tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt
2900





ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc
2950





ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat
3000





tagtcatcgc tattaccatg gtgatgcggt tttggcagta caccaatggg
3050





cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
3100





cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat
3150





gtcgtaataa ccccgccccg ttgacgcaaa tgggcggtag gcgtgtacgg
3200





tgggaggtct atataagcag agctcgttta gtgaaccgtc agaattttgt
3250





aatacgactc actatagggc ggccgggaat tcgtcgactg cccccccccc
3300





taacgttact ggccgaagcc gcttggaata aggccggtgt gcgtttgtct
3350





atatgttatt ttccaccata ttgccgtctt ttggcaatgt gagggcccgg
3400





aaacctggcc ctgtcttctt gacgagcatt cctaggggtc tttcccctct
3450





cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa gcagttcctc
3500





tggaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag
3550





cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt
3600





ataagataca cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt
3650





ggatagttgt ggaaagagtc aaatggctct cctcaagcgt attcaacaag
3700





gggctgaagg atgcccagaa ggtaccccat tgtatgggat ctgatctggg
3750





gcctcggtgc acatgcttta catgtgttta gtcgaggtta aaaaacgtct
3800





aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat
3850





aatgatccgg taccgaggag atctgccgcc gcgatcgccg gcgcgccaga
3900





tctcaagctt aactagctag cggaccgacg cgtacgcggc cgctcgagca
3950





gaaactcatc tcagaagagg atctggcagc aaatgatatc ctggattaca
4000





aggatgacga cgataaggtt taaacggccg gccgcggtct gtacaagtag
4050





gattcgtcga gggacctaat aacttcgtat agcatacatt atacgaagtt
4100





atacatgttt aagggttccg gttccactag gtacaattcg atatcaagct
4150





tatcgataat caacctctgg attacaaaat ttgtgaaaga ttgactggta
4200





ttcttaacta tgttgctcct tttacgctat gtggatacgc tgctttaatg
4250





cctttgtatc atgctattgc ttcccgtatg gctttcattt tctcctcctt
4300





gtataaatcc tggttgctgt ctctttatga ggagttgtgg cccgttgtca
4350





ggcaacgtgg cgtggtgtgc actgtgtttg ctgacgcaac ccccactggt
4400





tggggcattg ccaccacctg tcagctcctt tccgggactt tcgctttccc
4450





cctccctatt gccacggcgg aactcatcgc cgcctgcctt gcccgctgct
4500





ggacaggggc tcggctgttg ggcactgaca attccgtggt gttgtcgggg
4550





aaatcatcgt cctttccttg gctgctcgcc tgtgttgcca cctggattct
4600





gcgcgggacg tccttctgct acgtcccttc ggccctcaat ccagcggacc
4650





ttccttcccg cggcctgctg ccggctctgc ggcctcttcc gcgtcttcgc
4700





cttcgccctc agacgagtcg gatctccctt tgggccgcct ccccgcatcg
4750





ataccgtcga cctcgatcga gacctagaaa aacatggagc aatcacaagt
4800





agcaatacag cagctaccaa tgctgattgt gcctggctag aagcacaaga
4850





ggaggaggag gtgggttttc cagtcacacc tcaggtacct ttaagaccaa
4900





tgacttacaa ggcagctgta gatcttagcc actttttaaa agaaaagggg
4950





ggacgaaggg ctaattcact cccaacgaag acaagatctg cttgatctgt
5000





ggatctacca cacacaaggc tacttccctg attggcagaa ctacacacca
5050





gggccaggga tcagatatcc actgaccttt ggatggtgct acaagctagt
5100





accagttgag caagagaagg tagaagaagc caatgaagga gagaacaccc
5150





gcttgttaca ccctgtgagc ctgcatggga tggatgaccc ggagagagaa
5200





gtattagagt ggaggtttga cagccgccta gcatttcatc acatggcccg
5250





agagctgcat ccggactgta ctgggtctct ctggttagac cagatctgag
5300





cctgggagct ctctggctaa ctagggaacc cactgcttaa gcctcaataa
5350





agcttgcctt gagtgcttca agtagtgtgt gcccgtctgt tgtgtgactc
5400





tggtaactag agatccctca gaccctttta gtcagtgtgg aaaatctcta
5450





gcagcatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc
5500





gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa
5550





aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat
5600





accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc
5650





ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc
5700





gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc
5750





gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc
5800





gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt
5850





atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg
5900





taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact
5950





agaagaacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg
6000





aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg
6050





gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct
6100





caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga
6150





aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca
6200





cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata
6250





tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc
6300





tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg
6350





tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct
6400





gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat
6450





aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat
6500





ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt
6550





tcgccagtta atagtttgcg caacgttgtt gccattgcta caggcatcgt
6600





ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac
6650





gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc
6700





tccttcggtc ctccgatcgt tgtcagaagt aagttggccg cagtgttatc
6750





actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg
6800





taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa
6850





tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa
6900





taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt
6950





cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg
7000





atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac
7050





cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg
7100





gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa
7150





tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt
7200





tgaatgtatt tagaaaaata aacaaatagg ggtcccgcgc acatttcccc
7250





gaaaagtgcc acctgac
7267






As will be noted, residues 237-616 of pLenti-CMV-IRES-empty (-att) (SEQ ID NO:67) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:67 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1012 of SEQ ID NO:67 correspond to the alternative truncated lentiviral 5′ LTR region (SEQ ID NO:68). Residues 1059-1184 of SEQ ID NO:67 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1681-1914 of SEQ ID NO:67 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2441-2558 of SEQ ID NO:67 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2641-3020 of SEQ ID NO:67 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 3021-3224 of SEQ ID NO:67 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 3250-3268 of SEQ ID NO:67 correspond to a T7 promoter site (SEQ ID NO:12). Residues 3391-3852 of SEQ ID NO:67 correspond to the internal ribosome entry site of the encephalomyocarditis virus (EMCV) (SEQ ID NO:69). Residues 3946-4020 of SEQ ID NO:67 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 4069-4102 of SEQ ID NO:67 correspond to a LoxP site (SEQ ID NO:15). Residues 4158-4746 of SEQ ID NO:67 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 4629-4640 of SEQ ID NO:67 correspond to a Factor Xa cleavage site (SEQ ID NO:17). Residues 4749-4765 of SEQ ID NO:67 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 4955-5453 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 4955-5272 correspond to a modified U3 region (SEQ ID NO:64), residues 5273-5400 correspond to R and the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 5515-6103 of SEQ ID NO:67 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 6274-7134 of SEQ ID NO:67 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 7135-7239 of SEQ ID NO:67 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


(d) pLenti-CMV-IRES-Spike (-Att)


The vector pLenti-CMV-IRES-Spike (-att) (FIG. 9) further illustrates the LTR-containing vectors of the present invention. The first strand of vector pLenti-CMV-IRES-Spike (-att) has 11060 nucleotide residues and has the sequence of SEQ ID NO:70:











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca
   50






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt
  100





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc
  150





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
  200





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg
  250





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata
  300





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac
  350





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata
  400





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg
  450





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc
  500





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag
  550





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt
  600





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg
  650





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
  700





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg
  750





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg
  800





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga
  850





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta
  900





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg
  950





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg
 1000





gaaaatctct aggtggcgcc cgaacaggga cttgaaagcg aaagggaaac
 1050





cagaggagct ctctcgacgc aggactcggc ttgctgaagc gcgcacggca
 1100





agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg
 1150





aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga
 1200





gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa
 1250





aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt
 1300





cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac
 1350





tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca
 1400





ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat
 1450





aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa
 1500





gtaagaccac cgcacagcaa gcggccggcc gctgatcttc agacctggag
 1550





gaggagatat gagggacaat tggagaagtg aattatataa atataaagta
 1600





gtaaaaattg aaccattagg agtagcaccc accaaggcaa agagaagagt
 1650





ggtgcagaga gaaaaaagag cagtgggaat aggagctttg ttccttgggt
 1700





tcttgggagc agcaggaagc actatgggcg cagcgtcaat gacgctgacg
 1750





gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt
 1800





gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg
 1850





gcatcaagca gctccaggca agaatcctgg ctgtggaaag atacctaaag
 1900





gatcaacagc tcctggggat ttggggttgc tctggaaaac tcatttgcac
 1950





cactgctgtg ccttggaatg ctagttggag taataaatct ctggaacaga
 2000





tttggaatca cacgacctgg atggagtggg acagagaaat taacaattac
 2050





acaagcttaa tacactcctt aattgaagaa tcgcaaaacc agcaagaaaa
 2100





gaatgaacaa gaattattgg aattagataa atgggcaagt ttgtggaatt
 2150





ggtttaacat aacaaattgg ctgtggtata taaaattatt cataatgata
 2200





gtaggaggct tggtaggttt aagaatagtt tttgctgtac tttctatagt
 2250





gaatagagtt aggcagggat attcaccatt atcgtttcag acccacctcc
 2300





caaccccgag gggacccgac aggcccgaag gaatagaaga agaaggtgga
 2350





gagagagaca gagacagatc cattcgatta gtgaacggat cggcactgcg
 2400





tgcgccaatt ctgcagacaa atggcagtat tcatccacaa ttttaaaaga
 2450





aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat
 2500





agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc
 2550





aaaattttcg ggtttattac agggacagca gagatccagt ttggttagta
 2600





ccgggcccgc tctagacatg tccaatatga ccgccatgtt gacattgatt
 2650





attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc
 2700





catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc
 2750





tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
 2800





catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt
 2850





tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt
 2900





ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc
 2950





ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat
 3000





tagtcatcgc tattaccatg gtgatgcggt tttggcagta caccaatggg
 3050





cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
 3100





cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat
 3150





gtcgtaataa ccccgccccg ttgacgcaaa tgggcggtag gcgtgtacgg
 3200





tgggaggtct atataagcag agctcgttta gtgaaccgtc agaattttgt
 3250





aatacgactc actatagggc ggccgggaat tcgtcgactg cccccccccc
 3300





taacgttact ggccgaagcc gcttggaata aggccggtgt gcgtttgtct
 3350





atatgttatt ttccaccata ttgccgtctt ttggcaatgt gagggcccgg
 3400





aaacctggcc ctgtcttctt gacgagcatt cctaggggtc tttcccctct
 3450





cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa gcagttcctc
 3500





tggaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag
 3550





cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt
 3600





ataagataca cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt
 3650





ggatagttgt ggaaagagtc aaatggctct cctcaagcgt attcaacaag
 3700





gggctgaagg atgcccagaa ggtaccccat tgtatgggat ctgatctggg
 3750





gcctcggtgc acatgcttta catgtgttta gtcgaggtta aaaaacgtct
 3800





aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat
 3850





aatgatccgg taccgaggag atctgccgcc gcgatcgcca ccatgtacag
 3900





gatgcaactc ctgtcttgca ttgcactaag tcttgcactt gtcacaaaca
 3950





gtatgtttgt gttcctggtg ctgctgccac tggtgtccag ccagtgtgtg
 4000





aacctgacca ccaggaccca acttcctcct gcctacacca actccttcac
 4050





caggggagtc tactaccctg acaaggtgtt caggtcctct gtgctgcaca
 4100





gcacccagga cctgttcctg ccattcttca gcaatgtgac ctggttccat
 4150





gccatccatg tgtctggcac caatggcacc aagaggtttg acaaccctgt
 4200





gctgccattc aatgatggag tctactttgc cagcacagag aagagcaaca
 4250





tcatcagggg ctggattttt ggcaccaccc tggacagcaa gacccagtcc
 4300





ctgctgattg tgaacaatgc caccaatgtg gtgattaagg tgtgtgagtt
 4350





ccagttctgt aatgacccat tcctgggagt ctactaccac aagaacaaca
 4400





agtcctggat ggagtctgag ttcagggtct actcctctgc caacaactgt
 4450





acctttgaat atgtgagcca accattcctg atggacttgg agggcaagca
 4500





gggcaacttc aagaacctga gggagtttgt gttcaagaac attgatggct
 4550





acttcaagat ttacagcaaa cacacaccaa tcaacctggt gagggacctg
 4600





ccacagggct tctctgcctt ggaaccactg gtggacctgc caattggcat
 4650





caacatcacc aggttccaga ccctgctggc tctgcacagg tcctacctga
 4700





cacctggaga ctcctcctct ggctggacag caggagcagc agcctactat
 4750





gtgggctacc tccaaccaag gaccttcctg ctgaaataca atgagaatgg
 4800





caccatcaca gatgctgtgg actgtgccct ggacccactg tctgagacca
 4850





agtgtaccct gaaatccttc acagtggaga agggcatcta ccagaccagc
 4900





aacttcaggg tccaaccaac agagagcatt gtgaggtttc caaacatcac
 4950





caacctgtgt ccatttggag aggtgttcaa tgccaccagg tttgcctctg
 5000





tctatgcctg gaacaggaag aggattagca actgtgtggc tgactactct
 5050





gtgctctaca actctgcctc cttcagcacc ttcaagtgtt atggagtgag
 5100





cccaaccaaa ctgaatgacc tgtgtttcac caatgtctat gctgactcct
 5150





ttgtgattag gggagatgag gtgagacaga ttgcccctgg acaaacaggc
 5200





aagattgctg actacaacta caaactgcct gatgacttca caggctgtgt
 5250





gattgcctgg aacagcaaca acctggacag caaggtggga ggcaactaca
 5300





actacctcta cagactgttc aggaagagca acctgaaacc atttgagagg
 5350





gacatcagca cagagattta ccaggctggc agcacaccat gtaatggagt
 5400





ggagggcttc aactgttact ttccactcca atcctatggc ttccaaccaa
 5450





ccaatggagt gggctaccaa ccatacaggg tggtggtgct gtcctttgaa
 5500





ctgctccatg cccctgccac agtgtgtgga ccaaagaaga gcaccaacct
 5550





ggtgaagaac aagtgtgtga acttcaactt caatggactg acaggcacag
 5600





gagtgctgac agagagcaac aagaagttcc tgccattcca acagtttggc
 5650





agggacattg ctgacaccac agatgctgtg agggacccac agaccttgga
 5700





gattctggac atcacaccat gttcctttgg aggagtgtct gtgattacac
 5750





ctggcaccaa caccagcaac caggtggctg tgctctacca ggatgtgaac
 5800





tgtactgagg tgcctgtggc tatccatgct gaccaactta caccaacctg
 5850





gagggtctac agcacaggca gcaatgtgtt ccagaccagg gctggctgtc
 5900





tgattggagc agagcatgtg aacaactcct atgagtgtga catcccaatt
 5950





ggagcaggca tctgtgcctc ctaccagacc cagaccaaca gcccaaggag
 6000





ggcaaggtct gtggcaagcc agagcatcat tgcctacaca atgagtctgg
 6050





gagcagagaa ctctgtggct tacagcaaca acagcattgc catcccaacc
 6100





aacttcacca tctctgtgac cacagagatt ctgcctgtga gtatgaccaa
 6150





gacctctgtg gactgtacaa tgtatatctg tggagacagc acagagtgta 
 6200





gcaacctgct gctccaatat ggctccttct gtacccaact taacagggct
 6250





ctgacaggca ttgctgtgga acaggacaag aacacccagg aggtgtttgc
 6300





ccaggtgaag cagatttaca agacacctcc aatcaaggac tttggaggct
 6350





tcaacttcag ccagattctg cctgacccaa gcaagccaag caagaggtcc
 6400





ttcattgagg acctgctgtt caacaaggtg accctggctg atgctggctt
 6450





catcaagcaa tatggagact gtctgggaga cattgctgcc agggacctga
 6500





tttgtgccca gaagttcaat ggactgacag tgctgcctcc actgctgaca
 6550





gatgagatga ttgcccaata cacctctgcc ctgctggctg gcaccatcac
 6600





ctctggctgg acctttggag caggagcagc cctccaaatc ccatttgcta
 6650





tgcagatggc ttacaggttc aatggcattg gagtgaccca gaatgtgctc
 6700





tatgagaacc agaaactgat tgccaaccag ttcaactctg ccattggcaa
 6750





gattcaggac tccctgtcca gcacagcctc tgccctgggc aaactccaag
 6800





atgtggtgaa ccagaatgcc caggctctga acaccctggt gaagcaactt
 6850





tccagcaact ttggagccat ctcctctgtg ctgaatgaca tcctgagcag
 6900





actggacaag gtggaggctg aggtccagat tgacagactg attacaggca
 6950





gactccaatc cctccaaacc tatgtgaccc aacaacttat cagggctgct
 7000





gagattaggg catctgccaa cctggctgcc accaagatga gtgagtgtgt
 7050





gctgggacaa agcaagaggg tggacttctg tggcaagggc taccacctga
 7100





tgagttttcc acagtctgcc cctcatggag tggtgttcct gcatgtgacc
 7150





tatgtgcctg cccaggagaa gaacttcacc acagcccctg ccatctgcca
 7200





tgatggcaag gctcactttc caagggaggg agtgtttgtg agcaatggca
 7250





cccactggtt tgtgacccag aggaacttct atgaaccaca gattatcacc
 7300





acagacaaca cctttgtgtc tggcaactgt gatgtggtga ttggcattgt
 7350





gaacaacaca gtctatgacc cactccaacc tgaactggac tccttcaagg
 7400





aggaactgga caaatacttc aagaaccaca ccagccctga tgtggacctg
 7450





ggagacatct ctggcatcaa tgcctctgtg gtgaacatcc agaaggagat
 7500





tgacagactg aatgaggtgg ctaagaacct gaatgagtcc ctgattgacc
 7550





tccaagaact gggcaaatat gaacaataca tcaagtggcc atggtacatc
 7600





tggctgggct tcattgctgg actgattgcc attgtgatgg tgaccataat
 7650





gctgtgttgt atgacctcct gttgttcctg tctgaaaggc tgttgttcct
 7700





gtggctcctg ttgtaagtga acgcgtacgc ggccgctcga gcagaaactc
 7750





atctcagaag aggatctggc agcaaatgat atcctggatt acaaggatga
 7800





cgacgataag gtttaaacgg ccggccgcgg tctgtacaag taggattcgt
 7850





cgagggacct aataacttcg tatagcatac attatacgaa gttatacatg
 7900





tttaagggtt ccggttccac taggtacaat tcgatatcaa gcttatcgat
 7950





aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa
 8000





ctatgttgct ccttttacgc tatgtggata cgctgcttta atgcctttgt
 8050





atcatgctat tgcttcccgt atggctttca ttttctcctc cttgtataaa
 8100





tcctggttgc tgtctcttta tgaggagttg tggcccgttg tcaggcaacg
 8150





tggcgtggtg tgcactgtgt ttgctgacgc aacccccact ggttggggca
 8200





ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct
 8250





attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg
 8300





ggctcggctg ttgggcactg acaattccgt ggtgttgtcg gggaaatcat
 8350





cgtcctttcc ttggctgctc gcctgtgttg ccacctggat tctgcgcggg
 8400





acgtccttct gctacgtccc ttcggccctc aatccagcgg accttccttc
 8450





ccgcggcctg ctgccggctc tgcggcctct tccgcgtctt cgccttcgcc
 8500





ctcagacgag tcggatctcc ctttgggccg cctccccgca tcgataccgt
 8550





cgacctcgat cgagacctag aaaaacatgg agcaatcaca agtagcaata
 8600





cagcagctac caatgctgat tgtgcctggc tagaagcaca agaggaggag
 8650





gaggtgggtt ttccagtcac acctcaggta cctttaagac caatgactta
 8700





caaggcagct gtagatctta gccacttttt aaaagaaaag gggggacgaa
 8750





gggctaattc actcccaacg aagacaagat ctgcttgatc tgtggatcta
 8800





ccacacacaa ggctacttcc ctgattggca gaactacaca ccagggccag
 8850





ggatcagata tccactgacc tttggatggt gctacaagct agtaccagtt
 8900





gagcaagaga aggtagaaga agccaatgaa ggagagaaca cccgcttgtt
 8950





acaccctgtg agcctgcatg ggatggatga cccggagaga gaagtattag
 9000





agtggaggtt tgacagccgc ctagcatttc atcacatggc ccgagagctg
 9050





catccggact gtactgggtc tctctggtta gaccagatct gagcctggga
 9100





gctctctggc taactaggga acccactgct taagcctcaa taaagcttgc
 9150





cttgagtgct tcaagtagtg tgtgcccgtc tgttgtgtga ctctggtaac
 9200





tagagatccc tcagaccctt ttagtcagtg tggaaaatct ctagcagcat
 9250





gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc
 9300





tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga
 9350





cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc
 9400





gtttccccct ggaagctccc tcgtgcgctc tcctgttccg accctgccgc
 9450





ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct
 9500





catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa
 9550





gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat
 9600





ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca
 9650





ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg
 9700





tgctacagag ttcttgaagt ggtggcctaa ctacggctac actagaagaa
 9750





cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga
 9800





gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt
 9850





ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag
 9900





atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca
 9950





cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat
10000





ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt
10050





aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca
10100





gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta
10150





gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga
10200





taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag
10250





ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc
10300





catccagtct attaattgtt gccgggaagc tagagtaagt agttcgccag
10350





ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca
10400





cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag
10450





gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg
10500





gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg
10550





gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg
10600





cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta
10650





tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg
10700





ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg
10750





gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac
10800





ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt
10850





tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag
10900





ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt
10950





gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt
11000





atttagaaaa ataaacaaat aggggtcccg cgcacatttc cccgaaaagt
11050





gccacctgac
11060






As will be noted, residues 237-616 of pLenti-CMV-IRES-Spike (-att) (SEQ ID NO:70) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:70 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1012 of SEQ ID NO:70 correspond to the alternative truncated lentiviral 5′ LTR region (SEQ ID NO:68). Residues 1059-1184 of SEQ ID NO:70 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1681-1914 of SEQ ID NO:70 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2441-2558 of SEQ ID NO:70 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2641-3020 of SEQ ID NO:70 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 3021-3224 of SEQ ID NO:70 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 3250-3268 of SEQ ID NO:70 correspond to a T7 promoter site (SEQ ID NO:12). Residues 3391-3852 of SEQ ID NO:70 correspond to the internal ribosome entry site of the encephalomyocarditis virus (EMCV) (SEQ ID NO:69). Residues 3893-3952 of SEQ ID NO:70 correspond to a polynucleotide sequence (SEQ ID NO:73) that encodes an TL-2 signal sequence (SEQ ID NO:72). Residues 3953-7717 of SEQ ID NO:70 correspond to a polynucleotide sequence (SEQ ID NO:71) that encodes the SARS-CoV-2 spike protein (SEQ ID NO:54). Residues 5265-5282 (gcaacaacctggacagca; SEQ ID NO:74) correspond to a sequence that is complementary to a polynucleotide that encodes a tetracysteine peptide (CCPGCC; SEQ ID NO:75) that binds biarsenical labeling reagents. Residues 7739-7813 of SEQ ID NO:70 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 7862-7895 of SEQ ID NO:70 correspond to a LoxP site (SEQ ID NO:15). Residues 7951-8539 of SEQ ID NO:70 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 8422-8433 of SEQ ID NO:70 correspond to a Factor Xa cleavage site (SEQ ID NO:17). Residues 8542-8558 of SEQ ID NO:70 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 8748-9247 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 8748-9065 correspond to a modified U3 region (SEQ ID NO:64), residues 9066-9247 correspond to R and the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 9308-9896 of SEQ ID NO:70 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 10067-10927 of SEQ ID NO:70 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 10928-11032 of SEQ ID NO:70 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


(e) pLenti-IgGκ-nCoV-Spike-CD8-TM (-att)


The vector pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (FIG. 10) further illustrates the LTR-containing vectors of the present invention. The first strand of vector pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) has 11381 nucleotide residues and has the sequence of SEQ ID NO:83:











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca 
50 






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt 
100 





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc
150 





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt 
200 





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg 
250 





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata 
300 





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac 
350 





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 
400 





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg 
450 





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc 
500 





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 
550 





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt 
600 





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 
650 





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 
700 





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg 
750 





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg 
800 





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga 
850 





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta 
900 





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg 
950 





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg 
1000 





gaaaatctct aggtggcgcc cgaacaggga cttgaaagcg aaagggaaac 
1050 





cagaggagct ctctcgacgc aggactcggc ttgctgaagc gcgcacggca 
1100 





agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg 
1150 





aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga 
1200 





gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa 
1250 





aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt 
1300 





cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac 
1350 





tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca 
1400 





ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat 
1450 





aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa 
1500 





gtaagaccac cgcacagcaa gcggccggcc gctgatcttc agacctggag 
1550 





gaggagatat gagggacaat tggagaagtg aattatataa atataaagta 
1600 





gtaaaaattg aaccattagg agtagcaccc accaaggcaa agagaagagt 
1650 





ggtgcagaga gaaaaaagag cagtgggaat aggagctttg ttccttgggt 
1700 





tcttgggagc agcaggaagc actatgggcg cagcgtcaat gacgctgacg 
1750 





gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt 
1800 





gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg 
1850 





gcatcaagca gctccaggca agaatcctgg ctgtggaaag atacctaaag 
1900 





gatcaacagc tcctggggat ttggggttgc tctggaaaac tcatttgcac 
1950 





cactgctgtg ccttggaatg ctagttggag taataaatct ctggaacaga 
2000 





tttggaatca cacgacctgg atggagtggg acagagaaat taacaattac 
2050 





acaagcttaa tacactcctt aattgaagaa tcgcaaaacc agcaagaaaa 
2100 





gaatgaacaa gaattattgg aattagataa atgggcaagt ttgtggaatt 
2150 





ggtttaacat aacaaattgg ctgtggtata taaaattatt cataatgata 
2200 





gtaggaggct tggtaggttt aagaatagtt tttgctgtac tttctatagt 
2250 





gaatagagtt aggcagggat attcaccatt atcgtttcag acccacctcc 
2300 





caaccccgag gggacccgac aggcccgaag gaatagaaga agaaggtgga 
2350 





gagagagaca gagacagatc cattcgatta gtgaacggat cggcactgcg 
2400 





tgcgccaatt ctgcagacaa atggcagtat tcatccacaa ttttaaaaga 
2450 





aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat 
2500 





agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc 
2550 





aaaattttcg ggtttattac agggacagca gagatccagt ttggttagta 
2600 





ccgggcccgc tctagacatg tccaatatga ccgccatgtt gacattgatt 
2650 





attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 
2700 





catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc 
2750 





tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc 
2800 





catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt 
2850 





tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt 
2900 





ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc 
2950 





ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 
3000 





tagtcatcgc tattaccatg gtgatgcggt tttggcagta caccaatggg 
3050 





cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 
3100 





cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat 
3150 





gtcgtaataa ccccgccccg ttgacgcaaa tgggcggtag gcgtgtacgg 
3200 





tgggaggtct atataagcag agctcgttta gtgaaccgtc agaattttgt 
3250 





aatacgactc actatagggc ggccgggaat tcgtcgactg cccccccccc 
3300 





taacgttact ggccgaagcc gcttggaata aggccggtgt gcgtttgtct 
3350 





atatgttatt ttccaccata ttgccgtctt ttggcaatgt gagggcccgg 
3400 





aaacctggcc ctgtcttctt gacgagcatt cctaggggtc tttcccctct 
3450 





cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa gcagttcctc 
3500 





tggaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag 
3550 





cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt 
3600 





ataagataca cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt 
3650 





ggatagttgt ggaaagagtc aaatggctct cctcaagcgt attcaacaag 
3700 





gggctgaagg atgcccagaa ggtaccccat tgtatgggat ctgatctggg 
3750 





gcctcggtgc acatgcttta catgtgttta gtcgaggtta aaaaacgtct 
3800 





aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat 
3850 





aatgatccgg taccgaggag atctgccgcc gcgatcgcca ccatggacat 
3900 





gagggtccct gctcagctcc tggggctcct gctgctctgg ctctcaggtg 
3950 





ccagatgtat gtttgtgttc ctggtgctgc tgccactggt gtccagccag 
4000 





tgtgtgaacc tgaccaccag gacccaactt cctcctgcct acaccaactc 
4050 





cttcaccagg ggagtctact accctgacaa ggtgttcagg tcctctgtgc 
4100 





tgcacagcac ccaggacctg ttcctgccat tcttcagcaa tgtgacctgg 
4150 





ttccatgcca tccatgtgtc tggcaccaat ggcaccaaga ggtttgacaa 
4200 





ccctgtgctg ccattcaatg atggagtcta ctttgccagc acagagaaga 
4250 





gcaacatcat caggggctgg atttttggca ccaccctgga cagcaagacc 
4300 





cagtccctgc tgattgtgaa caatgccacc aatgtggtga ttaaggtgtg 
4350 





tgagttccag ttctgtaatg acccattcct gggagtctac taccacaaga 
4400 





acaacaagtc ctggatggag tctgagttca gggtctactc ctctgccaac 
4450 





aactgtacct ttgaatatgt gagccaacca ttcctgatgg acttggaggg 
4500 





caagcagggc aacttcaaga acctgaggga gtttgtgttc aagaacattg 
4550 





atggctactt caagatttac agcaaacaca caccaatcaa cctggtgagg 
4600 





gacctgccac agggcttctc tgccttggaa ccactggtgg acctgccaat 
4650 





tggcatcaac atcaccaggt tccagaccct gctggctctg cacaggtcct 
4700 





acctgacacc tggagactcc tcctctggct ggacagcagg agcagcagcc 
4750 





tactatgtgg gctacctcca accaaggacc ttcctgctga aatacaatga 
4800 





gaatggcacc atcacagatg ctgtggactg tgccctggac ccactgtctg 
4850 





agaccaagtg taccctgaaa tccttcacag tggagaaggg catctaccag 
4900 





accagcaact tcagggtcca accaacagag agcattgtga ggtttccaaa 
4950 





catcaccaac ctgtgtccat ttggagaggt gttcaatgcc accaggtttg 
5000 





cctctgtcta tgcctggaac aggaagagga ttagcaactg tgtggctgac 
5050 





tactctgtgc tctacaactc tgcctccttc agcaccttca agtgttatgg 
5100 





agtgagccca accaaactga atgacctgtg tttcaccaat gtctatgctg 
5150 





actcctttgt gattagggga gatgaggtga gacagattgc ccctggacaa 
5200 





acaggcaaga ttgctgacta caactacaaa ctgcctgatg acttcacagg 
5250 





ctgtgtgatt gcctggaaca gcaacaacct ggacagcaag gtgggaggca 
5300 





actacaacta cctctacaga ctgttcagga agagcaacct gaaaccattt 
5350 





gagagggaca tcagcacaga gatttaccag gctggcagca caccatgtaa 
5400 





tggagtggag ggcttcaact gttactttcc actccaatcc tatggcttcc 
5450 





aaccaaccaa tggagtgggc taccaaccat acagggtggt ggtgctgtcc 
5500 





tttgaactgc tccatgcccc tgccacagtg tgtggaccaa agaagagcac 
5550 





caacctggtg aagaacaagt gtgtgaactt caacttcaat ggactgacag 
5600 





gcacaggagt gctgacagag agcaacaaga agttcctgcc attccaacag 
5650 





tttggcaggg acattgctga caccacagat gctgtgaggg acccacagac 
5700 





cttggagatt ctggacatca caccatgttc ctttggagga gtgtctgtga 
5750 





ttacacctgg caccaacacc agcaaccagg tggctgtgct ctaccaggat 
5800 





gtgaactgta ctgaggtgcc tgtggctatc catgctgacc aacttacacc 
5850 





aacctggagg gtctacagca caggcagcaa tgtgttccag accagggctg 
5900 





gctgtctgat tggagcagag catgtgaaca actcctatga gtgtgacatc 
5950 





ccaattggag caggcatctg tgcctcctac cagacccaga ccaacagccc 
6000 





aaggagggca aggtctgtgg caagccagag catcattgcc tacacaatga 
6050 





gtctgggagc agagaactct gtggcttaca gcaacaacag cattgccatc 
6100 





ccaaccaact tcaccatctc tgtgaccaca gagattctgc ctgtgagtat 
6150 





gaccaagacc tctgtggact gtacaatgta tatctgtgga gacagcacag 
6200 





agtgtagcaa cctgctgctc caatatggct ccttctgtac ccaacttaac 
6250 





agggctctga caggcattgc tgtggaacag gacaagaaca cccaggaggt 
6300 





gtttgcccag gtgaagcaga tttacaagac acctccaatc aaggactttg 
6350 





gaggcttcaa cttcagccag attctgcctg acccaagcaa gccaagcaag 
6400 





aggtccttca ttgaggacct gctgttcaac aaggtgaccc tggctgatgc 
6450 





tggcttcatc aagcaatatg gagactgtct gggagacatt gctgccaggg 
6500 





acctgatttg tgcccagaag ttcaatggac tgacagtgct gcctccactg 
6550 





ctgacagatg agatgattgc ccaatacacc tctgccctgc tggctggcac 
6600 





catcacctct ggctggacct ttggagcagg agcagccctc caaatcccat 
6650 





ttgctatgca gatggcttac aggttcaatg gcattggagt gacccagaat 
6700 





gtgctctatg agaaccagaa actgattgcc aaccagttca actctgccat 
6750 





tggcaagatt caggactccc tgtccagcac agcctctgcc ctgggcaaac 
6800 





tccaagatgt ggtgaaccag aatgcccagg ctctgaacac cctggtgaag 
6850 





caactttcca gcaactttgg agccatctcc tctgtgctga atgacatcct 
6900 





gagcagactg gacaaggtgg aggctgaggt ccagattgac agactgatta 
6950 





caggcagact ccaatccctc caaacctatg tgacccaaca acttatcagg 
7000 





gctgctgaga ttagggcatc tgccaacctg gctgccacca agatgagtga 
7050 





gtgtgtgctg ggacaaagca agagggtgga cttctgtggc aagggctacc 
7100 





acctgatgag ttttccacag tctgcccctc atggagtggt gttcctgcat 
7150 





gtgacctatg tgcctgccca ggagaagaac ttcaccacag cccctgccat 
7200 





ctgccatgat ggcaaggctc actttccaag ggagggagtg tttgtgagca 
7250 





atggcaccca ctggtttgtg acccagagga acttctatga accacagatt 
7300 





atcaccacag acaacacctt tgtgtctggc aactgtgatg tggtgattgg 
7350 





cattgtgaac aacacagtct atgacccact ccaacctgaa ctggactcct 
7400 





tcaaggagga actggacaaa tacttcaaga accacaccag ccctgatgtg 
7450 





gacctgggag acatctctgg catcaatgcc tctgtggtga acatccagaa 
7500 





ggagattgac agactgaatg aggtggctaa gaacctgaat gagtccctga 
7550 





ttgacctcca agaactgggc aaatatgaac aatacatcaa gtggccatgg 
7600 





tacatctggc tgggcttcat tgctggactg attgccattg tgatggtgac 
7650 





cataatgctg tgttgtatga cctcctgttg ttcctgtctg aaaggctgtt 
7700 





gttcctgtgg ctcctgttgt aagtttgatg aggatgactc tgaacctgtg 
7750 





ctgaaaggag tgaaactgca ctacaccgcc ctgagcaact ccatcatgta 
7800 





cttcagccac ttcgtgccgg tcttcctgcc agcgaagccc accacgacgc 
7850 





cagcgccgcg accaccaaca ccggcgccca ccatcgcgtc gcagcccctg 
7900 





tccctgcgcc cagaggcgtg ccggccagcg gcggggggcg cagtgcacac 
7950 





gagggggctg gacttcgcct gtgatatcta catctgggcg cccttggccg 
8000 





ggacttgtgg ggtccttctc ctgtcactgg ttatcacctg aacgcgtacg 
8050 





cggccgctcg agcagaaact catctcagaa gaggatctgg cagcaaatga 
8100 





tatcctggat tacaaggatg acgacgataa ggtttaaacg gccggccgcg 
8150 





gtctgtacaa gtaggattcg tcgagggacc taataacttc gtatagcata 
8200 





cattatacga agttatacat gtttaagggt tccggttcca ctaggtacaa 
8250 





ttcgatatca agcttatcga taatcaacct ctggattaca aaatttgtga 
8300 





aagattgact ggtattctta actatgttgc tccttttacg ctatgtggat 
8350 





acgctgcttt aatgcctttg tatcatgcta ttgcttcccg tatggctttc 
8400 





attttctcct ccttgtataa atcctggttg ctgtctcttt atgaggagtt 
8450 





gtggcccgtt gtcaggcaac gtggcgtggt gtgcactgtg tttgctgacg 
8500 





caacccccac tggttggggc attgccacca cctgtcagct cctttccggg 
8550 





actttcgctt tccccctccc tattgccacg gcggaactca tcgccgcctg 
8600 





ccttgcccgc tgctggacag gggctcggct gttgggcact gacaattccg 
8650 





tggtgttgtc ggggaaatca tcgtcctttc cttggctgct cgcctgtgtt 
8700 





gccacctgga ttctgcgcgg gacgtccttc tgctacgtcc cttcggccct 
8750 





caatccagcg gaccttcctt cccgcggcct gctgccggct ctgcggcctc 
8800 





ttccgcgtct tcgccttcgc cctcagacga gtcggatctc cctttgggcc 
8850 





gcctccccgc atcgataccg tcgacctcga tcgagaccta gaaaaacatg 
8900 





gagcaatcac aagtagcaat acagcagcta ccaatgctga ttgtgcctgg 
8950 





ctagaagcac aagaggagga ggaggtgggt tttccagtca cacctcaggt 
9000 





acctttaaga ccaatgactt acaaggcagc tgtagatctt agccactttt 
9050 





taaaagaaaa ggggggacga agggctaatt cactcccaac gaagacaaga 
9100 





tctgcttgat ctgtggatct accacacaca aggctacttc cctgattggc 
9150 





agaactacac accagggcca gggatcagat atccactgac ctttggatgg 
9200 





tgctacaagc tagtaccagt tgagcaagag aaggtagaag aagccaatga 
9250 





aggagagaac acccgcttgt tacaccctgt gagcctgcat gggatggatg 
9300 





acccggagag agaagtatta gagtggaggt ttgacagccg cctagcattt 
9350 





catcacatgg cccgagagct gcatccggac tgtactgggt ctctctggtt 
9400 





agaccagatc tgagcctggg agctctctgg ctaactaggg aacccactgc 
9450 





ttaagcctca ataaagcttg ccttgagtgc ttcaagtagt gtgtgcccgt 
9500 





ctgttgtgtg actctggtaa ctagagatcc ctcagaccct tttagtcagt 
9550 





gtggaaaatc tctagcagca tgtgagcaaa aggccagcaa aaggccagga 
9600 





accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgcccccct 
9650 





gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 
9700 





aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 
9750 





ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct 
9800 





tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc 
9850 





ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 
9900 





agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 
9950 





gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 
10000 





cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta 
10050 





actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag 
10100 





ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac 
10150 





caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 
10200 





gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac 
10250 





gctcagtgga acgaaaactc acgttaaggg attttggtca tgagattatc 
10300 





aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga agttttaaat 
10350 





caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta 
10400 





atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt 
10450 





tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat 
10500 





ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca 
10550 





gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg 
10600 





tcctgcaact ttatccgcct ccatccagtc tattaattgt tgccgggaag 
10650 





ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt 
10700 





gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag 
10750 





ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca 
10800 





aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg 
10850 





gccgcagtgt tatcactcat ggttatggca gcactgcata attctcttac 
10900 





tgtcatgcca tccgtaagat gcttttctgt gactggtgag tactcaacca 
10950 





agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg 
11000 





tcaatacggg ataataccgc gccacatagc agaactttaa aagtgctcat 
11050 





cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt 
11100 





tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca 
11150 





tcttttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa 
11200 





tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac 
11250 





tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg 
11300 





agcggataca tatttgaatg tatttagaaa aataaacaaa taggggtccc 
11350 





gcgcacattt ccccgaaaag tgccacctga c 
11381 






As will be noted, residues 237-616 of pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (SEQ ID NO:83) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:83 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1012 of SEQ ID NO:83 correspond to the alternative truncated lentiviral 5′ LTR region (SEQ ID NO:68). Residues 1059-1184 of SEQ ID NO:83 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1681-1914 of SEQ ID NO:83 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2441-2558 of SEQ ID NO:83 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2641-3020 of SEQ ID NO:83 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 3021-3224 of SEQ ID NO:83 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 3250-3268 of SEQ ID NO:83 correspond to a T7 promoter site (SEQ ID NO:12). Residues 3391-3852 of SEQ ID NO:83 correspond to the internal ribosome entry site of the encephalomyocarditis virus (EMCV) (SEQ ID NO:69). Residues 3887-3896 of SEQ ID NO:83 correspond to a Kozak sequence (SEQ ID NO:85). Residues 3893-3958 of SEQ ID NO:83 correspond to an IgGκ signal sequence (SEQ ID NO:81). Residues 3959-7777 of SEQ ID NO:83 correspond to a polynucleotide sequence (SEQ ID NO:71) that encodes the SARS-CoV-2 spike protein (SEQ ID NO:54). Residues 5265-5282











(gcaacaacctggacagca, SEQ ID NO: 74) 







correspond to a sequence that is complementary to a polynucleotide that encodes a tetracysteine peptide (CCPGCC; SEQ ID NO:75) that binds biarsenical labeling reagents. Residues 7778-8041 of SEQ ID NO:83 correspond to a polynucleotide (SEQ ID NO:88) that encodes a CD8 transmembrane domain (SEQ ID NO:87). Residues 8060-8134 of SEQ ID NO:83 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 8183-8216 of SEQ ID NO:83 correspond to a LoxP site (SEQ ID NO:15). Residues 8272-8860 of SEQ ID NO:83 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 8743-8754 of SEQ ID NO:83 correspond to a Factor Xa cleavage site (SEQ ID NO:17). Residues 8863-8879 of SEQ ID NO:83 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 9069-9568 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 9069-9386 correspond to a modified U3 region (SEQ ID NO:64), residues 9387-9568 correspond to Rand the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 9629-10,217 of SEQ ID NO:83 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 10388-11248 of SEQ ID NO:83 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 11249-11353 of SEQ ID NO:83 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


(f) pLenti-IgGκ-nCoV-N-CD8-TM (-att)


The vector pLenti-IgGκ-nCoV-N-CD8-TM (-att) (FIG. 11) further illustrates the LTR-containing vectors of the present invention. The first strand of vector has 8819 nucleotide residues and has the sequence of SEQ ID NO:84:











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca
50 






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt
100 





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc
150 





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
200 





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg
250 





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata
300 





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac
350 





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata
400 





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg
450 





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc
500 





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag
550 





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt
600 





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg
650 





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
700 





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg
750 





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg
800 





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga
850 





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta
900 





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg
950 





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg
1000 





gaaaatctct aggtggcgcc cgaacaggga cttgaaagcg aaagggaaac
1050 





cagaggagct ctctcgacgc aggactcggc ttgctgaagc gcgcacggca
1100 





agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg
1150 





aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga
1200 





gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa
1250 





aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt
1300 





cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac
1350 





tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca
1400 





ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat
1450 





aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa
1500 





gtaagaccac cgcacagcaa gcggccggcc gctgatcttc agacctggag
1550 





gaggagatat gagggacaat tggagaagtg aattatataa atataaagta
1600 





gtaaaaattg aaccattagg agtagcaccc accaaggcaa agagaagagt
1650 





ggtgcagaga gaaaaaagag cagtgggaat aggagctttg ttccttgggt
1700 





tcttgggagc agcaggaagc actatgggcg cagcgtcaat gacgctgacg
1750 





gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt
1800 





gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg
1850 





gcatcaagca gctccaggca agaatcctgg ctgtggaaag atacctaaag
1900 





gatcaacagc tcctggggat ttggggttgc tctggaaaac tcatttgcac
1950 





cactgctgtg ccttggaatg ctagttggag taataaatct ctggaacaga
2000 





tttggaatca cacgacctgg atggagtggg acagagaaat taacaattac
2050 





acaagcttaa tacactcctt aattgaagaa tcgcaaaacc agcaagaaaa
2100 





gaatgaacaa gaattattgg aattagataa atgggcaagt ttgtggaatt
2150 





ggtttaacat aacaaattgg ctgtggtata taaaattatt cataatgata
2200 





gtaggaggct tggtaggttt aagaatagtt tttgctgtac tttctatagt
2250 





gaatagagtt aggcagggat attcaccatt atcgtttcag acccacctcc 
2300 





caaccccgag gggacccgac aggcccgaag gaatagaaga agaaggtgga 
2350 





gagagagaca gagacagatc cattcgatta gtgaacggat cggcactgcg 
2400 





tgcgccaatt ctgcagacaa atggcagtat tcatccacaa ttttaaaaga 
2450 





aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat 
2500 





agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc 
2550 





aaaattttcg ggtttattac agggacagca gagatccagt ttggttagta 
2600 





ccgggcccgc tctagacatg tccaatatga ccgccatgtt gacattgatt 
2650 





attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 
2700 





catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc 
2750 





tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc 
2800 





catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt 
2850 





tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt 
2900 





ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc 
2950 





ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 
3000 





tagtcatcgc tattaccatg gtgatgcggt tttggcagta caccaatggg 
3050 





cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 
3100 





cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat 
3150 





gtcgtaataa ccccgccccg ttgacgcaaa tgggcggtag gcgtgtacgg 
3200 





tgggaggtct atataagcag agctcgttta gtgaaccgtc agaattttgt 
3250 





aatacgactc actatagggc ggccgggaat tcgtcgactg cccccccccc 
3300 





taacgttact ggccgaagcc gcttggaata aggccggtgt gcgtttgtct 
3350 





atatgttatt ttccaccata ttgccgtctt ttggcaatgt gagggcccgg 
3400 





aaacctggcc ctgtcttctt gacgagcatt cctaggggtc tttcccctct 
3450 





cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa gcagttcctc 
3500 





tggaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag 
3550 





cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt 
3600 





ataagataca cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt 
3650 





ggatagttgt ggaaagagtc aaatggctct cctcaagcgt attcaacaag 
3700 





gggctgaagg atgcccagaa ggtaccccat tgtatgggat ctgatctggg 
3750 





gcctcggtgc acatgcttta catgtgttta gtcgaggtta aaaaacgtct 
3800 





aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat 
3850 





aatgatccgg taccgaggag atctgccgcc gcgatcgcca ccatggacat 
3900 





gagggtccct gctcagctcc tggggctcct gctgctctgg ctctcaggtg 
3950 





ccagatgtat gtctgataat ggaccccaaa atcagcgaaa tgcaccccgc 
4000 





attacgtttg gtggaccctc agattcaact ggcagtaacc agaatggaga 
4050 





acgcagtggg gcgcgatcaa aacaacgtcg gccccaaggt ttacccaata 
4100 





atactgcgtc ttggttcacc gctctcactc aacatggcaa ggaagacctt 
4150 





aaattccctc gaggacaagg cgttccaatt aacaccaata gcagtccaga 
4200 





tgaccaaatt ggctactacc gaagagctac cagacgaatt cgtggtggtg 
4250 





acggtaaaat gaaagatctc agtccaagat ggtatttcta ctacctagga 
4300 





actgggccag aagctggact tccctatggt gctaacaaag acggcatcat 
4350 





atgggttgca actgagggag ccttgaatac accaaaagat cacattggca 
4400 





cccgcaatcc tgctaacaat gctgcaatcg tgctacaact tcctcaagga 
4450 





acaacattgc caaaaggctt ctacgcagaa gggagcagag gcggcagtca 
4500 





agcctcttct cgttcctcat cacgtagtcg caacagttca agaaattcaa 
4550 





ctccaggcag cagtagggga acttctcctg ctagaatggc tggcaatggc 
4600 





ggtgatgctg ctcttgcttt gctgctgctt gacagattga accagcttga 
4650 





gagcaaaatg tctggtaaag gccaacaaca acaaggccaa actgtcacta 
4700 





agaaatctgc tgctgaggct tctaagaagc ctcggcaaaa acgtactgcc 
4750 





actaaagcat acaatgtaac acaagctttc ggcagacgtg gtccagaaca 
4800 





aacccaagga aattttgggg accaggaact aatcagacaa ggaactgatt 
4850 





acaaacattg gccgcaaatt gcacaatttg cccccagcgc ttcagcgttc 
4900 





ttcggaatgt cgcgcattgg catggaagtc acaccttcgg gaacgtggtt 
4950 





gacctacaca ggtgccatca aattggatga caaagatcca aatttcaaag 
5000 





atcaagtcat tttgctgaat aagcatattg acgcatacaa aacattccca 
5050 





ccaacagagc ctaaaaagga caaaaagaag aaggctgatg aaactcaagc 
5100 





cttaccgcag agacagaaga aacagcaaac tgtgactctt cttcctgctg 
5150 





cagatttgga tgatttctcc aaacaattgc aacaatccat gagcagtgct 
5200 





gactcaactc aggccgccct gagcaactcc atcatgtact tcagccactt 
5250 





cgtgccggtc ttcctgccag cgaagcccac cacgacgcca gcgccgcgac 
5300 





caccaacacc ggcgcccacc atcgcgtcgc agcccctgtc cctgcgccca 
5350 





gaggcgtgcc ggccagcggc ggggggcgca gtgcacacga gggggctgga 
5400 





cttcgcctgt gatatctaca tctgggcgcc cttggccggg acttgtgggg 
5450 





tccttctcct gtcactggtt atcacctgaa cgcgtacgcg gccgctcgag 
5500 





cagaaactca tctcagaaga ggatctggca gcaaatgata tcctggatta 
5550 





caaggatgac gacgataagg tttaaacggc cggccgcggt ctgtacaagt 
5600 





aggattcgtc gagggaccta ataacttcgt atagcataca ttatacgaag 
5650 





ttatacatgt ttaagggttc cggttccact aggtacaatt cgatatcaag 
5700 





cttatcgata atcaacctct ggattacaaa atttgtgaaa gattgactgg 
5750 





tattcttaac tatgttgctc cttttacgct atgtggatac gctgctttaa 
5800 





tgcctttgta tcatgctatt gcttcccgta tggctttcat tttctcctcc 
5850 





ttgtataaat cctggttgct gtctctttat gaggagttgt ggcccgttgt 
5900 





caggcaacgt ggcgtggtgt gcactgtgtt tgctgacgca acccccactg 
5950 





gttggggcat tgccaccacc tgtcagctcc tttccgggac tttcgctttc 
6000 





cccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg 
6050 





ctggacaggg gctcggctgt tgggcactga caattccgtg gtgttgtcgg 
6100 





ggaaatcatc gtcctttcct tggctgctcg cctgtgttgc cacctggatt 
6150 





ctgcgcggga cgtccttctg ctacgtccct tcggccctca atccagcgga 
6200 





ccttccttcc cgcggcctgc tgccggctct gcggcctctt ccgcgtcttc 
6250 





gccttcgccc tcagacgagt cggatctccc tttgggccgc ctccccgcat 
6300 





cgataccgtc gacctcgatc gagacctaga aaaacatgga gcaatcacaa 
6350 





gtagcaatac agcagctacc aatgctgatt gtgcctggct agaagcacaa 
6400 





gaggaggagg aggtgggttt tccagtcaca cctcaggtac ctttaagacc 
6450 





aatgacttac aaggcagctg tagatcttag ccacttttta aaagaaaagg 
6500 





ggggacgaag ggctaattca ctcccaacga agacaagatc tgcttgatct 
6550 





gtggatctac cacacacaag gctacttccc tgattggcag aactacacac 
6600 





cagggccagg gatcagatat ccactgacct ttggatggtg ctacaagcta 
6650 





gtaccagttg agcaagagaa ggtagaagaa gccaatgaag gagagaacac 
6700 





ccgcttgtta caccctgtga gcctgcatgg gatggatgac ccggagagag 
6750 





aagtattaga gtggaggttt gacagccgcc tagcatttca tcacatggcc 
6800 





cgagagctgc atccggactg tactgggtct ctctggttag accagatctg 
6850 





agcctgggag ctctctggct aactagggaa cccactgctt aagcctcaat 
6900 





aaagcttgcc ttgagtgctt caagtagtgt gtgcccgtct gttgtgtgac 
6950 





tctggtaact agagatccct cagacccttt tagtcagtgt ggaaaatctc 
7000 





tagcagcatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg 
7050 





ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac 
7100 





aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag 
7150 





ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 
7200 





ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 
7250 





gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt 
7300 





tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct 
7350 





gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac 
7400 





ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta 
7450 





tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 
7500 





ctagaagaac agtatttggt atctgcgctc tgctgaagcc agttaccttc 
7550 





ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag 
7600 





cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat 
7650 





ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac 
7700 





gaaaactcac gttaagggat tttggtcatg agattatcaa aaaggatctt 
7750 





cacctagatc cttttaaatt aaaaatgaag ttttaaatca atctaaagta 
7800 





tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 
7850 





cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc 
7900 





cgtcgtgtag ataactacga tacgggaggg cttaccatct ggccccagtg 
7950 





ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca 
8000 





ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt 
8050 





atccgcctcc atccagtcta ttaattgttg ccgggaagct agagtaagta 
8100 





gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 
8150 





gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca 
8200 





acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta 
8250 





gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta 
8300 





tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc 
8350 





cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag tcattctgag 
8400 





aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 
8450 





aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg 
8500 





ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt 
8550 





cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc 
8600 





accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa 
8650 





gggaataagg gcgacacgga aatgttgaat actcatactc ttcctttttc 
8700 





aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 
8750 





tttgaatgta tttagaaaaa taaacaaata ggggtcccgc gcacatttcc 
8800 





ccgaaaagtg ccacctgac 
8819 






As will be noted, residues 237-616 of pLenti-IgGκ-nCoV-N-CD8-TM (-att) (SEQ ID NO:84) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:84 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1012 of SEQ ID NO:84 correspond to the truncated lentiviral 5′ LTR region (SEQ ID NO:68). Residues 1059-1184 of SEQ ID NO:84 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1681-1914 of SEQ ID NO:84 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2441-2558 of SEQ ID NO:84 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2641-3020 of SEQ ID NO:84 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 3021-3224 of SEQ ID NO:84 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 3250-3268 of SEQ ID NO:84 correspond to a T7 promoter site (SEQ ID NO:12). Residues 3391-3852 of SEQ ID NO:84 correspond to the internal ribosome entry site of the encephalomyocarditis virus (EMCV) (SEQ ID NO:69). Residues 3887-3896 of SEQ ID NO:84 correspond to a Kozak sequence (SEQ ID NO:85). Residues 3899-3958 of SEQ ID NO:84 correspond to an IgGκ signal sequence (SEQ ID NO:81). Residues 3959-5215 of SEQ ID NO:84 correspond to a polynucleotide sequence (SEQ ID NO:79) that encodes the SARS-CoV-2 N protein (SEQ ID NO:54). Residues 5216-5479 of SEQ ID NO:84 correspond to a polynucleotide (SEQ ID NO:88) that encodes a CD8 transmembrane domain (SEQ ID NO:87). Residues 5498-5572 of SEQ ID NO:84 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 5621-5624 of SEQ ID NO:84 correspond to a LoxP site (SEQ ID NO:15). Residues 5710-6298 of SEQ ID NO:84 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 6181-6192 of SEQ ID NO:84 correspond to a Factor Xa cleavage site (SEQ ID NO:17). Residues 6301-6317 of SEQ ID NO:84 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 6507-7005 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 6507-6824 correspond to a modified U3 region (SEQ ID NO:64), residues 6825-7005 correspond to R and the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 7067-7655 of SEQ ID NO:84 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 7826-9696 of SEQ ID NO:84 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 8687-8791 of SEQ ID NO:84 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


(g) pLenti-IL2-nCoV-N(-att)


The vector pLenti-IL2-nCoV-N(-att) (FIG. 12) further illustrates the LTR-containing vectors of the present invention. The first strand of vector pLenti-IL2-nCoV-N(-att) has 8552 nucleotide residues and has the sequence of SEQ ID NO:85:











gtcgacggat cgggagatct cccgatcccc tatggtgcac tctcagtaca 
50 






atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt 
100 





gttggaggtc gctgagtagt gcgcgagcaa aatttaagct acaacaaggc 
150 





aaggcttgac cgacaattgc atgaagaatc tgcttagggt taggcgtttt
200 





gcgctgcttc gcgatgtacg ggccagatat cgcgttgaca ttgattattg
250 





actagttatt aatagtaatc aattacgggg tcattagttc atagcccata 
300 





tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac 
350 





cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 
400 





gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg
450 





gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc 
500 





cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 
550 





tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt 
600 





catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 
650 





gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 
700 





aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg 
750 





taacaactcc gccccattga cgcaaatggg cggtaggcgt gtacggtggg 
800 





aggtctatat aagcagcgcg ttttgcctgt actgggtctc tctggttaga 
850 





ccagatctga gcctgggagc tctctggcta actagggaac ccactgctta 
900 





agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg 
950 





ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg 
1000 





gaaaatctct aggtggcgcc cgaacaggga cttgaaagcg aaagggaaac 
1050 





cagaggagct ctctcgacgc aggactcggc ttgctgaagc gcgcacggca 
1100 





agaggcgagg ggcggcgact ggtgagtacg ccaaaaattt tgactagcgg 
1150 





aggctagaag gagagagatg ggtgcgagag cgtcagtatt aagcggggga 
1200 





gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa 
1250 





aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt 
1300 





cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac 
1350 





tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca 
1400 





ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat 
1450 





aaaagacacc aaggaagctt tagacaagat agaggaagag caaaacaaaa 
1500 





gtaagaccac cgcacagcaa gcggccggcc gctgatcttc agacctggag 
1550 





gaggagatat gagggacaat tggagaagtg aattatataa atataaagta 
1600 





gtaaaaattg aaccattagg agtagcaccc accaaggcaa agagaagagt 
1650 





ggtgcagaga gaaaaaagag cagtgggaat aggagctttg ttccttgggt 
1700 





tcttgggagc agcaggaagc actatgggcg cagcgtcaat gacgctgacg 
1750 





gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt 
1800 





gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg 
1850 





gcatcaagca gctccaggca agaatcctgg ctgtggaaag atacctaaag 
1900 





gatcaacagc tcctggggat ttggggttgc tctggaaaac tcatttgcac 
1950 





cactgctgtg ccttggaatg ctagttggag taataaatct ctggaacaga 
2000 





tttggaatca cacgacctgg atggagtggg acagagaaat taacaattac 
2050 





acaagcttaa tacactcctt aattgaagaa tcgcaaaacc agcaagaaaa 
2100 





gaatgaacaa gaattattgg aattagataa atgggcaagt ttgtggaatt 
2150 





ggtttaacat aacaaattgg ctgtggtata taaaattatt cataatgata 
2200 





gtaggaggct tggtaggttt aagaatagtt tttgctgtac tttctatagt 
2250 





gaatagagtt aggcagggat attcaccatt atcgtttcag acccacctcc 
2300 





caaccccgag gggacccgac aggcccgaag gaatagaaga agaaggtgga 
2350 





gagagagaca gagacagatc cattcgatta gtgaacggat cggcactgcg 
2400 





tgcgccaatt ctgcagacaa atggcagtat tcatccacaa ttttaaaaga 
2450 





aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat 
2500 





agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc 
2550 





aaaattttcg ggtttattac agggacagca gagatccagt ttggttagta 
2600 





ccgggcccgc tctagacatg tccaatatga ccgccatgtt gacattgatt 
2650 





attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 
2700 





catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc 
2750 





tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc 
2800 





catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt 
2850 





tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt 
2900 





ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc 
2950 





ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 
3000 





tagtcatcgc tattaccatg gtgatgcggt tttggcagta caccaatggg 
3050 





cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 
3100 





cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat 
3150 





gtcgtaataa ccccgccccg ttgacgcaaa tgggcggtag gcgtgtacgg 
3200 





tgggaggtct atataagcag agctcgttta gtgaaccgtc agaattttgt 
3250 





aatacgactc actatagggc ggccgggaat tcgtcgactg cccccccccc 
3300 





taacgttact ggccgaagcc gcttggaata aggccggtgt gcgtttgtct 
3350 





atatgttatt ttccaccata ttgccgtctt ttggcaatgt gagggcccgg 
3400 





aaacctggcc ctgtcttctt gacgagcatt cctaggggtc tttcccctct 
3450 





cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa gcagttcctc 
3500 





tggaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag 
3550 





cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt 
3600 





ataagataca cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt 
3650 





ggatagttgt ggaaagagtc aaatggctct cctcaagcgt attcaacaag 
3700 





gggctgaagg atgcccagaa ggtaccccat tgtatgggat ctgatctggg 
3750 





gcctcggtgc acatgcttta catgtgttta gtcgaggtta aaaaacgtct 
3800 





aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgatgat 
3850 





aatgatccgg taccgaggag atctgccgcc gcgatcgcca ccatgtacag 
3900 





gatgcaactc ctgtcttgca ttgcactaag tcttgcactt gtcacaaaca 
3950 





gtatgtctga taatggaccc caaaatcagc gaaatgcacc ccgcattacg 
4000 





tttggtggac cctcagattc aactggcagt aaccagaatg gagaacgcag 
4050 





tggggcgcga tcaaaacaac gtcggcccca aggtttaccc aataatactg 
4100 





cgtcttggtt caccgctctc actcaacatg gcaaggaaga ccttaaattc 
4150 





cctcgaggac aaggcgttcc aattaacacc aatagcagtc cagatgacca 
4200 





aattggctac taccgaagag ctaccagacg aattcgtggt ggtgacggta 
4250 





aaatgaaaga tctcagtcca agatggtatt tctactacct aggaactggg 
4300 





ccagaagctg gacttcccta tggtgctaac aaagacggca tcatatgggt 
4350 





tgcaactgag ggagccttga atacaccaaa agatcacatt ggcacccgca 
4400 





atcctgctaa caatgctgca atcgtgctac aacttcctca aggaacaaca 
4450 





ttgccaaaag gcttctacgc agaagggagc agaggcggca gtcaagcctc 
4500 





ttctcgttcc tcatcacgta gtcgcaacag ttcaagaaat tcaactccag 
4550 





gcagcagtag gggaacttct cctgctagaa tggctggcaa tggcggtgat 
4600 





gctgctcttg ctttgctgct gcttgacaga ttgaaccagc ttgagagcaa 
4650 





aatgtctggt aaaggccaac aacaacaagg ccaaactgtc actaagaaat 
4700 





ctgctgctga ggcttctaag aagcctcggc aaaaacgtac tgccactaaa 
4750 





gcatacaatg taacacaagc tttcggcaga cgtggtccag aacaaaccca 
4800 





aggaaatttt ggggaccagg aactaatcag acaaggaact gattacaaac 
4850 





attggccgca aattgcacaa tttgccccca gcgcttcagc gttcttcgga 
4900 





atgtcgcgca ttggcatgga agtcacacct tcgggaacgt ggttgaccta 
4950 





cacaggtgcc atcaaattgg atgacaaaga tccaaatttc aaagatcaag 
5000 





tcattttgct gaataagcat attgacgcat acaaaacatt cccaccaaca 
5050 





gagcctaaaa aggacaaaaa gaagaaggct gatgaaactc aagccttacc 
5100 





gcagagacag aagaaacagc aaactgtgac tcttcttcct gctgcagatt 
5150 





tggatgattt ctccaaacaa ttgcaacaat ccatgagcag tgctgactca 
5200 





actcaggcct aaacgcgtac gcggccgctc gagcagaaac tcatctcaga 
5250 





agaggatctg gcagcaaatg atatcctgga ttacaaggat gacgacgata 
5300 





aggtttaaac ggccggccgc ggtctgtaca agtaggattc gtcgagggac 
5350 





ctaataactt cgtatagcat acattatacg aagttataca tgtttaaggg 
5400 





ttccggttcc actaggtaca attcgatatc aagcttatcg ataatcaacc 
5450 





tctggattac aaaatttgtg aaagattgac tggtattctt aactatgttg 
5500 





ctccttttac gctatgtgga tacgctgctt taatgccttt gtatcatgct 
5550 





attgcttccc gtatggcttt cattttctcc tccttgtata aatcctggtt 
5600 





gctgtctctt tatgaggagt tgtggcccgt tgtcaggcaa cgtggcgtgg 
5650 





tgtgcactgt gtttgctgac gcaaccccca ctggttgggg cattgccacc 
5700 





acctgtcagc tcctttccgg gactttcgct ttccccctcc ctattgccac 
5750 





ggcggaactc atcgccgcct gccttgcccg ctgctggaca ggggctcggc 
5800 





tgttgggcac tgacaattcc gtggtgttgt cggggaaatc atcgtccttt 
5850 





ccttggctgc tcgcctgtgt tgccacctgg attctgcgcg ggacgtcctt 
5900 





ctgctacgtc ccttcggccc tcaatccagc ggaccttcct tcccgcggcc 
5950 





tgctgccggc tctgcggcct cttccgcgtc ttcgccttcg ccctcagacg 
6000 





agtcggatct ccctttgggc cgcctccccg catcgatacc gtcgacctcg 
6050 





atcgagacct agaaaaacat ggagcaatca caagtagcaa tacagcagct 
6100 





accaatgctg attgtgcctg gctagaagca caagaggagg aggaggtggg 
6150 





ttttccagtc acacctcagg tacctttaag accaatgact tacaaggcag 
6200 





ctgtagatct tagccacttt ttaaaagaaa aggggggacg aagggctaat 
6250 





tcactcccaa cgaagacaag atctgcttga tctgtggatc taccacacac 
6300 





aaggctactt ccctgattgg cagaactaca caccagggcc agggatcaga 
6350 





tatccactga cctttggatg gtgctacaag ctagtaccag ttgagcaaga 
6400 





gaaggtagaa gaagccaatg aaggagagaa cacccgcttg ttacaccctg 
6450 





tgagcctgca tgggatggat gacccggaga gagaagtatt agagtggagg 
6500 





tttgacagcc gcctagcatt tcatcacatg gcccgagagc tgcatccgga 
6550 





ctgtactggg tctctctggt tagaccagat ctgagcctgg gagctctctg 
6600 





gctaactagg gaacccactg cttaagcctc aataaagctt gccttgagtg 
6650 





cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 
6700 





cctcagaccc ttttagtcag tgtggaaaat ctctagcagc atgtgagcaa 
6750 





aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt 
6800 





ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag 
6850 





tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc 
6900 





ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga 
6950 





tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc 
7000 





acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct 
7050 





gtgtgcacga accccccgtt cagcccgacc gctgcgcctt atccggtaac 
7100 





tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc 
7150 





agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 
7200 





agttcttgaa gtggtggcct aactacggct acactagaag aacagtattt 
7250 





ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 
7300 





ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt 
7350 





gcaagcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg 
7400 





atcttttcta cggggtctga cgctcagtgg aacgaaaact cacgttaagg 
7450 





gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa 
7500 





attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 
7550 





tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg 
7600 





tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta 
7650 





cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga 
7700 





gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg 
7750 





aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt 
7800 





ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 
7850 





ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc 
7900 





gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta 
7950 





catgatcccc catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg 
8000 





atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc 
8050 





agcactgcat aattctctta ctgtcatgcc atccgtaaga tgcttttctg 
8100 





tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga 
8150 





ccgagttgct cttgcccggc gtcaatacgg gataataccg cgccacatag 
8200 





cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac 
8250 





tctcaaggat cttaccgctg ttgagatcca gttcgatgta acccactcgt 
8300 





gcacccaact gatcttcagc atcttttact ttcaccagcg tttctgggtg 
8350 





agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata agggcgacac 
8400 





ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt 
8450 





tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa 
8500 





aaataaacaa ataggggtcc cgcgcacatt tccccgaaaa gtgccacctg 
8550 





ac 
8552 






As will be noted, residues 237-616 of pLenti-IL2-nCoV-N(-att) (SEQ ID NO:85) correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 618-816 of SEQ ID NO:85 correspond to the CMV immediate early promoter site (SEQ ID NO:3). Residues 834-1012 of SEQ ID NO:85 correspond to the truncated lentiviral 5′ LTR region (SEQ ID NO:68). Residues 1059-1184 of SEQ ID NO:85 correspond to the lentiviral ψ region (SEQ ID NO:6). Residues 1681-1914 of SEQ ID NO:85 correspond to the lentiviral Rev response element (RRE) (SEQ ID NO:7). Residues 2441-2558 of SEQ ID NO:85 correspond to the lentiviral cPPT/CTS region (SEQ ID NO:8). Residues 2641-3020 of SEQ ID NO:85 correspond to the variant CMV immediate early enhancer site (SEQ ID NO:2). Residues 3021-3224 of SEQ ID NO:85 correspond to the variant CMV immediate early promoter site (SEQ ID NO:4). Residues 3250-3268 of SEQ ID NO:85 correspond to a T7 promoter site (SEQ ID NO:12). Residues 3391-3852 of SEQ ID NO:85 correspond to the internal ribosome entry site of the encephalomyocarditis virus (EMCV) (SEQ ID NO:69). Residues 3893-3952 of SEQ ID NO:85 correspond to a polynucleotide (SEQ ID NO:73) that encodes an IL-2 signal sequence (SEQ ID NO:72). Residues 3953-5209 of SEQ ID NO:85 correspond to a polynucleotide sequence (SEQ ID NO:79) that encodes the SARS-CoV-2 N protein (SEQ ID NO:54). Residues 5231-5302 of SEQ ID NO:85 correspond to a polynucleotide sequence (SEQ ID NO:14) that encodes a combined Myc (human c-Myc oncogene) and FLAG® epitope tag (SEQ ID NO:13). Residues 5354-5387 of SEQ ID NO:85 correspond to a LoxP site (SEQ ID NO:15). Residues 5443-6031 of SEQ ID NO:85 correspond to a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (SEQ ID NO:16). Residues 5914-5925 of SEQ ID NO:85 correspond to a Factor Xa cleavage site (SEQ ID NO:17).


Residues 6034-6050 of SEQ ID NO:85 correspond to a polynucleotide whose sequence is complementary to the sequence a KS primer binding site (SEQ ID NO:18). Residues 6240-6738 correspond to a 5′ LTR that has been modified to be self-inactivating (SIN) of which residues 6240-6557 correspond to a modified U3 region (SEQ ID NO:64), residues 6558-6738 correspond to R and the U5 regions of the 5′ LTR (SEQ ID NO:5). Residues 6800-7388 of SEQ ID NO:85 correspond to a polynucleotide whose sequence is complementary to the sequence of the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 7559-8419 of SEQ ID NO:85 correspond to a polynucleotide whose sequence is complementary to the sequence encoding the AmpR antibiotic resistance determinant (SEQ ID NO:22) (i.e., such encoding sequence is on the second strand of the vector). Residues 8420-8524 of SEQ ID NO:85 correspond to a polynucleotide whose sequence is complementary to the sequence of the AmpR promoter (SEQ ID NO:25) (i.e., such promoter sequence is on the second strand of the vector).


B. Packaging Vectors of the Present Invention


As used herein, the term “packaging vector” is intended to denote a vector that comprises a polynucleotide that encodes a gag protein, a polynucleotide that encodes a pol protein, a Rev response element (RRE), and a promoter sufficient to mediate the transcription of such genes in a mammalian cell.


Most preferably, the packaging vector of the present invention will be a double-stranded DNA plasmid. The structure of a preferred packaging vector (pGAG) is shown in FIG. 13, and comprises 11,282 base pairs. The preferred packaging vectors of the present invention comprise multiple features.


A first preferred feature of the packaging vectors of the present invention is an origin of replication capable of mediating the replication of the vector in prokaryotic cells, such as the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication. Illustrative polynucleotides that comprise such an origin of replication are described above (e.g., SEQ ID NO:19, SEQ ID NO:20).


A further preferred feature of the packaging vectors of the present invention is a promoter (and an optional upstream transcriptional enhancer site) that will facilitate and mediate transcription in a mammalian host cell. Exemplary polynucleotides that comprise such an upstream transcriptional enhancer site include SEQ ID NO:1, SEQ ID NO:2, and their above-described truncated variants, such as the truncated variants SEQ ID NO:29 and SEQ ID NO:30:










SEQ ID NO: 29: 



cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 






cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata





gggactttcc attgacgtca atgggtggag tatttacggt aaactgccca





cttggcagta catcaagtgt atcatatgcc aagtacgccc cctattgacg





tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 





tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 





catg 





SEQ ID NO: 30: 



cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc






cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 





gggactttcc attgacgtca atgggtggag tatttacggt aaactgccca 





cttggcagta catcaagtgt atcatatgcc aagtccgccc cctattgacg 





tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 







c
gggactttc ctacttggca gtacatctac gtattagtca tcgctattac 






catg






Illustrative polynucleotides that comprise suitable promoter sites are described above, and include SEQ ID NO:3 and SEQ ID NO:4. Additional suitable promoter sites include the following variants of the CMV immediate early promoter site:










SEQ ID NO: 31



gtgatgcggt tttggcagta catcaatggg cgtggatagc ggtttgactc






acggggattt ccaagtctcc accccattga cgtcaatggg agtttgtttt 





ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa ctccgcccca





ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag





agct 





SEQ ID NO: 32 



gtgatgcggt tttggcagta caccaatggg cgtggatagc ggtttgactc 






acggggattt ccaagtctcc accccattga cgtcaatggg agtttgtttt 





ggcaccaaaa tcaacgggac tttccaaaat gtcgtaataa ccccgccccg





ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag 






A further preferred feature of the packaging vectors of the present invention is a promoter that will facilitate and mediate transcription in a bacterial host. Illustrative polynucleotides, such as the exemplary T7 promoter site (SEQ ID NO:12) are described above.


A central feature of the packaging vectors of the present invention is a polynucleotide that encodes a gag protein, such as the HIV-1 gag protein (SEQ ID NO:33):











MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE 







LERFAVNPGL LETSEGCRQI LGQLQPSLQT GSEELRSLYN 







TVATLYCVHQ RIEIKDTKEA LDKIEEEQNK SKKKAQQAAA 







DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR TLNAWVKVVE 







EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM 







LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT 







STLQEQIGWM TNNPPIPVGE IYKRWIILGL NKIVRMYSPT  







SILDIRQGPK EPFRDYVDRF YKTLRAEQAS QEVKNWMTET 







LLVQNANPDC KTILKALGPA ATLEEMMTAC QGVGGPGHKA 







RVLAEAMSQV TNSATIMMQR GNFRNQRKIV KCFNCGKEGH







TARNCRAPRK KGCWKCGKEG HQMKDCTERQ ANFLGKIWPS 







YKGRPGNFLQ SRPEPTAPPE ESFRSGVETT TPPQKQEPID 







KELYPLTSLR SLFGNDPSSQ






An illustrative polynucleotide that encodes the HIV-1 gag protein is SEQ ID NO:34:










atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgatggga






aaaaattcgg ttaaggccag ggggaaagaa aaaatataaa ttaaaacata





tagtatgggc aagcagggag ctagaacgat tcgcagttaa tcctggcctg





ttagaaacat cagaaggctg tagacaaata ctgggacagc tacaaccatc





ccttcagaca ggatcagaag aacttagatc attatataat acagtagcaa





ccctctattg tgtgcatcaa aggatagaga taaaagacac caaggaagct





ttagacaaga tagaggaaga gcaaaacaaa agtaagaaaa aagcacagca





agcagcagct gacacaggac acagcaatca ggtcagccaa aattacccta





tagtgcagaa catccagggg caaatggtac atcaggccat atcacctaga





actttaaatg catgggtaaa agtagtagaa gagaaggctt tcagcccaga





agtgataccc atgttttcag cattatcaga aggagccacc ccacaagatt





taaacaccat gctaaacaca gtggggggac atcaagcagc catgcaaatg





ttaaaagaga ccatcaatga ggaagctgca gaatgggata gagtgcatcc





agtgcatgca gggcctattg caccaggcca gatgagagaa ccaaggggaa





gtgacatagc aggaactact agtacccttc aggaacaaat aggatggatg





acaaataatc cacctatccc agtaggagaa atttataaaa gatggataat





cctgggatta aataaaatag taagaatgta tagccctacc agcattctgg





acataagaca aggaccaaaa gaacccttta gagactatgt agaccggttc





tataaaactc taagagccga gcaagcttca caggaggtaa aaaattggat





gacagaaacc ttgttggtcc aaaatgcgaa cccagattgt aagactattt





taaaagcatt gggaccagcg gctacactag aagaaatgat gacagcatgt





cagggagtag gaggacccgg ccataaggca agagttttgg ctgaagcaat





gagccaagta acaaattcag ctaccataat gatgcagaga ggcaatttta





ggaaccaaag aaagattgtt aagtgtttca attgtggcaa agaagggcac 





acagccagaa attgcagggc ccctaggaaa aagggctgtt ggaaatgtgg 





aaaggaagga caccaaatga aagattgtac tgagagacag gctaattttt 





tagggaagat ctggccttcc tacaagggaa ggccagggaa ttttcttcag 





agcagaccag agccaacagc cccaccagaa gagagcttca ggtctggggt 





agagacaaca actccccctc agaagcagga gccgatagac aaggaactgt 





atcctttaac ttccctcaga tcactctttg gcaacgaccc ctcgtcacaa 






A further central feature of the packaging vectors of the present invention is a polynucleotide that encodes a pol protein, such as the HIV-1 pol protein (SEQ ID NO:35):










MSLPGRWKPK MIGGIGGFIK VRQYDQILIE ICGHKAIGTV LVGPTPVNII






GRNLLTQIGC TLNFPISPIE TVPVKLKPGM DGPKVKQWPL TEEKIKALVE





ICTEMEKEGK ISKIGPENPY NTPVFAIKKK DSTKWRKLVD FRELNKRTQD





FWEVQLGIPH PAGLKKKKSV TVLDVGDAYF SVPLDEDFRK YTAFTIPSIN





NETPGIRYQY NVLPQGWKGS PAIFQSSMTK ILEPFRKQNP DIVIYQYMDD





LYVGSDLEIG QHRTKIEELR QHLLRWGLTT PDKKHQKEPP FLWMGYELHP





DKWTVQPIVL PEKDSWTVND IQKLVGKLNW ASQIYPGIKV RQLCKLLRGT





KALTEVIPLT EEAELELAEN REILKEPVHG VYYDPSKDLI AEIQKQGQGQ





WTYQIYQEPF KNLKTGKYAR MRGAHTNDVK QLTEAVQKIT TESIVIWGKT





PKFKLPIQKE TWETWWTEYW QATWIPEWEF VNTPPLVKLW YQLEKEPIVG





AETFYVDGAA NRETKLGKAG YVTNRGRQKV VTLTDTTNQK TELQAIYLAL





QDSGLEVNIV TDSQYALGII QAQPDQSESE LVNQIIEQLI KKEKVYLAWV





PAHKGIGGNE QVDKLVSAGI RKVLFLDGID KAQDEHEKYH SNWRAMASDF





NLPPVVAKEI VASCDKCQLK GEAMHGQVDC SPGIWQLDCT HLEGKVILVA





VHVASGYIEA EVIPAETGQE TAYFLLKLAG RWPVKTIHTD NGSNFTSATV





KAACWWAGIK QEFGIPYNPQ SQGVVESMNK ELKKIIGQVR DQAEHLKTAV





QMAVFIHNFK RKGGIGGYSA GERIVDIIAT DIQTKELQKQ ITKIQNFRVY





YRDSRNPLWK GPAKLLWKGE GAVVIQDNSD IKVVPRRKAK IIRDYGKQMA





GDDCVASRQD ED 






An illustrative polynucleotide that encodes the HIV-1 pol protein has the sequence of SEQ ID NO:36:










atgagtttgc caggaagatg gaaaccaaaa atgatagggg gaattggagg






ttttatcaaa gtaagacagt atgatcagat actcatagaa atctgtggac





ataaagctat aggtacagta ttagtaggac ctacacctgt caacataatt





ggaagaaatc tgttgactca gattggttgc actttaaatt ttcccattag





ccctattgag actgtaccag taaaattaaa gccaggaatg gatggcccaa





aagttaaaca atggccattg acagaagaaa aaataaaagc attagtagaa





atttgtacag agatggaaaa ggaagggaaa atttcaaaaa ttgggcctga





aaatccatac aatactccag tatttgccat aaagaaaaaa gacagtacta





aatggagaaa attagtagat ttcagagaac ttaataagag aactcaagac





ttctgggaag ttcaattagg aataccacat cccgcagggt taaaaaagaa





aaaatcagta acagtactgg atgtgggtga tgcatatttt tcagttccct





tagatgaaga cttcaggaaa tatactgcat ttaccatacc tagtataaac





aatgagacac cagggattag atatcagtac aatgtgcttc cacagggatg





gaaaggatca ccagcaatat tccaaagtag catgacaaaa atcttagagc





cttttagaaa acaaaatcca gacatagtta tctatcaata catggatgat





ttgtatgtag gatctgactt agaaataggg cagcatagaa caaaaataga





ggagctgaga caacatctgt tgaggtgggg acttaccaca ccagacaaaa





aacatcagaa agaacctcca ttcctttgga tgggttatga actccatcct





gataaatgga cagtacagcc tatagtgctg ccagaaaaag acagctggac





tgtcaatgac atacagaagt tagtggggaa attgaattgg gcaagtcaga





tttacccagg gattaaagta aggcaattat gtaaactcct tagaggaacc





aaagcactaa cagaagtaat accactaaca gaagaagcag agctagaact





ggcagaaaac agagagattc taaaagaacc agtacatgga gtgtattatg





acccatcaaa agacttaata gcagaaatac agaagcaggg gcaaggccaa





tggacatatc aaatttatca agagccattt aaaaatctga aaacaggaaa





atatgcaaga atgaggggtg cccacactaa tgatgtaaaa caattaacag





aggcagtgca aaaaataacc acagaaagca tagtaatatg gggaaagact





cctaaattta aactgcccat acaaaaggaa acatgggaaa catggtggac





agagtattgg caagccacct ggattcctga gtgggagttt gttaataccc





ctcctttagt gaaattatgg taccagttag agaaagaacc catagtagga 





gcagaaacct tctatgtaga tggggcagct aacagggaga ctaaattagg 





aaaagcagga tatgttacta atagaggaag acaaaaagtt gtcaccctaa 





ctgacacaac aaatcagaag actgagttac aagcaattta tctagctttg





caggattcgg gattagaagt aaacatagta acagactcac aatatgcatt





aggaatcatt caagcacaac cagatcaaag tgaatcagag ttagtcaatc





aaataataga gcagttaata aaaaaggaaa aggtctatct ggcatgggta





ccagcacaca aaggaattgg aggaaatgaa caagtagata aattagtcag





tgctggaatc aggaaagtac tatttttaga tggaatagat aaggcccaag





atgaacatga gaaatatcac agtaattgga gagcaatggc tagtgatttt





aacctgccac ctgtagtagc aaaagaaata gtagccagct gtgataaatg





tcagctaaaa ggagaagcca tgcatggaca agtagactgt agtccaggaa





tatggcaact agattgtaca catttagaag gaaaagttat cctggtagca





gttcatgtag ccagtggata tatagaagca gaagttattc cagcagaaac





agggcaggaa acagcatatt ttcttttaaa attagcagga agatggccag





taaaaacaat acatacagac aatggcagca atttcaccag tgctacggtt





aaggccgcct gttggtgggc gggaatcaag caggaatttg gaattcccta





caatccccaa agtcaaggag tagtagaatc tatgaataaa gaattaaaga





aaattatagg acaggtaaga gatcaggctg aacatcttaa gacagcagta





caaatggcag tattcatcca caattttaaaagaaaaggggggattggggg







gtacagtgca
ggggaaagaatagtagacataatagcaacagacatacaaa








ctaaagaatt
acaaaaacaaattacaaaaattcaaaattttcgggtttat






tacagggaca gcagaaatcc actttggaaa ggaccagcaa agctcctctg





gaaaggtgaa ggggcagtag taatacaaga taatagtgac ataaaagtag





tgccaagaag aaaagcaaag atcattaggg attatggaaa acagatggca





ggtgatgatt gtgtggcaag tagacaggat gaggat 






The pol-encoding polynucleotide (SEQ ID NO:36) includes a central polypurine tract and central termination sequence (cPPT/CTS) (SEQ ID NO:8) (underlined above).


Improved safety can be obtained by employing a modified polynucleotide that encodes a pol protein that is substantially incapable of mediating reverse transcription of the lentiviral genome. Polynucleotides capable of encoding such proteins include modifications that encode D249V, D250V substitutions in the pol protein. The D249V and D250V substitutions attenuate the ability of the reverse transcriptase to mediate the reverse transcription of the lentiviral RNA into DNA. Thus, these mutations attenuate the ability of the lentiviral sequences to replicate.


Further improvements to safety can be obtained by employing a modified polynucleotide that encodes an IN integrase protein that is substantially incapable of mediating the reverse transcription of the lentiviral RNA into DNA. The amino acid sequence of the IN integrase protein is (SEQ ID NO:65):










FLDGIDKAQD EHEKYHSNWR AMASDFNLPP VVAKEIVASC DKCQLKGEAM 






HGQVDCSPGI WQLDCTHLEG KVILVAVHVA SGYIEAEVIP AETGQETAYF 





LLKLAGRWPV KTIHTDNGSN FTSATVKAAC WWAGIKQEFG IPYNPQSQGV 





VESMNKELKK IIGQVRDQAE HLKTAVQMAV FIHNFKRKGG IGGYSAGERI 





VDIIATDIQT KELQKQITKI QNFRVYYRDS RNPLWKGPAK LLWKGEGAVV 





IQDNSDIKVV PRRKAKIIRD YGKQMAGDDC VASRQDED 






A polynucleotide that encodes the IN integrase protein of SEQ ID NO:65 is SEQ ID NO:66 (corresponding to residues 1873-2736 of SEQ ID NO:36):











tttttagatg gaatagataa ggcccaagat gaacatgaga







aatatcacag taattggaga gcaatggcta gtgattttaa







cctgccacct gtagtagcaa aagaaatagt agccagctgt







gataaatgtc agctaaaagg agaagccatg catggacaag







tagactgtag tccaggaata tggcaactag attgtacaca







tttagaagga aaagttatcc tggtagcagt tcatgtagcc







agtggatata tagaagcaga agttattcca gcagaaacag







ggcaggaaac agcatatttt cttttaaaat tagcaggaag







atggccagta aaaacaatac atacagacaa tggcagcaat







ttcaccagtg ctacggttaa ggccgcctgt tggtgggcgg







gaatcaagca ggaatttgga attccctaca atccccaaag







tcaaggagta gtagaatcta tgaataaaga attaaagaaa







attataggac aggtaagaga tcaggctgaa catcttaaga







cagcagtaca aatggcagta ttcatccaca attttaaaag







aaaagggggg attggggggt acagtgcagg ggaaagaata







gtagacataa tagcaacaga catacaaact aaagaattac







aaaaacaaat tacaaaaatt caaaattttc gggtttatta







cagggacagc agaaatccac tttggaaagg accagcaaag







ctcctctgga aaggtgaagg ggcagtagta atacaagata







atagtgacat aaaagtagtg ccaagaagaa aagcaaagat







cattagggat tatggaaaac agatggcagg tgatgattgt







gtggcaagta gacaggatga ggat






Polynucleotides capable of encoding mutated IN integrase proteins include those that cause mutations in the catalytic core of the lentiviral integrase (e.g., S81R, D64V, D116I, N120L, N120E, N120G, P145I, P145I/P90D, P145I/F185K, E152G, E152V, K156I, etc.). The D688V pol substitution creates the D64V mutated integrase protein, and is a preferred integrase mutation as it greatly impairs 3′ processing, strand transfer, and disintegration in vitro, but permits the production of high infectious titer (Leavitt. A, D, et al. (1996) “Human Immunodeficiency Virus Type 1 Integrase Mutants Retain In Vitro Integrase Activity Yet Fail To Integrate Viral DNA Efficiently During Infection,” J. Virol. 70(2):721-728; Sayasith, K. et al. (2000) “Characterization Of Mutant HIV-1 Integrase Carrying Amino Acid Changes In The Catalytic Domain,” Mol. Cells 10(5):525-532). The D688V mutation thus attenuates the ability of the lentiviral sequences to integrate into the chromosomes of transfected mammalian cells, and thus attenuates the ability of the lentiviral sequences to integrate into the chromosomes of the cells of recipient subjects.


SEQ ID NO:37 provides the amino acid sequence of an variant pol protein that comprises D249V, D250V and D688V substitutions (relative to SEQ ID NO:35). The sequence of SEQ ID NO:37 is shown below (differences relative to SEQ ID NO:35 are underlined):











MSLPGRWKPK MIGGIGGFIK VRQYDQILIE ICGHKAIGTV







LVGPTPVNII GRNLLTQIGC TLNFPISPIE TVPVKLKPGM







DGPKVKQWPL TEEKIKALVE ICTEMEKEGK ISKIGPENPY







NTPVFAIKKK DSTKWRKLVD FRELNKRTQD FWEVQLGIPH







PAGLKKKKSV TVLDVGDAYF SVPLDEDFRK YTAFTIPSIN







NETPGIRYQY NVLPQGWKGS PAIFQSSMTK ILEPFRKQNP







DIVIYQYMVV LYVGSDLEIG QHRTKIEELR QHLLRWGLTT







PDKKHQKEPP FLWMGYELHP DKWTVQPIVL PEKDSWTVND







IQKLVGKLNW ASQIYPGIKV RQLCKLLRGT KALTEVIPLT







EEAELELAEN REILKEPVHG VYYDPSKDLI AEIQKQGQGQ







WTYQIYQEPF KNLKTGKYAR MRGAHTNDVK QLTEAVQKIT







TESIVIWGKT PKFKLPIQKE TWETWWTEYW QATWIPEWEF







VNTPPLVKLW YQLEKEPIVG AETFYVDGAA NRETKLGKAG







YVTNRGRQKV VTLTDTTNQK TELQAIYLAL QDSGLEVNIV







TDSQYALGII QAQPDQSESE LVNQIIEQLI KKEKVYLAWV







PAHKGIGGNE QVDKLVSAGI RKVLFLDGID KAQDEHEKYH







SNWRAMASDF NLPPVVAKEI VASCDKCQLK GEAMHGQVDC







SPGIWQLVCT HLEGKVILVA VHVASGYIEA EVIPAETGQE







TAYFLLKLAG RWPVKTIHTD NGSNFTSATV KAACWWAGIK







QEFGIPYNPQ SQGVVESMNK ELKKIIGQVR DQAEHLKTAV







QMAVFIHNFK RKGGIGGYSA GERIVDIIAT DIQTKELQKQ







ITKIQNFRVY YRDSRNPLWK GPAKLLWKGE GAVVIQDNSD







IKVVPRRKAK IIRDYGKQMA GDDCVASRQD ED






An exemplary polynucleotide that encodes the D249V/D250V/D688V HIV-1 pol protein has the sequence of SEQ ID NO:38:











atgagtttgc caggaagatg gaaaccaaaa atgatagggg







gaattggagg ttttatcaaa gtaagacagt atgatcagat







actcatagaa atctgtggac ataaagctat aggtacagta







ttagtaggac ctacacctgt caacataatt ggaagaaatc







tgttgactca gattggttgc actttaaatt ttcccattag







ccctattgag actgtaccag taaaattaaa gccaggaatg







gatggcccaa aagttaaaca atggccattg acagaagaaa







aaataaaagc attagtagaa atttgtacag agatggaaaa







ggaagggaaa atttcaaaaa ttgggcctga aaatccatac







aatactccag tatttgccat aaagaaaaaa gacagtacta







aatggagaaa attagtagat ttcagagaac ttaataagag







aactcaagac ttctgggaag ttcaattagg aataccacat







cccgcagggt taaaaaagaa aaaatcagta acagtactgg







atgtgggtga tgcatatttt tcagttccct tagatgaaga







cttcaggaaa tatactgcat ttaccatacc tagtataaac







aatgagacac cagggattag atatcagtac aatgtgcttc







cacagggatg gaaaggatca ccagcaatat tccaaagtag







catgacaaaa atcttagagc cttttagaaa acaaaatcca







gacatagtta tctatcaata catggtcgtg ttgtatgtag







gatctgactt agaaataggg cagcatagaa caaaaataga







ggagctgaga caacatctgt tgaggtgggg acttaccaca







ccagacaaaa aacatcagaa agaacctcca ttcctttgga







tgggttatga actccatcct gataaatgga cagtacagcc







tatagtgctg ccagaaaaag acagctggac tgtcaatgac







atacagaagt tagtggggaa attgaattgg gcaagtcaga







tttacccagg gattaaagta aggcaattat gtaaactcct







tagaggaacc aaagcactaa cagaagtaat accactaaca







gaagaagcag agctagaact ggcagaaaac agagagattc







taaaagaacc agtacatgga gtgtattatg acccatcaaa







agacttaata gcagaaatac agaagcaggg gcaaggccaa







tggacatatc aaatttatca agagccattt aaaaatctga







aaacaggaaa atatgcaaga atgaggggtg cccacactaa







tgatgtaaaa caattaacag aggcagtgca aaaaataacc







acagaaagca tagtaatatg gggaaagact cctaaattta







aactgcccat acaaaaggaa acatgggaaa catggtggac







agagtattgg caagccacct ggattcctga gtgggagttt







gttaataccc ctcctttagt gaaattatgg taccagttag







agaaagaacc catagtagga gcagaaacct tctatgtaga







tggggcagct aacagggaga ctaaattagg aaaagcagga







tatgttacta atagaggaag acaaaaagtt gtcaccctaa







ctgacacaac aaatcagaag actgagttac aagcaattta







tctagctttg caggattcgg gattagaagt aaacatagta







acagactcac aatatgcatt aggaatcatt caagcacaac







cagatcaaag tgaatcagag ttagtcaatc aaataataga







gcagttaata aaaaaggaaa aggtctatct ggcatgggta







ccagcacaca aaggaattgg aggaaatgaa caagtagata







aattagtcag tgctggaatc aggaaagtac tatttttaga







tggaatagat aaggcccaag atgaacatga gaaatatcac







agtaattgga gagcaatggc tagtgatttt aacctgccac







ctgtagtagc aaaagaaata gtagccagct gtgataaatg







tcagctaaaa ggagaagcca tgcatggaca agtagactgt







agtccaggaa tatggcaact agtctgtaca catttagaag







gaaaagttat cctggtagca gttcatgtag ccagtggata







tatagaagca gaagttattc cagcagaaac agggcaggaa







acagcatatt ttcttttaaa attagcagga agatggccag







taaaaacaat acatacagac aatggcagca atttcaccag







tgctacggtt aaggccgcct gttggtgggc gggaatcaag







caggaatttg gaattcccta caatccccaa agtcaaggag







tagtagaatc tatgaataaa gaattaaaga aaattatagg







acaggtaaga gatcaggctg aacatcttaa gacagcagta







caaatggcag tattcatcca caattttaaaagaaaagggg









ggattggggg
gtacagtgcaggggaaagaatagtagacat










aatagcaaca
gacatacaaactaaagaattacaaaaacaa










attacaaaaa
ttcaaaattttcgggtttat tacagggaca








gcagaaatcc actttggaaa ggaccagcaa agctcctctg







gaaaggtgaa ggggcagtag taatacaaga taatagtgac







ataaaagtag tgccaagaag aaaagcaaag atcattaggg







attatggaaa acagatggca ggtgatgatt gtgtggcaag







tagacaggat gaggattag






It will be noted that residues 2424-2541 of SEQ ID NO:36 and SEQ ID NO:38 each comprise a lentiviral central polypurine tract and central termination sequence (cPPT/CTS) (shown underlined above).


A further preferred feature of the packaging vectors of the present invention is a polynucleotide that comprises a Rev response element (RRE). An exemplary polynucleotide has the sequence of SEQ ID NO:7.


A further preferred feature of the packaging vectors of the present invention is a polynucleotide that comprises an SV40 small t intron. An exemplary polynucleotide has the sequence of SEQ ID NO:39:











gtaaatataa aatttttaag tgtataatgt gttaaactac







tgattctaat tgtttgtgta ttttag






A further preferred feature of the packaging vectors of the present invention is a polynucleotide that encodes a nuclear localization signal sufficient to promote localization of expressed proteins to the nucleus of a transfected mammalian cell. An exemplary nuclear localization signal is the nuclear localization signal of the SV40 large T antigen (SEQ ID NO:40):











PKKKRKV,







which may be encoded by (SEQ ID NO:41):











ccaaaaaagaagagaaaggta.






A further preferred feature of the packaging vectors of the present invention is a polynucleotide that comprises a polyadenylation signal. An exemplary polynucleotide comprises the SV40 poly(A) signal site (SEQ ID NO:42):











aacttgttta ttgcagctta taatggttac aaataaagca







atagcatcac aaatttcaca aataaagcat ttttttcact







gcattctagt tgtggtttgt ccaaactcat caatgtatct







tatcatgtct ggatc






A further preferred feature of the packaging vectors of the present invention is a polynucleotide that comprises a promoter that will facilitate and mediate transcription in a mammalian host cell. An exemplary polynucleotide comprises the SV40 early promoter (SEQ ID NO:43):











gcatctcaat tagtcagcaa ccatagtccc gcccctaact







ccgcccatcccgcccctaactccgcccagttccgcccatt









ctccgcccca
tggctgactaattttttttatttatgcaga










ggccgaggcc
gcctcggcctctgagctattccagaagtag










tgaggaggct
tttttggaggcctaggcttt tgcaaa








It will be noted that residues 47-182 of SEQ ID NO:43 (underlined above) correspond to an SV40 origin of replication.


A further preferred feature of the packaging vectors of the present invention is a polynucleotide that comprises a promoter that will facilitate and mediate transcription in a bacterial host. An illustrative polynucleotide that comprises the AmpR promoter has the sequence of SEQ ID NO:16.


A further preferred feature of the packaging vectors of the present invention is a gene that encodes an antibiotic resistance determinant, such as AmpR. Illustrative polynucleotides that encode such a determinant are described above (e.g., SEQ ID NO:22, SEQ ID NO:24).


The double-stranded vector pGAG (FIG. 13) is a preferred packaging vector of the present invention that may be used with the LTR-containing vectors, REV vectors and envelope vectors of the present invention to produce lentiviral particles that array a SARS-CoV-2 S protein on their surface. The polynucleotide sequence of the first strand of vector pGAG is SEQ ID NO:44:











ttcaacattt ccgtgtcgcc cttattccct tttttgcggc attttgcctt 
50






cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga 
100





tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta 
150





agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact 
200





tttaaagttc tgctatgtgg cgcggtatta tcccgtgttg acgccgggca 
250





agagcaactc ggtcgccgca tacactattc tcagaatgac ttggttgagt 
300





actcaccagt cacagaaaag catcttacgg atggcatgac agtaagagaa 
350





ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact 
400





tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 
450





tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa 
500





gccataccaa acgacgagcg tgacaccacg atgcctgcag caatggcaac 
550





aacgttgcgc aaactattaa ctggcgaact acttactcta gcttcccggc 
600





aacaattaat agactggatg gaggcggata aagttgcagg accacttctg 
650





cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg 
700





tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc 
750





cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat 
800





gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattg 
850





gtaactgtca gaccaagttt actcatatat actttagatt gatttaaaac 
900





ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc 
950





atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 
1000





cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa 
1050





tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg 
1100





ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag 
1150





agcgcagata ccaaatactg tccttctagt gtagccgtag ttaggccacc 
1200





acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg 
1250





ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 
1300





ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg 
1350





gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga 
1400





tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa 
1450





ggcggacagg tatccggtaa gcggcagggt cggaacagga gagcgcacga 
1500





gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt 
1550





cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 
1600





gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 
1650





tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct 
1700





gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag 
1750





ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc 
1800





tgatgcggta ttttctcctt acgcatctgt gcggtatttc acaccgcata 
1850





tggtgcactc tcagtacaat ctgctctgat gccgcatagt taagccagta 
1900





tcctcgacat cgctctagtc tagttattaa tagtaatcaa ttacggggtc 
1950





attagttcat agcccatata tggagttccg cgttacataa cttacggtaa 
2000





atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 
2050





atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 
2100





atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 
2150





atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc 
2200





gcctggcatt atgcccagta catgacctta tgggactttc ctacttggca 
2250





gtacatctac gtattagtca tcgctattac catggtgatg cggttttggc 
2300





agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 
2350





ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 
2400





ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 
2450





gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact 
2500





agagaaccca ctgcttactg gcttatcgaa attaatacga ctcactatag 
2550





ggagacccaa gcttggtacc gagctcggat ccactagagc gcgcacggca 
2600





agaggcgagg ggcggcgact ggtgagtacg ccggctagaa ggagagagat 
2650





gggtgcgaga gcgtcagtat taagcggggg agaattagat cgatgggaaa 
2700





aaattcggtt aaggccaggg ggaaagaaaa aatataaatt aaaacatata 
2750





gtatgggcaa gcagggagct agaacgattc gcagttaatc ctggcctgtt 
2800





agaaacatca gaaggctgta gacaaatact gggacagcta caaccatccc 
2850





ttcagacagg atcagaagaa cttagatcat tatataatac agtagcaacc 
2900





ctctattgtg tgcatcaaag gatagagata aaagacacca aggaagcttt 
2950





agacaagata gaggaagagc aaaacaaaag taagaaaaaa gcacagcaag 
3000





cagcagctga cacaggacac agcaatcagg tcagccaaaa ttaccctata 
3050





gtgcagaaca tccaggggca aatggtacat caggccatat cacctagaac 
3100





tttaaatgca tgggtaaaag tagtagaaga gaaggctttc agcccagaag 
3150





tgatacccat gttttcagca ttatcagaag gagccacccc acaagattta 
3200





aacaccatgc taaacacagt ggggggacat caagcagcca tgcaaatgtt 
3250





aaaagagacc atcaatgagg aagctgcaga atgggataga gtgcatccag 
3300





tgcatgcagg gcctattgca ccaggccaga tgagagaacc aaggggaagt 
3350





gacatagcag gaactactag tacccttcag gaacaaatag gatggatgac 
3400





aaataatcca cctatcccag taggagaaat ttataaaaga tggataatcc 
3450





tgggattaaa taaaatagta agaatgtata gccctaccag cattctggac 
3500





ataagacaag gaccaaaaga accctttaga gactatgtag accggttcta 
3550





taaaactcta agagccgagc aagcttcaca ggaggtaaaa aattggatga 
3600





cagaaacctt gttggtccaa aatgcgaacc cagattgtaa gactatttta 
3650





aaagcattgg gaccagcggc tacactagaa gaaatgatga cagcatgtca 
3700





gggagtagga ggacccggcc ataaggcaag agttttggct gaagcaatga 
3750





gccaagtaac aaattcagct accataatga tgcagagagg caattttagg 
3800





aaccaaagaa agattgttaa gtgtttcaat tgtggcaaag aagggcacac 
3850





agccagaaat tgcagggccc ctaggaaaaa gggctgttgg aaatgtggaa 
3900





aggaaggaca ccaaatgaaa gattgtactg agagacaggc taatttttta 
3950





gggaagatct ggccttccta caagggaagg ccagggaatt ttcttcagag 
4000





cagaccagag ccaacagccc caccagaaga gagcttcagg tctggggtag 
4050





agacaacaac tccccctcag aagcaggagc cgatagacaa ggaactgtat 
4100





cctttaactt ccctcagatc actctttggc aacgacccct cgtcacaata 
4150





aagatagggg ggcaactaaa ggaagctcta ttagatacag gagcagatga 
4200





tacagtatta gaagaaatga gtttgccagg aagatggaaa ccaaaaatga 
4250





tagggggaat tggaggtttt atcaaagtaa gacagtatga tcagatactc 
4300





atagaaatct gtggacataa agctataggt acagtattag taggacctac 
4350





acctgtcaac ataattggaa gaaatctgtt gactcagatt ggttgcactt 
4400





taaattttcc cattagccct attgagactg taccagtaaa attaaagcca 
4450





ggaatggatg gcccaaaagt taaacaatgg ccattgacag aagaaaaaat 
4500





aaaagcatta gtagaaattt gtacagagat ggaaaaggaa gggaaaattt 
4550





caaaaattgg gcctgaaaat ccatacaata ctccagtatt tgccataaag 
4600





aaaaaagaca gtactaaatg gagaaaatta gtagatttca gagaacttaa 
4650





taagagaact caagacttct gggaagttca attaggaata ccacatcccg 
4700





cagggttaaa aaagaaaaaa tcagtaacag tactggatgt gggtgatgca 
4750





tatttttcag ttcccttaga tgaagacttc aggaaatata ctgcatttac 
4800





catacctagt ataaacaatg agacaccagg gattagatat cagtacaatg 
4850





tgcttccaca gggatggaaa ggatcaccag caatattcca aagtagcatg 
4900





acaaaaatct tagagccttt tagaaaacaa aatccagaca tagttatcta 
4950





tcaatacatg gatgatttgt atgtaggatc tgacttagaa atagggcagc 
5000





atagaacaaa aatagaggag ctgagacaac atctgttgag gtggggactt 
5050





accacaccag acaaaaaaca tcagaaagaa cctccattcc tttggatggg 
5100





ttatgaactc catcctgata aatggacagt acagcctata gtgctgccag 
5150





aaaaagacag ctggactgtc aatgacatac agaagttagt ggggaaattg 
5200





aattgggcaa gtcagattta cccagggatt aaagtaaggc aattatgtaa 
5250





actccttaga ggaaccaaag cactaacaga agtaatacca ctaacagaag 
5300





aagcagagct agaactggca gaaaacagag agattctaaa agaaccagta 
5350





catggagtgt attatgaccc atcaaaagac ttaatagcag aaatacagaa 
5400





gcaggggcaa ggccaatgga catatcaaat ttatcaagag ccatttaaaa 
5450





atctgaaaac aggaaaatat gcaagaatga ggggtgccca cactaatgat 
5500





gtaaaacaat taacagaggc agtgcaaaaa ataaccacag aaagcatagt 
5550





aatatgggga aagactccta aatttaaact gcccatacaa aaggaaacat 
5600





gggaaacatg gtggacagag tattggcaag ccacctggat tcctgagtgg 
5650





gagtttgtta atacccctcc tttagtgaaa ttatggtacc agttagagaa 
5700





agaacccata gtaggagcag aaaccttcta tgtagatggg gcagctaaca 
5750





gggagactaa attaggaaaa gcaggatatg ttactaatag aggaagacaa 
5800





aaagttgtca ccctaactga cacaacaaat cagaagactg agttacaagc 
5850





aatttatcta gctttgcagg attcgggatt agaagtaaac atagtaacag 
5900





actcacaata tgcattagga atcattcaag cacaaccaga tcaaagtgaa 
5950





tcagagttag tcaatcaaat aatagagcag ttaataaaaa aggaaaaggt 
6000





ctatctggca tgggtaccag cacacaaagg aattggagga aatgaacaag 
6050





tagataaatt agtcagtgct ggaatcagga aagtactatt tttagatgga 
6100





atagataagg cccaagatga acatgagaaa tatcacagta attggagagc 
6150





aatggctagt gattttaacc tgccacctgt agtagcaaaa gaaatagtag 
6200





ccagctgtga taaatgtcag ctaaaaggag aagccatgca tggacaagta 
6250





gactgtagtc caggaatatg gcaactagat tgtacacatt tagaaggaaa 
6300





agttatcctg gtagcagttc atgtagccag tggatatata gaagcagaag 
6350





ttattccagc agaaacaggg caggaaacag catattttct tttaaaatta 
6400





gcaggaagat ggccagtaaa aacaatacat acagacaatg gcagcaattt 
6450





caccagtgct acggttaagg ccgcctgttg gtgggcggga atcaagcagg 
6500





aatttggaat tccctacaat ccccaaagtc aaggagtagt agaatctatg 
6550





aataaagaat taaagaaaat tataggacag gtaagagatc aggctgaaca 
6600





tcttaagaca gcagtacaaa tggcagtatt catccacaat tttaaaagaa 
6650





aaggggggat tggggggtac agtgcagggg aaagaatagt agacataata 
6700





gcaacagaca tacaaactaa agaattacaa aaacaaatta caaaaattca 
6750





aaattttcgg gtttattaca gggacagcag aaatccactt tggaaaggac 
6800





cagcaaagct cctctggaaa ggtgaagggg cagtagtaat acaagataat 
6850





agtgacataa aagtagtgcc aagaagaaaa gcaaagatca ttagggatta 
6900





tggaaaacag atggcaggtg atgattgtgt ggcaagtaga caggatgagg 
6950





attagaacat ggaaaagttt agtaaaacac catatgtata tttcaaggaa 
7000





agctaaggac tggttttata gacatcacta tgaaagtact aatccaaaaa 
7050





taagttcaga agtacacatc ccactagggg atgctaaatt agtaataaca 
7100





acatattggg gtctgcatac aggagaaaga gactggcatt tgggtcaggg 
7150





agtctccata gaatggagga aaaagagata tagcacacaa gtagaccctg 
7200





acctagcaga ccaactaatt catctgcact attttgattg tttttcagaa 
7250





tctgctataa gaaataccat attaggacgt atagttagtc ctaggtgtga 
7300





atatcaagca ggacataaca aggtaggatc tctacagtac ttggcactag 
7350





cagcattaat aaaaccaaaa cagataaagc cacctttgcc tagtgttagg 
7400





aaactgacag aggacagatg gaacaagccc cagaagacca agggccacag 
7450





agggagccat acaatgaatg gacactagag cttttagagg aacttaagag 
7500





tgaagctgtt agacattttc ctaggatatg gctccataac ttaggacaac 
7550





atatctatga aacttacggg gatacttggg caggagtgga agccataata 
7600





agaattctgc aacaactgct gtttatccat ttcagaattg ggtgtcgaca 
7650





tagcagaata ggcgttactc gacagaggag agcaagaaat ggagccagta 
7700





gatcctagac tagagccctg gaagcatcca ggaagtcagc ctaaaactgc 
7750





ttgtaccaat tgctattgta aaaagtgttg ctttcattgc caagtttgtt 
7800





tcatgacaaa agccttaggc atctcctatg gcaggaagaa gcggagacag 
7850





cgacgaagag ctcatcagaa cagtcagact catcaagctt ctctatcaaa 
7900





gcagtaagta gtacatgtaa tgcaacctat aatagtagca atagtagcat 
7950





tagtagtagc aataataata gcaatagttg tgtggtccat agtaatcata 
8000





gaatatagga aaatattaag acaaagaaaa atagacaggt taattgatag 
8050





actaatagaa agagcagaag acagtggcaa tgagagtgaa ggagaagtat 
8100





cagcacttgt ggagatgggg gtggaaatgg ggcaccatgc tccttgggat 
8150





attgatgatc tgtagtgcta cagaaaaatt gtgggtcaca gtctattatg 
8200





gggtacctgt gtggaaggaa gcaaccacca ctctattttg tgcatcagat 
8250





gctaaagcat atgatacaga ggtacataat gtttgggcca cacatgcctg 
8300





tgtacccaca gaccccaacc cacaagaagt agtattggta aatgtgacag 
8350





aaaattttaa catgtggaaa aatgacatgg tagaacagat gcatgaggat 
8400





ataatcagtt tatgggatca aagcctaaag ccatgtgtaa aattaacccc 
8450





actctgtgtt agtttaaagt gcactgattt gaagaatgat actaatacca 
8500





atagtagtag cgggagaatg ataatggaga aaggagagat aaaaaactgc 
8550





tctttcaata tcagcacaag cataagaggt aaggtgcaga aagaatatgc 
8600





atttttttat aaacttgata taataccaat agataatgat actaccagct 
8650





ataagttgac aagttgtaac acctcagtca ttacacaggc ctgtccaaag 
8700





gtatcctttg agccaattcc catacattat tgtgccccgg ctggttttgc 
8750





gattctaaaa tgtaataata agacgttcaa tggaacagga ccatgtacaa 
8800





atgtcagcac agtacaatgt acacatggaa ttaggccagt agtatcaact 
8850





caactgctgt taaatggcag tctagcagaa gaagaggtag taattagatc 
8900





gatcttcaga cctggaggag gagatatgag ggacaattgg agaagtgaat 
8950





tatataaata taaagtagta aaaattgaac cattaggagt agcacccacc 
9000





aaggcaaaga gaagagtggt gcagagagaa aaaagagcag tgggaatagg 
9050





agctttgttc cttgggttct tgggagcagc aggaagcact atgggcgcag 
9100





cgtcaatgac gctgacggta caggccagac aattattgtc tggtatagtg 
9150





cagcagcaga acaatttgct gagggctatt gaggcgcaac agcatctgtt 
9200





gcaactcaca gtctggggca tcaagcagct ccaggcaaga atcctggctg 
9250





tggaaagata cctaaaggat caacagctcc tggggatttg gggttgctct 
9300





ggaaaactca tttgcaccac tgctgtgcct tggaatgcta gttggagtaa 
9350





taaatctctg gaacagattt ggaatcacac gacctggatg gagtgggaca 
9400





gagaaattaa caattacaca agcttaatac actccttaat tgaagaatcg 
9450





caaaaccagc aagaaaagaa tgaacaagaa ttattggaat tagataaatg 
9500





ggcaagtttg tggaattggt ttaacataac aaattggctg tggtatataa 
9550





aattattcat aatgatagta ggaggcttgg taggtttaag aatagttttt 
9600





gctgtacttt ctatagtgaa tagagttagg cagggatatt caccattatc 
9650





gtttcagacc cacctcccaa ccccgagggg acccgacagg cccgaaggaa 
9700





tagaagaaga aggtggagag agagacagag acagatccat tcgattagtg 
9750





aacggatctt tgtgaaggaa ccttacttct gtggtgtgac ataattggac 
9800





aaactaccta cagagattta aagctctaag gtaaatataa aatttttaag 
9850





tgtataatgt gttaaactac tgattctaat tgtttgtgta ttttagattc 
9900





caacctatgg aactgatgaa tgggagcagt ggtggaatgc ctttaatgag 
9950





gaaaacctgt tttgctcaga agaaatgcca tctagtgatg atgaggctac 
10000





tgctgactct caacattcta ctcctccaaa aaagaagaga aaggtagaag 
10050





accccaagga ctttccttca gaattgctaa gttttttgag tcatgctgtg 
10100





tttagtaata gaactcttgc ttgctttgct atttacacca caaaggaaaa 
10150





agctgcactg ctatacaaga aaattatgga aaaatattct gtaaccttta 
10200





taagtaggca taacagttat aatcataaca tactgttttt tcttactcca 
10250





cacaggcata gagtgtctgc tattaataac tatgctcaaa aattgtgtac 
10300





ctttagcttt ttaatttgta aaggggttaa taaggaatat ttgatgtata 
10350





gtgccttgac tagagatcat aatcagccat accacatttg tagaggtttt 
10400





acttgcttta aaaaacctcc cacacctccc cctgaacctg aaacataaaa 
10450





tgaatgcaat tgttgttgtt aacttgttta ttgcagctta taatggttac 
10500





aaataaagca atagcatcac aaatttcaca aataaagcat ttttttcact 
10550





gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct 
10600





ggatcccgcg atgtcgaggc atctcaatta gtcagcaacc atagtcccgc 
10650





ccctaactcc gcccatcccg cccctaactc cgcccagttc cgcccattct 
10700





ccgccccatg gctgactaat tttttttatt tatgcagagg ccgaggccgc 
10750





ctcggcctct gagctattcc agaagtagtg aggaggcttt tttggaggcc 
10800





taggcttttg caaaaagctt ggcgagattt tcaggagcta aggaagctaa 
10850





aatggagaaa aaaatcactg gatataccac cgttgatata tcccaatggc 
10900





atcgtaaaga acattttgag gcatttcagt cagttgctca atgtacctat 
10950





aaccagaccg ttcagctgga tattacggcc tttttaaaga ccgtaaagaa 
11000





aaataagcac aagttttatc cggcctttat tcacattctt gcccgcctga 
11050





tgaatgctca tccggaattc ttgaagacga aagggcctcg tgatacgcct 
11100





atttttatag gttaatgtca tgataataat ggtttcttag acgtcaggtg 
11150





gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt atttttctaa 
11200





atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct 
11250





tcaataatat tgaaaaagga agagtatgag ta                    
11282






As will be noted, residues 1025-1613 of SEQ ID NO:44 correspond to the high-copy-number ColE1/pMB/pBR322/pUC origin of replication (SEQ ID NO:20). Residues 1981-2284 of SEQ ID NO:44 correspond to the CMV immediate early enhancer site (SEQ ID NO:29). Residues 2285-2488 of SEQ ID NO:44 correspond to the CMV immediate early promoter site (SEQ ID NO:31). Residues 2533-2551 of SEQ ID NO:44 correspond to the T7 promoter site (SEQ ID NO:12). Residues 2649-4151 of SEQ ID NO:44 correspond to a polynucleotide (SEQ ID NO:34) that encodes the HIV-1 gag protein (SEQ ID NO:33). Residues 4217-6955 of SEQ ID NO:44 correspond to a polynucleotide (SEQ ID NO:36) that encodes the HIV-1 pol protein (SEQ ID NO:35), and include a lentiviral central polypurine tract and central termination sequence (cPPT/CTS). Residues 9048-9281 of SEQ ID NO:44 correspond to a Rev response element (RRE) (SEQ ID NO:7). Residues 9831-9896 of SEQ ID NO:44 correspond to an SV40 small t intron (SEQ ID NO:39). Residues 10026-10046 of SEQ ID NO:44 correspond to a polynucleotide (SEQ ID NO:41) that encodes the nuclear localization signal of the SV40 large T antigen (SEQ ID NO:40). The nuclear localization signal is in frame with an open reading frame that encodes a protein having the sequence (SEQ ID NO:45) (the SV40 large T nuclear localization signal is underlined):













PKKKRKV
EDP KDFPSELLSF LSHAVFSNRT LACFAIYTTK








EKAALLYKKI MEKYSVTFIS RHNSYNHNIL FFLTPHRHRV







SAINNYAQKL CTFSFLICKG VNKEYLMYSA LTRDHNQPYH







ICRGFTCFKK PPTPPPEPET






Residues 10471-10605 of SEQ ID NO:44 correspond to an SV40 poly(A) signal site (SEQ ID NO:42). Residues 10619-10814 of SEQ ID NO:44 correspond to an SV40 early promoter (SEQ ID NO:43), which includes an SV40 origin of replication. Residues 11171-11275 of SEQ ID NO:44 correspond to an AmpR promoter (SEQ ID NO:16). Residues 11276-11282 and residues 1-854 of SEQ ID NO:44 correspond to a polynucleotide (SEQ ID NO:24) that encodes an AmpR antibiotic resistance determinant (SEQ ID NO:23).


C. REV Vectors of the Present Invention


As used herein, the term “REV vector” is intended to denote a vector that comprises a polynucleotide that encodes a rev protein and a promoter sufficient to mediate the transcription of such gene in a mammalian cell.


Most preferably, the REV vector of the present invention will be a double-stranded DNA plasmid. The structure of a preferred REV vector (pREV) is shown in FIG. 14, and comprises 5,514 base pairs. The preferred REV vectors of the present invention comprise multiple features.


The first of such preferred features of the REV vectors of the present invention comprises a gene that encodes an antibiotic resistance determinant operably linked to a promoter capable of mediating its expression in a bacterial host. Polynucleotides that encode such antibiotic resistance determinants are described above. An exemplary antibiotic resistance determinant is the AmpR determinant (SEQ ID NO:23), which is encoded by a polynucleotide that comprises the sequence of SEQ ID NO:24. An exemplary AmpR promoter-containing polynucleotide has the sequence of SEQ ID NO:16.


A further preferred feature of the REV vectors of the present invention is an origin of replication capable of mediating the replication of the vector in prokaryotic cells, such as the high-copy-number ColE1/pMB1/pBR322/pUC origin of replication. Illustrative polynucleotides that comprise such an origin of replication are described above (e.g., SEQ ID NO:19, SEQ ID NO:20).


A central feature of the REV vectors of the present invention is a promoter (and an optional upstream transcriptional enhancer site) that will facilitate and mediate transcription in a mammalian host cell. Suitable promoters are described above. An exemplary promoter/enhancer site is the CMV immediate early enhancer site (SEQ ID NO:4) and the CMV immediate early promoter (SEQ ID NO:5).


A second central feature of the REV vectors of the present invention is a polynucleotide encoding a lentiviral Rev protein, operably linked to such promoter. The Rev protein, however, is encoded by a polynucleotide that contains intervening sequences and that is subject to mRNA splicing (Kammler, S. et al. (2006) “The Strength Of The HIV-1 3′ Splice Sites Affects Rev Function,” Retrovirol. 3:89:1-20). The rev gene thus consists of two coding exons that together predict a protein of 116 amino acids. An exemplary lentiviral Rev protein has the amino acid sequence (SEQ ID NO:46):











MAGRSGDSDE ELIRTVRLIK LLYQSNPPPN PEGTRQARRN







RRRRWRERQR QIHSISERIL GTYLGRSAEP VPLQLPPLER







LTLDCNEDCG TSGTQGVGSP QILVESPTVL ESGTKE






An illustrative polynucleotide that is capable of being processed to form Rev protein by transfected mammalian cells has the sequence (SEQ ID NO:47):











atgctgctac cattgtcaga tgtgttttct aaacaagggg







ctcggaattc cccggatccg tcgactctag aggatctgca







tctcctatgg caggaagaag cggagacagc gacgaagacc







tcctcaaggc agtcagactc atcaagtttc tctatcaaag







caacccacct cccaatcccg aggggacccg acaggcccga







aggaatagaa gaagaaggtg gagagagaga cagagacaga







tccattcgat tagtgaacgg atccttagca cttatctggg







acgatctgcg gagcctgtgc ctcttcagct accaccgctt







gagagactta ctcttgattg taacgaggat tgtggaactt







ctgggacgca gggggtggga agccctcaaa tattggtgga







atctcctaca atattggagt caggagctaa agaatagtgc







tgttagcttg ctcaatgcca cagctatagc agtagctgag







gggacagata gggttataga agtagtacaa gaagcttata







gagctattcg ccacatacct agaagaataa gacagggctt







ggaaaggatt ttgctataag atgggtggca agtggtcaaa







aagtagtgtg gttggatggc ctgctgtaag ggaaagaatg







agacgagctg agccagcagc agatggggtg ggagcagcat







ctcgagacct agaaaaacat ggagcaatca caagtagcaa







cacagcagct aacaatgctg cttgtgcctg gctagaagca







caagaggagg agaaggtggg ttttccagtc acacctcagg







taccgagctc gaattcactc ctcaggtgca ggctgcctat







cagaaggtgg tggctggtgt ggccaatgcc ctggctcaca







aataccactg agatctttgt gaaggaacct tacttctgtg







gtgtgacata attggacaaa ctacctacag agatttaaag







ctctaaggtaaatataaaatttttaagtgtataatgtgtt









aaactactga
ttctaattgtttgtgtattttagattccaa








cctatggaac tgatgaatgg gagcagtggt ggaatgcctt







taatgaggaa aacctgtttt gctcagaaga aatgccatct







agtgatgatg aggctactgc tgactctcaa cattctactc







ctccaaaaaagaagagaaaggtagaagacc ccaaggaactt








tccttcagaa ttgctaagtt ttttgagtca tgctgtgttt









agtaatagaa ctcttgcttg ctttgctatt tacaccacaa









aggaaaaagc tgcactgcta tacaagaaaa ttatggaaaa









atattctgta acctttataa gtaggcataa cagttataat









cataacatac tgttttttct tactccacac aggcatagag









tgtctgctat taataactat gctcaaaaat tgtgtacctt









tagcttttta atttgtaaag gggttaataa ggaatatttg









atgtatagtg ccttgactag agatcataat cagccatacc









acatttgtag aggttttact tgctttaaaa aacctcccac









acctccccct gaacctgaaa ca







As will be recognized, the Rev-encoding polynucleotide (SEQ ID NO:47) comprises an SV40 small t antigen intron (SEQ ID NO:48) (underlined above):











gtaaatataa aatttttaag tgtataatgt gttaaactac







tgattctaat tgtttgtgta ttttag






As will also be realized, the Rev-encoding polynucleotide (SEQ ID NO:47) comprises a polynucleotide (SEQ ID NO:41) (double underlined above) that encodes the nuclear localization signal of the SV40 large T antigen (SEQ ID NO:40). The nuclear localization signal is in frame with an open reading frame (shown in bold above) that encodes a protein having the sequence of SEQ ID NO:45.


A further preferred feature of the REV vectors of the present invention is a polynucleotide that comprises a polyadenylation signal. An exemplary polynucleotide comprises the SV40 poly(A) signal site has the sequence of SEQ ID NO:42.


The double-stranded vector pREV (FIG. 14) is a preferred REV vector of the present invention that may be used with the LTR-containing vectors, packaging vectors and envelope vectors of the present invention to produce lentiviral particles that array a SARS-CoV-2 S protein on their surface. The polynucleotide sequence of the first strand of vector pREV is SEQ ID NO:49:











gagaggacat tccaatcata ggctgcccat ccaccctctg tgtcctcctg 
50






ttaattaggt cacttaacaa aaaggaaatt gggtaggggt ttttcacaga 
100





ccgctttcta agggtaattt taaaatatct gggaagtccc ttccactgct 
150





gtgttccaga agtgttggta aacagcccac aaatgtcaac agcagaaaca 
200





tacaagctgt cagctttgca caagggccca acaccctgct catcaagaag 
250





cactgtggtt gctgtgttag taatgtgcaa aacaggaggc acattttccc 
300





cacctgtgta ggttccaaaa tatctagtgt tttcattttt acttggatca 
350





ggaacccagc actccactgg ataagcatta tccttatcca aaacagcctt 
400





gtggtcagtg ttcatctgct gactgtcaac tgtagcattt tttggggtta 
450





cagtttgagc aggatatttg gtcctgtagt ttgctaacac accctgcagc 
500





tccaaaggtt ccccaccaac agcaaaaaaa tgaaaatttg acccttgaat 
550





gggttttcca gcaccatttt catgagtttt ttgtgtccct gaatgcaagt 
600





ttaacatagc agttacccca ataacctcag ttttaacagt aacagcttcc 
650





cacatcaaaa tatttccaca ggttaagtcc tcatttaaat taggcaaagg 
700





aattcttgaa gacgaaaggg cctcgtgata cgcctatttt tataggttaa 
750





tgtcatgata ataatggttt cttagacgtc aggtggcact tttcggggaa 
800





atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg 
850





tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa 
900





aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 
950





ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa 
1000





gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 
1050





ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt 
1100





ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 
1150





cgtgttgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 
1200





gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 
1250





gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac 
1300





actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac 
1350





cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg 
1400





aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 
1450





cctgcagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact 
1500





tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 
1550





ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct 
1600





gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact 
1650





ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga 
1700





gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 
1750





tcactgatta agcattggta actgtcagac caagtttact catatatact 
1800





ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 
1850





tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc 
1900





cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 
1950





tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac 
2000





cagcggtggt ttgtttgccg gatcaagagc taccaactct ttttccgaag 
2050





gtaactggct tcagcagagc gcagatacca aatactgtcc ttctagtgta 
2100





gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 
2150





tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg 
2200





tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 
2250





gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga 
2300





cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg 
2350





cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 
2400





aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 
2450





atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga 
2500





tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt 
2550





tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg 
2600





cgttatcccc tgattctgtg gataaccgta ttaccgcctt tgagtgagct 
2650





gataccgctc gccgcagccg aacgaccgag cgcagcgagt cagtgagcga 
2700





ggaagcggaa gagcgcctga tgcggtattt tctccttacg catctgtgcg 
2750





gtatttcaca ccgcatatgg tgcactctca gtacaatctg ctctgatgcc 
2800





gcatagttaa gccagtatcc tcgaggcctc caaaaaagcc tcctcactac 
2850





ttctggaata gctcagaggc cgaggcggcc tcggcctctg cataaataaa 
2900





aaaaattagt cagccatgag cttggcccat tgcatacgtt gtatccatat 
2950





cataatatgt acatttatat tggctcatgt ccaacattac cgccatgttg 
3000





acattgatta ttgactagtt attaatagta atcaattacg gggtcattag 
3050





ttcatagccc atatatggag ttccgcgtta cataacttac ggtaaatggc 
3100





ccgcctggct gaccgcccaa cgacccccgc ccattgacgt caataatgac 
3150





gtatgttccc atagtaacgc caatagggac tttccattga cgtcaatggg 
3200





tggagtattt acggtaaact gcccacttgg cagtacatca agtgtatcat 
3250





atgccaagta cgccccctat tgacgtcaat gacggtaaat ggcccgcctg 
3300





gcattatgcc cagtacatga ccttatggga ctttcctact tggcagtaca 
3350





tctacgtatt agtcatcgct attaccatgg tgatgcggtt ttggcagtac 
3400





atcaatgggc gtggatagcg gtttgactca cggggatttc caagtctcca 
3450





ccccattgac gtcaatggga gtttgttttg gcaccaaaat caacgggact 
3500





ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat gggcggtagg 
3550





cgtgtacggt gggaggtcta tataagcaga gctcattaaa gtcctgcaac 
3600





gagccctttt cacgcacttc agagcaggat gtggccactc aagaattggc 
3650





cagacaaggg gaggaaatcc tctctcagct ataccgaccc ctagaaacat 
3700





gcaataactc atgctattgt aagcgatgct gctaccattg tcagatgtgt 
3750





tttctaaaca aggggctcgg aattccccgg atccgtcgac tctagaggat 
3800





ctgcatctcc tatggcagga agaagcggag acagcgacga agacctcctc 
3850





aaggcagtca gactcatcaa gtttctctat caaagcaacc cacctcccaa 
3900





tcccgagggg acccgacagg cccgaaggaa tagaagaaga aggtggagag 
3950





agagacagag acagatccat tcgattagtg aacggatcct tagcacttat 
4000





ctgggacgat ctgcggagcc tgtgcctctt cagctaccac cgcttgagag 
4050





acttactctt gattgtaacg aggattgtgg aacttctggg acgcaggggg 
4100





tgggaagccc tcaaatattg gtggaatctc ctacaatatt ggagtcagga 
4150





gctaaagaat agtgctgtta gcttgctcaa tgccacagct atagcagtag 
4200





ctgaggggac agatagggtt atagaagtag tacaagaagc ttatagagct 
4250





attcgccaca tacctagaag aataagacag ggcttggaaa ggattttgct 
4300





ataagatggg tggcaagtgg tcaaaaagta gtgtggttgg atggcctgct 
4350





gtaagggaaa gaatgagacg agctgagcca gcagcagatg gggtgggagc 
4400





agcatctcga gacctagaaa aacatggagc aatcacaagt agcaacacag 
4450





cagctaacaa tgctgcttgt gcctggctag aagcacaaga ggaggagaag 
4500





gtgggttttc cagtcacacc tcaggtaccg agctcgaatt cactcctcag 
4550





gtgcaggctg cctatcagaa ggtggtggct ggtgtggcca atgccctggc 
4600





tcacaaatac cactgagatc tttgtgaagg aaccttactt ctgtggtgtg 
4650





acataattgg acaaactacc tacagagatt taaagctcta aggtaaatat 
4700





aaaattttta agtgtataat gtgttaaact actgattcta attgtttgtg 
4750





tattttagat tccaacctat ggaactgatg aatgggagca gtggtggaat 
4800





gcctttaatg aggaaaacct gttttgctca gaagaaatgc catctagtga 
4850





tgatgaggct actgctgact ctcaacattc tactcctcca aaaaagaaga 
4900





gaaaggtaga agaccccaag gactttcctt cagaattgct aagttttttg 
4950





agtcatgctg tgtttagtaa tagaactctt gcttgctttg ctatttacac 
5000





cacaaaggaa aaagctgcac tgctatacaa gaaaattatg gaaaaatatt 
5050





ctgtaacctt tataagtagg cataacagtt ataatcataa catactgttt 
5100





tttcttactc cacacaggca tagagtgtct gctattaata actatgctca 
5150





aaaattgtgt acctttagct ttttaatttg taaaggggtt aataaggaat 
5200





atttgatgta tagtgccttg actagagatc ataatcagcc ataccacatt 
5250





tgtagaggtt ttacttgctt taaaaaacct cccacacctc cccctgaacc 
5300





tgaaacataa aatgaatgca attgttgttg ttaacttgtt tattgcagct 
5350





tataatggtt acaaataaag caatagcatc acaaatttca caaataaagc 
5400





atttttttca ctgcattcta gttgtggttt gtccaaactc atcaatgtat 
5450





cttatcatgt ctggatcccc aggaagctcc tctgtgtcct cataaaccct 
5500





aacctcctct actt                                        
5514






As will be noted, residues 806-910 of SEQ ID NO:49 correspond to AmpR promoter (SEQ ID NO:16). Residues 911-1771 of SEQ ID NO:49 correspond to a polynucleotide (SEQ ID NO:24) that encodes an AmpR determinant (SEQ ID NO:23). Residues 1942-2530 of SEQ ID NO:49 correspond to a high-copy-number ColE1/pMB/pBR322/pUC origin of replication (SEQ ID NO:20). Residues 3000-3379 of SEQ ID NO:49 correspond to the CMV immediate early enhancer site (SEQ ID NO:4). Residues 3380-3583 of SEQ ID NO:49 correspond to the CMV immediate early promoter site (SEQ ID NO:5). Residues 3726-5310 of SEQ ID NO:49 correspond to a polynucleotide (SEQ ID NO:47) that is processed by mammalian cells to produce the HIV-1 Rev protein (SEQ ID NO:46). Residues 4693-4758 of such sequence includes an SV40 small t intron (SEQ ID NO:48), and residues 4888-4908 of such sequence comprises a polynucleotide (SEQ ID NO:41) that encodes the nuclear localization signal of the SV40 large T antigen (SEQ ID NO:40) and permits transcription of a protein having the sequence of SEQ ID NO:45. Residues 3726-5310 of SEQ ID NO:49 correspond to an SV40 poly(A) signal site (SEQ ID NO:42).


D. Envelope Vectors of the Present Invention


As used herein, the term “Envelope Vector” is intended to denote a vector that comprises a polynucleotide that encodes a heterologous protein (and especially the SARS-CoV-2 S protein) and a promoter sufficient to mediate the transcription of such gene in a mammalian cell.


Most preferably, the envelope vector of the present invention will be a double-stranded DNA plasmid. The structure of a preferred envelope vector (pCMV-SARS-CoV-2 S Protein) is shown in FIG. 15, and comprises 8,602 base pairs. The preferred envelope vectors of the present invention comprise multiple features.


The first of such features is optional and comprises primer binding sites to facilitate sequencing of the vector. Exemplary sites for such purpose are M13 Fwd and Rev primer binding sites. An exemplary M13 Fwd primer binding site comprises the sequence (SEQ ID NO:50):











gtaaaacgacggccagt,







and hybridizes to the first strand of the vector. An exemplary M13 Rev primer binding site comprises the sequence (SEQ ID NO:51):











caggaaacagctatgac,







and hybridizes to the second strand of the vector.


A further feature is a first promoter that will direct transcription in a bacterial host. Suitable promoters are described above. An exemplary promoter is the T7 promoter site, which comprises the sequence of SEQ ID NO:12.


A further feature is a promoter (and an optional upstream transcriptional enhancer site) that will facilitate and mediate transcription in a mammalian host cell. Exemplary polynucleotides that comprise suitable enhancer and promoter sites are discussed above. An exemplary CMV immediate early enhancer site comprises the sequence of SEQ ID NO:1. An exemplary CMV immediate early promoter site comprises the sequence (SEQ ID NO:52):











gtgatgcggt tttggcagta catcaatggg cgtggatagc







ggtttgactc acggggattt ccaagtctcc accccattga







cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac







tttccaaaat gtcgtaacaa ctccgcccca ttgacgcaaa







tgggcggtag gcgtgtacgg tgggaggtct atataagcag









agct








A further feature is an intron capable of improving gene expression of downstream genes in a mammalian host cell. An exemplary intron capable of such function is a beta-globin intron (Haddad-Mashadrizeh, A. et al. (2009) “A Systematic Study Of The Function Of The Human Beta-Globin Introns On The Expression Of The Human Coagulation Factor IX In Cultured Chinese Hamster Ovary Cells,” J. Gene. Med. 11(10):941-950). An exemplary beta-globin intron comprises the sequence (SEQ ID NO:53):











gtgagtttgg ggacccttga ttgttctttc tttttcgcta







ttgtaaaatt catgttatat ggagggggca aagttttcag







ggtgttgttt agaatgggaa gatgtccctt gtatcaccat







ggaccctcat gataattttg tttctttcac tttctactct







gttgacaacc attgtctcct cttattttct tttcattttc







tgtaactttt tcgttaaact ttagcttgca tttgtaacga







atttttaaat tcacttttgt ttatttgtca gattgtaagt







actttctcta atcacttttt tttcaaggca atcagggtat







attatattgt acttcagcac agttttagag aacaattgtt







ataattaaat gataaggtag aatatttctg catataaatt







ctggctggcg tggaaatatt cttattggta gaaacaacta







caccctggtc atcatcctgc ctttctcttt atggttacaa







tgatatacac tgtttgagat gaggataaaa tactctgagt







ccaaaccggg cccctctgct aaccatgttc atgccttctt







ctctttccta cag






A further feature is a SARS-CoV-2 S protein encoding sequence that is operably controlled by the upstream mammalian-host promoter (e.g., the CMV immediate early promoter and enhancer sites) so that, upon co-transfection with the LTR-containing vectors, packaging vectors and REV vectors of the present invention, recipient host cells will produce lentiviral particles that are pseudotyped to array the SARS-CoV-2 S protein on their surfaces. An exemplary envelope vector is pseudotyped to array the SARS-CoV-2 S protein of GenBank YP_009724390.1 (Wu, F. et al. (2020) “A New Coronavirus Associated With Human Respiratory Disease In China,” Nature 579(7798):265-269), desirably as modified by the deletion of the C-terminal 18 amino acid residues thereof (a potential endoplasmic retention sequence) (SEQ ID NO:54), or to array a polymorphic variant thereof whose sequence differs from the sequence of SEQ ID NO:54 by less than 2%. Exemplary polymorphic variants of the SARS-CoV-2 S protein GenBank YP_009724390.1 are listed in Table 1.


SARS-CoV-2 S protein (derived from GenBank YP_009724390.1 by the removal of the C-terminal 18 amino acid residues thereof) (SEQ ID NO:54) (the S1 domain thereof shown in boldface; the S2 domain thereof is shown double underlined):












MFVFLVLLPL VSSQCVNLTT RTQLPPAYTN SFTRGVYYPD









KVFRSSVLHS TQDLFLPFFS NVTWFHAIHV SGTNGTKRFD









NPVLPFNDGV YFASTEKSNI IRGWIFGTTL DSKTQSLLIV









NNATNVVIKV CEFQFCNDPF LGVYYHKNNK SWMESEFRVY









SSANNCTFEY VSQPFLMDLE GKQGNFKNLR EFVFKNIDGY









FKIYSKHTPI NLVRDLPQGF SALEPLVDLP IGINITRFQT









LLALHRSYLT PGDSSSGWTA GAAAYYVGYL QPRTFLLKYN









ENGTITDAVD CALDPLSETK CTLKSFTVEK GIYQTSNFRV









QPTESIVRFP NITNLCPFGE VFNATRFASV YAWNRKRISN









CVADYSVLYN SASFSTFKCY GVSPTKLNDL CFTNVYADSF









VIRGDEVRQI APGQTGKIAD YNYKLPDDFT GCVIAWNSNN









LDSKVGGNYN YLYRLFRKSN LKPFERDIST EIYQAGSTPC









NGVEGFNCYF PLQSYGFQPT NGVGYQPYRV VVLSFELLHA









PATVCGPKKS TNLVKNKCVN FNFNGLTGTG VLTESNKKFL









PFQQFGRDIA DTTDAVRDPQ TLEILDITPC SFGGVSVITP









GTNTSNQVAV LYQDVNCTEV PVAIHADQLT PTWRVYSTGS









NVFQTRAGCL IGAEHVNNSY ECDIPIGAGI CASYQTQTNS









PRRAR
SVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTI









SVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFC









TQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGF









NFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDC









LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAG









TITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQ









KLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALN









TLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGR









LQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRV









DFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPA









ICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNT









FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHT









SPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL









QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSC









CSCLKGCCSCGSCCK














TABLE 1





GenBank Reference of Polymorphic Variants of


the SARS-CoV-2 S Protein of GenBank YP 009724390.1


















QHD43416.1
QIS60930.1
QIZ16197.1
QJD47202.1


(—)
(E96D)
(W258L; D614G)
(M731I)


QHR84449.1
QIS60978.1
QIZ16509.1
QJD47358.1


(S247R)
(D1168H)
(V772I)
(Y423X; D614G)


QHU79173.2
QIS61254.1
QIZ16559.1
QJD47442.1


(H49Y)
(A1078V)
(I197V)
(Y200X; D614G)


QHZ00379.1
QIS61338.1
QIZ64470.1
QJD47718.1


(S221W)
(D111N)
(D614G;
(H49Y; S884F)




A1078S)



QIA20044.1
QIS61422.1
QIZ64530.1
QJD48279.1


(Y28N)
(H519Q)
(D614G; S939F)
(M1237I)


QIA98583.1
QIS61468.1
QIZ64578.1
QJE38426.1


(A930V)
(A942X)
(H146Y; D614G)
(A845S)


QIC53204.1
QIT07011.1
QIZ64624.1
QJE38606.1


(F797C)
(L8V)
(S98F)
(Y145H; D614G)


QII57278.1
QIU78825.1
QIZ97039.1
QJE38822.1


(F157L)
(G910X)
(N148S)
(S704X)


QII87830.1
QIU80913.1
QIZ97051.1
QJF11959.1


(H655Y)
(S5OL)
(Y279X; D614G)
(L752X)


QIJ96493.1
QIU80973.1
QJA17276.1
QJF11971.1


(G181V)
(A27V)
(D614G; I818V)
(H655X)


QIK50427.1
QIU81585.1
QJA17468.1
QJF75467.1


(D614G)
(T240I)
(L5F; D614G)
(N354B)


QIO04367.1
QIU81873.2
QJA17524.1
QJF75779.1


(N74K)
(A653V)
(D614X;
(V503X; D614G)




G1124X)



QIQ08810.1
QIU81885.1
QJA17596.1
QJF76007.1


(K528X)
(A570V)
(D614G; L1203F)
(S704L)


QIQ49882.1
QIV15164.1
QJA42177.1
QJF76438.1


(L5F; G476S)
(Q644X)
(D614G; V1065L)
(L118F; D614G)


QIQ50092.1
QIV65033.1
QJC19491.1
QJF77194.1


(K814X)
(Y265X)
(Q271R; D614G))
(A27S; D614G)


QIS30105.1
QIZ13143.1
QJC20043.1
QJF77846.1


(D614X)
(L1152X))
(K529E; D614G)
(Y28H)


QIS30115.1
QIZ13179.1
QJC20367.1
QJG65949.1


(P427X;
(S71F)
(D614G; S9291)
(G485R)


D614G)





QIS30165.1
QIZ13299.1
QJC20391.1
QJG65951.1


(V483A)
(D80Y)
(D614G; T768I)
(A67S; F1103L)


QIS30295.1
QIZ13765.1
QJC20993.1
QJG65954.1


(L54F; D614G)
(D614G; V615F)
(V367F)
(S750R; L752R)


QIS30335.1
QIZ13789.1
QJD20632.1
QJG65956.1


(A348T)
(D614G; V6221)
(T791I)
(G838S)


QIS30425.1
QIZ13861.1
QJD23273.1
QJG65957.1


(G476S)
(V70F)
(V90F; D614G)
(W152R)


QIS60489.1
QIZ14569.1
QJD23524.1
QJ153955.1


(A520S)
(C1250Y)
(P217X)
(Q239R; D614G)


QIS60546.1
QIZ15585.1
QJD24377.1
QJQ04352.1


(T29I)
(D614G;
(A522S; D614G)
(D614G; T676S)



V1228X)




QIS60582.1
QIZ15717.1
QJD25085.1
QJQ27878.1


(D1259H)
(P9L)
(F220X; D614G)
(K557X)


QIS60906.1
QIZ15969.1
QJD25529.1
QJQ28105.1


(L5F)
(F238X; D614G)
(D614G; P631S)
(T951; D614G)









An exemplary polynucleotide that encodes the SARS-CoV-2 S Protein of SEQ ID NO:54 has the sequence of the S protein of SARS-CoV-2/human/USA/WA-UW-6547/2020 (Genflank: MT461658.1) (SEQ ID NO: 55):











atgtttgttt ttcttgtttt attgccacta gtctctagtc







agtgtgttaa tcttacaacc agaactcaat taccccctgc







atacactaat tctttcacac gtggtgttta ttaccctgac







aaagttttca gatcctcagt tttacattca actcaggact







tgttcttacc tttcttttcc aatgttactt ggttccatgc







tatacatgtc tctgggacca atggtactaa gaggtttgat







aaccctgtcc taccatttaa tgatggtgtt tattttgctt







ccactgagaa gtctaacata ataagaggct ggatttttgg







tactacttta gattcgaaga cccagtccct acttattgtt







aataacgcta ctaatgttgt tattaaagtc tgtgaatttc







aattttgtaa tgatccattt ttgggtgttt attaccacaa







aaacaacaaa agttggatgg aaagtgagtt cagagtttat







tctagtgcga ataattgcac ttttgaatat gtctctcagc







cttttcttat ggaccttgaa ggaaaacagg gtaatttcaa







aaatcttagg gaatttgtgt ttaagaatat tgatggttat







tttaaaatat attctaagca cacgcctatt aatttagtgc







gtgatctccc tcagggtttt tcggctttag aaccattggt







agatttgcca ataggtatta acatcactag gtttcaaact







ttacttgctt tacatagaag ttatttgact cctggtgatt







cttcttcagg ttggacagct ggtgctgcag cttattatgt







gggttatctt caacctagga cttttctatt aaaatataat







gaaaatggaa ccattacaga tgctgtagac tgtgcacttg







accctctctc agaaacaaag tgtacgttga aatccttcac







tgtagaaaaa ggaatctatc aaacttctaa ctttagagtc







caaccaacag aatctattgt tagatttcct aatattacaa







acttgtgccc ttttggtgaa gtttttaacg ccaccagatt







tgcatctgtt tatgcttgga acaggaagag aatcagcaac







tgtgttgctg attattctgt cctatataat tccgcatcat







tttccacttt taagtgttat ggagtgtctc ctactaaatt







aaatgatctc tgctttacta atgtctatgc agattcattt







gtaattagag gtgatgaagt cagacaaatc gctccagggc







aaactggaaa gattgctgat tataattata aattaccaga







tgattttaca ggctgcgtta tagcttggaa ttctaacaat







cttgattcta aggttggtgg taattataat tacctgtata







gattgtttag gaagtctaat ctcaaacctt ttgagagaga







tatttcaact gaaatctatc aggccggtag cacaccttgt







aatggtgttg aaggttttaa ttgttacttt cctttacaat







catatggttt ccaacccact aatggtgttg gttaccaacc







atacagagta gtagtacttt cttttgaact tctacatgca







ccagcaactg tttgtggacc taaaaagtct actaatttgg







ttaaaaacaa atgtgtcaat ttcaacttca atggtttaac







aggcacaggt gttcttactg agtctaacaa aaagtttctg







cctttccaac aatttggcag agacattgct gacactactg







atgctgtccg tgatccacag acacttgaga ttcttgacat







tacaccatgt tcttttggtg gtgtcagtgt tataacacca







ggaacaaata cttctaacca ggttgctgtt ctttatcagg







atgttaactg cacagaagtc cctgttgcta ttcatgcaga







tcaacttact cctacttggc gtgtttattc tacaggttct







aatgtttttc aaacacgtgc aggctgttta ataggggctg







aacatgtcaa caactcatat gagtgtgaca tacccattgg







tgcaggtata tgcgctagtt atcagactca gactaattct







cctcggcggg cacgtagtgt agctagtcaa tccatcattg







cctacactat gtcacttggt gcagaaaatt cagttgctta







ctctaataac tctattgcca tacccacaaa ttttactatt







agtgttacca cagaaattct accagtgtct atgaccaaga







catcagtaga ttgtacaatg tacatttgtg gtgattcaac







tgaatgcagc aatcttttgt tgcaatatgg cagtttttgt







acacaattaa accgtgcttt aactggaata gctgttgaac







aagacaaaaa cacccaagaa gtttttgcac aagtcaaaca







aatttacaaa acaccaccaa ttaaagattt tggtggtttt







aatttttcac aaatattacc agatccatca aaaccaagca







agaggtcatt tattgaagat ctacttttca acaaagtgac







acttgcagat gctggcttca tcaaacaata tggtgattgc







cttggtgata ttgctgctag agacctcatt tgtgcacaaa







agtttaacgg ccttactgtt ttgccacctt tgctcacaga







tgaaatgatt gctcaataca cttctgcact gttagcgggt







acaatcactt ctggttggac ctttggtgca ggtgctgcat







tacaaatacc atttgctatg caaatggctt ataggtttaa







tggtattgga gttacacaga atgttctcta tgagaaccaa







aaattgattg ccaaccaatt taatagtgct attggcaaaa







ttcaagactc actttcttcc acagcaagtg cacttggaaa







acttcaagat gtggtcaacc aaaatgcaca agctttaaac







acgcttgtta aacaacttag ctccaatttt ggtgcaattt







caagtgtttt aaatgatatc ctttcacgtc ttgacaaagt







tgaggctgaa gtgcaaattg ataggttgat cacaggcaga







cttcaaagtt tgcagacata tgtgactcaa caattaatta







gagctgcaga aatcagagct tctgctaatc ttgctgctac







taaaatgtca gagtgtgtac ttggacaatc aaaaagagtt







gatttttgtg gaaagggcta tcatcttatg tccttccctc







agtcagcacc tcatggtgta gtcttcttgc atgtgactta







tgtccctgca caagaaaaga acttcacaac tgctcctgcc







atttgtcatg atggaaaagc acactttcct cgtgaaggtg







tctttgtttc aaatggcaca cactggtttg taacacaaag







gaatttttat gaaccacaaa tcattactac agacaacaca







tttgtgtctg gtaactgtga tgttgtaata ggaattgtca







acaacacagt ttatgatcct ttgcaacctg aattagactc







attcaaggag gagttagata aatattttaa gaatcataca







tcaccagatg ttgatttagg tgacatctct ggcattaatg







cttcagttgt aaacattcaa aaagaaattg accgcctcaa







tgaggttgcc aagaatttaa atgaatctct catcgatctc







caagaacttg gaaagtatga gcagtatata aaatggccat







ggtacatttg gctaggtttt atagctggct tgattgccat







agtaatggtg acaattatgc tttgctgtat gaccagttgc







tgtagttgtc tcaagggctg ttgttcttgt ggatcctgct







gcaaa






A second suitable polynucleotide that encodes the SARS-CoV-2 S Protein of SEQ ID NO: 54 has the sequence of SEQ ID NO:71.


A further feature is a polyadenylation (poly(A)) signal sequence. An illustrative poly(A) signal sequence is a beta-globin poly(A) signal sequence. An exemplary beta-globin poly(A) signal sequence comprises the sequence (SEQ ID NO:56):











aataaaggaa atttattttc attgcaatag tgtgttggaa







ttttttgtgt ctctca






A further feature is a second promoter that will direct transcription in a bacterial host. Suitable promoters are discussed above. An illustrative polynucleotide for such purpose comprises a lac operator and a lac promoter site. An exemplary lac operator site comprises the sequence (SEQ ID NO:57):











ttgtgagcggataacaa







(positioned on the second strand of the vector). An exemplary lac promoter site comprises the sequence (SEQ ID NO:58):











tttacactttatgcttccggctcgtatgttg.






A further feature is an E. coli catabolite activator protein (CAP) binding site that comprises the sequence (SEQ ID NO:59):











taatgtgagttagctcactcat







(positioned on the second strand of the vector).


A further feature is an origin of replication capable of mediating the replication of the vector in prokaryotic cells. An exemplary origin or replication site for this purpose is the high-copy-number ColE1/pMB1/pBR322/pUC origin (SEQ ID NO:19).


A further feature is a gene that encodes an antibiotic resistance determinant, such as AmpR, which confers resistance to ampicillin, carbenicillin, and related antibiotics to bacterial cells transfected with the vector. The antibiotic resistance determinant is operably controlled by a promoter, such as the AmpR promoter, and both polynucleotide sequences are preferably positioned on the second stand of the vector. An exemplary AmpR antibiotic resistance determinant comprises the sequence of SEQ ID NO:21. An exemplary polynucleotide that encodes the AmpR antibiotic resistance determinant of SEQ ID NO:21 has the sequence of SEQ ID NO:22. An exemplary AmpR promoter-containing polynucleotide has the sequence of SEQ ID NO:26.


A further feature is a single-strand origin of replication, such as an origin of replication of the f1 bacteriophage, which is preferably positioned on the second stand of the vector. An exemplary polynucleotide that comprises an f1 bacteriophage origin of replication comprises the sequence (SEQ ID NO:60):











acgcgccctg tagcggcgca ttaagcgcgg cgggtgtggt







ggttacgcgc agcgtgaccg ctacacttgc cagcgcccta







gcgcccgctc ctttcgcttt cttcccttcc tttctcgcca







cgttcgccgg ctttccccgt caagctctaa atcgggggct







ccctttaggg ttccgattta gtgctttacg gcacctcgac







cccaaaaaac ttgattaggg tgatggttca cgtagtgggc







catcgccctg atagacggtt tttcgccctt tgacgttgga







gtccacgttc tttaatagtg gactcttgtt ccaaactgga







acaacactca accctatctc ggtctattct tttgatttat







aagggatttt gccgatttcg gcctattggt taaaaaatga







gctgatttaa caaaaattta acgcgaattt taacaaaata







ttaacgctta caattt






The vector pCMV-SARS-CoV-2 S Protein (FIG. 15) is a preferred envelope vector of the present invention that may be used with the LTR-containing vectors, packaging vectors, and REV vectors of the present invention to produce lentiviral particles that array a SARS-CoV-2 S protein on their surface. The invention contemplates that two or more different vectors may be employed in order to produce pseudotyped lentiviral particles that array both the SARS-CoV-2 S protein and one or more different proteins (e.g., the hemagglutinin (HA) protein of influenza virus, the SARS-CoV S protein, the MERS-CoV S protein, etc.).


The polynucleotide sequence of the SARS-CoV-2 S protein-coding (“first”) strand of vector pCMV-SARS-CoV-2 S Protein is SEQ ID NO:61.










gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat    50 






acgactcact atagggcgaa ttggagctcc accgcggtgg cggccgctct   100 





agagagcttg gcccattgca tacgttgtat ccatatcata atatgtacat   150 





ttatattggc tcatgtccaa cattaccgcc atgttgacat tgattattga   200 





ctagttatta atagtaatca attacggggt cattagttca tagcccatat   250 





atggagttcc gcgttacata acttacggta aatggcccgc ctggctgacc   300 





gcccaacgac ccccgcccat tgacgtcaat aatgacgtat gttcccatag   350 





taacgccaat agggactttc cattgacgtc aatgggtgga gtatttacgg   400 





taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc   450 





ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt   500 





acatgacctt atgggacttt cctacttggc agtacatcta cgtattagtc   550 





atcgctatta ccatggtgat gcggttttgg cagtacatca atgggcgtgg   600 





atagcggttt gactcacggg gatttccaag tctccacccc attgacgtca   650 





atgggagttt gttttggcac caaaatcaac gggactttcc aaaatgtcgt   700 





aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga   750 





ggtctatata agcagagctc gtttagtgaa ccgtcagatc gcctggagac   800 





gccatccacg ctgttttgac ctccatagaa gacaccggga ccgatccagc   850 





ctccggtcga ccgatcctga gaacttcagg gtgagtttgg ggacccttga   900 





ttgttctttc tttttcgcta ttgtaaaatt catgttatat ggagggggca   950 





aagttttcag ggtgttgttt agaatgggaa gatgtccctt gtatcaccat  1000 





ggaccctcat gataattttg tttctttcac tttctactct gttgacaacc  1050 





attgtctcct cttattttct tttcattttc tgtaactttt tcgttaaact  1100 





ttagcttgca tttgtaacga atttttaaat tcacttttgt ttatttgtca  1150 





gattgtaagt actttctcta atcacttttt tttcaaggca atcagggtat  1200 





attatattgt acttcagcac agttttagag aacaattgtt ataattaaat  1250 





gataaggtag aatatttctg catataaatt ctggctggcg tggaaatatt  1300 





cttattggta gaaacaacta caccctggtc atcatcctgc ctttctcttt  1350 





atggttacaa tgatatacac tgtttgagat gaggataaaa tactctgagt  1400 





ccaaaccggg cccctctgct aaccatgttc atgccttctt ctctttccta  1450 





cagctcctgg gcaacgtgct ggttgttgtg ctgtctcatc attttggcaa  1500 





agaattcctc gacggatccg gtaccgagga gatctgccgc cgcgatcgcc  1550 





accatgtttg tttttcttgt tttattgcca ctagtctcta gtcagtgtgt  1600 





taatcttaca accagaactc aattaccccc tgcatacact aattctttca  1650 





cacgtggtgt ttattaccct gacaaagttt tcagatcctc agttttacat  1700 





tcaactcagg acttgttctt acctttcttt tccaatgtta cttggttcca  1750 





tgctatacat gtctctggga ccaatggtac taagaggttt gataaccctg  1800 





tcctaccatt taatgatggt gtttattttg cttccactga gaagtctaac  1850 





ataataagag gctggatttt tggtactact ttagattcga agacccagtc  1900 





cctacttatt gttaataacg ctactaatgt tgttattaaa gtctgtgaat  1950 





ttcaattttg taatgatcca tttttgggtg tttattacca caaaaacaac  2000 





aaaagttgga tggaaagtga gttcagagtt tattctagtg cgaataattg  2050 





cacttttgaa tatgtctctc agccttttct tatggacctt gaaggaaaac  2100 





agggtaattt caaaaatctt agggaatttg tgtttaagaa tattgatggt  2150 





tattttaaaa tatattctaa gcacacgcct attaatttag tgcgtgatct  2200 





ccctcagggt ttttcggctt tagaaccatt ggtagatttg ccaataggta  2250 





ttaacatcac taggtttcaa actttacttg ctttacatag aagttatttg  2300 





actcctggtg attcttcttc aggttggaca gctggtgctg cagcttatta  2350 





tgtgggttat cttcaaccta ggacttttct attaaaatat aatgaaaatg  2400 





gaaccattac agatgctgta gactgtgcac ttgaccctct ctcagaaaca  2450 





aagtgtacgt tgaaatcctt cactgtagaa aaaggaatct atcaaacttc  2500 





taactttaga gtccaaccaa cagaatctat tgttagattt cctaatatta  2550 





caaacttgtg cccttttggt gaagttttta acgccaccag atttgcatct  2600 





gtttatgctt ggaacaggaa gagaatcagc aactgtgttg ctgattattc  2650 





tgtcctatat aattccgcat cattttccac ttttaagtgt tatggagtgt  2700 





ctcctactaa attaaatgat ctctgcttta ctaatgtcta tgcagattca  2750 





tttgtaatta gaggtgatga agtcagacaa atcgctccag ggcaaactgg  2800 





aaagattgct gattataatt ataaattacc agatgatttt acaggctgcg  2850 





ttatagcttg gaattctaac aatcttgatt ctaaggttgg tggtaattat  2900 





aattacctgt atagattgtt taggaagtct aatctcaaac cttttgagag  2950 





agatatttca actgaaatct atcaggccgg tagcacacct tgtaatggtg  3000 





ttgaaggttt taattgttac tttcctttac aatcatatgg tttccaaccc  3050 





actaatggtg ttggttacca accatacaga gtagtagtac tttcttttga  3100 





acttctacat gcaccagcaa ctgtttgtgg acctaaaaag tctactaatt  3150 





tggttaaaaa caaatgtgtc aatttcaact tcaatggttt aacaggcaca  3200 





ggtgttctta ctgagtctaa caaaaagttt ctgcctttcc aacaatttgg  3250 





cagagacatt gctgacacta ctgatgctgt ccgtgatcca cagacacttg  3300 





agattcttga cattacacca tgttcttttg gtggtgtcag tgttataaca  3350 





ccaggaacaa atacttctaa ccaggttgct gttctttatc aggatgttaa  3400 





ctgcacagaa gtccctgttg ctattcatgc agatcaactt actcctactt  3450 





ggcgtgttta ttctacaggt tctaatgttt ttcaaacacg tgcaggctgt  3500 





ttaatagggg ctgaacatgt caacaactca tatgagtgtg acatacccat  3550 





tggtgcaggt atatgcgcta gttatcagac tcagactaat tctcctcggc  3600 





gggcacgtag tgtagctagt caatccatca ttgcctacac tatgtcactt  3650 





ggtgcagaaa attcagttgc ttactctaat aactctattg ccatacccac  3700 





aaattttact attagtgtta ccacagaaat tctaccagtg tctatgacca  3750 





agacatcagt agattgtaca atgtacattt gtggtgattc aactgaatgc  3800 





agcaatcttt tgttgcaata tggcagtttt tgtacacaat taaaccgtgc  3850 





tttaactgga atagctgttg aacaagacaa aaacacccaa gaagtttttg  3900 





cacaagtcaa acaaatttac aaaacaccac caattaaaga ttttggtggt  3950 





tttaattttt cacaaatatt accagatcca tcaaaaccaa gcaagaggtc  4000 





atttattgaa gatctacttt tcaacaaagt gacacttgca gatgctggct  4050 





tcatcaaaca atatggtgat tgccttggtg atattgctgc tagagacctc  4100 





atttgtgcac aaaagtttaa cggccttact gttttgccac ctttgctcac  4150 





agatgaaatg attgctcaat acacttctgc actgttagcg ggtacaatca  4200 





cttctggttg gacctttggt gcaggtgctg cattacaaat accatttgct  4250 





atgcaaatgg cttataggtt taatggtatt ggagttacac agaatgttct  4300 





ctatgagaac caaaaattga ttgccaacca atttaatagt gctattggca  4350 





aaattcaaga ctcactttct tccacagcaa gtgcacttgg aaaacttcaa  4400 





gatgtggtca accaaaatgc acaagcttta aacacgcttg ttaaacaact  4450 





tagctccaat tttggtgcaa tttcaagtgt tttaaatgat atcctttcac  4500 





gtcttgacaa agttgaggct gaagtgcaaa ttgataggtt gatcacaggc  4550 





agacttcaaa gtttgcagac atatgtgact caacaattaa ttagagctgc  4600 





agaaatcaga gcttctgcta atcttgctgc tactaaaatg tcagagtgtg  4650 





tacttggaca atcaaaaaga gttgattttt gtggaaaggg ctatcatctt  4700 





atgtccttcc ctcagtcagc acctcatggt gtagtcttct tgcatgtgac  4750 





ttatgtccct gcacaagaaa agaacttcac aactgctcct gccatttgtc  4800 





atgatggaaa agcacacttt cctcgtgaag gtgtctttgt ttcaaatggc  4850 





acacactggt ttgtaacaca aaggaatttt tatgaaccac aaatcattac  4900 





tacagacaac acatttgtgt ctggtaactg tgatgttgta ataggaattg  4950 





tcaacaacac agtttatgat cctttgcaac ctgaattaga ctcattcaag  5000 





gaggagttag ataaatattt taagaatcat acatcaccag atgttgattt  5050 





aggtgacatc tctggcatta atgcttcagt tgtaaacatt caaaaagaaa  5100 





ttgaccgcct caatgaggtt gccaagaatt taaatgaatc tctcatcgat  5150 





ctccaagaac ttggaaagta tgagcagtat ataaaatggc catggtacat  5200 





ttggctaggt tttatagctg gcttgattgc catagtaatg gtgacaatta  5250 





tgctttgctg tatgaccagt tgctgtagtt gtctcaaggg ctgttgttct  5300 





tgtggatcct gctgcaaata acctcaggtg caggctgcct atcagaaggt  5350 





ggtggctggt gtggccaatg ccctggctca caaataccac tgagatcttt  5400 





ttccctctgc caaaaattat ggggacatca tgaagcccct tgagcatctg  5450 





acttctggct aataaaggaa atttattttc attgcaatag tgtgttggaa  5500 





ttttttgtgt ctctcactcg gaaggacata tgggagggca aatcatttaa  5550 





aacatcagaa tgagtatttg gtttagagtt tggcaacata tgcccatatg  5600 





ctggctgcca tgaacaaagg ttggctataa agaggtcatc agtatatgaa  5650 





acagccccct gctgtccatt ccttattcca tagaaaagcc ttgacttgag  5700 





gttagatttt ttttatattt tgttttgtgt tatttttttc tttaacatcc  5750 





ctaaaatttt ccttacatgt tttactagcc agatttttcc tcctctcctg  5800 





actactccca gtcatagctg tccctcttct cttatggaga tccctcgacg  5850 





gatcggccgc aattcgtaat catgtcatag ctgtttcctg tgtgaaattg  5900 





ttatccgctc acaattccac acaacatacg agccggaagc ataaagtgta  5950 





aagcctgggg tgcctaatga gtgagctaac tcacattaat tgcgttgcgc  6000 





tcactgcccg ctttccagtc gggaaacctg tcgtgccagc tgcattaatg  6050 





aatcggccaa cgcgcgggga gaggcggttt gcgtattggg cgctcttccg  6100 





cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg  6150 





gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga  6200 





taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc  6250 





gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac  6300 





gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg  6350 





actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc  6400 





ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg  6450 





ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt  6500 





gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc  6550 





ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta  6600 





agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag  6650 





agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact  6700 





acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca  6750 





gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac  6800 





cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa  6850 





aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct  6900 





cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa  6950 





aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa  7000 





tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc  7050 





agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc  7100 





ctgactcccc gtcgtgtaga taactacgat acgggagggc ttaccatctg  7150 





gccccagtgc tgcaatgata ccgcgagacc cacgctcacc ggctccagat  7200 





ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc  7250 





tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta  7300 





gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct  7350 





acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc  7400 





cggttcccaa cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa  7450 





aagcggttag ctccttcggt cctccgatcg ttgtcagaag taagttggcc  7500 





gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt  7550 





catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt  7600 





cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca  7650 





atacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat  7700 





tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga  7750 





gatccagttc gatgtaaccc actcgtgcac ccaactgatc ttcagcatct  7800 





tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc  7850 





cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct  7900 





tcctttttca atattattga agcatttatc agggttattg tctcatgagc  7950 





ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg  8000 





cacatttccc cgaaaagtgc cacctaaatt gtaagcgtta atattttgtt  8050 





aaaattcgcg ttaaattttt gttaaatcag ctcatttttt aaccaatagg  8100 





ccgaaatcgg caaaatccct tataaatcaa aagaatagac cgagataggg  8150 





ttgagtgttg ttccagtttg gaacaagagt ccactattaa agaacgtgga  8200 





ctccaacgtc aaagggcgaa aaaccgtcta tcagggcgat ggcccactac  8250 





gtgaaccatc accctaatca agttttttgg ggtcgaggtg ccgtaaagca  8300 





ctaaatcgga accctaaagg gagcccccga tttagagctt gacggggaaa  8350 





gccggcgaac gtggcgagaa aggaagggaa gaaagcgaaa ggagcgggcg  8400 





ctagggcgct ggcaagtgta gcggtcacgc tgcgcgtaac caccacaccc  8450 





gccgcgctta atgcgccgct acagggcgcg tcccattcgc cattcaggct  8500 





gcgcaactgt tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc  8550 





agctggcgaa agggggatgt gctgcaaggc gattaagttg ggtaacgcca  8600 





gg                                                      8602 






As will be noted, residues 21-37 of SEQ ID NO:61 correspond to the M13 Fwd primer binding site (SEQ ID NO:50). Residues 47-65 of SEQ ID NO:61 correspond to the T7 promoter site (SEQ ID NO:12). Residues 186-565 of SEQ ID NO:61 correspond to the CMV immediate early enhancer site (SEQ ID NO:1). Residues 566-769 of SEQ ID NO:61 correspond to the CMV immediate early promoter site (SEQ ID NO:52). Residues 881-1453 of SEQ ID NO:61 correspond to the beta-globin intron site (SEQ ID NO:53). Residues 1554-5318 of SEQ ID NO:61 correspond to a polynucleotide sequence (SEQ ID NO:55) that encodes the SARS-CoV-2 S protein (SEQ ID NO:54). Residues 5461-5516 of SEQ ID NO:61 correspond to the beta-globin poly(A) signal site (SEQ ID NO:56). Residues 5874-5890 of SEQ ID NO:61 are complementary to the M13 Rev primer binding site (SEQ ID NO:51). Residues 5898-5914 of SEQ ID NO:61 are complementary to the lac operator site (SEQ ID NO:57). Residues 5922-5952 of SEQ ID NO:61 are complementary to the lac promoter site (SEQ ID NO:58). Residues 5967-5988 of SEQ ID NO:61 are complementary to the CAP binding site (SEQ ID NO:59). Residues 6276-6864 of SEQ ID NO:61 are complementary to the ColE1/pMB1/pBR322/pUC origin of replication (SEQ ID NO:19). Residues 7035-7895 of SEQ ID NO:61 are complementary to the AmpR antibiotic resistance determinant (SEQ ID NO:22). Residues 7896-8000 of SEQ ID NO:61 are complementary to the AmpR promoter (SEQ ID NO:26). Residues 8026-8481 of SEQ ID NO:61 are complementary to the f1 origin of replication (SEQ ID NO:60).


II. Methods for Producing the SARS-CoV-2 S Protein Lentiviral Particles of the Present Invention

Any cell type capable of propagating a lentivirus may be employed to produce the SARS-CoV-2 S Protein Lentiviral Particle of the present invention. However, the use of HEK293 (ATCC® CRL-1573™), HEK293T, and SJ293TS human embryonic kidney cells are preferred. Such cells are widely known (e.g., Merten, O.-W. et al. (2016) “Production Of Lentiviral Vectors,” Molec. Ther. Meth. Clin. Develop. 3:16017:1-14; Bauler, M. et al. (2020) “Production of Lentiviral Vectors Using Suspension Cells Grown in Serum-Free Media,” Molec. Ther.: Meth. Clin. Develop. 17:58-68; Hu, J. et al. (2018) “Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology,” Cells Tissues Organs 205:1-8; Thomas, P. et al. (2005) “HEK293 Cell Line: A Vehicle For The Expression Of Recombinant Proteins,” J. Pharmacol. Toxicol. Meth. 51(3):187-200; Pear, W. S. et al. (1994) “Production Of High-Titer Helper-Free Retroviruses By Transient Transfection,” Proc. Natl. Acad. Sci. (U.S.A.) 90:8392-8396), and are available commercially (Antibody Research Corp.; ATCC; Thermo-Fisher Scientific; Life Technologies; etc.).


Cells may be transfected with the above-described lentiviral plasmids and cultured to produce the SARS-CoV-2 S Protein Lentiviral Particle of the present invention using any of a variety of methods (Bauler, M. et al. (2020) “Production of Lentiviral Vectors Using Suspension Cells Grown in Serum-Free Media,” Molec. Ther.: Meth. Clin. Develop. 17:58-68; Merten, O.-W. et al. (2016) “Production Of Lentiviral Vectors,” Molec. Ther. Meth. Clin. Develop. 3:16017:1-14; Gandara, C. et al. (2018) “Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice,” Hum. Gene Ther. Meth. 29(1):1-15). For example, in the method of Gandara, C. et al. (2018) (“Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice,” Hum. Gene Ther. Meth. 29(1):1-15), HEK293 cells are coated onto the surfaces of tissue culture dishes or flasks using poly-L-lysine and cultured at 37° C. (3% CO2) to confluency in Dulbecco's modified Eagle's medium containing high glucose and containing 10% fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate and 100 IU/mL of penicillin/streptomycin. Cells are then detached from the surface through the addition of Trypsin-EDTA (0.5%) and phosphate buffer. The cells are then resuspended in fresh media, cultured overnight at 37° C. (3% CO2) and incubated in a 200 mM calcium chloride transfection buffer and borate-buffered saline transfection reagent for 30 minutes at room temperature in the presence of the lentiviral plasmids, and then incubated at 37° C. and 3% CO2 overnight in culture media. Culture media is replaced after 18 hours, and the cells are permitted to grow for an additional 24 hours.


The amount of plasmid to be provided to such cells will vary depending on their respective lengths. Table 2 provides the mass, copy numbers and typical lengths of such plasmids that may be used to calculate the amount (μg) of plasmid that is to be provided for any particular transfection (thus, for example, if a vector has a smaller length that that indicated in Table 2, the employed amount of the plasmid will be decreased in order to maintain the indicated copy number).












TABLE 2






Mass
Typical
DNA Copy


Vector
(μg)
Length
Number







LTR-containing Vector
300
7,537
3.9 × 1013


Packaging Vector
250
8,890
2.7 × 1013


REV Vector
125
4,180
2.9 × 1013


Envelope Vector
150
5,822
2.5 × 1013









After such culturing, the culture media is filtered using a 0.45 μm or 0.22 μm filter to obtain a culture media that comprises physical titers of between 1011 and 1012 particles/mL and functional titers of between 107 and 1010 particles/mL. Additional purification can be obtained using ultracentrifugation or tangential flow filtration (Cooper, A. R. et al. (2011) “Highly Efficient Large-Scale Lentiviral Vector Concentration By Tandem Tangential Flow Filtration,” J. Virol. Methods. 177(1):1-9; Busatto, S. et al. (2018) “Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid,” Cells 7(12):1-11; Musumeci, T. et al. (2018) “Tangential Flow Filtration Technique: An Overview on Nanomedicine Applications,” Pharm. Nanotechnol. 6(1):48-60; Nordin, J. Z. et al. (2019) “Tangential Flow Filtration with or Without Subsequent Bind-Elute Size Exclusion Chromatography for Purification of Extracellular Vesicles,” Methods Mol. Biol. 1953:287-299; Tinch, S. et al. (2019) “A Scalable Lentiviral Vector Production and Purification Method Using Mustang Q Chromatography and Tangential Flow Filtration,” Methods Mol. Biol. 1937:135-153).


III. Pharmaceutical Compositions

The invention provides SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions that comprise the SARS-CoV-2 S Protein Lentiviral Particles of the present invention and a pharmaceutically acceptable carrier.


In a first preferred embodiment, the SARS-CoV-2 S protein lentiviral vaccine pharmaceutical compositions of the present invention will comprise lentiviral particles that array the SARS-CoV-2 S protein on their surface. Such vaccines may be produced by transfecting cells with the packaging, REV, and envelope vectors of the present invention in concert with any of the LTR-containing vectors of the invention. In general, the lentiviral particles of such vaccines mimic the external structure of SARS-CoV-2 and thus permit the recipient subject to develop immunity to the virus.


In a second preferred embodiment, the SARS-CoV-2 S protein lentiviral vaccine pharmaceutical compositions of the present invention will comprise lentiviral particles that array the SARS-CoV-2 S protein on their surface and additionally comprise a genome that encodes all or a portion of one or more SARS-CoV-2 proteins (e.g., all or part of the SARS-CoV-2 S protein, and/or all or part of the SARS-CoV-2 N protein, etc.) (“SARS-CoV-2 Transgene-Containing SARS-CoV-2 S Protein Lentiviral Vaccines). Such vaccines may be produced by transfecting cells with the packaging, REV, and envelope vectors of the present invention in concert with an LTR-containing vector of the invention that comprises a SARS-CoV-2 protein-encoding transgene polynucleotide sequence. Such vaccines operate in multiple ways to provide enhanced immunity to recipient subjects. In a first manner, the lentiviral particles of such vaccines mimic the external structure of SARS-CoV-2 and thus permit the recipient subject to develop immunity to the virus. In a second manner, the lentiviral particles of such vaccines, particularly where the SARS-CoV-2 proteins are expressed with a secretory signal sequence (such as the IL-2 signal sequence), mediate the production and release of SARS-CoV-2 proteins into the extracellular environment, and thus provide additional antigen for eliciting immunity. In particular, lentiviral particles of such vaccines that express two or more proteins (e.g., the SARS-CoV-2 S and N proteins) would better mimic the environment seen in an actual SARS-CoV-2 infection, and thus would be expected to provide more effective immunity to recipient subjects. Even more effective immunity is anticipated to be provided by lentiviral particles of such vaccines that array two or more proteins (e.g., the SARS-CoV-2 S and N proteins) on the particle's surface.


The pharmaceutical compositions of the present invention comprise an amount of such SARS-CoV-2 S Protein Lentiviral Particles sufficient to permit the immune system of a recipient subject to initiate and preferably persistently maintain immunity to SARS-CoV-2 infection (“effective amount”).


The term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the US Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant (e.g., Freund's adjuvant complete and incomplete), excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. Suitable pharmaceutical excipients are described in U.S. Pat. Nos. 8,852,607; 8,192,975; 6,764,845; 6,759,050; and 7,598,070. The SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention may also include one or more adjuvants to boost the immune response of a recipient so as to produce more antibodies and/or provide longer-lasting immunity. Suitable adjuvants are known in the art, and include alum, aluminum hydroxide, aluminum phosphate, calcium phosphate hydroxide, mineral oil (e.g., paraffin oil), killed Bordetella pertussis, killed Mycobacterium bovis, plant saponins from Quillaja, soybean, cytokines (e.g., IL-1, IL-2, IL-12, etc.), Freund's complete adjuvant, Freund's incomplete adjuvant, etc. Pharmaceutically acceptable carriers or diluents, adjuvants and excipients are disclosed in REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY, 21st Edition (2005) Hauber, Ed., Lippincott Williams & Wilkins.


Generally, the ingredients of compositions of the invention are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate, or as an aqueous solution in a hermetically sealed container such as a vial, an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline, or other diluent can be provided so that the ingredients may be mixed prior to administration.


The invention also provides a pharmaceutical pack or kit comprising one or more containers of such pharmaceutical composition and instructions for the use of the included SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical composition. Optionally associated with such container(s) can be a notice in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.


The SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention are preferably packaged in sterile containers, such as vials, ampoules or sachettes, indicating the provided dose. In one embodiment, such SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions are supplied as a dry sterilized lyophilized powder or water-free concentrate in a hermetically sealed container and can be reconstituted, e.g., with water, saline, or other diluent to the appropriate concentration for administration to a subject. The lyophilized material should be stored at between 2° C. and 8° C. in their original container and the material should be administered within 12 hours, preferably within 6 hours, within 5 hours, within 3 hours, or within 1 hour after being reconstituted. In another embodiment, the SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention are supplied as an aqueous solution in a hermetically sealed container and can be diluted, e.g., with water, saline, or other diluent, to the appropriate concentration for administration to a subject.


The SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention may further comprise one or more additional prophylactic and/or therapeutic agents useful for the treatment of the disease or condition, in one or more containers; and/or such kits can further comprise one or more additional antiviral agents or one or more anti-SARS-CoV-2 antibodies.


Thus, the invention specifically contemplates pharmaceutical compositions and kits thereof that comprise the SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention and one or more anti-SARS-CoV-2 antiviral agents, such as, for example, Actemra (Roche), AmnioBoost (Lattice Biologics), APN01 (APEIRON Biologics), AT-100 (Airway Therapeutics), BPI-002 (BeyondSpring), Brilacidin (Innovation Pharmaceuticals), BXT-25 (BIOXYTRAN), Chloroquine and Hydroxychloroquine/Plaquenil, Darunavir (Janssen Pharmaceutical), Favilavir, Galidesivir (Biocryst Pharma), Gimsilumab (Roivant Sciences), Kevzara (Regeneron), leronlimab (CytoDyn), lopinavir (Abbvie), NP-120 (Ifenprodil) (Algernon Pharmaceuticals), OYA1 (OyaGen), PREZCOBIX® HIV (Janssen Pharmaceutical), REGN3048-3051 (Regeneron), Remdesivir (GS-5734) (Gilead Sciences), SNG001 (Synairgen Research), TJM2 (I-Mab Biopharma), TZLS-501 (Tiziana Life Sciences) be provided in prophylactically effective, or therapeutically effective, amounts. The use of such a combined composition permits a synergistic response to COVID-19 infection.


The invention also specifically contemplates pharmaceutical compositions and kits thereof that comprise the SARS-CoV-2 S Protein Lentiviral Vaccine pharmaceutical compositions of the present invention and one or more additional SARS-CoV-2 vaccines. Such additional vaccine compositions include one or more of, for example, AdCOVID (Altimmune), AdCoVID™ (Altimmune), Avian Coronavirus Infectious Bronchitis Virus (IBV) vaccine (MIGAL Research Institute), ChAdOx1 (Jenner Institute), Fusogenix DNA vaccine (Entos Pharmaceuticals), INO-4700 (GLS-5300) (Inovio Pharma), INO-4800 (Inovio Pharmaceuticals), MERS coronavirus vaccine (Novavax), mRNA-1273 (Moderna), Plant-Derived Virus-Line Particle (Medicago), TNX-1800 (Tonix Pharmaceuticals), or Trimer-Tag© recombinant subunit vaccine (Clover Biopharmaceuticals) provided in prophylactically effective, or therapeutically effective, amounts. The use of such a combined vaccine composition permits a synergistic response to COVID-19 infection.


IV. Administration and Dosage

The SARS-CoV-2 S Protein Lentiviral Particle pharmaceutical compositions of the present invention can be administered by parenteral, topical, oral or intranasal means for prophylactic and/or therapeutic treatment. Intramuscular injection (for example, into the arm or leg muscles) and intravenous infusion are preferred methods of administration of the molecules of the present invention. In some methods, such molecules are administered as a sustained release composition or device. In some methods, the SARS-CoV-2 S Protein Lentiviral Particles of the present invention are provided directly into a particular tissue, for example, into the gastrointestinal tract (small intestine, colon, etc.), or into the trachea, bronchi, lungs, or pulmonary arteries that provide oxygen to the lungs, etc.


In one embodiment, a pharmaceutical composition of the present invention is administered parenterally. The phrases “parenteral administration” and “administered parenterally” as used herein denote modes of administration other than enteral and topical administration, usually by injection, and include epidermal, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intracranial, intraorbital, intracardiac, intradermal, intraperitoneal, intratendinous, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, intracranial, intrathoracic, epidural and intrasternal injection, subcutaneous and infusion. In one embodiment that pharmaceutical composition is administered by intravenous or subcutaneous injection or infusion. Intranasal administration is preferred for eliciting IgA2 secretory antibodies. Intramuscular administration is preferred for eliciting IgG or IgM antibodies.


Such pharmaceutical compositions may be administered to a patient who does not have COVID-19 but is susceptible to, or otherwise at risk of, COVID-19. When provided for such prophylactic use, the SARS-CoV-2 S Protein Lentiviral Particle pharmaceutical compositions of the present invention are administered to a subject in an amount sufficient to initiate a protective immune response against SARS-CoV-2 and to maintain such a protective immune response for an extended period (e.g., at least about 1 month, at least about 2 months, at least about 3 months, at least about 4 months, at least about 6 months, at least about 8 months, at least about 1 year, at least about 1.5 years, at least about 2 years, at least about 2.5 years, at least about 3 years, at least about 5 years, or more than five years. As used herein, the term “protective immune response,” denotes an immune response that includes the eliciting and production of neutralizing antibodies to SARS-CoV-2, so that the health of the subject is substantially preserved. Such pharmaceutical compositions may be alternatively or additionally administered to a patient who has been confirmed to suffer from SARS-CoV-2 infection, or who has been diagnosed as exhibiting COVID-19. When provided for such therapeutic use, the SARS-CoV-2 S Protein Lentiviral Particle pharmaceutical compositions of the present invention are administered to a subject in an amount sufficient to initiate a rapid protective immune response against SARS-CoV-2.


Effective doses of the SARS-CoV-2 S Protein Lentiviral Particle pharmaceutical compositions of the present invention for such prophylactic or therapeutic use may vary depending upon many different factors, including means of administration, target site, physiological state of the patient, other medications administered, and whether treatment is prophylactic or therapeutic. Treatment dosages are typically titrated to optimize their safety and efficacy. On any given day that a dosage is given, the dosage may range from about 0.0001 to about 100 mg/kg, and more usually from about 0.01 to about 10 mg/kg, of the host body weight. For example, dosages can be 1 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg body weight. Exemplary dosages thus include: from about 0.1 to about 10 mg/kg/body weight, from about 0.1 to about 5 mg/kg/body weight, from about 0.1 to about 2 mg/kg/body weight, from about 0.1 to about 1 mg/kg/body weight, for instance about 0.15 mg/kg/body weight, about 0.2 mg/kg/body weight, about 0.5 mg/kg/body weight, about 1 mg/kg/body weight, about 1.5 mg/kg/body weight, about 2 mg/kg/body weight, about 5 mg/kg/body weight, or about 10 mg/kg/body weight


A physician or veterinarian having ordinary skill in the art may readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the SARS-CoV-2 S Protein Lentiviral Particle pharmaceutical compositions of the present invention at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, a suitable daily dose of a composition of the present invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. Administration may, e.g., be intravenous, intramuscular, intraperitoneal, or subcutaneous, and for instance administered proximal to the site of the target. If desired, the effective daily dose of a pharmaceutical composition may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals, optionally, in unit dosage forms. While the SARS-CoV-2 S Protein Lentiviral Particle pharmaceutical compositions of the present invention may be administered alone, they may be administered with other compounds, e.g., an adjuvant, an antiviral agent, etc.


The therapeutic or prophylactic dosage may be administered repeatedly in order to ensure the continued immunity of the recipient. Relative to the initial administration of the vaccine, such subsequent administrations may be made after about 6 months, after about 1 year, after about 1.5 years, after about 2 years, after about 2.5 years, after about 3 years, after about 5 years, or after more than five years.


V. Diagnostic Utility

In addition to their therapeutic utility, the lentiviral particles of the present invention may be used diagnostically to provide antigen (e.g., SARS-CoV-2 S and/or N protein) that may be used to detect the presence of antibody in immune individuals or recovering COVID-19 patients. Such particles are superior to purified SARS-CoV-2 S and/or N protein, which may not adopt the conformation that such proteins adopt when attached to the SARS-CoV-2 surface. The conformations adopted by the SARS-CoV-2 S and/or N protein of the lentiviral particles of the present invention is expected to be closer to the native conformations of such proteins on a coronavirus.


VI. Embodiments of the Invention

Having now generally described the invention, the same will be more readily understood through reference to the following numbered Embodiments (“E”), which are provided by way of illustration and are not intended to be limiting of the present invention unless specified:

  • E1. A lentiviral particle that comprises a recombinantly engineered lentiviral genome and that arrays a SARS-CoV-2 spike (S) protein on its surface.
  • E2. The lentiviral particle of E1, wherein the recombinantly engineered lentiviral genome is non-integrating.
  • E3. The lentiviral particle of E1, wherein the recombinantly engineered lentiviral genome is incapable of being reverse transcribed.
  • E4. The lentiviral particle of E1, wherein the recombinantly engineered lentiviral genome is non-integrating and incapable of being reverse transcribed.
  • E5. The lentiviral particle of any one of E1-E4, wherein the recombinantly engineered lentiviral genome encodes a heterologous transgene protein.
  • E6. The lentiviral particle of any one of E1-E5, wherein the encoded heterologous transgene protein is an antibiotic resistance determinant, a reporter protein, a protein drug effective in treating SARS-CoV-2 infection, or a protein that comprises the epitope binding domain of an antibody that binds to a SARS-CoV-2 antigen.
  • E7. The lentiviral particle of E5, wherein the encoded heterologous transgene protein is a SARS-CoV-2 protein.
  • E8. The lentiviral particle of E7, wherein the encoded SARS-CoV-2 heterologous transgene protein is a SARS-CoV-2 Spike (S) protein or a SARS-CoV-2 Nucleocapsid (N) protein.
  • E9. A vaccine for the treatment of COVID-19, wherein the vaccine comprises a prophylactically effective dose of a pharmaceutical composition that comprises the lentiviral particle of any one of E1-E8 and a pharmaceutically acceptable carrier.
  • E10. The vaccine of E9, wherein the recombinantly engineered lentiviral genome of the lentiviral particle is non-integrating.
  • E11. The vaccine of E9, wherein the recombinantly engineered lentiviral genome of the lentiviral particle is incapable of being reverse transcribed.
  • E12. The vaccine of E9, wherein the recombinantly engineered lentiviral genome of the lentiviral particle is non-integrating and incapable of being reverse transcribed.
  • E13. The vaccine of E9, wherein the recombinantly engineered lentiviral genome of the lentiviral particle encodes a heterologous transgene protein.
  • E14. The vaccine of E13, wherein the encoded heterologous transgene protein is a SARS-CoV-2 Spike (S) protein or a SARS-CoV-2 Nucleocapsid (N) protein.
  • E15. The vaccine of any one of E9-E14, wherein the pharmaceutically acceptable carrier is adapted for intramuscular administration.
  • E16. The vaccine of any one of E9-E14, wherein the pharmaceutically acceptable carrier is adapted for intranasal administration.
  • E17. A method for producing the recombinant lentiviral particle of any one of E1-E16, wherein the method comprises:


(A) transfecting HEK293 cells with:

    • (1) an LTR-containing vector that comprises a deleted 5′ LTR U3 region and a self-inactivating 3′ LTR region;
    • (2) a packaging vector that comprises a polynucleotide that encodes gag and pol proteins;
    • (3) a REV vector that comprises a polynucleotide that encodes a rev protein; and
    • (4) an envelope vector that comprises a polynucleotide that encodes a SARS-CoV-2 spike (S) protein; and
    • (B) permitting the cells to produce the recombinant lentiviral particle.
  • E18. The method of E17, wherein the packaging vector comprises a genome that encodes a mutated integrase, wherein the transfection produces a recombinant lentiviral particle that comprises a genome that is non-integrating.
  • E19. The method of E17, wherein the packaging vector comprises a genome that encodes a mutated reverse transcriptase, wherein the transfection produces a recombinant lentiviral particle that comprises a genome that is incapable of being reverse transcribed.
  • E20. The method of E19, wherein the packaging vector comprises a genome that additionally encodes a mutated integrase, wherein the transfection produces a recombinant lentiviral particle that comprises a genome that is non-integrating and incapable of being reverse transcribed.
  • E21. The method of any one of E17-E20, wherein the LTR-containing vector comprises the features of any of the LTR-containing vectors: pLenti-SV40-puro (SEQ ID NO:27);
    • pLenti-SV40-puro (-att) (SEQ ID NO:28);
    • pLenti-CMV-IRES-empty (-att) (SEQ ID NO:67);
    • pLenti-CMV-IRES-Spike (SEQ ID NO:70);
    • pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (SEQ ID NO:83);
    • pLenti-IgGκ-nCoV-N-CD8-TM (-att) (SEQ ID NO:84); or
    • pLenti-IL-2 n-CoV-N(-att) (SEQ ID NO:85).
  • E22. The method of any one of E17-E21, wherein the packaging vector comprises the features of pGAG (SEQ ID NO:44).
  • E23. The method of any one of E17-E22, wherein the REV vector comprises the features of pREV (SEQ ID NO:49).
  • E24. The method of any one of E17-E23, wherein the envelope vector comprises the features of pCMV-SARS-CoV-2 S Protein (SEQ ID NO:61).


EXAMPLES

Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention unless specified.


Example 1
Production of Recombinant Lentiviral Particles that Array the SARS-CoV-2 Spike (S) Protein on their Surface

HEK293 cells are co-transfected with the above-described pLenti-SV40-puro (-att), pGAG, pREV, and pCMV-SARS-CoV-2 S Protein vectors substantially as described by Gandara, C. et al. (2018) (“Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice,” Hum. Gene Ther. Meth. 29(1):1-15). The co-transfection yields recombinant lentiviral particles that array the SARS-CoV-2 spike (S) protein on their surface.


Example 2
Vaccine Use of Lentiviral Particles that Array the SARS-CoV-2 Spike (S) Protein on their Surface

Therapeutically effective amounts of the lentiviral particles of Example 1 are injected intramuscularly or are applied intranasally to recipient human subjects. Neutralizing antibodies to SARS-CoV-2 are elicited and detected in such immunized subjects. The neutralizing antibodies protect the immunized subjects from COVID-19.


All publications and patents mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety. While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

Claims
  • 1. A lentiviral particle that: (A) comprises: (1) a recombinantly engineered HIV-1 vector that comprises, in the 5′ to 3′ direction: (a) a human cytomegalovirus (CMV) immediate early enhancer site and promoter;(b) an HIV-1 5′ LTR region that has been truncated to delete its U3 region;(c) an HIV-1 ψ region;(d) an HIV-1 Rev response element (RRE);(e) an HIV-1 central polypurine tract and central termination sequence (cPPT/CTS);(f) a heterologous enhancer and promoter;(g) a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE); and(h) a self-inactivating HIV-1 3′ LTR region;(2) a mutated HIV-1 integrase (IN) protein that is incapable of mediating the integration of said recombinantly engineered HIV-1 vector into the chromosome of a recipient cell; and(3) a mutated HIV-1 reverse transcriptase (RT) protein that is incapable of reverse transcribing said recombinantly engineered HIV-1 vector; and(B) arrays a SARS-CoV-2 spike (S) protein on its surface.
  • 2. The lentiviral particle of claim 1, wherein positioned 3′ to said heterologous enhancer and promoter (f), and 5′ to said woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (g), said recombinantly engineered HIV-1 vector additionally comprises, in the 5′ to 3′ direction: (i) an internal ribosome entry site (IRES);(iii) a heterologous transgene that is operably linked to said heterologous enhancer and promoter, and that encodes a heterologous transgene protein.
  • 3. The lentiviral particle of claim 2, wherein said encoded heterologous transgene protein is an antibiotic resistance determinant, a reporter protein, a protein drug effective in treating SARS-CoV-2 infection, a viral protein, or a protein that comprises the epitope binding domain of an antibody that binds to a SARS-CoV-2 antigen.
  • 4. The lentiviral particle of claim 2, wherein said encoded heterologous transgene protein is a SARS-CoV-2 protein.
  • 5. The lentiviral particle of claim 4, wherein said encoded SARS-CoV-2 heterologous transgene protein is a SARS-CoV-2 Spike protein or a SARS-CoV-2 Nucleocapsid (N) protein.
  • 6. An immunogenic composition capable of inducing neutralizing antibodies against the SARS-CoV-2 Spike (S) Protein wherein said composition comprises the lentiviral particle of claim 1 and a pharmaceutically acceptable carrier.
  • 7. The immunogenic composition of claim 6, wherein the recombinantly engineered HIV-1 vector of said lentiviral particle encodes a heterologous transgene protein.
  • 8. The immunogenic composition of claim 7, wherein said encoded heterologous transgene protein is a SARS-CoV-2 Spike (S) protein or a SARS-CoV-2 Nucleocapsid (N) protein.
  • 9. The immunogenic composition of claim 6, wherein said pharmaceutically acceptable carrier is adapted for intramuscular administration.
  • 10. The immunogenic composition of claim 6, wherein said pharmaceutically acceptable carrier is adapted for intranasal administration.
  • 11. A method for producing the lentiviral particle of claim 1, wherein said method comprises: (A) transfecting HEK293 cells with: (1) a recombinantly engineered HIV-1 vector that comprises, in the 5′ to 3′ direction: (a) a human cytomegalovirus (CMV) immediate early enhancer site and promoter;(b) an HIV-1 5′ LTR region that has been truncated to delete its U3 region;(c) an HIV-1 ψ region;(d) an HIV-1 Rev response element (RRE);(e) an HIV-1 central polypurine tract and central termination sequence (cPPT/CTS);(f) a heterologous enhancer and promoter;(g) a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE); and(h) a self-inactivating HIV-1 3′ LTR region;(2) a packaging vector that comprises a polynucleotide that comprises an HIV-1 gag gene and an HIV-1 pol gene, wherein said HIV-1 pol gene encodes: (i) a mutated HIV-1 integrase (IN) protein that is incapable of mediating the integration of said recombinantly engineered HIV-1 vector into the chromosome of a recipient cell; and(ii) a mutated HIV-1 reverse transcriptase (RT) protein that is incapable of reverse transcribing said recombinantly engineered HIV-1 vector;(3) a REV vector that comprises a polynucleotide that encodes an HIV-1 rev protein; and(4) an envelope vector that comprises a polynucleotide that encodes a SARS-CoV-2 spike (S) protein; and(B) permitting said cells to produce said lentiviral particle; wherein said transfection produces said lentiviral particle that comprises: (1) said recombinantly engineered HIV-1 vector;(2) said mutated HIV-1 integrase (IN) protein that is incapable of mediating the integration of said recombinantly engineered HIV-1 vector into the chromosome of a recipient cell; and(3) said mutated HIV-1 reverse transcriptase (RT) protein that is incapable of reverse transcribing said recombinantly engineered HIV-1 vector;and that arrays said SARS-CoV-2 spike (S) protein on its surface.
  • 12. The method of claim 11, wherein said recombinantly engineered HIV-1 vector comprises the features of: pLenti-SV40-puro (SEQ ID NO:27);pLenti-SV40-puro (-att) (SEQ ID NO:28);pLenti-CMV-IRES-empty (-att) (SEQ ID NO:67);pLenti-CMV-IRES-Spike (SEQ ID NO:70);pLenti-IgGκ-nCoV-Spike-CD8-TM (-att) (SEQ ID NO:83);pLenti-IgGκ-nCoV-N-CD8-TM (-att) (SEQ ID NO:84); orpLenti-IL-2 n-CoV-N(-att) (SEQ ID NO:85).
  • 13. The method of claim 11, wherein said packaging vector comprises the features of pGAG (SEQ ID NO:44).
  • 14. The method of claim 11, wherein said REV vector comprises the features of pREV (SEQ ID NO:49).
  • 15. The method of claim 11, wherein said envelope vector comprises the features of pCMV-SARS-CoV-2 S Protein (SEQ ID NO:61).
  • 16. The lentiviral particle of claim 1, wherein said arrayed SARS-CoV-2 spike (S) protein comprises the amino acid sequence of SEQ ID NO:54.
  • 17. The lentiviral particle of claim 1, wherein said arrayed SARS-CoV-2 spike (S) protein differs from the sequence of SEQ ID NO:54 by comprising: (A) the substitution: D614G; S247R; H49Y; S221W; Y28N; A930V; F797C; F157L; H655Y; G181V; N74K; K528X; K814X; D614X; V473A; A348T; G476S; A520S; T29I; L5F; E96D; D1168H; A1078V; D111N; H519Q; A942X; L8V; G910X; S50L; A27V; T2401; A653V; A570V; G644X; Y265X; L1152X; S71F; D80Y; V70F, C1250Y; P9L; V772I; I197V; S98F; N148S; V367F; T791I; P217X; M731I; M1237I; A845S; S704X; L752X; H655X; N354B; S704L; Y28H; G485R; G838S; W152R; or K557X; or(B) the pair of substitutions: L5F and G476S; P427X and D614G; L54F and D614G; D614G and V615F; D614G and V6221; D614G and V1228X; F238X and D614G; W258L and D614G; D614G and A1078S; D614G and S939F; H146Y and D614G; Y279X and D614G; D614G and I818V; L5F and D614G; D614X and G1124X; D614G and L1203F; D614G and V1065L; Q271R and D614G; K529E and D614G; D614G and S929I; D614G and T768I; V90F and D614G; A522S and D614G; F220X and D614G; D614G and P631S; Y423X and D614G; Y200X and D614G; H49Y and S884F; Y145H and D614G; V503X and D614G; L118F and D614G; A27S and D614G; A67S and F1103L; S750R and L752R; Q239R and D614G; D614G and T676S; or T951 and D614G.
  • 18. The lentiviral particle of claim 1, that additionally arrays the hemagglutinin (HA) protein of influenza virus, the SARS-CoV spike (S) protein, and/or the MERS-CoV spike (S) protein on its surface.
  • 19. The method of claim 11, wherein positioned 3′ to said heterologous enhancer and promoter (f), and 5′ to said woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) (g), said recombinantly engineered HIV-1 vector additionally comprises, in the 5′ to 3′ direction: (i) an internal ribosome entry site (IRES);(iii) a heterologous transgene that is operably linked to said heterologous enhancer and promoter, and that encodes a heterologous transgene protein.
  • 20. The method of claim 19, wherein said encoded heterologous transgene protein is an antibiotic resistance determinant, a reporter protein, a protein drug effective in treating SARS-CoV-2 infection, a viral protein, or a protein that comprises the epitope binding domain of an antibody that binds to a SARS-CoV-2 antigen.
  • 21. The method of claim 19, wherein said encoded heterologous transgene protein is a SARS-CoV-2 protein.
  • 22. The method of claim 21, wherein said encoded SARS-CoV-2 heterologous transgene protein is a SARS-CoV-2 Spike (S) protein or a SARS-CoV-2 Nucleocapsid (N) protein.
Foreign Referenced Citations (1)
Number Date Country
111088283 May 2020 CN
Non-Patent Literature Citations (70)
Entry
Negri, D. R. M., et al., Sep. 2007, Successful immunization with a single injection of non-integrating lentiviral vector, Mol. Ther. 15(9):1716-1723.
Wu, F., et al., Feb. 2020, A new coronavirus associated with human respiratory disease in China, Nature 579:265-283.
He, Y., et al., Jun. 2006, Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design, J. Virol. 80(12):5757-5767.
Moore, M. J., et al., Oct. 2004, Retrovirus pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2, J. Virol. 78(19): 10628-1635.
Saeed, M. Q., et al., Dec. 2014, Comparison between several integrase-defective lentiviral vectors reveals increased integration of an HIV vector bearing a D167H mutant, Mol. Ther. Nucleic Acids 3, e213, pp. 1-12.
Gandara, C., et al., 2018, Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice, Human Gene Therapy Methods 29(1): 1-15.
NCBI BLAST Alignment of GenBank Y_009724390.1 and Polymorphic Variants Thereof (2020) https://blast.ncbi.nlm.nih.gov/BLAST.cgi#; pp. 1-100.
Addgene (2014) “Plasmids 101: The Promoter Region—Let's Go!,” Addgene; pp. 1-22.
Al Ali, S. et al.(2016) “Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors,” Viruses 8(5):1-18.
Arce, F. et al. (2011) “Targeting Lentiviral Vectors for Cancer Immunotherapy,” Curr. Cancer Ther. Rev. 7(4):248-260.
Banasik, M.B. el al. (2010) “Integrase-Defective Lentiviral Vectors: Progress and Applications,” Gene Ther 17:150-157.
Bauler, M. et al. (2020) “Production of Lentiviral Vectors Using Suspension Cells Grown in Serum-Free Media,” Molec. Ther.: Meth. Clin. Develop. 17:58-68.
Busatto, S. et al. (2018) “Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid,” Cells 7(12):1-11.
Chen, S.-H. et al. (2019) “Overview: Recombinant Viral Vectors as Neuroscience Tools,” Curr. Protoc. Neurosci. 87(1):e67:1-16.
Colosimo, A. et al. (2000) “Transfer and Expression of Foreign Genes in Mammalian Cells,” BioTechniques 29(2):314-331.
Cooper, A.R. et al. (2011) “Highly Efficient Large-Scale Lentiviral Vector Concentration by Tandem Tangential Flow Filtration,” J. Virol. Methods. 177(1):1-9.
Craigo, J.K. et al. (2013) “Envelope Determinants of Equine Lentiviral Vaccine Protection,” Plos One 8(6):e66093:1-11.
Cullen, B.R. (1991) “Regulation of HIV-I Gene Expression” FASEB J. 5:2361-2368.
Danforth, K. et al. (2017) “Global Mortality and Morbidity of HIV/AIDS,” In: Major Infectious Diseases, vol. 6 (Holmes, K.K. et al. (Eds.)) The World Bank, Washington, DC (18 pages).
Dogbevia, G.K. et al. (2015) “Inducible and Combinatorial Gene Manipulation in Mouse Brain,” Front. Cell. Neurosci. 9:142:1-8.
Dogbevia, G.K. et al. (2016) “Flexible, AAV-equipped Genetic Modules for Inducible Control of Gene Expression in Mammalian Brain,” Molec. Ther. Nucl. Acids 5:e309:1-8.
Elsingcr, R.W. et al. (2018) “Ending the HIV/AIDS Pandemic,” Emerg. Infect. dis. 24(3):413-416.
Engelman, A. et al. (2012) “The Structural Biology of HIV-I: Mechanistic and Therapeutic Insights,” Nat. Rev. Microbiol. 10(4):279-290.
Escors, D. et al. (2011) “Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential,” Arch. Immunol. Ther. Exp. (Warsz.) 58(2):107-119.
Fontana, J.M. et al. (2014) “Mucosal Immunization With Integrase Defective Lentiviral Vectors Protects Against Influenza Virus Challenge in Mice,” PLoS One 9(5):1-12.
Freed, E.O. (2015) “HIV-1 Assembly, Release and Maturation,” Nat. Rev. Microbiol. 13(8):484-496.
Gallinaro, A. et al. (2018) “Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens,” Front. Immunol. 9:171 (pp. 1-11).
Gandara, C. et al. (2018) “Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice,” Hum. Gene Ther. Meth. 29(1):1-15.
Gaspar, H.B. et al. (2011) “Long-Term Persistence of a Polyclonal T Cell Repertoire After Gene Therapy for X-Linked Severe Combined Immunodeficiency,” Sci. Transl. Med. 3:97ra79:1-7.
Glum, C.M. et al. (2010) “The Art of Reporter Proteins in Science: Past, Present and Future Applications,” BMB Rcp. 43(7):451-460.
Gottlingcr, H.G. et al. (1989) “Role of Capsid Precursor Processing and Myristoylation in Morphogenesis and Infectivity of Human Immunodeficiency Virus Type 1,” Proc. Natl. Acad. Sci. (U.S.A.) 86:5781-5785.
Guler-Gane, G. et al. (2016) “Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids,” Plos One 11(5):1-15.
Hacein-Bey-Abina, S. et al. (2003) “LMO2-Associated Clonal T Cell Proliferation in Two Patients After Gene Therapy for SCID-X1” Science 302:415-419.
Heinzinger, N. K. et al. (1994) “The vpr Protein of Human Immunodeficiency Virus Type 1 Influences Nuclear Localization of Viral Nucleic Acids in Nondividing Host Cells,” Proc. Natl. Acad. Sci. (U.S.A.) 91(15):7311-7315.
Higashimoto, T. et al. (2007) “The Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element Reduces Readthrough Transcription From Retroviral Vectors,” Gene Ther. 14:1298-1304.
Hope, T.J. et al. (2000) “Structure, Expression, and Regulation of the HIV Genome,” HIV InSite Knowledge Base Chapter, pp. 1-12.
Hu, B. (2011) “Immunization Delivered by Lentiviral Vectors for Cancer and Infectious Diseases,” Immunol. Rev. 239(1):45-61.
Huisman, W. et al. (2009) “Vaccine-Induced Enhancement of Viral Infections,” Vaccine 27(4):505-512.
Kammler, S. et al. (2006) “The Strength of the HIV-1 3′ Splice Sites Affects Rev Function,” Retrovirol. 3:89:1-20.
Keeler, A.M. et al. (2017) “Gene Therapy 2017: Progress and Future Directions,” Clin. Trasl. Sci. 10:242-248.
Klimatcheva, E. et al. (1999) “Lentiviral Vectors and Gene Therapy,” Front. Biosci. 4:D481-D496.
Kozak, M. (1987) “An Analysis of 5′-Noncoding Sequences From 699 Vertebrate Messenger RNAs” Nucl. Acids Res. 15(20):8125-8148.
Leavitt. A,D, et al. (1996) “Human Immunodeficiency Virus Type 1 Integrase Mutants Retain In Vitro Integrase Activity Yet Fail to Integrate Viral DNA Efficiently During Infection,” J. Virol. 70(2):721-728.
Li, X. et al. (2011) “Structural Biology of Retroviral DNA Integration” Virol. 411(2):194-205.
Li, Y. et al. (1992) “ Complete Nucleotide Sequence, Genome Organization, and Biological Properties of Human Immunodeficiency Virus Type 1 In Vivo: Evidence for Limited Defectiveness and Complementation,” J. Virol. 66(11):6587-6600.
Lundstrom, K. (2019) “RNA Viruses as Tools in Gene Therapy and Vaccine Development.” Genes (Basel) 10(3):1-24.
McBride, C.E. et al. (2007) “The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein,” J. Virol. 81(5):2418-2428.
Merten, O.-W. et al. (2016) “Production of Lentiviral Vectors,” Molec. Ther. Meth. Clin. Develop. 3:16017:1-14.
Milone, M.C. et al. (2018) “Clinical Use of Lentiviral Vectors,” Leukemia 32:1529-1541.
Miyoshi, H. (1998) “Development of A Self-Inactivating Lentivirus Vector,” J. Virol. 72(10):8150-8157.
Norton, T.D. et al. (2016) “Recent Advances in Lentiviral Vaccines for HIV-1 Infection,” Front. Immunol. 7:243:1-8.
O'Keefe, B.R. et al. (2010) “Broad-Spectrum in vitro Activity and in vivo Efficacy of the Antiviral Protein Griffithsin Against Emerging Viruses of the Family Coronaviridae,” J. Virol. 84(5):2511-2521.
Pincha, M. et al. (2010) “Lentiviral Vectors for Immunization: An Inflammatory Field,” Expert Rev. Vaccines 9(3):309-321.
Pollard, V.W. et al. (1998) “The IIIV-1 Rev Protein,” Annu. Rev. Microbiol. 52:491-532.
Sayasith, K. et al. (2000) “Characterization of Mutant HIV-1 Integrase Carrying Amino Acid Changes in the Catalytic Domain,” Mol. Cells 10(5):525-532.
Schambach, A. et al. (2013) “Biosafety Features of Lentiviral Vectors,” Human Gene Ther. 24:132-142.
Schubert, U. et al. (1996) “The Two Biological Activities of Human Immunodeficiency Virus Type I Vpu Protein Involve Two Separable Structural Domains,” J. Virol. 70(2):809-819.
Selig, L. et al. (1999) “Interaction with the p6 Domain of the Gag Precursor Mediates Incorporation into Virions of Vpr and Vpx Proleins from Primate Lentiviruses,” J. Virol. 73(1):592-600.
Selvam, C. (2017) “Therapeutic Potential of Chemically Modified siRNA: Recent Trends,” Chem. Biol. Drug Dcs. 90(5):665-678.
Shirley, J.L. et al. (2020) “Immune Responses to Viral Gene Therapy Vectors,” Molec. Ther. 28(3):709-722.
Soliman, M. et al. (2017) “Mechanisms of HIV-1 Control,” Curr. HIV/AIDS Rep. 14(3):101-109.
Strebel, K. et al. (1987) “The IIIV ‘A’ (sor) Gene Product is Essential for Virus Infectivity” Nature 328(6132):728-730.
Vaccari, M. et al. (2018) “HIV Vaccine Candidate Activation of Hypoxia and the Inflammasome in CD14+ Monocytes is Associated with a Decreased Risk of SIV mac251 Acquisition,” Nat. Med. 24(6):847-856.
Wang, C. et al. (2020) “The Establishment of Reference Sequence for SARS-CoV-2 and Variation Analysis,” J. Med. Virol. 92:667-674.
Wang, Y. et al. (2019) “Tangential Flow Microfiltration for Viral Separation and Concentration,” Micromachines 10:320 (pp. 1-13).
Willey, R.L. et al. (1992) “Human Immunodeficiency Virus Type 1 Vpu Protein Induces Rapid Degradation of CD4,” J. Virol. 66(12):7193-7200.
Wu, F. et al. (2020) “A New Coronavirus Associated With Human Respiratory Disease in China,” Nature 579(7798):265-269.
Yaguchi, M. et al. (2013) “Characterization of the Properties of Seven Promoters in the Motor Cortex of Rats and Monkeys After Lentiviral Vector-Mediated Gene Transfer,” Hum. Gene Ther. Methods 24(6):333-344.
Zhao, X. (2013) “Several Affinity Tags Commonly Used in Chromatographic Purification,” J. Anal. Meth. Chem. 2013:581093:1-8.
Bona, R. et al. (2006) “Development of a Human Immunodeficiency Virus Vector-Based, Single-Cycle Assay for Evaluation of Anti-Integrase Compounds,” Antimicrob. Agents Chemother. 50(10):3407-3417.