Non-planar surface structures and process for microelectromechanical systems

Information

  • Patent Grant
  • 7623287
  • Patent Number
    7,623,287
  • Date Filed
    Wednesday, April 19, 2006
    18 years ago
  • Date Issued
    Tuesday, November 24, 2009
    14 years ago
Abstract
Methods of making MEMS devices including interferometric modulators involve depositing various layers, including stationary layers, movable layers and sacrificial layers, on a substrate. A non-planar surface is formed on one or more layers by flowing an etchant through a permeable layer. In one embodiment the non-planar surface is formed on a sacrificial layer. A movable layer formed over the non-planar surface of the sacrificial layer results in a non-planar interface between the sacrificial and movable layers. Removal of the sacrificial layer results in a released MEMS device having reduced contact area between the movable and stationary layers when the MEMS device is actuated. The reduced contact area results in lower adhesion forces and reduced stiction during actuation of the MEMS device. These methods may be used to manufacture released and unreleased interferometric modulators.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. application Ser. No. 11/189,690, filed Jul. 26, 2005 entitled SYSTEM AND METHOD FOR MICRO-ELECTROMECHANICAL OPERATION OF AN INTERFEROMETRIC MODULATOR; NON-PLANAR SURFACE STRUCTURES AND PROCESS FOR MICROELECTROMECHANICAL SYSTEMS; NON-PLANAR SURFACE STRUCTURES AND PROCESS FOR MICROELECTROMECHANICAL SYSTEMS (application Ser. No. 11/406,981, filed on even date herewith); MICROELECTROMECHANICAL DEVICE AND METHOD UTILIZING NANOPARTICLES (application Ser. No. 11/407,730, filed on even date herewith); and MICROELECTROMECHANICAL DEVICE AND METHOD UTILIZING A POROUS SURFACE (application Ser. No. 11/407,470, filed on even date herewith).


BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to microelectromechanical systems. More particularly, this invention relates to methods and apparatus for improving the performance of microelectromechanical systems such as interferometric modulators.


2. Description of the Related Art


Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.


SUMMARY OF THE INVENTION

The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.


An embodiment provides a method of making a microelectromechanical system (MEMS) device that includes forming a permeable layer over an underlying layer material, wherein the permeable layer comprises a masking material more resistant to removal by an etchant than the underlying layer material. The method further includes removing a portion of the underlying layer material by flowing the etchant through the permeable layer, thereby forming a non-planar surface on the remaining lower layer material, and depositing an overlying layer over the non-planer surface formed on the underlying layer to form a non-planar interface between the underlying layer and the overlying layer.


An embodiment provides a method of making a microelectromechanical system (MEMS) device that includes providing a substrate, depositing a sacrificial material over at least a portion of the substrate, the sacrificial material being removable by a first etchant, and forming a permeable layer over the sacrificial material, wherein the permeable layer comprises a masking material more resistant to removal by the first etchant than the sacrificial material. The method further includes removing a portion of the sacrificial material by flowing the first etchant through the permeable layer, thereby forming a non-planar surface on the remaining sacrificial material, and forming an electrically conductive layer over at least a portion of the non-planar surface.


Another embodiment provides a method of making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive layer over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive layer, the sacrificial material being removable by an etchant, and forming a permeable layer over the sacrificial material, wherein the permeable layer comprises a masking material. The method further comprises removing a portion of the sacrificial material by flowing the etchant through the permeable layer, thereby forming a non-planar surface on the sacrificial material, and forming a second electrically conductive layer over at least a portion of the non-planar surface. Another embodiment provides an unreleased interferometric modulator made by such a method.


Another embodiment provides an unreleased MEMS device that includes a substrate, a first electrically conductive layer over at least a portion of the substrate, and a sacrificial layer over at least a portion of the first electrically conductive layer, the sacrificial layer comprising a material removable by an etchant, wherein the sacrificial layer comprises a non-planar surface. The MEMS device further includes a permeable layer over the non-planar surface of the sacrificial layer, wherein the permeable layer comprises a masking material more resistant to removal by the etchant than the sacrificial layer material, and a second electrically conductive layer over at least a portion of the permeable layer.


Another embodiment provides an interferometric modulator that includes a substrate, a first electrically conductive layer over at least a portion of the substrate, a second electrically conductive layer separated from the first electrically conductive layer by a cavity, wherein the second electrically conductive layer comprises a non-planar surface layer facing the substrate, and where surface asperities on the non-planar surface exhibit a skewness greater than about zero. The interferometric modulator further includes a support structure arranged over the substrate and configured to support the second electrically conductive layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.



FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3×3 interferometric modulator display.



FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. 1.



FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.



FIG. 5A illustrates one exemplary frame of display data in the 3×3 interferometric modulator display of FIG. 2.



FIG. 5B illustrates one exemplary timing diagram for row and column signals that may be used to write the frame of FIG. 5A.



FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.



FIG. 7A is a cross section of the device of FIG. 1.



FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.



FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.



FIG. 7D is a cross section of yet another alternative embodiment of an interferometric modulator.



FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.



FIG. 8 is a flow diagram illustrating certain steps in an embodiment of a method of making an interferometric modulator.



FIGS. 9A, 9B and 9C are flow diagrams illustrating an embodiment of a method of making a MEMS device.



FIGS. 10A through 10G schematically illustrate an embodiment of a method for fabricating a MEMS device.



FIGS. 11A, 11B and 11C are top cross sectional views of alternative embodiments of permeable layer formations.



FIGS. 12A, 12B and 12C illustrate cross sectional views of alternative embodiments of surface asperities of non-planar surfaces that may be formed by the process of FIG. 9.





The Figures are not drawn to scale.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.


An embodiment provides methods of making interferometric modulators with decreased contact area between a movable surface and another surface so as to reduce adhesion forces between the two surfaces. In some embodiments, the methods involve forming a non-planar surface on a sacrificial layer and/or some other layer, by flowing an etchant through a permeable so as to remove a portion of the sacrificial layer and/or a dielectric layer beneath the permeable layer.


One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in FIG. 1. In these devices, the pixels are in either a bright or dark state. In the bright (“on” or “open”) state, the display element reflects a large portion of incident visible light to a user. When in the dark (“off” or “closed”) state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the “on” and “off” states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.



FIG. 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator. In some embodiments, an interferometric modulator display comprises a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.


The depicted portion of the pixel array in FIG. 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 12a on the left, a movable reflective layer 14a is illustrated in a relaxed position at a predetermined distance from an optical stack 16a, which includes a partially reflective layer. In the interferometric modulator 12b on the right, the movable reflective layer 14b is illustrated in an actuated position adjacent to the optical stack 16b.


The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.


In some embodiments, the layers of the optical stack are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.


With no applied voltage, the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in FIG. 1. However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movable reflective layer 14 is deformed and is forced against the optical stack 16. A dielectric layer (not illustrated in this Figure) within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16, as illustrated by pixel 12b on the right in FIG. 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.



FIGS. 2 through 5B illustrate one exemplary process and system for using an array of interferometric modulators in a display application.



FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array. As is conventional in the art, the processor 21 may be configured to execute one or more software modules. In addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.


In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in FIG. 1 is shown by the lines 1-1 in FIG. 2. For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in FIG. 3. It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment of FIG. 3, the movable layer does not relax completely until the voltage drops below 2 volts. There is thus a range of voltage, about 3 to 7 V in the example illustrated in FIG. 3, where there exists a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the “hysteresis window” or “stability window.” For a display array having the hysteresis characteristics of FIG. 3, the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the “stability window” of 3-7 volts in this example. This feature makes the pixel design illustrated in FIG. 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.


In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.



FIGS. 4, 5A, and 5B illustrate one possible actuation protocol for creating a display frame on the 3×3 array of FIG. 2. FIG. 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of FIG. 3. In the FIG. 4 embodiment, actuating a pixel involves setting the appropriate column to −Vbias, and the appropriate row to +ΔV, which may correspond to −5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to +Vbias, and the appropriate row to the same +ΔV, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at zero volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbias, or −Vbias. As is also illustrated in FIG. 4, it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +Vbias, and the appropriate row to −ΔV. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to −Vbias, and the appropriate row to the same −ΔV, producing a zero volt potential difference across the pixel.



FIG. 5B is a timing diagram showing a series of row and column signals applied to the 3×3 array of FIG. 2 which will result in the display arrangement illustrated in FIG. 5A, where actuated pixels are non-reflective. Prior to writing the frame illustrated in FIG. 5A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states.


In the FIG. 5A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a “line time” for row 1, columns 1 and 2 are set to −5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window. Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1,1) and (1,2) pixels and relaxes the (1,3) pixel. No other pixels in the array are affected. To set row 2 as desired, column 2 is set to −5 volts, and columns 1 and 3 are set to +5 volts. The same strobe applied to row 2 will then actuate pixel (2,2) and relax pixels (2,1) and (2,3). Again, no other pixels of the array are affected. Row 3 is similarly set by setting columns 2 and 3 to −5 volts, and column 1 to +5 volts. The row 3 strobe sets the row 3 pixels as shown in FIG. 5A. After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or −5 volts, and the display is then stable in the arrangement of FIG. 5A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the systems and methods described herein.



FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a display device 40. The display device 40 can be, for example, a cellular or mobile telephone. However, the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.


The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.


The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.


The components of one embodiment of exemplary display device 40 are schematically illustrated in FIG. 6B. The illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein. For example, in one embodiment, the exemplary display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47. The transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52. The conditioning hardware 52 may be configured to condition a signal (e.g. filter a signal). The conditioning hardware 52 is connected to a speaker 45 and a microphone 46. The processor 21 is also connected to an input device 48 and a driver controller 29. The driver controller 29 is coupled to a frame buffer 28, and to an array driver 22, which in turn is coupled to a display array 30. A power supply 50 provides power to all components as required by the particular exemplary display device 40 design.


The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.


In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a memory device such as a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.


Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.


In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.


The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.


Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.


In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).


The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.


Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.


In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.


The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, FIGS. 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures. FIG. 7A is a cross section of the embodiment of FIG. 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18. In FIG. 7B, the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32. In FIG. 7C, the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal. The deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts. The embodiment illustrated in FIG. 7D has support post plugs 42 upon which the deformable layer 34 rests. The movable reflective layer 14 remains suspended over the cavity, as in FIGS. 7A-7C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42. The embodiment illustrated in FIG. 7E is based on the embodiment shown in FIG. 7D, but may also be adapted to work with any of the embodiments illustrated in FIGS. 7A-7C as well as additional embodiments not shown. In the embodiment shown in FIG. 7E, an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.


In embodiments such as those shown in FIG. 7, the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged. In these embodiments, the reflective layer 14 optically shields the portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality. Such shielding allows the bus structure 44 in FIG. 7E, which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and the movements that result from that addressing. This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other. Moreover, the embodiments shown in FIGS. 7C-7E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.



FIG. 8 illustrates certain steps in an embodiment of a manufacturing process 800 for an interferometric modulator. Such steps may be present in a process for manufacturing, e.g., interferometric modulators of the general type illustrated in FIGS. 1 and 7, along with other steps not shown in FIG. 8. With reference to FIGS. 1, 7 and 8, the process 800 begins at step 805 with the formation of the optical stack 16 over the substrate 20. The substrate 20 may be a transparent substrate such as glass or plastic and may have been subjected to prior preparation step(s), e.g., cleaning, to facilitate efficient formation of the optical stack 16. As discussed above, the optical stack 16 is electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the layers onto the transparent substrate 20. In some embodiments, the layers are patterned into parallel strips, and may form row electrodes in a display device. In some embodiments, the optical stack 16 includes an insulating or dielectric layer that is deposited over one or more metal layers (e.g., reflective and/or conductive layers).


The process 800 illustrated in FIG. 8 continues at step 810 with the formation of a sacrificial layer over the optical stack 16. The sacrificial layer is later removed (e.g., at step 825) to form the cavity 19 as discussed below and thus the sacrificial layer is not shown in the resulting interferometric modulator 12 illustrated in FIG. 1. The formation of the sacrificial layer over the optical stack 16 may include deposition of a XeF2-etchable material such as molybdenum or amorphous silicon, in a thickness selected to provide, after subsequent removal, a cavity 19 having the desired size. Deposition of the sacrificial material may be carried out using deposition techniques such as physical vapor deposition (PVD, e.g., sputtering), plasma-enhanced chemical vapor deposition (PECVD), thermal chemical vapor deposition (thermal CVD), or spin-coating.


The process 800 illustrated in FIG. 8 continues at step 815 with the formation of a support structure e.g., a post 18 as illustrated in FIGS. 1 and 7. The formation of the post 18 may include the steps of patterning the sacrificial layer to form a support structure aperture, then depositing a material (e.g., a polymer) into the aperture to form the post 18, using a deposition method such as PECVD, thermal CVD, or spin-coating. In some embodiments, the support structure aperture formed in the sacrificial layer extends through both the sacrificial layer and the optical stack 16 to the underlying substrate 20, so that the lower end of the post 18 contacts the substrate 20 as illustrated in FIG. 7A. In other embodiments, the aperture formed in the sacrificial layer extends through the sacrificial layer, but not through the optical stack 16. For example, FIG. 7D illustrates the lower end of the support post plugs 42 in contact with the optical stack 16.


The process 800 illustrated in FIG. 8 continues at step 820 with the formation of a movable reflective layer such as the movable reflective layer 14 illustrated in FIGS. 1 and 7. The movable reflective layer 14 may be formed by employing one or more deposition steps, e.g., reflective layer (e.g., aluminum, aluminum alloy) deposition, along with one or more patterning, masking, and/or etching steps. As discussed above, the movable reflective layer 14 is typically electrically conductive, and may be referred to herein as an electrically conductive layer. Since the sacrificial layer is still present in the partially fabricated interferometric modulator formed at step 820 of the process 800, the movable reflective layer 14 is typically not movable at this stage. A partially fabricated interferometric modulator that contains a sacrificial layer may be referred to herein as an “unreleased” interferometric modulator.


The process 800 illustrated in FIG. 8 continues at step 825 with the formation of a cavity, e.g., a cavity 19 as illustrated in FIGS. 1 and 7. The cavity 19 may be formed by exposing the sacrificial material (deposited at step 810) to an etchant. For example, an etchable sacrificial material such as molybdenum or amorphous silicon may be removed by dry chemical etching, e.g., by exposing the sacrificial layer to a gaseous or vaporous etchant, such as vapors derived from solid xenon difluoride (XeF2) for a period of time that is effective to remove the desired amount of material, typically selectively relative to the structures surrounding the cavity 19. Other etching methods, e.g. wet etching and/or plasma etching, may also be used. Since the sacrificial layer is removed during step 825 of the process 800, the movable reflective layer 14 is typically movable after this stage. After removal of the sacrificial material, the resulting fully or partially fabricated interferometric modulator may be referred to herein as a “released” interferometric modulator.


The performance of MEMS devices in general and interferometric modulators in particular, may be adversely affected by a condition known in the art as stiction. With reference to FIG. 1, stiction can cause, for example, the actuated movable layer 14b to remain in contact with the optical stack 16b, even in the presence of a restoring force that would be expected to return the movable layer 14b to the non-actuated position. Stiction occurs when the total of several adhesion forces, arising from a various adhesion mechanisms, are greater than the restoring force. The restoring force comprises the combined mechanical tensile stresses in the actuated movable layer. Since surface forces become more significant with decreasing device dimensions, and restoring forces shrink with decreasing device dimensions, stiction can be a concern for MEMS devices including interferometric modulators.


Adhesion forces may arise from several mechanisms including, for example, capillary forces, van der Waals interactions, chemical bonds and trapped charges. Adhesion forces due to all of these mechanisms, in varying degrees, depend on the contact area and surface separation between the various movable and stationary layers when in the actuated state. Embodiments provide methods of manufacturing MEMS devices with lower contact area and/or larger surface separation, thereby resulting in lower adhesion forces and more favorable performance due to less stiction.


In general, the methods include forming a permeable layer over an underlying layer. The permeable layer comprises a masking material more resistant to removal by an etchant than the underlying layer material. The method further includes removing a portion of the underlying layer material by flowing the etchant through the permeable layer, thereby forming a non-planar surface on the remaining lower layer material. The method further includes depositing an overlying layer over the non-planer surface formed on the underlying layer to form a non-planar interface between the underlying layer and the overlying layer. An example of such a process is shown in FIGS. 9 and 10. In this example, the underlying layer comprises a sacrificial material and the overlying layer comprises an electrically conductive layer (e.g., a movable reflective layer of an interferometric modulator). However, it will be understood by those of skill in the art that other layers may function as the underlying and/or overlying layers between which the non-planar interface is formed.



FIG. 9A is a flow diagram illustrating certain steps in an embodiment of a method of making a MEMS device. Such steps may be present in a process for manufacturing, e.g., interferometric modulators of the general type illustrated in FIGS. 1 and 7, along with other steps not shown in FIG. 9A. FIGS. 10A through 10G schematically illustrate an embodiment of a method for fabricating a MEMS device using conventional semiconductor manufacturing techniques such as photolithography, deposition, masking, etching (e.g., dry methods such as plasma etch and wet methods), etc. Deposition includes “dry” methods such as CVD (including plasma-enhanced CVD and thermal CVD) and sputter coating, and wet methods such as spin coating. With reference to FIGS. 9 and 10, the process 200 begins at step 205 where a substrate 100 is provided. In one embodiment, the substrate 100 may comprise any transparent material such as glass or plastic.


The process 200 continues at step 210 with the formation of a first electrically conductive layer 105 on the substrate 100 as shown in FIG. 10A. The first electrically conductive layer 105 can be a single layer structure or multiple sub-layer structure as described above. In a single layer structure where the layer 105 functions as both electrode and mirror, the layer 105 is formed by deposition of an electrically conductive material on the substrate 100. The first electrically conductive layer 105 may be formed into electrodes through subsequent patterning and etching steps not shown in FIG. 9A or 10. The first electrically conductive layer 105 may be a metal or a semiconductor (such as silicon) doped to have the desired conductivity. In one embodiment (not shown in FIG. 10), the first electrically conductive layer 105 is a multilayer structure comprising a transparent conductor (such as indium tin oxide) and a primary mirror or partially reflective layer (such as chromium).


The process 200 continues at step 215 with the formation of a dielectric layer 110 over at least a portion of the electrically conductive layer 105 as shown in FIG. 10B. The dielectric layer 110 may comprise insulating materials such as silicon oxide and/or aluminum oxide. The dielectric layer 110 serves to insulate the first electrically conductive layer 105 from an electrically conductive movable layer (such as movable layer 14 of FIGS. 1 and 7) in an interferometric modulator. The dielectric layer 110 may be formed by known deposition methods, preferably CVD.


The process 200 continues at step 220 with the formation of a sacrificial layer 115 as shown in FIG. 10C. The sacrificial layer 115 may comprise a material etchable by XeF2, preferably molybdenum. Deposition methods such as CVD, sputtering or spin coating may be used in forming the sacrificial layer 115. In an embodiment of an interferometric modulator, the sacrificial layer is deposited so as to form, upon subsequent removal, an interferometric cavity with a thickness in the range of about 1000 angstroms to about 5000 angstroms between the movable layer 14 and the optical stack 16 of FIGS. 1 and 7.


In the embodiment shown in FIG. 10C, the sacrificial layer 115 is patterned and etched (a step not shown in FIG. 9A) to form one or more structure apertures (not shown in FIG. 10) in which support structure material is deposited resulting in support structures 135, as shown in FIG. 10C. The support structures 135 may comprise a non-conductive material. In other embodiments, patterning and etching of the sacrificial layer 115, to form structure apertures, may occur after deposition of a permeable layer 125 (see step 225 below), formation of a non-planar surface 130 (see step 230 below), and/or removal of the permeable layer (see step 235 below) at least in the structure aperture locations. In other embodiments, deposition of the support structure material into the formed structure apertures may occur after deposition of the permeable layer 125 (see step 225 below), formation of the non-planar surface 130 (see step 230 below), and/or removal of the permeable layer (see step 235 below). If the permeable layer 115 comprises an oxide of aluminum and the dielectric layer 110 also comprises an oxide of aluminum, then the dielectric layer 110 can be etched as well as the permeable layer in the areas where the structure apertures are located.


The process 200 continues at step 225 with the formation of a permeable layer 125 over the sacrificial layer 115 and, in the illustrated embodiment, over the support structures 135 as shown in FIG. 10D. In an embodiment, the permeable layer 125 is preferably a discontinuous layer covering at least a portion of the sacrificial layer 115. The permeable layer 125 may be formed by flash deposition using CVD, PVD e.g., short term sputtering, or by image transfer, preferably electron beam lithography. In one embodiment, the permeable layer 125 comprises a masking material that is more resistant to removal by an etchant than the sacrificial layer 115. In one embodiment, the permeable layer 125 comprises a material that can be selectively etched against the sacrificial layer 115. In a preferred embodiment, the permeable layer comprises aluminum (e.g., an oxide of aluminum), and the sacrificial layer 115 comprises molybdenum. In a preferred embodiment, the permeable layer 125 is deposited at a thickness of about 10 angstroms to about 30 angstroms.



FIGS. 11A and 11B show top cross sectional views of alternative embodiments of permeable layer formations that may be obtained using one or more techniques such as flash deposition, short term sputtering and/or electron beam lithography in forming the permeable layer 125 over the sacrificial layer 115. In FIG. 11A, the permeable layer 125 over the sacrificial layer 115 comprises individual islands (or pimples) 150 that may be formed using flash deposition or short term sputtering. In some embodiments, the islands 150 may contact each other, but at least some of the underlying sacrificial layer 115 should be uncovered. The duration and/or quantity of material deposited is preferably limited such that spaces (discontinuities) exist between at least some of the islands 150. The distance between islands 150 may be chosen to achieve the desired non-planar surface characteristics that are described below. Depending on the material being deposited and the deposition conditions, the time of the deposition and/or the quantity of material deposited to achieve the desired coverage may vary, as determined by routine experimentation. In a preferred embodiment, the percentage of the sacrificial material covered by the islands 150 is in a range of about 30% to about 70% coverage.


In FIG. 11B, the permeable layer 125 over the sacrificial layer 115 comprises a quasi-random pattern 155 that may be applied to the sacrificial layer 115. This pattern 155 may be applied using image transfer techniques such as electron beam lithography, x-ray lithography and ion-beam lithography. Also, applying nanotubes or other nano-type objects on the surface of the sacrificial layer 115 (e.g., by spin coating of a solution that comprises nanotubes) and using the nanotubes as the permeable layer 125 can produce random patterns. The distance between patterns 155 may be chosen to achieve the desired non-planar surface characteristics that are described below. In a preferred embodiment, the percentage of the sacrificial material covered by the patterns 155 is in a range of about 30% to about 70% coverage.


In another embodiment, the formation of the permeable layer 125 at step 225 comprises a process illustrated in FIG. 9B. At step 237, a continuous layer of aluminum is formed over at least a portion of the sacrificial layer 115. The continuous layer of aluminum is preferably about 300 angstroms to about 1000 angstroms thick. The aluminum layer may be deposited by known methods such as CVD or PVD.


At step 239, the layer of aluminum is anodized, using known anodization processes, e.g., any of several electrochemical processes. The anodization process forms regularly spaced pores in the aluminum layer resulting in the formation of the permeable layer 125. The thickness of the aluminum layer is chosen such that the anodization at step 239 forms pores exposing the sacrificial layer 115. The thickness of the anoidized aluminum layer will vary depending on the anodization conditions employed at step 239. The pores formed at step 239 may measure about 10 angstroms to about several hundred angstroms across. FIG. 11C shows a top cross sectional view of pores 160 in an anodized aluminum permeable layer 125 that is formed over the sacrificial layer 115. The thickness of the starting aluminum layer and the anodization conditions may be chosen such that the pores 160 are of a diameter and density that result in the desired non-planar surface characteristics that are described below.


In another embodiment, the formation of the permeable layer 125 at step 225 comprises a process illustrated in FIG. 9C. At step 241, a continuous mask layer is formed over at least a portion of the sacrificial layer 115. The continuous mask layer is formed in such a way that it includes a plurality of regions that are configured to be removable (e.g., by etching) at different relative rates. A portion of the continuous mask layer is then removed at step 243, thereby forming the permeable layer 125. For example, the continuous mask layer may be configured to contain regions that are etchable by a particular etchant at an etch rate that is higher than other regions. Holes may be formed in such a continuous mask layer by exposing the faster-etching regions to the etchant. After the holes are formed, a non-planar surface 130 may be formed at step 230 by flowing an etchant through the holes. The etchant used to form the holes in the continuous mask layer at step 243 may be the same or different from the etchant used to remove the sacrificial layer 115 to form the non-planar surface 130 in step 230. Thus, steps 243 and 230 may be sequential or overlap. For example, steps 243 and 230 may be stages of a continuous etch where the first stage of the etch forms the holes in the continuous mask layer and a later stage of the etch forms the non-planar surface 130 in the sacrificial layer 115. If the sacrificial layer 115 is etched at a higher relative rate by the same etchant used to remove portions of the continuous mask, then the non-planar surface may form more quickly and have deeper contours as the holes continue to form in the mask layer. However, even if the sacrificial layer is removed at a similar rate or more slowly than the faster-etching regions of the mask layer, some roughening of the sacrificial layer surface will still occur resulting in the non-planar surface 130. Alternatively, portions of the continuous mask layer may be removed by a first etchant and the non-planar surface 130 may be formed by a second etchant.


A continuous mask layer comprising a plurality of regions configured to be removable at different relative rates may be formed in various ways, e.g., deposited by known methods such as CVD or PVD. In an embodiment, the continuous mask layer is configured to have thickness variations across the mask layer, resulting in thinner areas that are removable, e.g., by etching, while thicker areas remain. The valley regions may be removed more quickly simply because they are thinner, or the peaks and valleys may etch at different rates. In dry etch techniques, the etch rates at the peaks may be faster than the etch rates at the valleys. Alternatively, a wet etch may result in faster etch rates in the valleys than at the peaks.


The chemical composition of the continuous mask layer may be altered in selected regions in such a way that those regions are configured to be removable at different relative rates, e.g., chemically modified to be etched more quickly or more slowly. For example, the chemical composition of selected regions of the continuous mask layer may be modified by doping (e.g, by ion implantation). Treated regions etch more quickly (or more slowly) than untreated or less treated regions.


In another embodiment, the continuous mask layer is configured to contain grains and grain boundaries that are removable at different relative rates. For example, the continuous mask layer may exhibit grain boundaries as a result of the formation of crystalline islands that form in the early stages of deposition and then join together thereby forming grain boundaries. These grain boundaries may be shallow and/or less ordered, and thus may exhibit a faster etch rate than other non-grain boundary regions.


Preferably, the material of the continuous mask layer and the first and/or second etchant are selected in combination with one another to provide a mask layer having a plurality of regions configured to be removable at different relative rates. For example, for the continuous mask layers configured as described above, the first and/or second etchant are preferably selected in combination with the configuration of continuous mask layer to provide etch selectivity between, e.g., regions having different compositions, regions having different thicknesses and/or between grains and grain boundary regions. Routine experimentation, informed by the teachings provided herein, may be used to identify suitable combinations of etchants and continuous mask layer configurations to provide a mask layer having a plurality of regions configured to be removable at different relative rates.


In an embodiment, the permeable layer 125 is formed using one or more non-lithographic methods as discussed above, e.g., flash deposition, short term sputtering, applying nanotubes or other random nano-type objects (e.g., by spin coating of a solution that comprises nanotubes), and/or aluminum deposition/anodization. This embodiment is beneficial since it negates the need for a lithographic step.


Returning to FIG. 9A, the process 200 continues at step 230 with the formation of a non-planar surface 130 on the sacrificial layer 115 as shown in FIG. 10E. The non-planar surface 130 may be formed by flowing an etchant through the pores or discontinuities in the permeable layer 125. In a preferred embodiment, the etch is a dry etch using a fluorine based plasma, and the duration of the etch is limited to allow removal of about 20 angstroms to about 50 angstroms of the sacrificial layer 115. Details of the dimensions and characteristics of the non-planar surface 130 formed at step 230 will be discussed below. In one embodiment, a substantial portion (e.g., greater than 50%) of the permeable layer is removed while flowing the etchant through the permeable layer.


In one embodiment, the process 200 continues at optional step 235 with removal of substantially all of the permeable layer 125. This removal is preferably done by selectively etching the permeable layer 125 against the sacrificial layer 115.


The process 200 continues at step 232 with the formation of a second electrically conductive layer 140 over the sacrificial layer 115 and, in the illustrated embodiment, over the support structures 135. Due to the presence of the non-planar surface 130 formed on the sacrificial layer 115, a non-planar interface 128, as shown in FIG. 10F, is formed between the sacrificial layer 115 and the second electrically conductive layer 140. In the illustrated embodiment of FIG. 10F, the optional step 235 of removing the permeable layer 125 has been conducted, so that the non-planar interface 128 is between the sacrificial layer 115 and the second electrically conductive layer 140. In one embodiment, the second electrically conductive layer comprises a movable layer such as the movable layer 14 of an interferometric modulator as shown in FIGS. 1 and 7. Since the sacrificial layer 115 is still present at this stage of the process 200, the movable layer is typically not yet movable. A partially fabricated MEMS device 172, e.g. a partially fabricated interferometric modulator, that contains a sacrificial layer (the layer 115 in this embodiment) may be referred to herein as an “unreleased” MEMS device. The second electrically conductive layer 140 may comprise a metal (e.g. aluminum or aluminum alloy). Forming the second electrically conductive layer 140 in step 232 may include one or more deposition steps as well as one or more patterning or masking steps. In an embodiment (not illustrated), at least a portion of the permeable layer 125 remains to become part of the second electrically conductive layer 140. Leaving the permeable layer may provide more support or stiffness to surface asperities of a non-planar surface formed on the second electrically conductive layer 140 after removal of the sacrificial layer 115 (see step 240 below). Thus, the non-planar interface 128 may be between the sacrificial layer 115 and the remaining portion of the permeable layer 125 on the underside of the second electrically conductive layer 140.


The process 200 continues at step 240 where the sacrificial layer 115 is removed (e.g., by etching) to form a cavity 150 as shown in FIG. 10G. Removal of the sacrificial layer 115 results in the electrically conductive layer 140 having a non-planar surface 132. The non-planarity of the surface 132 may be due to the optional presence of the remaining portion of the permeable layer 125 on the underside of the second electrically conductive layer 140 (not illustrated). The removal of the sacrificial layers can be accomplished, for example, by exposure to an etchant such as XeF2 (as depicted in FIG. 10F), F2 or HF alone or in combination. In a preferred embodiment, substantially all of the sacrificial layer 115 is removed in the etching process. In one embodiment, the cavity 150 is an interferometric cavity between an optical stack (comprising the electrically conductive layer 105 and the dielectric layer 110) and the conductive movable layer 140. After formation of the cavity 150, the resulting MEMS device, e.g., the interferometric modulator 175, is in a “released” state.


In some embodiments, the process 200 can use a first etchant to form one or more support structure apertures and a second etchant to flow through the permeable layer 125 to form the non-planar surface 130 on the sacrificial layer 115 as shown in FIG. 10E. The first etchant may be the same or different from the second etchant. The material of the permeable layer 125 may be etchable or non-etchable by the first etchant.


In an embodiment, the permeable layer 125 is formed prior to patterning the sacrificial layer 115 with the first etchant to form the one or more support structure apertures. The material of the permeable layer 125 may be etchable or non-etchable with the first etchant, preferably etchable to reduce potential formation of loose particles from the permeable layer 125 that may foul the lower layers. The second etchant may be used to form the non-planar surface 130 on the sacrificial layer 115. The permeable layer 125 may be removed (e.g., by etching) or allowed to remain after forming the non-planar surface 130.


In another embodiment, the sacrificial layer 115 is patterned with the first etchant to form the one or more support structure apertures. The permeable layer 125 is then formed, after which the non-planar surface 130 may be formed on the sacrificial layer 115 with the second etchant. The permeable layer 125 may then be removed or allowed to remain in this embodiment. The permeable layer 125 may be removed (e.g., by etching) in order to avoid leaving portions of the permeable layer on the regions of the sacrificial layer that were previously patterned.


In another embodiment, the permeable layer 125 is formed prior to patterning the sacrificial layer 115 with the first etchant. The second etchant may then be used to form the non-planar surface 130 on the sacrificial layer 115. The support structure apertures may be formed by etching the sacrificial layer 115 with the first etchant. The material of the permeable layer 125 may be etchable or non-etchable with the first etchant, preferably etchable as discussed above to reduce potential formation of loose particles from the permeable layer 125 that may foul the lower layers. The remaining permeable layer 125 may be removed (e.g., by etching) or allowed to remain.


In some embodiments, another layer, e.g., the dielectric layer 110, is considered to be a sacrificial layer. For example, the permeable layer 125 may be deposited on the dielectric layer 110. A portion of the dielectric layer may be removed by flowing an etchant through the pores or discontinuities in the permeable layer. A non-planar surface may be formed on the dielectric layer 110 using etchants selected to remove the materials that the dielectric layer comprises. The result will be a non-planar surface on the dielectric layer 110. Details of the dimensions and characteristics of the non-planar surface formed will be discussed below. In another embodiment non-planar surfaces may be formed on both the dielectric layer 110 (or the electrically conductive layer 105) and the second electrically conductive layer 140. In some embodiments, the process 200 may include additional steps and the steps may be rearranged from the illustrations of FIGS. 9 and 10.


In some embodiments, the dielectric layer 110 comprises sub-layers, e.g., an oxide of silicon may be an underlying layer and an oxide of aluminum may be an overlying layer. The oxide of aluminum may serve as an etch stop for performing the release etch in the fabrication of a MEMS device. In this embodiment, a permeable layer (which may also be an oxide of aluminum, e.g., anodized aluminum) may be formed over the underlying sub-layer comprising an oxide of silicon. A non-planar surface may be formed on the underlying layer by flowing an etchant through the permeable layer. Dry etching utilizing etchants such as SF6, CHF3 and/or CF4 in combination with oxygen and/or helium may be used in these embodiments. The overlying etch stop sub-layer comprising may be deposited with or without removing the permeable layer, as generally described above.


In some embodiments, the electrically conductive layer 105 comprises metal sub-layers. In an interferometric modulator, a transparent ITO sub-layer may serve as an electrically conductive layer and a chromium sub-layer may serve as a partially reflective layer. In this embodiment, a permeable layer of chromium may be formed (e.g., by flash deposition using CVD, PVCVD or PVD) over the underlying sub-layer comprising ITO. A non-planar surface may be formed on the underlying layer by flowing an etchant through the permeable layer. Wet etching utilizing etchants such as HCl, FeCl3 and/or HNO3 may be used in these embodiments. The overlying electrically conductive sub-layer may be deposited with or without removing the permeable chromium layer.


In some embodiments, the substrate 100 may serve as the underlying layer. In the case of a glass substrate, a permeable layer comprising chromium and/or an oxide of aluminum may be formed over the substrate. A non-planar surface may be formed on the glass substrate by flowing an etchant through the permeable layer. Dry etching utilizing etchants such as SF6, CHF3 and/or CF4 in combination with oxygen and or helium may be used in these embodiments. An overlying layer may be deposited with or without removing the permeable layer.


The non-planar surfaces formed on the second electrically conductive layer 140, the dielectric layer 110, the electrically conductive layer 105, and or the substrate 100 serve to reduce the area of contact between the second electrically conductive layer 140 and the dielectric layer 110 when the interferometric modulator 175 is in the actuated position, thereby reducing or preventing stiction as discussed above. Details of the preferred dimensions and characteristics exhibited by the non-planar surface 130 formed on the sacrificial layer 115 and the resulting non-planar surface 132 formed on the second electrically conductive layer 140 will now be discussed.


Adhesion forces may arise from several mechanisms such as capillary forces, van der Waals interactions, chemical bonds, and trapped charges. To reduce adhesion forces, chemical reactions, such as the short timed etching of sacrificial layer 115 through the permeable layer 125, may be used to increase the surface roughness of one or more of the contacting surfaces. Increasing the surface roughness reduces the contact area of the contacting surfaces, thereby reducing stiction. In some embodiments, a simple increase in surface roughness is undesirable. For example, in an interferometric modulator, an increase in surface roughness may detrimentally affect the optical qualities of the optical stack 16 and/or the movable reflective layer 14. However, it has been found that by proper deposition of the permeable layer and subsequent removal of the sacrificial layer, stiction may be reduced without detrimentally affecting surface roughness.


Surface roughness can be characterized by statistical distributions of the variation in heights of peaks (or surface asperities) where a probability density function models the frequency that surface asperities of differing heights occur. FIGS. 12A, 12B and 12C illustrate examples of surfaces with different statistical distributions of surface asperity heights. FIGS. 12A and 12B display examples of non-planar surfaces, such as the non-planar surface 132 formed on the second electrically conductive layer 140 when deposited on the non-planar surface 130 of the sacrificial layer 115 as discussed above. The surface asperity heights “z” of the non-planar surface 132 in FIG. 12A are higher on average than the surface asperity heights “z” of the non-planar surface 132 in FIG. 12B. The higher surface asperities of FIG. 12A would be advantageous in reducing adhesion forces somewhat, but may increase surface roughness to such an extent that optical qualities are detrimentally affected. However, with similar real contact areas in FIGS. 12A and 12B, the adhesion forces may still be similar for surface asperity heights on the order of about 10 angstroms to about 50 angstroms. A more preferred distribution of surface asperity heights is shown in FIG. 12C. In FIG. 12C, the non-planar surface 132 is characterized by relatively infrequent high surface asperities 132A and relatively frequent low surface asperities 132B. This distribution of surface asperity heights increases the surface separation and reduces the real contact area. The surface profiles illustrated in FIGS. 12A, 12B and 12C are not drawn to scale and the height differences between the high surface asperities 132A and the low surface asperities 132B may be quite small. The height differences may be small enough that surface roughness is not detrimentally increased (e.g., increased so as to negatively affect optical qualities), but real contact area and stiction may still be desirably reduced.


In one embodiment, the RMS (root-mean-square) surface asperity heights are formed so as to be in a range from about 10 angstroms to about 100 angstroms, preferably in a range from about 20 angstroms to about 50 angstroms. It is important to note that FIGS. 12A, 12B and 12C show the peaks resulting from depositing the second electrically conductive layer 140 on the non-planar surface 130 formed on the sacrificial layer 115. This means that in order to obtain the widely spaced relatively high peaks as shown in FIG. 12C, the permeable layer should be formed such that when the non-planar surface 130 is formed, it has opposite contours, widely spaced relatively deep narrow valleys. The opposite is true when forming the non-planar surface on the dielectric layer 110. In this case, the permeable layer should be formed such that when the non-planar surface is formed on the dielectric layer, it has the contours shown in FIG. 12C, widely spaced relatively high narrow peaks.


Surface asperity heights of many surfaces follow a probability density function which is most commonly Gaussian in distribution. Surfaces having a Gaussian distribution of surface asperity heights exhibit a symmetric distribution of the surface asperity heights about some mean value (peak and valley heights are symmetrical) and typically exhibit a certain degree of stiction. Surfaces exhibiting surface asperities with a probability density function having an asymmetry relative to the mean, known as skewness, are desirable for stiction reduction. Likewise, surfaces exhibiting surface asperities with a probability density function having higher values of kurtosis are desirable for stiction reduction. For a discussion of skewness and kurtosis effects on surfaces see the publication by Tayebi et al., “Reducing the effects of adhesion and friction in microelectromechanical systems (MEMS) through surface roughening: comparison between theory and experiments,” Journal of Applied Physics, 98, 073528 (2005).


The methods described herein for reducing stiction by forming a non-planar surface (e.g., the non-planar surface 132 formed as illustrated in FIG. 10) may have a positive effect on the statistical distribution of surface asperities (as shown by measures of kurtosis and skewness) and thus may provide reduced stiction without significantly affecting the roughness (nor the optical characteristics) of the surface. For example, Table 1 summarizes the results of a set of experiments in which a molybdenum sacrificial layer was modified to reduce surface stiction in accordance with an embodiment of the methods described herein. In the experiments, a 20 angstrom thick permeable layer of Al2O3 was deposited over a layer of molybdenum. A non-planar surface was then formed by flowing a sulfur hexafluoride etchant through the permeable layer to remove a portion of the surface of the molybdenum. Various surface characteristics were measured by performing atomic force microscopy measurements on the molybdenum layer before and after treatment as shown in Table 1.












TABLE 1






Before
After



Measurement
Treatment
Treatment
% change




















Skewness
−0.08

0.09

>200% reversal


Kurtosis
3.08

3.32

+7.8%


Roughness (RMS)
2.13
(nm)
2.13
(nm)
No change


Roughness (avg.)
1.70
(nm)
1.68
(nm)
−1.2%


Max. Roughness
18.73
(nm)
20.39
(nm)
+8.9%









As can be seen, treatment of the molybdenum surface reversed the sign of the skewness parameter, from a negative 0.08 to a positive 0.09. The reversal of skewness to a positive value indicates that the treatment produced more frequent low surface asperities and less frequent high aspertities in the treated molybdenum (Mo), which is desirable for reducing stiction. The results in Table 1 also show that kurtosis was increased by nearly 8 percent. An increased kurtosis indicates that the treatment produced a lower frequency of high surface asperities in the treated molybdenum, which is also a positive indication for possible stiction reduction. Table 1 also shows the results of several surface roughness measurements. Large changes in multiple surface roughness parameters indicate decreased optical quality. The roughness parameters shown in Table 1 include the RMS roughness, the average roughness, and the maximum roughness (the distance from the highest peak to the lowest valley). As can be seen, there was little or no change in the RMS and average roughness and a relatively small increase (8.9%) in the maximum roughness. Therefore, while the kurtosis and skewness measurements indicate likely stiction reduction, the roughness measurements show little evidence of changes significant enough to reduce optical quality. This is highly desirable for improving the performance of an interferometric modulator without detrimentally affecting the optical performance.


By varying the duration of the deposition and/or the amount of material deposited to form the permeable layer 125, as well as varying the duration of the timed etch for removing part of the sacrificial layer 115, various surface topographies will be formed. By measuring the surface asperity statistics, preferably using atomic force microscopy, the deposition and etching durations and/or amounts that result in preferred ranges of skewness and kurtosis may be obtained. In a preferred embodiment, the skewness is greater than about zero and the kurtosis is greater than about 3. It is important to note that these surface asperity characteristics of skewness and kurtosis apply to non-planar surfaces formed on a layer that remains after release of the MEMS device (e.g., not a sacrificial layer such as the sacrificial layer 115 above). For example, the dielectric layer 110 is such a layer. The preferred non-planar surface formed on the dielectric layer 110 (or the electrically conductive layer 105) would have many wide valleys and relatively few narrow peaks. This may be achieved by, e.g., forming a permeable layer comprised of many small islands spaced relatively far apart from each other. A non-planar surface formed on the sacrificial layer 115 would preferably have surface asperity heights exhibiting a kurtosis greater than about 3 and a skewness less than about zero. This will result in the second electrically conductive layer 140, that is deposited over the non-planar sacrificial layer 115, having preferred surface asperity height characteristics of skewness greater than about zero and kurtosis greater than about 3. The preferred non-planar surface 130 formed on the sacrificial layer 115 would have many wide hills (that become wide valleys on the second electrically conductive layer 140) and relatively few narrow valleys (that become narrow peaks on the second electrically conductive layer 140). This may be achieved by, e.g., forming a permeable layer comprised of many big islands with small pin-holes between the islands.


It is known that reducing stiction in MEMS devices, e.g. by using embodiments as described above, extends the lifetime of the MEMS devices. In the case of interferometric modulators, the increase in lifetime may be increased by a factor of 2-3 or more. With proper surface asperity height characteristics, as discussed above, this increase in lifetime may be obtained without adversely affecting the optical or electromechanical behavior.


While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.

Claims
  • 1. A method of making a microelectromechanical system (MEMS) device, comprising: forming a permeable layer over an underlying layer material using a non-lithographic method, wherein the permeable layer comprises a masking material more resistant to removal by an etchant than the underlying layer material;removing a portion of the underlying layer material by flowing the etchant through the permeable layer, thereby forming a non-planar surface on the remaining underlying layer material; anddepositing an overlying layer over the non-planer surface formed on the underlying layer to form a non-planar interface between the underlying layer and the overlying layer.
  • 2. The method of claim 1, wherein the underlying layer material comprises at least one of glass and plastic.
  • 3. The method of claim 1, further comprising removing substantially all of the permeable layer after removing the portion of the underlying layer.
  • 4. The method of claim 1, wherein the underlying layer material comprises a metal.
  • 5. The method of claim 1, wherein the underlying layer comprises a dielectric material.
  • 6. The method of claim 1, wherein the permeable layer comprises aluminum.
  • 7. A method of making a microelectromechanical system (MEMS) device, comprising: providing a substrate;depositing a sacrificial material over at least a portion of the substrate, the sacrificial material being removable by a first etchant;forming a permeable layer over the sacrificial material using a non-lithographic method, wherein the permeable layer comprises a masking material more resistant to removal by the first etchant than the sacrificial material;removing a portion of the sacrificial material by flowing the first etchant through the permeable layer, thereby forming a non-planar surface on the remaining sacrificial material; andforming an electrically conductive layer over at least a portion of the non-planar surface.
  • 8. The method of claim 7, wherein forming the permeable layer comprises flash depositing the masking material.
  • 9. The method of claim 8, wherein the masking material comprises at least one of aluminum and aluminum oxide.
  • 10. The method of claim 7, wherein forming the permeable layer comprises: depositing a layer of aluminum over the sacrificial material; andanodizing the layer of aluminum.
  • 11. The method of claim 7, further comprising removing substantially all of the permeable layer after removing the portion of the sacrificial material.
  • 12. The method of claim 11, wherein removing the permeable layer comprises: selectively etching the permeable layer with a second etchant, the second etchant being more effective at removing the masking material than removing the sacrificial material.
  • 13. The method of claim 7, further comprising forming a dielectric layer over the substrate, wherein the sacrificial material comprises a dielectric material of the dielectric layer.
  • 14. The method of claim 7, further comprising removing substantially all of the remaining sacrificial material, thereby forming a cavity between the substrate and the electrically conductive layer.
  • 15. The method of claim 7, wherein the substrate comprises a second electrically conductive layer.
  • 16. The method of claim 15, wherein the second electrically conductive layer comprises indium tin oxide.
  • 17. The method of claim 7, wherein forming the permeable layer comprises: forming a continuous mask layer over the sacrificial material, the continuous mask layer comprising a plurality of regions configured to be removable at different relative rates; andremoving a portion of the continuous mask layer.
  • 18. The method of claim 17, wherein removing the portion of the continuous mask layer comprises exposing the continuous mask layer to the first etchant.
  • 19. The method of claim 17, wherein removing the portion of the continuous mask layer comprises exposing the continuous mask layer to a second etchant.
  • 20. The method of claim 7, wherein the electrically conductive layer comprises a movable layer.
  • 21. The method of claim 7, wherein the substrate comprises a partially reflective layer.
  • 22. A method of making an interferometric modulator, comprising: providing a substrate;depositing a first electrically conductive layer over at least a portion of the substrate;depositing a sacrificial material over at least a portion of the first electrically conductive layer, the sacrificial material being removable by an etchant;forming a permeable layer over the sacrificial material using a non-lithographic method, wherein the permeable layer comprises a masking material;removing a portion of the sacrificial material by flowing the etchant through the permeable layer, thereby forming a non-planar surface on the sacrificial material; andforming a second electrically conductive layer over at least a portion of the non-planar surface.
  • 23. The method of claim 22, wherein forming the permeable layer comprises flash depositing the masking material.
  • 24. The method of claim 23, wherein the masking material comprises at least one of aluminum and aluminum oxide.
  • 25. The method of claim 22, wherein forming the permeable layer comprises: depositing a layer of aluminum over the sacrificial material; andanodizing the layer of aluminum.
  • 26. The method of claim 22, further comprising removing substantially all of the permeable layer after removing the portion of the sacrificial material.
  • 27. The method of claim 22, further comprising forming a dielectric layer over the first electrically conductive layer.
  • 28. The method of claim 27, wherein the sacrificial material comprises a dielectric material of the dielectric layer.
  • 29. The method of claim 27, further comprising depositing the sacrificial material over the dielectric layer.
  • 30. The method of claim 22, wherein the first electrically conductive layer comprises indium tin oxide.
  • 31. The method of claim 22, wherein the second electrically conductive layer comprises a movable layer.
  • 32. The method of claim 22, wherein forming the permeable layer comprises: forming a continuous mask layer over the sacrificial material, the continuous mask layer comprising a plurality of regions configured to be removable at different relative rates; andremoving a portion of the continuous mask layer.
  • 33. The method of claim 32, wherein removing the portion of the continuous mask layer comprises exposing the continuous mask layer to the etchant.
  • 34. The method of claim 32, wherein removing the portion of the continuous mask layer comprises exposing the continuous mask layer to a second etchant.
  • 35. The method of claim 22, further comprising removing a substantial portion of the permeable layer while removing the portion of the sacrificial material.
  • 36. The method of claim 22, further comprising: forming a support structure aperture in a portion of the deposited sacrificial material; anddepositing an insulator into the support structure aperture.
  • 37. An unreleased interferometric modulator made by the method of claim 22.
  • 38. The method of claim 22, further comprising removing substantially all of the remaining sacrificial material, thereby forming a cavity between the substrate and the electrically conductive layer.
  • 39. A released interferometric modulator made by the method of claim 38.
US Referenced Citations (573)
Number Name Date Kind
2534846 Ambrose et al. Dec 1950 A
3439973 Paul et al. Apr 1969 A
3443854 Weiss May 1969 A
3567847 Price Mar 1971 A
3616312 McGriff et al. Oct 1971 A
3653741 Marks Apr 1972 A
3656836 de Cremoux et al. Apr 1972 A
3725868 Malmer, Jr. et al. Apr 1973 A
3728030 Hawes Apr 1973 A
3813265 Marks May 1974 A
3955880 Lierke May 1976 A
4099854 Decker et al. Jul 1978 A
4196396 Smith Apr 1980 A
4228437 Shelton Oct 1980 A
4377324 Durand et al. Mar 1983 A
4389096 Hori et al. Jun 1983 A
4392711 Moraw et al. Jul 1983 A
4403248 te Velde Sep 1983 A
4441791 Hornbeck Apr 1984 A
4445050 Marks Apr 1984 A
4459182 te Velde Jul 1984 A
4482213 Piliavin et al. Nov 1984 A
4500171 Penz et al. Feb 1985 A
4519676 te Velde May 1985 A
4531126 Sadones Jul 1985 A
4566935 Hornbeck Jan 1986 A
4571603 Hornbeck et al. Feb 1986 A
4596992 Hornbeck Jun 1986 A
4615595 Hornbeck Oct 1986 A
4617608 Blonder et al. Oct 1986 A
4662746 Hornbeck May 1987 A
4663083 Marks May 1987 A
4663181 Murali May 1987 A
4681403 Te Velde et al. Jul 1987 A
4710732 Hornbeck Dec 1987 A
4748366 Taylor May 1988 A
4786128 Birnbach Nov 1988 A
4790635 Apsley Dec 1988 A
4856863 Sampsell et al. Aug 1989 A
4859060 Kitagiri et al. Aug 1989 A
4900136 Goldburt et al. Feb 1990 A
4900395 Syverson et al. Feb 1990 A
4937496 Neiger et al. Jun 1990 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
4965562 Verhulst Oct 1990 A
4982184 Kirkwood Jan 1991 A
5018256 Hornbeck May 1991 A
5022745 Zayhowski et al. Jun 1991 A
5028939 Hornbeck et al. Jul 1991 A
5037173 Sampsell et al. Aug 1991 A
5044736 Jaskie et al. Sep 1991 A
5061049 Hornbeck Oct 1991 A
5075796 Schildkraut et al. Dec 1991 A
5078479 Vuilleumier Jan 1992 A
5079544 DeMond et al. Jan 1992 A
5083857 Hornbeck Jan 1992 A
5096279 Hornbeck et al. Mar 1992 A
5099353 Hornbeck Mar 1992 A
5124834 Cusano et al. Jun 1992 A
5136669 Gerdt Aug 1992 A
5142405 Hornbeck Aug 1992 A
5142414 Koehler Aug 1992 A
5153771 Link et al. Oct 1992 A
5162787 Thompson et al. Nov 1992 A
5168406 Nelson Dec 1992 A
5170156 DeMond et al. Dec 1992 A
5172262 Hornbeck Dec 1992 A
5179274 Sampsell Jan 1993 A
5192395 Boysel et al. Mar 1993 A
5192946 Thompson et al. Mar 1993 A
5206629 DeMond et al. Apr 1993 A
5212582 Nelson May 1993 A
5214419 DeMond et al. May 1993 A
5214420 Thompson et al. May 1993 A
5216537 Hornbeck Jun 1993 A
5226099 Mignardi et al. Jul 1993 A
5228013 Bik Jul 1993 A
5231532 Magel et al. Jul 1993 A
5233385 Sampsell Aug 1993 A
5233456 Nelson Aug 1993 A
5233459 Bozler et al. Aug 1993 A
5254980 Hendrix et al. Oct 1993 A
5272473 Thompson et al. Dec 1993 A
5278652 Urbanus et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5287096 Thompson et al. Feb 1994 A
5293272 Jannson et al. Mar 1994 A
5296950 Lin et al. Mar 1994 A
5299041 Morin et al. Mar 1994 A
5305640 Boysel et al. Apr 1994 A
5311360 Bloom et al. May 1994 A
5312512 Allman et al. May 1994 A
5312513 Florence et al. May 1994 A
5323002 Sampsell et al. Jun 1994 A
5324683 Fitch et al. Jun 1994 A
5325116 Sampsell Jun 1994 A
5326430 Cronin et al. Jul 1994 A
5327286 Sampsell et al. Jul 1994 A
5330617 Haond Jul 1994 A
5331454 Hornbeck Jul 1994 A
5339116 Urbanus et al. Aug 1994 A
5345328 Fritz et al. Sep 1994 A
5347377 Revelli, Jr. et al. Sep 1994 A
5355357 Yamamori et al. Oct 1994 A
5358601 Cathey Oct 1994 A
5365283 Doherty et al. Nov 1994 A
5374346 Bladon et al. Dec 1994 A
5381232 van Wijk Jan 1995 A
5381253 Sharp et al. Jan 1995 A
5401983 Jokerst et al. Mar 1995 A
5411769 Hornbeck May 1995 A
5444566 Gale et al. Aug 1995 A
5446479 Thompson et al. Aug 1995 A
5448314 Heimbuch et al. Sep 1995 A
5452024 Sampsell Sep 1995 A
5454906 Baker et al. Oct 1995 A
5457493 Leddy et al. Oct 1995 A
5457566 Sampsell et al. Oct 1995 A
5459602 Sampsell Oct 1995 A
5459610 Bloom et al. Oct 1995 A
5461411 Florence et al. Oct 1995 A
5474865 Vasudev Dec 1995 A
5489952 Gove et al. Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497197 Gove et al. Mar 1996 A
5499037 Nakagawa et al. Mar 1996 A
5499062 Urbanus Mar 1996 A
5500635 Mott Mar 1996 A
5500761 Goossen et al. Mar 1996 A
5503952 Suzuki et al. Apr 1996 A
5506597 Thompson et al. Apr 1996 A
5515076 Thompson et al. May 1996 A
5517347 Sampsell May 1996 A
5523803 Urbanus et al. Jun 1996 A
5526051 Gove et al. Jun 1996 A
5526172 Kanack Jun 1996 A
5526327 Cordova, Jr. Jun 1996 A
5526688 Boysel et al. Jun 1996 A
5535047 Hornbeck Jul 1996 A
5548301 Kornher et al. Aug 1996 A
5551293 Boysel et al. Sep 1996 A
5552924 Tregilgas Sep 1996 A
5552925 Worley Sep 1996 A
5559358 Burns et al. Sep 1996 A
5563398 Sampsell Oct 1996 A
5567334 Baker et al. Oct 1996 A
5570135 Gove et al. Oct 1996 A
5578976 Yao Nov 1996 A
5579149 Moret et al. Nov 1996 A
5581272 Conner et al. Dec 1996 A
5583688 Hornbeck Dec 1996 A
5589852 Thompson et al. Dec 1996 A
5597736 Sampsell Jan 1997 A
5600383 Hornbeck Feb 1997 A
5602671 Hornbeck Feb 1997 A
5606441 Florence et al. Feb 1997 A
5608468 Gove et al. Mar 1997 A
5610438 Wallace et al. Mar 1997 A
5610624 Bhuva Mar 1997 A
5610625 Sampsell Mar 1997 A
5619059 Li et al. Apr 1997 A
5619365 Rhoades et al. Apr 1997 A
5619366 Rhoads et al. Apr 1997 A
5622814 Miyata et al. Apr 1997 A
5629790 Neukermans et al. May 1997 A
5633652 Kanbe et al. May 1997 A
5636052 Arney et al. Jun 1997 A
5636185 Brewer et al. Jun 1997 A
5638084 Kalt Jun 1997 A
5638946 Zavracky Jun 1997 A
5641391 Hunter et al. Jun 1997 A
5646768 Kaeiyama Jul 1997 A
5647819 Fujita et al. Jul 1997 A
5650834 Nakagawa et al. Jul 1997 A
5650881 Hornbeck Jul 1997 A
5654741 Sampsell et al. Aug 1997 A
5657099 Doherty et al. Aug 1997 A
5659374 Gale, Jr. et al. Aug 1997 A
5665997 Weaver et al. Sep 1997 A
5673139 Johnson Sep 1997 A
5674757 Kim Oct 1997 A
5683591 Offenberg Nov 1997 A
5703710 Brinkman et al. Dec 1997 A
5706022 Hato Jan 1998 A
5710656 Goosen Jan 1998 A
5726480 Pister Mar 1998 A
5739945 Tayebati Apr 1998 A
5745193 Urbanus et al. Apr 1998 A
5745281 Yi et al. Apr 1998 A
5771116 Miller et al. Jun 1998 A
5771321 Stern Jun 1998 A
5784189 Bozler et al. Jul 1998 A
5784190 Worley Jul 1998 A
5784212 Hornbeck Jul 1998 A
5793504 Stoll Aug 1998 A
5808780 McDonald Sep 1998 A
5818095 Sampsell Oct 1998 A
5822110 Dabbaj Oct 1998 A
5822170 Cabuz et al. Oct 1998 A
5824608 Gotoch et al. Oct 1998 A
5825528 Goosen Oct 1998 A
5835255 Miles Nov 1998 A
5838484 Goosen et al. Nov 1998 A
5842088 Thompson Nov 1998 A
5867302 Fleming et al. Feb 1999 A
5896796 Chih Apr 1999 A
5912758 Knipe et al. Jun 1999 A
5914803 Hwang et al. Jun 1999 A
5920421 Choi Jul 1999 A
5943155 Goossen Aug 1999 A
5943158 Ford et al. Aug 1999 A
5959763 Bozler et al. Sep 1999 A
5967163 Pan et al. Oct 1999 A
5972193 Chou et al. Oct 1999 A
5976902 Shih Nov 1999 A
5978127 Berg Nov 1999 A
5986796 Miles Nov 1999 A
6016693 Viani et al. Jan 2000 A
6028690 Carter et al. Feb 2000 A
6031653 Wang Feb 2000 A
6038056 Florence et al. Mar 2000 A
6040937 Miles Mar 2000 A
6049317 Thompson et al. Apr 2000 A
6055090 Miles Apr 2000 A
6057903 Colgan et al. May 2000 A
6061075 Nelson et al. May 2000 A
6097145 Kastalsky et al. Aug 2000 A
6099132 Kaeriyama Aug 2000 A
6100477 Randall et al. Aug 2000 A
6100872 Aratani et al. Aug 2000 A
6104525 Min Aug 2000 A
6113239 Sampsell et al. Sep 2000 A
6115326 Puma et al. Sep 2000 A
6147790 Meier et al. Nov 2000 A
6158156 Patrick Dec 2000 A
6160833 Floyd et al. Dec 2000 A
6165890 Kohl et al. Dec 2000 A
6166422 Qian et al. Dec 2000 A
6170332 MacDonald et al. Jan 2001 B1
6180428 Peeters et al. Jan 2001 B1
6194323 Downey et al. Feb 2001 B1
6195196 Kimura et al. Feb 2001 B1
6201633 Peeters et al. Mar 2001 B1
6204080 Hwang Mar 2001 B1
6215221 Cabuz et al. Apr 2001 B1
6229683 Goodwin-Johansson May 2001 B1
6232936 Gove et al. May 2001 B1
6243149 Swanson et al. Jun 2001 B1
6246398 Koo Jun 2001 B1
6249039 Harvey et al. Jun 2001 B1
6282010 Sulzbach et al. Aug 2001 B1
6284560 Jech et al. Sep 2001 B1
6288472 Cabuz et al. Sep 2001 B1
6288824 Kastalsky et al. Sep 2001 B1
6295154 Laor et al. Sep 2001 B1
6297072 Tilmans et al. Oct 2001 B1
6323982 Hornbeck Nov 2001 B1
6324192 Tayebati Nov 2001 B1
6327071 Kimura et al. Dec 2001 B1
6329297 Balish et al. Dec 2001 B1
6335831 Kowarz et al. Jan 2002 B2
6351329 Greywal Feb 2002 B1
6356254 Kimura Mar 2002 B1
6359673 Stephenson Mar 2002 B1
6376787 Martin et al. Apr 2002 B1
6377233 Colgan et al. Apr 2002 B2
6391675 Ehmke et al. May 2002 B1
6392233 Channin et al. May 2002 B1
6392781 Kim et al. May 2002 B1
6407851 Islam et al. Jun 2002 B1
6447126 Hornbeck Sep 2002 B1
6448622 Franke et al. Sep 2002 B1
6449084 Guo Sep 2002 B1
6452465 Brown et al. Sep 2002 B1
6456420 Goodwin-Johansson Sep 2002 B1
6465355 Horsley Oct 2002 B1
6466354 Gudeman Oct 2002 B1
6466358 Tew Oct 2002 B2
6473072 Comiskey et al. Oct 2002 B1
6473274 Maimone et al. Oct 2002 B1
6480177 Doherty et al. Nov 2002 B2
6496122 Sampsell Dec 2002 B2
6513911 Ozaki et al. Feb 2003 B1
6522801 Aksyuk et al. Feb 2003 B1
6531945 Ahn et al. Mar 2003 B1
6537427 Raina et al. Mar 2003 B1
6545335 Chua et al. Apr 2003 B1
6548908 Chua et al. Apr 2003 B2
6549338 Wolverton et al. Apr 2003 B1
6552840 Knipe Apr 2003 B2
6574033 Chui et al. Jun 2003 B1
6577785 Spahn et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6597490 Tayebati Jul 2003 B2
6600201 Hartwell et al. Jul 2003 B2
6602791 Ouellet et al. Aug 2003 B2
6606175 Sampsell et al. Aug 2003 B1
6608268 Goldsmith Aug 2003 B1
6610440 LaFollette et al. Aug 2003 B1
6625047 Coleman, Jr. Sep 2003 B2
6630786 Cummings et al. Oct 2003 B2
6632698 Ives Oct 2003 B2
6635919 Melendez et al. Oct 2003 B1
6642913 Kimura et al. Nov 2003 B1
6643069 Dewald Nov 2003 B2
6650455 Miles Nov 2003 B2
6653997 Van Gorkom et al. Nov 2003 B2
6657832 Williams et al. Dec 2003 B2
6666561 Blakley Dec 2003 B1
6674090 Chua et al. Jan 2004 B1
6674562 Miles et al. Jan 2004 B1
6674563 Chui et al. Jan 2004 B2
6680792 Miles Jan 2004 B2
6687896 Miles Mar 2004 B1
6704475 Jin et al. Mar 2004 B2
6710908 Miles et al. Mar 2004 B2
6713235 Ide et al. Mar 2004 B1
6720267 Chen et al. Apr 2004 B1
6736987 Cho May 2004 B1
6741377 Miles May 2004 B2
6741384 Martin et al. May 2004 B1
6741503 Farris et al. May 2004 B1
6743570 Harnett et al. Jun 2004 B2
6747785 Chen et al. Jun 2004 B2
6747800 Lin Jun 2004 B1
6756317 Sniegowski et al. Jun 2004 B2
6760146 Ikeda et al. Jul 2004 B2
6768097 Vikorovitch et al. Jul 2004 B1
6775174 Huffman et al. Aug 2004 B2
6778155 Doherty et al. Aug 2004 B2
6778306 Sniegowski et al. Aug 2004 B2
6778728 Taylor Aug 2004 B2
6782166 Grote et al. Aug 2004 B1
6794119 Miles Sep 2004 B2
6803534 Chen et al. Oct 2004 B1
6806110 Lester et al. Oct 2004 B2
6806557 Ding Oct 2004 B2
6811267 Allen et al. Nov 2004 B1
6812482 Fleming et al. Nov 2004 B2
6819469 Koba Nov 2004 B1
6822304 Honer Nov 2004 B1
6822628 Dunphy et al. Nov 2004 B2
6829132 Martin et al. Dec 2004 B2
6853129 Cummings et al. Feb 2005 B1
6855610 Tung et al. Feb 2005 B2
6859218 Luman et al. Feb 2005 B1
6859301 Islam et al. Feb 2005 B1
6861277 Monroe et al. Mar 2005 B1
6862022 Slupe Mar 2005 B2
6862029 D'Souza et al. Mar 2005 B1
6867896 Miles Mar 2005 B2
6870581 Li et al. Mar 2005 B2
6870654 Lin et al. Mar 2005 B2
6881535 Yamaguchi Apr 2005 B2
6882458 Lin et al. Apr 2005 B2
6882461 Tsai et al. Apr 2005 B1
6912022 Lin et al. Jun 2005 B2
6940631 Ishikawa Sep 2005 B2
6952303 Lin et al. Oct 2005 B2
6952304 Mushika et al. Oct 2005 B2
6953702 Miller et al. Oct 2005 B2
6958847 Lin Oct 2005 B2
6972891 Patel et al. Dec 2005 B2
6980350 Hung et al. Dec 2005 B2
6982820 Tsai Jan 2006 B2
6987432 Lutz et al. Jan 2006 B2
6995890 Lin Feb 2006 B2
6999225 Lin Feb 2006 B2
6999236 Lin Feb 2006 B2
7002441 Pillans et al. Feb 2006 B2
7006272 Tsai Feb 2006 B2
7008812 Carley Mar 2006 B1
7012726 Miles Mar 2006 B1
7016095 Lin Mar 2006 B2
7016099 Ikeda et al. Mar 2006 B2
7027202 Hunter et al. Apr 2006 B1
7041224 Patel et al. May 2006 B2
7041571 Strane May 2006 B2
7042619 McGinley et al. May 2006 B1
7042643 Miles et al. May 2006 B2
7049164 Bruner May 2006 B2
7078293 Lin et al. Jul 2006 B2
7110158 Miles Sep 2006 B2
7119945 Cummings et al. Oct 2006 B2
7123216 Miles Oct 2006 B1
7161730 Floyd Jan 2007 B2
7172915 Lin et al. Feb 2007 B2
7193768 Lin Mar 2007 B2
7198973 Lin et al. Apr 2007 B2
7221495 Miles et al. May 2007 B2
7233029 Mochizuki Jun 2007 B2
7256107 Takeuchi et al. Aug 2007 B2
7289259 Chui et al. Oct 2007 B2
7329917 Patraw et al. Feb 2008 B2
7373026 Chui May 2008 B2
7382515 Chung et al. Jun 2008 B2
20010003487 Miles Jun 2001 A1
20010010953 Kang et al. Aug 2001 A1
20010026951 Vergani et al. Oct 2001 A1
20010028503 Flanders et al. Oct 2001 A1
20010040649 Ozaki Nov 2001 A1
20010040675 True et al. Nov 2001 A1
20010055208 Kimura Dec 2001 A1
20020003400 Lee Jan 2002 A1
20020014579 Dunfield Feb 2002 A1
20020015215 Miles Feb 2002 A1
20020021485 Pilossof Feb 2002 A1
20020024711 Miles Feb 2002 A1
20020027636 Yamada Mar 2002 A1
20020031155 Tayebati et al. Mar 2002 A1
20020036304 Ehmke et al. Mar 2002 A1
20020054422 Carr et al. May 2002 A1
20020054424 Miles May 2002 A1
20020055253 Rudhard May 2002 A1
20020071169 Bowers et al. Jun 2002 A1
20020075555 Miles Jun 2002 A1
20020086455 Franosch et al. Jul 2002 A1
20020109899 Ohtaka et al. Aug 2002 A1
20020110948 Huang et al. Aug 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020126364 Miles Sep 2002 A1
20020131682 Nasiri et al. Sep 2002 A1
20020135857 Fitzpatrick et al. Sep 2002 A1
20020137072 Mirkin et al. Sep 2002 A1
20020141690 Jin et al. Oct 2002 A1
20020146200 Kudric et al. Oct 2002 A1
20020149828 Miles et al. Oct 2002 A1
20020149850 Heffner et al. Oct 2002 A1
20020168136 Atia et al. Nov 2002 A1
20020195681 Melendez et al. Dec 2002 A1
20030006468 Ma et al. Jan 2003 A1
20030015936 Yoon et al. Jan 2003 A1
20030036215 Reid Feb 2003 A1
20030043157 Miles Mar 2003 A1
20030053078 Missey et al. Mar 2003 A1
20030054588 Patel et al. Mar 2003 A1
20030062186 Boroson et al. Apr 2003 A1
20030072070 Miles Apr 2003 A1
20030090350 Feng et al. May 2003 A1
20030091072 Wang et al. May 2003 A1
20030112096 Potter Jun 2003 A1
20030119221 Cunningham et al. Jun 2003 A1
20030123126 Meyer et al. Jul 2003 A1
20030138213 Jiin et al. Jul 2003 A1
20030152872 Miles Aug 2003 A1
20030164350 Hanson et al. Sep 2003 A1
20030201784 Potter Oct 2003 A1
20030202264 Weber et al. Oct 2003 A1
20030202265 Reboa et al. Oct 2003 A1
20030202266 Ring et al. Oct 2003 A1
20030231373 Kowarz et al. Dec 2003 A1
20040008396 Stappaerts Jan 2004 A1
20040010115 Sotzing Jan 2004 A1
20040027636 Miles Feb 2004 A1
20040027701 Ishikawa Feb 2004 A1
20040028849 Stark et al. Feb 2004 A1
20040035821 Doan et al. Feb 2004 A1
20040038513 Kohl et al. Feb 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040053434 Bruner Mar 2004 A1
20040056742 Dabbaj Mar 2004 A1
20040058532 Miles et al. Mar 2004 A1
20040061543 Nam et al. Apr 2004 A1
20040063322 Yang Apr 2004 A1
20040070813 Aubuchon Apr 2004 A1
20040080035 Delapierre Apr 2004 A1
20040080807 Chen et al. Apr 2004 A1
20040080832 Singh Apr 2004 A1
20040087086 Lee May 2004 A1
20040100677 Huibers et al. May 2004 A1
20040100680 Huibers et al. May 2004 A1
20040124073 Pilans et al. Jul 2004 A1
20040124483 Partridge et al. Jul 2004 A1
20040124495 Chen et al. Jul 2004 A1
20040125281 Lin et al. Jul 2004 A1
20040125282 Lin et al. Jul 2004 A1
20040125536 Arney et al. Jul 2004 A1
20040136045 Tran Jul 2004 A1
20040136076 Tayebati Jul 2004 A1
20040145049 McKinnell et al. Jul 2004 A1
20040145811 Lin et al. Jul 2004 A1
20040147056 McKinnell et al. Jul 2004 A1
20040147198 Lin et al. Jul 2004 A1
20040148009 Buzzard Jul 2004 A1
20040150869 Kasai Aug 2004 A1
20040160143 Shreeve et al. Aug 2004 A1
20040174583 Chen et al. Sep 2004 A1
20040175577 Lin et al. Sep 2004 A1
20040179281 Reboa Sep 2004 A1
20040179445 Park Sep 2004 A1
20040191937 Patel et al. Sep 2004 A1
20040191946 Patel et al. Sep 2004 A1
20040197526 Mehta Oct 2004 A1
20040201908 Kaneko Oct 2004 A1
20040207497 Hsu et al. Oct 2004 A1
20040207897 Lin Oct 2004 A1
20040207898 Lin et al. Oct 2004 A1
20040209192 Lin et al. Oct 2004 A1
20040209195 Lin Oct 2004 A1
20040212026 Van Brocklin et al. Oct 2004 A1
20040217264 Wood et al. Nov 2004 A1
20040217378 Martin et al. Nov 2004 A1
20040217919 Pichl et al. Nov 2004 A1
20040218251 Piehl et al. Nov 2004 A1
20040218334 Martin et al. Nov 2004 A1
20040218341 Martin et al. Nov 2004 A1
20040226909 Tzeng Nov 2004 A1
20040227493 Van Brocklin et al. Nov 2004 A1
20040240027 Lin et al. Dec 2004 A1
20040240032 Miles Dec 2004 A1
20040240138 Martin et al. Dec 2004 A1
20040245588 Nikkel et al. Dec 2004 A1
20040263944 Miles et al. Dec 2004 A1
20050001828 Martin et al. Jan 2005 A1
20050003667 Lin et al. Jan 2005 A1
20050012577 Pillans et al. Jan 2005 A1
20050014374 Partridge et al. Jan 2005 A1
20050020089 Shi et al. Jan 2005 A1
20050024557 Lin Feb 2005 A1
20050035699 Tsai Feb 2005 A1
20050036095 Yeh et al. Feb 2005 A1
20050036192 Lin et al. Feb 2005 A1
20050038950 Adelmann Feb 2005 A1
20050042117 Lin Feb 2005 A1
20050045276 Patel et al. Mar 2005 A1
20050046919 Taguchi et al. Mar 2005 A1
20050046922 Lin et al. Mar 2005 A1
20050046948 Lin Mar 2005 A1
20050057442 Way Mar 2005 A1
20050068583 Gutkowski et al. Mar 2005 A1
20050068605 Tsai Mar 2005 A1
20050068606 Tsai Mar 2005 A1
20050069209 Damera-Venkata et al. Mar 2005 A1
20050078348 Lin Apr 2005 A1
20050098840 Fuertsch et al. May 2005 A1
20050118832 Korzenski et al. Jun 2005 A1
20050128565 Ljungblad Jun 2005 A1
20050168849 Lin Aug 2005 A1
20050170670 King et al. Aug 2005 A1
20050195462 Lin Sep 2005 A1
20050195467 Kothari et al. Sep 2005 A1
20050202649 Hung et al. Sep 2005 A1
20050249966 Tung et al. Nov 2005 A1
20050250235 Miles et al. Nov 2005 A1
20060006138 Lin Jan 2006 A1
20060018348 Przybyla et al. Jan 2006 A1
20060024620 Nikkel et al. Feb 2006 A1
20060066511 Chui Mar 2006 A1
20060066932 Chui Mar 2006 A1
20060066935 Cummings et al. Mar 2006 A1
20060076311 Tung et al. Apr 2006 A1
20060077502 Tung et al. Apr 2006 A1
20060077518 Chui et al. Apr 2006 A1
20060077529 Chui et al. Apr 2006 A1
20060177950 Lin et al. Aug 2006 A1
20060256420 Miles et al. Nov 2006 A1
20060257070 Lin et al. Nov 2006 A1
20070019280 Sasagawa et al. Jan 2007 A1
20070041703 Wang Feb 2007 A1
20070042521 Yama Feb 2007 A1
20070096300 Wang et al. May 2007 A1
20070155051 Wang et al. Jul 2007 A1
20070170540 Chung et al. Jul 2007 A1
20070196944 Chou et al. Aug 2007 A1
20070206267 Tung et al. Sep 2007 A1
20070269748 Miles Nov 2007 A1
20080026328 Miles Jan 2008 A1
20080068699 Miles Mar 2008 A1
20080130089 Miles Jun 2008 A1
20080144163 Floyd Jun 2008 A1
20080226929 Chung et al. Sep 2008 A1
20080231931 Londergan et al. Sep 2008 A1
Foreign Referenced Citations (80)
Number Date Country
680534 Sep 1992 CH
681 047 Dec 1992 CH
092109265 Nov 2003 CN
199 38 072 Mar 2000 DE
10228946 Jan 2004 DE
0 035 299 Sep 1983 EP
0173808 Mar 1986 EP
0 667 548 Aug 1995 EP
0694801 Jan 1996 EP
0695959 Feb 1996 EP
0 788 005 Aug 1997 EP
0878824 Nov 1998 EP
1 170 618 Jan 2002 EP
1197778 Apr 2002 EP
1 209 738 May 2002 EP
1258860 Nov 2002 EP
1 452 481 Sep 2004 EP
1 484 635 Dec 2004 EP
2824643 Nov 2002 FR
49-004993 Jan 1974 JP
405275401 Oct 1993 JP
06301054 Oct 1994 JP
08293580 Nov 1996 JP
10015520 Jan 1998 JP
10500224 Jan 1998 JP
10-148644 Jun 1998 JP
10-267658 Oct 1998 JP
11211999 Aug 1999 JP
11243214 Sep 1999 JP
2000-40831 Feb 2000 JP
2001-085519 Mar 2001 JP
2002-0287047 Mar 2001 JP
2002 062493 Feb 2002 JP
2002-207182 Jul 2002 JP
2002-243937 Aug 2002 JP
2002-270575 Sep 2002 JP
2002-277771 Sep 2002 JP
2002-328313 Nov 2002 JP
2002-341267 Nov 2002 JP
2002-355800 Dec 2002 JP
2003-021798 Jan 2003 JP
2003001598 Jan 2003 JP
2003-215475 Jul 2003 JP
2004-102022 Apr 2004 JP
2004-133281 Apr 2004 JP
2004106074 Apr 2004 JP
2004157527 Jun 2004 JP
2004-212656 Jul 2004 JP
2005051007 Feb 2005 JP
2002-9270 Oct 1999 KR
2000-0033006 Jun 2000 KR
WO 9105284 Apr 1991 WO
WO 9210925 Jun 1992 WO
WO9530924 Nov 1995 WO
WO9717628 May 1997 WO
WO9952006 Oct 1999 WO
WO9952006 Oct 1999 WO
WO0114248 Mar 2001 WO
WO 0163657 Aug 2001 WO
WO 0224570 Mar 2002 WO
WO 0238491 May 2002 WO
WO 02079853 Oct 2002 WO
WO03007049 Jan 2003 WO
WO 03052506 Jun 2003 WO
WO 03069404 Aug 2003 WO
WO 03069413 Aug 2003 WO
WO03069413 Aug 2003 WO
WO03073151 Sep 2003 WO
WO 2004000717 Dec 2003 WO
WO2004006003 Jan 2004 WO
WO2004026757 Apr 2004 WO
WO 2004055885 Jul 2004 WO
WO 2004079056 Sep 2004 WO
WO 2005006364 Jan 2005 WO
WO 2005019899 Mar 2005 WO
WO 2005061378 Jul 2005 WO
WO 2005085932 Sep 2005 WO
WO 2006036385 Apr 2006 WO
WO 2006036437 Apr 2006 WO
WO 2006036542 Apr 2006 WO
Related Publications (1)
Number Date Country
20070249079 A1 Oct 2007 US