The present invention relates to tissue modification generally and more particularly to non-thermal acoustic tissue modification.
The following U.S. Patents and prior art are believed to represent the current state of the art:
U.S. Pat. Nos. 3,637,437; 4,043,946; 4,049,580; 4,110,257; 4,116,804; 4,126,934; 4,169,025; 4,450,056; 4,605,009; 4,826,799; 4,886,491; 4,986,275; 4,938,216; 5,005,579; 5,079,952; 5,080,101; 5,080,102; 5,111,822; 5,143,063; 5,143,073; 5,209,221; 5,219,401; 5,301,660; 5,419,761; 5,431,621; 5,507,790; 5,512,327; 5,526,815; 5,601,526; 5,640,371; 5,884,631; 5,618,275; 5,827,204; 5,938,608; 5,948,011; 5,993,979; 6,039,048; 6,071,239; 6,086,535; 6,113,558; 6,113,559; 6,206,873; 6,309,355; 6,384,516; 6,436,061; 6,573,213; 6,607,498; 6,652,463 B2; 6,685,657 B2 ; 6,747,180.
PCT International Publication No. WO 2004/014488 A1;
UK Patent No. GB 2 303 552;
Rod J. Rohrich, et al., “Comparative Lipoplasty Analysis of in Vivo-Treated Adipose Tissue”, Plastic and Reconstruction Journal, 105:2152-2158, 2000;
T. G. Muir, et al., “Prediction of Nonlinear Acoustic Effects at Biomedical Frequencies and Intensities”, Ultrasound in Med. & Biol., Vol. 6, pp. 345-357, Pergamon Press Ltd., 1980;
Jahangir Tavakkoli, et al., “A Piezocomposite Shock Wave Generator with Electronic Focusing Capability: Application for Producing Cavitation-Induced Lesions in Rabbit Liver”, Ultrasound in Med. & Biol., Vol. 23, No. 1, pp. 107-115, 1997;
N. I. Vykhodtseva, et al., “Histologic Effects of high Intensity Pulsed Ultrasound Exposure with Subharmonic Emission in rabbit Brain In Vivo”, Ultrasound in Med. & Biol., Vol. 21, No. 7, pp. 969-979, 1995;
Gail R. Ter Haar, et al., “Evidence for Acoustic Cavitation In Vivo: Thresholds for Bubble Formation with 0.75-MHz Continuous Wave and Pulsed Beams”, IEEE Transactions on Ultrasonics, Ferroelectronics, and Frequency Control, Vol. Uffc-33, No. 2, pp. 162-162, March 1986;
D. R. Bacon et al, “Comparison of Two Theoretical Models for Predicting Non-Linear Propagation in Medical Ultrasound Fields”, Phys. Med. Biol. 1989 November; 34(11): 1633-43;
E. L. Carstensen et al, “Demonstration of Nonlinear Acoustical Effects at Biomedical Frequencies and Intensities”, Ultrasound in Med. & Biol., Vol. 6, pp 359-368, 1980.
The present invention seeks to provide improved apparatus and methodology for acoustic non-thermal tissue modification.
There is thus provided in accordance with a preferred embodiment of the present invention a method for modifying tissue including the steps of:
providing an acoustic beam; and
directing the acoustic beam at a target volume in a tissue-containing region of a body for a predetermined time duration so as to modify the tissue in the target volume, the acoustic beam having a pressure at the tissue in the target volume which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volume.
Additionally in accordance with a preferred embodiment of the present invention, there is provided a method for modifying tissue including the steps of:
generating, at a source outside a body, the acoustic beam which generally modifies tissue; and
directing the acoustic beam, from the source outside the body, at a target volume in a tissue-containing region of a body for a predetermined time duration so as to modify the tissue in the target volume, the acoustic beam having a pressure at the tissue in the target volume which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volume.
Further in accordance with a preferred embodiment of the present invention there is provided a method for modifying tissue including the steps of
defining a region in a body at least partially by detecting spatial indications on the body; and
directing an acoustic beam at a multiplicity of target volumes within the region, which target volumes contain tissue, the acoustic beam having a pressure at the tissue in the target volume which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volume, thereby to modify the tissue in the target volumes.
Additionally in accordance with a preferred embodiment of the present invention, there is provided a method for modifying tissue including the steps of:
directing an acoustic beam at a multiplicity of target volumes within the region, which target volumes contain tissue, the acoustic beam having a pressure at the tissue in the target volumes which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volumes, thereby to modify the tissue in the target volumes; and
computerized tracking of the multiplicity of target volumes notwithstanding movement of the body.
There is additionally provided in accordance with a preferred embodiment of the present invention apparatus for modifying tissue including:
an acoustic beam director, directing an acoustic beam at a target volume in a region of a body containing tissue, the acoustic beam having a pressure at the tissue in the target volume which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volume; and
a modulator, cooperating with the acoustic beam director to produce the acoustic beam so as to modify the tissue in the target volume.
There is further provided in accordance with a preferred embodiment of the present invention apparatus for modifying tissue including:
a source outside a body generating an acoustic beam, the acoustic beam having a pressure at the tissue in the target volume which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volume;
an acoustic beam director, which employs the acoustic beam to generally modify tissue in a target volume of a body containing tissue.
There is additionally provided in accordance with a preferred embodiment of the present invention apparatus for modifying tissue including the steps of:
a region definer, defining a region in a body at least partially by detecting spatial indications on the body; and
a director, directing an acoustic beam at a multiplicity of target volumes within the region, which target volumes contain tissue thereby to modify the tissue in the target volumes, the acoustic beam having a pressure at the tissue in the target volumes which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volumes.
There is still further provided in accordance with a preferred embodiment of the present invention apparatus for modifying tissue including:
a director, directing the acoustic beam at a multiplicity of target volumes within the region, which target volumes contain tissue, thereby to modify the tissue in the target volumes, the acoustic beam having a pressure at the tissue in the target volumes which lies below a cavitation threshold thereat, the predetermined time duration being shorter than a time duration over which the acoustic beam produces thermal modification of the tissue in the target volumes; and
computerized tracking functionality providing computerized tracking of the multiplicity of target volumes notwithstanding movement of the body.
Preferably, directing the acoustic beam generally prevents modification of tissue outside of the target volumes.
In accordance with a preferred embodiment of the present invention, the method also includes acoustic imaging of the region at least partially concurrently with directing the acoustic beam at the target volume.
Preferably, directing includes positioning at least one acoustic transducer relative to the body in order to direct the acoustic beam at the target volume.
The directing may also include varying a focus of at least one acoustic transducer in order to direct the acoustic beam at the target volume. Varying the focus may change the volume of the target volume, and/or the distance of the target volume from the at least one acoustic transducer.
The directing may also include positioning at least one acoustic transducer relative to the body in order to direct the acoustic beam at the target volume.
The method preferably also includes sensing the acoustic beam coupling to an external surface of the body adjacent the target volume.
Preferably, directing takes place from an acoustic transducer located outside of the body.
In accordance with a preferred embodiment of the present invention, the acoustic beam has an initial frequency in a range of 50 KHz-1000 KHz, more preferably in a range of 75 KHz-500 KHz, and most preferably in a range of 100 KHz-300 KHz.
In accordance with a preferred embodiment of the present invention, the acoustic beam has, in the beginning of the treatment area, lost at least 1 dB to harmonic generation.
In accordance with a preferred embodiment of the present invention, the wave form in the treatment area has a “saw tooth” form that creates localized extreme pressure gradients causing the formation of shock waves.
The shock waves modify tissue by creating at least one of the following: apoptosis, necrosis, alteration of chemical and/or physical properties of proteins, alteration of chemical and/or physical properties of lipids, alteration of chemical and/or physical properties of sugars, alteration of chemical and/or physical properties of glycoprotein.
Preferably, the initial modulating provides a duty cycle between 1:2 and 1:250, more preferably between 1:5 and 1:30 and most preferably between 1:10 and 1:20.
In accordance with a preferred embodiment of the present invention, the modulating provides in the treatment area between 1 and 1000 sequential shock waves at an amplitude above a propagating non linear mechanical modification threshold, more preferably between 1 and 100 sequential shock waves at an amplitude above the propagating non linear mechanical threshold and most preferably between 1 and 10 sequential shock waves at an amplitude sufficient for treatment.
Preferably, the modulating includes modulating the amplitude of the acoustic beam over time.
In accordance with a preferred embodiment of the present invention, the total sum of shock waves at a target volume, with an amplitude above a propagating non linear mechanical modification threshold is between 1000 and 100,000, more preferably between 10,000 and 50,000.
In accordance with a preferred embodiment of the present invention, the acoustic beam has an initial shock wave form with a total time of 1 to 10 microsecond.
Preferably, the initial modulating provides a duty cycle between 1:2 and 1:250, more preferably between 1:5 and 1:30 and most preferably between 1:10 and 1:20.
In accordance with a preferred embodiment of the present invention, the modulating provides between 1 and 1000 sequential shock waves at an amplitude above a propagating non linear mechanical modification threshold, more preferably between 1 and 100 sequential shock waves at an amplitude above the propagating non linear mechanical threshold and most preferably between 1 and 10 sequential shock waves at an amplitude above the propagating non linear mechanical threshold.
In accordance with a preferred embodiment of the present invention, the total sum of shock waves at a target volume, with an amplitude above a propagating non linear mechanical modification threshold is between 1000 and 100,000, more preferably between 10,000 and 50,000.
Preferably, directing includes directing the acoustic beam at a multiplicity of target volumes in a time sequence.
In accordance with a preferred embodiment of the present invention, directing includes directing the acoustic beam at plural ones of the multiplicity of target volumes at times which at least partially overlap.
Preferably, at least some of the multiplicity of target volumes at least partially overlap in space.
In accordance with a preferred embodiment of the present invention, the method includes defining the region by marking at least one surface of the body. The method may also include defining the region by selecting at least one depth in the body and/or by detecting tissue in the body and/or by detecting non-modified tissue.
Preferably, directing also includes defining the target volumes as unit volumes of non-modified tissue within the region.
In accordance with a preferred embodiment of the present invention, modulating the acoustic beam so as to modify the tissue in the multiplicity of target volumes proceeds sequentially in time wherein selective modification of tissue in each target volume takes place only following detection of non-modified tissue therein.
Preferably, the method also includes computerized tracking of the multiplicity of target volumes notwithstanding movement of the body.
Preferably, the computerized tracking includes sensing changes in the position of markings on the body and employing sensed changes for tracking the positions of the target volumes in the body.
Preferably, an acoustic conducting layer is located between the acoustic beam director and a contact surface of the body. The acoustic conducting layer typically includes an upper portion located adjacent the acoustic beam director and including a fluid for enhancing cooling during operation of the power source and modulator and a lower portion, located between the upper portion and the contact surface of the body and having an acoustic impedance similar to that of the contact surface.
In accordance with another preferred embodiment there is provided apparatus for modifying tissue including a power source and modulator operative to produce an acoustic beam capable of modifying tissue in a target volume in a tissue-containing region of a body, an acoustic beam director, directing the acoustic beam at the target volume and an acoustic conducting interface located between the acoustic beam director and a contact surface of the body. The acoustic conducting interface includes an upper portion located adjacent the acoustic beam director and a lower portion located between the upper portion and the contact surface of the body. The upper portion includes an acoustic coupling fluid which preferably also enhances cooling during operation of the power source and modulator. The lower portion has an acoustic impedance similar to that of the contact surface. The contact surface of the body is preferably coated with an acoustic coupling medium.
Further in accordance with a preferred embodiment of the present invention, the apparatus for modifying tissue also includes an acoustic coupling medium applicator, supplying an acoustic coupling medium between the acoustic beam director and the body.
Still further in accordance with a preferred embodiment of the present invention, the apparatus for modifying tissue further includes a plurality of sensors operating to determine the extent of acoustic coupling between the acoustic beam director and the body.
Additionally in accordance with a preferred embodiment of the present invention, the apparatus for modifying tissue also includes electronic circuitry associated with the acoustic beam director for storing parameters related thereto.
Preferably, the electronic circuitry stores parameters relating to the operational characteristics of the acoustic beam director.
Further in accordance with a preferred embodiment of the present invention, the apparatus for modifying tissue also includes an interlock circuitry operating to condition operation of the apparatus on receipt of predetermined parameters from the electronic circuitry.
Still further in accordance with a preferred embodiment of the present invention, at least some of the predetermined parameters are stored on an acoustic beam director identification storage medium which when read is supplied to the interlock circuitry for verifying the identity of the acoustic beam director to the interlock circuitry.
There is also provided in accordance with yet another preferred embodiment of the present invention, an apparatus for modifying tissue including a power source and modulator operating to produce an acoustic beam capable of modifying tissue in a target volume in a tissue-containing region of a body, an acoustic beam director, directing the acoustic beam at the target volume and an acoustic coupling medium applicator, supplying an acoustic coupling medium between the acoustic beam director and the body.
There is further provided in accordance with a further preferred embodiment of the present invention, an apparatus for modifying tissue including a power source and modulator operative to produce an acoustic beam capable of modifying tissue in a target volume in a tissue-containing region of a body, an acoustic beam director, directing the acoustic beam at the target volume and a plurality of sensors operative to determine the extent of acoustic coupling between the acoustic beam director and the body.
There is provided in accordance with yet a further preferred embodiment of the present invention, an apparatus for modifying tissue including a power source and modulator operating to produce an acoustic beam capable of modifying tissue in a target volume in a tissue-containing region of a body, an acoustic beam director, directing the acoustic beam at the target volume and electronic circuitry associated with the acoustic beam director for storing parameters related thereto.
Further in accordance with a preferred embodiment of the present invention, the electronic circuitry stores parameters relating to the operational characteristics of the acoustic beam director.
Still further in accordance with a preferred embodiment of the present invention, the apparatus for modifying tissue also includes interlock circuitry operating to condition operation of the apparatus on receipt of predetermined parameters from the electronic circuitry.
Additionally, in accordance with a preferred embodiment of the present invention wherein at least some of the predetermined parameters are stored on an acoustic beam director identification storage medium which when read is supplied to the interlock circuitry for verifying the identity of the acoustic beam director to the interlock circuitry.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Also attached herewith is a CD-ROM appendix which aids in the understanding and appreciation of a preferred embodiment of the invention shown and described herein.
A portion of the disclosure of this patent document, which includes a CD-ROM appendix, contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Reference is now made to
A preferred embodiment of the acoustic beam generator and director useful in the present invention comprises an acoustic therapeutic transducer 13 including a phased array 14 of piezoelectric elements 15 having conductive coatings 16 on opposite surfaces thereof. Individual piezoelectric elements 15 are separated by insulative elements 17. The piezoelectric elements 15 may be of any suitable configuration, shape and distribution.
Typically, an acoustic coupling interface, including first and second layers, is provided between the piezoelectric elements 15 and the body. The first layer, designated by reference numeral 18, preferably is a fluid, such as oil, and preferably serves as both a heat sink and as an acoustic conductor. The second layer, designated by reference numeral 19, preferably is formed of a material, such as polyurethane, which has acoustic impedance similar to that of soft mammalian tissue, and defines a contact surface 20 for engagement with the body, typically via an acoustic coupling medium 21, such as a suitable coupling oil coating the contact surface of the body.
Contact surface 20 may be planar, but need not be. The fluid layer 18 enhances the acoustic contact between piezoelectric elements 15 and polyurethane layer 19. The fluid layer 18 may be circulated during treatment for enhancing cooling.
Suitably modulated AC electrical power is supplied by conductors 22 to conductive coatings 16 to cause the piezoelectric elements 15 to provide a desired acoustic beam output.
In accordance with a preferred embodiment of the present invention, an electronic circuit 24, typically comprising ROM and RAM memories, preferably is mounted in the transducer assembly 10. The electronic circuit 24 preferably is coupled to a control subsystem 42, described hereinbelow, preferably via a connecting cable 25. The ROM preferably stores characteristic parameters of transducer assembly 10, such as its operational frequency its impedance and its maximum stable lifetime. These parameters preferably are also stored on a smart card 26.
The RAM preferably stores operational parameters of transducer assembly 10, such as the number of transmitted acoustic pulses and the cumulative duration of treatments. The information stored in the electronic circuit 24 is employed by interlock circuitry included in subsystem 42 when validating the transducer assembly 10 for operation.
In accordance with a preferred embodiment of the present invention, the acoustic coupling medium 21, such as castor oil, is applied to the contact surface 20 of the transducer 10 and onto the body, typically via a flow tube 27. The flow tube 27 is connected to a suitable acoustic coupling medium storage assembly for supplying the coupling medium 21 to the contact surface 20.
In accordance with a preferred embodiment of the present invention, a plurality pressure sensors 29 are distributed about the circumference of the transducer assembly 10 for sensing engagement between the transducer assembly 10 and the body. Alternatively, pressure sensors 29 may be obviated and the extent of acoustic engagement between the transducer and the body may be determined from an analysis of acoustic signals received by the transducer from the body. In accordance with a preferred embodiment of the present invention an imaging acoustic transducer subassembly 23 is incorporated within transducer 10 and typically comprises a piezoelectric element 24 having conductive surfaces 28 associated with opposite surfaces thereof. Suitably modulated AC electrical power is supplied by conductors 32 to conductive surfaces 28 in order to cause the piezoelectric element 24 to provide an the acoustic beam output. Conductors 32, coupled to surfaces 28, also provide an imaging output from imaging acoustic transducer subassembly 23.
It is appreciated that any suitable commercially available acoustic transducer assembly may be employed or alternatively, imaging acoustic transducer subassembly 23 may be eliminated.
It is further appreciated that various types of acoustic transducers assembly 10 may be employed. For example, such transducers may include multiple piezoelectric elements, multilayered piezoelectric elements and piezoelectric elements of various shapes and sizes arranged in a phase array.
In a preferred embodiment of the present invention shown in
In accordance with a preferred embodiment of the present invention, a skin temperature sensor 34, such as an infrared sensor, may be mounted alongside imaging acoustic transducer subassembly 23. Further in accordance with a preferred embodiment of the present invention a transducer temperature sensor 36, such as a thermocouple, may also be mounted alongside imaging acoustic transducer subassembly 23.
Acoustic transducer assembly 10 preferably receives suitably modulated electrical power from a power source and modulator assembly 40, forming part of a control subsystem 42. Relevant parameters of the transducer assembly 10 are supplied to interlock circuitry forming part of the control subsystem 42, preferably via smart card 26 which is read by a suitable card reader 43 The interlock circuitry is preferably operative to condition operation of the acoustic transducer assembly 10 on receipt of predetermined parameters from said electronic circuitry. Thus, when an incompatible transducer assembly 10 or a transducer assembly 10 whose stable lifetime has expired is connected, possibly unsafe operation is prevented.
Control subsystem 42 also typically includes a tissue modification control computer 44, having associated therewith a camera 46, such as a video camera, and a display 48. Acoustic transducer assembly 10 is preferably positioned automatically or semi-automatically as by an X-Y-Z positioning assembly 49. Alternatively, acoustic transducer assembly 10 may be positioned at desired positions manually by an operator.
In accordance with a preferred embodiment of the present invention, camera 46 is operative for imaging a portion of the body on which tissue modification is to be performed. A picture of the portion of the patient's body viewed by the camera is preferably displayed in real time on display 48.
An operator may designate the outline of a region 49 containing tissue to be modified. In accordance with one embodiment of the present invention, designation of this region 49 is effected by an operator marking the skin of a patient with an outline 50, which outline 50 is imaged by camera 46 and displayed by display 48 and is also employed by the tissue modification control computer 44 for controlling the application of the acoustic beam to locations within the region. A computer calculated representation of the outline may also be displayed in overlay on display 48, as designated by reference numeral 52. Alternatively, the operator may make virtual markings on the skin, such as by using a digitizer (not shown), which also may provide computer calculated outline representation 52 on display 48.
In addition to the outline representation 52, the functionality of the system of the present invention preferably also employs a plurality of markers 54 which are typically located outside the region 49 containing tissue to be modified, but alternatively may be located inside the region 49 designated by outline 50. Markers 54 are visually sensible markers, which are clearly seen and captured by camera 46 and displayed on display 48. Markers 54 may be natural anatomic markers, such as distinct portions of the body or, alternatively, artificial markers such as colored stickers. These markers are preferably employed to assist the system in dealing with deformation of the region nominally defined by outline 50 due to movement and reorientation of the body during tissue modification. Preferably, the transducer assembly 10 also bears a visible marker 56 which is also captured by camera 46 and displayed on display 48.
Markers 54 and 56 are typically processed by computer 44 and may be displayed on display 48 as respective computed marker representations 58 and 60 on display 48.
The shock waves modify tissue by creating at least one of the following: apoptosis, necrosis, alteration of chemical and/or physical properties of proteins, alteration of chemical and/or physical properties of lipids, alteration of chemical and/or physical properties of sugars, alteration of chemical and/or physical properties of glycoprotein.
Reference is now made to
Preferably the relationship between the time durations of portions 102 and portions 104 is such as to provide a duty cycle between 1:2 and 1:250, more preferably between 1:5 and 1:30 and most preferably between 1:10 and 1:20.
Preferably, the maximum of the energy distribution generated as output of signal generator 100 lies in a frequency range from 50 KHz to 1000 KHz, more preferably between 100 KHz and 500 KHz and most preferably between 150 KHz and 300 KHz.
The output of signal generator 100 is preferably provided to a suitable power amplifier 106, which outputs via impedance matching circuitry 108 to an input of acoustic transducer 10 (
Each relatively high amplitude portion 112 has a waveform that is changed during propagation due to nonuniform properties of the medium such that at the target volume 12 (
Relatively low amplitude portions 114 have an amplitude which lies below the treatment threshold and do not produce shock waves at the target volume 12.
In accordance with a preferred embodiment of the present invention, the output of signal generator 100 produces an ultrasonic beam which includes between 1 and 1000 sequential shock waves 102 at an amplitude above a propagating non-linear mechanical modification threshold, more preferably between 1 and 100 sequential shock waves at an amplitude above the propagating non linear mechanical modification threshold and most preferably between 1 and 10 sequential shock waves at an amplitude above the propagating non linear mechanical modification threshold.
In accordance with a preferred embodiment of the present invention, the total number of saw-tooth waveforms applied to a target volume in the course of a treatment is between 1000 and 100,000, more preferably between 10,000 and 50,000.
Reference is now made to
It is seen that the various target volumes 12 are shown with different shading in order to indicate their treatment status. For example, unshaded target volumes, here designated by reference numerals 204 have already experienced tissue modification. A blackened target volume 12, designated by reference numeral 205 is the target volume next in line for tissue modification. A partially shaded target volume 206 typically represents a target volume, which has been insufficiently treated to achieve complete tissue modification, typically due to an insufficient treatment duration.
Other types of target volumes, such as those not to be treated due to insufficient presence of tissue therein or for other reasons, may be designated by suitable colors or other designations, and are here indicated by reference numerals 208 and 210.
Typical performance messages 202 may include “SHOCK WAVE TREATMENT IN PROCESS” and “TISSUE MODIFIED IN THIS VOLUME”. Typical status messages 203 may include an indication of the power level, the operating frequency, the number of target volumes 12 within the calculated target region 200 and the number of target volumes 12 which remain to undergo tissue modification.
Display 48 also preferably includes a graphical cross sectional indication 212 derived from an acoustic image preferably provided by imaging acoustic transducer subassembly 23 (
Turning to
Typical warning messages typically may include an indication that shock waves have not been generated due to “BAD ACOUSTIC CONTACT”, “TEMPERATURE TOO HIGH”. The “TEMPERATURE TOO HIGH” message typically relates to the skin tissue, although it may alternatively or additionally relate to other tissue inside or outside of the target volume or in transducer 10 (
Reference is now made to
Reference is now made to
An operator directs an acoustic beam towards the target volume 12 in the treatment region 200 by varying the focus of each acoustic beam produced by each piezoelectric element 15 of the phased array 14. Varying the focus of each acoustic beam emitted by the each acoustic element 15, changes the distance of the target volume 12 from each acoustic element 15, as described hereinabove with respect to
Tissue modification control computer 44 also preferably receives an input from an acoustic contact monitoring unit 302, which in turn preferably receives an input from a transducer electrical properties measurement unit 304. Transducer electrical properties measurement unit 304 preferably monitors the output of power source and modulator assembly 40 (
Transducer electrical properties measurement unit 304 preferably compares the output of the power source and modulator 40 with appropriate threshold settings and provides an indication to tissue modification control computer 44 of exceedance of a power level threshold established by the threshold settings. It is a particular feature of the present invention that the power thresholds settings are selected to define a power level threshold which is below a power level characteristic of cavitational cell destruction at a target volume. It is appreciated that the power level characteristic of cavitational cell destruction is substantially higher than the power level employed by the mechanical non-cavitational tissue modification functionality of the present invention.
In accordance with a preferred embodiment of the present invention, the electric power level threshold is significantly less than the power level needed for cavitation in tissue. For example, the power level is 160 Watts for an operating frequency of 250 kHz, when the electric power level threshold found in laboratory experiments for cavitation threshold in water is at least 600 Watts. It is assumed that cavitational cell destruction threshold at the target volume is typically in higher power levels than the threshold for cavitation in water.
Alternatively or additionally, acoustic contact monitoring unit 302 receives an input from acoustic reflection analysis functionality 314.
An output of transducer electrical properties measurement unit 304 is preferably also supplied to a power meter 306, which provides an output to the tissue modification control computer 44 and a feedback output to power source and modulator assembly 40.
Tissue modification control computer 44 also preferably receives inputs from tissue layer identification functionality 310 and modified tissue identification functionality 312, both of which receive inputs from acoustic reflection and modification functionality 314. Acoustic reflection and modification functionality 314 receives acoustic imaging inputs from an acoustic imaging subsystem 316, which operates imaging acoustic transducer subassembly 23 (
Tissue modification control computer 44 provides outputs to power source and modulator assembly 40, for operating acoustic therapeutic transducer 13, and to acoustic imaging subsystem 316, for operating imaging acoustic transducer subassembly 23. A positioning control unit 318 also receives an output from tissue modification control computer 44 for driving X-Y-Z positioning assembly 49 (
Reference is now made to
Preferably, the operator also adheres stereotactic markers 54 (
Camera 46 (
A computerized tracking functionality preferably embodied in tissue modification control computer 44 preferably employs the output of camera 46 for computing outline representation 52, which may be displayed for the operator on display 48. The computerized tracking functionality also preferably computes the distribution and densities of the target volumes for tissue modification treatment. The distribution of target volumes may be non-uniform both with respect to the body surface and with respect to depth below the body surface, as seen clearly in
Preferably, the operator confirms the locations of markers 54 and 56 on display 48 and the computerized tracking functionality calculates corresponding marker representations 58 and 60.
In accordance with a preferred embodiment of the present invention the computerized tracking functionality employs markers 54 and marker representations 58 for continuously maintaining registration of outline 50 with respect to outline representation 52, and thus of target volumes 12 with respect to the patient's body, notwithstanding movements of the patient's body during treatment, such as due to breathing or any other movements, such as the patient leaving and returning to the treatment location.
The computerized tracking functionality selects an initial target volume to be treated and positioning control unit 318 (
Referring additionally to
Acoustic reflection and modification functionality 314 analyses the received data. Based on an output from acoustic reflection and modification functionality 314, tissue location identification functionality 310 identifies tissue to be modified and tissue modification control computer 44 approves the target volume and tissue overlap. Operator may confirm selection of a target volume and activate the power source and modulator assembly 40 (
Turning additionally to
Transducer electrical properties measurement unit 304 provides an output to acoustic contact monitoring unit 302, which determines whether sufficient acoustic contact with the patient is present, preferably by analyzing the current and voltage at therapeutic transducer 13. The output of the monitoring unit 302 is applied to the tissue modification control computer 44.
Transducer electrical properties measurement unit 304 provides an output to power meter 306, which computes the average electrical power received by the therapeutic transducer 13. If the average electrical power received by the therapeutic transducer 13 exceeds a predetermined power level threshold, operation of the power source and modulator assembly 40 may be automatically terminated. As noted above in connection with
Skin temperature sensor 34 measures the current temperature of the skin at transducer subassembly 23 and supplies it to temperature measurement unit 300, which compares the skin temperature to its corresponding threshold temperature. Similarly, transducer temperature sensor 36 measures the current temperature at transducer subassembly 23 and supplies it to temperature measurement unit 300, which compares the transducer subassembly 23 temperature to its corresponding threshold temperature.
The outputs of temperature measurement unit 300 are supplied to tissue modification control computer 44.
Should any of the following four conditions occur, the power source and modulator assembly 40 automatically terminates operation of therapeutic transducer 13. Should none of the following conditions occur, the automatic operation of power source and modulator assembly 40 continues:
1. Average electrical power received by the therapeutic transducer 13 exceeds a predetermined threshold;
2. Acoustic contact is insufficient;
3. Skin temperature exceeds threshold temperature; and
4. Transducer 13 temperature exceeds threshold temperature.
Returning to
If, however, the transducer 10 did not remain stationary for a sufficient duration, the selected target volume is designated by tissue modification control computer 44 as having been insufficiently treated.
It is appreciated that by using multiple transducers, a multiplicity of target volumes can be treated sequentially or at least partially overlapping times.
It is also appreciated that the multiplicity of target volumes may at least partially overlap.
The CD-ROM appendix attached herewith is a computer listing of a preferred software implementation of NON-THERMAL ACOUSTIC TISSUE MODIFICATION, constructed and operative in accordance with a preferred embodiment of the present invention.
A preferred method for installing and running the software listing of the CD-ROM appendix is as follows:
1). Provide a PC computer, such as an Intel-based Pentium IV 2.4 GHz computer with Microsoft Windows 2000 Professional operating system, a hard disk with a minimal capacity of 10 GB, 1 available AGP slot, 2 available PCI slots, 1 available USB 2.0 port, 2 available serial ports and a 17″ computer screen.
2). Matrox Orion Frame Grabber Hardware installation/configuration:
3). Matrox MIL-Lite software (version 7.5) installation:
4). Advantech PCI-1750 installation:
5). ADVANTECH DA&C Driver Version 2.1b software installation:
6). MCC PCI DAS4020/12 installation:
7). InstaCal software installation:
8). TiePie Handyscope HS3 installation:
9). Serial communication connections:
10). Track Software Installation:
It is appreciated that the software components of the present invention may, if desired, be implemented in ROM (read-only memory) form. The software components may, generally, be implemented in hardware, if desired, using conventional techniques.
It is appreciated that the particular embodiment described in the Appendix is intended only to provide an extremely detailed disclosure of the present invention and is not intended to be limiting.
It is appreciated that various features of the invention which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable subcombination.
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as variations and modifications which would occur to persons skilled in the art upon reading the specification and which are not in the prior art.
The subject matter of this application is related to that of copending U.S. patent application No. 10/021,238 and U.S. Pat. No. 6,607,498 B2.
Number | Date | Country | |
---|---|---|---|
Parent | 11053466 | Feb 2005 | US |
Child | 13176074 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13176074 | Jul 2011 | US |
Child | 13952698 | US |