The present invention relates to the area of novel analogues of Glucose-dependent Insulinotropic Polypeptide (GIP), pharmaceutical compositions containing said compounds, and the use of said compounds as GIP-receptor agonists or antagonists for the treatment of GIP-receptor mediated conditions.
The incretin GIP (glucose-dependent insulinotropic polypeptide), a 42 amino acid peptide, is released from the K-cells of the small intestine into the blood in response to oral nutrient ingestion. GIP inhibits the secretion of gastric acid and promotes the release of insulin from pancreatic islet cells [1,2]. It has been shown that the combined effects of GIP and glucagon-like peptide-17-36 (tGLP-1) are sufficient to explain the full incretin effect of the entero-insular axis [3]. GIP and the related hormone, tGLP-1, have been considered to be involved in the pathogenesis of type II (non-insulin dependent) diabetes mellitus. The physiological actions of the incretins, and especially of GLP-1, are not only manifested by enhanced insulin secretion but also by inhibition of gastric emptying [4] and suppression of glucagon release [5,6,7,8] and may result in an improved glucose tolerance. Additionally, GIP is an important regulator of adipocyte function and changes in GIP function may contribute to progression of obesity in man [9].
In serum, both incretins, GIP and tGLP-1, are degraded by dipeptidyl peptidase IV (DPIV). The resulting short biological half-life (˜2 min in vivo) limits the therapeutic use of GIP and tGLP-1 [10,11,12]. In the case of tGLP-1, several studies have been directed at obtaining biologically active tGLP-1, analogues with improved DPIV-resistance [13,14]. For GIP, a preliminary study was performed to obtain analogues with improved DP IV-resistance [20]. Recently it was demonstrated that the full-length GIP (1-30) analogs: Tyr1-glucitol-GIP [15] and (Pro3)GIP [20, 21] display DP IV-resistance and enhanced bioactivity.
The GIP-receptor, a member of the G-protein-coupled receptor family [16,17], has a high specificity for GIP and does not bind other peptides of the glucagon family. For this reason, GLP-1/GIP chimeric peptides show nearly no affinity for the GIP-receptor [18]. From such studies it has been concluded that the GIP1-30 sequence of the GIP1-42 molecule is crucial for receptor recognition. This was confirmed by Gelling et al [19] who showed that GIP6-30-amide (GIP6-30a) contains the high affinity binding region of GIP1-42 but exhibits antagonist activity, as do other N-terminally truncated forms.
The following patent applications have been filed related to the effects of GIP analogues on the function of various target organs and their potential use as therapeutic agents:
DE 199 21 537 discloses a method for extending the survival of insulin producing β-cells by stimulation of their proliferation and prevention of their programmed cell death. The specific goal is to increase the endogenous insulin content and insulin response to elevated blood glucose levels. An important component of this invention is the activation of protein kinase B/Akt in insulin producing β-cells in response to the administration of effectors such as GLP-1, GIP, Exendin-4 or GLP-1 receptor agonists or GIP-receptor agonists.
EP 0479 210 discloses a novel GIP analogue of the formula GIP(1-13)-X-GIP(15-30)-Y, wherein X is an amino acid residue other than Met, and Y is selected from homoserine (inclusive homoserine-lactone) and shall be referred to as “Hse”, homoserine amide (Hse-NH2), H-Gly-Lys-Lys-Asn-Asp-Trp-Lys-His-Asn-Ile-Thr-Gln-Hse or H-Gly-Lys-Lys-Asn-Asp-Trp-Lys-His-Asn-Ile-Thr-Gln-Hse-NH2.
WO 98/24464 discloses an antagonist of glucose-dependent insulinotropic polypeptide (GIP) consisting essentially of a 24 amino acid polypeptide corresponding to positions 7-30 of the sequence of GIP, a method of treating non-insulin dependent diabetes mellitus and a method of improving glucose tolerance in a non-insulin dependent diabetes mellitus patient.
WO 00/58360 discloses peptides, which stimulate the release of insulin. This invention especially provides a process of N terminally-modifying GIP and the use of the peptide analogues for treatment of diabetes. The specific peptide analog, which is disclosed in this invention, comprises at least 15 amino acid residues from the N terminal end of GIP (1-42). In another embodiment, Tyr1 glucitol GIP (1-42) is disclosed.
WO 00/20592 discloses GIP or anti-idiotypic antibodies of GIP or fragments thereof as GIP-analogs for maintaining or increasing bone density or bone formation.
The present invention relates to novel C-terminally truncated fragments and novel N-terminally modified analogues of gastric inhibitory polypeptide as well as various GIP analogues with a reduced peptide bond or alterations of the amino acids close to the dipeptidyl peptidase IV (DPIV) specific cleavage site with the aim of improved DPIV-resistance and prolonging half-life. Further the invention relates to novel analogues with different linkers between potential receptor binding sites of GIP.
The compounds of the present invention and their pharmaceutically acceptable salts are useful in treating conditions in which GIP-receptor function may be altered, including non-insulin dependent diabetes mellitus and obesity. Two specific applications are proposed:
The present invention relates to novel C-terminally truncated fragments and novel N-terminally modified analogues of Glucose-dependent Insulinotropic Polypeptide as well as various GIP analogues with a reduced peptide bond or alterations of the amino acids close to the dipeptidyl peptidase IV (DPIV) specific cleavage site with the aim of improving DPIV-resistance and a prolonging half-life. The amino acid alterations according to the present invention include residues of L-amino acids, D-amino acids, proteinogenic and non-proteinogenic amino acids. Proteinogenic amino acids are defined as natural protein-derived α-amino acids. Non-proteinogenic amino acids are defined as all other amino acids, which are not building blocks of common natural proteins.
Further, the invention relates to novel analogues with different linkers between potential receptor binding sites of GIP.
More particularly, the present invention relates to novel GIP analogues with the general amino acid sequence shown in formula (1):
wherein A and B are amino acid residues including D-amino acid residues, N-methylated amino acid residues and any other non-proteinogenic amino acid residues. Additionally, the N-terminus of the tyrosine residue in position 1 can be modified by alkylation, sulphonylation, glycation, homoserine formation, pyroglutamic acid formation, disulphide bond formation, deamidation of asparagine or glutamine residues, methylation, t-butylation, t-butyloxycarbonylation, 4-methylbenzylation, thioanysilation, thiocresylation, bencyloxymethylation, 4-nitrophenylation, bencyloxycarbonylation, 2-nitrobencoylation, 2-nitrosulphenylation, 4-toluenesulphonylation, pentafluorophenylation, diphenylmethylation, 2-chlorobenzyloxycarbonylation, 2,4,5-trichlorophenylation, 2-bromobenzyloxycarbonylation, 9-fluorenylmethyloxycarbonylation, triphenylmethylation, 2,2,5,7,8,-pentamethylchroman-6-sulphonylation, hydroxylation, oxidation of methionine, formylation, acetylation, anisylation, bencylation, bencoylation, trifluoroacetylation, carboxylation of aspartic acid or glutamic acid, phosphorylation, sulphation, cysteinylation, glycolysation with pentoses, deoxyhexoses, hexosamines, hexoses or N-acetylhexosamines, farnesylation, myristolysation, biotinylation, palmitoylation, stearoylation, geranylgeranylation, glutathionylation, 5′-adenosylation, ADP-ribosylation, modification with N-glycolylneuraminic acid, N-acetylneuraminic acid, pyridoxal phosphate, lipoic acid, 4′-phosphopantetheine, and N-hydroxysuccinimide. The peptide of formula 1 can be modified by the introduction of at least one E-amino fatty acid acylated lysine in any amino acid position.
The sequence of native GIP (1-14) is excluded from the present invention.
The most preferred compounds of formula (1) are D-Ala2-GIP (1-14), Pro3-GIP (1-14) and Ser2-GIP (1-14).
In another preferred embodiment the present invention relates to GIP analogues with a reduced peptide bond, shown by formula (2) of
In a further embodiment, the present invention relates to a novel GIP analogue with the general amino acid sequence shown by formula (3) of
In another embodiment, the present invention provides novel GIP analogues of formulas 4a-4l as result of an alanine scan. In particular, these are
Novel GIP analogues can be obtained by synthesis of linker peptides. Therefore, the present invention provides linker peptides according to formula (5):
wherein C is
The N-terminus of the tyrosine residue in position 1 can be modified by alkylation, sulphonylation, glycation, homoserine formation, pyroglutamic acid formation, disulphide bond formation, deamidation of asparagine or glutamine residues, methylation, t-butylation, t-butyloxycarbonylation, 4-methylbenzylation, thioanysilation, thiocresylation, bencyloxymethylation, 4-nitrophenylation, bencyloxycarbonylation, 2-nitrobencoylation, 2-nitrosulphenylation, 4-toluenesulphonylation, pentafluorophenylation, diphenylmethylation, 2-chlorobenzyloxycarbonylation, 2,4,5-trichlorophenylation, 2-bromobenzyloxycarbonylation, 9-fluorenylmethyloxycarbonylation, triphenylmethylation, 2,2,5,7,8,-pentamethylchroman-6-sulphonylation, hydroxylation, oxidation of methionine, formylation, acetylation, anisylation, bencylation, bencoylation, trifluoroacetylation, carboxylation of aspartic acid or glutamic acid, phosphorylation, sulphation, cysteinylation, glycolysation with pentoses, deoxyhexoses, hexosamines, hexoses or N-acetylhexosamines, farnesylation, myristolysation, biotinylation, palmitoylation, stearoylation, geranylgeranylation, glutathionylation, 5′-adenosylation, ADP-ribosylation, modification with N-glycolylneuraminic acid, N-acetylneuraminic acid, pyridoxal phosphate, lipoic acid, 4′-phosphopantetheine, and N-hydroxysuccinimide. Further, the introduction of a reduced peptide bond or any other modification of the peptide bond between position 2 and 3 is provided. The peptide of formula 5 can be modified by the introduction of at least one ε-amino fatty acid acylated lysine in any amino acid position.
Further, the present invention provides linker peptides according to formula (6):
wherein D is
The N-terminus of the tyrosine residue in position 1 can be modified by alkylation, acetylation and glycation. Further, the introduction of a reduced peptide bond or any other modification of the peptide bond between position 2 and 3 is provided. The peptide of formula 6 can be modified by the introduction of at least one ε-amino fatty is acid acylated lysine in any amino acid position.
Other novel GIP analogues can be obtained by phosphorylation of Ser2. Preferred compounds of the present invention are those of formulas 7a-7c:
Novel GIP analogues of formulas 7a-7c, comprising a phosphorylated seryl residue:
Further, novel GIP analogues are constrained GIP analogues by introduction of side-chain lactam bridges between Asp/Glu- and Lys-residues of the peptide sequence. One preferred compound of the present invention is [Cyclo(Lys16, Asp21)] GIP (1-30) as of formula 8
The present invention further includes within its scope both the amide and the free carboxylic acid forms of the compounds of this invention. In view of the close relationship between the free compounds and the compounds in the form of their amides, whenever a compound is referred to in this context, the amide as well as the free carboxylic acid form is intended, provided such is possible or appropriate under the circumstances.
The compounds of the present invention can be converted into acid addition salts, especially pharmaceutically acceptable acid addition salts. The pharmaceutically acceptable salt generally takes a form in which an amino acids basic side chain is protonated with an inorganic or organic acid. Representative organic or inorganic acids include hydrochloric, hydrobromic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, mandelic, methanesulfonic, hydroxyethanesulfonic, benzenesulfonic, oxalic, pamoic, 2-naphthalenesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, saccharinic or trifluoroacetic acid. All pharmaceutically acceptable acid addition salt forms of the compounds of the present invention are intended to be embraced by the scope of this invention.
In view of the close relationship between the free compounds and the compounds in the form of their salts, whenever a compound is referred to in this context, a corresponding salt is also intended, provided such is possible or appropriate under the circumstances.
The present invention further includes within its scope prodrugs of the compounds of this invention. In general, such prodrugs will be functional derivatives of the compounds which are readily convertible in vivo into the desired therapeutically active compound. Thus, in these cases, the methods of treatment of the present invention, the term “administering” shall encompass the treatment of the various disorders described with prodrug versions of one or more of the claimed compounds, but which converts to the above specified compound in vivo after administration to the subject. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in “Design of Prodrugs”, ed. H. Bundgaard, Elsevier, 1985 and the patent applications DE 198 28 113 and DE 198 28 114, which are fully incorporated herein by reference.
Where the compounds according to this invention have at least one chiral center, they may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms of the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e. hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
The compounds, including their salts, can also be obtained in the form of their hydrates, or include other solvents used for their crystallization.
Several compounds of the present invention, including their corresponding pharmaceutically acceptable salts, are characterized in that they have an improved resistance against degradation by the enzyme activity of dipeptidyl peptidase IV (DP IV) or DP IV-like enzymes. DP IV is present in a wide variety of mammalian organs and tissues e.g. the intestinal brush-border (Gutschmidt S. et al., “In situ”—measurements of protein contents in the brush border region along rat jejunal villi and their correlations with four enzyme activities. Histochemistry 1981, 72 (3), 467-79), exocrine epithelia, hepatocytes, renal tubuli, endothelia, myofibroblasts (Feller A. C. et al., A monoclonal antibody detecting dipeptidyl peptidase IV in human tissue. Virchows Arch. A. Pathol. Anat. Histopathol. 1986; 409 (2): 263-73), nerve cells, lateral membranes of certain surface epithelia, e.g. Fallopian tube, uterus and vesicular gland, in the luminal cytoplasm of e.g., vesicular gland epithelium, and in mucous cells of Brunner's gland (Hartel S. et al., Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry 1988; 89 (2): 151-61), reproductive organs, e.g. cauda epididymis and ampulla, seminal vesicles and their secretions (Agrawal & Vanha-Perttula, Dipeptidyl peptidases in bovine reproductive organs and secretions. Int. J. Androl. 1986, 9 (6): 435-52). In human serum, two molecular forms of dipeptidyl peptidase are present (Krepela E. et al., Demonstration of two molecular forms of dipeptidyl peptidase IV in normal human serum. Physiol. Bohemoslov. 1983, 32 (6): 486-96). The serum high molecular weight form of DP IV is expressed on the surface of activated T cells (Duke-Cohan J. S. et al., Serum high molecular weight dipeptidyl peptidase IV (CD26) is similar to a novel antigen DPPT-L released from activated T cells. J. Immunol. 1996, 156 (5): 1714-21). In one embodiment of the present invention, all molecular forms, homologues and epitopes of DP IV from all mammalian tissues and organs, also of those, which are undiscovered yet, are intended to be embraced by the scope of this invention.
Among the rare group of proline-specific proteases, DP IV was originally believed to be the only membrane-bound enzyme specific for proline as the penultimate residue at the amino-terminus of the polypeptide chain. However, other molecules have been identified recently that are structurally non-homologous with DP IV, but exhibit corresponding enzyme activity. Among the DP IV-like enzymes identified so far are fibroblast activation protein α, dipeptidyl peptidase IV β, dipeptidyl aminopeptidase-like protein, N-acetylated α-linked acidic dipeptidase, quiescent cell proline dipeptidase, dipeptidyl peptidase II, attractin and dipeptidyl peptidase IV related protein (DPP 8), and these are described in the review article by Sedo & Malik (Sedo & Malik, Dipeptidyl peptidase IV-like molecules: homologous proteins or homologous activities? Biochimica et Biophysica Acta 2001, 36506: 1-10). In another preferred embodiment of the present invention, all molecular forms, homologues and epitopes of proteins comprising DP IV-like enzyme activity, from all mammalian tissues and organs, also of those, which are undiscovered yet, are intended to be embraced by the scope of this invention.
The common property of the compounds of the present invention, including their corresponding pharmaceutically acceptable salts, is their improved resistance against degradation by the enzyme activity of DP IV or DP IV like enzymes that can be measured by MALDI-TOF mass spectrometry. The results for selected GIP analogues according to the present invention are shown in table 1 to example 3. It was demonstrated by MALDI-TOF-MS that the substitution of amino acids in the cleavage position by D-Ala2, NMeGlu3, Pro3 or the introduction of a reduced peptide leads to resistance against DPIV degradation for up to 24 hours in GIP1-30 analogs as well as in the corresponding GIP1-14 analogs. Analogs with Val-, Gly-, Ser-substitution for Ala2 or D-Glu-substitution for Glu3 showed reduced hydrolysis rates by DPIV. For the results see also table 1.
aAfter 15 min are 92% of GIP1-30 hydrolyzed
bAfter 1500 min only 25% of G2GIP1-30 are degraded
In another preferred embodiment, the compounds of the present invention, including their corresponding pharmaceutically acceptable salts, are characterized by their ability to bind to the GIP-receptor. The ability of the compounds of the present invention, including their corresponding pharmaceutically acceptable salts to bind to the GIP-receptor can be measured employing binding studies using 125I-labeled spGIP1-42 such as pursuant to the method described in example 4.
The displacement studies do not show non-specific binding of the compounds to the receptor. This is a term used to describe binding remaining in the presence of excess (≧1 μM) GIP1-42 (or GIP1-30). This value has already been subtracted from data presented.
Examples of compounds of the present invention that bind and displace 125I-GIP1-42 from the GIP-receptor are shown in
Surprisingly, the compounds of the present invention are functionally active. The biological activity of the compounds of the present invention, including their corresponding pharmaceutically acceptable salts, can be measured by determining the production of cyclic AMP following receptor binding. The cAMP production assay is described in example 4. Substitution of D-Glu for Glu3 and D-Ala for Ala2 resulted in peptides with only small reductions in their ability to stimulate adenylyl cyclase whereas the Val2- and Gly2-analogs showed a significant reduction in efficacy. Interestingly, the introduction, of the reduced peptide bond resulted in a dramatic deterioration of cAMP production. This confirms the importance of the integrity of the N-terminus of GIP. Further results are shown in Tables 2 and 3- and in
*p < 0.05
aBasal cyclic AMP = 2.737 ± 0.079 fmol/1000 cells;
bcyclic AMP stimulated by 20 μM peptide, if plateau levels were not achieved
cBy definition, 10 μM GIP1-42 displaces all specific 125I-GIP binding.
dEstimated using maximal GIP1-42-stimulated cAMP.
*p <0.05
aBasal cyclic AMP = 2.737 ± 0.079 fmol/1000 cells;
bcyclic AMP stimulated by 20 μM peptide, if plateau levels were not achieved
cBy definition, 10 μM GIP1-42 displaces all specific 125I-GIP binding.
dEstimated using maximal GIP1-42-stimulated cAMP.
Based on their functional activity in vitro, compounds of the present invention were tested for their ability to improve glucose tolerance and decrease glucose AUC in mammals in vivo and therefore are useful for the treatment of non-insulin dependent diabetes mellitus (NIDDM). The ability of the compounds, including their corresponding pharmaceutically acceptable salts, to improve glucose tolerance in a mammal and to decrease glucose AUC can be measured employing the Wistar rat model. The method is described in Example 5. Results are shown in
Based on their receptor binding capabilities and their stimulatory effect on cAMP release, it was found that the compounds of the present invention are able to potentiate glucose dependent proliferation of pancreatic β-cells. Surprisingly, and as an especially preferred embodiment, the compounds of the present invention show, independently from the presence of glucose, a concentration-dependent effect on the β-cell survival. The ability of the compounds of the present invention, including their corresponding pharmaceutically acceptable salts, to potentiate glucose dependent, β-cell proliferation as well as glucose independent β-cell survival can be measured employing an assay with INS-1 cells as described in Example 6. Results are shown in
One of the most surprising findings is that the compounds of the present invention have an anti-apoptotic effect on pancreatic β-cells. The anti-apoptotic effect of the compounds of the present invention, including their corresponding pharmaceutically acceptable salts, can be measured employing a caspase-3 activation assay as described in Example 7. The results are shown in
In another in vitro assay, streptozotocin (STZ)-induced β-cell death of INS-1 cells, it has been demonstrated that the compounds of the present invention and including their corresponding pharmaceutically acceptable salts, are able to protect against the pro-apoptotic (caspase-3 activating) effects of STZ completely. The method is described in Example 7. The results are shown in
In a further embodiment, the present invention provides pharmaceutical compositions e.g. useful in GIP-receptor binding comprising a pharmaceutically acceptable carrier or diluent and a therapeutically effective amount of a compound of formulas 1-8, or a pharmaceutically acceptable salt thereof.
In still another embodiment, the present invention provides a method for binding or blocking GIP-receptor comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formulas 1-8 above, or a pharmaceutically acceptable salt thereof.
In a further embodiment, the present invention provides a method for treating conditions mediated by GIP-receptor binding comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formulas 1-8 above, or a pharmaceutically acceptable salt thereof.
The present invention also relates to the use of a compound according to the present invention or a pharmaceutically acceptable salt thereof e.g. for the manufacture of a medicament for the prevention or treatment of diseases or conditions associated with GIP-receptor signaling.
In a preferred embodiment, the present invention relates to the use of a compound according to the present invention or a pharmaceutically acceptable salt thereof e.g. for the manufacture of a medicament for the prevention or treatment of diabetes mellitus and obesity.
The GIP analogs were synthesized with an automated synthesizer SYMPHONY (RAININ) using a modified Fmoc-protocol. Cycles were modified by using double couplings from the 15th amino acid from the C-terminus of the peptide with five-fold excess of Fmoc-amino acids and coupling reagent. The peptide couplings were performed by TBTU/NMM-activation using a 0.23 mmol substituted NovaSyn TGR-resin or the corresponding preloaded Wang-resin at 25 μmol scale. The cleavage from the resin was carried out by a cleavage-cocktail consisting of 94.5% TFA, 2.5% water, 2.5% EDT and 1% TIS.
Analytical and preparative HPLC were performed by using different gradients on the LiChrograph HPLC system of Merck-Hitachi. The gradients were made up from two solvents: (A) 0.1% TFA in H2O and (B) 0.1% TFA in acetonitrile. Analytical HPLC were performed under the following conditions: solvents were run (1 ml/min) through a 125-4 Nucleosil RP18-column, over a gradient from 5%-50% B over 15 min and then up to 95% B until 20 min, with UV detection (X=220 nm). Purification of the peptides was carried out by preparative HPLC on either a 250-20 Nucleosil 100 RP8-column or a 250-10 LiChrospher 300 RP18-column (flow rate 6 ml/min, 220 nm) under various conditions depending on peptide chain length. For the identification of the peptide analogues, laser desorption mass spectrometry was employed using the HP G2025 MALbI-TOF system of Hewlett-Packard.
Tyr-Alaψ(CH2NH)-GIP3-30a and Tyr-Alaψ(CH2NH)-GIP3-14a were synthesized by coupling 2 equivalents of Fmoc-Tyr(tBu)ψ(CH2NH)-Glu(tBu)-Gly-OH by TBTU/DIPEA activation and double coupling over 4 hours. The corresponding GIP5-30 and GIP5-14 fragments were synthesized as described above.
The synthesis of the fully protected tetrapeptide Tyr-Alaψ(CH2NH)-Glu(tBu)-Gly-OH was carried out on the acid sensitive Sasrin resin in a 0.7 mmol scale by Fmoc-strategy as described in Example 1 using a half-automated peptide synthesizer Labortec (BACHEM). The protected tetrapeptide was cleaved from the resin by 1% TFA. The reduced peptide bond was incorporated via reductive alkylation of the N-terminal deprotected peptide on the sasrin resin with Fmoc-alaninal.
The hydrolysis of peptide analogues by purified kidney DPIV was studied as described previously [12]. In brief, peptides were incubated in 0.04 M Tris buffer pH 7.6 and DPIV for up to 24 h. Samples were removed from the incubation mixture and prepared for MALDI-TOF mass spectrometry, as described in Pauly, R. P., Rosche, F., Wermann, M., McIntosh, C. H. S., Pederson, R. A., and Demuth, H. U. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization time of flight mass spectrometry—A novel kinetic approach. J Biol Chem 271 (38), 23222-23229.1996.
Chinese hamster ovary (CHO-K1) cells stably expressing the rat pancreatic islet (wild type) GIP-receptor (wtGIP-R1 cells) were prepared as described previously [19,21]. Cells were cultured in DMEM/F12, supplemented with 10% newborn calf serum, 50 units/ml penicillin G, and 50 μg/ml streptomycin (Culture media and antibiotics from Gibco BRL, Life Technologies). Cells were grown in 75 cm2 flasks until 80-90% confluent, when they were split and seeded onto 24 well plates at a density of 50,000 cells/well. Experiments were carried out 48 h later.
Binding Studies
Binding studies using 125I-labeled spGIP1-42, purified by high performance liquid chromatography (HPLC), were performed essentially as described previously-[21]. wtGIP-R1 Cells (1-5×105/well) were washed twice at 4° C. in binding buffer (BB), consisting of DMEM/F12 (GIBCO), 15 mM HEPES, 0.1% bovine serum albumin (BSA), 1% Trasylol (aprotinin; Bayer), pH 7.4. They were incubated for 12-16 h at 4° C. with 125I-spGIP (50,000 cpm) in the presence or absence of unlabeled GIP1-42 or analogue. Following incubation, cells were washed twice with ice cold buffer, solubilized with 0.1 M NaOH (1 ml), and transferred to culture tubes for counting of cell-associated radioactivity. Nonspecific binding was defined as that measured in the presence of 1 μM GIP1-42 or GIP1-30, and specific binding expressed as % of binding in the absence of competitor (% B/Bo).
cAMP Production
Wild type GIP-R1 cells were cultured for 48 h, washed in BB at 37° C., and preincubated for 1 h prior to a 30 min stimulation period with test agents in the presence of 0.5 mM IBMX (Research Biochemicals Intl., Natick, Mass.) [19,21]. With inhibition experiments, cells were incubated with GIP analogues for 15 min prior to a 30 min stimulation with 1 nM shGIP1-42. Cells were extracted with 70% ethanol and cAMP levels measured by radioimmunoassay (Biomedical Technologies, Stoughton, Mass.) [19,21]. Data are expressed as fmol/1000 cells or % maximal GIP1-42-stimulated cAMP production (inhibition experiments).
Male Wistar rats (250-350 g) were starved overnight (16-18 hours) with free access to drinking water. Whole blood samples were taken from the tail vein of conscious unrestrained rats, for determination of blood glucose (using a hand-held glucometer); plasma was separated by centrifugation (20 min, 12,000 rpm, 4 C) for measurement of plasma insulin concentrations. A basal sample was obtained immediately prior to an oral glucose tolerance test (1 gram glucose/Kg body weight) and intra-scapular subcutaneous injection of peptide analogue (8 nmol/Kg body weight) or saline control (500 microlitre injection volume). Blood samples were taken at t=2, 10, 20, 30, and 60 for insulin determination, and blood glucose was measured at 10 minute intervals. Integrated glucose response was calculated using the trapezoidal algorithm with baseline subtraction.
Cell Culture and Reagents
INS-1 cells (clone 832/13) were cultured in 11 mM glucose RPMI (Sigma Laboratories, Natick, Mass., USA) supplemented with 2 mM glutamine, 50 μM β-mercaptoethanol, 10 mM HEPES, 1 mM sodium pyruvate, and 10% fetal bovine serum (Cansera, Rexdale, Ont., Canada). Prior to experiments, cells were harvested into either 6-well (2×106 cells/well; Becton Dickinson, Licoln Park, N.J., USA), 24-well (5×105 cells/well), or 96-well (5×104 cells/well) plates. Cell passages 45-60 were used.
GIP-Receptor Characterization Studies; Competitive Binding, cAMP, and Insulin Release
Synthetic porcine GIP (5 μg) was iodinated by the chloramine-T method, and the 125I-GIP was further purified by reverse phase high performance liquid chromatography to a specific activity of 250-300 μCi/μg. Competitive binding analyses were performed as described in Example 4. For cAMP studies, cells were washed twice and then stimulated for 30 minutes with GIP in the presence of the phophodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM IBMX; RBI/Sigma, Natick, Mass., USA). Following stimulation, reactions were stopped, and cells lysed, in 70% ice-cold ethanol, cellular debris removed by centrifugation, and cAMP subsequently quantified by radioimmunoassy (RIA) (Biomedical Technologies Inc., Stoughton, Mass., USA). All insulin release experiments were performed over 60 minutes, in the absence of IBMX, and insulin secreted into the media was quantified by RIA.
Since GIP-receptors in the INS-1 clone 832/13 cell line had not been previously characterized, binding, adenylyl cyclase stimulation and insulin secretory responses to GIP were initially studied. Cells expressed receptors at a density of 1571±289 binding sites/cell (n=3) with an IC50 for binding of 21.1±2.49 nM (n=3) and a KD=106.2±4.3 fmol (n=3); cAMP production was stimulated by GIP with an EC50 of 4.70±1.81 nM (n=4)); 5.5 mM glucose stimulated insulin secretion was potentiated by 10 nM GIP (1.63±0.183% total insulin secreted for 5.5 mM glucose vs. 2.44±0.29% total insulin secreted (p<0.05, n=3)).
Cell Quantification
Cells were seeded into 96-well plates (5×104 cells/well) prior to experimentation. After establishing metabolic quiescence in the absence of serum for 24 h, cells were cultured in low glucose media (RPMI with 0.1% BSA) with agonists (glucose, glucose+GIP/GLP-1/GH) for an additional 24 h. Thereafter, cells were washed with KRBH (115 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 10 mM NaHCO3, 1.28 mM CaCl2, 1.2 mM MgSO4 containing 10 mM HEPES and 0.1% bovine serum albumin, pH 7.4) and frozen at −70° C. until assayed. Cells were quantified using the CYQUANT™ assay system (Molecular Probes, Eugene, Oreg., USA) according to the manufacturers' protocol. Final cell numbers were always greater than the initial number plated in assessing cellular proliferation.
Cell survival was assessed in the presence of prolonged glucose deprivation. 24 h after glucose deprivation (RPMI with 0.1% BSA), GIP or forskolin were added for an additional 24 h, and cell number was quantified. Final cell numbers were always less than the initial number plated in assessing cell survival.
GIP Potentiates Glucose Dependent β-Cell Proliferation
The INS-1 cell line has been extensively investigated previously as a cellular model for β-cell proliferation (Hugl S R, White M F, Rhodes C J 1998: Insulin-like growth factor 1 (IGF-1)-stimulated pancreatic beta-cell growth is glucose-dependent. J. Biol. Chem. 273: 17771-17779; Dickson L M, Linghor M K, McCuaig J, Hugl S R, Snow L, Kahn B B, Myers Jr. M G, Rhodes C J (2001), Differential activation of protein kinase B and p70S6K by glucose and insulin-like growth factor 1 in pancreatic beta cells (INS-1). J. Biol. Chem. 276:21110-21120). GIP was found to potentiate 11 mM glucose mediated β-cell proliferation (
GIP Reverses the Detrimental Effect of 0 mM Glucose
While determining the glucose-dependence of these growth promotive effects, it was observed that GIP was capable of reversing the detrimental effects of 0 mM glucose media on cellular survival. Incubation of cells in the presence of 0 mM glucose media for 48 h resulted in approximately 50% cell death (
GIP has a Protective Effect Against Wortmannin-Induced Cell Death
In order to establish which intracellular signaling pathways were involved in the GIP-induced cell survival, studies were performed with pharmacological inhibitors used at concentrations shown to exhibit selectivity for candidate protein kinases (
Caspase-3 Activity
INS-1 cells (clone 832/13) seeded into 6-well plates were serum starved for 12-24 h and subjected to glucose deprivation (RPMI with 0.1% BSA) or treatment with 2 mM streptozotocin (STZ). GIP and GLP-1 were added 10 min prior to STZ and for 30 min during STZ. Following treatment, caspase-3 activity was determined after 2, 6, or 24 h according to the manufacturers' protocol (Molecular Probes, Eugene, Oreg., USA). Caspase-3 activity/well was corrected for total protein content using the BCA protein assay (Pierce, Roxford, II, USA).
Caspase-3 activation is a marker for the induction of cellular apoptosis. To establish whether the cell survival effects of GIP were due to anti-apoptotic actions of the polypeptide, activation of caspase-3 induced by glucose deprivation was studied.
STZ-Induced Cell Death
The ability of GIP to protect against streptozotocin (STZ)-induced β-cell death was studied. When added 10 minutes prior to, and during, a 30 minute STZ exposure, GIP was able to protect against the pro-apoptotic (caspase-3 activating) effects of STZ completely (
This application claims benefit from U.S. provisional application Ser. No. 60/368,197 filed on Mar. 28, 2002, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60368197 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10397160 | Mar 2003 | US |
Child | 11042562 | Jan 2005 | US |