The present invention relates to a non-lethal wireless stun projectile system, and more specifically to a projectile that is launched from a conventional weapon; upon impact with a human target the system stuns and disables the target by applying a pulsed electrical charge. The electric round is defined as non lethal ammunition directed to incapacitate a human, to prevent him from moving for a short time, to prevent him from committing a crime and to allow authorized personnel to arrest the target.
The electric projectile operates by transmitting electric pulses to the target, paralyzing the target for a short time without clinical after effects. Upon impact the projectile attaches itself to the target and gives the same effect as a regular handle electrical shocker. The pulses of electrical current produced by the projectile are significantly lower than the critical cardio-vibration level and therefore the electric pulses are non-lethal. The electrical pulses cause neuromuscular-disruption, which incapacitates a living object.
The current invention also includes a novel thin film technology transformer and thin film technology battery. The transformer and battery are smaller and lighter than conventional transformers and batteries with similar power output. The small high power transformer and battery are necessary in order to produce an electrical shock capable of stunning a human being with a device the size of a conventional bullet.
Increasing attacks on unarmed civilian targets around the world have put governments and law enforcement officials into a difficult position. It is necessary to quickly and effectively stop terrorists and avoid civilian injury, but terrorists are hard to distinguish from innocent civilians and terrorists strike in areas that are not suitable to the positioning of large forces of dedicated guards. Therefore, in order to stop terrorists quickly before they can cause devastating damage, some police forces have adopted a “shoot them in the head” policy. Obviously, such a policy can lead to civilian casualties and controversy. On the other hand, caution in such cases can lead to massive civilian casualties as well as the death of the arresting officer. Also police often desire to apprehend a suspect who is fleeing. Obviously lethal force is inappropriate, but to allow a dangerous criminal to escape is also undesirable.
Therefore law enforcement officials seek a non-lethal weapon that can stop a terrorist without killing innocent civilians. One such weapon, currently popular, is commercialized under the trademark TASER gun [the weapon is disclosed in U.S. Pat. No. 3,803,463 issued Apr. 9, 1974 and now expired and U.S. Pat. No. 4,253,132 issued Feb. 24 1981 and now expired, improvements of the weapon have been disclosed in U.S. Pat. No. 5,654,867 issued Aug. 5 1977 and U.S. Pat. No. 6,636,412 issued Oct. 21, 2003]. The TASER gun shoots two darts with barbed electrodes connected to by wires to the gun body. The wires supply a pulsed electrical potential between the two darts. When both darts hit a target, the barbed electrodes penetrate skin or clothing. An electric circuit is completed and current flows through the target between the electrodes, incapacitating the target. The obvious disadvantages of the TASER gun are 1) the range is limited to the length of the wires 2) both darts must hit the target or the gun has no effect 3) movement of the target or the gun can produce tension on the wires, ripping the electrodes from the target and ending the stunning effect 4) the weapon is difficult to reload and can not be used again quickly in case one of the darts misses the targets, or if it becomes necessary to stun a second target 5) the TASER gun is a dedicated weapon and is very inconvenient for regular police officers who are also required to carry a conventional weapon.
What is needed is a projectile that can be used without hesitation in situations where it may be difficult to absolutely identity or isolate a target. Ideally the projectile should incapacitate the target at a variety of ranges, should be easily loaded fired and reloaded into a conventional firearm (for example an automatic 45 caliper pistol, an M16 assault rifle, a revolver, a standard issue police pistol, or a shotgun) and the projectile should not cause permanent injury. Furthermore, it is desirable that the target remains incapacitated for a few minutes (long enough to secure the area and take the target into custody).
The projectile should be characterized by the following properties:
The present invention is a non-lethal wireless stun projectile system. More specifically the present invention is a projectile that is launched from a conventional weapon; upon impact with a human target the system stuns and disables the target by applying a pulsed electrical charge. The electric round is defined as non lethal ammunition directed to incapacitate a human, to prevent him from moving for a short time, to prevent him from committing a crime and to allow authorized personnel to arrest him.
The electric projectile operates by transmitting electric pulses to the target, paralyzing the target for a short time without clinical after effects. Upon impact the projectile attaches itself to the target and gives the same effect as a regular handle electrical shocker. The pulses of electrical current produced by the projectile are significantly lower than the critical cardio-vibration level and therefore the electric pulses are non-lethal. The electrical pulses cause neuromuscular-disruption, which incapacitates a living object.
The current invention also includes a novel thin film technology transformer and thin film technology battery. The transformer and battery are smaller and lighter than conventional transformers and batteries with similar power output. The small high power transformer and battery are necessary in order to produce an electrical shock capable of stunning a human being with a device the size of a conventional bullet.
According to the teachings of the present invention there is provided a wireless projectile for stunning a target including: an impact reduction subsystem to protect the target from impact damage caused by impact of the projectile onto the target, an attachment mechanism to secure the wireless projectile to the target upon impact of the wireless projectile upon the target and an energy delivery subsystem that supplies energy to the target thereby stunning the target after the wireless projectile is secured to the target by the attachment mechanism.
According to the teachings of the present invention, there is also provided a thin film technology galvanic cell for producing an electric potential. The galvanic cell includes: a separator substrate, two electrodes deposited on the separator substrate, and an electrolyte fluid. When the electrolyte fluid is absorbed by the separator substrate, ions are transferred through the electrolyte fluid between the two electrodes. This produces an electric potential between the two electrodes.
According to the teachings of the present invention, there is also provided a thin-film technology transformer including: a plurality of spiral coils arranged into two blocks. In each block the coils are arranged as a stack of at least one coil.
According to further features in preferred embodiments of the invention described below, the wireless projectile also includes an integral ring to facilitate launching of the wireless projectile by means of firing of the wireless projectile from a conventional firearm.
According to still further features in the described preferred embodiments, the wireless projectile of the current invention is configured to be launched by a conventional firearm. Particularly, the size, shape and weight of the projectile are similar to those of a conventional bullet and the projectile is packaged in a cartridge for launching from a gun.
According to still further features in the described preferred embodiments, the wireless projectile includes a stability wing, which creates drag, slowing the projectile and preventing impact damage to the target. The stability wing further supplies aerodynamic stability so that the ballistic of the projectile remains flat as much as possible even at reduced velocity.
According to still further features in the described preferred embodiments, the attachment mechanism of the wireless projectile remains safe from accidental deployment until the mechanism is armed. Arming of the projectile occurs upon launch.
According to still further features in the described preferred embodiments, the attachment mechanism of the projectile is triggered and deployed on proximity to the target.
According to still further features in the described preferred embodiments, the attachment mechanism of the wireless projectile is triggered upon impact of the wireless projectile with the target.
According to still further features in the described preferred embodiments, during storage of the projectile, the energy delivery subsystem of the projectile is in a non-active state in order to save charge. The energy delivery subsystem is activated upon impact of the wireless projectile with the target.
According to still further features in the described preferred embodiments, the energy delivery subsystem of the projectile includes a battery, and the battery is stored in a non-active state in order to save charge. The battery is activated upon impact of the wireless projectile with the target.
According to still further features in the described preferred embodiments, the impact reduction subsystem of the projectile includes a deformable pad. The deformable pad is located on an impact zone of the wireless projectile. Upon impact with a target, the pad deforms and spreads the energy of impact in space and time, preventing impact damage to the target.
According to still further features in the described preferred embodiments, the energy delivery subsystem of the projectile includes a thin film technology galvanic cell.
According to still further features in the described preferred embodiments, the energy delivery subsystem of the projectile includes a thin film technology transformer.
According to still further features in the described preferred embodiments, the impact reduction subsystem of the projectile includes a mobile subassembly. The mobile subassembly is not rigidly attached to the impact zone of the projectile and can move in relation to the impact zone of the projectile.
According to still further features in the described preferred embodiments, the mobile subassembly includes at least one component selected from the group consisting of the energy delivery subsystem, the attachment mechanism, a spider arm, a battery, a transformer, and a capacitor.
According to still further features in the described preferred embodiments, motion of the mobile subassembly relative to the impact zone activates a component of the system.
According to still further features in the described preferred embodiments, the projectile includes a mobile subassembly and further includes an energy absorbing connection. The energy absorbing connection cushions deceleration of the mobile subassembly and reduces the force of impact of the projectile upon a target.
According to still further features in the described preferred embodiments, the projectile includes a mobile subassembly and an energy absorbing connection. The energy absorbing connection includes a friction connector, a spring, a hydraulic shock absorber, a serrated track or a flexible latch.
According to still further features in the described preferred embodiments, the impact reduction subsystem includes a sub-projectile. The sub-projectile impacts the target separately from an impact zone on the projectile body. Thereby the mass associated with the impact zone of the projectile body is reduced (because the projectile body does not include those components mounted in the sub-projectile; therefore their mass does not contribute to the force of impact of the projectile body). Thereby reducing the momentum associated with the impact zone, which reduces impact damage to the target.
According to still further features in the described preferred embodiments, the projectile includes a sub-projectile. The sub-projectile is connected to the projectile body and the impact zone of the projectile body by a wire. Upon impact of the projectile body upon the target, the wire wraps around the target thereby securing the impact zone to the target at a first location and securing the sub-projectile to the target at a second location.
According to still further features in the described preferred embodiments, the energy delivery subsystem of the projectile produces an electrical potential. The electrical potential is applied as a voltage difference between the impact zone of the projectile body and a sub-projectile such that when the impact zone is near the target at a first location and the sub-projectile is near the target at a second location, electrical energy passes through the target as an electrical current from the first location to the second location.
According to still further features in the described preferred embodiments, the attachment mechanism of the projectile further serves as a conduit to transfer the energy from the energy delivery subsystem to the target.
According to still further features in the described preferred embodiments, the attachment mechanism of the projectile is an electrode and further serves as a conduit to transfer electrical energy from the energy delivery subsystem to the target.
According to still further features in the described preferred embodiments, the attachment mechanism of the projectile includes a barbed hook.
According to still further features in the described preferred embodiments, the attachment mechanism includes: a first barbed hook and a second barbed hook. The first barbed hook engages the target at a first angle and said second barbed hook engages the target at an opposing angle. Thus the two barbed hooks grasp and entangle the target.
According to still further features in the described preferred embodiments, the attachment mechanism includes a spider arm.
According to still further features in the described preferred embodiments, the attachment mechanism includes a spider arm and the spider arm springs out from the side of the wireless projectile.
According to still further features in the described preferred embodiments, the attachment mechanism includes a spider arm and a mobile subassembly. The mobile subassembly is mobile in relation to an impact zone of the projectile. Motion of the mobile subassembly relative to the impact zone serves to embed the spider arm into the target.
According to further features in the described preferred embodiments, the separator substrate of the galvanic cell has a thickness of less than 50 μm.
According to still further features in the described preferred embodiments, the electrodes of the galvanic cell each have a thickness of less than 100 μm.
According to still further features in the described preferred embodiments, the separator substrate of the galvanic cell is a dielectric when in a dry state.
According to still further features in the described preferred embodiments, the galvanic cell is activated at the time of use by applying the electrolyte fluid to the separator substrate.
According to further features in the described preferred embodiments, the thin film technology transformer includes a first spiral coil, which is a right hand coil and a second spiral coil, which is a left hand coil. The right and left hand coils are connected in an alternating sequence so that the current revolves are the center axis of the transformer in a consistent direction, thus producing a coherent magnetic field.
According to still further features in the described preferred embodiments, each spiral coil of the thin film transformer includes an isolator substrate and a conductor. The conductor is deposited on the isolator substrate in the form of a spiral.
According to still further features in the described preferred embodiments, the isolator substrate of the thin film transformer has a thickness of less than 30 μm.
According to still further features in the described preferred embodiments, the conductor of the thin film transformer has a thickness of less than 50 μm.
According to still further features in the described preferred embodiments, the thin film technology transformer is configured for optimum voltage conversion over a predetermined time-span.
The invention is herein described, by way of example only, with reference to the accompanying drawings, where:
a is a depiction of a miniature thin film transformer according to the present invention;
b is a symbolic representation of the thin film transformer of
The principles and operation of a non-lethal wireless stun projectile system according to the present invention may be better understood with reference to the drawings and the accompanying description.
Shown in the
Projectile 10 may be fired at a range of 10-30 meter without killing. The electrical round is quite heavy. Therefore in order to avoid permanent injury at such short ranges, impact is minimized by an impact reduction subsystem. The impact reduction subsystem acts to: 1) increase the impact area, spreading the impact energy over a wide area and 2) soften the impact by distributing the impact energy over a relatively long time. Increasing the impact area and distributing the impact over time is achieved by means of a deformable pad 16 located on the impact zone of the projectile. In embodiment 10, the preferred ballistic is a flat trajectory as much as possible, (AMAP) in order to achieve, easy aiming and better accuracy. Therefore, the impact is perpendicular and the impact zone is the front of the projectile (marked by deformable pad 16).
Deformable pad 16 collapses and flattens on impact thus spreading the impact energy on larger area and spreading the impact energy over a larger time (required for deformable pad 16 to collapse) then the impact area and time of a solid bullet. Spreading the impact energy decreases the possibility of injury. To further decrease the probability of permanent injury, the impact zone in embodiment 10 is free of hard elements to eliminate any penetration possibility or “hard” impact that can cause fatal injury. The design considers maximum energy/area of 30 Joule/cm2 should not be exceeded to avoid long-term impact damage.
Also shown in
The attachment mechanism of the projectile of embodiment 10 includes four spider arms 20a, 20b, 20c, 20d, each with a corresponding barb 22a, 22b, 22c, and 22d. Due to the semicircular trajectory of spider arms 20a-d, each arm engages target 40 at a different angle. Barbs 22a-d are thin and sharp. Therefore barbs 22a-d and consequently spider arms 20a-d penetrate clothes skin and other materials, hooking into the flesh of target 40 to bind target 40 preventing target 40 from releasing himself from the projectile of embodiment 10. Particularly, spider arm 22a engages the target at a first angle and spider arm 22c engage target 40 at an opposing angle. Similarly spider arms 22b and 22d engage target 40 in opposite directions. It will be understood to one skilled in the art of non-lethal weapons, that because barbs 22a and 22c engage target 40 from opposing sides and in opposing directions they grasp, entangle and hook target 40, attaching the projectile to target 40 and making it exceedingly difficult for target 40 to disentangle himself from the projectile of embodiment 10. The same effect is achieved by the opposing barbs 22b and 22d. Because spider arms 20a-d approach the target in a semi-circular arc from outside the edges of the projectile, spider arms 20a-d do not interfere with front impact zone of deformable pad 16 that is deformed during impact.
Impact also initiates the electrical subsystem of the stun projectile. The electrical subsystem is not shown in embodiment 10, but is illustrated in embodiment 100,
Specifically, embodiment 100 (
When the projectile of embodiment 100 impacts a target (not shown), deformable pad 16 is quickly crushed and projectile body 12 and rigidly mounted subassembly 102 decelerate abruptly. On the other hand, mobile subassembly 104 continues to travel forward, sliding along guide rod 106 towards rigidly mounted subassembly 102. Mobile subassembly 104 is decelerated by the energy absorbing connection between flexible latch 110 and serrated track 112. Therefore, the rate of deceleration of mobile mounted subassembly 104 is less than the rate of deceleration of projectile body 12 and rigidly mounted subassembly 102. It is understood by one skilled in the art of momentum absorbing devices that force of impact is proportional to the rate of deceleration and mass being decelerated. Therefore, by mounting mobile subassembly 104 on an energy-absorbing track, the force of impact of the projectile of embodiment 100 on a target is significantly lessened. This decreases the probability that the target will suffer impact damage. Thus, mobile subassembly 104, spring electrical contacts 108, flexible latch 110 and serrated track 112 along with deformable pad 16 are all included in the impact reduction subsystem of embodiment 100.
Upon impact of the projectile of embodiment 100 with a target, inertial forces causes mobile subassembly 104 to slide forward along guide rod 106. Soon after impact between the projectile of embodiment 100 and the target, mobile subassembly 104 slides to the end of guide rod 106. Then mobile subassembly 104 collides with rigidly mounted subassembly 102. Collision with mobile subassembly 104 pushes activator button 602 (see
Deceleration of mobile subassembly 104 is timed such that the collision between mobile subassembly 104 and rigidly mounted subassembly 102 occurs after the triggering, deployment and extension of spider arms 20 (see
The stun projectile of embodiment 100 has the following electrical parameters:
Also shown if
Upon launch the capsule falls away revealing (
The advantages of embodiment 300 are:
Producing an electric shock that will incapacitate an adult human being for 5 minutes using a mechanism the size of standard ammunition requires that the electrical components (battery 52, high voltage transformer 54, low voltage transformer 56, and capacitor 58) be smaller and more efficient than those currently available. In the present invention, miniature electrical components are produced using novel applications of thin film technology.
High-voltage transformer 54 is produced using thin-film technology.
Illustrated in
In a similar manner, spiral coil 400c is a right hand spiral exactly similar to spiral coil 400a. Thus, current passes from spiral coil 400b to spiral coil 400c via mechanical connector 414b to outer electrode connector 406c and spirals rightward and inward to inner electrode 408c further strengthening the downward magnetic field. Current continues through spiral coil 400d which is a left hand coil exactly similar to spiral coil 400b. Thus, current rotates outward and rightward to outer electrode connector 406d strengthening the downward magnetic field. Current passes from outer electrode connector 406d to terminal 412b.
a and 14b illustrate block 410a, serving as primary windings of a step up transformer. Block 410a is connected to an alternating current source 416. Current passing through the windings of block 410a induces an alternating magnetic field. The magnetic field induces a current in block 410b. Block 410b is a stack of alternating right and left spiral coils (400 not shown) connected in series in a manner similar to block 400a. Block 410b contains 16 spiral coils (400 not shown). The coils (400) of block 410b are collected into two stacks 422a and 422b of 8 coils each. Stacks 222a and 422b are connected in series by mechanical connecter 414e. Block 410a is mounted in between stacks 422a and 422b such that the spiral coils 400a-400d are coaxial with the spiral coils (400) of block 410b. Thus when input voltage and current are applied across block 410a a magnetic field is produced. The magnetic field induces an electrical potential having four times the input voltage across block 410b (from terminal 412c to terminal 412d).
Conventional transformers need a ferrite or steel core to propagate the magnetic field from the primary windings to the secondary windings. The ferrite core adds weight to the transformer and also reduces the efficiency of the transformer. Because windings of the thin film high voltage transformer 52 of the present invention are very dense, therefore the spacing between the primary and secondary windings is small and high voltage transformer 52 has no magnetic conductor core. As a result, high voltage transformer 52 is lighter and more efficient than conventional transformers.
Because high voltage transformer 52 is for one-time use only and the working time is not to exceed 10 min, the cross-section of the current conductive layer of high voltage transformer 52 can be smaller than allowed in a conventional transformer. The thin conductive layer will lead to temporary heating of the transformer, but nevertheless, the short working life of the transformer will ensure that thermal break down does not occur. Decreasing the dimensions of the current conductive layer allows further decrease in the dimensions and weight of high voltage transformer 52 with respect to the conventional transformers.
For example one embodiment of a thin film technology transformer having input voltage 1 kV and current 1 mA and output voltage and current 100 kV and 10 ? A with a working life of 5 min is made of the following materials:
The external diameter of each spiral coil is 12 mm and the inner diameter of each coil is 5 mm; each spiral has 10 revolutions. The transformer contains 10 spiral coils stacked in the primary winding and 1000 spiral coils stacked in the secondary winding. Thus the transformer is a cylinder of total dimensions 16 mm height and 12 mm diameter. The mass of the transformer is 10 g.
This is smaller lighter and more efficient than a conventional wire wound ferrite core transformer. In order to achieve and output voltage and current of 100 kV and 10 μA a conventional transformer requires input voltage and current of 1 kV and 1 mA and has dimensions, 23 mm diameter and 50 mm height, by weighing 40 g.
It will be understood by one skilled in the art of electrical devices, that the electrical potential (voltage drop) between adjacent spiral coils 400a and 400b is approximately one quarter the electrical potential between terminals 412a and 412b. Generally because of the stacked architecture of the spiral coils (400) in a block (410), the electrical potential between adjacent spiral coils is V/N where V is the electrical potential over the entire block and N is the number of spiral coils in the block. Because the voltage difference between neighboring spiral coils is much less than the voltage drop over the block, the potential for short-circuiting is reduced. This makes it possible to produce a very high voltage transformer without needing thick/heavy insulation between windings. This reduces the size and weight of the transformer with respect to conventional wire winding transformers.
A thin film transformer according to the present invention is smaller and lighter than a conventional transformer because:
Other advantages of the thin film transformer of the current invention over convention transformers are: There is no need for an iron core, which reduces the efficiency of voltage transformation. The parameter of transformation of a thin film transformer can easily be varied by changing of number of spiral coils.
One skilled in the art of electronic devices will understand that many possible variations of a transformer according to the spirit of the present invention are included in this patent. Alternative conducting materials can employed in the spirals coils including, for example, cuprum, alumina, and carbon. Connection between the spirals' ends can be made by alternative methods, for example mechanical connectors or electro-conductive glue. A thin film transformer can include a magnetic ferrite core or function without ferrite. Spiral conductors can be created at the separating substrate by many methods, including spreading, chemical deposition/sedimentation, by regular typing, or other known methods. The layers of isolating substrates can be connected by glue or can be held by the outer construction of the bullet. The materials of such isolating substrates can include various isolators for example, paper and plasmas.
Typical ranges of parameters for production of a thin film technology transformer are: The insulating substrate can be from 3-50 μm thick. A single transformer will contain from 10 to 10,000 spiral coils. The height of the block of stacked spiral coils will be 10-30 mm. Output of the transformer will be 100-2000 V at 1-10 mA for a low voltage transformer and from 50-100 kV at 1-100 μA for a high voltage transformer.
Illustrated in
Initially, dry separator substrate 506 acts as a dielectric insulator membrane, separating between the electrodes (plus [cathode 502] and minus [anode 504]). Both cathode 502 and anode 504 are created using sprite system to create a thin layer on the surface of the separator substrate 506. Galvanic cell 500 is activated when the initially dry separator substrate 506 absorbs an electrolyte fluid 606 (see
Separating substrate 506 is made as a ribbon in the form of a spiral, as shown in
Galvanic cell 500 is activated when separating substrate 506 absorbs electrolyte fluid 606. Initially electrolyte fluid 606 is inside an ampoule 608. At the time of use, ampoule 608 is destroyed by a miniature cutter bur 610, as shown in
It will be understood to one skilled in the art of galvanic cells, that because galvanic cell 500 and battery 52 are not activated when the cell is assembled (in the factory before the time of use), galvanic cell 500 and battery 52 are stored in an inactive state. Therefore, galvanic cell 500 and battery 52 preserve charge during storage better than and have a longer shelf life than conventional batteries.
For Example one embodiment of a thin film technology galvanic cell for use in a stun projectile is made as follows:
The ribbons roll up in the form of cylinder having a height 6 mm and diameter 12 mm. The battery is activated by 3 cm3 of electrolyte fluid consisting of 50% H2SO4+50% H2O. The cell produces 5A of current with an electrical potential of 2V (thus producing 10 Watts of power) for 2 min.
The short-term performance advantage of the thin film battery is obvious in comparison to standard miniature batteries (for example, the standard hearing aid batteries having a similar volume and weight to the above embodiment of a thin film battery) produce a maximum current of 1.5 A at 1.5 V.
It will be clear to one skilled in the art of galvanic cells that the materials and measurements of a thin film technology battery can be modified according to the desired output and physical characteristics of the battery. Such modifications are within the spirit of the current patent. Exemplary parameters for a battery of output potential 0.5-3 V and output current 1-10 A are: separator substrate thickness of 10-50 ?m, electrode layers thickness from 1-50 ?m and electrolyte volume 1-6 cm3.
The advantages of thin film technology chemical battery 52 compared to conventional batteries are the following:
It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the spirit and the scope of the present invention.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This is a continuation-in-part of U.S. Provisional Patent Application No. 60/698009, filed Jul. 12, 2005 and U.S. Provisional Patent Application No. 60/698010, filed Jul. 12, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3523538 | Kunio | Aug 1970 | A |
3803463 | Cover | Apr 1974 | A |
4253132 | Cover | Feb 1981 | A |
5654867 | Murray | Aug 1997 | A |
5698815 | Ragner | Dec 1997 | A |
5962806 | Coakley et al. | Oct 1999 | A |
6636412 | Smith | Oct 2003 | B2 |
7086337 | Klein | Aug 2006 | B2 |
7100514 | LeBourgeois | Sep 2006 | B2 |
7327549 | Smith et al. | Feb 2008 | B2 |
7421951 | Genis et al. | Sep 2008 | B2 |
7631601 | Feldman et al. | Dec 2009 | B2 |
Number | Date | Country |
---|---|---|
2585423 | Nov 2003 | CN |
Number | Date | Country | |
---|---|---|---|
20070101893 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60698009 | Jul 2005 | US | |
60698010 | Jul 2005 | US |