NOT APPLICABLE
The fabrication of modern semiconductor devices commonly involve the formation of thin films on a semiconductor wafer substrate though the chemical reaction of gases. Such deposition processes are referred to a chemical vapor deposition (CVD). Conventional thermal CVD processes supply reactive gases to the substrate surface where heat-induced chemical reactions take place to produce a desired film.
An alternative method of depositing layers over a substrate includes plasma enhanced CVD (PECVD) techniques. Plasma enhanced CVD techniques promote excitation and/or dissociation of the reactant gases by the application of radio frequency (RF) energy to a reaction zone near the substrate surface, thereby creating a plasma. The high reactivity of the ionized species in the plasma reduces the energy required for a chemical reaction to take place, and thus lowers the temperature for such CVD processes as compared to thermal CVD processes. The relatively low temperature of some PECVD processes helps semiconductor manufacturers lower the overall thermal budget in the fabrication of some integrated circuits.
Semiconductor device geometries have dramatically decreased in size since they were first introduced decades ago. Such decreases in size have in part been made possible by advances in semiconductor manufacturing equipment, such as the substrate processing chambers used for PECVD processing. Some of the technology advances include advances that are reflected in the design and manufacture of certain CVD deposition systems in use in fabrication facilities today, while others are in various stages of development and will soon be in widespread use throughout the fabrication facilities tomorrow.
One technology advance commonly used in today's fabrication facilities includes the use of a PECVD technique often referred to as mixed frequency PECVD in which both high and low frequency RF power are employed to generate plasma and to promote ion bombardment of a substrate. One such mixed frequency method couples both high and low frequency RF power to a metal gas distribution manifold that may also act as an electrode for directing the RF power into the processing chamber. The high-frequency RF power is the primary mechanism that dissociates the plasma precursor materials while application of the low-frequency RF power promotes ion bombardment of a substrate positioned on a grounded substrate support, which may also function as a second electrode. In additional embodiments of mixed frequency methods, the high-frequency RF power may be coupled to a gas distribution manifold and the low-frequency RF power may be coupled to a substrate holder. Another technology advance used in some currently available PECVD deposition chambers includes the use of conical holes in the gas distribution manifold to increase the dissociation of gases introduced into the chamber.
Advances in technologies such as the ones described above are not without restrictions. For example, while mixed frequency PECVD technique have proved beneficial in a variety of applications, the simultaneous application of the high and low-frequency RF waveforms should be controlled to avoid interferences that can result in high voltages and arcing at the gas distribution manifold. This arcing may be evidenced by a glow within the hold of the gas distribution manifold, and by a reduction in the deposition rate as the amplitude of the high-frequency voltage is increased. Arcing in PECVD processes may also occur between the gas distribution faceplate and the substrate wafer when there are instabilities in the plasma in the processing chamber. This arcing can cause defects in the substrate wafer surface that reduces the yield of working semiconductor devices fabricated on the wafer.
Current methods of diagnosing arcing probems in PECVD processing chambers have significant limitations. One method involves inserting a voltage probe (typically referred to as an S-probe) into the chamber plasma to measure voltage changes that indicate plasma instability and arcing. Unfortunately, the S-probe itself can interfere with and destabilize the plasma it is trying to measure. Contamination and corrosion of the surface of the S-probe can also create a source of particulates which can contaminate the underlying substrate wafer. Another method involves taking VRMS measurements of the RF power source (or sources), which supply RF power to generate a plasma in the processing chamber. While this method avoids placing a probe directly in the plasma, the measurements generally suffer from poor signal-to-noise ratios and poor time resolution that can make it difficult to detect evidence of arcing (e.g., voltage spikes). Thus, there remains a need for methods and systems to diagnose arcing in plasma processing chambers which are non-invasive and provide more reliable detection of arcing.
Embodiments of the invention relate to methods of diagnosing an arcing problem in a semiconductor wafer processing chamber. The methods may include coupling a voltage probe to a process-gas distribution faceplate in the processing chamber, and activating an RF power source to generate a plasma between the faceplate and a substrate wafer. The methods may also include measuring the DC bias voltage of the faceplate as a function of time during the activation of the RF power source, where a spike in the measured voltage at the faceplate indicates an arcing event has occurred in the processing chamber.
Embodiments of the invention also relate to systems to diagnose an arcing problem in a semiconductor wafer processing chamber. The systems may include a voltage probe coupled to a process-gas distribution faceplate in the processing chamber, and a voltage measurement device to measure the DC bias voltage of the faceplate as a function of time. The systems may also include a display coupled to the voltage measurement device to display a plot of faceplate voltage measurements as a plasma is generated in the processing chamber, where a spike in the plot indicates an arcing event has occurred in the processing chamber.
Embodiments of the invention may further relate to methods to reduce arcing in a semiconductor wafer processing chamber. The methods may include the step of measuring a spike in a DC bias voltage of a process-gas distribution faceplate as a plasma is formed in the processing chamber, where the spike indicates there is arcing in the chamber. The methods may also include adjusting a flow rate of a plasma precursor material supplied to the chamber, and adjusting a ramp rate for RF power supplied to the chamber to form the plasma from the plasma precursor material.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. The features and advantages of the invention may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
FIGS. 3A-B show cross-sectional views of a plasma enhanced chemical vapor deposition system according to embodiments of the invention;
FIGS. 3C-D show exploded views of parts of the PECVD chamber shown in
FIGS. 4A-B show experimental plots of faceplate voltage over time during the plasma deposition of an FSG layer;
FIGS. 5A-B show experimental plots of faceplate voltage over time for different low-frequency RF power levels; and
The present invention relates to methods and systems for diagnosing arcing problems in semiconductor wafer processing chambers. The methods and systems include voltage measurements of a process-gas distribution faceplate that may also act as an electrode for directing RF power into a processing chamber to generate a plasma. Voltage measurements may be taken with a voltage probe coupled to the faceplate that does not make direct contact with the plasma. The voltage probe may also be coupled to a voltage measurement device that measures the DC bias voltage of the faceplate as a function of time. The probe and measurement device may have fast response times capable of sampling the faceplate voltage at a rate of about 100,000 times/second (i.e., 100 kHz) or more.
The present methods and systems may also include generating a plot of the faceplate voltage over time and identifying features in the plot that indicate arcing has occurred in the plasma chamber. These features may include, for example, an abrupt change in voltage (e.g., a voltage spike). The character and timing of the voltage spike during the course of a plasma deposition may be used to diagnose the cause of the arcing and suggest steps to minimize or prevent further occurrences. Techniques used to avoid arcing may include maintaining the pressure in the processing chamber about a de minimis level for the deposition process, setting the low-frequency RF power to less than 30% of the total RF power, and/or reducing the total RF power used for generating the plasma.
Additional techniques may also include adjusting the timing and/or flow rate at which one or more of the precursor materials used to generate the plasma is introduced to the processing chamber. For example, the timing of the introduction of a precursor gas into the processing chamber may be moved from being introduced after the RF power is supplied, to being introduced before the RF power is activated. Techniques may further include adjusting the ramp rate at which the RF power is activated. Conventional activation of the RF power has the power going from zero to peak power in as short a period of time as possible, with typically ramp rates for high-frequency RF power being about 5000 watts/sec or more, and ramp rates for low-frequency power being about 350 watts/second or more. Arcing may be reduced by lowering the ramp rates to, for example, about 600 watts/second or less for the high-frequency RF power, and 250 watts/second or less for the low-frequency RF power.
Example Substrate Processing Methods
Referring now to
With the voltage probe coupled to the faceplate, the RF power source may be activated 104 to supply RF power to the processing chamber for generating the plasma. The RF power source may include multiple units to generate RF power a different frequencies. For example, the RF power source may include a high-frequency (e.g., 10 MHz or more, 13.65 MHz) power generator that supplies HF RF power for ionizing the plasma precursor materials into a plasma, and a low-frequency (e.g., about 50 to about 500 kHz) power source that supplies LF RF power for directing the ionized plasma to the surface of the substrate wafer. The voltage probe may be coupled to the faceplate such that the probe does not come into direct contact with the plasma generated in the processing chamber.
The faceplate voltage may be measured 106 over the course of the plasma deposition using the voltage measurement device. The device may be a fast acquisition device that can sample the faceplate voltage at a rate of 100,000 time per second (i.e., 100 kHz) or more. The voltage measurement device may also have the capability to chart the faceplate voltage as a function of time during the plasma deposition process 108. The plot may include signature features that indicate arcing has occurred in the processing chamber, and may be used as a aid for the diagnosing and correction of excessive arcing during the plasma deposition process.
In method 200, three adjustment are made to the plasma deposition process to reduce (or eliminate) arcing during the plasma deposition. These adjustments may include changing the RF power level 208, such as reducing the overall RF power supplied to the processing chamber. When multiple frequencies of RF power are supplied to the processing chamber, the power adjustment may be made to one or more RF frequencies (e.g., adjusting either the LF RF power level or the HF RF power level in a two-frequency RF source). Power level adjustments may also include decreasing or stopping the RF power before the end of the deposition to avoid arcing caused by voltage buildup in the process chamber.
Adjustments may also be made to the ramp rate at which the RF power is supplied to the processing chamber 210. In conventional PECVD deposition processes, the HF RF power is commonly ramped to the peak power level as fast as possible (e.g., 5000 watts/sec or faster). Adjustment to the ramp rate may include lowering the ramp rate for the HF RF power and/or the LF RF power, and may also include ramping the power in steps instead of one continuous increase from zero watts to the peak power level. For example, if the peak HF RF power level is 1600 watts, the ramp rate may include a first ramp-up step that increases the power from 0 to 1250 watts and a second ramp-up step that increases the power from 1250 watts to peak power at 1600 watts.
Adjustments may further be made to the flow rates of one or more of the precursor gases 212 used to form the plasma. For example, in a plasma deposition of a fluorine-doped silicate glass (FSG) film, the flow rate of the silicon or fluorine precursor gas may be reduced to avoid arcing. The adjustments may also include a change in the timing of the introduction of one or more precursors to the processing chamber. For example, the introduction of a fluorine precursor may be changed to start before the RF power is activated to reduce arcing during the initial formation of the plasma in the processing chamber.
It should be appreciated that not all the adjustment 208, 210, and 212 have to be made to reduce arcing during a PECVD deposition. Any combination of one or more of the adjustment may be adequate to reduce or eliminate arcing, depending on the characteristics of the deposition process. Furthermore, the present invention contemplates that other adjustments may be made in addition to (or in lieu of) the adjustments 208, 210, and 212 described above (e.g., maintaining the pressure in the processing chamber about a de minimis level for the deposition process, setting the low-frequency RF power to less than 30% of the total RF power, reducing the total RF power used for generating the plasma, etc.).
Example Substrate Processing System
One suitable substrate processing system in which the method of the present invention can be carried out is shown in
The CVD system 10 contains a gas distribution fold 11 for dispersing process gases to a substrate (not shown) that rests on a heated pedestal 12 centered within the process chamber 15. During processing, the substrate (e.g., a semiconductor wafer) is positioned on a flat (or slightly convex) surface 12a of the pedestal 12. The pedestal 12 can be moved controllably between a lower loading/off-loading position (depicted in
Deposition and carrier gases are introduced into the chamber 15 through perforated holes 13b (
Before reaching the manifold 11, deposition and carrier gases are input from gas sources 7 through gas supply lines 8 (
The deposition process performed in the CVD system 10 can be either a thermal process or a plasma-enhanced process. In a plasma-enhanced process, an RF power supply 44 applies electrical power between the gas distribution faceplate 13a and the pedestal 12 so as to excite the process gas mixture to form a plasma within the cylindrical region between the faceplate 13a and the pedestal 12. (This region will be referred to herein as the “reaction region”). Constituents of the plasma react to deposit a desired film on the surface of the semiconductor wafer supported on pedestal 12. RF power supply 44 is a mixed frequency RF power supply that typically supplies power at a high frequency (RF1) of 13.56 MHz and at a low RF frequency (RF2) of 360 KHz to enhance the decomposition of reactive species introduced into the vacuum chamber 15. In a thermal process, the RF power supply 44 would not be utilized, and the process gas mixture thermally reacts to deposit the desired films on the surface of the semiconductor wafer supported on the pedestal 12, which is resistively heated to provide thermal energy for the reaction.
In the embodiment of the system shown in
During a plasma-enhanced deposition process, the plasma heats the entire process chamber 10, including the walls of the chamber body 15a surrounding the exhaust passageway 23 and the shut-off valve 24. When the plasma is not turned on or during a thermal deposition process, a hot liquid is circulated through the walls 15a of the process chamber 15 to maintain the chamber at an elevated temperature. A portion of these heat exchanging passages 18 in the lid assembly 15b of chamber 15 is shown
The remainder of the gas mixture that is not deposited in a layer, including reaction byproducts, is evacuated from the chamber 15 by a vacuum pump (not shown). Specifically, the gases are exhausted through an annular, slot-shaped orifice 16 surrounding the reaction region and into an annular exhaust plenum 17. The annular slot 16 and the plenum 17 are defined by the gap between the top of the chamber's cylindrical side wall 15a (including the upper dielectric lining 19 on the wall) and the bottom of the circular chamber lid 20. The 360° circular symmetry and uniformity of the slot orifice 16 and the plenum 17 are important to achieving a uniform flow of process gases over the wafer so as to deposit a uniform film on the wafer.
From the exhaust plenum 17, the gases flow underneath a lateral extension portion 21 of the exhaust plenum 17, past a viewing port (not shown), through a downward-extending gas passage 23, past a vacuum shut-off valve 24 (whose body is integrated with the lower chamber wall 15a), and into the exhaust outlet 25 that connects to the external vacuum pump (not shown) through a foreline (also not shown).
The wafer support platter of the pedestal 12 (preferably aluminum, ceramic, or a combination thereof) is resistively heated using an embedded single-loop embedded heater element configured to make two full turns in the form of parallel concentric circles. An outer portion of the heater element runs adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element passes through the stem of the pedestal 12.
Typically, any or all of the chamber lining, gas inlet manifold faceplate, and various other reactor hardware are made out of material such as aluminum, anodized aluminum, or ceramic. An example of such a CVD apparatus is described in U.S. Pat. No. 5,558,717 entitled “CVD Processing Chamber,” issued to Zhao et at. The U.S. Pat. No. 5,558,717 patent is assigned to Applied Materials, Inc., the assignee of the present invention, and is hereby incorporated by reference in its entirety for all purposes.
A lift mechanism and motor 32 (
In the exemplary embodiment shown in
System controller 34 controls all of the activities of the CVD machine. The system controller executes system control software, which is a computer program stored in a computer-readable medium such as a memory 38. Preferably, the memory 38 is a hard disk drive, but the memory 38 may also be other kinds of memory. The computer program includes sets of instructions that dictate the timing, mixture of gases, chamber pressure, chamber temperature, RF power levels, susceptor position, and other parameters of a particular process. Other computer programs stored on other memory devices including, for example, a floppy disk or other another appropriate drive, may also be used to operate controller 34.
A process for depositing a film on a substrate or a process for cleaning the chamber 15 can be implemented using a computer program product that is executed by the controller 34. The computer program code can be written in any conventional computer readable programming language: for example, 68000 assembly language, C, C++, Pascal, Fortran or others. Suitable program code is entered into a single file, or multiple files, using a conventional text editor, and stored or embodied in a computer usable medium, such as a memory system of the computer. If the entered code text is in a high level language, the code is compiled, and the resultant compiler code is then linked with an object code of precompiled Windows™ library routines. To execute the linked, compiled object code the system user invokes the object code, causing the computer system to load the code in memory. The CPU then reads and executes the code to perform the tasks identified in the program.
The interface between a user and the controller 34 is via a CAT monitor 50a and light pen 50b, shown in
Arcing During Deposition of FSG Film
In these examples, fluorine-doped-silicate (FSG) layers (generally having a 8 μm thickness) were deposited on a 300 mm silicon-on-insulator (SOI) substrate wafers in PECVD processes. The PECVD processing chamber used for the depositions was a Producer™ SE chamber made by Applied Materials, Inc. of Santa Clara, Calif. Plasma was generated and deposited on the substrate wafers using a dual-frequency RF power source that supplied high-frequency (i.e., 13.56 MHz) RF power and low-frequency (i.e., 350 kHz) RF power to the processing chamber. Table 1 shows additional processing details for various phases of a standard deposition run in the chamber:
A voltage probe was connected to the plasma precursor distribution faceplate to monitor changes in the DC bias voltage of the faceplate over time. The DC bias on the faceplate typically ranges from 200-600 Volts, and 100:1× probe was used to reduce the range of the probe output signal from 1-10 Volts. The probe was connected to a signal acquisition device that sampled the faceplate voltage at a rate of 100 kHz, and a plot was made of the faceplate voltage as a function of time over the course of the deposition.
The plot in
The plot in
An additional test was conducted to determine if both the ramp rate and the peak power level for the low-frequency RF should be reduced to prevent arcing during the activation of the RF power source. In this experimental run, the LF RF ramp rate was kept at the higher 350 watts/second rate, while the LF RF peak power was reduced to 350 watts. FIGS. 5A-B show plots of the DC bias voltage on the faceplate as a function of time for LF RF peak powers of 700 watts (
FIGS. 5A-B demonstrate that arcing can be prevented during the activation of the RF power source by reducing the LF RF ramp rate and/or the peak LF RF power. The adjustments made to either (or both) processing parameters may vary depending on the run being conducted. Lowering the high and low-frequency RF ramp rates too much can create instabilities in the plasma formed, as well as changing the chemistry of the layer being deposited on the substrate wafer. Lowering the peak LF RF power too much can slow the rate of plasma deposition on the substrate wafer, and reduce the overall efficiency of the fabrication process. Additional experimentation may be conducted to find RF ramp rates and power levels that do not cause arcing at the start of the process and also provide a high level of quality and efficiency for the deposited layer.
Arcing During Deposition of Integrated USG-FGS Film
In this example, an integrated undoped silicate glass (USG) and fluorine-doped-silicate (FSG) film was deposited on a 300 mm silicon-on-insulator (SOI) substrate wafer in a PECVD process. The PECVD processing chamber used for the deposition was a Producer™ SE chamber made by Applied Materials, Inc. of Santa Clara, Calif. Plasma was generated and deposited on the substrate wafer using a dual-frequency RF power source that supplied high-frequency (i.e., 13.56 MHz) RF power and low-frequency (i.e., 350 kHz) RF power to the processing chamber. The deposition started with the depositing of the USG material on the substrate wafer, followed by a transition to the deposition of the FSG material.
In a baseline process example, the transition from USG to FSG depositions was discontinuous with the USG process gases and RF power being terminated before the FSG process gases and RF power is initiated.
The diagnosis based on the plot in
A new experimental run was conducted with a modified FSG deposition phase based on the diagnosis above. In the modified FSG deposition, SiF4 was introduced to the chamber before the RF power was activated, and the low-frequency RF power was shut off at the start of the termination phase to minimize the DC bias spike during termination of the FSG deposition. The second plot in
Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the electrode” includes reference to one or more electrodes and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.