The present invention relates generally to medical devices, and more particularly to a medical device for the dilation of blood vessels and/or the dilation of structures positioned within blood vessels.
Conventional systems for dilating blood vessels and/or structures (e.g., stents or stent grafts) positioned in a blood vessel utilize balloon-like structures (“balloon dilators”). Such structures are typically made from essentially impermeable materials. When such a device is expanded to perform a dilation, blood flow is entirely or substantially occluded through the blood vessel in which the balloon dilator is being used. Such an occlusion of blood flow could, if continued for too long, harm the patient, since portions of the body downstream of the balloon dilator will not receive blood while the flow is occluded or substantially hindered. Thus, the length of time balloon dilators may be dilated is limited and this can hinder proper completion of the dilation procedure.
A similar problem with balloon dilators arises when a dilation procedure is being performed in a portion of the circulatory system where there is a branch in the blood vessels, such as where the iliac or renal arteries are side vessels that branch from the aorta. In that case a balloon dilator may cover a side vessel and partially or totally occlude blood flow to the side vessel.
Another problem with balloon-like dilators is called the “windsock effect.” Because blood flow is substantially or entirely occluded when balloon dilators are dilated, the blood pressure upstream of the balloon dilator can be significant and may cause the balloon dilator, and any structure (such as a stent or stent graft) positioned in the blood vessel and that is being dilated by the balloon dilator, to move out of the desired position, effectively pushed down stream (i.e., in the antegrade direction) by the upstream blood pressure. Because of this problem accurate placement of such structures can be difficult utilizing balloon dilators.
As used herein, in addition to the other terms defined in this disclosure, the following terms shall have the following meanings:
“Assembly” means a device according to the invention assembled as part of or connected to a catheter so that it can be advanced into a vessel.
“Collapsed” when referring to a device according to the invention means that the device is in its relaxed, undilated position. The device would normally be in its collapsed position when introduced into a vessel and/or when retained within a cover sheath of a triaxial catheter.
“Contraction” of a device or “contracting” a device means that its diameter is being or has been reduced from a dilated position.
“Criss-cross” pattern means a wire pattern wherein the wires cross one another as shown, for example, in
“Device” or “dilation device” means a structure for (a) dilating a vessel, and/or (b) dilating a structure inside of one or more vessels (such as an endograft stent or stent graft) to be deployed or repositioned within one or more vessels.
“Diameter” as used in connection with a vessel means the approximate diameter of a vessel since vessels are seldom perfectly cylindrical. “Diameter” as used with respect to any man-made structure means the approximate diameter.
“Diameter disparity ratio” means the disparity of the diameter of a single vessel. Vessels, particularly diseased vessels, may not have a relatively constant diameter and the diameter can suddenly increase or decrease. For example, the diameter of a vessel may suddenly change from an initial diameter to a diameter of 1.5 times the initial diameter, in which case the diameter disparity ratio would be 1.5:1. A diameter disparity ratio or multi-vessel diameter disparity ratio (as defined below) to which a device according to some aspects of the invention could conform is one or more of the ratios between 1.2:1 and 3.4:1, including diameter disparity ratios of 1.2:1, 1.4:1, 1.6:1, 1.8:1, 2.0:1, 2.2:1, 2.4:1, 2.6:1 and 2.8:1, 3.0:1 and 3.4:1.
“Dilated” refers to a device according to the invention when it is expanded. A device dilated within a vessel may be dilated for the purpose of dilating the vessel itself and/or for dilating a structure within the vessel. “Expanded” and “dilated” have the same meaning when used in connection with a device according to the invention.
“Fluid” means any bodily fluid, such as blood.
“Fully dilated” or “fully expanded” means the maximum amount a device according to the invention can be dilated (as measured at its greatest diameter) when unhindered by external structures (such as a vessel) and when dilated using the delivery system of a catheter to which the device is attached.
“Kink radius” refers to the radius to which a device according to the invention can be formed without the device permanently deforming (i.e., without “kinking”). If the device is mounted on a catheter the kink radius refers to the kink radius of the entire assembly, i.e., the device mounted to a biaxial or triaxial catheter (with the sheath covering the device), since the entire assembly moves through the vessel when the device is advanced into place. The lower the kink radius the greater the resistance of the device or assembly to kinking.
“Multi-vessel diameter disparity ratio” means the disparity of the diameters of two vessels. When a device according to the invention is used it may be deployed and dilated within two vessels simultaneously and the two vessels may have different, respective diameters. For example, if one vessel has a first diameter and the second vessel has a second diameter 1.8 times as large as the first diameter, the multi-vessel diameter disparity ratio would be 1.8:1. A device according to some aspects of the invention could conform to one or more of the multi-vessel diameter ratios between 1.2:1 and 3.4:1.
“Pressure drop” means the reduction in pressure in part of a vessel when a device is (a) dilated within the vessel, or (b) dilated in another vessel but totally or partially covering the opening to the vessel (in which case the vessel may be referred to as a “side vessel”). When a balloon dilator is fully dilated within a vessel the pressure upstream of the balloon dilator increases significantly while the pressure downstream of the balloon dilator, or in a side vessel covered by the balloon dilator, can reach substantially zero (meaning that the balloon dilator has blocked most or all of the blood flow). As an example, if the pressure at a location in a vessel is 100 mm Hg (i.e., a pressure of 100 millimeters of mercury) before a device is dilated within the vessel, and the pressure at the same location in the vessel is 10 mm HG after the device is dilated, the pressure drop would be 90%, i.e., 100−10=90, and 90/100=90%. Similarly, for the same vessel if the pressure after dilation were 20 mm Hg the pressure drop would be 80%, if the pressure after dilation were 30 mm Hg the pressure drop would be 70%, if the pressure after dilation were 5 mm Hg the pressure drop would be 95% and if the pressure after dilation were 1 mm Hg the pressure drop would be 99%.
“Strut” means a wire having a generally rectangular (preferably with radiused edges) cross-section with generally flat top and bottom surfaces and having a width greater than its thickness.
“Vessel” means any vessel within a body, such as the human body, through which blood or other fluid flows and includes arteries and veins.
“Vessel flow path” means the direction of fluid flow through a vessel.
“Wire” means any type of wire, strand, strut or structure, regardless of cross-sectional dimension (e.g., the cross-section could be circular, oval, or rectangular) or shape, and regardless of material, that may be used to construct a device as described or claimed herein. Some wires may be suitable for one or more of the embodiments but not suitable for others.
The present invention provides a device for dilating either a vessel or a structure positioned within the vessel. The device may be used in any medical application in which dilation of a vessel and/or dilation of a structure positioned within a vessel (e.g., a stent or stent graft, such as a thoracic or abdominal aortic stent graft) is desired. The device is designed so that when it is expanded it does not occlude or substantially hinder the flow of fluid through the vessel or through side vessels are connected to the vessel. The device includes a plurality of wires and has a first position in which the device is not dilated and can be moved into or retrieved from a vessel, and a second position in which the device is dilated and dilates the vessel and/or a structure within the vessel. When dilated, fluid passes through openings between the wires rather than being occluded or substantially hindered.
According to one embodiment of the invention, the device comprises a wire mesh that may be spiraled, formed in a criss-cross pattern (most preferred) or formed in any suitable pattern. The expansion and contraction of the device may be accomplished using a twisting motion (especially for a device having a spiraled wire mesh pattern) or by applying linear pressure to the device such as through a pushing or pulling motion by an operator, which compresses the device along the axis of a catheter to which it is attached and causes the device to dilate. The device can be contracted and collapsed by reversing the twisting motion or by releasing the linear pressure.
According to another embodiment of the invention, the device comprises a plurality of wires that are substantially parallel to the vessel flow path when inserted in a vessel. The expansion and contraction of such a device is preferably accomplished by applying linear pressure to the device such as through a pushing or pulling motion by an operator to compress the device and expand it, and by releasing the linear pressure to contract and collapse the device.
Any device according to the invention may be preshaped so that it automatically expands into a set position when released from a catheter sheath. It can then be dilated further or contracted by an operator in one of the manners previously described or in suitable manner. An additional advantage of this particular design is that it takes less time and operator effort to dilate or contract the device to the proper dimension for use in a procedure since the device pre-expands to a diameter close to the desired diameter.
Any device according to the invention is preferably mounted on a catheter and, utilizing the catheter, the device is positioned at the proper place within a vessel and then dilated. The catheter may be biaxial (without a cover sheath) or triaxial (with a cover sheath), which is most preferred.
The descriptions of the invention herein are exemplary only and are not restrictive of the invention as claimed.
FIGS. 1A-E show examples of dilation devices according to various aspects of the invention.
FIGS. 2A-C show a spiraled dilation device according to one embodiment of the invention.
FIGS. 3A-D show additional views of a spiraled dilation device according to one embodiment of the invention.
FIGS. 4A-C show a non-spiraled, dilation device according to one embodiment of the invention.
FIGS. 5A-B show another non-spiraled, dilation device according to one embodiment of the invention.
FIGS. 6A-B show a delivery and deployment system for a non-spiraled, dilation device according to one embodiment of the invention.
A device according to the invention is for dilating a vessel and/or a structure (such as an endograft, stent or stent graft) positioned in the vessel, or alternatively may be used to simultaneously dilate two vessels or dilate a structure positioned in two vessels. The device comprises a plurality of wires and has a first position wherein it is collapsed. In this first position the device has a sufficiently small enough diameter to be positioned in a vessel where it is to be used. The device also has a second position wherein it is dilated in order to dilate a vessel and/or a structure within the vessel. When dilated the wires of the device are spaced apart to allow for the passage of fluid through the device. Thus, the device is designed so that it does not occlude or substantially hinder the flow of fluid through the vessel.
A device according to the invention may have a collapsed diameter sufficient to fit into any suitable catheter. A device according to the invention may fit into a 12 french diameter catheter, a 15 french diameter catheter, or any other catheter suitably sized for a procedure utilizing the device. The fully expanded diameter of a device according to the invention is preferably between 30 mm and 55 mm. In one embodiment the collapsed diameter is slightly less than 12 french and the fully expanded diameter is between 30 mm and 35 mm. In another embodiment the collapsed diameter is slightly less than 15 french and the fully expanded diameter is between 50 mm and 55 mm.
A device according to the invention may also be configured to have a fully expanded diameter of 15% greater than the diameter of a vessel at the location in the vessel at which the device is to be dilated.
A device according to the invention may also have any suitable length, such as any length of between 4 cm (centimeters) and 15 cm between the distal end and the proximal end when the device is in its fully collapsed position. Some preferred lengths are between 4 cm and cm, between 6 cm and 15 cm, between 8 cm and 15 cm, between 10 cm and 15 cm, and between 12 cm and 15 cm.
A device according to the invention exerts a radial force when being dilated, wherein the radial force is sufficient to dilate a stent or stent graft with which the device is used. The radial pressure can be between 5 pounds per square inch (psi) and 20 psi, between 6 psi and psi, between 7 psi and 20 psi, between 8 psi and 20 psi, between 9 psi and 20 psi, between 10 psi and 20 psi or between 15 psi and 20 psi. The radial pressure may vary within a given range depending upon the diameter of the device (e.g., the radial pressure may decrease as the diameter of the device increases). The radial pressure within a given, suitable psi range is preferably exerted over the entire working range of the device. The “working range” means all diameters of the device at which the device is expanding a stent or stent graft. In one embodiment, the measured radial force exerted at given diameters was 9.4 psi at a diameter of 20 mm, 6.7 psi at a diameter of 30 mm and 6.3 psi at a diameter of 40 mm. A device according to the invention preferably exerts a radial pressure of between 5 psi and 20 psi over at least part, and preferably over all, of its working range.
Some devices according to the invention are also sufficiently compliant (or flexible) so that when placed in a vessel and dilated they conform to the dimensions of the vessel even when the vessel dimensions are not uniform. In particular, some devices of the present invention can conform to one or more diameter disparity ratios of between 1.2:1 and 3.4:1 and some devices according to the invention can conform to one or more multi-vessel diameter disparity ratios of between 1.2:1 and 3.4:1.
The wires used in a device according to the invention may be of any suitable size, shape, thickness and material. For example, all or some of the wires may have a generally circular cross-section and have a diameter of between 0.008″ and 0.018″. Alternatively, all or some of the wires may include one or more struts that have a thickness of between 0.008″ and 0.018″ and a width of between 0.020″ and 0.050″. A wire may be comprised of stainless steel, nitinol, cobalt, chromium or any suitable metal, plastic or other suitable material. In one preferred embodiment, the wire is comprised of nitinol, has a generally circular cross section and a diameter of about 0.015″. In this embodiment, the wires are formed in a criss-cross pattern (as shown in
The device may have any suitable density of wires and the wires may be formed in any suitable pattern, such as in a criss-cross pattern or in a non-overlapping pattern in which the wires are parallel to vessel flow path (as shown in
If a device according to the invention has wires that are parallel (as used in this context, “parallel” means the wires are substantially parallel to one another) to the vessel flow path, the device may have between four and twenty-four wires, or may have more than twenty-four wires. In various embodiments, a device according to the invention includes, respectively, four wires, five wires, six wires, seven wires, eight wires, nine wires, ten wires, eleven wires, twelve wires, thirteen wires, fourteen wires, fifteen wires, sixteen wires, seventeen wires, eighteen wires, nineteen wires, twenty wires, twenty-one wires, twenty-two wires, twenty-three wires and twenty-four wires. The maximum distance between each wire in such a device can vary depending upon the number of wires, the width of the wires and the proposed use of the device, but generally the maximum distance between wires will be between 1 mm and 100 mm when the device is fully dilated. In various embodiments of the device, the maximum distance is, respectively, no greater than 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, 80 mm, 85 mm, 90 mm, 95 mm or 100 mm.
If a device according to the invention includes wires in a criss-cross pattern, each of the largest spaces between the wires when the device is fully dilated could have an area of between 1 mm2 and 400 mm2, including areas of 1 mm2, 2 mm2, 4 mm2, 10 mm2, 25 mm2, 50 mm2, 75 mm2, 100 mm2, 150 mm2, 200 mm2, 250 mm2, 300 mm2, 350 mm2, and/or 400 mm2 or areas within that range. It is also possible that the area of the largest spaces could be larger than 400 mm2 or smaller than 1 mm2, as long as the device falls within the scope of one of the claims and works for its intended purpose of dilating a vessel or dilating a structure within a vessel without occluding or substantially hindering fluid flow through the vessel.
A device according to the invention may also have spaces between the wires that are greater in the central portion of the device than at the ends of the device, as illustrated, for example, in
A device according to the invention may be constructed to any suitable size or in any suitable manner to accommodate a particular vessel, including veins and arteries (e.g., the abdominal aorta, aortic arch, the ascending aorta, the descending aorta, an iliac artery, or a renal artery). For example, the device may be used in wall apposition of a thoracic and/or abdominal endoluminal grafts, which means it expands to position at least a portion of a stent graft snugly (without a sheath) against the artery wall.
A device may be introduced into a vessel using either a biaxial (without a sheath) or triaxial (with a sheath) catheter, which is typically inserted over a guide wire. Optionally, the device includes one or more radio opaque markers that assist an operator in locating the device once in a vessel, although a device according to the invention can generally be seen using fluoroscopy without the need for radio opaque markers.
When dilated, a device according to the invention does not occlude or substantially hinder the flow of fluid through a vessel or into a side vessel because the fluids flow through the spaces (or openings) between the wires. In a pressure monitoring test using water as the fluid and a plastic tube to simulate the aorta the pressure drop within a vessel and downstream of a dilated device as generally shown in
Reference will now be made to preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings, wherein the purpose is to describe certain examples of the invention and not to limit the scope of the claims. FIGS. 1A-E show examples of spiraled devices according to various aspects of the invention. These devices are preferably dilated and collapsed by winding (to contract) and unwinding (to dilate) a plurality of wires that are preferably formed in a spiraled pattern. Device 100 shown in
Device 101 shown in
Device 103 shown in
Any device according to the invention may utilize a lining, such as lining 105 shown in
Lining 105 is preferably made from a permeable material, which would be important if the lining is positioned such that it could occlude or seriously hinder blood flow. However, impermeable materials may used if the lining is not positioned where it could seriously hinder blood flow. For example, in device 104, even if an impermeable material is used for the lining, blood will still flow through the gaps between the wires at each end of the device. So as long as device 104 is not positioned so that it blocks a side vessel, or an impermeable membrane on device 104 is not positioned so that it blocks a side vessel, an impermeable material could be used. Any suitable material may be used for liner 105 and examples of preferable lining materials include, but are not limited to, polyurethane, PTFE (polytetrafluoroethylene), nylon, or any material used in carotid embolic protection devices.
FIGS. 2A-C show an assembly 200 according to an embodiment of the invention.
Dilation device 203 is affixed to catheter 201 at point 205 and also at point 207. As shown in
FIGS. 4A-C show an assembly 400 having a non-spiraled, expansive dilation device according to one embodiment of the invention.
Dilation device 403 is affixed to catheter 401 at point 405 and also at point 407. As shown in
FIGS. 6A-B show an assembly 600 for a non-spiraled, dilation device according to an embodiment of the invention. Triaxial catheter 601 includes a central tube 601A, an outer tube 609 and a catheter sheath 608. Wire port 606 may be constructed to fit over any size guide wire (e.g., port 606 may be a 0.038″ diameter wire port). Affixation point 605 is where the distal end of dilation device 603 attaches to central tube 601A. Outer tube 609 is positioned coaxially around central tube 601A and the proximal end of dilation device 603 attaches to outer tube 609 at affixation point 607. Catheter sheath 608 is positioned coaxially around outer tube 609 and can be moved towards tip 602 to cover device 603 or away from tip 602 to expose tip 603. Catheter sheath 608 may include radiopaque markers to indicate when device 603 has cleared the treatment zone.
As shown in
In operation the assembly including device 1200 and catheter 1250 is placed into a vessel with catheter sheath 1252 at least partially covering device 1200 to help retain it in its collapsed position and to allow for ease in directing the catheter and device through the vessel.
Once device 1200 is properly positioned in a vessel, catheter sheath 1252 is pulled back to expose device 1200. Device 1200 can then be dilated by either pushing outer tube 1250B, pulling central tube 1250A or by simultaneously pushing outer tube 1250B and pulling central tube 1250A. As previously explained, the tube that is not being pushed or pulled must remain stable enough so that the distance between retention ends 1202 and 1204 decreases and device 1200 expands.
If a device according to the invention were being used to position a structure in the vessel, the structure (such as a stent or stent graft) could be mounted on the device in a typical manner known to those in the art so that as the device dilates the structure is dilated.
Utilizing catheter 1250 (or any suitable biaxial or triaxial catheter) a device, such as device 1200 or 1300, is dilated by moving the distal and proximal ends of the device towards each other. The device is contracted and collapsed by releasing the force pushing the two ends together and/or by moving the two ends apart.
Alternatively, any device according to the invention may be preformed in a dilated position and compressed into a collapsed position when covered by catheter sheath 1252. When catheter sheath 1252 is removed the preformed device would immediately expand to its dilated position and then could be contracted or further dilated by an operator utilizing the catheter in one of the manners described.
In
A device according to the present invention thus may have a kink radius of 13.5 mm or greater before being dilated. This includes one or more of a kink radii of 14.0 mm, 15.0 mm, 16.0 mm, 17.0 mm, 18.0 mm, 19.0 mm, 20.0 mm and greater. Further, a device according to the present invention may, when fully dilated, have a kink radius of 16.0 mm or greater. This includes one or more of the kink radii of 17.0 mm, 18.0 mm, 19.0 mm, 200 mm, 21.0 mm, 22.0 mm, 23.0 mm, 24.0 mm, 25.0 mm and greater.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and embodiments disclosed herein. Thus, the specification and examples are exemplary only, with the true scope and spirit of the invention set forth in the following claims and legal equivalents thereof.
This application is a continuation-in-part of and claims priority to (1) U.S. Utility application Ser. No. 11/820,726, filed Jun. 19, 2007 (FIGS. 8 through 26 of which are incorporated herein by reference), which is a continuation-in-part of U.S. Utility application Ser. No. 11/478,340, filed Jun. 28, 2006, which claims the benefit of Provisional Application No. 60/595,378, filed Jun. 28, 2005, and (2) to U.S. Utility application Ser. No. 11/478,340 filed Jun. 28, 2006.
Number | Date | Country | |
---|---|---|---|
60595378 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11820726 | Jun 2007 | US |
Child | 11977415 | Oct 2007 | US |
Parent | 11478340 | Jun 2006 | US |
Child | 11820726 | Jun 2007 | US |