1. Field of the Invention
The present invention relates generally to a flash memory device and a method of fabricating the same. More particularly, the invention relates to a highly integrated NOR-type flash memory device having a twin bit cell structure and a method of fabricating the same.
A claim of priority is made to Korean Patent Application No. 10-2004-0112899, filed on Dec. 27, 2004, the disclosure of which is hereby incorporated by reference in its entirety.
2. Description of Related Art
Nonvolatile semiconductor memories can be found in a wide variety of digital electronic applications such as computers, cellular phones, digital audio players, and cameras, to name but a few. One of the main advantages of nonvolatile semiconductor memories is their ability to retain stored data even when power is cut off. Among the more popular forms of nonvolatile semiconductor memories is flash memory.
To improve the performance and storage capacity of nonvolatile semiconductor memories, researchers are constantly developing new techniques for reducing the size and density of individual memory cells.
One technique used to produce smaller memory cells is to replace the traditional silicon floating gate structure of a flash memory cell with a nitride trapping layer formed of a material such as silicon nitride. Replacing the floating gate structure in this way can significantly reduce the size of the memory cell's gate structure without seriously reducing the cell's performance or reliability. Flash memory cells using a nitride trapping layer instead of the traditional floating gate structure include silicon-oxide-nitride-oxide-silicon (SONOS) memory cells and metal-oxide-nitride-oxide-silicon (MONOS) memory cells. An additional benefit of SONOS memory cells over traditional flash memory cells is that fabrication processes are simplified by not having to form the traditional floating gate structure.
Another technique which can be used to increase the density of memory cells in a memory cell array is to form the memory cells using a twin bit structure. In the twin bit structure, a gate structure is formed with two isolated charge trapping regions in the nitride trapping layer and source and drain regions are formed on opposite sides of the gate structure. The twin bit structure is commonly used with SONOS or MONOS memory cells, and therefore SONOS or MONOS memory cells having the twin bit structure are referred to as “twin bit memory cells”. Various flash memory cells using the twin bit structure are disclosed, for example, in U.S. Pat. Nos. 6,531,350, 6,707,079 and 6,808,991.
Using twin bit memory cells can increase the density of a semiconductor memory array by two times compared with a memory array using traditional floating gates and cell structures.
A twin bit memory cell is typically programmed using channel hot electron injection (CHEI). In CHEI, charges are injected into the silicon nitride layer located in the gate structure of a cell transistor by applying a high voltage between a gate electrode of the gate structure and a first source/drain junction formed on a first side of the gate structure. In contrast, a read operation is performed on the twin bit memory cell by applying a voltage between the gate electrode and a second source/drain junction formed on a second side of the gate structure. Data is erased from the SONOS memory cell by applying a high voltage to the drain junction, and connecting the gate electrode and a substrate of the memory cell to ground to remove the electrons from the silicon nitride layer. The electrons pass from the silicon nitride layer to the drain junction through an overlapping portion of the gate structure and the drain junction according to a phenomenon called band-to-band tunneling (BtBT).
A twin-bit memory cell typically stores two bits of data. This is generally accomplished by performing CHEI through a drain side of a cell transistor, where the cell transistor has a threshold voltage (Vth) that depends on the source resistance of the transistor.
Conventional NOR flash memory devices including twin bit memory cells typically employ a buried bitline structure (See, for example, U.S. Pat. No. 6,720,629). In a buried bitline structure, bitlines are generally formed under device isolation regions or they are formed using a simple PN junction. Also, in devices employing the buried bitline structure, a bitline of each transistor is formed in the same direction as a device isolation region below a corresponding wordline, and a source/drain region of the transistor is formed by a contact between the bitline and each memory cell. Unfortunately, the buried bitline structure can cause devices to malfunction due to punch-through of the transistor when the devices are scaled down.
According to one embodiment of the invention, a NOR-type flash memory device comprises a plurality of active regions extending linearly in a first direction and formed on a substrate, a plurality of wordlines extending linearly in a second direction, a plurality of bitlines formed in the first direction, a plurality of memory cells formed on the active regions, each of the memory cells being defined by the intersection of one of the wordlines and one of the bitlines, and a plurality of source/drain regions formed in the active regions, each of the source/drain regions being shared by two adjacent memory cells. Each of the source/drain regions is electrically connected to a corresponding bitline via a bitline contact, and the bitline contact is connected to four adjacent memory cells.
According to another embodiment of the invention, a method of fabricating a NOR-type flash memory device comprises defining a plurality of active regions extending linearly in a first direction on a substrate, forming a dielectric layer on the active regions, forming a plurality of wordlines extending linearly in a second direction perpendicular to the first direction, forming a plurality of source/drain regions between the wordlines in the active regions, forming a first insulating interlayer having a plurality of contact holes on the wordlines to expose two of the plurality of source/drain regions, forming a plurality of conductive contact plugs filling the contact holes to electrically connect the two source/drain regions, and forming a plurality of bitlines, each electrically connected to one of the contact plugs via a single bitline contact.
The invention is described below in relation to several embodiments illustrated in the accompanying drawings. Throughout the drawings like reference numbers indicate like exemplary elements, components, or steps. In the drawings:
Exemplary embodiments of the invention are described below with reference to the corresponding drawings. These embodiments are presented as teaching examples. The actual scope of the invention is defined by the claims that follow.
Referring to
In memory cell array 100, a plurality of active regions 110 extend linearly in the first direction, and a plurality of wordlines 130 extend linearly in the second direction. In addition, a plurality of bitlines 330 extends linearly in the first direction over wordlines 130. Each intersection between wordlines 130 and bitlines 330 defines a memory cell in memory cell array 100.
Respective cell transistors 102 are formed to share a source/drain region in the first direction. One source/drain region shared by two adjacent cell transistors 102 in the first direction is coupled to another adjacent source/drain region in the row direction via a source/drain contact 200. Each source/drain contact 200 is coupled to a corresponding one of bitlines 330 by a bitline contact 300. In addition, each source/drain region in memory cell 100 may be electrically connected to a corresponding one of bitlines 330 via a bitline contact 300. As a result, memory cell array 100 comprises groups of four adjacent memory cells coupled to respective bitline contacts 300. A group of four adjacent memory cells connected to the same bitline contact 300 is indicated, for example, by a reference symbol “A” in
Each of the memory cells in the NOR-type flash memory device illustrated in
In
Because
Each of the memory cells in
In addition, by forming NOR-type flash memory device 100 with bitlines 330 over wordlines 130 and with each bitline contact 300 shared by four cell transistors 102, device malfunctions caused by punch-through are also avoided. Punch through is avoided because adjacent bitlines are sufficiently insulated from each other. As a result, NOR flash memory device 100 can be more efficiently scaled than conventional memory devices.
Referring to
Referring to
A conductive layer, such as a doped polysilicon or metal layer, is formed on dielectric layer 120 and is patterned to form a plurality of wordlines 130 extending perpendicular to active regions 110 on dielectric layer 120. Wordlines 130 are formed to simultaneously cover a top surface and sidewalls of active regions 110. Wordlines 130 constitute gates 132 of the respective memory cells.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Thereafter, process described in relation to
Although the methods described above involve cell transistors formed on pin-shaped active regions, the cell transistors could be formed using other types of active regions. For example, a cell transistor could be formed on an active region comprising a one-dimensional plane defined by STI device isolation.
As described above, in a NOR-type flash memory device according to various embodiments of the present invention, four memory cells share a single bitline contact. In addition, the NOR-type flash memory device comprises a memory cell array including twin-bit cells, each storing 2-bits. Each of the twin-bit memory cells occupies an area of 4F2, hence the NOR-type flash memory cell stores one bit per 2F2.
In the NOR-type flash memory device described above, bitlines are formed over wordlines and one bitline contact is shared by four cell transistors. This prevents device malfunctions caused by punch-through, and facilitates insulation between adjacent bitlines, which is highly advantageous for scaling down the device.
The foregoing preferred embodiments are teaching examples. Those of ordinary skill in the art will understand that various changes in form and details may be made to the exemplary embodiments without departing from the scope of the present invention as defined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0112899 | Dec 2004 | KR | national |
This is a divisional of application Ser. No. 11/311,367 filed on Dec. 20, 2005, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11311367 | Dec 2005 | US |
Child | 12418639 | US |