A non-volatile semiconductor memory may be employed as mass storage for a computer system (e.g., desktop, laptop, portable, etc.) or a consumer device (e.g., music player, cell phone, camera, etc.) or other suitable application. The non-volatile semiconductor memory may comprise one or more memory devices (such as a flash memory) and control circuitry for accessing each memory device. Each memory device is coupled to an I/O bus, as well as a number of interface control lines. When issuing a program command or an erase command to a memory device, the control circuitry transfers the address and command data (and write data for a program operation) over the I/O bus. When issuing a read command, the control circuitry transfers the address and command data over the I/O bus and then receives the read data over the I/O bus.
Each memory device typically comprises a number of blocks which are accessed a page at a time. For example, a single block may comprise 128 pages where each page comprises 4k bytes. Since a page typically cannot be overwritten without first being erased, a new page in a different block is typically selected to perform an “overwrite” operation. To facilitate relocating data to a different page, the non-volatile semiconductor memory implements indirect accessing wherein a logical block address (LBA) representing a data block is mapped to a physical block address (PBA) representing one of the pages. In this manner, when the page for a data block is moved, the LBA is simply reassigned to the new PBA.
Periodically the non-volatile semiconductor memory will perform a garbage collection operation wherein the remaining valid pages of a first block are relocated to a second block so that the first block can be erased (thereby erasing the invalid pages that were previously relocated during overwrite operations). It is desirable to minimize the amount of garbage collection in a non-volatile semiconductor memory in order to decrease write amplification and power consumption, as well as increase endurance and performance.
The non-volatile semiconductor memory 2 may comprise any suitable configuration of control circuitry 8 and memory device 4. In the embodiment of
The memory device 4 in the embodiment of
In one embodiment, the memory controller 8 implements a solid state drive (SSD) by emulating a disk drive accessible by a host system using a standard disk drive communication protocol (e.g., the ATA protocol). The host 10 in this embodiment may comprise a separate microprocessor (e.g., in a desktop or laptop computer) which communicates with the SSD over a suitable interface (e.g., serial or parallel ATA). In an alternative embodiment, the non-volatile semiconductor memory 2 may be implemented within a consumer device (e.g., a camera or cell phone), wherein the host 10 may be implemented as a firmware component executed by the same microprocessor 12 for implementing the memory controller 8.
In one embodiment, the memory array 6 in the memory device 4 comprises a plurality of blocks, where each block comprises a plurality of pages. In one embodiment, a page must be erased before it is written. A page is therefore “overwritten” by writing the new data to a different page (typically in a different block), remapping the LBA to the new PBA, and invalidating the old page. Periodically, the invalid pages of a block are recovered during a garbage collection procedure by copying the valid page of a block to a new block, and then erasing the entire block.
The memory controller 8 defines a number of zones by allocating a number of blocks to each zone, wherein each zone stores write data or mapping data associated with sequential access write commands, random access write commands, or system access write commands as illustrated in
This concept is understood with reference to
During each write operation, the LBA to PBA mapping is updated to reflect the relocation of pages or to reflect the allocation of a new page for a new LBA. In addition, the mapping data is periodically written to the memory device 4 so that the mapping is preserved in the event of a power failure. In one embodiment illustrated in
The system data written to the memory device during a system access write command may include any suitable system data. For example, when the write logs are written to the memory device (at steps 40, 48 and 56 of
The memory controller 8 may identify a write command as being sequential or random in any suitable manner. In one embodiment, the write commands received from the host may include an identifier that specifies the type of write command. In another embodiment, new write commands are initially processed as random access write commands until a consecutive number of sequential write commands exceeds a predetermined threshold. Subsequent write commands are then processed as sequential access write commands until there is a break in the consecutive sequence.
Number | Name | Date | Kind |
---|---|---|---|
6856556 | Hajeck | Feb 2005 | B1 |
7126857 | Hajeck | Oct 2006 | B2 |
7430136 | Merry, Jr. et al. | Sep 2008 | B2 |
7447807 | Merry et al. | Nov 2008 | B1 |
7502256 | Merry, Jr. et al. | Mar 2009 | B2 |
7509441 | Merry et al. | Mar 2009 | B1 |
7509471 | Gorobets | Mar 2009 | B2 |
7596643 | Merry, Jr. et al. | Sep 2009 | B2 |
7631162 | Gorobets | Dec 2009 | B2 |
7653778 | Merry, Jr. et al. | Jan 2010 | B2 |
7685337 | Merry, Jr. et al. | Mar 2010 | B2 |
7685338 | Merry, Jr. et al. | Mar 2010 | B2 |
7685374 | Diggs et al. | Mar 2010 | B2 |
7733712 | Walston et al. | Jun 2010 | B1 |
7765373 | Merry et al. | Jul 2010 | B1 |
7898855 | Merry, Jr. et al. | Mar 2011 | B2 |
7912991 | Merry et al. | Mar 2011 | B1 |
7936603 | Merry, Jr. et al. | May 2011 | B2 |
7962792 | Diggs et al. | Jun 2011 | B2 |
8078918 | Diggs et al. | Dec 2011 | B2 |
8090899 | Syu | Jan 2012 | B1 |
8095851 | Diggs et al. | Jan 2012 | B2 |
8108692 | Merry et al. | Jan 2012 | B1 |
8122185 | Merry, Jr. et al. | Feb 2012 | B2 |
8127048 | Merry et al. | Feb 2012 | B1 |
8135903 | Kan | Mar 2012 | B1 |
8151020 | Merry, Jr. et al. | Apr 2012 | B2 |
8161227 | Diggs et al. | Apr 2012 | B1 |
8166245 | Diggs et al. | Apr 2012 | B2 |
8243525 | Kan | Aug 2012 | B1 |
8254172 | Kan | Aug 2012 | B1 |
8261012 | Kan | Sep 2012 | B2 |
8296625 | Diggs et al. | Oct 2012 | B2 |
8312207 | Merry, Jr. et al. | Nov 2012 | B2 |
8316176 | Phan et al. | Nov 2012 | B1 |
8339636 | Yamada et al. | Dec 2012 | B2 |
8341339 | Boyle et al. | Dec 2012 | B1 |
8375151 | Kan | Feb 2013 | B1 |
8392635 | Booth et al. | Mar 2013 | B2 |
8397107 | Syu et al. | Mar 2013 | B1 |
8407449 | Colon et al. | Mar 2013 | B1 |
8423722 | Deforest et al. | Apr 2013 | B1 |
8433858 | Diggs et al. | Apr 2013 | B1 |
8443167 | Fallone et al. | May 2013 | B1 |
8447920 | Syu | May 2013 | B1 |
8458435 | Rainey, III et al. | Jun 2013 | B1 |
8478930 | Syu | Jul 2013 | B1 |
8489854 | Colon et al. | Jul 2013 | B1 |
8503237 | Horn | Aug 2013 | B1 |
8521972 | Boyle et al. | Aug 2013 | B1 |
8549236 | Diggs et al. | Oct 2013 | B2 |
8583835 | Kan | Nov 2013 | B1 |
8601311 | Horn | Dec 2013 | B2 |
8601313 | Horn | Dec 2013 | B1 |
8612669 | Syu et al. | Dec 2013 | B1 |
8612804 | Kang et al. | Dec 2013 | B1 |
8615681 | Horn | Dec 2013 | B2 |
8638602 | Horn | Jan 2014 | B1 |
8639872 | Boyle et al. | Jan 2014 | B1 |
8683113 | Abasto et al. | Mar 2014 | B2 |
8700834 | Horn et al. | Apr 2014 | B2 |
8700950 | Syu | Apr 2014 | B1 |
8700951 | Call et al. | Apr 2014 | B1 |
8706985 | Boyle et al. | Apr 2014 | B1 |
8707104 | Jean | Apr 2014 | B1 |
8713066 | Lo et al. | Apr 2014 | B1 |
8713357 | Jean et al. | Apr 2014 | B1 |
8719531 | Strange et al. | May 2014 | B2 |
8724422 | Agness et al. | May 2014 | B1 |
8725931 | Kang | May 2014 | B1 |
8745277 | Kan | Jun 2014 | B2 |
8751728 | Syu et al. | Jun 2014 | B1 |
8769190 | Syu et al. | Jul 2014 | B1 |
8769232 | Suryabudi et al. | Jul 2014 | B2 |
8775720 | Meyer et al. | Jul 2014 | B1 |
8782327 | Kang et al. | Jul 2014 | B1 |
8788778 | Boyle | Jul 2014 | B1 |
8788779 | Horn | Jul 2014 | B1 |
8788880 | Gosla et al. | Jul 2014 | B1 |
8793429 | Call et al. | Jul 2014 | B1 |
20050144360 | Bennett et al. | Jun 2005 | A1 |
20050166206 | Parson | Jul 2005 | A1 |
20080256287 | Lee et al. | Oct 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080307192 | Sinclair et al. | Dec 2008 | A1 |
20090019218 | Sinclair et al. | Jan 2009 | A1 |
20090150599 | Bennett | Jun 2009 | A1 |
20090271562 | Sinclair | Oct 2009 | A1 |
20100095055 | Gorobets | Apr 2010 | A1 |
20100095084 | Manning | Apr 2010 | A1 |
20100174849 | Walston et al. | Jul 2010 | A1 |
20100250793 | Syu | Sep 2010 | A1 |
20110099323 | Syu | Apr 2011 | A1 |
20110283049 | Kang et al. | Nov 2011 | A1 |
20120260020 | Suryabudi et al. | Oct 2012 | A1 |
20120278531 | Horn | Nov 2012 | A1 |
20120284460 | Guda | Nov 2012 | A1 |
20120324191 | Strange et al. | Dec 2012 | A1 |
20130132638 | Horn et al. | May 2013 | A1 |
20130145106 | Kan | Jun 2013 | A1 |
20130290793 | Booth et al. | Oct 2013 | A1 |
20140059405 | Syu et al. | Feb 2014 | A1 |
20140101369 | Tomlin et al. | Apr 2014 | A1 |
20140115427 | Lu | Apr 2014 | A1 |
20140133220 | Danilak et al. | May 2014 | A1 |
20140136753 | Tomlin et al. | May 2014 | A1 |
20140149826 | Lu et al. | May 2014 | A1 |
20140157078 | Danilak et al. | Jun 2014 | A1 |
20140181432 | Horn | Jun 2014 | A1 |
20140223255 | Lu et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1722109 | Jan 2006 | CN |
1914689 | Feb 2007 | CN |
101382917 | Mar 2009 | CN |
Entry |
---|
Chinese Office Action dated Jun. 5, 2014 from related Chinese Application Serial No. 201010526407.X, 21 pages. |
Number | Date | Country | |
---|---|---|---|
20110099323 A1 | Apr 2011 | US |