This application claims the priority benefit of Taiwan application serial no. 93125069, filed Aug. 20, 2004.
1. Field of the Invention
The present invention relates to a semiconductor memory device, and more particularly to a non-volatile memory, a fabrication method and an operating method thereof.
2. Description of the Related Art
Among various types of non-volatile memories, electrically erasable programmable read-only memories (EEPROMs) has the advantage that it can be written, read and erased repeatedly and the stored data is valid when power is off. Accordingly, EEPROMs have been widely used in personal computers and electronic devices.
The floating gate and control gate of conventional EEPROM is typically made of doped polysilicon. To avoid over-erasing the conventional EEPROM and data disturbance therefrom, a select gate is disposed on substrate beside the control gate and the floating gate so as to form a split-gate structure.
In the conventional EEPROM, alternatively, a charge-trapping layer is used instead of the polysilicon floating gate. The material of charge-trapping layer can be silicon nitride. Usually, the nitride charge-trapping layer is disposed between two silicon oxide layers to form an oxide-nitride-oxide (ONO) composite layer. The device formed is usually called a silicon/silicon oxide/silicon nitride/silicon oxide/silicon (SONOS) device. For example, one SONOS device with a split-gate structure is disclosed in the U.S. Pat. No. 5,930,631.
However, the above SONOS device with the split-gate structure requires a lot of space and therefore the size of the memory is large. Accordingly, the EEPROM with the split-gate structure is larger than that with the stacked-gate structure, and the goal of forming a high-density memory cannot be achieved.
Accordingly, the present invention is directed to a non-volatile memory, a fabrication method and an operating method thereof that can increase memory cell density and device performance.
The present invention is directed to a non-volatile memory, a fabrication method and an operating method thereof capable of increasing the capacity of the memory, and reducing the manufacturing costs by the simple procedures.
The present invention provides a non-volatile memory unit including a first memory cell and a second memory cell. The first memory cell and the second memory cell are separated by a first insulation spacer disposed on the sidewall of the first memory cell. The first memory cell includes a first gate disposed on the substrate, and a first composite dielectric layer disposed between the first gate and the substrate. The first composite dielectric layer includes a first bottom dielectric layer, a first charge-trapping layer and a first top dielectric layer. The second memory cell includes a second gate disposed over the substrate and a second composite dielectric layer disposed between the second gate and the substrate. The second composite dielectric layer includes a second bottom dielectric layer, a second charge-trapping layer and a second top dielectric layer.
The present invention further provides a nonvolatile memory including a cell column constituted by a plurality of the non-volatile memory units. The non-volatile memory units are connected in series and separated by a plurality of second insulation spacers. The nonvolatile memory further includes a selecting unit disposed on one side of the cell column. The selecting unit includes a third gate, a third composite dielectric layer disposed between the third gate and the substrate. The third composite dielectric layer includes a third bottom dielectric layer, a third charge-trapping layer and a third top dielectric layer. The nonvolatile memory further includes a third insulation spacer disposed on a sidewall of the selecting unit, wherein the third insulation spacer is disposed between the selecting unit and the cell column. The nonvolatile memory further includes a source region disposed on the other side of the cell column and a drain region disposed in the substrate adjacent to the selecting unit.
The present invention further provides a non-volatile memory including a memory cell array constituted by a plurality of first memory cells and a plurality of second memory cells; and a plurality of selecting units, each disposed on one side of each column of the memory cell array respectively. In each column, the selecting unit and the plurality of first memory cells are arranged to form a plurality of gaps and each of the plurality of second memory cells stuffs up a different one of the gaps respectively. The nonvolatile memory further includes a plurality of first doped regions, each disposed on the other side of each column of the memory cell array respectively; a plurality of second doped regions, each disposed adjacent to each of the plurality of selecting units respectively; a plurality of word lines; a plurality of bit lines, wherein each intersection of the plurality of word lines and each of the plurality of bit lines is corresponding to a different one of the plurality of first memory cells or the plurality of second memory cells; a plurality of selecting lines, each connected to a different row of the plurality of selecting units; and a plurality of common lines, each connected to a different row of the plurality of first doped regions.
The present invention also provides an operating method for the non-volatile memory described above. In the method, while programming a selected memory cell, 0V is applied to a selected bit line, a first voltage is applied to unselected bit lines, a second voltage is applied to a selected word line, which is closed to the word line coupled to the selected memory cell and adjacent to the drain region, a third voltage is applied to unselected word lines and selecting lines, and a fourth voltage is applied to a source line so as to program the selected memory cell by source-side injection (SSI) method.
In order to read the non-volatile memory described above, 0V is applied to the selected bit line, a fifth voltage is applied to the unselected bit lines, a sixth voltage is applied to the word line coupled to the selected memory cell, a seventh voltage is applied to the unselected word lines and the selecting line, and an eighth voltage is applied to the source line so as to read the selected memory cell.
Then, a ninth voltage is applied to the selected bit line, 0V is applied to the unselected bit lines, a tenth voltage is applied to the word line coupled to the selected memory cell, an eleventh voltage is applied to all unselected word lines between the word line coupled to the selected memory cell and the drain region, and applied to the selecting line, 0V is applied to all unselected word lines between the word line coupled to the selected memory cell and the source region so as to erase the selected memory cells by hot-hole injection method.
The present invention also provides another erasing method for the nonvolatile memory described above. In the method, a twelfth voltage is applied to the word lines and a thirteenth voltage is applied to the substrate so as to erase the whole memory cell array by FN tunneling method.
The present invention also provides a method of fabricating a non-volatile memory. The method includes the steps of providing a substrate; forming a plurality of gate structures over the substrate, each of the gate structures comprising a first composite dielectric layer, a first gate, and a cap layer, wherein every two of the plurality of gate structures are separated by a gap; forming insulation spacers on sidewalls of the gate structures; forming a second composite dielectric layer over the substrate; forming a conductive layer over the substrate; removing a portion of the conductive layer to form a plurality of second gates in the gaps between the gate structures, the second gates and the gate structures constituting a memory cell column; and forming a source region and a drain region in the substrate respectively adjacent to two sides of the memory cell column.
The above and other features of the present invention will be better understood from the following detailed description of the embodiments of the invention that is provided in combination with the accompanying drawings.
Referring to
The substrate 100 can be an N-type or a P-type silicon substrate. The device isolation structure 102 is formed in the substrate 100 to define the active area 104.
The memory units Q1-Qn are disposed over the substrate 100. Each of the memory units Q1-Qn is constituted by a memory cell 112 and a memory cell 114.
The memory cell 112 is disposed over the substrate 100 and includes a composite dielectric layer 116, a gate 118, a cap layer 120 and an insulation spacer 122. The gate 118 is disposed over the substrate 100. The composite dielectric layer 116 is disposed between the gate 118 and the substrate 100. The composite dielectric layer 116 includes a bottom dielectric layer 116a, a charge-trapping layer 116b and a top dielectric layer 116c. The cap layer 120 is disposed over the gate 118. The insulation spacer 122 is disposed on the sidewalls of the gate 118 and the composite dielectric layer 116. Wherein, the material of the bottom dielectric layer 116a can be, for example, silicon oxide. The material of the charge-trapping layer 116b can be silicon nitride. The material of the top dielectric layer 116c can be silicon oxide. The material of the gate 118 can be doped polysilicon. The material of the cap layer 120 can be silicon oxide. The material of the insulation spacer 122 can be silicon oxide or silicon nitride.
The memory cell 114 is disposed adjacent to the memory cell 112 and over the substrate 100. The memory cell 114 may include, for example, the composite dielectric layer 124 and the gate 126. The gate 126 is disposed over the substrate 100. The composite dielectric layer 124 is disposed between the gate 126 and the substrate 100, and between the gate 126 and the memory cell 112. The composite dielectric layer 124, from the substrate 100 and on the sidewall of the memory cell 112, includes the bottom dielectric layer 124a, the charge-trapping layer 124b and the top dielectric layer 124c. Wherein, the material of the bottom dielectric layer 124a can be, for example, silicon oxide. The material of the charge-trapping layer 124b can be silicon nitride. The material of the top dielectric layer 124c can be silicon oxide. The material of the gate 126 can be doped polysilicon. The memory cell 114 is separated from the memory cell 112 by the insulation spacer 122.
The memory units Q1-Qn constitute a memory cell column 128, for example, in the active area 104. The memory cells 112 and 114 are staggered without gaps in between. The memory cell 114 and the memory cell 112 of the memory cell column 128 are separated by the insulation spacer 122. The memory cell columns 128 are separated from each other by the device isolation structure 102.
The selecting unit 106 is adjacent to the edge memory cell 114 of the memory cell column 128. The selecting unit 106 may include, for example, the composite dielectric layer 130, the gate 132, the cap layer 134 and the insulation spacer 136. The gate 132 is disposed over the substrate 100. The composite dielectric layer 130 is disposed between the gate 132 and the substrate 100. The composite dielectric layer 130 includes, from the bottom over substrate 100, the bottom dielectric layer 130a, the charge-trapping layer 130b and the top dielectric layer 130c. The cap layer 134 is disposed over the gate 132. The insulation spacer 136 is formed on the sidewalls of the gate 132 and the composite dielectric layer 130. Wherein, the material of the bottom dielectric layer 130a can be, for example, silicon oxide. The material of the charge-trapping layer 130b can be silicon nitride. The material of the top dielectric layer 130c can be silicon oxide. The material of the gate 132 can be doped polysilicon. The material of the cap layer 134 can be silicon oxide. The insulation spacer 136 can be silicon oxide or silicon nitride. The selecting unit 106 and the edge memory cell 114 of the memory cell column 128 are separated by the insulation spacer 136.
The drain region 108 is disposed in the substrate 100 adjacent to one side of the selecting unit 106 which is not adjacent to the memory cell column 128. The source region 110 is disposed in the other side of the substrate 100 adjacent to the edge memory cell 112 of the memory cell column 128.
The drain region 108 is connected to the bit line 140 via plug 138. The source region 110 is electrically connected to the source line 142.
In the non-volatile memory described above, the memory cell column 128 in the active area 104 is constituted by staggered memory cells 112 and 114. Without gaps between the memory cells 112 and 114 and between the selecting unit 106 and the memory cell 114, the density of the memory cell array is enhanced. Further, because the memory cells 112 and 114 of the memory cell column can store charges, the capacity of the memory is also improved.
In addition, the memory cells 112 and 114 use the charge-trapping layers 110 to store charges, the low gate-coupling ratio is not a concern. With low operating voltage, the memory of the present invention can achieve the desired operating speed.
In addition, the number of the memory cells can be modified according to the requirement. For example, a memory cell column may include 32 to 64 memory cells.
With reference to
The memory cells M11-M3n are disposed over the substrate to form an array. The memory cells constitute a memory cell column without gaps. For example, the memory cells M11, M12, M13, . . . , M1n constitute a memory cell column. The M21, M22, M23, . . . , M2n constitute a memory cell column. M31, M32, M33, . . . , M3n constitute a memory cell column.
The selecting units ST1-ST3 are disposed adjacent to an outmost memory cell among the memory cell columns. For example, the selecting unit ST1 is adjacent to the memory cell M11; the selecting unit ST2 is adjacent to the memory cell M21; the selecting unit ST3 is adjacent to the memory cell M31. The selecting line SG connects the gates of the selecting units ST1-ST3 in the same row. The parallel word lines WL1 -WLn connect the gates of the memory cells in the same row. For example, the word line WL1 connects the gates of the memory cells M11, M21 and M31; the word line WL2 connects the gates of the memory cells M13, M23 and M33. Accordingly, the word line WLn connects the gates of the memory cells M1n, M2n and M3n. The parallel bit lines BL1-BL3 connect the drain regions in the same column. The drain regions are disposed in the substrate adjacent to the selecting units ST1-ST3. The source line SL connects the source regions in the same row. The source regions are disposed in the substrate at the other side of the memory cell columns. In the memory cell column, two neighboring memory cells, such as M11 and M12, constitute a memory unit Q. The memory cells M13 and M14 constitute a memory unit. Accordingly, the memory cells M3(n-1) and M3n constitute a memory unit.
With reference to
According to the programming mode described above, while the selected memory cell is to be programmed, another memory cell that is adjacent to the selected memory cell near the drain side functions as a select gate to make electrons inject into the selected memory cell. For example, while the memory cell M24 is to be programmed, the memory cell M23 serves as a select gate. By reducing the voltage applied to the select gate, i.e. the memory cell M23, electrons are injected into the charge-trapping layer of the selected memory cell M24 in the programming step. That is, according to the embodiment described above, except the memory cells M1n, M2n and M3n only serve as memory cells, the other memory cells M11-M1(n-1), M21-M2(n-1), and M31-M3(n-1) can serve as memory cells or select gates depending on which memory cell is to be programmed.
With reference to
Besides, with reference to
With reference to
In the erasure method described above, hot-hole injection serves as an example to erase the memory cell. Alternatively, the present invention can erase the memory cell by FN tunneling method where voltage difference is formed between the gate and the substrate to pull the trapped electrons in the charge-trapping layer into the substrate.
With reference to
With reference to
With reference to
Among these embodiments of erasing the memory cells by FN tunneling method, the erasure mode of applying 12V to the substrate can save more power. However, a well region, such as the P-well, should be formed in the substrate when a voltage is intended to apply to the substrate.
In the operating method of the non-volatile memory cell of the present invention, the SSI method is used to program the memory cells by a single bit of a single memory cell as a programming unit and the hot-hole injection method or the FN tunneling method is used to erase the memory cell. Accordingly, cell current during operation can be lowered due to high efficient injection of electrons. The operating speed of the memory cell is also improved. Due to the low electric current consumption, power-consumption of the whole chip thus decreases.
What follows is the description of an embodiment for fabricating the non-volatile memory of the present invention.
With reference to
The composite dielectric layer 204 includes, for example, a bottom dielectric layer 204a, a charge-trapping layer 204b and a top dielectric layer 204c. The material of the bottom dielectric layer 204a can be silicon oxide. The silicon oxide layer can be formed by thermal oxidation, for example. The material of the charge-trapping layer 204b can be silicon nitride. The silicon nitride layer can be formed by chemical vapor deposition, for example. The material of the top dielectric layer 204c can be silicon oxide, which can be formed by chemical vapor deposition, for example. The bottom dielectric layer 204a and the top dielectric layer 204c also can be made of other materials. Similarly, the material of the charge-trapping layer 204b is not limited to silicon nitride. It can be other materials, such as tantalum oxide, strontium titanate or hafnium oxide that can trap charges.
The material of the conductive layer 206 can be doped polysilicon. The method of forming the conductive layer 206 includes, for example, depositing an undoped polysilicon layer by chemical vapor deposition and implanting ions into it.
The material of the cap layer 208 can be silicon oxide. The cap layer 208 can be formed by chemical vapor deposition using tetra ethyl ortho silicate (TEOS) and ozone (O3) as reactive vapor source, for example.
With reference to
Next, another composite dielectric layer 212 is then formed over the substrate 200. The composite dielectric layer 212 includes, for example, a bottom dielectric layer 212a, a charge-trapping layer 212b and a top dielectric layer 212c. The material of the bottom dielectric layer 212a can be silicon oxide, which can be formed by thermal oxidation, for example. The material of the charge-trapping layer 212b can be silicon nitride, which can be formed by chemical vapor deposition, for example. The material of the top dielectric layer 212c can be silicon oxide, which can be formed by chemical vapor deposition, for example. The bottom dielectric layer 212a and the top dielectric layer 212c also can be made of other materials. The material of the charge-trapping layer 212b is not limited to silicon nitride. It can be other materials, such as tantalum oxide, strontium titanate or hafnium oxide that can trap charges.
Then, another conductive layer 214 is then formed over the substrate 200. The conductive layers 214 fill the gaps between neighboring gate structures 202. The material of the conductive layer 214 can be doped polysilicon. The method of forming the conductive layer 214 includes depositing an undoped polysilicon layer and implanting ions into the undoped polysilicon layer.
With reference to
Then, a patterned mask layer 216 is then formed over the substrate 200, exposing the area where source/drain regions are to be formed. An etching process is performed to remove part of the conductive layer 214 and the composite dielectric layer 212 which cover the substrate for forming the source region and the drain region.
By using the patterned mask layer 216, an ion implantation process is performed to form the drain region 218 and the source region 220 in the substrate 200. The drain region 218 and the source region 220 are formed in the substrate 200 at the two sides of the connected gate structures 202 and the conductive layers 214a.
With reference to
With reference to
In this embodiment, the composite dielectric layer 212 and the conductive layer 214a fill the gaps between the neighboring gate structures 202. Therefore, additional gate structures can be formed between the gate structures 202 without photolithographic and etching process. Thus, the method of the present invention is simpler and costs cheaper. Further, the present invention utilizes the charge-trapping layers 204b and 212b as charge-storing units, and therefore it is needless to concern about gate-coupling ratio. Furthermore, with low operating voltage, the operation speed of the memory of the present invention can be increased. Also, as comparing with conventional non-volatile memory manufacturing process, the method of the present invention is simpler and has lower manufacturing costs.
In this embodiment, a memory cell column with six memory cells is used as an example. The present invention, however, is not limited thereto. The numbers of cells in the memory cell column of the present invention can be modified if required. For example, a memory cell column may include 32 to 64 memory cells. Besides, the method of fabricating the non-volatile memory of the present invention can apply to fabricate a whole memory cell array.
Although the present invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be constructed broadly to include other variants and embodiments of the invention which may be made by those skilled in the field of this art without departing from the scope and range of equivalents of the invention.
Number | Date | Country | Kind |
---|---|---|---|
93125069 | Aug 2004 | TW | national |