NOVEL CRISPR DNA TARGETING ENZYMES AND SYSTEMS

Information

  • Patent Application
  • 20230016656
  • Publication Number
    20230016656
  • Date Filed
    August 26, 2020
    3 years ago
  • Date Published
    January 19, 2023
    a year ago
Abstract
The disclosure describes novel systems, methods, and compositions for the manipulation of nucleic acids in a targeted fashion. The disclosure describes non-naturally occurring, engineered CRISPR systems, components, and methods for targeted modification of nucleic acids. Each system includes one or more protein components and one or more nucleic acid components that together target nucleic acids.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 26, 2020 is named A2186-7018WO_SL.txt and is 1,301,348 bytes in size.


FIELD OF THE INVENTION

The present disclosure relates to systems and methods for genome editing and modulation of gene expression using novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) genes.


BACKGROUND

Recent advances in genome sequencing technologies and analyses have yielded significant insight into the genetic underpinnings of biological activities in many diverse areas of nature, ranging from prokaryotic biosynthetic pathways to human pathologies. To fully understand and evaluate the vast quantities of information yielded, equivalent increases in the scale, efficacy, and ease of sequence technologies for genome and epigenome manipulation are needed. These novel technologies will accelerate the development of novel applications in numerous areas, including biotechnology, agriculture, and human therapeutics.


Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) genes, collectively known as CRISPR-Cas or CRISPR/Cas systems, are adaptive immune systems in archaea and bacteria that defend particular species against foreign genetic elements. CRISPR-Cas systems comprise an extremely diverse group of proteins effectors, non-coding elements, and loci architectures, some examples of which have been engineered and adapted to produce important biotechnological advances.


The components of the system involved in host defense include one or more effector proteins capable of modifying a nucleic acid and an RNA guide element that is responsible for targeting the effector protein(s) to a specific sequence on a phage nucleic acid. The RNA guide is composed of a CRISPR RNA (crRNA) and may require an additional trans-activating RNA (tracrRNA) to enable targeted nucleic acid manipulation by the effector protein(s). The crRNA consists of a direct repeat responsible for protein binding to the crRNA and a spacer sequence that is complementary to the desired nucleic acid target sequence. CRISPR systems can be reprogrammed to target alternative DNA or RNA targets by modifying the spacer sequence of the crRNA.


CRISPR-Cas systems can be broadly classified into two classes: Class 1 systems are composed of multiple effector proteins that together form a complex around a crRNA, and Class 2 systems consist of one effector protein that complexes with the RNA guide to target nucleic acid substrates. The single-subunit effector composition of the Class 2 systems provides a simpler component set for engineering and application translation and have thus far been an important source of programmable effectors. Nevertheless, there remains a need for additional programmable effectors and systems for modifying nucleic acids and polynucleotides (i.e., DNA, RNA, or any hybrid, derivative, or modification) beyond the current CRISPR-Cas systems, such as smaller effectors and/or effectors having unique PAM sequence requirements, that enable novel applications through their unique properties.


SUMMARY

This disclosure provides non-naturally-occurring, engineered systems and compositions for novel single-effector Class 2 CRISPR-Cas systems, which were first identified computationally from genomic databases and subsequently engineered and experimentally validated. In particular, identification of the components of these CRISPR-Cas systems allows for their use in non-natural environments, e.g., in bacteria other than those in which the systems were initially discovered or in eukaryotic cells, such as mammalian cells. These new effectors are divergent in sequence and function compared to orthologs and homologs of existing Class 2 CRISPR effectors.


In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.133120 including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence. In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.133120 including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence.


In some embodiments of any of the systems described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 51-72, 85-87, 95-100, or 900-915.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 1, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the nucleotide sequence of SEQ ID NO: 51, 95, or 85. In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence of Table 3 and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a corresponding direct repeat nucleotide sequence listed in Table 4 (e.g., the first or second direct repeat nucleotide sequence of the corresponding row in Table 4), or to a corresponding direct repeat nucleotide sequence listed in Table 32 (e.g., a pre-crRNA direct repeat sequence or a mature crRNA direct repeat sequence of Table 32).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1 (CLUST.133120 3300027740) or SEQ ID NO: 2 (CLUST.133120 3300017971).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1-50 (CLUST.133120).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM), wherein the PAM includes a nucleic acid sequence, including a nucleic acid sequence set forth as 5′-TTN-3′ or 5′-TN-3′.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO:1, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-TTN-3′. In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 2, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-TN-3′.


In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between 20 and 35 nucleotides.


In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid. In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1-50.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-TTN-3′ or 5′-TN-3′.


In some embodiments of any of the cells described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 51-72, 85-87, 95-100, or 900-915.


In some embodiments of any of the cells described herein, the spacer sequence includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the cells described herein, the spacer sequence includes between 20 and 35 nucleotides.


In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1-50 (CLUST.133120).


In some embodiments of any of the methods described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-TTN-3′ or 5′-TN-3′.


In some embodiments of any of the methods described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 51-72, 85-87, 95-100, or 900-915.


In some embodiments of any of the methods described herein, the spacer sequence includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the methods described herein, the spacer sequence includes between 20 and 35 nucleotides.


In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.099129 including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence. In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.099129 including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence.


In some embodiments of any of the systems described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 146-162, 180-183, or 200-215.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 101, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the nucleotide sequence of SEQ ID NO: 146, 181, or 200.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence of Table 10, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a corresponding direct repeat nucleotide sequence listed in Table 11 (e.g., the first or second direct repeat nucleotide sequence of the corresponding row in Table 11), or to a corresponding direct repeat nucleotide sequence listed in Table 7 (e.g., a pre-crRNA Direct Repeat Sequence or a Mature crRNA Direct Repeat Sequence of Table 7).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101 (CLUST.099129 SRR6837557), SEQ ID NO: 102 (CLUST.099129 3300012971), or SEQ ID NO: 103 (CLUST.099129 3300005764).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101-145 (CLUST.0991297).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM), wherein the PAM includes a nucleic acid sequence, including a nucleic acid sequence set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′ (SEQ ID NO: 920).


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 101, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-GTN-3′. In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 102, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-TG-3′. In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 103, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-TR-3′ or 5′-RATG-3′ (SEQ ID NO: 920).


In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between 26 and 51 nucleotides.


In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid. In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101, SEQ ID NO: 102, or SEQ ID NO: 103.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101-145.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′ (SEQ ID NO: 920).


In some embodiments of any of the cells described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 146-162, 180-183, or 200-215.


In some embodiments of any of the cells described herein, the spacer sequence includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the cells described herein, the spacer sequence includes between 26 and 51 nucleotides.


In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101, SEQ ID NO: 102, or SEQ ID NO: 103.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101-145.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′.


In some embodiments of any of the methods described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 146-162, 180-183, or 200-215.


In some embodiments of any of the methods described herein, the spacer sequence includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the methods described herein, the spacer sequence includes between 26 and 51 nucleotides.


In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.342201 including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence. In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.342201 including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence.


In some embodiments of any of the systems described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 342-362, 384-402, 451, 452, or 454.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 301, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the nucleotide sequence of SEQ ID NO: 342 or 451.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence of Table 17, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a corresponding direct repeat nucleotide sequence listed in Table 14, or to a corresponding direct repeat nucleotide sequence listed in Table 18 (e.g., the first or second direct repeat nucleotide sequence of the corresponding row in Table 18).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301 (CLUST.342201 3300006417).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301-341 (CLUST.342201).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM), wherein the PAM includes a nucleic acid sequence, including a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), or 5′-RAAD-3′ (SEQ ID NO: 923).


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO:301, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, or 5′-AAR-3′.


In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between about 12 nucleotides to about 62 nucleotides. In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between 19 and 40 nucleotides.


In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid. In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301-341.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923).


In some embodiments of any of the cells described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 342-362, 384-402, 451, 452, or 454.


In some embodiments of any of the cells described herein, the spacer sequence includes between about 12 nucleotides to about 62 nucleotides. In some embodiments of any of the cells described herein, the spacer sequence includes between 19 and 40 nucleotides.


In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301-341.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923).


In some embodiments of any of the methods described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 342-362, 384-402, 451, 452, or 454.


In some embodiments of any of the methods described herein, the spacer sequence includes between about 12 nucleotides to about 62 nucleotides. In some embodiments of any of the methods described herein, the spacer sequence includes between 19 and 40 nucleotides.


In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.195009 including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence. In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.195009 including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence.


In some embodiments of any of the systems described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 522-532, 535, or 539-549.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 501, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the nucleotide sequence of SEQ ID NO: 522 or 539.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence of Table 23, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a corresponding direct repeat nucleotide sequence listed in Table 20, or to a corresponding direct repeat nucleotide sequence listed in Table 24 (e.g., the first or second direct repeat nucleotide sequence of the corresponding row in Table 24).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501 (CLUST.195009 SRR6201554).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501-521 (CLUST.195009).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM), wherein the PAM includes a nucleic acid sequence, including a nucleic acid sequence set forth as 5′-TTN-3′.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO:501, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-TTN-3′.


In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between 20 and 39 nucleotides.


In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid. In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501-521.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-TTN-3′.


In some embodiments of any of the cells described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 522-532, 535, or 539-549.


In some embodiments of any of the cells described herein, the spacer sequence includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the cells described herein, the spacer sequence includes between 20 and 39 nucleotides.


In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501-521.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-TTN-3′.


In some embodiments of any of the methods described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 522-532, 535, or 539-549.


In some embodiments of any of the methods described herein, the spacer sequence includes between about 15 nucleotides to about 55 nucleotides. In some embodiments of any of the methods described herein, the spacer sequence includes between 20 and 39 nucleotides.


In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.057059 including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence. In one aspect, the disclosure provides engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas systems of CLUST.057059 including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence.


In some embodiments of any of the systems described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 683-734 or 751-802.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 601, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the nucleotide sequence of SEQ ID NO: 683 or 751.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence of Table 29, and the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a corresponding direct repeat nucleotide sequence listed in Table 26, or to a corresponding direct repeat nucleotide sequence listed in Table 30 (e.g., the first or second direct repeat nucleotide sequence of the corresponding row in Table 30).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601 (CLUST.057059 3300023179).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601-682 (CLUST.057059).


In some embodiments of any of the systems described herein, the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM), wherein the PAM includes a nucleic acid sequence, including a nucleic acid sequence set forth as 5′-GTN-3′.


In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to the amino acid sequence of SEQ ID NO: 601, and the PAM sequence comprises a nucleic acid sequence set forth as 5′-GTN-3′.


In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between about 15 nucleotides to about 50 nucleotides. In some embodiments of any of the systems described herein, the spacer sequence of the RNA guide includes between 20 and 44 nucleotides.


In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid. In another aspect, the disclosure provides a cell (e.g., a genetically modified cell), wherein the cell includes: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid, or a nucleic acid encoding the RNA guide.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601-682.


In some embodiments of any of the cells described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-GTN-3′.


In some embodiments of any of the cells described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 683-734 or 751-802.


In some embodiments of any of the cells described herein, the spacer sequence includes between about 15 nucleotides to about 50 nucleotides. In some embodiments of any of the cells described herein, the spacer sequence includes between 20 and 44 nucleotides.


In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In another aspect, the disclosure provides methods of modifying a target nucleic acid, the method including delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system including: a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein includes an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and an RNA guide including a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid, or a nucleic acid encoding the RNA guide; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601-682.


In some embodiments of any of the methods described herein, the CRISPR-associated protein is capable of recognizing a PAM sequence including a nucleic acid sequence set forth as 5′-GTN-3′.


In some embodiments of any of the methods described herein, the direct repeat sequence includes a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 683-734 or 751-802.


In some aspects, the present disclosure provides a method of introducing an insertion or deletion into a target nucleic acid in a mammalian cell, comprising a transfection of: (a) a nucleic acid sequence encoding a CRISPR-associated protein described herein, e.g., wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50, 101-145, 301-341, 501-521, or 601-682; and (b) an RNA guide (or a nucleic acid encoding the RNA guide) comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid, e.g., an RNA guide described herein; wherein the CRISPR-associated protein is capable of binding to the RNA guide; and wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In some embodiments, the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1, 101, 301, 501, or 601. In some embodiments, the CRISPR-associated protein comprises an amino acid sequence of one of any one of SEQ ID NOs: 1, 101, 301, 501, or 601. In some embodiments, the transfection is a transient transfection. In some embodiments, the cell is a human cell.


In some embodiments of any of the methods described herein, the spacer sequence includes between about 15 nucleotides to about 50 nucleotides. In some embodiments of any of the methods described herein, the spacer sequence includes between 20 and 44 nucleotides.


In some embodiments of any of the systems described herein, the CRISPR-associated protein includes at least one (e.g., one, two, or three) RuvC domain or at least one split RuvC domain.


In some embodiments of any of the systems described herein, the CRISPR-associated protein comprises a catalytic residue (e.g., aspartic acid or glutamic acid). In some embodiments of any of the systems described herein, the CRISPR-associated protein cleaves the target nucleic acid. In some embodiments of any of the systems described herein, the CRISPR-associated protein further comprises a peptide tag, a fluorescent protein, a base-editing domain, a DNA methylation domain, a histone residue modification domain, a localization factor, a transcription modification factor, a light-gated control factor, a chemically inducible factor, or a chromatin visualization factor.


In some embodiments of any of the systems described herein, the nucleic acid encoding the CRISPR-associated protein is codon-optimized for expression in a cell, e.g., a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell. In some embodiments of any of the systems described herein, the nucleic acid encoding the CRISPR-associated protein is operably linked to a promoter. In some embodiments of any of the systems described herein, the nucleic acid encoding the CRISPR-associated protein is in a vector. In some embodiments, the vector comprises a retroviral vector, a lentiviral vector, a phage vector, an adenoviral vector, an adeno-associated vector, or a herpes simplex vector.


In some embodiments of any of the systems described herein, the target nucleic acid is a DNA molecule. In some embodiments of any of the systems described herein, the target nucleic acid includes a PAM sequence.


In some embodiments of any of the systems described herein, the CRISPR-associated protein has non-specific nuclease activity.


In some embodiments of any of the systems described herein, recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In some embodiments of any of the systems described herein, the modification of the target nucleic acid is a double-stranded cleavage event. In some embodiments of any of the systems described herein, the modification of the target nucleic acid is a single-stranded cleavage event. In some embodiments of any of the systems described herein, the modification of the target nucleic acid results in an insertion event. In some embodiments of any of the systems described herein, the modification of the target nucleic acid results in a deletion event. In some embodiments of any of the systems described herein, the modification of the target nucleic acid results in cell toxicity or cell death.


In some embodiments of any of the systems described herein, the system further includes a donor template nucleic acid. In some embodiments of any of the systems described herein, the donor template nucleic acid is a DNA molecule. In some embodiments of any of the systems described herein, wherein the donor template nucleic acid is an RNA molecule.


In some embodiments of any of the systems described herein, the system does not include a tracrRNA. In some embodiments of any of the systems described herein, the CRISPR-associated protein is self-processing.


In some embodiments of any of the systems described herein, the system further includes a tracrRNA. In some embodiments of any of the systems described herein, the system further includes a modulator RNA.


In some embodiments of any of the systems described herein, the system is present in a delivery composition comprising a nanoparticle, a liposome, an exosome, a microvesicle, or a gene-gun.


In some embodiments of any of the systems described herein, the systems are within a cell. In some embodiments, the cell is a eukaryotic cell. In some embodiments, the cell is a mammalian cell. In some embodiments, the cell is a human cell. In some embodiments, the cell is a prokaryotic cell.


In some embodiments of any of the cells described herein, the CRISPR-associated protein includes at least one (e.g., one, two, or three) RuvC domain or at least one split RuvC domain.


In some embodiments of any of the cells described herein, the CRISPR-associated protein comprises a catalytic residue (e.g., aspartic acid or glutamic acid). In some embodiments of any of the cells described herein, the CRISPR-associated protein cleaves the target nucleic acid. In some embodiments of any of the cells described herein, the CRISPR-associated protein further comprises a peptide tag, a fluorescent protein, a base-editing domain, a DNA methylation domain, a histone residue modification domain, a localization factor, a transcription modification factor, a light-gated control factor, a chemically inducible factor, or a chromatin visualization factor.


In some embodiments of any of the cells described herein, the nucleic acid encoding the CRISPR-associated protein is codon-optimized for expression in a cell, e.g., a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell. In some embodiments of any of the cells described herein, the nucleic acid encoding the CRISPR-associated protein is operably linked to a promoter. In some embodiments of any of the cells described herein, the nucleic acid encoding the CRISPR-associated protein is in a vector. In some embodiments, the vector comprises a retroviral vector, a lentiviral vector, a phage vector, an adenoviral vector, an adeno-associated vector, or a herpes simplex vector.


In some embodiments of any of the cells described herein, the cell does not include a tracrRNA. In some embodiments of any of the cells described herein, the cell optionally includes a tracrRNA. In some embodiments of any of the cells described herein, the CRISPR-associated protein is self-processing.


In some embodiments of any of the cells described herein, the cell further includes a tracrRNA. In some embodiments of any of the cells described herein, the cell further includes a modulator RNA.


In some embodiments of any of the cells described herein, the cell is a eukaryotic cell. In some embodiments of any of the cells described herein, the cell is a mammalian cell. In some embodiments of any of the cells described herein, the cell is a human cell. In some embodiments of any of the cells described herein, the cell is a prokaryotic cell. In some embodiments, of any of the cells described herein, the cell is a genetically engineered cell.


In some embodiments of any of the cells described herein, the target nucleic acid is a DNA molecule. In some embodiments of any of the cells described herein, the target nucleic acid includes a PAM sequence.


In some embodiments of any of the cells described herein, the CRISPR-associated protein has non-specific nuclease activity.


In some embodiments of any of the cells described herein, recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid. In some embodiments of any of the cells described herein, the modification of the target nucleic acid is a double-stranded cleavage event. In some embodiments of any of the cells described herein, the modification of the target nucleic acid is a single-stranded cleavage event. In some embodiments of any of the cells described herein, the modification of the target nucleic acid results in an insertion event. In some embodiments of any of the cells described herein, the modification of the target nucleic acid results in a deletion event. In some embodiments of any of the cells described herein, the modification of the target nucleic acid results in cell toxicity or cell death.


In another aspect, the disclosure provides a method of binding a system described herein to a target nucleic acid in a cell comprising: (a) providing the system; and (b) delivering the system to the cell, wherein the cell comprises the target nucleic acid, wherein the CRISPR-associated protein binds to the RNA guide, and wherein the spacer sequence binds to the target nucleic acid. In some embodiments, the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.


In some embodiments of any of the methods described herein, the CRISPR-associated protein comprises a catalytic residue (e.g., aspartic acid or glutamic acid). In some embodiments of any of the methods described herein, the CRISPR-associated protein cleaves the target nucleic acid. In some embodiments of any of the methods described herein, the CRISPR-associated protein further comprises a peptide tag, a fluorescent protein, a base-editing domain, a DNA methylation domain, a histone residue modification domain, a localization factor, a transcription modification factor, a light-gated control factor, a chemically inducible factor, or a chromatin visualization factor.


In some embodiments of any of the methods described herein, the nucleic acid encoding the CRISPR-associated protein is codon-optimized for expression in a cell, e.g., a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell. In some embodiments, of any of the methods described herein, the cell is a genetically engineered cell. In some embodiments of any of the methods described herein, the nucleic acid encoding the CRISPR-associated protein is operably linked to a promoter. In some embodiments of any of the methods described herein, the nucleic acid encoding the CRISPR-associated protein is in a vector. In some embodiments, the vector comprises a retroviral vector, a lentiviral vector, a phage vector, an adenoviral vector, an adeno-associated vector, or a herpes simplex vector.


In some embodiments of any of the methods described herein, the system does not include a tracrRNA. In some embodiments of any of the methods described herein, the cell optionally includes a tracrRNA.


In some embodiments of any of the methods described herein, the RNA guide optionally includes a tracrRNA and/or a modulator RNA. In some embodiments of any of the methods described herein, the system further includes a tracrRNA. In some embodiments of any of the methods described herein, the system further includes a modulator RNA.


In some embodiments of any of the methods described herein, the target nucleic acid is a DNA molecule. In some embodiments of any of the methods described herein, the target nucleic acid includes a PAM sequence.


In some embodiments of any of the methods described herein, the CRISPR-associated protein has non-specific nuclease activity.


In some embodiments of any of the methods described herein, the modification of the target nucleic acid is a double-stranded cleavage event. In some embodiments of any of the methods described herein, the modification of the target nucleic acid is a single-stranded cleavage event. In some embodiments of any of the methods described herein, the modification of the target nucleic acid results in an insertion event. In some embodiments of any of the methods described herein, the modification of the target nucleic acid results in a deletion event. In some embodiments of any of the methods described herein, the modification of the target nucleic acid results in cell toxicity or cell death.


In another aspect, the disclosure provides a method of editing a target nucleic acid, the method comprising contacting the target nucleic acid with a system described herein. In another aspect, the disclosure provides a method of modifying expression of a target nucleic acid, the method comprising contacting the target nucleic acid with a system described herein. In another aspect, the disclosure provides a method of targeting the insertion of a payload nucleic acid at a site of a target nucleic acid, the method comprising contacting the target nucleic acid with a system described herein. In another aspect, the disclosure provides a method of targeting the excision of a payload nucleic acid from a site at a target nucleic acid, the method comprising contacting the target nucleic acid with a system described herein. In another aspect, the disclosure provides a method of non-specifically degrading single-stranded DNA upon recognition of a DNA target nucleic acid, the method comprising contacting the target nucleic acid with a system described herein.


In another aspect, the disclosure provides a method of detecting a target nucleic acid in a sample, the method comprising: (a) contacting the sample with a system described herein and a labeled reporter nucleic acid, wherein hybridization of the spacer sequence to the target nucleic acid causes cleavage of the labeled reporter nucleic acid; and (b) measuring a detectable signal produced by cleavage of the labeled reporter nucleic acid, thereby detecting the presence of the target nucleic acid in the sample.


In some embodiments of any of the systems or methods provided herein, the contacting comprises directly contacting or indirectly contacting. In some embodiments of any of the systems or methods provided herein, contacting indirectly comprises administering one or more nucleic acids encoding an RNA guide or CRISPR-associated protein described herein under conditions that allow for production of the RNA guide and/or CRISPR-related protein. In some embodiments of any of the systems or methods provided herein, contacting includes contacting in vivo or contacting in vitro. In some embodiments of any of the systems or methods provided herein, contacting a target nucleic acid with the system comprises contacting a cell comprising the nucleic acid with the system under conditions that allow the CRISPR-related protein and guide RNA to reach the target nucleic acid. In some embodiments of any of the systems or methods provided herein, contacting a cell in vivo with the system comprises administering the system to the subject that comprises the cell, under conditions that allow the CRISPR-related protein and guide RNA to reach the cell or be produced in the cell.


In another aspect, the disclosure provides a system provided herein for use in an in vitro or ex vivo method of: (a) targeting and editing a target nucleic acid; (b) non-specifically degrading a single-stranded nucleic acid upon recognition of the nucleic acid; (c) targeting and nicking a non-spacer complementary strand of a double-stranded target upon recognition of a spacer complementary strand of the double-stranded target; (d) targeting and cleaving a double-stranded target nucleic acid; (e) detecting a target nucleic acid in a sample; (f) specifically editing a double-stranded nucleic acid; (g) base editing a double-stranded nucleic acid; (h) inducing genotype-specific or transcriptional-state-specific cell death or dormancy in a cell; (i) creating an indel in a double-stranded nucleic acid target; (j) inserting a sequence into a double-stranded nucleic acid target; or (k) deleting or inverting a sequence in a double-stranded nucleic acid target.


In some aspects, the present disclosure provides a method of detecting a target nucleic acid in a sample, wherein the method comprises contacting the sample with a system described herein and a labeled reporter nucleic acid, wherein hybridization of the crRNA to the target nucleic acid causes cleavage of the labeled reporter nuclei acid, and measuring a detectable signal produced by cleavage of the labeled reporter nucleic acid, thereby detecting the presence of the target nucleic acid in the sample.


The effectors described herein provide additional features that include, but are not limited to, 1) novel nucleic acid editing properties and control mechanisms, 2) smaller size for greater versatility in delivery strategies, 3) genotype triggered cellular processes such as cell death, and 4) programmable RNA-guided DNA insertion, excision, and mobilization, and 5) differentiated profile of pre-existing immunity through a non-human commensal source. See, e.g., Examples 1-15 and FIGS. 3-44. Addition of the novel DNA-targeting systems described herein to the toolbox of techniques for genome and epigenome manipulation enables broad applications for specific, programmed perturbations.


Other features and advantages of the invention will be apparent from the following detailed description and from the claims.





BRIEF FIGURE DESCRIPTION

The figures are a series of schematics that represent the results of analysis of a protein cluster referred to as CLUST.133120.



FIG. 1A is a schematic representation of the components of the in vivo negative selection screening assay described in Examples 2, 5, 10, 12, and 14. CRISPR array libraries were designed including non-representative spacers uniformly sampled from both strands of the pACYC184 or E. coli essential genes flanked by two DRs and expressed by J23119.



FIG. 1B is a schematic representation of the in vivo negative selection screening workflow described in Example 2. CRISPR array libraries were cloned into the effector plasmid. The effector plasmid and the non-coding plasmid were transformed into E. coli followed by outgrowth for negative selection of CRISPR arrays conferring interference against transcripts from pACYC184 or E. coli essential genes. Targeted sequencing of the effector plasmid was used to identify depleted CRISPR arrays. Small RNAseq was further performed to identify mature crRNAs and potential tracrRNA requirements.



FIG. 2 is a schematic showing the RuvC and Zn finger domains of CLUST.133120 effectors, which is based upon the consensus sequence of the sequences shown in Table 3.



FIG. 3 is a graph for CLUST.133120 3300027740 (effector set forth in SEQ ID NO: 1) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations. The degree of depletion with the direct repeat in the “forward” orientation (5′-CCAA . . . CGAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTCG . . . TTGG-[spacer]-3′) are depicted.



FIG. 4A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.133120 3300027740 by location on the pACYC184 plasmid. FIG. 4B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.133120 3300027740 by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 5 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.133120 3300027740.



FIG. 6 is a graph for CLUST.133120 3300017971 (effector set forth in SEQ ID NO: 2) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations. The degree of depletion with the direct repeat in the “forward” orientation (5′-GTCG . . . TACC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GGTA . . . CGAC-[spacer]-3′) are depicted.



FIG. 7A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.133120 3300017971 by location on the pACYC184 plasmid. FIG. 7B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.133120 3300017971 by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 8 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.133120 3300017971.



FIG. 9 is a graph for CLUST.133120 3300027740 (effector set forth in SEQ ID NO: 1) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, without a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-CCAA . . . CGAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTCG . . . TTGG-[spacer]-3′) are depicted.



FIG. 10A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.133120 3300027740, without a non-coding sequence, by location on the pACYC184 plasmid. FIG. 10B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.133120 3300027740, without a non-coding sequence, by location on the E. coli strain E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 11 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.133120 3300027740 (without a non-coding sequence).



FIG. 12 is a graph for CLUST.133120 3300017971 (effector set forth in SEQ ID NO: 2) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, without a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-GTCG . . . TACC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GGTA . . . CGAC-[spacer]-3′) are depicted.



FIG. 13A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.133120 3300017971, without a non-coding sequence, by location on the pACYC184 plasmid. FIG. 13B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.133120 3300017971, without a non-coding sequence, by location on the E. coli strain E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 14 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.133120 3300017971 (without a non-coding sequence).



FIG. 15A is a schematic of the fluorescence depletion assay described in Example 3 to measure CLUST.133120 effector activity. FIG. 15B shows plots of GFP Depletion Ratios (Non-target/target) for the effector of SEQ ID NO: 1 for Target 1 (SEQ ID NO: 82), Target 2 (SEQ ID NO: 83), and Target 3 (SEQ ID NO: 84).



FIG. 16 is a schematic showing the RuvC domains of CLUST.099129 effectors, which is based upon the consensus sequence of the sequences shown in Table 10.



FIG. 17 is a graph for CLUST.099129 SRR6837557 (effector set forth in SEQ ID NO: 101) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, with a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-GTTT . . . GACC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-AGTC . . . AAAC-[spacer]-3′) are depicted.



FIG. 18A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.099129 SRR6837557, with a non-coding sequence, by location on the pACYC184 plasmid. FIG. 18B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.099129 SRR6837557, with a non-coding sequence, by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 19 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.099129 SRR6837557 (with a non-coding sequence).



FIG. 20 is a graph for CLUST.099129 SRR6837557 (effector set forth in SEQ ID NO: 101) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, without a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-GTT . . . GACC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (0.5′-AGTC . . . AAAC-[spacer]-3′) are depicted.



FIG. 21A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.099129 SRR6837557, without a non-coding sequence, by location on the pACYC184 plasmid. FIG. 21B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.099129 SRR6837557, without a non-coding sequence. by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion. wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 22 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.099129 SRR6837557 (without a non-coding sequence).



FIG. 23 is a graph for CLUST.099129 3300012971 (effector set forth in SEQ ID NO: 102) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, with a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation 5′-GTGC . . . TCAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTGA . . . GCAC-[spacer]-3′) are depicted.



FIG. 24A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.099129 3300012971, with a non-coding sequence, by location on the pACYC184 plasmid. FIG. 24B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.099129 3300012971, with a non-coding sequence, by location on the E. coli strain E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 25 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.099129 3300012971 (with a non-coding sequence).



FIG. 26 is a graph for CLUST.099129 3300005764 (effector set forth in SEQ ID NO: 103) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, with a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-GTGC . . . TACT-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-AGTA . . . GCAC-[spacer]-3′) are depicted.



FIG. 27A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.099129 3300005764, with a non-coding sequence, by location on the pACYC184 plasmid. FIG. 27B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.099129 3300005764, with a non-coding sequence, by location on the E. coli strain E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 28 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.099129 3300005764 (with a non-coding sequence).



FIG. 29A is a schematic of the fluorescence depletion assay (FDA) described in Example 6 to measure CLUST.099129 effector activity. FIG. 29B shows plots of GFP Depletion Ratios (Non-target/target) for the effector of SEQ ID NO: 101 for Target 1 (SEQ ID NO: 175), Target 2 (SEQ ID NO: 176), Target 3 (SEQ ID NO: 177), Target 4 (SEQ ID NO: 178), and Target 5 (SEQ ID NO: 179).



FIG. 30A, FIG. 30B, and FIG. 30C are schematics showing the RuvC and Zn finger domains of CLUST.342201 effectors, which are based upon the consensus sequence of the sequences shown in Table 17.



FIG. 31 is a graph for CLUST.342201 3300006417 (effector set forth in SEQ ID NO: 301) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, with a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-CCAT . . . GAAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTTC . . . ATGG-[spacer]-3′) are depicted.



FIG. 32A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.342201 3300006417, with a non-coding sequence, by location on the pACYC184 plasmid. FIG. 32B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.342201 3300006417, with a non-coding sequence, by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 33 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.342201 3300006417 (with a non-coding sequence).



FIG. 34 is a schematic showing the RuvC and Zn finger domains of CLUST.195009 effectors, which is based upon the consensus sequence of the sequences shown in TABLE 23.



FIG. 35 is a graph for CLUST.195009 SRR6201554 (effector set forth in SEQ ID NO: 501) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, with a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-CCAG . . . CGAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTCG . . . CTGG-[spacer]-3′) are depicted.



FIG. 36A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.195009 SRR6201554, with a non-coding sequence, by location on the pACYC184 plasmid. FIG. 36B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.195009 SRR6201554, with a non-coding sequence, by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 37 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.195009 SRR6201554 (with a non-coding sequence).



FIG. 38 is a graph for CLUST.195009 SRR6201554 (effector set forth in SEQ ID NO: 501) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, without a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-CCAG . . . CGAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTCG . . . CTGG-[spacer]-3′) are depicted.



FIG. 39A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.195009 SRR6201554, without a non-coding sequence, by location on the pACYC184 plasmid. FIG. 39B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.195009 SRR6201554, without a non-coding sequence, by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 40 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.195009 SRR6201554 (without a non-coding sequence).



FIG. 41 is a schematic representation showing the RuvC and Zn finger domains of CLUST.057059 effectors, which are based upon the consensus sequence of the sequences shown in Table 29.



FIG. 42 is a graph for CLUST.057059 3300023179 (effector set forth in SEQ ID NO: 601) showing the degree of depletion activity of the engineered compositions for spacers targeting pACYC184 and direct repeat transcriptional orientations, with a non-coding sequence. The degree of depletion with the direct repeat in the “forward” orientation (5′-CTTG . . . AAAC-[spacer]-3′) and with the direct repeat in the “reverse” orientation (5′-GTTT . . . CAAG-[spacer]-3′) are depicted.



FIG. 43A is a graphical representation showing the density of depleted and non-depleted targets for CLUST.057059 3300023179, with a non-coding sequence, by location on the pACYC184 plasmid. FIG. 43B is a graphic representation showing the density of depleted and non-depleted targets for CLUST.057059 3300023179, with a non-coding sequence, by location on the E. coli strain, E. Cloni. Targets on the top strand and bottom strand are shown separately and in relation to the orientation of the annotated genes. The magnitude of the bands indicates the degree of depletion, wherein the lighter bands are close to the hit threshold of 3. The gradients are heatmaps of RNA sequencing showing relative transcript abundance.



FIG. 44 is a WebLogo of the sequences flanking depleted targets in E. Cloni as a prediction of the PAM sequence for CLUST.057059 3300023179 (with a non-coding sequence).





DETAILED DESCRIPTION

CRISPR-Cas systems, which are naturally diverse, comprise a wide range of activity mechanisms and functional elements that can be harnessed for programmable biotechnologies. In nature, these systems enable efficient defense against foreign DNA and viruses while providing self versus non-self discrimination to avoid self-targeting. In an engineered setting, these systems provide a diverse toolbox of molecular technologies and define the boundaries of the targeting space. The methods described herein have been used to discover additional mechanisms and parameters within single subunit Class 2 effector systems, which expand the capabilities of RNA-programmable nucleic acid manipulation.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Applicant reserves the right to alternatively claim any disclosed invention using the transitional phrase “comprising,” “consisting essentially of,” or “consisting of,” according to standard practice in patent law.


As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a nucleic acid” means one or more nucleic acids.


It is noted that terms like “preferably,” “suitably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that can or cannot be utilized in a particular embodiment of the present invention.


For the purposes of describing and defining the present invention, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that can be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation can vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


The term “CRISPR-Cas system,” as used herein, refers to nucleic acids and/or proteins involved in the expression of, or directing the activity of, CRISPR effectors, including sequences encoding CRISPR effectors, RNA guides, and other sequences and transcripts from a CRISPR locus.


The terms “CRISPR-associated protein,” “CRISPR-Cas effector,” “CRISPR effector,” “effector,” “effector protein,” “CRISPR enzyme,” or the like, as used interchangeably herein, refer to a protein that carries out an enzymatic activity or that binds to a target site on a nucleic acid specified by an RNA guide. In some embodiments, a CRISPR effector has endonuclease activity, nickase activity, and/or exonuclease activity.


The terms “RNA guide,” “guide RNA,” “gRNA,” and “guide sequence,” as used herein, refer to any RNA molecule that facilitates the targeting of an effector described herein to a target nucleic acid, such as DNA and/or RNA. Exemplary “RNA guides” include, but are not limited to, crRNAs, as well as crRNAs hybridized to or fused to either tracrRNAs and/or modulator RNAs. In some embodiments, an RNA guide includes both a crRNA and a tracrRNA, either fused into a single RNA molecule or as separate RNA molecules. In some embodiments, an RNA guide includes a crRNA and a modulator RNA, either fused into a single RNA molecule or as separate RNA molecules. In some embodiments, an RNA guide includes a crRNA, a tracrRNA, and a modulator RNA, either fused into a single RNA molecule or as separate RNA molecules.


The terms “CRISPR effector complex,” “effector complex,” or “surveillance complex,” as used herein, refer to a complex containing a CRISPR effector and an RNA guide. A CRISPR effector complex may further comprise one or more accessory proteins. The one or more accessory proteins may be non-catalytic and/or non-target binding.


The term “CRISPR RNA” or “crRNA” as used herein refers to an RNA molecule comprising a guide sequence used by a CRISPR effector to specifically recognize a nucleic acid sequence. Typically, crRNAs contain a sequence that mediates target recognition and a sequence that forms a duplex with a tracrRNA. A crRNA may comprise a sequence that hybridizes to a tracrRNA. In turn, the crRNA: tracrRNA duplex may bind to a CRISPR effector. As used herein, the term “pre-crRNA” refers to an unprocessed RNA molecule comprising a DR-spacer-DR sequence. As used herein, the term “mature crRNA” refers to a processed form of a pre-crRNA; a mature crRNA may comprise a DR-spacer sequence, wherein the DR is a truncated form of the DR of a pre-crRNA and/or the spacer is a truncated form of the spacer of a pre-crRNA. A crRNA “spacer” sequence is complementary to and capable of partially or completely binding to a nucleic acid target sequence.


The terms “trans-activating crRNA” or “tracrRNA,” as used herein, refer to an RNA molecule comprising a sequence that forms a structure and/or sequence motif required for a CRISPR effector to bind to a specified target nucleic acid.


The term “CRISPR array,” as used herein, refers to a nucleic acid (e.g., DNA) segment that comprises CRISPR repeats and spacers, starting with the first nucleotide of the first CRISPR repeat and ending with the last nucleotide of the final (terminal) CRISPR repeat. Typically, each spacer in a CRISPR array is located between two repeats. The terms “CRISPR repeat,” “CRISPR direct repeat,” and “direct repeat,” as used herein, refer to multiple short direct repeating sequences, which show very little or no sequence variation within a CRISPR array.


The term “modulator RNA” as described herein refers to any RNA molecule that modulates (e.g., increases or decreases) an activity of a CRISPR effector or a nucleoprotein complex that includes a CRISPR effector. In some embodiments, a modulator RNA modulates a nuclease activity of a CRISPR effector or a nucleoprotein complex that includes a CRISPR effector.


As used herein, the term “target nucleic acid” refers to a nucleic acid that comprises a nucleotide sequence complementary to the entirety or a part of the spacer in an RNA guide. In some embodiments, the target nucleic acid comprises a gene. In some embodiments, the target nucleic acid comprises a non-coding region (e.g., a promoter). In some embodiments, the target nucleic acid is single-stranded. In some embodiments, the target nucleic acid is double-stranded. A “transcriptionally-active site,” as used herein, refers to a site in a nucleic acid sequence being actively transcribed.


The terms “activated CRISPR effector complex,” “activated CRISPR complex,” and “activated complex,” as used herein, refer to a CRISPR effector complex capable of modifying a target nucleic acid. In some embodiments, an activated CRISPR complex is capable of modifying a target nucleic acid following binding of the activated CRISPR complex to the target nucleic acid. In some embodiments, binding of an activated CRISPR complex to a target nucleic acid results in an additional cleavage event, such as collateral cleavage.


The term “cleavage event,” as used herein, refers to a break in a nucleic acid, such as DNA and/or RNA. In some embodiments, a cleavage event refers to a break in a target nucleic acid created by a nuclease of a CRISPR system described herein. In some embodiments, the cleavage event is a double-stranded DNA break. In some embodiments, the cleavage event is a single-stranded DNA break. In some embodiments, a cleavage event refers to a break in a collateral nucleic acid.


The term “collateral nucleic acid,” as used herein, refers to a nucleic acid substrate that is cleaved non-specifically by an activated CRISPR complex. The term “collateral DNase activity,” as used herein in reference to a CRISPR effector, refers to non-specific DNase activity of an activated CRISPR complex. The term “collateral RNase activity,” as used herein in reference to a CRISPR effector, refers to non-specific RNase activity of an activated CRISPR complex.


The term “donor template nucleic acid,” as used herein, refers to a nucleic acid molecule that can be used to make a templated change to a target sequence or target-proximal sequence after a CRISPR effector described herein has modified the target nucleic acid. In some embodiments, the donor template nucleic acid is a double-stranded nucleic acid. In some embodiments, the donor template nucleic acid is a single-stranded nucleic acid. In some embodiments, the donor template nucleic acid is linear. In some embodiments, the donor template nucleic acid is circular (e.g., a plasmid). In some embodiments, the donor template nucleic acid is an exogenous nucleic acid molecule. In some embodiments, the donor template nucleic acid is an endogenous nucleic acid molecule (e.g., a chromosome).


As used herein, the terms “polynucleotide,” “nucleotide,” “oligonucleotide,” and “nucleic acid” can be used interchangeably to refer to nucleic acid comprising DNA, RNA, derivatives thereof, or combinations thereof. Methods well known to those skilled in the art can be used to construct genetic expression constructs and recombinant cells according to this invention. These methods include in vitro recombinant DNA techniques, synthetic techniques, in vivo recombination techniques, and polymerase chain reaction (PCR) techniques. See, for example, techniques as described in Maniatis et al., 1989, MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, New York; Ausubel et al., 1989, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, New York, and PCR Protocols: A Guide to Methods and Applications (Innis et al., 1990, Academic Press, San Diego, Calif.)


The term “genetic modification” or “genetic engineering” broadly refers to manipulation of the genome or nucleic acids of a cell. Likewise, the terms “genetically engineered” and “engineered” refer to a cell comprising a manipulated genome or nucleic acids. Methods of genetic modification of include, for example, heterologous gene expression, gene or promoter insertion or deletion, nucleic acid mutation, altered gene expression or inactivation, enzyme engineering, directed evolution, knowledge-based design, random mutagenesis methods, gene shuffling, and codon optimization.


The term “recombinant” indicates that a nucleic acid, protein, or cell is the product of genetic modification, engineering, or recombination. Generally, the term “recombinant” refers to a nucleic acid, protein, or cell that contains or is encoded by genetic material derived from multiple sources. As used herein, the term “recombinant” may also be used to describe a cell that comprises a mutated nucleic acid or protein, including a mutated form of an endogenous nucleic acid or protein. The terms “recombinant cell” and “recombinant host” can be used interchangeably. In some embodiments, a recombinant cell comprises a CRISPR effector disclosed herein. In some embodiments, the CRISPR effector disclosed herein is self-processing. The CRISPR effector can be codon-optimized for expression in the recombinant cell. In some embodiments, a recombinant cell disclosed herein further comprises an RNA guide. In some embodiments, an RNA guide of a recombinant cell disclosed herein comprises a tracrRNA. In some embodiments, an RNA guide of a recombinant cell disclosed herein does not comprise a tracrRNA. In some embodiments, the recombinant cell is a prokaryotic cell, such as an E. coli cell. In some embodiments, the recombinant cell is a eukaryotic cell, such as a mammalian cell, including a human cell.


As used herein, the term “protospacer adjacent motif” or “PAM” refers to a DNA sequence adjacent to a target sequence to which a complex comprising an effector and an RNA guide binds. In some embodiments, a PAM is required for enzyme activity. As used herein, the term “adjacent” includes instances in which an RNA guide of the complex specifically binds, interacts, or associates with a target sequence that is immediately adjacent to a PAM. In such instances, there are no nucleotides between the target sequence and the PAM. The term “adjacent” also includes instances in which there are a small number (e.g., 1, 2, 3, 4, or 5) of nucleotides between the target sequence, to which the targeting moiety binds, and the PAM.


Identification of CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059

This application relates to the identification, engineering, and use of novel protein families referred to herein as “CLUST.133120”, “CLUST.099129”, “CLUST.342201”, “CLUST.195009”, and “CLUST.057059.” As shown in FIG. 2, the proteins of CLUST.133120 comprise three RuvC domains (denoted RuvC I, RuvC II, and RuvC III) and a Zn finger domain. As shown in TABLE 2, effectors of CLUST.133120 range in size from about 400 amino acids to about 800 amino acids.


As shown in FIG. 16, the proteins of CLUST.099129 comprise three RuvC domains (denoted RuvC I, RuvC II, and RuvC III). As shown in TABLE 9, effectors of CLUST.099129 range in size from about 500 amino acids to about 700 amino acids.


As shown in FIG. 30A, FIG. 30B, and FIG. 30C, the proteins of CLUST.342201 comprise a RuvC domain (denoted RuvC I, RuvC II, and RuvC III) and a Zn finger domain. As shown in TABLE 16. effectors of CLUST.342201 range in size from about 300 to about 650 amino acids. In some embodiments. CLUST.342201 effectors of about 600 amino acids (e.g., effectors having amino acid sequences set forth in SEQ ID NOs: 334-336, 338, or 339) have an architecture as depicted in FIG. 30A. In some embodiments, CLUST.342201 effectors of about 400 amino acids or less than about 400 amino acids have an architecture as depicted in FIG. 30B or FIG. 30C. For example, effectors having sequences set forth in SEQ ID NOs: 302, 303, 308, 309, 310, 311, 316, 324, 325, 330, 331, and 337 may have an architecture as depicted in FIG. 30B, and effectors having sequences set forth in SEQ ID NOs: 301, 304, 306, 307, 312-315, 317-319, 326-329, 332, 333, 340, or 341 may have an architecture as depicted in FIG. 30C. Thus, CLUST.342201 effectors of about 400 amino acids or less than about 400 amino acids have a RuvC III domain at the C-terminus of the effector.


As shown in FIG. 34, the proteins of CLUST.195009 comprise a RuvC domain (denoted RuvC I, RuvC II, and RuvC III) and a Zn finger domain. As shown in TABLE 22, effectors of CLUST.195009 range in size from about 450 amino acids to about 600 amino acids.


As shown in FIG. 41, the proteins of CLUST.057059 comprise a RuvC domain (denoted RuvC I, RuvC II, and RuvC III) and a Zn finger domain. As shown in TABLE 28, effectors of CLUST.057059 range in size from about 350 to about 700 amino acids.


Therefore, the effectors of CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059 are significantly smaller than effectors known in the art, as shown below. See, e.g., TABLE 1.









TABLE 1







Sizes of known CRISPR-Cas system effectors.










Effector
Size (aa)







StCas9
1128



SpCas9
1368



SaCas9
1053



FnCpf1
1300



AsCpf1
1307



LbCpf1
1246



C2c1
1127 (average)



CasX
 982 (average)



CasY
1189 (average)



C2c2
1232 (average)










The effectors of CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059 were identified using computational methods and algorithms to search for and identify proteins exhibiting a strong co-occurrence pattern with certain other features. In certain embodiments, these computational methods were directed to identifying proteins that co-occurred in close proximity to CRISPR arrays. The methods disclosed herein are also useful in identifying proteins that naturally occur within close proximity to other features, both non-coding and protein-coding (e.g., fragments of phage sequences in non-coding areas of bacterial loci or CRISPR Cas1 proteins). It is understood that the methods and calculations described herein may be performed on one or more computing devices.


Sets of genomic sequences were obtained from genomic or metagenomic databases. The databases comprised short reads, or contig level data, or assembled scaffolds, or complete genomic sequences of organisms. Likewise, the databases may comprise genomic sequence data from prokaryotic organisms, or eukaryotic organisms, or may include data from metagenomic environmental samples. Examples of database repositories include the National Center for Biotechnology Information (NCBI) RefSeq, NCBI GenBank, NCBI Whole Genome Shotgun (WGS), and the Joint Genome Institute (JGI) Integrated Microbial Genomes (IMG).


In some embodiments, a minimum size requirement is imposed to select genome sequence data of a specified minimum length. In certain exemplary embodiments, the minimum contig length may be 100 nucleotides, 500 nt, 1 kb, 1.5 kb, 2 kb, 3 kb, 4 kb, 5 kb, 10 kb, 20 kb, 40 kb, or 50 kb.


In some embodiments, known or predicted proteins are extracted from the complete or a selected set of genome sequence data. In some embodiments, known or predicted proteins are taken from extracting coding sequence (CDS) annotations provided by the source database. In some embodiments, predicted proteins are determined by applying a computational method to identify proteins from nucleotide sequences. In some embodiments, the GeneMark Suite is used to predict proteins from genome sequences. In some embodiments, Prodigal is used to predict proteins from genome sequences. In some embodiments, multiple protein prediction algorithms may be used over the same set of sequence data with the resulting set of proteins de-duplicated.


In some embodiments, CRISPR arrays are identified from the genome sequence data. In some embodiments, PILER-CR is used to identify CRISPR arrays. In some embodiments, CRISPR Recognition Tool (CRT) is used to identify CRISPR arrays. In some embodiments, CRISPR arrays are identified by a heuristic that identifies nucleotide motifs repeated a minimum number of times (e.g., 2, 3, or 4 times), where the spacing between consecutive occurrences of a repeated motif does not exceed a specified length (e.g., 50, 100, or 150 nucleotides). In some embodiments, multiple CRISPR array identification tools may be used over the same set of sequence data with the resulting set of CRISPR arrays de-duplicated.


In some embodiments, proteins in close proximity to CRISPR arrays (referred to herein as “CRISPR-proximal protein clusters”) are identified. In some embodiments, proximity is defined as a nucleotide distance, and may be within 20 kb, 15 kb, or 5 kb. In some embodiments, proximity is defined as the number of open reading frames (ORFs) between a protein and a CRISPR array, and certain exemplary distances may be 10, 5, 4, 3, 2, 1, or 0 ORFs. The proteins identified as being within close proximity to a CRISPR array are then grouped into clusters of homologous proteins. In some embodiments, blastclust is used to form CRISPR-proximal protein clusters. In certain other embodiments, mmseqs2 is used to form CRISPR-proximal protein clusters.


To establish a pattern of strong co-occurrence between the members of a CRISPR-proximal protein cluster, a BLAST search of each member of the protein cluster may be performed over the complete set of known and predicted proteins previously compiled. In some embodiments, UBLAST or mmseqs2 may be used to search for similar proteins. In some embodiments, a search may be performed only for a representative subset of proteins in the family.


In some embodiments, the CRISPR-proximal protein clusters are ranked or filtered by a metric to determine co-occurrence. One exemplary metric is the ratio of the number of elements in a protein cluster against the number of BLAST matches up to a certain E value threshold. In some embodiments, a constant E value threshold may be used. In other embodiments, the E value threshold may be determined by the most distant members of the protein cluster. In some embodiments, the global set of proteins is clustered and the co-occurrence metric is the ratio of the number of elements of the CRISPR-proximal protein cluster against the number of elements of the containing global cluster(s).


In some embodiments, a manual review process is used to evaluate the potential functionality and the minimal set of components of an engineered system based on the naturally occurring locus structure of the proteins in the cluster. In some embodiments, a graphical representation of the protein cluster may assist in the manual review and may contain information including pairwise sequence similarity, phylogenetic tree, source organisms/environments, predicted functional domains, and a graphical depiction of locus structures. In some embodiments, the graphical depiction of locus structures may filter for nearby protein families that have a high representation. In some embodiments, representation may be calculated by the ratio of the number of related nearby proteins against the size(s) of the containing global cluster(s). In certain exemplary embodiments, the graphical representation of the protein cluster may contain a depiction of the CRISPR array structures of the naturally occurring loci. In some embodiments, the graphical representation of the protein cluster may contain a depiction of the number of conserved direct repeats versus the length of the putative CRISPR array or the number of unique spacer sequences versus the length of the putative CRISPR array. In some embodiments, the graphical representation of the protein cluster may contain a depiction of various metrics of co-occurrence of the putative effector with CRISPR arrays predict new CRISPR-Cas systems and identify their components.


Pooled-Screening of CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059

To efficiently validate the activity, mechanisms, and functional parameters of the engineered CLUST.133120 CRISPR-Cas systems identified herein, a pooled-screening approach in E. coli was used, as described in Example 2.


To efficiently validate the activity, mechanisms, and functional parameters of the engineered CLUST.099129 CRISPR-Cas systems identified herein, a pooled-screening approach in E. coli was used, as described in Example 5.


To efficiently validate the activity, mechanisms, and functional parameters of the engineered CLUST.342201 CRISPR-Cas systems identified herein, a pooled-screening approach in E. coli was used, as described in Example 10.


To efficiently validate the activity, mechanisms, and functional parameters of the engineered CLUST.195009 CRISPR-Cas systems identified herein, a pooled-screening approach in E. coli was used, as described in Example 12.


To efficiently validate the activity, mechanisms, and functional parameters of the engineered CLUST.057059 CRISPR-Cas systems identified herein, a pooled-screening approach in E. coli was used, as described in Example 14.


First, from the computational identification of the conserved protein and noncoding elements of the CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059 CRISPR-Cas systems, DNA synthesis and molecular cloning were used to assemble the separate components into a single artificial expression vector, which in one embodiment is based on a pET-28a+ backbone. In a second embodiment, the effectors and noncoding elements are transcribed on an mRNA transcript, and different ribosomal binding sites are used to translate individual effectors.


Second, the natural crRNA and targeting spacers were replaced with a library of unprocessed crRNAs containing non-natural spacers targeting a second plasmid, pACYC184. This crRNA library was cloned into the vector backbone comprising the effectors and noncoding elements (e.g., pET-28a+), and the library was subsequently transformed into E. coli along with the pACYC184 plasmid target. Consequently, each resulting E. coli cell contains no more than one targeting array. In an alternate embodiment, the library of unprocessed crRNAs containing non-natural spacers additionally target E. coli essential genes, drawn from resources such as those described in Baba et al. (2006) Mol. Syst. Biol. 2: 2006.0008; and Gerdes et al. (2003) J. Bacteriol. 185(19): 5673-84, the entire contents of each of which are incorporated herein by reference. In this embodiment, positive, targeted activity of the novel CRISPR-Cas systems that disrupts essential gene function results in cell death or growth arrest. In some embodiments, the essential gene targeting spacers can be combined with the pACYC184 targets.


Third, the E. coli were grown under antibiotic selection. In one embodiment, triple antibiotic selection is used: kanamycin for ensuring successful transformation of the pET-28a+ vector containing the engineered CRISPR effector system and chloramphenicol and tetracycline for ensuring successful co-transformation of the pACYC184 target vector. Since pACYC184 normally confers resistance to chloramphenicol and tetracycline, under antibiotic selection, positive activity of the novel CRISPR-Cas system targeting the plasmid will eliminate cells that actively express the effectors, noncoding elements, and specific active elements of the crRNA library. Typically, populations of surviving cells are analyzed 12-14 h post-transformation. In some embodiments, analysis of surviving cells is conducted 6-8 h post-transformation, 8-12 h post-transformation, up to 24 h post-transformation, or more than 24 h post-transformation. Examining the population of surviving cells at a later time point compared to an earlier time point results in a depleted signal compared to the inactive crRNAs.


In some embodiments, double antibiotic selection is used. Withdrawal of either chloramphenicol or tetracycline to remove selective pressure can provide novel information about the targeting substrate, sequence specificity, and potency. For example, cleavage of dsDNA in a selected or unselected gene can result in negative selection in E. coli, wherein depletion of both selected and unselected genes is observed. If the CRISPR-Cas system interferes with transcription or translation (e.g., by binding or by transcript cleavage), then selection will only be observed for targets in the selected resistance gene, rather than in the unselected resistance gene.


In some embodiments, only kanamycin is used to ensure successful transformation of the pET-28a+ vector comprising the engineered CRISPR-Cas system. This embodiment is suitable for libraries containing spacers targeting E. coli essential genes, as no additional selection beyond kanamycin is needed to observe growth alterations. In this embodiment, chloramphenicol and tetracycline dependence is removed, and their targets (if any) in the library provide an additional source of negative or positive information about the targeting substrate, sequence specificity, and potency.


Since the pACYC184 plasmid contains a diverse set of features and sequences that may affect the activity of a CRISPR-Cas system, mapping the active crRNAs from the pooled screen onto pACYC184 provides patterns of activity that can be suggestive of different activity mechanisms and functional parameters. In this way, the features required for reconstituting the novel CRISPR-Cas system in a heterologous prokaryotic species can be more comprehensively tested and studied.


The key advantages of the in vivo pooled-screen described herein include:


(1) Versatility—Plasmid design allows multiple effectors and/or noncoding elements to be expressed; library cloning strategy enables both transcriptional directions of the computationally predicted crRNA to be expressed;


(2) Comprehensive tests of activity mechanisms & functional parameters—Evaluates diverse interference mechanisms, including nucleic acid cleavage; examines co-occurrence of features such as transcription, plasmid DNA replication; and flanking sequences for crRNA library can be used to reliably determine PAMs with complexity equivalence of 4N's;


(3) Sensitivity—pACYC184 is a low copy plasmid, enabling high sensitivity for CRISPR-Cas activity since even modest interference rates can eliminate the antibiotic resistance encoded by the plasmid; and


(4) Efficiency—Optimized molecular biology steps to enable greater speed and throughput RNA-sequencing and protein expression samples can be directly harvested from the surviving cells in the screen.


The novel CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059 CRISPR-Cas families described herein were evaluated using this in vivo pooled-screen to evaluate their operational elements, mechanisms, and parameters, as well as their ability to be active and reprogrammed in an engineered system outside of its endogenous cellular environment.


CRISPR Effector Activity and Modifications

In some embodiments, a CRISPR effector of CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, or CLUST.057059 and an RNA guide form a “binary” complex that may include other components. The binary complex is activated upon binding to a nucleic acid substrate that is complementary to a spacer sequence in the RNA guide (i.e., a sequence-specific substrate or target nucleic acid). In some embodiments, the sequence-specific substrate is a double-stranded DNA. In some embodiments, the sequence-specific substrate is a single-stranded DNA. In some embodiments, the sequence-specific substrate is a single-stranded RNA. In some embodiments, the sequence-specific substrate is a double-stranded RNA. In some embodiments, the sequence-specificity requires a complete match of the spacer sequence in the RNA guide (e.g., crRNA) to the target substrate. In other embodiments, the sequence specificity requires a partial (contiguous or non-contiguous) match of the spacer sequence in the RNA guide (e.g., crRNA) to the target substrate.


In some embodiments, the binary complex becomes activated upon binding to the target substrate. In some embodiments, the activated complex exhibits “multiple turnover” activity, whereby upon acting on (e.g., cleaving) the target substrate the activated complex remains in an activated state. In some embodiments, the activated binary complex exhibits “single turnover” activity, whereby upon acting on the target substrate the binary complex reverts to an inactive state. In some embodiments, the activated binary complex exhibits non-specific (i.e., “collateral”) cleavage activity whereby the complex cleaves non-target nucleic acids. In some embodiments, the non-target nucleic acid is a DNA molecule (e.g., a single-stranded or a double-stranded DNA). In some embodiments, the non-target nucleic acid is an RNA molecule (e.g., a single-stranded or a double-stranded RNA).


In some embodiments, a CRISPR effector described herein can be fused to one or more peptide tags, including a His-tag, GST-tag, FLAG-tag, or myc-tag. In some embodiments, a CRISPR effector described herein can be fused to a detectable moiety such as a fluorescent protein (e.g., green fluorescent protein or yellow fluorescent protein). In some embodiments, a CRISPR effector and/or accessory protein of this disclosure is fused to a peptide or non-peptide moiety that allows the protein to enter or localize to a tissue, a cell, or a region of a cell. For instance, a CRISPR effector of this disclosure may comprise a nuclear localization sequence (NLS) such as an SV40 (simian virus 40) NLS, c-Myc NLS, or other suitable monopartite NLS. The NLS may be fused to the N-terminus and/or C-terminus of the CRISPR effector, and may be fused singly (i.e., a single NLS) or concatenated (e.g., a chain of 2, 3, 4, etc. NLS).


In some embodiments, at least one Nuclear Export Signal (NES) is attached to a nucleic acid sequences encoding the CRISPR effector. In some embodiments, a C-terminal and/or N-terminal NLS or NES is attached for optimal expression and nuclear targeting in eukaryotic cells, e.g., human cells.


In those embodiments where a tag is fused to a CRISPR effector, such tag may facilitate affinity-based or charge-based purification of the CRISPR effector, e.g., by liquid chromatography or bead separation utilizing an immobilized affinity or ion-exchange reagent. As a non-limiting example, a recombinant CRISPR effector of this disclosure comprises a polyhistidine (His) tag, and for purification is loaded onto a chromatography column comprising an immobilized metal ion (e.g. a Zn2+, Ni2+, Cu2+ ion chelated by a chelating ligand immobilized on the resin, which resin may be an individually prepared resin or a commercially available resin or ready to use column such as the HisTrap FF column commercialized by GE Healthcare Life Sciences, Marlborough, Mass. Following the loading step, the column is optionally rinsed, e.g., using one or more suitable buffer solutions, and the His-tagged protein is then eluted using a suitable elution buffer. Alternatively, or additionally, if the recombinant CRISPR effector of this disclosure utilizes a FLAG-tag, such protein may be purified using immunoprecipitation methods known in the industry. Other suitable purification methods for tagged CRISPR effectors or accessory proteins of this disclosure will be evident to those of skill in the art.


The proteins described herein (e.g., CRISPR effectors or accessory proteins) can be delivered or used as either nucleic acid molecules or polypeptides. When nucleic acid molecules are used, the nucleic acid molecule encoding the CRISPR effector can be codon-optimized. The nucleic acid can be codon optimized for use in any organism of interest, in particular human cells or bacteria. For example, the nucleic acid can be codon-optimized for any non-human eukaryote including mice, rats, rabbits, dogs, livestock, or non-human primates. Codon usage tables are readily available, for example, at the “Codon Usage Database” available at www.kazusa.orjp/codon/and these tables can be adapted in a number of ways. See Nakamura et al. Nucl. Acids Res. 28:292 (2000), which is incorporated herein by reference in its entirety. Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, Pa.).


In some instances, nucleic acids of this disclosure which encode CRISPR effectors for expression in eukaryotic (e.g., human, or other mammalian cells) cells include one or more introns, i.e., one or more non-coding sequences comprising, at a first end (e.g., a 5′ end), a splice-donor sequence and, at second end (e.g., the 3′ end) a splice acceptor sequence. Any suitable splice donor/splice acceptor can be used in the various embodiments of this disclosure, including without limitation simian virus 40 (SV40) intron, beta-globin intron, and synthetic introns. Alternatively, or additionally, nucleic acids of this disclosure encoding CRISPR effectors or accessory proteins may include, at a 3′ end of a DNA coding sequence, a transcription stop signal such as a polyadenylation (polyA) signal. In some instances, the polyA signal is located in close proximity to, or adjacent to, an intron such as the SV40 intron.


Deactivated/Inactivated CRISPR Effectors


The CRISPR effectors described herein can be modified to have diminished nuclease activity, e.g., nuclease inactivation of at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, or 100% as compared with the wild type CRISPR effectors. The nuclease activity can be diminished by several methods known in the art, e.g., introducing mutations into the nuclease domains of the proteins. In some embodiments, catalytic residues for the nuclease activities are identified, and these amino acid residues can be substituted by different amino acid residues (e.g., glycine or alanine) to diminish the nuclease activity.


The inactivated CRISPR effectors can comprise or be associated with one or more functional domains (e.g., via fusion protein, linker peptides, “GS” linkers, etc.). These functional domains can have various activities, e.g., methylase activity, demethylase activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity, DNA cleavage activity, nucleic acid binding activity, and switch activity (e.g., light inducible). In some embodiments, the functional domains are Krappel associated box (KRAB), VP64, VP16, Fok1, P65, HSF1, MyoD1, and biotin-APEX.


The positioning of the one or more functional domains on the inactivated CRISPR effectors is one that allows for correct spatial orientation for the functional domain to affect the target with the attributed functional effect. For example, if the functional domain is a transcription activator (e.g., VP16, VP64, or p65), the transcription activator is placed in a spatial orientation that allows it to affect the transcription of the target. Likewise, a transcription repressor is positioned to affect the transcription of the target, and a nuclease (e.g., Fok1) is positioned to cleave or partially cleave the target. In some embodiments, the functional domain is positioned at the N-terminus of the CRISPR effector. In some embodiments, the functional domain is positioned at the C-terminus of the CRISPR effector. In some embodiments, the inactivated CRISPR effector is modified to comprise a first functional domain at the N-terminus and a second functional domain at the C-terminus.


Split Enzymes


The present disclosure also provides a split version of the CRISPR effectors described herein. The split version of the CRISPR effectors may be advantageous for delivery. In some embodiments, the CRISPR effectors are split to two parts of the enzymes, which together substantially comprises a functioning CRISPR effector.


The split can be done in a way that the catalytic domain(s) are unaffected. The CRISPR effectors may function as a nuclease or may be inactivated enzymes, which are essentially RNA-binding proteins with very little or no catalytic activity (e.g., due to mutation(s) in its catalytic domains).


In some embodiments, the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the RNA guide recruits them into a ternary complex that recapitulates the activity of full-length CRISPR effectors and catalyzes site-specific DNA cleavage. The use of a modified RNA guide abrogates split-enzyme activity by preventing dimerization, allowing for the development of an inducible dimerization system. The split enzyme is described, e.g., in Wright et al. “Rational design of a split-Cas9 enzyme complex,” Proc. Natl. Acad. Sci., 112.10 (2015): 2984-2989, which is incorporated herein by reference in its entirety.


In some embodiments, the split enzyme can be fused to a dimerization partner, e.g., by employing rapamycin sensitive dimerization domains. This allows the generation of a chemically inducible CRISPR effector for temporal control of CRISPR effector activity. The CRISPR effector can thus be rendered chemically inducible by being split into two fragments, and rapamycin-sensitive dimerization domains can be used for controlled reassembly of the CRISPR effector.


The split point is typically designed in silico and cloned into the constructs. During this process, mutations can be introduced to the split enzyme and non-functional domains can be removed. In some embodiments, the two parts or fragments of the split CRISPR effector (i.e., the N-terminal and C-terminal fragments) can form a full CRISPR effector, comprising, e.g., at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% of the sequence of the wild-type CRISPR effector.


Self-Activating or Inactivating Enzymes


The CRISPR effectors described herein can be designed to be self-activating or self-inactivating. In some embodiments, the CRISPR effectors are self-inactivating. For example, the target sequence can be introduced into the CRISPR effector coding constructs. Thus, the CRISPR effectors can cleave the target sequence, as well as the construct encoding the enzyme thereby self-inactivating their expression. Methods of constructing a self-inactivating CRISPR system is described, e.g., in Epstein et al., “Engineering a Self-Inactivating CRISPR System for AAV Vectors,” Mol. Ther., 24 (2016): S50, which is incorporated herein by reference in its entirety.


In some other embodiments, an additional RNA guide, expressed under the control of a weak promoter (e.g., 7SK promoter), can target the nucleic acid sequence encoding the CRISPR effector to prevent and/or block its expression (e.g., by preventing the transcription and/or translation of the nucleic acid). The transfection of cells with vectors expressing the CRISPR effector, RNA guides, and RNA guides that target the nucleic acid encoding the CRISPR effector can lead to efficient disruption of the nucleic acid encoding the CRISPR effector and decrease the levels of CRISPR effector, thereby limiting the genome editing activity.


In some embodiments, the genome editing activity of a CRISPR effector can be modulated through endogenous RNA signatures (e.g., miRNA) in mammalian cells. The CRISPR effector switch can be made by using a miRNA-complementary sequence in the 5′-UTR of mRNA encoding the CRISPR effector. The switches selectively and efficiently respond to miRNA in the target cells. Thus, the switches can differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Therefore, the switch systems can provide a framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information (Hirosawa et al. “Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch,” Nucl. Acids Res., 2017 Jul. 27; 45(13): e118).


Inducible CRISPR Effectors


The CRISPR effectors can be inducible, e.g., light inducible or chemically inducible. This mechanism allows for activation of the functional domain in a CRISPR effector. Light inducibility can be achieved by various methods known in the art, e.g., by designing a fusion complex wherein CRY2 PHR/CIBN pairing is used in split CRISPR effectors (see, e.g., Konermann et al., “Optical control of mammalian endogenous transcription and epigenetic states,” Nature, 500.7463 (2013): 472). Chemical inducibility can be achieved, e.g., by designing a fusion complex wherein FKBP/FRB (FK506 binding protein/FKBP rapamycin binding domain) pairing is used in split CRISPR effectors. Rapamycin is required for forming the fusion complex, thereby activating the CRISPR effectors (see, e.g., Zetsche et al., “A split-Cas9 architecture for inducible genome editing and transcription modulation,” Nature Biotech., 33.2 (2015): 139-142).


Furthermore, expression of a CRISPR effector can be modulated by inducible promoters, e.g., tetracycline or doxycycline controlled transcriptional activation (Tet-On and Tet-Off expression system), hormone inducible gene expression system (e.g., an ecdysone inducible gene expression system), and an arabinose-inducible gene expression system. When delivered as RNA, expression of the RNA targeting effector protein can be modulated via a riboswitch, which can sense a small molecule like tetracycline (see, e.g., Goldfless et al., “Direct and specific chemical control of eukaryotic translation with a synthetic RNA-protein interaction,” Nucl. Acids Res., 40.9 (2012): e64-e64).


Various embodiments of inducible CRISPR effectors and inducible CRISPR systems are described, e.g., in U.S. Pat. No. 8,871,445, US 20160208243, and WO 2016205764, each of which is incorporated herein by reference in its entirety.


Functional Mutations


Various mutations or modifications can be introduced into a CRISPR effector as described herein to improve specificity and/or robustness. In some embodiments, the amino acid residues that recognize the Protospacer Adjacent Motif (PAM) are identified. The CRISPR effectors described herein can be modified further to recognize different PAMs, e.g., by substituting the amino acid residues that recognize PAM with other amino acid residues.


In some embodiments, the CRISPR effectors can recognize, e.g., 5′-TTN-3′, or 5′-TN-3′ PAM, wherein “N” is any nucleotide.


In some embodiments, the CRISPR effectors can recognize, e.g., 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′, wherein “N” is any nucleotide and “R” is A or G.


In some embodiments, the CRISPR effectors can recognize, e.g., 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923), wherein “D” is A, G, or T, and “R” is A or G.


In some embodiments, the CRISPR effectors can recognize, e.g., 5′-TTN-3′, wherein “N” is any nucleotide.


In some embodiments, the CRISPR effectors can recognize, e.g., 5′-GTN-3′, wherein “N” is any nucleotide.


In some embodiments, the CRISPR effectors described herein can be mutated at one or more amino acid residue to modify one or more functional activities. For example, in some embodiments, the CRISPR effector is mutated at one or more amino acid residues to modify its helicase activity. In some embodiments, the CRISPR effector is mutated at one or more amino acid residues to modify its nuclease activity (e.g., endonuclease activity or exonuclease activity). In some embodiments, the CRISPR effector is mutated at one or more amino acid residues to modify its ability to functionally associate with an RNA guide. In some embodiments, the CRISPR effector is mutated at one or more amino acid residues to modify its ability to functionally associate with a target nucleic acid.


In some embodiments, the CRISPR effectors described herein are capable of cleaving a target nucleic acid molecule. In some embodiments, the CRISPR effector cleaves both strands of the target nucleic acid molecule. However, in some embodiments, the CRISPR effector is mutated at one or more amino acid residues to modify its cleaving activity. For example, in some embodiments, the CRISPR effector may comprise one or more mutations that increase the ability of the CRISPR effector to cleave a target nucleic acid. In another example, in some embodiments, the CRISPR effector may comprise one or more mutations that render the enzyme incapable of cleaving a target nucleic acid. In other embodiments, the CRISPR effector may comprise one or more mutations such that the enzyme is capable of cleaving a strand of the target nucleic acid (i.e., nickase activity). In some embodiments, the CRISPR effector is capable of cleaving the strand of the target nucleic acid that is complementary to the strand that the RNA guide hybridizes to. In some embodiments, the CRISPR effector is capable of cleaving the strand of the target nucleic acid that the RNA guide hybridizes to.


In some embodiments, one or more residues of a CRISPR effector disclosed herein are mutated to an arginine moiety. In some embodiments, one or more residues of a CRISPR effector disclosed herein are mutated to a glycine moiety. In some embodiments, one or more residues of a CRISPR effector disclosed herein are mutated based upon consensus residues of a phylogenetic alignment of CRISPR effectors disclosed herein.


In some embodiments, a CRISPR effector described herein may be engineered to comprise a deletion in one or more amino acid residues to reduce the size of the enzyme while retaining one or more desired functional activities (e.g., nuclease activity and the ability to interact functionally with an RNA guide). The truncated CRISPR effector may be used advantageously in combination with delivery systems having load limitations.


In one aspect, the present disclosure provides nucleic acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic sequences described herein (e.g., in any of SEQ ID NOS: 1-50), while maintaining the domain architecture shown in FIG. 2. In another aspect, the present disclosure also provides amino acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences described herein, while maintaining the domain architecture shown in FIG. 2.


In one aspect, the present disclosure provides nucleic acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic sequences described herein (e.g., in any of SEQ ID NOS: 101-145), while maintaining the domain architecture shown in FIG. 16. In another aspect, the present disclosure also provides amino acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences described herein, while maintaining the domain architecture shown in FIG. 16.


In one aspect, the present disclosure provides nucleic acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic sequences described herein (e.g., in any of SEQ ID NOS: 301-341), while maintaining the domain architecture shown in FIG. 30A, FIG. 30B, or FIG. 30C. In another aspect, the present disclosure also provides amino acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences described herein, while maintaining the domain architecture shown in FIG. 30A, FIG. 30B, or FIG. 30C.


In one aspect, the present disclosure provides nucleic acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic sequences described herein (e.g., in any of SEQ ID NOS: 501-521), while maintaining the domain architecture shown in FIG. 34. In another aspect, the present disclosure also provides amino acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences described herein, while maintaining the domain architecture shown in FIG. 34.


In one aspect, the present disclosure provides nucleic acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic sequences described herein (e.g., in any of SEQ ID NOS: 601-682), while maintaining the domain architecture shown in FIG. 41. In another aspect, the present disclosure also provides amino acid sequences that are at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences described herein, while maintaining the domain architecture shown in FIG. 41. In some embodiments, the nucleic acid sequences have at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides) that are the same as the sequences described herein. In some embodiments, the nucleic acid sequences have at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides, e.g., contiguous or non-contiguous nucleotides) that is different from the sequences described herein.


In some embodiments, the amino acid sequences have at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues, e.g., contiguous or non-contiguous amino acid residues) that is the same as the sequences described herein. In some embodiments, the amino acid sequences have at least a portion (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 amino acid residues, e.g., contiguous or non-contiguous amino acid residues) that is different from the sequences described herein.


To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In general, the length of a reference sequence aligned for comparison purposes should be at least 80% of the length of the reference sequence, and in some embodiments at least 90%, 95%, or 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. For purposes of the present disclosure, the comparison of sequences and determination of percent identity between two sequences can be accomplished using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


RNA Guide and RNA Guide Modifications

In some embodiments, an RNA guide described herein comprises a uracil (U). In some embodiments, an RNA guide described herein comprises a thymine (T). In some embodiments, a direct repeat sequence of an RNA guide described herein comprises a uracil (U). In some embodiments, a direct repeat sequence of an RNA guide described herein comprises a thymine (T). In some embodiments, a direct repeat sequence according to Table 4, 7, 11, 14, 18, 24, 32, 35, or 30 comprises a sequence comprising a uracil, in one or more (e.g., all) places indicated as thymine in the corresponding sequences in Table 4, 7, 11, 14, 18, 24, 32, 35, or 30.


In some embodiments, the direct repeat comprises only one copy of a sequence that is repeated in an endogenous CRISPR array. In some embodiments, the direct repeat is a full-length sequence adjacent to (e.g., flanking) one or more spacer sequences found in an endogenous CRISPR array. In some embodiments, the direct repeat is a portion (e.g., processed portion) of a full-length sequence adjacent to (e.g., flanking) one or more spacer sequences found in an endogenous CRISPR array.


Spacer and Direct Repeat


CLUST.133120


The spacer length of RNA guides can range from about 15 to 55 nucleotides. In some embodiments, the spacer length of an RNA guide is at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, at least 18 nucleotides, at least 19 nucleotides, at least 20 nucleotides, at least 21 nucleotides, or at least 22 nucleotides. In some embodiments, the spacer length is from 15 to 17 nucleotides, from 15 to 23 nucleotides, from 16 to 22 nucleotides, from 17 to 20 nucleotides, from 20 to 24 nucleotides (e.g., 20, 21, 22, 23, or 24 nucleotides), from 23 to 25 nucleotides (e.g., 23, 24, or 25 nucleotides), from 24 to 27 nucleotides, from 27 to 30 nucleotides, from 30 to 45 nucleotides (e.g., 30, 31, 32, 33, 34, 35, 40, or 45 nucleotides), from 30 or 35 to 40 nucleotides, from 41 to 45 nucleotides, from 45 to 50 nucleotides, or longer.


In some embodiments, the direct repeat length of the RNA guide is at least 16 nucleotides, or is from 16 to 20 nucleotides (e.g., 16, 17, 18, 19, or 20 nucleotides). In some embodiments, the direct repeat length of the RNA guide is 19 nucleotides.


Exemplary full-length direct repeat sequences (e.g., direct repeat sequences of pre-crRNAs or unprocessed crRNAs) and direct repeat sequences of mature crRNAs (e.g., direct repeat sequences of processed crRNAs) are shown in Table 32. See also TABLE 4.









TABLE 32







Exemplary direct repeat sequences of pre-crRNA and mature crRNA sequences.









Effector
pre-crRNA Direct Repeat Sequence
Mature crRNA Direct Repeat Sequence





3300027740 (SEQ
CCAACCAATGCCAGCGCGACGG
AATGCCAGCGCGACGGCTTATG


ID NO:1)
CTTATGAGTCGCGAC (SEQ ID
AGTCGCGAC (SEQ ID NO: 85)



NO: 51)






3300017971
GGTAAAACACCTGCGAGATGGT
AACACCTGCGAGATGGTTTATGA


(SEQ ID NO: 2)
TTATGAATCTCGAC (SEQ ID NO:
ATCTCGAC (SEQ ID NO: 86)



52)






SRR2657585
CCAACAATGCTAGCGAGACGGC
AATGCTAGCGAGACGGCTTCAT


(SEQ ID NO: 16)
TTCATGATCTCGACG (SEQ ID
GATCTCGACG (SEQ ID NO: 87)



NO: 59)









In some embodiments, PAMs corresponding to effectors of the present application are set forth as 5′-TTN-3′ and 5′-TN-3′. As used herein, N's can each be any nucleotide (e.g., A, G, T, or C) or a subset thereof (e.g., R (A or G), Y (C or T), K (G or T), B (G, T, or C), H (A, C, or T).


In some embodiments, an RNA guide further comprises a tracrRNA. In some embodiments, the tracrRNA is not required (e.g., the tracrRNA is optional). In some embodiments, the tracrRNA is a portion of the non-coding sequences shown in TABLE 5. For example, in some embodiments, the optional tracrRNA is a sequence of TABLE 33.









TABLE 33







Exemplary tracrRNA sequences.








Effector
tracrRNA





3300027740
GAACACCAGCGAGATGGTTTATGAATCTCGACAGGTCGAAGTAGATACC


(SEQ ID NO: 1)
AAA (SEQ ID NO: 88)



ATGAAGAGGTAACACCTACGAGACGGTTTATGAGTTTCGACTATACTAC



TGATAATCTGCCCCAACT (SEQ ID NO: 89)



ATGGTTTATAAATCTCGACAGACTCGCGGATGGAAGAGAACTCGCGACA



CTCGCGGGGTAGAACACCAGCGAGATGGTTTAT (SEQ ID NO: 90)



GGTTTATAAATCTCGACAGACTCGCGGATGGAAGAGAACTCGCGACACT



CGCGGGGTAGAACACCAGCGAGATGGTT (SEQ ID NO: 91)





3300017971
AATGCGCAAGATGGCTGCCGAGGTGCTAGGCGAGGAGCTGGAAACGCC


(SEQ ID NO: 2)
GACTGGGCGT (SEQ ID NO: 92)



TATGCCAACCCCATTTTTCCAGCCAGGCGATCCGCGTTGCCACCGCGCC



GGCAGACCCAAGGGGACAGCGCTCAAGAAAATGCGCAAGATGGCTGCC



GAGGTGCTAGGCGAGGAGCTGGAAACGCCGACTGGGCGTATGA (SEQ ID



NO: 93)



CTACTATTTATGTAGTAATCATTATGCCAACCCCATTTTTCCAGCCAGGC



GATCCGCGT (SEQ ID NO: 94)









CLUST.099129


The spacer length of RNA guides can range from about 15 to 55 nucleotides. In some embodiments, the spacer length of an RNA guide is at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, at least 18 nucleotides, at least 19 nucleotides, at least 20 nucleotides, at least 21 nucleotides, or at least 22 nucleotides. In some embodiments, the spacer length is from 15 to 17 nucleotides, from 15 to 23 nucleotides, from 16 to 22 nucleotides, from 17 to 20 nucleotides, from 20 to 24 nucleotides (e.g., 20, 21, 22, 23, or 24 nucleotides), from 23 to 25 nucleotides (e.g., 23, 24, or 25 nucleotides), from 24 to 27 nucleotides, from 27 to 30 nucleotides, from 30 to 45 nucleotides (e.g., 30, 31, 32, 33, 34, 35, 40, or 45 nucleotides), from 30 or 35 to 40 nucleotides, from 41 to 45 nucleotides, from 45 to 50 nucleotides, from 50 to 55 nucleotides, or longer.


In some embodiments, the direct repeat length of the RNA guide is at least 16 nucleotides, or is from 16 to 20 nucleotides (e.g., 16, 17, 18, 19, or 20 nucleotides). In some embodiments, the direct repeat length of the RNA guide is up to 40 nucleotides. See TABLE 11.


Exemplary full-length direct repeat sequences (e.g., direct repeat sequences of pre-crRNAs or unprocessed crRNAs) and direct repeat sequences of mature crRNAs (e.g., direct repeat sequences of processed crRNAs) are shown in Table 7. See also TABLE 11.









TABLE 7







Exemplary direct repeat sequences of pre-crRNA and mature crRNA sequences.









Effector
pre-crRNA Direct Repeat Sequence
Mature crRNA Direct Repeat Sequence





SRR6837557
AGTCGCGAATAACTGTTCAGCGG
ATAACTGTTCAGCGGAGAAGCC


(SEQ ID NO: 101)
AGAAGCCGCTGAAAC
GCTG (SEQ ID NO: 181)



(SEQ ID NO: 146)






3300012971
GTGATTGCAGACTGGTCGTGCGA
TGGTCGTGCGAATGCGCACGGC


(SEQ ID NO: 102)
ATGCGCACGGCAC (SEQ ID NO:
AC (SEQ ID NO: 182)



147)






SRR6266511
GTGCCGTGCGGATTCGCACGACC
TGGTCGTGCGAATCCGCACGGC


(SEQ ID NO: 123)
AACTTTCAATTAC
AC (SEQ ID NO: 183)



(SEQ ID NO: 180)






SRR6837571
GTCGCGAATAACTGTTCAGCGGA
ATAACTGTTCAGCGGAGAAGCC


(SEQ ID NO: 145)
GAAGCCGCTGAAAC (SEQ ID NO:
GCTG (SEQ ID NO: 181)



162)









In some embodiments, PAMs corresponding to effectors of the present application are set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′. As used herein, N's can each be any nucleotide (e.g., A, G, T, or C) or a subset thereof (e.g., R (A or G), Y (C or T), K (G or T), B (G, T, or C), H (A, C, or T).


In some embodiments, an RNA guide further comprises a tracrRNA. In some embodiments, the tracrRNA is not required (e.g., the tracrRNA is optional). In some embodiments, the tracrRNA is a portion of the non-coding sequences shown in TABLE 12. For example, in some embodiments, the optional tracrRNA is a sequence of TABLE 8.









TABLE 8







Exemplary tracrRNA sequences.










Effector
tracrRNA Sequence






SRR6837557
TTGGGTTTGTGAAAACGGAAGGGCTGTAA



(SEQ ID
TCTCGCCTTGATATTGGCTTAATTTCAGG



NO: 101)
TTGAAAGTAAGAACGGGAC (SEQ ID NO: 184)




TGTCTTGATCCCGTCGGTGGAGAAACGTAGT




GTGACACTCAACCAGCAGA




(SEQ ID NO: 185)






3300012971
TCTACACCTATGACTGTTGGCCGCAAG



(SEQ ID
AAAAGCCGCTCAAGGCGCTA



NO: 102)
TGGGACACGGCGCATGA (SEQ ID NO: 186)




GGTCTACACCTATGACTGTTGGCCGCA AGAAAAGCCGCTCAAGGCGC




TATGGGACACGGCGCATG




(SEQ ID NO: 187)






SRR6266511
ACTTGCGAGTGATGCACGCAAGTGAAG



(SEQ ID
TGCGGCTTGAGATTGTTGAAAAGCATT



NO: 123)
GACACTCCCACCGCTGGAAGCGGCGGG




ATTCTTGCTTCAACG (SEQ ID NO: 188)




CTACAGATGCATGCTGCGGGAGAAACC




GCCCCAAGCGCTGTGGGACA




CAGCGCGTGAGATGGACGTGACCACAA




GCCTAT (SEQ ID NO: 189)






SRR6837571
TAGTTCACCCGTTGTTGGATGTGCTTA



(SEQ ID
ACTTTTACAACTTTGGTG (SEQ



NO: 145)
ID NO: 190)




GTTTGTGAAAACGGAAGGGCTGTAATC




TCGCCTTGATATTGGCTTAAT




TTCAGGTTGAAAGTAAG (SEQ ID NO: 191)









CLUST.342201


The spacer length of RNA guides can range from about 12 to 62 nucleotides. In some embodiments, the spacer length of RNA guides can range from about 19 to 40 nucleotides. In some embodiments, the spacer length of an RNA guide is at least 12 nucleotides, at least 13 nucleotides, at least 14 nucleotides, at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, at least 18 nucleotides, at least 19 nucleotides, at least 20 nucleotides, at least 21 nucleotides, or at least 22 nucleotides. In some embodiments, the spacer length is from 15 to 17 nucleotides, from 15 to 23 nucleotides, from 16 to 22 nucleotides, from 17 to 20 nucleotides, from 20 to 24 nucleotides (e.g., 20, 21, 22, 23, or 24 nucleotides), from 23 to 25 nucleotides (e.g., 23, 24, or 25 nucleotides), from 24 to 27 nucleotides, from 27 to 30 nucleotides, from 30 to 45 nucleotides (e.g., 30, 31, 32, 33, 34, 35, 40, or 45 nucleotides), from 30 or 35 to 40 nucleotides, from 41 to 45 nucleotides, from 45 to 50 nucleotides, from 50 to 62 nucleotides, or longer.


In some embodiments, the direct repeat length of the RNA guide is at least 16 nucleotides, or is from 16 to 20 nucleotides (e.g., 16, 17, 18, 19, or 20 nucleotides). In some embodiments, the direct repeat length of the RNA guide is 19 nucleotides. In some embodiments, the direct repeat length of the RNA guide is greater than 20 nucleotides. See TABLE 18.


Exemplary full-length direct repeat sequences (e.g., direct repeat sequences of pre-crRNAs or unprocessed crRNAs) are shown in Table 14. See also TABLE 18.









TABLE 14







Exemplary direct repeat sequences of


pre-crRNA sequences.











pre-crRNA Direct



Effector
Repeat Sequence






3300006417
GTTCACCCCACGGGTGCGT



(SEQ ID NO: 301)
GGAGTGATGG (SEQ ID




NO: 342)






3300014060
CCCTCACTCCACACCCGCG



(SEQ ID NO: 306)
CGGGGTAACC (SEQ ID




NO: 384)






3300020180
CAGCGCACGAGGAGGTGCTG



(SEQ ID NO: 307)
(SEQ ID NO: 346)






3300013127
CCAATCGCCCACGTACGCGT



(SEQ ID NO: 316)
GGGCCCGAC (SEQ ID




NO: 390)






3300007960
CCCTCACCCCACACGCACGT



(SEQ ID NO: 317)
GGGGCGTAT (SEQ ID




NO: 391)






3300025687
CCCTCACCCCACACGCACGT



(SEQ ID NO: 319)
GGGGCGTAT (SEQ ID




NO: 391)






3300017963
CGTGTGAATGCGTGAAATTG



(SEQ ID NO: 320)
AGTAGAGGATATGTCAG




(SEQ ID NO: 352)






3300017971
GTGTGAATGCGTGAAATTGA



(SEQ ID NO: 323)
GTAGAGGATATGTCAG




(SEQ ID NO: 353)






OVSM01005865
TATGTAATTATGTATGTAGT



(SEQ ID NO:
TTTATGTGTAATATT



332)
(SEQ ID NO: 397)






3300009089
ACCTCGTGCTCACTCAACTC



(SEQ ID NO: 337)
GATGATCTGCTCAA (SEQ




ID NO: 400)






3300006417
GTTCACCCCACAGGCGCGTG



(SEQ ID NO: 340)
GAGTGATGG (SEQ ID




NO: 362)









In some embodiments, PAMs corresponding to effectors of the present application are set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923). As used herein, R corresponds to A or G, and D corresponds to A or G or T.


In some embodiments, an RNA guide further comprises a tracrRNA. In some embodiments, the tracrRNA is a portion of the non-coding sequences shown in TABLE 19. For example, in some embodiments, the optional tracrRNA is a sequence of TABLE 15.









TABLE 15







Exemplary tracrRNA sequences.








Effector
tracrRNA Sequence





3300006417
ACTACATGGCGAAACCACGAACCAAACAAGAGTACGGCCCGTTTAGCG


(SEQ ID NO:
TGCGTCTGCCTGTTG (SEQ ID NO: 403)


301)
AAGAGATGCGGTCGCTTCACTCGATGGTGCTTGTTCTACTACGCTCCGCT



TTAGAAGCGCGTCTTCAAGCAGAATCAACATCATCGAGTGTTGGGAA



(SEQ ID NO: 404)



GAACAAGAGATGCGGTCGCTTCACTCGATGGTGCTTGTTCTACTACGCT



CCGCTTTAGAAGCGCGTCTTCAAGCAGAATCAACATCATCGAGTGTTGG



GAACGGCG (SEQ ID NO: 405)



AGTGGTTTGACTGTTGCGTTCATGGTGTATTTATTTTACCT (SEQ ID NO:



453)



GTTCGTGGTTTCGCCATGTAGTTATTCTACCACCAAAACAGGTACACGG



TCAAC (SEQ ID NO: 406)





3300014060
GGTGATATGGCAAAGAAAGAGAGACTCAAGACCATCAACATCTTGTTG


(SEQ ID NO:
CGCTTGCCGCCCGAGCTTCACGCCGCGCTGAAAAGGTGGGCGCAAGAG


306)
GA (SEQ ID NO: 407)



TGATATGGCAAAGAAAGAGAGACTCAAGACCATCAACATCTTGTTGCGC



TTGCCGCCCGAGCTTCACGCCGCGCTGAAAAGGTGGGCGCAAGAGGA



(SEQ ID NO: 408)



TGGTGATATGGCAAAGAAAGAGAGACTCAAGACCATCAACATCTTGTTG



C (SEQ ID NO: 409)



GGCAAAGAAAGAGAGACTCAAGACCATCAACATCTTGTTGCGCTTGCCG



CCCGAGCTTCACGCCGCGCTGAAAAGGTGGGCGCAAGAGGAACGTCGC



CCGCTAAACTGGCAGATCGTGCGCGTTCT (SEQ ID NO: 410)



GGTGATATGGCAAAGAAAGAGAGACTCAAGACCATCAACATCTTGTTG



CGCTTGCCGCCCGAGCTTCACGCCGCGCTGAAAAGGTGGGCGCAAGAG



GAACGTCGCCCGCTAAACTGGCAGATCGTGCGCGT (SEQ ID NO: 411)





3300020180
CTGCGAAGAACATTGTCGCGGCCGGGCAGGTCGAGACGAAAAACGGAC


(SEQ ID NO:
GTGGAGGGCATGTGAGACGGATGGTGCCTTTGGGCACCTGCGCAGTGCT


307)
CGATGAAGCGT (SEQ ID NO: 412)



TGCGAAGAACATTGTCGCGGCCGGGCAGGTCGAGACGAAAAACGGACG



TGGAGGGCATGTGAGACGGATGGTGCCTTTGGGCACCTGCGCAGTGCTC



GATG (SEQ ID NO: 413)



CGCACGAGGAGGTGCTGTGGAGCCCAGGAAGAGAGGCACCAGCGCACG



AGGAGGTGCTGTGGAGCCCAGGAAGAGAGGCACCAGCGCACGAGGAG



GTGCTGGTAGCCATCGGGTAGGTC (SEQ ID NO: 414)



AGCGCACGAGGAGGTGCTGTGGAGCCCAGGAAGAGAGGCACCAGCGCA



CGAGGAGGTGCTGTGGAGCCCAGGAAGAGAGGCACCAGCGCACGAGGA



GGTGCTGGTAGCCATCGGGTAGGTCGAAAATAT (SEQ ID NO: 415)



TCGAGACGAAAAACGGACGTGGAGGGCATGTGAGACGGATGGTGCCTT



TGGGCACCTGCGCAGTGCTCGATGAAGCGTCAA (SEQ ID NO: 416)





3300013127
CCTCAACATCCGGCGCGGGCGGCTACAGACTGCGGGTTGTCAGATTGTT


(SEQ ID NO:
AAATGCCGCCCGCA (SEQ ID NO: 417)


316)
CCTCAACATCCGGCGCGGGCGGCTACAGACTGCGGGTTGTCAGATTGTT



AAATGCCGCCCGCACC (SEQ ID NO: 418)



TGAACATTGCGTCGAATCTCGCTACCGTCAAATCGGCGGAAAGTCAAGC



CTGTGGATAGGCCGGC (SEQ ID NO: 419)



CCCGCAGTCTGTAGCCGCCCGCGCCGGATGTTGAGGAGTAAACAATGGA



CACTCT (SEQ ID NO: 420)





3300007960
TGACCTCAGTACGAAGTGCACGGCAGGCGCACCGAGTACCGGACGGCT


(SEQ ID NO:
TGAGACATG (SEQ ID NO: 421)


317)
TGCGCCTGCCGTGCACTTCGTACTGAGGTCAAGTATACTGCAAAATTCT



GCACTTGTCAAGCATTAATTTGCGTGAGTTTCTTGACAGTCTGCACAAGT



TTGCAGTATAATGGACTCATGAACAGAGCACACC (SEQ ID NO: 422)



TTTAGCTACTTAAAAACAGAGTTCAATCGTTTGCGCAGTGAAGACGGGT



TTGCCCCGT (SEQ ID NO: 423)



CGGGTTTGCCCCGTTTGTATCAGAGGTTCAAAGCTACGCATATCAGCAG



GCGTCAAAGACTTGTAACGCTTGCGGGGAAAAGGTAGATGCATTGCC



(SEQ ID NO: 424)



CATTTCACCAACAATCCCGCTGGCAGGCGGAGAGAGGCAGGCAGAACA



TGAACACACGCCC (SEQ ID NO: 425)





3300025687
TAGCTACTTAAAAACAGAGTTCAATCGTTTGCGCAGTGAAGACGGGTTT


(SEQ ID NO:
GCCCCGTTTGTATCAGAG (SEQ ID NO: 426)


319)
GGTGTCTCGGTTTACGTGGAACTGGGCATTAGCAGCGTATAACGATGGC



GTTCCGTTTAGCTACTTAAAAACAGAGTTCAATCGTTTGCGCAGTGAAG



ACGGGTTTGCCCCGT (SEQ ID NO: 427)



GTCTCGGTTTACGTGGAACTGGGCATTAGCAGCGTATAACGATGGCGTT



CCGTTTAGCTACTTAAAAACAGAGTTCAATCGTTTGCGCAGTGAAGACG



GGTTTGCCCCGTTTGT (SEQ ID NO: 428)



CTACTTAAAAACAGAGTTCAATCGTTTGCGCAGTGAAGACGGGTTTGCC



CCGTTTGTATC (SEQ ID NO: 429)



GACGCATTTGTTGGTTCGCCGGAATGGGACGAACACGACATTCGGGAAC



GCATGGAGGAAGAAGCAGAGT (SEQ ID NO: 430)





3300017971
AACAGTATTGAATGTCGCCGTCGGGCAGACGGAGACTCTAAACGCTCGC


(SEQ ID NO:
TGAGCGGACGGCCGCTGTCGTGGAAGGATGTGC (SEQ ID NO: 431)


323)
AGTATTGAATGTCGCCGTCGGGCAGACGGAGACTCTAAACGCTCGCTGA



GCGGACGGCCGCTGTCGTGGAAGGATGTGCTCTTTCGCGTTCATGCTGA



CTGCGTTGAAGCGAGAATCCCTCTACG (SEQ ID NO: 432)



TCTTTAACAGTATTGAATGTCGCCGTCGGGCAGACGGAGACTCTAAACG



CTCGCTGAGCGGACGGCCGCTGTCGTGGAAGGATGTGCTCTTTCGCGTT



CATGCTGACTGCGTTGAAGCGAGAATCCCTCTACG (SEQ ID NO: 433)



TCTTTAACAGTATTGAATGTCGCCGTCGGGCAGACGGAGACTCTAAACG



CTCGCTGAGCGGACGGCCGCTGTCGTGGAAGGATGTGCTCTTTCGCGTT



CATGCTGACTGCGTTGAAGCGAGAATCCCTCTACGATTCG (SEQ ID NO:



434)





OVSM0100586
GAATCTGTTAGTAGATTTTCATTATTAGAAGCACACTTAACTCCCTTGTT


5 (SEQ ID NO:
GGTGTGCTTCTCTCTTTTCTAC (SEQ ID NO: 435)


332)
CAGTCTTTAGTTTCTCGTTTGAGGGAGTTGGATAATACGTATTGGGATTG



TTTTTTAAAGAGAAAAGAAGGAGCCCAACTTCCTTGTGGCGTTA (SEQ ID



NO: 436)



TTAGTTTCTCGTTTGAGGGAGTTGGATAATACGTATTGGGATTGTTTTTT



AAAGAGAAAAGAAGGAGCCCAACTTCCTTGTGGCGTTAT (SEQ ID NO:



437)



CAATGATCATTGCAAAAGGGATGCGAAAATAGGTTTTTAAGTGATAATC



CACAAAACATATCAGTTTAGATTAAAGCCAACAAAAGAACAGGAGGCT



TTGTTTTGGCGGTTTTC (SEQ ID NO: 438)





3300009089
GAGCAGGAGCTACTGCGAGGAGCAGACTGTGACGAAGCGAGCATACAA


(SEQ ID NO:
GTTCAGGTGTTATCCGACAGATGAGCAAAAGCAGATTCTTG (SEQ ID NO:


337)
439)



GAGCAGGAGCTACTGCGAGGAGCAGACTGTGACGAAGCGAGCATACAA



GTTCAGGTGTT (SEQ ID NO: 440)



GAAAGAGAGAATCCTCGGACGAGCCGCGCAGCTTTTCAACCAGCAGGG



ATACTTCGGCTCGTCACTCTCCGATAT (SEQ ID NO: 441)



CATGTAGGCATGTCCTAGATGTCTAAGTATTGGAGAACGGATTTTTATG



AGCAAAGGTGAGCAAACG (SEQ ID NO: 442)



ACGAAGCGAGCATACAAGTTCAGGTGTTATCCGACAGATGAGCAAAAG



CAGATTCTTGCTCGCACGTTCGGCTGCTGTCGCTGGGTCTACAA (SEQ ID



NO: 443)



ACGAAGCGAGCATACAAGTTCAGGTGTTATCCGACAGATGAGCAAAAG



CAGATTCTTGCTCGCACGTTCGGCTGCTGTCGCTGGGTCT (SEQ ID



NO: 444)





3300006417
GCGGTAGTAATCACGTCGAGACGCAAAACGCCTGGGGACGGTGTAGGT


(SEQ ID NO:
AGCAAACCGGATGAACCAGGAGTTCACGCAATTGAATAGGT (SEQ ID


340)
NO: 445)



GTCGCGGTAGTAATCACGTCGAGACGCAAAACGCCTGGGGACGGTGTA



GGTAGCAAACCGGATGAACCAGGAGTTCACGCAATTGAATAG (SEQ ID



NO: 446)



GAGGCCGTGAAGATGGCAGGCGCTGCCTAGTGCGCCCGTCGCGGTAGT



AATCACGTCGAGACGCAAAACGCCTGGGGACGGTGTAGGTAGCAAACC



GGATGAACCAGGAGTTCACGCAATTGAATAGGTG (SEQ ID NO: 447)



CGCAGCGGTCAACATCCGCAACGAGGCCGTGAAGATGGCAGGCGCTGC



CTAGTGCGCCCGTCGCGGTAGTAATCACGTCGAGACGCAAAACGCCTGG



GGACGGTGTAGGTAGCAAACCGGATGAACCAGGAGTTCACGCAA (SEQ



ID NO: 448)



CTATCGGTGCGCTGGTGGCAGTGCCCGACCTGCGGCGCAGAACATGATC



GGGACGGCAACGCA (SEQ ID NO: 449)



GCTGGCTGAGTTGAACGCCGCCTATGACCGGGGTGAACGGCCTGCGATT



GGAACCTGCAATGAGTGCG (SEQ ID NO: 450)









CLUST.1950099


The spacer length of RNA guides can range from about 15 to 55 nucleotides. The spacer length of RNA guides can range from about 20 to 39 nucleotides. In some embodiments, the spacer length of an RNA guide is at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, at least 18 nucleotides, at least 19 nucleotides, at least 20 nucleotides, at least 21 nucleotides, or at least 22 nucleotides. In some embodiments, the spacer length is from 15 to 17 nucleotides, from 15 to 23 nucleotides, from 16 to 22 nucleotides, from 17 to 20 nucleotides, from 20 to 24 nucleotides (e.g., 20, 21, 22, 23, or 24 nucleotides), from 23 to 25 nucleotides (e.g., 23, 24, or 25 nucleotides), from 24 to 27 nucleotides, from 27 to 30 nucleotides, from 30 to 45 nucleotides (e.g., 30, 31, 32, 33, 34, 35, 40, or 45 nucleotides), from 30 or 35 to 40 nucleotides, from 41 to 45 nucleotides, from 45 to 50 nucleotides, from 50 to 55 nucleotides, or longer.


In some embodiments, the direct repeat length of the RNA guide is at least 16 nucleotides, or is from 16 to 20 nucleotides (e.g., 16, 17, 18, 19, or 20 nucleotides). In some embodiments, the direct repeat length of the RNA guide is about 39 nucleotides. See TABLE 24.


Exemplary full-length direct repeat sequences (e.g., direct repeat sequences of pre-crRNAs or unprocessed crRNAs) is shown in Table 20. See also TABLE 24.









TABLE 20







Exemplary direct repeat sequences


of pre-crRNA sequences.








Effector
pre-crRNA Direct Repeat Sequence





SRR6201554
CCAGCAACAGCCGCGTGGGGCT


(SEQ ID NO: 501)
ACTAGTACTGCGAC



(SEQ ID NO: 522)





3300028603 (SEQ
CCAACAACAGCCGCGCGGGGCT


ID NO: 517)
GCGAATACTGCGAC



(SEQ ID NO: 529)









In some embodiments, the mature crRNA (e.g., direct repeat sequences of processed crRNAs) corresponding to the effector of SEQ ID NO: 501 is CAACAGCCGCGTGGGGCTACTAGTACTGCG (SEQ ID NO: 535).


In some embodiments, PAMs corresponding to effectors of the present application are set forth as 5′-TTN-3′. As used herein, N's can each be any nucleotide (e.g., A, G, T, or C) or a subset thereof (e.g., R (A or G), Y (C or T), K (G or T), B (G, T, or C), H (A, C, or T).


In some embodiments, an RNA guide further comprises a tracrRNA. In some embodiments, the tracrRNA is not required (e.g., the tracrRNA is optional). In some embodiments, the tracrRNA is a portion of the non-coding sequences shown in TABLE 25. For example, in some embodiments, the optional tracrRNA is a sequence of TABLE 21.









TABLE 21







Exemplary tracrRNA sequences.










Effector
tracrRNA Sequence






SRR6201554
GAATTGGTGACGGTGTGTCCGGCT



(SEQ ID NO: 501)
TGCGGCACCGCCAGGGACAAGGA




CGTTGGCGCGGCCGAGGTGA




(SEQ ID NO: 536)




GACACCGCACCAACAGCCGCGTGG




GGCTTCCAATACCTCGACAGTCG




CCCCACCGCTCGACGTGCGAACCC




CA (SEQ ID NO: 537)




CACCGCCAGGGACAAGGACGTTGG




CGCGGCCGAGGTGATCCTTCGGC




GCGCAGAGGAGGCGCTCGCAAAGC




ATTCTGCAGAGTAGCGAAATCAA




(SEQ ID NO: 538)









CLUST.057059


The spacer length of RNA guides can range from about 15 to 50 nucleotides. In some embodiments, the spacer length of RNA guides can range from about 20 to 44 nucleotides. In some embodiments, the spacer length of an RNA guide is at least at least 15 nucleotides, at least 16 nucleotides, at least 17 nucleotides, at least 18 nucleotides, at least 19 nucleotides, at least 20 nucleotides, at least 21 nucleotides, or at least 22 nucleotides. In some embodiments, the spacer length is from 15 to 17 nucleotides, from 15 to 23 nucleotides, from 16 to 22 nucleotides, from 17 to 20 nucleotides, from 20 to 24 nucleotides (e.g., 20, 21, 22, 23, or 24 nucleotides), from 23 to 25 nucleotides (e.g., 23, 24, or 25 nucleotides), from 24 to 27 nucleotides, from 27 to 30 nucleotides, from 30 to 45 nucleotides (e.g., 30, 31, 32, 33, 34, 35, 40, or 45 nucleotides), from 30 or 35 to 40 nucleotides, from 41 to 45 nucleotides, from 45 to 50 nucleotides, or longer.


In some embodiments, the direct repeat length of the RNA guide is at least 16 nucleotides, or is from 16 to 20 nucleotides (e.g., 16, 17, 18, 19, or 20 nucleotides). In some embodiments, the direct repeat length of the RNA guide is 19 nucleotides. In some embodiments, the direct repeat length of the RNA guide is greater than 20 nucleotides. See TABLE 30.


Exemplary full-length direct repeat sequences (e.g., direct repeat sequences of pre-crRNAs or unprocessed crRNAs) are shown in Table 26. See also TABLE 30.









TABLE 26





Exemplary direct repeat sequences


of pre-crRNA sequences.
















Effector
pre-crRNA Direct Repeat Sequence


3300023179 (SEQ
CTTGCAACTGGGCTTGGGGACTG


ID NO: 601)
AGGATAGTTGAAAC (SEQ ID NO: 683)





3300002382 (SEQ
CTTGCAACTAAGACTGGGGACTG


ID NO: 615)
AGGATAGTTGAAACT (SEQ ID NO: 693)









In some embodiments, PAMs corresponding to effectors of the present application are set forth as 5′-GTN-3′. As used herein, N's can each be any nucleotide (e.g., A, G, T, or C) or a subset thereof (e.g., R (A or G), Y (C or T), K (G or T), B (G, T, or C), H (A, C, or T).


In some embodiments, an RNA guide further comprises a tracrRNA. In some embodiments, the tracrRNA is not required (e.g., the tracrRNA is optional). In some embodiments, the tracrRNA is a portion of the non-coding sequences shown in TABLE 31. For example, in some embodiments, the optional tracrRNA is a sequence of TABLE 27.









TABLE 27







Exemplary tracrRNA sequences.








Effector
tracrRNA Sequence





3300023179 (SEQ
GACAGTAAACAAAAAATAAGATGGAC


ID NO: 601)
TATATTTATAAACCAGGAAACATAGT



TATTACAATTGCATTGTAGGTTTCAA



CCTGATACCCACTAAAGCGTGTTAGT



GGGTATTTTTTATTTA



(SEQ ID NO: 739)



AAACAAAAAATAAGATGGACTATATT



TATAAACCAGGAAACATAGTTATTAC



AATTGCATTGTAGGTTTCAACCTGAT



ACCCACTAAAGCGTGTTAGTGGGTAT



TTTTTATTTATG



(SEQ ID NO: 740)



AATATTAAATTACCGCAGTTTGGGC



GGGTTGCTAATAATATTAGCTTA



TGACTTCTAAGGCTTTTGCCTAAAA



AGTAAGGGGGAAGGCGACAACC



CCCAAAGACCAGCCGGAACTATGGC



TGGCAACTATCTCATCTTTTTGG



CATATCAAAGCTAGGGCAAAAACCC



CAGACATTCGCCAAAAGCCCAG



AACCATGACATTGCAAGAGTTTCGC



CCAGTTTCTTTTAAAGACCCAAG



CTGATTTAAGCGGCTGAAATGAGAT



TTTTTA (SEQ ID NO: 741)



ATATTAAATTACCGCAGTTTGGGC



GGGTTGCTAATAATATTAGCTTAT



GACTTCTAAGGCTTTTGCCTAA



(SEQ ID NO: 742)



TTATCCAAACTAGCGACTAAGTAC



CTGGTAATAAAAACGTGATTACT



TTGA (SEQ ID NO: 743)



CCAAACTAGCGACTAAGTACCTG



GTAATAAAAACGTGATTACTTTGA



A (SEQ ID NO: 744)





3300002382 (SEQ
AAATTACCGCAGTTTGGGCGGGCA


ID NO: 615)
GCTAATAATATTAGCTTATGACTT



CTAAGGCTTTTGCCTAAAAAGT



(SEQ ID NO: 745)



TTAAATTACCGCAGTTTGGGCGGG



CAGCTAATAATATTAGCTTATGAC



TTCTAAGGCTTTTGCCTAAAAA



(SEQ ID NO: 746)



CTGAAATGAGATTTTTTAATGTGT



AATCGTCTAGCCTGGGAACATATA



TGCAACTTGCAATTAACTCAGTTC



CTCAAGTCCGGTTTCACCTA (SEQ



ID NO: 747)



ATGAGATTTTTTAATGTGTAATCG



TCTAGCCTGGGAACATATATGCAA



CTTGCAATTAACTCAGTTCCTCAA



GTCCGGTTTCACCTATTA (SEQ ID



NO: 748)



CCCAGACATTCGCCAAAAGCCCAG



AACCATGACATTGCAAGAGTTTC



GCCCAGTTTCTTTTAAAGATTCAA



GCTGATTTAAGCGGCTGAAATGAG



ATTTTTTAATGTGTAATCGT



(SEQ ID NO: 749)



CCCCAGACATTCGCCAAAAGCCCA



GAACCATGACATTGCAAGAGTTT



CGCCCAGTTTCTTTTAAAGATTCAA



GCTGATTTAAGCGGCTGAAATGA



GATTTTTTAATGT (SEQ ID NO: 750)









The RNA guide sequences can be modified in a manner that allows for formation of the CRISPR complex and successful binding to the target, while at the same time not allowing for successful nuclease activity (i.e., without nuclease activity/without causing indels). These modified guide sequences are referred to as “dead guides” or “dead guide sequences.” These dead guides or dead guide sequences may be catalytically inactive or conformationally inactive with regard to nuclease activity. Dead guide sequences are typically shorter than respective guide sequences that result in active cleavage. In some embodiments, dead guides are 5%, 10%, 20%, 30%, 40%, or 50% shorter than respective RNA guides that have nuclease activity. Dead guide sequences of RNA guides can be from 13 to 15 nucleotides in length (e.g., 13, 14, or 15 nucleotides in length), from 15 to 19 nucleotides in length, or from 17 to 18 nucleotides in length (e.g., 17 nucleotides in length).


Thus, in one aspect, the disclosure provides non-naturally occurring or engineered CRISPR systems including functional CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, and CLUST.057059 CRISPR effectors as described herein, and an RNA guide wherein the RNA guide comprises a dead guide sequence, whereby the RNA guide is capable of hybridizing to a target sequence such that the CRISPR system is directed to a genomic locus of interest in a cell without detectable cleavage activity. A detailed description of dead guides is described, e.g., in WO 2016094872, which is incorporated herein by reference in its entirety.


Inducible RNA Guides


RNA guides can be generated as components of inducible systems. The inducible nature of the systems allows for spatiotemporal control of gene editing or gene expression. In some embodiments, the stimuli for the inducible systems include, e.g., electromagnetic radiation, sound energy, chemical energy, and/or thermal energy.


In some embodiments, the transcription of RNA guide can be modulated by inducible promoters, e.g., tetracycline or doxycycline controlled transcriptional activation (Tet-On and Tet-Off expression systems), hormone inducible gene expression systems (e.g., ecdysone inducible gene expression systems), and arabinose-inducible gene expression systems. Other examples of inducible systems include, e.g., small molecule two-hybrid transcription activations systems (FKBP, ABA, etc.), light inducible systems (Phytochrome, LOV domains, or cryptochrome), or Light Inducible Transcriptional Effector (LITE). These inducible systems are described, e.g., in WO 2016205764 and U.S. Pat. No. 8,795,965, each of which is incorporated herein by reference in its entirety.


Chemical Modifications


Chemical modifications can be applied to the phosphate backbone, sugar, and/or base of the RNA guide. Backbone modifications such as phosphorothioates modify the charge on the phosphate backbone and aid in the delivery and nuclease resistance of the oligonucleotide (see, e.g., Eckstein, “Phosphorothioates, essential components of therapeutic oligonucleotides,” Nucl. Acid Ther., 24 (2014), pp. 374-387); modifications of sugars, such as 2′-O-methyl (2′-OMe), 2′-F, and locked nucleic acid (LNA), enhance both base pairing and nuclease resistance (see, e.g., Allerson et al. “Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA,” J. Med. Chem., 48.4 (2005): 901-904). Chemically modified bases such as 2-thiouridine or N6-methyladenosine, among others, can allow for either stronger or weaker base pairing (see, e.g., Bramsen et al., “Development of therapeutic-grade small interfering RNAs by chemical engineering,” Front. Genet., 2012 Aug. 20; 3:154). Additionally, RNA is amenable to both 5′ and 3′ end conjugations with a variety of functional moieties including fluorescent dyes, polyethylene glycol, or proteins.


A wide variety of modifications can be applied to chemically synthesized RNA guide molecules. For example, modifying an oligonucleotide with a 2′-OMe to improve nuclease resistance can change the binding energy of Watson-Crick base pairing. Furthermore, a 2′-OMe modification can affect how the oligonucleotide interacts with transfection reagents, proteins or any other molecules in the cell. The effects of these modifications can be determined by empirical testing.


In some embodiments, the RNA guide includes one or more phosphorothioate modifications. In some embodiments, the RNA guide includes one or more locked nucleic acids for the purpose of enhancing base pairing and/or increasing nuclease resistance.


A summary of these chemical modifications can be found, e.g., in Kelley et al., “Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing,” J. Biotechnol. 2016 Sep. 10; 233:74-83; WO 2016205764; and U.S. Pat. No. 8,795,965, each which is incorporated by reference in its entirety.


Sequence Modifications


The sequences and the lengths of the RNA guides, tracrRNAs, and crRNAs described herein can be optimized. In some embodiments, the optimized length of RNA guide can be determined by identifying the processed form of tracrRNA and/or crRNA, or by empirical length studies for RNA guides, tracrRNAs, crRNAs, and the tracrRNA tetraloops.


The RNA guides can also include one or more aptamer sequences. Aptamers are oligonucleotide or peptide molecules that can bind to a specific target molecule. The aptamers can be specific to gene effectors, gene activators, or gene repressors. In some embodiments, the aptamers can be specific to a protein, which in turn is specific to and recruits/binds to specific gene effectors, gene activators, or gene repressors. The effectors, activators, or repressors can be present in the form of fusion proteins. In some embodiments, the RNA guide has two or more aptamer sequences that are specific to the same adaptor proteins. In some embodiments, the two or more aptamer sequences are specific to different adaptor proteins. The adaptor proteins can include, e.g., MS2, PP7, Qβ, F2, GA, fr, JP501, M12, R17, BZ13, JP34, JP500, KU1, M11, MX1, TW18, VK, SP, FI, ID2, NL95, TW19, AP205, ϕCb5, ϕCb8r, ϕCb12r, ϕCb23r, 7 s, and PRR1. Accordingly, in some embodiments, the aptamer is selected from binding proteins specifically binding any one of the adaptor proteins as described herein. In some embodiments, the aptamer sequence is a MS2 loop. A detailed description of aptamers can be found, e.g., in Nowak et al., “Guide RNA engineering for versatile Cas9 functionality,” Nucl. Acid. Res., 2016 Nov. 16;44(20):9555-9564; and WO 2016205764, each of which is incorporated herein by reference in its entirety.


Guide: Target Sequence Matching Requirements


In CRISPR systems, the degree of complementarity between a guide sequence and its corresponding target sequence can be about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or 100%. To reduce off-target interactions, e.g., to reduce the guide interacting with a target sequence having low complementarity, mutations can be introduced to the CRISPR systems so that the CRISPR systems can distinguish between target and off-target sequences that have greater than 80%, 85%, 90%, or 95% complementarity. In some embodiments, the degree of complementarity is from 80% to 95%, e.g., about 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, or 95% (for example, distinguishing between a target having 18 nucleotides from an off-target of 18 nucleotides having 1, 2, or 3 mismatches). Accordingly, in some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence is greater than 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.5%, or 99.9%. In some embodiments, the degree of complementarity is 100%.


It is known in the field that complete complementarity is not required provided that there is sufficient complementarity to be functional. Modulations of cleavage efficiency can be exploited by introduction of mismatches, e.g., one or more mismatches, such as 1 or 2 mismatches between spacer sequence and target sequence, including the position of the mismatch along the spacer/target. The more central (i.e., not at the 3′ or 5′ ends) a mismatch, e.g., a double mismatch, is located; the more cleavage efficiency is affected. Accordingly, by choosing mismatch positions along the spacer sequence, cleavage efficiency can be modulated. For example, if less than 100% cleavage of targets is desired (e.g., in a cell population), 1 or 2 mismatches between spacer and target sequence can be introduced in the spacer sequences.


Methods of Using CRISPR Systems

The CRISPR systems described herein have a wide variety of utilities including modifying (e.g., deleting, inserting, translocating, inactivating, or activating) a target polynucleotide in a multiplicity of cell types. The CRISPR systems have a broad spectrum of applications in, e.g., DNA/RNA detection (e.g., specific high sensitivity enzymatic reporter unlocking (SHERLOCK)), tracking and labeling of nucleic acids, enrichment assays (extracting desired sequence from background), detecting circulating tumor DNA, preparing next generation library, drug screening, disease diagnosis and prognosis, and treating various genetic disorders.


DNA/RNA Detection


In one aspect, the CRISPR systems described herein can be used in DNA/RNA detection. Single effector RNA-guided DNases can be reprogrammed with CRISPR RNAs (crRNAs) to provide a platform for specific single-stranded DNA (ssDNA) sensing. Upon recognition of its DNA target, activated Type V single effector DNA-guided DNases engage in “collateral” cleavage of nearby non-targeted ssDNAs. This crRNA-programmed collateral cleavage activity allows the CRISPR systems to detect the presence of a specific DNA by nonspecific degradation of labeled ssDNA.


The collateral ssDNA activity can be combined with a reporter in DNA detection applications such as a method called the DNA Endonuclease-Targeted CRISPR trans reporter (DETECTR) method, which achieves attomolar sensitivity for DNA detection (see, e.g., Chen et al., Science, 360(6387):436-439, 2018), which is incorporated herein by reference in its entirety. One application of using the enzymes described herein is to degrade non-specific ssDNA in an in vitro environment. A “reporter” ssDNA molecule linking a fluorophore and a quencher can also be added to the in vitro system, along with an unknown sample of DNA (either single-stranded or double-stranded). Upon recognizing the target sequence in the unknown piece of DNA, the effector complex cleaves the reporter ssDNA resulting in a fluorescent readout.


In other embodiments, the SHERLOCK method (Specific High Sensitivity Enzymatic Reporter UnLOCKing) also provides an in vitro nucleic acid detection platform with attomolar (or single-molecule) sensitivity based on nucleic acid amplification and collateral cleavage of a reporter ssDNA, allowing for real-time detection of the target. Methods of using CRISPR in SHERLOCK are described in detail, e.g., in Gootenberg, et al. “Nucleic acid detection with CRISPR-Cas13a/C2c2,” Science, 356(6336):438-442 (2017), which is incorporated herein by reference in its entirety.


In some embodiments, the CRISPR systems described herein can be used in multiplexed error-robust fluorescence in situ hybridization (MERFISH). These methods are described in, e.g., Chen et al., “Spatially resolved, highly multiplexed RNA profiling in single cells,” Science, 2015 Apr. 24; 348(6233):aaa6090, which is incorporated herein by reference in its entirety.


Tracking and Labeling of Nucleic Acids


Cellular processes depend on a network of molecular interactions among proteins, RNAs, and DNAs. Accurate detection of protein-DNA and protein-RNA interactions is key to understanding such processes. In vitro proximity labeling techniques employ an affinity tag combined with, a reporter group, e.g., a photoactivatable group, to label polypeptides and RNAs in the vicinity of a protein or RNA of interest in vitro. After UV irradiation, the photoactivatable groups react with proteins and other molecules that are in close proximity to the tagged molecules, thereby labelling them. Labelled interacting molecules can subsequently be recovered and identified. The RNA targeting effector proteins can for instance be used to target probes to selected RNA sequences. These applications can also be applied in animal models for in vivo imaging of diseases or difficult-to culture cell types. The methods of tracking and labeling of nucleic acids are described, e.g., in U.S. Pat. No. 8,795,965; WO 2016205764; and WO 2017070605, each of which is incorporated herein by reference in its entirety.


High-Throughput Screening


The CRISPR systems described herein can be used for preparing next generation sequencing (NGS) libraries. For example, to create a cost-effective NGS library, the CRISPR systems can be used to disrupt the coding sequence of a target gene, and the CRISPR effector transfected clones can be screened simultaneously by next-generation sequencing (e.g., on the Ion Torrent PGM system). A detailed description regarding how to prepare NGS libraries can be found, e.g., in Bell et al., “A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing,” BMC Genomics, 15.1 (2014): 1002, which is incorporated herein by reference in its entirety.


Engineered Cells


Microorganisms (e.g., E. coli, yeast, and microalgae) are widely used for synthetic biology. The development of synthetic biology has a wide utility, including various clinical applications. For example, the programmable CRISPR systems can be used to split proteins of toxic domains for targeted cell death, e.g., using cancer-linked RNA as target transcript. Further, pathways involving protein-protein interactions can be influenced in synthetic biological systems with e.g., fusion complexes with the appropriate effectors such as kinases or enzymes.


In some embodiments, RNA guide sequences that target phage sequences can be introduced into the microorganism. Thus, the disclosure also provides methods of “vaccinating” a microorganism (e.g., a production strain) against phage infection.


In some embodiments, the CRISPR systems provided herein can be used to engineer microorganisms, e.g., to improve yield or improve fermentation efficiency. For example, the CRISPR systems described herein can be used to engineer microorganisms, such as yeast, to generate biofuel or biopolymers from fermentable sugars, or to degrade plant-derived lignocellulose derived from agricultural waste as a source of fermentable sugars. More particularly, the methods described herein can be used to modify the expression of endogenous genes required for biofuel production and/or to modify endogenous genes, which may interfere with the biofuel synthesis. These methods of engineering microorganisms are described e.g., in Verwaal et al., “CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae,” Yeast, 2017 Sep. 8. doi: 10.1002/yea.3278; and Hlavova et al., “Improving microalgae for biotechnology—from genetics to synthetic biology,” Biotechnol. Adv., 2015 Nov. 1; 33:1194-203, each of which is incorporated herein by reference in its entirety.


In some embodiments, the CRISPR systems provided herein can be used to engineer eukaryotic cells or eukaryotic organisms. For example, the CRISPR systems described herein can be used to engineer eukaryotic cells not limited to a plant cell, a fungal cell, a mammalian cell, a reptile cell, an insect cell, an avian cell, a fish cell, a parasite cell, an arthropod cell, an invertebrate cell, a vertebrate cell, a rodent cell, a mouse cell, a rat cell, a primate cell, a non-human primate cell, or a human cell. In some embodiments, eukaryotic cell is in an in vitro culture. In some embodiments, the eukaryotic cell is in vivo. In some embodiments, the eukaryotic cell is ex vivo.


Gene Drives


Gene drive is the phenomenon in which the inheritance of a particular gene or set of genes is favorably biased. The CRISPR systems described herein can be used to build gene drives. For example, the CRISPR systems can be designed to target and disrupt a particular allele of a gene, causing the cell to copy the second allele to fix the sequence. Because of the copying, the first allele will be converted to the second allele, increasing the chance of the second allele being transmitted to the offspring. A detailed method regarding how to use the CRISPR systems described herein to build gene drives is described, e.g., in Hammond et al., “A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae,” Nat. Biotechnol., 2016 January; 34(1):78-83, which is incorporated herein by reference in its entirety.


Pooled-Screening


As described herein, pooled CRISPR screening is a powerful tool for identifying genes involved in biological mechanisms such as cell proliferation, drug resistance, and viral infection. Cells are transduced in bulk with a library of RNA guide-encoding vectors described herein, and the distribution of gRNAs is measured before and after applying a selective challenge. Pooled CRISPR screens work well for mechanisms that affect cell survival and proliferation, and they can be extended to measure the activity of individual genes (e.g., by using engineered reporter cell lines). Arrayed CRISPR screens, in which only one gene is targeted at a time, make it possible to use RNA-seq as the readout. In some embodiments, the CRISPR systems as described herein can be used in single-cell CRISPR screens. A detailed description regarding pooled CRISPR screenings can be found, e.g., in Datlinger et al., “Pooled CRISPR screening with single-cell transcriptome read-out,” Nat. Methods., 2017 March; 14(3):297-301, which is incorporated herein by reference in its entirety.


Saturation Mutagenesis (“Bashing”)


The CRISPR systems described herein can be used for in situ saturating mutagenesis. In some embodiments, a pooled RNA guide library can be used to perform in situ saturating mutagenesis for particular genes or regulatory elements. Such methods can reveal critical minimal features and discrete vulnerabilities of these genes or regulatory elements (e.g., enhancers). These methods are described, e.g., in Canver et al., “BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis,” Nature, 2015 Nov. 12; 527(7577):192-7, which is incorporated herein by reference in its entirety.


Therapeutic Applications


In some embodiments, the CRISPR systems described herein can be used to edit a target nucleic acid to modify the target nucleic acid (e.g., by inserting, deleting, or mutating one or more amino acid residues). For example, in some embodiments the CRISPR systems described herein comprise an exogenous donor template nucleic acid (e.g., a DNA molecule or an RNA molecule), which comprises a desirable nucleic acid sequence. Upon resolution of a cleavage event induced with the CRISPR system described herein, the molecular machinery of the cell can utilize the exogenous donor template nucleic acid in repairing and/or resolving the cleavage event. Alternatively, the molecular machinery of the cell can utilize an endogenous template in repairing and/or resolving the cleavage event. In some embodiments, the CRISPR systems described herein may be used to modify a target nucleic acid resulting in an insertion, a deletion, and/or a point mutation). In some embodiments, the insertion is a scarless insertion (i.e., the insertion of an intended nucleic acid sequence into a target nucleic acid resulting in no additional unintended nucleic acid sequence upon resolution of the cleavage event). Donor template nucleic acids may be double-stranded or single-stranded nucleic acid molecules (e.g., DNA or RNA). Methods of designing exogenous donor template nucleic acids are described, for example, in WO 2016094874, the entire contents of which is expressly incorporated herein by reference.


In another aspect, the disclosure provides the use of a system described herein in a method selected from the group consisting of RNA sequence specific interference; RNA sequence-specific gene regulation; screening of RNA, RNA products, lncRNA, non-coding RNA, nuclear RNA, or mRNA; mutagenesis; inhibition of RNA splicing; fluorescence in situ hybridization; breeding; induction of cell dormancy; induction of cell cycle arrest; reduction of cell growth and/or cell proliferation; induction of cell anergy; induction of cell apoptosis; induction of cell necrosis; induction of cell death; or induction of programmed cell death.


The CRISPR systems described herein can have various therapeutic applications. In some embodiments, the new CRISPR systems can be used to treat various diseases and disorders, e.g., genetic disorders (e.g., monogenetic diseases) or diseases that can be treated by nuclease activity (e.g., Pcsk9 targeting or BCL1 la targeting). In some embodiments, the methods described here are used to treat a subject, e.g., a mammal, such as a human patient. The mammalian subject can also be a domesticated mammal, such as a dog, cat, horse, monkey, rabbit, rat, mouse, cow, goat, or sheep.


The methods can include the condition or disease being infectious, and wherein the infectious agent is selected from the group consisting of human immunodeficiency virus (HIV), herpes simplex virus-1 (HSV1), and herpes simplex virus-2 (HSV2).


In one aspect, the CRISPR systems described herein can be used for treating a disease caused by overexpression of RNAs, toxic RNAs and/or mutated RNAs (e.g., splicing defects or truncations). For example, expression of the toxic RNAs may be associated with the formation of nuclear inclusions and late-onset degenerative changes in brain, heart, or skeletal muscle. In some embodiments, the disorder is myotonic dystrophy. In myotonic dystrophy, the main pathogenic effect of the toxic RNAs is to sequester binding proteins and compromise the regulation of alternative splicing (see, e.g., Osborne et al., “RNA-dominant diseases,” Hum. Mol. Genet., 2009 Apr. 15; 18(8):1471-81). Myotonic dystrophy (dystrophia myotonica (DM)) is of particular interest to geneticists because it produces an extremely wide range of clinical features. The classical form of DM, which is now called DM type 1 (DM1), is caused by an expansion of CTG repeats in the 3′-untranslated region (UTR) of DMPK, a gene encoding a cytosolic protein kinase. The CRISPR systems as described herein can target overexpressed RNA or toxic RNA, e.g., the DMPK gene or any of the mis-regulated alternative splicing in DM1 skeletal muscle, heart, or brain.


The CRISPR systems described herein can also target trans-acting mutations affecting RNA-dependent functions that cause various diseases such as, e.g., Prader Willi syndrome, Spinal muscular atrophy (SMA), and Dyskeratosis congenita. A list of diseases that can be treated using the CRISPR systems described herein is summarized in Cooper et al., “RNA and disease,” Cell, 136.4 (2009): 777-793, and WO 2016205764, each of which is incorporated herein by reference in its entirety.


The CRISPR systems described herein can also be used in the treatment of various tauopathies, including, e.g., primary and secondary tauopathies, such as primary age-related tauopathy (PART)/Neurofibrillary tangle (NFT)-predominant senile dementia (with NFTs similar to those seen in Alzheimer Disease (AD), but without plaques), dementia pugilistica (chronic traumatic encephalopathy), and progressive supranuclear palsy. A useful list of tauopathies and methods of treating these diseases are described, e.g., in WO 2016205764, which is incorporated herein by reference in its entirety.


The CRISPR systems described herein can also be used to target mutations disrupting the cis-acting splicing codes that can cause splicing defects and diseases. These diseases include, e.g., motor neuron degenerative disease that results from deletion of the SMN1 gene (e.g., spinal muscular atrophy), Duchenne Muscular Dystrophy (DMD), frontotemporal dementia, and Parkinsonism linked to chromosome 17 (FTDP-17), and cystic fibrosis.


The CRISPR systems described herein can further be used for antiviral activity, in particular, against RNA viruses. The effector proteins can target the viral RNAs using suitable RNA guides selected to target viral RNA sequences.


Furthermore, in vitro RNA sensing assays can be used to detect specific RNA substrates. The RNA targeting effector proteins can be used for RNA-based sensing in living cells. Examples of applications are diagnostics by sensing of, for examples, disease-specific RNAs.


A detailed description of therapeutic applications of the CRISPR systems described herein can be found, e.g., in U.S. Pat. No. 8,795,965, EP 3009511, WO 2016205764, and WO 2017070605, each of which is incorporated herein by reference in its entirety.


Applications in Plants


The CRISPR systems described herein have a wide variety of utility in plants. In some embodiments, the CRISPR systems can be used to engineer genomes of plants (e.g., improving production, making products with desired post-translational modifications, or introducing genes for producing industrial products). In some embodiments, the CRISPR systems can be used to introduce a desired trait to a plant (e.g., with or without heritable modifications to the genome) or regulate expression of endogenous genes in plant cells or whole plants.


In some embodiments, the CRISPR systems can be used to identify, edit, and/or silence genes encoding specific proteins, e.g., allergenic proteins (e.g., allergenic proteins in peanuts, soybeans, lentils, peas, green beans, and mung beans). A detailed description regarding how to identify, edit, and/or silence genes encoding proteins is described, e.g., in Nicolaou et al., “Molecular diagnosis of peanut and legume allergy,” Curr. Opin. Allergy Clin. Immunol., 11(3):222-8 (2011) and WO 2016205764, each of which is incorporated herein by reference in its entirety.


Delivery of CRISPR Systems


Through this disclosure and knowledge in the art, the CRISPR systems described herein, components thereof, nucleic acid molecules thereof, or nucleic acid molecules encoding or providing components thereof can be delivered by various delivery systems such as vectors, e.g., plasmids or viral delivery vectors. The CRISPR effectors and/or any of the RNAs (e.g., RNA guides) disclosed herein can be delivered using suitable vectors, e.g., plasmids or viral vectors, such as adeno-associated viruses (AAV), lentiviruses, adenoviruses, and other viral vectors, or combinations thereof. An effector and one or more RNA guides can be packaged into one or more vectors, e.g., plasmids or viral vectors.


In some embodiments, vectors, e.g., plasmids or viral vectors, are delivered to the tissue of interest by, e.g., intramuscular injection, intravenous administration, transdermal administration, intranasal administration, oral administration, or mucosal administration. Such delivery may be either via one dose or multiple doses. One skilled in the art understands that the actual dosage to be delivered herein may vary greatly depending upon a variety of factors, including, but not limited to, the vector choices, the target cells, organisms, tissues, the general conditions of the subject to be treated, the degrees of transformation/modification sought, the administration routes, the administration modes, and the types of transformation/modification sought.


In certain embodiments, delivery is via adenoviruses, which can be one dose containing at least 1×105 particles (also referred to as particle units, pu) of adenoviruses. In some embodiments, the dose preferably is at least about 1×106 particles, at least about 1×107 particles, at least about 1×108 particles, and at least about 1×109 particles of the adenoviruses. The delivery methods and the doses are described, e.g., in WO 2016205764 and U.S. Pat. No. 8,454,972, each of which is incorporated herein by reference in its entirety.


In some embodiments, delivery is via plasmids. The dosage can be a sufficient number of plasmids to elicit a response. In some cases, suitable quantities of plasmid DNA in plasmid compositions can be from about 0.1 to about 2 mg. Plasmids will generally include (i) a promoter; (ii) a sequence encoding a nucleic acid-targeting CRISPR effector, operably linked to the promoter; (iii) a selectable marker; (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii). The plasmids can also encode the RNA components of a CRISPR complex, but one or more of these may instead be encoded on different vectors. The frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), or a person skilled in the art.


In another embodiment, delivery is via liposomes or lipofectin formulations or the like and can be prepared by methods known to those skilled in the art. Such methods are described, for example, in WO 2016205764, U.S. Pat. Nos. 5,593,972, 5,589,466, and 5,580,859, each of which is incorporated herein by reference in its entirety.


In some embodiments, delivery is via nanoparticles or exosomes. For example, exosomes have been shown to be particularly useful in delivery RNA.


Further means of introducing one or more components of the CRISPR systems described herein to a cell is by using cell-penetrating peptides (CPP). In some embodiments, a cell penetrating peptide is linked to a CRISPR effector. In some embodiments, a CRISPR effector and/or RNA guide is coupled to one or more CPPs for transportation into a cell (e.g., plant protoplasts). In some embodiments, the CRISPR effector and/or RNA guide(s) are encoded by one or more circular or non-circular DNA molecules that are coupled to one or more CPPs for cell delivery.


CPPs are short peptides of fewer than 35 amino acids derived either from proteins or from chimeric sequences capable of transporting biomolecules across cell membrane in a receptor independent manner. CPPs can be cationic peptides, peptides having hydrophobic sequences, amphipathic peptides, peptides having proline-rich and anti-microbial sequences, and chimeric or bipartite peptides. Examples of CPPs include, e.g., Tat (which is a nuclear transcriptional activator protein required for viral replication by HIV type 1), penetratin, Kaposi fibroblast growth factor (FGF) signal peptide sequence, integrin β3 signal peptide sequence, polyarginine peptide Args sequence, Guanine rich-molecular transporters, and sweet arrow peptide. CPPs and methods of using them are described, e.g., in Hällbrink et al., “Prediction of cell-penetrating peptides,” Methods Mol. Biol., 2015; 1324:39-58; Ramakrishna et al., “Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA,” Genome Res., 2014 June;24(6):1020-7; and WO 2016205764, each of which is incorporated herein by reference in its entirety.


Various delivery methods for the CRISPR systems described herein are also described, e.g., in U.S. Pat. No. 8,795,965, EP 3009511, WO 2016205764, and WO 2017070605, each of which is incorporated herein by reference in its entirety.


EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.


Example 1—Identification of Components of CLUST.133120 CRISPR-Cas System

This protein family was identified using the computational methods described above. The CLUST.133120 system comprises single effectors associated with CRISPR systems found in uncultured metagenomic sequences collected from freshwater, wastewater, soil, and rhizosphere environments (TABLE 2). Exemplary CLUST.133120 effectors include those shown in TABLES 2 and 3, below. Examples of direct repeat sequences for these systems are shown in TABLE 4. Optionally, the system includes a tracrRNA that is contained in a non-coding sequence listed in TABLE 5.









TABLE 2







Representative CLUST.133120 Effector Proteins













#
effector
SEQ


source
effector accession
spacers
size (aa)
ID NO














terrestrial-soil
3300027740|Ga0214474_1000103_17|M
3
498
1


aquatic-non marine saline
3300017971|Ga0180438_10084474_2|M
4
517
2


and alkaline-hypersaline


lake sediment


aquatic-freshwater
3300022592|Ga0236342_1001376_7|P
4
756
3


aquatic-freshwater-
3300020171|Ga0180732_1000630_46|P
6
487
4


groundwater


aquatic-freshwater-
3300018040|Ga0187862_10024620_1|M
9
580
5


peatland


aquatic-marine-marine
3300005253|Ga0073583_1150562_58|P
20
511
6


sediment


aquatic-marine-marine
3300005253|Ga0073583_1150562_51|M
20
492
7


sediment


marine sediment
LAZR01002400_19|P
20
511
8


metagenome


marine sediment
LAZR01002400_15|M
20
492
9


metagenome


marine sediment
SDBU01080949_7|P
2
511
10


metagenome


marine sediment
SDBU01080949_6|M
2
492
11


metagenome


marine sediment
SDBV01087475_1|P
17
511
12


metagenome


marine sediment
SDBV01087475_1|M
17
492
13


metagenome


marine sediment
SRR2657585_2135055_9|M
11
484
14


metagenome


marine sediment
SRR2657585_2135055_8|P
11
506
15


metagenome


marine sediment
SRR2657585_1667169_1|M
4
532
16


metagenome


marine sediment
SRR8451930_3283449_6|P
8
511
17


metagenome


marine sediment
SRR8451930_3283449_6|M
8
492
18


metagenome


marine sediment
SRR8452060_665073_11|P
17
511
19


metagenome


marine sediment
SRR8452060_665073_10|M
17
492
20


metagenome


microbial mat metagenome
SRR6448207_2353026_47|M
3
605
21


peat metagenome
SRR7004342_2720286_9|P
19
645
22


peat metagenome
SRR7004342_2720286_9|M
19
616
23


permafrost metagenome
SRR6491179_278020_2|M
5
733
24


plants-rhizosphere-carex
3300028800|Ga0265338_10000470_38|P
58
651
25


aquatilis


plants-rhizosphere-carex
3300031235|Ga0265330_10003750_4|P
39
651
26


aquatilis


plants-rhizosphere-carex
3300031241|Ga0265325_10000012_120|M
58
651
27


aquatilis


plants-rhizosphere-carex
3300031242|Ga0265329_10001065_5|P
44
651
28


aquatilis


plants-rhizosphere-carex
3300031247|Ga0265340_10001032_18|P
29
651
29


aquatilis


plants-rhizosphere-carex
3300031250|Ga0265331_10001842_6|P
44
651
30


aquatilis


plants-rhizosphere-carex
3300031344|Ga0265316_10000001_557|P
53
651
31


aquatilis


plants-rhizosphere-spartina
3300031733|Ga0316577_10033675_3|M
7
505
32


alterniflora


rhizosphere metagenome
SRR8543844_2229942_334|P
58
651
33


rhizosphere metagenome
SRR8543847_1991039_375|P
58
651
34


rhizosphere metagenome
SRR8543989_2137428_34|M
58
651
35


rhizosphere metagenome
SRR8543995_2079833_6|M
51
651
36


rhizosphere metagenome
SRR8544146_618080_5|P
24
651
37


sediment metagenome
SRR6963591_1323413_2|M
3
517
38


soil metagenome
SRR7976138_3273187_71|P
20
571
39


soil metagenome
SRR7976138_3273187_70|M
20
582
40


terrestrial-soil
3300012943|Ga0164241_10000441_40|P
20
571
41


terrestrial-soil
3300012943|Ga0164241_10000441_39|M
20
582
42


terrestrial-soil
3300031949|Ga0214473_10000008_352|M
53
691
43


terrestrial-soil
3300031965|Ga0326597_10001868_12|M
9
404
44


terrestrial-soil-arctic peat
3300006795|Ga0075520_1037237_1|M
4
559
45


soil


terrestrial-soil-bog
3300014491|Ga0182014_10039677_1|P
5
733
46


terrestrial-soil-bog
3300014491|Ga0182014_10071250_1|M
2
559
47


terrestrial-soil-tropical
3300017975|Ga0187782_10004712_9|P
20
645
48


peatland


terrestrial-soil-tropical
3300017975|Ga0187782_10004712_9|M
20
616
49


peatland


wetland metagenome
SRR7027835_762984_1|M
9
580
50
















TABLE 3





Amino acid sequences of Representative CLUST.133120 Effector Proteins















>3300027740|Ga0214474_1000103_17|M


[terrestrial-soil]


MTTKVFKYGALPVTLDSEIRKKMKLAREYYNQLVEAENGRRKTVWGGERPKQPPHEHKDEPVCEECKKHWKDIRDKYFATPPLDIK


PLRAKASEAGLYWGTYLIIEESFSAAWKKTDGLSTVRYKSWRDGGIMGVQLQQAHSANGFYRIEQAPDPRKGRKAGQRHAVKIRIG


TRENKPVWSEPIAFEMHRPLQGRPTWVKICYFYRGEREIWSVNITCTDVPERALPDTAKVLAIDIGWRVMSDDSIRAAYARDENGN


ESELLFDSRWRECGDRADRIRSARDDRLNELKKKDTRFSLIKKPSGIRGYVAKNSIEDTEVTEWIKQDRHLEQYELGCRRRSVAVR


KEKLRVWLSSLRKQYATAIIKDSSHKEMKAAKRAKADGMPPPARRNAHHGAPGEIVEEICRAFGRQTNIAIVEAPGTTATCASCGQ


EMEIGAELMITCERCNAREDRDCISTRNMLRLYASGNCKKPTARKTIARFAKRHKNYVEPNQCQRDGL (SEQ ID NO: 1)





>3300017971|Ga0180438_10084474_2|M


[aquatic-non marine saline and alkaline-hypersaline lake sediment]


MKVFKYGARPVNQESLIRDQMKLARNYYNKLVETENKRRQQAWGSEKPPPPPHPPEEVVLPDGSKKTKWCRCEECKTHWKTLREAY


YALDNLDKKPLRAAASSWGLYWGSYLLVEQAFDQAQKTTVYYDPVRFRGWRKGGQAGLQIQNGKNTDSLFKVEEIPDPEPSARSKK


NDRRAGKGKRRGQLRTLRIRIGTEGRTPIWSDPIIFKMHRPLEGTVCWLKICMFYRGDREIWSVNFTCKDTSPRTDSATDGVVAID


VSWRQLPNGDIRLAYARGDNGFEDELTLDNSWLERIKKAERIQSHRDERLNDLKTSDSRFRLFKSPRSARIHIMKNQIAELEDWAK


REKHLEQYELGCKRKTYDVRRDAVRVWLRKLRRLYQTVVIKDSSHKEMKEQAKAKKKLHRAARKQGHHGAPGEIVEEICKVFGRIE


NVAVVIAENTTATCPVCGHMHEVNKERMITCERCGTTDDRDRISTHNLLSRFFDGQYEKPTARKTESKFAKKHKKVEQEVKHLRDG


L (SEQ ID NO: 2)





>3300022592|Ga0236342_1001376_7|P


[aquatic-freshwater]


MIKLLTYDGDCVFVHAGDTTLKTTKAFTHGTIVFDEKARTVTFGKTDAVALPDDLSLKENATLNFQLVAPDGTLRKQVRSGILKAN


EKQPGLLHISGMAKSPRRYAAEDGWGNAIYKYRAYFTHPGLNTDGELPEWLKGSIHRQKAFWNQLAWLCRDARRNCSPVPTEEIIA


FVQQTILPEIDAFNDSLGRSKDKMKHPAKLKKEDPGIDNLWHFVGELRTRIAKGRAVPDGLLEKVITFAQQYKPDYTPLNEFLNHF


TEIAETEAAALKLRRFEIRPTMTAFRASLNRRQTNKSTWSEGWPLIKYPDSPKADDWSLNYYLNKAAVDAAGLESGVNVGGLSFGP


ALEPAATGHANLHGDAAKRKMREAEISILGPDKEPWKFRFGVLQHRPLPENSHIKEWKLLFHNGALWLDIVVELQRPLPATGGLTA


GLEIGWRRTEEGIRFGTLYEPVRSTIRELTIDLQRSPKDQKDRVPFRIDMGPNRWEKRNIARLFLKHKPGEELKFSKASDSIRQIA


ALFPDWKAGDMVPNMLGVRDVLQRRRDAAMQTTKIQMRQHLGEQTPAWLDKAGRRGLLRLQEELKDDAKAQAILNPWWVNDEVIGK


LARFYTARSVRRMEYGQMQVAHDVCRYLRDNGVSRLIVEAKFLAKVAQQQDSNDPVVLQLSQKYRQFSASAKFLAFLKNTAAKYGI


VIDTHVALNISRICHYCDHLNPPTAKESYQCEKCKRVVKQDPNAAINLARFGSDPELAEMAAQAGRVE (SEQ ID NO: 3)





>3300020171|Ga0180732_1000630_46|P


[aquatic-freshwater-groundwater]


MRLGRECYNALVEVENARRHLAWGGDIPPKPPHPLPLTODGDENDDETAWCRCAECKAHWMGIREALHALPPIDTKPIYAHYCTNG


PLYWGTFNHVAQAFSAAWKKTRPWRPVKYRSWRQGGVIAVQIQAGYQKRQNYDTLFRINDVVDTRTRHRHKGHHRATVQLALGAGR


MTSPIEIEQHRPIVGTPTWVTARLCYDSLGRERAAVNFTRRDVPQRTDLAPRGVVAVDVSWRQVPDGLRIAWTRDDQGHNDQLVLD


TRWQFLAKHADQLQAIRDQNLNLLKAVDPAFAQAKSPRHACLILAEIEDPSAVARAWRYREEHLRNYEMGERRHSVNRRRDALRKW


ARELRRNYAEVVVKDSQHKEMKETAKQDKLSRKARRQGQHGAPGEVIAVLREIFGDDGMWLVEAAYTTDRCPLCGHLNAHGAERIV


VCEECGEGLDRDLVSTRNMLVAYAAEERRRPTARKTAARFGKRHKTSTSLDNASPAA (SEQ ID NO: 4)





>3300018040|Ga0187862_10024620_1|M


[aquatic-freshwater-peatland]


MAWLCRETRLKCSPVPTDKIVDFVQNAILPEIDAFNSAPGRSRERMKHPAKLKIETPGLDCLWGFVGELRARTGKGRAVPAGLLDK


VVEFAQQFKTDYTPFNEFIAGFQAIAEREAAALGLRHFEIRPTVGAFKAVLDRRKTTKAHWSEGWPLIKYPDSPKAANWGLHYHLN


KAGVDSALLEREEGIPGLSFGPRLKPADTGHEKLTGVAAKRILREAQISISGDNDERWTFHFGVLQHRPLPPNSHLKEWKLIFQGG


ALWLCLVVELQRPVPVPGPHPAGLDIGWRRTEEGIRFGTLYEPATKTIRELTVDLQKSPCDHKDRVPFRIDLGPSRWEMRNATELV


PDWKPGQPIPSAFETRSVLQIRRDRIKETAKRQLREHLGERLPVWFDKAGRRGLLKLAQDFKNESAVCEILNIWQQKDEQLGKLAS


MYFDRSTKRIEYGHAQVAHDVCRFLQQKGVMRLIVETSFLSKVSQHQDNEDLVSIERSQKYRQFVAVGKFLAALKNTTRKYGIVVE


TVNAMNTTRTCQYCNALNPRTEEEQFTCKRCGRQVQQDHNAAVNLSRFGSDPVLAEMALHADEV (SEQ ID NO: 5)





>3300005253|Ga0073583_1150562_58|P


[aquatic-marine-marine sediment]


MTKVYKYGALPGGDTLCAQMNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRA


HYKALRKQYRSEPPLDVKPFRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPD


PRKKKQQRYTLRLRVGSKGQAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKT


DDGMRIAYARGDDGAEYELVLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEH


TKWIKKERHLWQYEAGCRNRSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGR


ITGVSVVCAVDTTNHCPACSFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ


ID NO: 6)





>3300005253|Ga0073583_1150562_51|M


[aquatic-marine-marine sediment]


MNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRAHYKALRKQYRSEPPLDVKP


FRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPDPRKKKQQRYTLRLRVGSKG


QAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKTDDGMRIAYARGDDGAEYEL


VLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEHTKWIKKERHLWQYEAGCRN


RSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGRITGVSVVCAVDTTNHCPAC


SFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ ID NO: 7)





>LAZR01002400_19|P


[marine sediment metagenome]


MTKVYKYGALPGGDTLCAQMNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRA


HYKALRKQYRSEPPLDVKPFRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPD


PRKKKQQRYTLRLRVGSKGQAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKT


DDGMRIAYARGDDGAEYELVLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEH


TKWIKKERHLWQYEAGCRNRSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGR


ITGVSVVCAVDTTNHCPACSFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ


ID NO: 8)





>LAZR01002400_15|M


[marine sediment metagenome]


MNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRAHYKALRKQYRSEPPLDVKP


FRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPDPRKKKQQRYTLRLRVGSKG


QAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKTDDGMRIAYARGDDGAEYEL


VLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEHTKWIKKERHLWQYEAGCRN


RSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGRITGVSVVCAVDTTNHCPAC


SFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ ID NO: 9)





>SDBU01080949_7|P


[marine sediment metagenome]


MTKVYKYGALPGGDTLCAQMNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRA


HYKALRKQYRSEPPLDVKPFRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPD


PRKKKQQRYTLRLRVGSKGQAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKT


DDGMRIAYARGDDGAEYELVLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEH


TKWIKKERHLWQYEAGCRNRSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGR


ITGVSVVCAVDTTNHCPACSFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ


ID NO: 10)





>SDBU01080949_6|M


[marine sediment metagenome]


MNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRAHYKALRKQYRSEPPLDVKP


FRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPDPRKKKQQRYTLRLRVGSKG


QAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKTDDGMRIAYARGDDGAEYEL


VLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEHTKWIKKERHLWQYEAGCRN


RSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGRITGVSVVCAVDTTNHCPAC


SFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ ID NO: 11)





>SDBV01087475_1|P


[marine sediment metagenome]


MTKVYKYGALPGGDTLCAQMNLGRVYYNSLVEVENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRA


HYKALRKQYRSEPPLDVKPFRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPD


PRKKKQQRYTLRLRVGSKGQAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKT


DDGMRIAYARGDDGAEYELVLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEH


TKWIKKERHLWQYEAGCRNRSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGR


ITGVSVVCAVDTTNHCPACSFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ


ID NO: 12)





>SDBV01087475_1|M


[marine sediment metagenome]


MNLGRVYYNSLVEVENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRAHYKALRKQYRSEPPLDVKP


FRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPDPRKKKQQRYTLRLRVGSKG


QAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKTDDGMRIAYARGDDGAEYEL


VLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEHTKWIKKERHLWQYEAGCRN


RSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGRITGVSVVCAVDTTNHCPAC


SFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ ID NO: 13)





>SRR2657585_2135055_9|M


[marine sediment metagenome]


MKLGREYYNALVEVENKRRQKAWGAETVPAPPHEDCKLPKCLECRDHWRAIRKRVRDEPLIDFKPLRAEFADRGLYWGTYLCIEDA


FARAWKDRDSLRLVKFRSWRHGGIAGVQIQKATWQRSMGTTMFETASAGDTRTGRRARFGGRRVARLRIGSEDRAPLWCEDVPYEQ


HRAIEGRVTWVKIAMKYRGDREIWSVTFTCSDVPERPASDEAARGVVAVDVGWRRIDDDLRIAYARSDQGVVSELRMGPRWRELWE


RADRIRGHRDDHHNELLASGVEVPGQSRSANGLRSDIEKLIAAGENVGPELLAWMHRDRHLAQYETGCRRRSVDCRTDAMRKWARE


LRRTYATVVLKKTSTKKQKETAKENGLVPPARRQGQHAAPGEVLEYLTTTFGRDRTFLVKSKDTTNQCCRCGHVNNHGPETIITCE


QCGDAIDRDEASTQNMMELWVASECEEPTARKTTARFVKRHRKEGSPDNASPPA (SEQ ID NO: 14)





>SRR2657585_2135055_8|P


[marine sediment metagenome]


MATRVYKFGARSPGEATLLRAQMKLGREYYNALVEVENKRRQKAWGAETVPAPPHEDCKLPKCLECRDHWRAIRKRVRDEPLIDFK


PLRAEFADRGLYWGTYLCIEDAFARAWKDRDSLRLVKFRSWRHGGIAGVQIQKATWQRSMGTTMFETASAGDTRTGRRARFGGRRV


ARLRIGSEDRAPLWCEDVPYEQHRAIEGRVTWVKIAMKYRGDREIWSVTFTCSDVPERPASDEAARGVVAVDVGWRRIDDDLRIAY


ARSDQGVVSELRMGPRWRELWERADRIRGHRDDHHNELLASGVEVPGQSRSANGLRSDIEKLIAAGENVGPELLAWMHRDRHLAQY


ETGCRRRSVDCRTDAMRKWARELRRTYATVVLKKTSTKKQKETAKENGLVPPARRQGQHAAPGEVLEYLTTTFGRDRTFLVKSKDT


TNQCCRCGHVNNHGPETIITCEQCGDAIDRDEASTQNMMELWVASECEEPTARKTTARFVKRHRKEGSPDNASPPA (SEQ ID


NO: 15)





>SRR2657585_1667169_1|M


[marine sediment metagenome]


MKVYKFGALRPTENLDKFFEQTQMAHALYQRMVEERNAEREAALEPFKPFSPPHENCYEKRLAAAREKSKQTKKRVKIKRCKKCDD


YWIPIYKEAYKTLEFYKKPTCKEMTAEGLYWGTYQLIAEAFDRADDDTKLMRSIKYRKWPTVKHAVRVQIQDPDKAESYFRVEVVP


DRFDRWREERKRPMPWRVLWIRVGSDGRKPIWLKVPYKEHRPIDGRVTHVTVQRYFIADRERWEVLFTCKSEAERRDSATKGLVAV


DVGWRKMDDGSIRCAYAQDVEGNVSELRLPPEWIERITRADRIRGHRDENLNALLETAGSSLTHGIRSWAGVRRAYRRHLEAGGEK


IAEVEEALKRDRHLWQYELGNRVRAERRRRNDFRVWARELRRCYAVIVTKNTSHKEVKEKANKGPKKLPQKARNQGQHAAPGELIE


TLRRVFGWEGPKITGNALEVSAENTSRICAKCFHENEGSEKRIVVCEKCGVKDDRDHRSTRNMLRDVAAMKVTFGTARKRPSKYAN


RHKKKESSSNASETAS (SEQ ID NO: 16)





>SRR8451930_3283449_6|P


[marine sediment metagenome]


MTKVYKYGALPGGDTLCAQMNLGRVYYNSLVEVENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRA


HYKALRKQYRSEPPLDVKPFRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPD


PRKKKQQRYTLRLRVGSKGQAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKT


DDGMRIAYARGDDGAEYELVLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEH


TKWIKKERHLWQYEAGCRNRSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGR


ITGVSVVCAVDTTNHCPACSFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ


ID NO: 17)





>SRR8451930_3283449_6|M


[marine sediment metagenome]


MNLGRVYYNSLVEVENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRAHYKALRKQYRSEPPLDVKP


FRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPDPRKKKQQRYTLRLRVGSKG


QAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKTDDGMRIAYARGDDGAEYEL


VLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEHTKWIKKERHLWQYEAGCRN


RSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGRITGVSVVCAVDTTNHCPAC


SFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ ID NO: 18)





>SRR8452060_665073_11|P


[marine sediment metagenome]


MTKVYKYGALPGGDTLCAQMNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRA


HYKALRKQYRSEPPLDVKPFRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPD


PRKKKQQRYTLRLRVGSKGQAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKT


DDGMRIAYARGDDGAEYELVLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEH


TKWIKKERHLWQYEAGCRNRSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGR


ITGVSVVCAVDTTNHCPACSFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ


ID NO: 19)





>SRR8452060_665073_10|M


[marine sediment metagenome]


MNLGRVYYNSLVEAENERRTTMWGGDRPPSPATHVCKKSCSTCDKAESKKRKPRKHECKKFCPVCRAHYKALRKQYRSEPPLDVKP


FRKKAAEGGLYWGTYLVIEQDFSAAWKETESFSLVKFRSWRQGDMCAVQIQRDKDPDRMFLIKSAPDPRKKKQQRYTLRLRVGSKG


QAPVWAEPLPFEMHRPLQGTATWVKIARKYVADRVIWSVQFTRRDIPERKDNAERGAVAIDVGWRKTDDGMRIAYARGDDGAEYEL


VLPPKWMKHADQADRIRSARDQNLVELQKQERFWSVILAVCGFSNKKLFARLKSTLSVRRVAKPGEHTKWIKKERHLWQYEAGCRN


RSVTRRRNDVRVWLRDLRRRYAHAVIKDSCHKKMKENKTSLPKPARRQGHHAAPGEVIEEITRVFGRITGVSVVCAVDTTNHCPAC


SFVNSYGPERVVTCGGCGVVEDRDRVSTQNMMNMYAIGNVRNPTTRKSTPRFAKKHKDPEAP (SEQ ID NO: 20)





>SRR6448207_2353026_47|M


[microbial|Mat metagenome]


MTTTKVLKFWCEPADDDSKELLMQQISLGYTYARSLDDAENTRRRSFRDHLMDVTPFKEAENELTALYESTSKENRDDAFRTKVEL


LRSAKKDVYISSKTTEPFVSKIKEDQDRYRAEVRRIRADLGPRGHGLSFGSYQHEEDAHLQSKSTRAPYLPLIRKRLPKEGTFAVH


LQSEYKAPIQNVLDGSCRWVSIGSEMYSISRKVKYGSRTRDDSKSRGRRLRQVSLRVSGKGGDTKLIKVHALIHRMPVTGTVVWAR


IHTQRTGRKLRYSLQISVDNPVFPADVKNIRTAKSGVIGIDLGWRETDEGFLIATASEQNGNQLPPLIIPKEVALRGITHQRIDSR


CETLQSTRDQKFNDIINRIRHVRDSAADWFREHTQHCHKWRSPGKVVGLFSKWRNNRWNGDDEIFDATSAFIKKDGHLWDWEAHNR


TRMSRQIRGTYQRWADILASNYAEIRIENLDIKQAAEDFRKKAESEHQKDNNKSKSPLIDTRAKLQLAHVGHSLVRSCNRNECNLG


RVDKRYTSRKCHLCGTKGKKTSDKLVFCKNKECALYNCAVDRDIRAALNIASSEVLEWVAGPLAAPKEPKERKNPRRRTKQAETIS


AAA (SEQ ID NO: 21)





>SRR7004342_2720286_9|P


[peat metagenome]


MATKVLKFYCVPASARDNQLLCEQVKLGSMYRRDLAWIENRARELRRAIADWPARDVPIEKRSEWWKSDVGRAASKAWHESDECKR


LKKSITDGQIQAATAARKKARRFDTAWGTCGLAAEAAEAARVALEKEFGLIDKETGQTTFVNTKFPSDEGRVGVQFQRDTDKIDEE


TGEVIPAKKPTIYADELIGGSHNFCRIGSARYSLLDRVDGFQPAALDASGAPIDSFGYKSKQPKGKRFHLLQIRVGTVDKRSTAYP


FDLDPDKGEPIWAKLHVLLHQKTKRPQTLPHERVKWVFVQRVRCALRYRWSVCFVIEDSVVQKPHEQPNDRVAVDLGWRQLFDESG


TPAGIRLLYWMATSPLDLNDPSSPVEGQLVIPQHVVDRKPFSSQLESNRTKNREAMQAMLLAYLQSVSSATWLAKRTAQLASWKKP


SKFVLLLNEWRKNRIAGDQAAFAALEAWNKQDAHLYLWSAPNITKMQRQIQGRVDQFAVQLARRYGIVIVENFKLPDVIEKKDLQE


QDQDAQKLRKKNARRVNVVAPGRARAALKRFATKYNSHYIEEESAFTTVDCASCGHRREFDLKNARAQLLLACDNCGVVEDQDRTA


ARNLLAGASAIARGENGWPLEAKVSKASKKKVVLRRTRKRIVV (SEQ ID NO: 22)





>SRR7004342_2720286_9|M


[peat metagenome]


MYRRDLAWIENRARELRRAIADWPARDVPIEKRSEWWKSDVGRAASKAWHESDECKRLKKSITDGQIQAATAARKKARRFDTAWGT


CGLAAEAAEAARVALEKEFGLIDKETGQTTFVNTKFPSDEGRVGVQFQRDTDKIDEETGEVIPAKKPTIYADELIGGSHNFCRIGS


ARYSLLDRVDGFQPAALDASGAPIDSFGYKSKQPKGKRFHLLQIRVGTVDKRSTAYPFDLDPDKGEPIWAKLHVLLHQKTKRPQTL


PHERVKWVFVQRVRCALRYRWSVCFVIEDSVVQKPHEQPNDRVAVDLGWRQLFDESGTPAGIRLLYWMATSPLDLNDPSSPVEGQL


VIPQHVVDRKPFSSQLESNRTKNREAMQAMLLAYLQSVSSATWLAKRTAQLASWKKPSKFVLLLNEWRKNRIAGDQAAFAALEAWN


KQDAHLYLWSAPNITKMQRQIOGRVDQFAVOLARRYGIVIVENFKLPDVIEKKDLQEQDQDAQKLRKKNARRVNVVAPGRARAALK


RFATKYNSHYIEEESAFTTVDCASCGHRREFDLKNARAQLLLACDNCGVVEDQDRTAARNLLAGASAIARGENGWPLEAKVSKASK


KKWLRRTRKRIW (SEQ ID NO: 23)





>SRR6491179_278020_2|M


[permafrost metagenome]


MIDRLTFDGKCVYVHLAAISLKATKVFTHGGWVFDLAAHTVAFKDIPPVALPENLTLSDGASLTFQLVAPDGTLRKQVRSGVLKSN


DKQPGILRIAGRSKTPANFSAADGWKIEVFKYRAYFTHPGLKTEAGLPEWLQNSIKRQRDFWNRMAWLCRDARRRCSPVPTEEIVA


FVQESVLPAIDEFNNSLGIARSKEKIKHPINLKIEMPGLDAVWKFVGELRKRIAKNRGVPDGLLEKVVAFAEQFKADYGPLNEFIS


NLESIAKIESTALGLRQFEIRPTINSFKAVLDRRKTLKSAWSDGWPHIKYADSPRAADWGVYYYFNKSGVDSARLEAGPGVPGLTF


GRPLKPADTGHKSMKSPKRSSRALREAKISIAGDNREEWAFKFGVLQHRPLPPDSHLKQWSLIYSGGALWLCFTVERKRPLPFPGM


HAAGLDIGWRRTEEGIRFGILYEPESKTFRELSIDLQKSPEDHNNRMPFRIDMGPNRWDKRNITQLLPDWKPGDAIPNTVVVRRAL


GSRRSSYKDAAKVLLQKHLGDQLPVWFDKAGSRGLFKLKENFKDVPVVQEIIDDLQKKTEALNAVAGKYTARYTRELEYGQIQIAH


DVCRHLQQKGVTRLIVEASFVAKASQKQDNEDPASLKNSQKYRQFAAVSKFVSLLKNIAVKYGIAVEVLSAQNTTRICQYCNHLNP


STEKEIFFCEGCGKQVQQDQNAAVNLSRFGIDPELAEMALTFSKD (SEQ ID NO: 24)





>3300028800|Ga0265338_10000470_38|P


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 25)





>3300031235|Ga0265330_10003750_4 P


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 26)





>3300031241|Ga0265325_10000012_120|M


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 27)





>3300031242 Ga0265329_10001065_5|P


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 28)





>3300031247|Ga0265340_10001032_18|P


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 29)





>3300031250 Ga0265331_10001842_6|P


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 30)





>3300031344 Ga0265316_10000001557|P


[plants-rhizosphere-carex aquatilis]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 31)





>3300031733|Ga0316577_10033675_3|M


[plants-rhizosphere-spartinaalterniflora]


MPTLVYKYGARSSQDSALLDQMRLGRRYYNALVEAENDRRRAAWGGDHPPAPDDPHETCVCDECVQEPNPEHTSCRCKTCKAHWKA


VRQRVLDTPPLDVKPLYAEARAQGLHWGTCLAIGQAFSAAWTKTSALRTVRFRSWRQGDVAAVQIQLTNKPDSLVRLCKAPDARTG


RRARNGLGRHTVQIRIGSNADRSPIFCDPIRIEKHRELSGRIAWVHVRRKRIADREVWSVAFTCNEADARTDEAHEGVVAVDVSWR


KLPDGSWRLGYAQDDAGNVSELLLPPEWAERAERAERIRSHRDARLNELKAKMPLLAHTKSCRKAVEKLLRLGVLPLELSEWIARD


THLWQYETGCWRRSASRRRAALQEWVRMLRQTYAIVIVKDSQHKLMKEKHDLPQPAQRQGQHAAPGETVENLRRVFGMTGMKVVSA


VDTTTTCVQCGHVTPINGQRFVHCERCGDRRDRDHASTRNMLQLYKNGAYKSPTARKTTSRFAKKHTKKDVPPEC (SEQ ID


NO: 32)





>SRR8543844_2229942_334|P


[rhizosphere metagenome]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 33)





>SRR8543847_1991039_375|P


[rhizosphere metagenome]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 34)





>SRR8543989_2137428_34|M


[rhizosphere metagenome]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 35)





>SRR8543995_2079833_6|M


[rhizosphere metagenome]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 36)





>SRR8544146_618080_5|P


[rhizosphere metagenome]


MTMRVYKFLCLPATAADDHCLREQVRLGARYRRQIALIENRERFLRRALIDYPARDVPVEARGAWWKSEAGKAARDAWHASDEFKA


LRERVFAGKKRALKAVRDATIEAGAMWGTLGKADDAADFARRTIDKAGLIDENGRTTFVGTDFPPDVGRIAVQFQRQNARIDARTG


KTLPAKKSVYADDLIGGEGSWLRIGSVAYSLGAPVDHFRPAAVDAEGRAIDVAGNPGDVIKIGPRAGEAATKGKRFHALAIRVGTV


PGTIRPIWAQMHLLLHQSPRTKNRLQLGHDVVKWAVVRRERTGLRYRWYLTLEVEGSVAVTTPHPHPHDAVAVHIGWRQLFDEEGK


KAGIRLLTWSATAPLDPNDPASPLWGQLVIPEDVLGVKPWADSIHSIRDQNQDVLRDMILAYARSLPATSWLREESRHMHNWRAPS


KYVRLHRQWRDQRIHGDQPAFAALEAWSKQDVHLLHREVPSLERMQRQVEGRVTAVAVQLAKRYGVVARDDFDVTGLVEKDDQHDE


DEQKLRKKTARRVNILGPGRARARVGYFAKKYGSVDLEVDAAGGTLDCAACGHHRDVSREDRVQRVIRCENCGHAEDQDITMSRNL


LAAASAVARGESGWPLDPKVPAPSTKKKAPARRNRRKDQQPLAPSPATP (SEQ ID NO: 37)





>SRR6963591_1323413_2|M


[sediment metagenome]


MKVFKYGARPVNQESLIRDQMKLARNYYNKLVETENKRRQQAWGSEKPPPPPHPPEEVVLPDGSKKTKWCRCEECKTHWKTLREAY


YALDNLDKKPLRAAASSWGLYWGSYLLVEQAFDQAQKTTVYYDPVRFRGWRKGGQAGLQIQNGKNTDSLFKVEEIPDPEPSARSKK


NDRRAGKGKRRGQLRTLRIRIGTEGRTPIWSDPIIFKMHRPLEGTVCWLKICMFYRGDREIWSVNFTCKDTSPRTDSATDGVVAID


VSWRQLPNGDIRLAYARGDNGFEDELTLDNSWLERIKKAERIQSHRDERLNDLKTSDSRFRLFKSPRSARIHIMKNQIAELEDWAK


REKHLEQYELGCKRKTYDVRRDAVRVWLRKLRRLYQTVVIKDSSHKEMKEQAKAKKKLHRAARKQGHHGAPGEIVEEICKVFGRIE


NVAVVIAENTTATCPVCGHMHEVNKERMITCERCGTTDDRDRISTHNLLSRFFDGQYEKPTARKTESKFAKKHKKVEQEVKHLRDG


L (SEQ ID NO: 38)





>SRR7976138_3273187_71|P


[soi1|Metagenome]


MMCFQYWAEPVDETSKALLAHQLREGAMYRRILATLENRARFLLGGLMRLTKEDRAPWRARIYVAHAQAVRDERAAASARGLTWGT


YLAIEDALDQSQRTKARGAMLGTFAPRDEGIVGVHIQNREISARAVVGGEDKYVRIDPELVGKPTLRSRREGTAMGARRLNILSIR


VGSKGPRGLEPVWARFYVLMNRPLPDASLKWVKLRCRRIGTTYRWQANFVVGAPCVGTPNPDRLPGVGIDLGWRKRADGIRIAYYA


DTEGRHGELVIPQHVIARDAKSDSLRRIRDQARNQIQAVLADLRTRLASRKAVSSIPPVEGTAVTPAWWRWTCGLAVGMALLTPTE


AWFLEQTQFLHAWRKVSRLVWLHRQWRERRFAGDEDAFLLMDDYIRQDRHLFNWEAYNRRRLTAEVEGRVREFAVSLAKRYDMIAV


EEAGIVSKLVQKQAEPEPRDEALRAVAAKRMHACSPASVREQIVRFGGKYGAKVMQIDPANTTKTCDACGQIRAPADPEQLVLGCE


HCGHVQDQDHSAARTLLASGLVMALEGAATKGRTPRKMGARRTRKKAQVEIARDA (SEQ ID NO: 39)





>SRR7976138_3273187_70|M


[soi1|Metagenome]


MAVADPEGIEIMMCFQYWAEPVDETSKALLAHQLREGAMYRRILATLENRARFLLGGLMRLTKEDRAPWRARIYVAHAQAVRDERA


AASARGLTWGTYLAIEDALDQSQRTKARGAMLGTFAPRDEGIVGVHIQNREISARAVVGGEDKYVRIDPELVGKPTLRSRREGTAM


GARRLNILSIRVGSKGPRGLEPVWARFYVLMNRPLPDASLKWVKLRCRRIGTTYRWQANFVVGAPCVGTPNPDRLPGVGIDLGWRK


RADGIRIAYYADTEGRHGELVIPQHVIARDAKSDSLRRIRDQARNQIQAVLADLRTRLASRKAVSSIPPVEGTAVTPAWWRWTCGL


AVGMALLTPTEAWFLEQTQFLHAWRKVSRLVWLHRQWRERRFAGDEDAFLLMDDYIRQDRHLFNWEAYNRRRLTAEVEGRVREFAV


SLAKRYDMIAVEEAGIVSKLVQKQAEPEPRDEALRAVAAKRMHACSPASVREQIVRFGGKYGAKVMQIDPANTTKTCDACGQIRAP


ADPEQLVLGCEHCGHVQDQDHSAARTLLASGLVMALEGAATKGRTPRKMGARRTRKKAQVEIARDA (SEQ ID NO: 40)





>3300012943|Ga0164241_10000441_40|P


[terrestrial-soil]


MMCFQYWAEPVDETSKALLAHQLREGAMYRRILATLENRARFLLGGLMRLTKEDRAPWRARIYVAHAQAVRDERAAASARGLTWGT


YLAIEDALDQSQRTKARGAMLGTFAPRDEGIVGVHIQNREISARAVVGGEDKYVRIDPELVGKPTLRSRREGTAMGARRLNILSIR


VGSKGPRGLEPVWARFYVLMNRPLPDASLKWVKLRCRRIGTTYRWQANFVVGAPCVGTPNPDRLPGVGIDLGWRKRADGIRIAYYA


DTEGRHGELVIPQHVIARDAKSDSLRRIRDQARNQIQAVLADLRTRLASRKAVSSIPPVEGTAVTPAWWRWTCGLAVGMALLTPTE


AWFLEQTQFLHAWRKVSRLVWLHRQWRERRFAGDEDAFLLMDDYIRQDRHLFNWEAYNRRRLTAEVEGRVREFAVSLAKRYDMIAV


EEAGIVSKLVQKQAEPEPRDEALRAVAAKRMHACSPASVREQIVRFGGKYGAKVMQIDPANTTKTCDACGQIRAPADPEQLVLGCE


HCGHVQDQDHSAARTLLASGLVMALEGAATKGRTPRKMGARRTRKKAQVEIARDA (SEQ ID NO: 41)





>3300012943|Ga0164241_10000441_39|M


[terrestrial-soil]


MAVADPEGIEIMMCFQYWAEPVDETSKALLAHQLREGAMYRRILATLENRARFLLGGLMRLTKEDRAPWRARIYVAHAQAVRDERA


AASARGLTWGTYLAIEDALDQSQRTKARGAMLGTFAPRDEGIVGVHIQNREISARAVVGGEDKYVRIDPELVGKPTLRSRREGTAM


GARRLNILSIRVGSKGPRGLEPVWARFYVLMNRPLPDASLKWVKLRCRRIGTTYRWQANFVVGAPCVGTPNPDRLPGVGIDLGWRK


RADGIRIAYYADTEGRHGELVIPQHVIARDAKSDSLRRIRDQARNQIQAVLADLRTRLASRKAVSSIPPVEGTAVTPAWWRWTCGL


AVGMALLTPTEAWFLEQTQFLHAWRKVSRLVWLHRQWRERRFAGDEDAFLLMDDYIRQDRHLFNWEAYNRRRLTAEVEGRVREFAV


SLAKRYDMIAVEEAGIVSKLVQKQAEPEPRDEALRAVAAKRMHACSPASVREQIVRFGGKYGAKVMQIDPANTTKTCDACGQIRAP


ADPEQLVLGCEHCGHVQDQDHSAARTLLASGLVMALEGAATKGRTPRKMGARRTRKKAQVEIARDA (SEQ ID NO: 42)





>3300031949|Ga0214473_10000008_352|M


[terrestrial-soil]


MRVYKFLCIPATAADDRALRDQVYLGSRYRRQSALIENRARVLQRGIADRPALNVPEKDRSAWWKSEEGKAARDAWYASDECKMLR


EIIFAEKKRALKAARDAAIEAGTMWGTCGKADDAADFARRAVDKNGLIDEDGQTTFVDTHFPADVGRIAVQFQRGNERIDTRTGKK


IPAKKLIYADDLIGDEDTRLRIGTVAYALAEPVDGFRPAAIDAEGKAIDVYTRGLSEREQDLLARDQREEAIAAYAARTPASIDPS


GNICKTPEQKAVTKIVRWERGERDEKGKRYHSLAIRVGTMPGTIRPIWAHLHVMLHQSPRSKNQLVLGHDVVKWAVIRRERTGLRY


RWFLTLETEGDVAVTSPHPQPHDAIAVHIGWRQLFSEAGDPAGIRVLTWSASAPLDPDDPRSPREGQLVLPQEVVDQKPFADRIHS


TRDKNQDVLRDMILVYARSLPTSSWLRVEAAHMHQWRAPRKYVRLYCQWKEQRIHGDQAAFAALEAWIKQDRHLLHREAPSIERMK


RQIEGRVTALAVQLAKRYGVVASDNIAVGELVKKDDRHDEDEQKLRKKTARRVNVVAPGEARALVRYFAKKYGCVGLELDAAGGTI


DCDACGHRRDVAREDRVQRMIRCENCGHVEDQDLTMSRNLLSGASAVARGESGWPLAPKVPAASTKKRATVRRNRRRGQQPLASSV


GTP (SEQ ID NO: 43)





>3300031965|Ga0326597_10001868_12|M


[terrestrial-soil]


MIEDAFAMACKDRSVLRLVKFRSWRDGGVAAVQIQRAAWERDGGASMYRTRAQVDNRTGRRTKHGGRQTLEIRIGSDGRNPIWSEP


VRYEQHREAVGRPTWIKVSMKYRGDLEVWSVVVTCADVPPRPASEEAQRGVVAVDVGFRRVGDDIRIAYARDDRGKVSELLMDARW


RELCNRADRIRGHRDDNFNALQEADSENLFSLTKSANGARQKIERLVREGEEVSQEMRAWMHRDRHLSQYEDGCRRRSVNARKDAM


RKWARELRRNYSQLVLSKTAVKKMKENAKDDGLPKPARRQGQNAAPGELLDWLVMVFGRAEVAIVKPIHTTDTCVSCEHVNDHGPE


TIVVCEECGAALDRDEASTRNMMDLWVNGECEKPTARKASAKFAKKHKTEDKDDNASPAA (SEQ ID NO: 44)





>3300006795|Ga0075520_1037237_1|M


[terrestrial-soil-arctic peat soil]


MAFVRETILPEIDAFNDALGRSKAKIKHPAKLKTEMPGIDGLWHFVGQLRTRIEKGRAVPEGLLEKIIAFAEQFKPDYTLLNEFLN


NYRDIAAKEATALGLLRYEIRPTVNGFKAVLDRRKTTKAAWSEGWPLIKYPDSPKAANWGLHYYFNMAGLDSAQIESPKGVPGLTF


GPHLKSSDTGHELLTGLAATKRSLRAAEISISGSNHERCTFRFAVLYHRPLPAGSHLKEWKLIYADGALWLCLTVELQHPVPVHSP


LAAGLDVGWRRTEEGLRFGTLYEPATMSFRELSIDMQKSPKDHKDRMPFRIDIGPTRWEKRNILQLLPDWKPGNPIPSSFETRTAV


QSRRDYYKDTAKILLRKHLGESMPAWIDKAGRRGLLKLAEEFKEDQVVQNILGTWMQQDEQVGKLVSMYLARSTKRLEYGHAQVAH


DVCRHLLDKGVHRLIVETSFLAKVSQRHDNEDSEGLKRSQKYRQFAAVGKFVAVLKNTAIKYGIVVEELSTINTTRICQYCNHLNP


GTGKEYFTCEKCERQIKQDHNAAVNISRFGCDPELAEMAASAG (SEQ ID NO: 45)





>3300014491|Ga0182014_10039677_1|P


[terrestrial-soil-bog]


MIDRLTFDGKCVYVHLAAISLKATKVFTHGGWVFDLAAHTVAFKDIPPVALPENLTLSDGASLTFQLVAPDGTLRKQVRSGVLKSN


DKQPGILRIAGRSKTPANFSAADGWKIEVFKYRAYFTHPGLKTEAGLPEWLQNSIKRQRDFWNRMAWLCRDARRRCSPVPTEEIVA


FVQESVLPAIDEFNNSLGIARSKEKIKHPINLKIEMPGLDAVWKFVGELRKRIAKNRGVPDGLLEKVVAFAEQFKADYGPLNEFIS


NLESIAKIESTALGLRQFEIRPTINSFKAVLDRRKTLKSAWSDGWPHIKYADSPRAADWGVYYYFNKSGVDSARLEAGPGVPGLTF


GRPLKPADTGHKSMKSPKRSSRALREAKISIAGDNREEWAFKFGVLQHRPLPPDSHLKQWSLIYSGGALWLCFTVERKRPLPFPGM


HAAGLDIGWRRTEEGIRFGILYEPESKTFRELSIDLQKSPEDHNNRTPFRIDMGPNRWDKRNITQLLPDWKPGDAIPNTVVVRRAL


GSRRSSYKDAAKVLLQKHLGDQLPVWFDKAGSRGLFKLKENFKDVPVVQEIIDDLQKKTEALNAVAGKYTARYTRELEYGQIQIAH


DVCRHLQQKGVTRLIVEASFVAKASQKQDNEDPASLKNSQKYRQFAAVSKFVSLLKNIAVKYGIAVEVLSAQNTTRICQYCNHLNP


STEKEIFFCEGCGKQVQQDQNAAVNLSRFGIDPELAEMALTFSKD (SEQ ID NO: 46)





>3300014491|Ga0182014_10071250_1|M


[terrestrial-soil-bog]


MAFVRETILPEIDAFNDALGRSKAKIKHPAKLKTEMPGPDGLWNFVGQLRTRIEKGRAVPEGLLEKIIAFAEQFKPDYTPLNEFLN


KYHNIAAKEATDLGLLRYEIRPTVSGFKAVLDRRKTTKAAWSEGWPLIKYPDSPKAANWGVHYYFNTAGLDSAQIESPKGVPGLTL


GPHLKPSDTGHELLTGLAATKRSLRAAEISISGPNHEQCTFRFGVLYHRPLPAGSHLKEWKLIYADGALWLCLTVELQHPVPVHSP


LAAGLDVGWRRTEEGLRFGTLYEPATMSFRELSIDMQKSPKDHKDRMPFRIDIGPTRWEKRNILQLLPDWKPGNPIPSSFETRTAM


QSRRDYYKDTAKILLRKHLGESMPAWIDKAGRRGLLKLVEEFKEDEVVQNILGTWKQQDEEVGKLVSMYLARSTKRLEYGQAQVAH


DVCRYLHDKGVHRLIVETSFLAKVSQRHDNEDSEGLKRSQKYRQFAAVGKFVAVLKNTAIKYGIVVEELSAINTTRICQYCNHLNP


GTEKEHFTCEKCERQIKQDHNAAVNISRFGCDPELAEMAASAG (SEQ ID NO: 47)





>3300017975Ga0187782_10004712_9|P


[terrestrial-soil-tropical peatland]


MATKVLKFYCVPASARDNQLLCEQVKLGSMYRRDLAWIENRARELRRAIADWPARDVPIEKRSEWWKSDVGRAASKAWHESDECKR


LKKSITDGQIQAATAARKKARRFDTAWGTCGLAAEAAEAARVALEKEFGLIDKETGQTTFVNTKFPSDEGRVGVQFQRDTDKIDEE


TGEVIPAKKPTIYADELIGGSHNFCRIGSARYSLLDRVDGFQPAALDASGAPIDSFGYKSKQPKGKRFHLLQIRVGTVDKRSTAYP


FDLDPDKGEPIWAKLHVLSHQKTKRPQTLPHERVKWVFVQRVRCALRYRWSVCFVIEDSVVQKPHEQPNDRVAVDLGWRQLFDESG


TPAGIRLLYWMATSPLDLNDPSSPVEGQLVIPQHVVDRKPFSSQLESNRTKNREAMQAMLLAYLQSVSSATWLAKRTAQLASWKKP


SKFVLLLNEWRKNRIAGDQAAFAALEAWNKQDAHLYLWSAPNITKMQRQIQGRVDQFAVQLARRYGIVIVENFKLPDVIEKKDLQE


QDQDAQKLRKKNARRVNVVAPGRARAALKRFATKYNSHYIEEESAFTTVDCASCGHRREFDLKNARAQLLLACDNCGVVEDQDRTA


ARNLLAGASAIARGENGWPLEAKVSKASKKKVVLRRTRKRIVV (SEQ ID NO: 48)





>3300017975|Ga0187782_10004712_9|M


[terrestrial-soil-tropical peatland]


MYRRDLAWIENRARELRRAIADWPARDVPIEKRSEWWKSDVGRAASKAWHESDECKRLKKSITDGQIQAATAARKKARRFDTAWGT


CGLAAEAAEAARVALEKEFGLIDKETGQTTFVNTKFPSDEGRVGVQFQRDTDKIDEETGEVIPAKKPTIYADELIGGSHNFCRIGS


ARYSLLDRVDGFQPAALDASGAPIDSFGYKSKQPKGKRFHLLQIRVGTVDKRSTAYPFDLDPDKGEPIWAKLHVLSHQKTKRPQTL


PHERVKWVFVQRVRCALRYRWSVCFVIEDSVVQKPHEQPNDRVAVDLGWRQLFDESGTPAGIRLLYWMATSPLDLNDPSSPVEGQL


VIPQHVVDRKPFSSQLESNRTKNREAMQAMLLAYLQSVSSATWLAKRTAQLASWKKPSKFVLLLNEWRKNRIAGDQAAFAALEAWN


KQDAHLYLWSAPNITKMQRQIQGRVDQFAVQLARRYGIVIVENFKLPDVIEKKDLQEQDQDAQKLRKKNARRVNVVAPGRARAALK


RFATKYNSHYIEEESAFTTVDCASCGHRREFDLKNARAQLLLACDNCGVVEDQDRTAARNLLAGASAIARGENGWPLEAKVSKASK


KKVVLRRTRKRIVV (SEQ ID NO: 49)





>SRR7027835_762984_1|M


[wetland metagenome]


MAWLCRETRLKCSPVPTDKIVDFVQNAILPEIDAFNSAPGRSRERMKHPAKLKIETPGLDCLWGFVGELRARTGKGRAVPAGLLDK


VVEFAQQFKTDYTPFNEFIAGFQAIAEREAAALGLRHFEIRPTVGAFKAVLDRRKTTKAHWSEGWPLIKYPDSPKAANWGLHYHLN


KAGVDSALLEREEGIPGLSFGPRLKPADTGHEKLTGVAAKRILREAQISISGDNDERWTFHFGVLQHRPLPPNSHLKEWKLIFQGG


ALWLCLVVELQRPVPVPGPHPAGLDIGWRRTEEGIRFGTLYEPATKTIRELTVDLQKSPCDHKDRVPFRIDLGPSRWEMRNATELV


PDWKPGQPIPSAFETRSVLQIRRDRIKETAKRQLREHLGERLPVWFDKAGRRGLLKLAQDFKNESAVCEILNIWQQKDEQLGKLAS


MYFDRSTKRIEYGHAQVAHDVCRFLQQKGVMRLIVETSFLSKVSQHQDNEDLVSIERSQKYRQFVAVGKFLAALKNTTRKYGIVVE


TVNAMNTTRTCQYCNALNPRTEEEQFTCKRCGRQVQQDHNAAVNLSRFGSDPVLAEMALHADEV (SEQ ID NO: 50)
















TABLE 4







Nucleotide sequences of Representative CLUST. 133120 Direct Repeats









CLUST.133120 Effector Protein

Spacer


Accession
Direct Repeat Nucleotide Sequence
Length(s)





3300027740|Ga0214474_1000103_171
CCAACCAATGCCAGCGCGACGGCTTATGAGTCG
35-36


M (SEQ ID NO: 1)
CGAC (SEQ ID NO: 51)




GTCGCGACTCATAAGCCGTCGCGCTGGCATTGG




TTGG (SEQ ID NO: 95)






3300017971 |Ga018043 8_10084474_2|
GGTAAAACACCTGCGAGATGGTTTATGAATCTC
36-41


M (SEQ ID NO: 2)
GAC (SEQ ID NO: 52)




GTCGAGATTCATAAACCATCTCGCAGGTGTTTT




ACC (SEQ ID NO: 96)






3300022592|Ga0236342_1001376_7|P
AGTGCATCGAACAGATGCAAC (SEQ ID NO:
24-51


(SEQ ID NO: 3)
53)




GTTGCATCTGTTCGATGCACT (SEQ ID NO:




97)






3300020171|Ga0180732_1000630_46|
AATGCCAGCCCAACGGCCTAGAAGTTGGGAC
26-52


P (SEQ ID NO: 4)
(SEQ ID NO: 54)




GTCCCAACTTCTAGGCCGTTGGGCTGGCATT




(SEQ ID NO: 98)






3300018040|Ga0187862_10024620_1|
GTAACAGTGGCATCACAGTGCATTGAATAGATG
34-46


M (SEQ ID NO: 5)
CAAC (SEQ ID NO: 55)




GTTGCATCTATTCAATGCACTGTGATGCCACTG




TTAC (SEQ ID NO: 99)






3300005253|Ga0073583_1150562_58|
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
24-39


P (SEQ ID NO: 6)
GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






3300005253|Ga0073583_1150562_51|
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
24-39


M (SEQ ID NO: 7)
GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






LAZR01002400_19|P (SEQ ID NO: 8)
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
24-39



GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






LAZR01002400_15|M (SEQ ID NO:
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
24-39


9)
GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






SDBU01080949_7|P (SEQ ID NO: 10)
GTAGCAATGGCAGCGCATCGCCTTT (SEQ ID
49



NO: 57)




AAAGGCGATGCGCTGCCATTGCTAC (SEQ ID




NO: 900)






SDBU01080949_6|M (SEQ ID NO:
GTAGCAATGGCAGCGCATCGCCTTT (SEQ ID
49


11)
NO: 57)




AAAGGCGATGCGCTGCCATTGCTAC (SEQ ID




NO: 900)






SDBV01087475_1|P (SEQ ID NO: 12)
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
35-39



GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






SDBV01087475_1|M (SEQ ID NO:
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
35-39


13)
GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






SRR2657585_2135055_9|M (SEQ ID
GGATCAATGCTTGCTCGATGGCTT (SEQ ID
30-49


NO: 14)
NO: 58)




AAGCCATCGAGCAAGCATTGATCC (SEQ ID




NO: 901)






SRR2657585_2135055_8|P (SEQ ID
GGATCAATGCTTGCTCGATGGCTT (SEQ ID
30-49


NO: 15)
NO: 58)




AAGCCATCGAGCAAGCATTGATCC (SEQ ID




NO: 901)






SRR2657585_1667169_1|M (SEQ ID
CCAACAATGCTAGCGAGACGGCTTCATGATCTC
35-38


NO: 16)
GACG (SEQ ID NO: 59)




CGTCGAGATCATGAAGCCGTCTCGCTAGCATTG




TTGG (SEQ ID NO: 902)






SRR8451930_3283449_6|P (SEQ ID
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
37-51


NO: 17)
GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






SRR8451930_3283449_6|M (SEQ ID
GTAGCAATGGCAGCGCATCGCCTTTTAAGATGC
37-51


NO: 18)
GAC (SEQ ID NO: 56)




GTCGCATCTTAAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 100)






SRR8452060_665073_11|P (SEQ ID
GTAGCAATGGCAGCGCATCGCCTTTCAAGATGC
36-48


NO: 19)
GAC (SEQ ID NO: 60)




GTCGCATCTTGAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 903)






SRR8452060_665073_10|M (SEQ ID
GTAGCAATGGCAGCGCATCGCCTTTCAAGATGC
36-48


NO: 20)
GAC (SEQ ID NO: 60)




GTCGCATCTTGAAAGGCGATGCGCTGCCATTGC




TAC (SEQ ID NO: 903)






SRR6448207_2353026_47|M (SEQ ID
GTCGCAATCTTTGCCGAGTCAAGCATGAACTCG
36-37


NO: 21)
GACC (SEQ ID NO: 61)




GGTCCGAGTTCATGCTTGACTCGGCAAAGATTG




CGAC (SEQ ID NO: 904)






SRR7004342_2720286_9|P (SEQ ID
GTATTCACGCTTGCGAGGACGGATTGCGTCCTC
35-46


NO: 22)
GAC (SEQ ID NO: 62)




GTCGAGGACGCAATCCGTCCTCGCAAGCGTGAA




TAC (SEQ ID NO: 905)






SRR7004342_2720286_9|M (SEQ ID
GTATTCACGCTTGCGAGGACGGATTGCGTCCTC
35-46


NO: 23)
GAC (SEQ ID NO: 62)




GTCGAGGACGCAATCCGTCCTCGCAAGCGTGAA




TAC (SEQ ID NO: 905)






SRR6491179_278020_2|M (SEQ ID
GTACAACGAACTGAAAGTGCGCCGAACAGGTGC
34-41


NO: 24)
AAC (SEQ ID NO: 63)




GTTGCACCTGTTCGGCGCACTTTCAGTTCGTTG




TAC (SEQ ID NO: 906)



3300028800|Ga0265338_10000470_3
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


8|P (SEQ ID NO: 25)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031235|Ga0265330_10003750_4l
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
36-50


P (SEQ ID NO: 26)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031241 |Ga0265325_10000012_1
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


20|M (SEQ ID NO: 27)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031242|Ga0265329_10001065_51
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-50


P (SEQ ID NO: 28)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031247|Ga0265340_10001032_1
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
36-49


8|P (SEQ ID NO: 29)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031250|Ga0265331_10001842_6|
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
36-49


P (SEQ ID NO: 30)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031344|Ga0265316_10000001_5
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


57|P (SEQ ID NO: 31)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






3300031733|Ga0316577_10033675_3|
CCCGGAATGCTAGCTCGATGGCTATTCAATCGA
19-38


M (SEQ ID NO: 32)
GAC (SEQ ID NO: 65)




GTCTCGATTGAATAGCCATCGAGCTAGCATTCC




GGG (SEQ ID NO: 908)






SRR8543844_2229942_334|P (SEQ
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


ID NO: 33)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






SRR8543847_1991039_375|P (SEQ
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


ID NO: 34)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






SRR8543989_2137428_34|M (SEQ ID
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


NO: 35)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






SRR8543995_2079833_6|M (SEQ ID
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
35-54


NO: 36)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






SRR8544146_618080_5|P (SEQ ID
GGCACGATCGATGCGAGACCTCGCGGTGGTCTC
34-48


NO: 37)
GAC (SEQ ID NO: 64)




GTCGAGACCACCGCGAGGTCTCGCATCGATCGT




GCC (SEQ ID NO: 907)






SRR6963591_1323413_2|M (SEQ ID
TAAAACACCTGCGAGATGGTTTATGAATCTCGA
38-43


NO: 38)
C (SEQ ID NO: 66)




GTCGAGATTCATAAACCATCTCGCAGGTGTTTT




A (SEQ ID NO: 909)






SRR7976138_3273187_71|P (SEQ ID
GGATCAACCTCTGCGGGAACGAGCGTGGTTCCC
24-45


NO: 39)
GAC (SEQ ID NO: 67)




GTCGGGAACCACGCTCGTTCCCGCAGAGGTTGA




TCC (SEQ ID NO: 910)






SRR7976138_3273187_70|M (SEQ ID
GGATCAACCTCTGCGGGAACGAGCGTGGTTCCC
24-45


NO: 40)
GAC (SEQ ID NO: 67)




GTCGGGAACCACGCTCGTTCCCGCAGAGGTTGA




TCC (SEQ ID NO: 910)






3300012943|Ga0164241_10000441_4
GGATCAACCTCTGCGGGAACGAGCGTGGTTCCC
24-45


0|P (SEQ ID NO: 41)
GAC (SEQ ID NO: 67)




GTCGGGAACCACGCTCGTTCCCGCAGAGGTTGA




TCC (SEQ ID NO: 910)






3300012943 |Ga0164241_10000441_3
GGATCAACCTCTGCGGGAACGAGCGTGGTTCCC
24-45


9|M (SEQ ID NO: 42)
GAC (SEQ ID NO: 67)




GTCGGGAACCACGCTCGTTCCCGCAGAGGTTGA




TCC (SEQ ID NO: 910)






3300031949|Ga0214473_10000008_3
GTAGCAATCGATGCGAGACCTCGCACTGGTCTC
35-44


52|M (SEQ ID NO: 43)
GAC (SEQ ID NO: 68)




GTCGAGACCAGTGCGAGGTCTCGCATCGATTGC




TAC (SEQ ID NO: 911)






3300031965|Ga0326597_10001868_1
ATGACAATGCCAGCCCAGCGGCCTGAAAGCTGG
35-38


2|M (SEQ ID NO: 44)
GAC (SEQ ID NO: 69)




GTCCCAGCTTTCAGGCCGCTGGGCTGGCATTGT




CAT (SEQ ID NO: 912)






3300006795|Ga0075520_1037237_1|
TACGGCACCACAGTGCATCGAATAGATGCAAC
31-39


M (SEQ ID NO: 45)
(SEQ ID NO: 70)




GTTGCATCTATTCGATGCACTGTGGTGCCGTA




(SEQ ID NO: 913)






3300014491 |Ga0182014_10039677_1|
GTACAACGAACTGAAAGTGCGCCGAACAGGTGC
34-41


P (SEQ ID NO: 46)
AAC (SEQ ID NO: 63)




GTTGCACCTGTTCGGCGCACTTTCAGTTCGTTG




TAC (SEQ ID NO: 906)






3300014491 |Ga0182014_10071250_1|
GTGTACGGCACCAGAGTGCATCGAATAGATG
40-45


M (SEQ ID NO: 47)
(SEQ ID NO: 71)




CATCTATTCGATGCACTCTGGTGCCGTACAC




(SEQ ID NO: 914)






3300017975|Ga0187782_10004712_9|
GTGTTCACGCTTGCGAGGACGGATTGCGTCCTC
35-44


P (SEQ ID NO: 48)
GAC (SEQ ID NO: 72)




GTCGAGGACGCAATCCGTCCTCGCAAGCGTGAA




CAC (SEQ ID NO: 915)






3300017975|Ga0187782_10004712_9|
GTGTTCACGCTTGCGAGGACGGATTGCGTCCTC
35-44


M (SEQ ID NO: 49)
GAC (SEQ ID NO: 72)




GTCGAGGACGCAATCCGTCCTCGCAAGCGTGAA




CAC (SEQ ID NO: 915)






SRR7027835_762984_1|M (SEQ ID
GTAACAGTGGCATCACAGTGCATTGAATAGATG
34-46


NO: 50)
CAAC (SEQ ID NO: 55)




GTTGCATCTATTCAATGCACTGTGATGCCACTG




TTAC (SEQ ID NO: 99)
















TABLE 5





Non-coding Sequences of Representative CLUST. 133120 Systems















>3300017975|Ga0187782_10004712_9|M


TCTAATATTCTCTATGCCGAAGCCGGTTCGCGATGGATCAACCGTTGGGAGAGTGGCCAACTTGAAGCTGAGATGAAGCGTGCAAT


CGGGAAAATGTACCAGCGTATGCGTCTCGCGGAGAAAGTCATTGCACCCAAAAGAAGGCGTTAAGTAAATTGTGAGTGATCTACCG


CCCTGCCGCGTTCAAAGCATTCGCGCAAGCATGAACGCGCTGTACTGGACGCTGATCGTGGCAATCCTGGTTGGGATAGCGGCCGT


CAGCTTCACGCTTGGCGTCAAGCGTATGTACAATTGGGCGCACGCTCCGCATGCTCCGTCCGTTGTGGATTGCGGACGAGATTACG


ACGACGTGCGATGCCAGCTTTTGTACCTAGAGGACGTTTACTTGTGCGTGCTGAAAGACACTAGGCACGAGCCTTCGGAAGGCTCC


GGTCAAATACAAACGCTACTGATGCACGTCAGAAGATCGGCACAGAGGTAGGCGCGTTGGCGCCTTGCTCTTGACAAGTGCGCGAT


AACAACGTACTCTCGACAAGCGAATAAGTGGCAGCAGACGGGCGTTATAGACCCGAAAGGAAAACCACGTGGCTACCAAAGTCTTG


AAGTTCTATTGCGTACCCGCCTCTGCCCGAGATAACCAGCTCCTCTGCGAACAAGTGAAGCTCGGCTCGATGTACAGACGCGATCT


CGCTTGGATCGAGAATCGCGCACGCGAGCTGCGCCGTGCCATTGCCGATTGGCCTGCGCGTGATGTACCCATCGAAAAGCGTTCAG


AGTGGTGGAAGTCTGATGTCGGTCGCGCGGCCTCCAAAGCATGGCACGACCAGGATCGTACAGCTGCACGCAATCTCCTCGCCGGT


GCGAGCGCCATCGCGCGCGGTGAGAACGGGTGGCCGCTCGAAGCAAAGGTTTCGAAGGCTTCCAAGAAAAAGGTGGTGCTACGCCG


CACGCGTAAGCGCATTGTGGTGTGACCGCTCGCAAGAGCGGTGTGAAGTAACTGGTTTTGCTATTGATCTCTGACAACCTCGACAA


AGCGCCTGACTAGCCGTGACTTCCTATTTGCCTAGGGCTCTACACGAGCGGATTACGCTCGTAAACGAGGTTTTGATGCTTGCACG


GGCGGATTGCGCTCGTGACCTCACGCTCCTCGGTCACTTATTTCCGTTGCATCGCACTGCCCGCAATCAGCACGAGCCCTAGCCCG


ATCACACCCAACGCGACCACGACGATCAAGCCTTCAATCCCAACGTTCGCGTAGCGCGGCGATCGTCAGTTCCAACGGGTACTGAT


CGAATCCGTGCCAGCCGTAGTGGCCAGCGGCATCCCAAACGGCGTTTGCACGCTCACTCGCAGTCTTCAAGTTCTTTGCGTCATAC


CGTTCTAGGTC (SEQ ID NO: 73)





>3300006795|Ga0075520_1037237_1|M


TCTCACACCCCGGAGTCCCAACCGACCCCGAGATTCCCGAATGGCTCAAGGCGTCGATTGCGCGACAGAGATCCCTCTGGAATCGG


TTGGCATACTTCTGTCGCGAAGCAAGACGGAAGTGCTCGCCAGCGCCCACGGCTGAAATAGTGGCGTTTGTTCGAGGGACCATTCT


TCCGGAGATCGATGCGTTCAATGACGCTCTCGGGCGGTCGAAGGCAAAGATCAAGCATCCTGCCAAGCTCAAGACGGAGATGCCGG


GGATCGATGGACTGTGGCACTTCGTTGGGCAGCTCCGGTGCAACCACCTTAACCCTGGCACCGGGAAAGAGTACTTCACCTGCGAG


AAATGCGAGCGGCAGATCAAACAAGACCACAATGCCGCGGTCAATATCTCGCGCTTCGGCTGTGATCCAGAACTGGCAGAGATGGC


CGCCTCTGCTGGCTGAGTCTTTACCTATAGCTCTGCTCGAATCTCAAGCGAGCATTTATTGCTCGGGAGGTTCGCGCAGGTTGTTC


CCGCACATAATAAAGGAGATTGTGAAATATCAAGGGCGATGTCGTCAAATCAAATACTCTGCGGGGAGGGTTCGCGCAAACCATTC


CGTAGATCATTGCGGTCGAATAAGTTACAGTGAAGGAATCCATGCGATTGAAAACTATTGTAGTCGCGCTGGTGCTGCGTAC


(SEQ ID NO: 74)





>3300017971|Ga0180438_10084474_2|M


CCACAACAAGGTGTTCAAGCAGCTCGCCGAAGAACTCGGGCTCGCCGTCGAGAAACAGGGTGCCCGGGGGTTGGCGGCCACCTCCG


TGCCCGCGGAAACCGCGAAGCGCTGGCAGAAGACCATCAAAGAACTCGACAAGGCCATCAAGACGTTTCGGTTCGCCGAGGGCCCC


AGGGGCGGCAGCAAAGGTGAGAACCGCCAGCTGCTGGCCATCTGCCAGTGCCGCCGCAAGATCCGGTTGTCCCGGGAGGCCTACGA


CGCTGGCCCCATCATCTGCCGGGTATGTGAACGACACTTCGAGATAAAGGAGTAGAAAAATGAAAGTATTCAAGTACGGTGCTCGA


CCCGTAAACCAGGAGAGCCTCATTCGTGATCAAATGAAGCTCGCCCGAAACTACTACAACAAGCTCGTTGAAACGGAGAACAAGAG


ACGGCAACAGGCCTGGGGCAGCGAAAAGCCTCCTCCTGCGACCATGAAGAGGTAACACCTACGAGACGGTTTATGAGTTTCGACTA


TACTACTGATAATCTGCCCCAACTTGTCTCATGGATAAAACACCAGCGAGATGGTTTATAAATCTCGACAGACTCGCGGATGGAAG


AGAACTCGCGACACTCGCGGGGTAGAACACCAGCGAGATGGTTTATGAATCTCGACAGGTCGAAGTAGATACCAAACCTCTACCAT


AACCTTACGTAATTCTTGACTTTTATTTGCACTTGCGTAAGTGAATACCCGAACAGTACAATCGTCTACATACCAGCGGCTTAGAG


GAGCCAGAAAGGAGAACTAGATGTCAGCAGCCTTATTAGCCCCGCTTTGGAGGAAGCCGTACATCCTCGGGGGCAACGCCAAGGTC


ACCTTGGTGTCTACCAAGTCCGAGTGCCGGTTCACATTCCGCATCCGCGCCAAGGAAGTCGAGAAAGATCGCGTTCTCCACTTCGT


CAGCGTGCTGACGGGGCCTGAGAACACGACCGACTACTCCTTCCTGGGAACCATCTTCGACGGCGACAAGTTCGTTCACGGTAAGA


AGTCGAAGATCACGGCCGACGCGCCCAGCGCGAAGGCCTTCTCCTGGCT (SEQ ID NO: 75)





>SRR8543844_2229942_334|P


CAAGTCACTCATCGTGATCTTTCTGCGCTTCATCTCGGCGCGGAGCCACGACTCTTCGGTGTCGGTGACGCGCGCACCGATGTAGT


GGCTGAGTTTCTCCGCGGCTTGTTGCTTCGGCTCGAACATTGCGTCTTGCAAAACGTCTATCATCCTGTTAGCTGTTCGTCAATGC


AACAACAGCACGTGCGACAGCGGGGCGCCCAACAATGACGATGCGCGTGTACAAGTTCCTCTGTCTCCCGGCGACGGCCGCCGACG


ACCATTGCTTGCGCGAGCAGGTGCGCCTCGGCGCGCGCTACCGCCGACAGATCGCGCTCATCGAGAACCGCGAGCGCTTCCTCCGG


CGCGCGCTCATCCTCGCCGCCGCGAGCGCCGTCGCGCGCGGCGAGAGCGGGTGGCCGCTCGACCCCAAGGTTCCGGCACCTTCGAC


GAAGAAGAAGGCCCCGGCGCGGCGGAACCGGCGGAAGGACCAGCAGCCGCTCGCGCCGAGCCCCGCAACGCCGTAGGATCGTTCGT


TCCATGCTTATCCGGTTAACACCCCAAACGTGATCAGGGAGACATCAAATGGCATCGCGACTCGAACGTGAACTTAAAATCATCCG


CTCCGAAATGGGCGAGCTTCTTTCCGCCTCTCTGGGCAAGCGACCGTCCGTGATCAACGTCGGCGGAACGATTCAAGAACTCACCC


CAACGGAAGCTCTCGCTGAATGGCGAGCCTCTGCGAAGCGCGCCGAGCGAAAGATCAAGGAGATCCGTCGCGCCCGCGAGGGGTGA


CAACCGGATAAGCATGGTTCGTTCTCTGACAATCGAAACCTACGGATTGTCCTCGGCGGAGGGATTCGGGTTCGTCGGCACGATCG


CGGGCGCGCTATGGTGAGGTCATGGC (SEQ ID NO: 76)





>3300020171|Ga0180732_1000630_46|P


CGCATGCGCCTGATGCAGATCGAGTGGGAGAAGCAGCCGAAGTTCACGCTCGGCGCCTGCCGGCCGCCCGGGGTGCCGCACACCTG


GCCGCCCAAGTCGGCCGGGCCGGCCTGGATGGTCGTGTTTCGGGTGAAGGGGACGAGCAAATGATGAAAGTATTCAGTTTTGGTGC


TAGGGCTCGGTCACTTGACGCCGAGGTCCGCGAGCAAATGCGCCTCGGTCGAGAGTGCTATAACGCGCTGGTCGAAGTGGAAAACG


CTCGCCGTCACTTGGCCTGGGGTGGGGACATCCCCCCAAAGCCACCGCATCCGCTACCACTGACCCAGGATGGCGACGAGAACGAC


GATGAGACTGCGTGGCTAGATCGCGACCTCGTAAGCACTCGTAACATGCTGGTTGCCTACGCTGCGGAGGAGAGGCGGCGACCAAC


CGCTCGCAAAACCGCTGCTAGATTCGGGAAACGACACAAGACCTCGACGAGCCTCGACAATGCCAGCCCAGCGGCCTAGAAGTTGG


GACAAGTTGGCTCCGACTGACAATGCCCACGAAGTCGGGCCTCGACAATGCCAGCCCAGCGGCCTAGAAGTTGGGACGCCGCCCCT


GTCCTGCGGCTCCTCGTCCGTCGCCGTTCGACAATGCCAGCCCAACGGCCTAGAAGTTGGGACAACCCGTCCATGTAGTCGCGGGC


CGCTTCGCTGACTGATGATGCCAGCCCAACGGCCTAGAAGTTGGGACATGTTTAGACGCGCCACCCAGCCCGCTCCCGATGCGGCT


GATGATGCCAGCCCAACGGCCTAGAAGTTGGGACGACGATGTACCAAGAGTGCCTGATGATGCCAGCCCAACGGCCTAGAAGTTGG


GACCGGGTGCCTCGGCCCACAGCTTCGCCGGCAACGCGGTCGACAATGCCAGCCCAACGGCCTAGAAGTTGGGACCATGGCCAGGA


TGCTGATGATGCCAGCCCAACGGCCTAGAAGTTGGGACAGAAGGCCACCGTCGTCGGTGGGCAGGTCGACCCGGCACCTGATGATG


CCAGCCCAGCGGCCTAGAAGCTGGGACTGCGATCCGTCGTGGTCCGCCATCGAGATCGATGCCGATCTGATGATGCCAGTCCAGCG


GCCTAGAAGCTGGGACCTGTCAGCACTGTGGCCTGACCCATCCGTGCCTAGCTATCGACAATGCCAGCCCAGCGGCCTAGAAGCTG


GGACTACCACGGTGGGCACCGTGCTATTCATTGGCTACCCAATGAATATGGTGTATAGCATTATAGTCTTAGAAAAAAATCTTAGT


AAAACGCGGCGCAAAGGACGGTGACTAGTGGACGACCCCAGACTGGAAGTAGCGGCCCAGGCAATCGACAGGCCGGAGGCCCAGGT


CAAGGAGCTGTCGGACGCGCTGCCCGACGCCAAATACTTGAGCAATCTCGCGGCGCGGCTGAAGGACGTTCCCAAGACGTATGGCG


TGTTC (SEQ ID NO: 77)





>3300027740|Ga0214474_1000103_17|M


AATGGAATAGCCCGGACGGTACTTGACACGTGTAGAAAATGCTACTATTTATGTAGTAATCATTATGCCAACCCCATTTTTCCAGC


CAGGCGATCCGCGTTGCCACCGCGCCGGCAGACCCAAGGGGACAGCGCTCAAGAAAATGCGCAAGATGGCTGCCGAGGTGCTAGGC


GAGGAGCTGGAAACGCCGACTGGGCGTATGACCCGCGCAAAA (SEQ ID NO: 78)





>SRR7976138_3273187_70|M


CCCGTGGTCCTGACGTTGTTCGGGGGATATCGGGATGACCATCCCGAGAGCGTGCTGGGGCTCCACGCGATGGGCGTGGCCCGCGC


GCTCTACTGGCTCGCGGGCGTCCGCAAGCTCGCCGACTGGCGCGCGGATGTTCGCCCGCGCTGAGTCTCTGCGGAGGCGAGTTTGG


CCTCCGACACCGAGTCCGCACGTTATCACCGGGTTGGCGGTCGCCGACCCAGAAGGGATCGAGATCATGATGTGCTTCCAATACTG


GGCCGAGCCCGTCGACGAGACGAGCAAGGCACTCCTCGCTCACCAACTCCGCGAGGGCGCGATGTACCGCCGCATCCTCGCCACGC


TCGAAAATCGCGATCAAGACCACAGCGCCGCGAGGACTCTGCTCGCGAGCGGTCTGGTGATGGCGCTCGAAGGCGCAGCGACGAAG


GGTCGAACCCCGCGAAAGATGGGGGCGCGGCGTACGCGCAAGAAGGCCCAGGTCGAGATCGCTCGCGACGCGTGATACAAGTTCGC


TCTCTGACAACCGAATAGGTCATCGCA (SEQ ID NO: 79)





>3300014491|Ga0182014_10071250_1|M


TCCCTCTGGAATCGGTTGGCATACTTCTGTCGCGAAGCAAGACGGAAGTGCTCACCAGCGCCCACGGCTGAAATAGTGGCGTTTGT


TCGGGAGATCATTCTTCCGGAGATCGATGCGTTCAATGACGCTCTCGGGCGGTCGAAGGCAAAGATCAAGCATCCTGCCAGGCTTA


AGACGGAGATGCCGGGGCCCGATGGACTGTGGAACTTCGTTGGGCAGCTCCGGTGCAACCACCTTAACCCTGGTACTGAGAAAGAG


CACTTCACCTGCGAGAAATGCGAGCGGCAGATCAAACAAGACCACAATGCCGCGGTCAATATCTCGCGCTTCGGCTGTGATCCAGA


ACTGGCAGAGATGGCCGCCTCTGCTGGCTGAGTCTTTACCTATGCCCTGTGCGGATCTCAAGCGAGCATTTATTGCTTGGGAGGTT


CGCGCAGGCTATTTCCGCTCATAACAAAGGAGATTGTGAAATATCAAGGGCGATGTCGTCAAATCAAATACTCTGCGGGGAGGGTT


CCCGCTAACCATTCCGTAGATCATTGCGGTCCAATAAGTTACAGTGAAGGAGTTGGATTTTCACGCTGCCGCTTGGAAATTGAGTT


TGTAGCGGTATCCGCGCCCAATATTTTGCGCAGAATCAGACTCAGGCTAAAAGTCTTCTCCCGTGAGAGGCACG (SEQ ID NO:


80)





>SRR2657585_2135055_9|M


TCTCATGTACGCCACCGTCGATCCTCGGGCGAACGGAGGGTTTATGGTGACCTACGGTTGGCGAAACAAAGATGGAACCGCGGAGG


TGATGCGAGAGCACTTCTCTGACCTCGAAGATGCCAAGGTTGATGCGGCAGACTTTATGCTCTGCCGCGGGGACTGGGAAGAATGA


GCAGGGCCAAATGCCCAAAAAAGCGCTTGTTGGCTCACGCCCGAGGCGAAGACGAGTGCTGGCTATGGCCAGGAGCGGACTCTGGC


AACGGCTACGGGAGGATCTCAGTGGACGGCAAAACAAGAGCGACTCACATCGTGGCCTACGAGCTGTTTACCGGTACTCGTGTGCC


GCCTGGAATGGTGCTCGACCATCAGTGTCGAAATCGACTGTGCTACAACCCGAGATGCCTCAAGCCCATTCCAGGCATTGTCAACA


CGCTCATCGGTGAGGGACCTACTGCAGCCAATGCGCTCAAGACGCATTGCTGTCGCGGCCACGAGTTGGCCGGTGAGAATCTCATC


ACTAGGACTCGCGAAGGTCGGCGGCCAAGTCGTGAGTGTCGTGCCTGCCGCAGGATGCGCGGCAGAGCGCAGGAGATGTGCGTATG


AGCAAGTGCGAGGGCTGCGGGGAAGATCATCTCGTCCTAGGCGCTTGCATACTGAAGGCAGCGATCTACGAGGCTCCCTGTATCTA


CTGTCATGCGCGGCCAGGAGAACTGTGCGTAACCTGCACCGGCAAGGAGAGCCCGCAGTGGCACATGCAGCGCGTCGGGGCTGGCC


ACACGCTACTAGTCGCGAGAGGAACACCGTGCCTTGCTTCTCGCCATATACAGAGAATGCGCGGAAACCGTCGCAATAAAGGGCAC


ACCAGACAGAACTGGCATCGCAACAAGGAACGACTGAGTCATGGAAAGAGAGTGAAATAATATGGCTACACGCGTCTACAAATTCG


GAGCCCGCTCACCAGGTGAGGCCACTCTTCTGCGCGCCCAGATGAAACTGGGCCGCGAGTACTACAACGCCCTCGTCGAGGTCGAG


AATAAGCGCCGGCAAAAAGCCTGGGGCGCCGAGACGGTGCCAGCACCACCGCACGAGGATTGCAAGTTGCCCAAGTGCCCCGAGTG


TCGCGACCATTGGCGAGCG (SEQ ID NO: 81)









Example 2—Functional Validation of Two Engineered CLUST.133120 CRISPR-Cas Systems

Having identified components of CLUST.133120 CRISPR-Cas systems, two loci were selected for functional validation: 1) a locus from the metagenomic source designated 3300027740 (SEQ ID NO: 1) and 2) a locus from the metagenomic source designated 3300017971 (SEQ ID NO: 2).


DNA Synthesis and Effector Library Cloning

To test the activity of the exemplary CLUST.133120 CRISPR-Cas systems, systems were designed and synthesized using a pET28a(+) vector. Briefly, an E. coli codon-optimized nucleic acid sequence encoding the CLUST.133120 3300027740 effector (SEQ ID NO: 1 shown in TABLE 3) and an E. coli codon-optimized nucleic acid sequence encoding CLUST.133120 3300017971 effector (SEQ ID NO: 2 shown in TABLE 3) were synthesized (Genscript) and individually cloned into a custom expression system derived from pET-28a(+) (EMD-Millipore). The vectors included the nucleic acid encoding CLUST.133120 effectors under the control of a lac promoter and an E. coli ribosome binding sequence. The vector also included an acceptor site for a CRISPR array library driven by a J23119 promoter following the open reading frame for the CLUST.133120 3300027740 effector. The non-coding sequence used for the CLUST.133120 3300027740 effector (SEQ ID NO: 1) is set forth in SEQ ID NO: 78, and the non-coding sequence used for the CLUST.133120 3300017971 effector (SEQ ID NO: 2) is set forth in SEQ ID NO: 75, shown in TABLE 5. Additional conditions were tested, wherein the CLUST.133120 3300027740 effector (SEQ ID NO: 1) and the CLUST.133120 3300017971 effector (SEQ ID NO: 2) were individually cloned into pET28a(+) without the non-coding sequence. See FIG. 1A.


An oligonucleotide library synthesis (OLS) pool containing “repeat-spacer-repeat” sequences was computationally designed, where “repeat” represents the consensus direct repeat sequence found in the CRISPR array associated with the effector, and “spacer” represents sequences tiling the pACYC184 plasmid or E. coli essential genes. In particular, the repeat sequence used for the CLUST.133120 3300027740 effector (SEQ ID NO: 1) is set forth in SEQ ID NO: 51, and the repeat sequence used for the CLUST.133120 3300017971 effector (SEQ ID NO: 2) is set forth in SEQ ID NO: 52, as shown in TABLE 4. The spacer length was determined by the mode of the spacer lengths found in the endogenous CRISPR array. The repeat-spacer-repeat sequence was appended with restriction sites enabling the bi-directional cloning of the fragment into the aforementioned CRISPR array library acceptor site, as well as unique PCR priming sites to enable specific amplification of a specific repeat-spacer-repeat library from a larger pool.


Next, the repeat-spacer-repeat library was cloned into the plasmid using the Golden Gate assembly method. Briefly, each repeat-spacer-repeat was first amplified from the OLS pool (Agilent Genomics) using unique PCR primers and pre-linearized the plasmid backbone using BsaI to reduce potential background. Both DNA fragments were purified with Ampure XP (Beckman Coulter) prior to addition to Golden Gate Assembly Master Mix (New England Biolabs) and incubated per the manufacturer's instructions. The Golden Gate reaction was further purified and concentrated to enable maximum transformation efficiency in the subsequent steps of the bacterial screen.


The plasmid library containing the distinct repeat-spacer-repeat elements and CRISPR effectors was electroporated into E. Cloni electrocompetent E. coli (Lucigen) using a Gene Pulser Xcell® (Bio-rad) following the protocol recommended by Lucigen. The library was either co-transformed with purified pACYC184 plasmid or directly transformed into pACYC184-containing E. Cloni electrocompetent E. coli (Lucigen), plated onto agar containing chloramphenicol (Fisher), tetracycline (Alfa Aesar), and kanamycin (Alfa Aesar) in BioAssay® dishes (Thermo Fisher), and incubated for 10-12 hours at 37° C. After estimation of approximate colony count to ensure sufficient library representation on the bacterial plate, the bacteria were harvested, and plasmid DNA WAS extracted using a QIAprep Spin Miniprep® Kit (Qiagen) to create an “output library.” By performing a PCR using custom primers containing barcodes and sites compatible with Illumina sequencing chemistry, a barcoded next generation sequencing library was generated from both the pre-transformation “input library” and the post-harvest “output library,” which were then pooled and loaded onto a Nextseq 550 (Illumina) to evaluate the effectors. At least two independent biological replicates were performed for each screen to ensure consistency. See FIG. 1B.


Bacterial Screen Sequencing Analysis

Next generation sequencing data for screen input and output libraries were demultiplexed using Illumina bcl2fastq. Reads in resulting fastq files for each sample contained the CRISPR array elements for the screening plasmid library. The direct repeat sequence of the CRISPR array was used to determine the array orientation, and the spacer sequence was mapped to the source (pACYC184 or E. Cloni) or negative control sequence (GFP) to determine the corresponding target. For each sample, the total number of reads for each unique array element (ra) in a given plasmid library was counted and normalized as follows: (ra+1)/total reads for all library array elements. The depletion score was calculated by dividing normalized output reads for a given array element by normalized input reads.


To identify specific parameters resulting in enzymatic activity and bacterial cell death, next generation sequencing (NGS) was used to quantify and compare the representation of individual CRISPR arrays (i.e., repeat-spacer-repeat) in the PCR product of the input and output plasmid libraries. The array depletion ratio was defined as the normalized output read count divided by the normalized input read count. An array was considered to be “strongly depleted” if the depletion ratio was less than 0.3 (more than 3-fold depletion), depicted by the dashed line in FIG. 3, FIG. 6, FIG. 9, and FIG. 12. When calculating the array depletion ratio across biological replicates, the maximum depletion ratio value for a given CRISPR array was taken across all experiments (i.e. a strongly depleted array must be strongly depleted in all biological replicates). A matrix including array depletion ratios and the following features were generated for each spacer target: target strand, transcript targeting, ORI targeting, target sequence motifs, flanking sequence motifs, and target secondary structure. The degree to which different features in this matrix explained target depletion for CLUST.133120 systems was investigated.



FIG. 3 and FIG. 6 show the degree of interference activity of the engineered compositions by plotting for a given target the normalized ratio of sequencing reads in the screen output versus the screen input. The results are plotted for each DR transcriptional orientation. In the functional screen for each composition, an active effector complexed with an active RNA guide will interfere with the ability of the pACYC184 to confer E. coli resistance to chloramphenicol and tetracycline, resulting in cell death and depletion of the spacer element within the pool. Comparison of the results of deep sequencing the initial DNA library (screen input) versus the surviving transformed E. coli (screen output) suggests specific target sequences and DR transcriptional orientations that enable an active, programmable CRISPR system. The screen also indicates that the effector complex is only active with one orientation of the DR. As such, the screen indicated that the CLUST.133120 3300027740 effector was active in the forward (5′-CCAA . . . CGAC-[spacer]-3′) orientation of the DR (FIG. 3) and that the CLUST.133120 3300017971 effector was active in the reverse (5′-GGTA . . . CGAC-[spacer]-3′) orientation of the DR (FIG. 6).



FIG. 4A and FIG. 4B depict the location of strongly depleted targets for the CLUST.133120 3300027740 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. Likewise, FIG. 7A and FIG. 7B show the location of strongly depleted targets for the CLUST.133120 3300017971 effector targeting pACYC184 and E. coli E. Cloni essential genes, respectively. Flanking sequences of depleted targets were analyzed to determine the PAM for CLUST.133120 3300027740 and CLUST.133120 3300017971. WebLogo representations (Crooks et al., Genome Research 14: 1188-90, 2004) of the PAM sequences for CLUST.133120 3300027740 and CLUST.133120 3300017971 are shown in FIG. 5 and FIG. 8, respectively. The “20” position corresponds to the nucleotide adjacent to the 5′ location of the target.


Furthermore, FIG. 9 shows that the CLUST.133120 3300027740 effector retains activity in the absence of the non-coding sequence. In agreement with FIG. 3, the CLUST.133120 3300027740 effector was active in the forward (5′-CCAA . . . CGAC-[spacer]-3′) orientation of the DR. FIG. 10A and FIG. 10B depict the locations of the strongly depleted targets for CLUST.133120 3300027740 effector (minus the non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. A WebLogo of the PAM sequences for CLUST.133120 3300027740 (minus the non-coding sequence) is shown in FIG. 11. Likewise, FIG. 12 shows that the CLUST.133120 3300017971 effector retains activity in the absence of the non-coding sequence. In agreement with FIG. 6, the CLUST.133120 3300017971 effector was active in the reverse (5′-GGTA . . . CGAC-[spacer]-3′) orientation of the DR. FIG. 13A and FIG. 13B depict the locations of the strongly depleted targets for CLUST.133120 3300017971 effector (minus the non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. A WebLogo of the PAM sequences for CLUST.133120 3300017971 (minus the non-coding sequence) is shown in FIG. 14. The “20” position corresponds to the nucleotide adjacent to the 5′ location of the target.


As such, multiple effectors of CLUST.133120 CRISPR-Cas show activity in vivo, both in the presence or absence of non-coding sequences. These results suggest that effectors of CLUST.133120 do not require a tracrRNA. CLUST.133120 effectors may thus be self-processing, allowing for ease in multiplexing.


Example 3—Targeting of GFP by a CLUST.133120 Effector

This Example describes use of a fluorescence depletion assay (FDA) to measure activity of a CLUST.133120 effector.


In this assay, an active CRISPR system designed to target GFP binds and cleaves the double-stranded DNA region encoding GFP, resulting in depletion of GFP fluorescence. The FDA assay involves in vitro transcription and translation, allowing production of an RNP from a DNA template encoding a CLUST.133120 effector and a DNA template containing a pre-crRNA sequence under a T7 promoter with direct repeat (DR)-spacer-direct repeat (DR); the spacer targeted GFP. In the same one-pot reaction, GFP and RFP were also produced as both the target and the fluorescence reporter (FIG. 15A). The target GFP plasmid sequence is set forth in SEQ ID NO: 192, and the RFP plasmid sequence is set forth in SEQ ID NO: 193. GFP and RFP fluorescence values were measured every 20 min at 37° C. for 12 hr, using a TECAN Infinite F Plex plate reader. Since RFP was not targeted, its fluorescence was not affected and was therefore used as an internal signal control.











SEQ ID NO: 192



ccccttgtattactgtttatgtaagcagacaggatgcgtc






cggcgtagaggatcgagatctcCAAAAAATGGCTGTTTTT






GAAAAAAATTCTAAAGGTTGTTTTACGACAGACGATAACA






GGGTTgaaataattttgtttaactttaagaaggagATTTA






AATatgAAAATCGAAGAAGGTAAAGGTCACCATCACCATC






ACCACggatccatgacggcattgacggaaggtgcaaaact






gtttgagaaagagatcccgtatatcaccgaactggaaggc






gacgtcgaaggtatgaaatttatcattaaaggcgagggta






ccggtgacgcgaccacgggtaccattaaagcgaaatacat






ctgcactacgggcgacctgccggtcccgtgggcaaccctg






gtgagcaccctgagctacggtgttcagtgtttcgccaagt






acccgagccacatcaaggatttctttaagagcgccatgcc






ggaaggttatacccaagagcgtaccatcagcttcgaaggc






gacggcgtgtacaagacgcgtgctatggttacctacgaac






gcggttctatctacaatcgtgtcacgctgactggtgagaa






ctttaagaaagacggtcacattctgcgtaagaacgttgca






ttccaatgcccgccaagcattctgtatattctgcctgaca






ccgttaacaatggcatccgcgttgagttcaaccaggcgta






cgatattgaaggtgtgaccgaaaaactggttaccaaatgc






agccaaatgaatcgtccgttggcgggctccgcggcagtgc






atatcccgcgttatcatcacattacctaccacaccaaact






gagcaaagaccgcgacgagcgccgtgatcacatgtgtctg






gtagaggtcgtgaaagcggttgatctggacacgtatcagT






AATAAaaagcccgaaaggaagctgagttggctgctgccac






cgctgagcaataactagcataaccccttggggcctctaaa






cgggtcttgaggggttttttgctgaaaggaggaactatat






ccggCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTC






GGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAT






ACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC






ATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA






AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCC






TGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG






CGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCC






CTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC






GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC






GTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTT






CGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGA






ACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAAC






TATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGC






CACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG






GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCT






AACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCG






CTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAG






CTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGT






TTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG






GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA






CGCTCAGTGGAACGAAAACTCACGggtggcacttttcggg






gaaatgtgcgcggaacccctatttgtttatttttctaaat






acattcaaatatgtatccgctcatgaattaattcttagaa






aaactcatcgagcatcaaatgaaactgcaatttattcata






tcaggattatcaataccatatttttgaaaaagccgtttct






gtaatgaaggagaaaactcaccgaggcagttccataggat






ggcaagatcctggtatcggtctgcgattccgactcgtcca






acatcaatacaacctattaatttcccctcgtcaaaaataa






ggttatcaagtgagaaatcaccatgagtgacgactgaatc






cggtgagaatggcaaaagtttatgcatttctttccagact






tgttcaacaggccagccattacgctcgtcatcaaaatcac






tcgcatcaaccaaaccgttattcattcgtgattgcgcctg






agcgagacgaaatacgcgatcgctgttaaaaggacaatta






caaacaggaatcgaatgcaaccggcgcaggaacactgcca






gcgcatcaacaatattttcacctgaatcaggatattcttc






taatacctggaatgctgttttcccggggatcgcagtggtg






agtaaccatgcatcatcaggagtacggataaaatgcttga






tggtcggaagaggcataaattccgtcagccagtttagtct






gaccatctcatctgtaacatcattggcaacgctacctttg






ccatgtttcagaaacaactctggcgcatcgggcttcccat






acaatcgatagattgtcgcacctgattgcccgacattatc






gcgagcccatttatacccatataaatcagcatccatgttg






gaatttaatcgcggcctagagcaagacgtttcccgttgaa






tatggctcataaca






SEQ ID NO: 193



ccccttgtattactgtttatgtaagcagacaggatgcgtc






cggcgtagaggatcgagatctcCAAAAAATGGCTGTTTTT






GAAAAAAATTCTAAAGGTTGTTTTACGACAGACGATAACA






GGGTTgaaataattttgtttaactttaagaaggagATTTA






AATatgAAAATCGAAGAAGGTAAAGGTCACCATCACCATC






ACCACggatccaTGGTCAGCAAGGGGGAGGAAGACAATAT






GGCTATTATCAAGGAATTCATGCGCTTCAAGGTGCATATG






GAAGGAAGCGTGAATGGACACGAATTCGAGATCGAAGGCG






AGGGGGAGGGTCGCCCTTATGAAGGCACACAAACAGCTAA






ACTGAAAGTGACGAAGGGAGGGCCGCTTCCCTTCGCTTGG






GACATTCTTTCACCCCAGTTCATGTATGGTTCAAAGGCTT






ATGTCAAGCACCCGGCGGACATTCCAGACTACTTAAAATT






GTCGTTCCCCGAGGGGTTTAAATGGGAACGCGTTATGAAT






TTCGAGGATGGGGGAGTCGTAACGGTTACCCAGGACAGTA






GCCTGCAGGATGGCGAGTTCATCTACAAAGTGAAATTGCG






CGGGACGAACTTCCCTAGCGATGGGCCAGTCATGCAGAAG






AAAACGATGGGATGGGAAGCGTCATCCGAGCGCATGTATC






CTGAAGATGGTGCTTTAAAAGGTGAGATCAAGCAGCGTTT






GAAACTGAAGGACGGGGGCCATTATGATGCTGAAGTTAAA






ACGACATATAAGGCCAAGAAGCCAGTTCAACTGCCAGGGG






CTTATAATGTTAATATTAAATTAGACATTACGAGCCATAA






TGAAGATTACACGATTGTCGAGCAATACGAGCGCGCAGAA






GGACGCCACTCAACGGGGGGCATGGACGAGCTGTACAAGT






AAaaagcccgaaaggaagctgagttggctgctgccaccgc






tgagcaataactagcataaccccttggggcctctaaacgg






gtcttgaggggttttttgctgaaaggaggaactatatccg






gCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGC






TGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACG






GTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG






TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGG






CCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGA






CGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGA






AACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTG






GAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT






TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG






GCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGG






TGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACC






CCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTAT






CGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCAC






TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA






TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAAC






TACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTC






TGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC






TTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTT






TTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT






CTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC






TCAGTGGAACGAAAACTCACGggtggcacttttcggggaa






atgtgcgcggaacccctatttgtttatttttctaaataca






ttcaaatatgtatccgctcatgaattaattcttagaaaaa






ctcatcgagcatcaaatgaaactgcaatttattcatatca






ggattatcaataccatatttttgaaaaagccgtttctgta






atgaaggagaaaactcaccgaggcagttccataggatggc






aagatcctggtatcggtctgcgattccgactcgtccaaca






tcaatacaacctattaatttcccctcgtcaaaaataaggt






tatcaagtgagaaatcaccatgagtgacgactgaatccgg






tgagaatggcaaaagtttatgcatttctttccagacttgt






tcaacaggccagccattacgctcgtcatcaaaatcactcg






catcaaccaaaccgttattcattcgtgattgcgcctgagc






gagacgaaatacgcgatcgctgttaaaaggacaattacaa






acaggaatcgaatgcaaccggcgcaggaacactgccagcg






catcaacaatattttcacctgaatcaggatattcttctaa






tacctggaatgctgttttcccggggatcgcagtggtgagt






aaccatgcatcatcaggagtacggataaaatgcttgatgg






tcggaagaggcataaattccgtcagccagtttagtctgac






catctcatctgtaacatcattggcaacgctacctttgcca






tgtttcagaaacaactctggcgcatcgggcttcccataca






atcgatagattgtcgcacctgattgcccgacattatcgcg






agcccatttatacccatataaatcagcatccatgttggaa






tttaatcgcggcctagagcaagacgtttcccgttgaatat






ggctcataaca






3 GFP targets (plus 1 non-target) were designed for the effector of SEQ ID NO: 1. RNA guide sequences, target sequences, and the non-target control sequences used for the FDA assay are listed in Table 6. The pre-crRNA sequences shown in Table 6 further include a T7 promoter at the 5′ end and a hairpin motif that caps the 3′ end of the RNA to ensure that the RNA is not degraded by nucleases present in the in vitro transcription and translation mixture. A 5′-TTN-3′ PAM was used for the target sequences.









TABLE 6







RNA guide and Target Sequences for FDA Assay.









Target
pre-crRNA Sequence
Target Sequence





Target 1
CCAACCAATGCC
tcgtctgtcgtaaaac



AGCGCGACGGCT
aacctttagaattttt



TATGAGTCGCGA
ttc



Ctcgtctgtcgt
(SEQ ID



aaaacaaccttt
NO: 82)



agaatttttttc




CCAACCAATGCC




AGCGCGACGGCT




TATGAGTCGCGA




C




(SEQ ID




NO: 916)






Target 2
gaaattaatacg
cagttcggtgat



actcactatagg
atacgggatctc



gCCAACCAATGC
tttctcaaaca



CAGCGCGACGGC
(SEQ ID



TTATGAGTCGCG
NO: 83)



ACcagttcggtg




atatacgggatc




tctttctcaaac




aCCAACCAATGC




CAGCGCGACGGC




TTATGAGTCGCG




AC




(SEQ ID




NO: 917)






Target 3
gaaattaatacg
ggtgatatacgg



actcactatagg
gatctctttctc



gCCAACCAATGC
aaacagttttg



CAGCGCGACGGC
(SEQ ID



TTATGAGTCGCG
NO: 84)



ACggtgatatac




gggatctctttc




tcaaacagtttt




gCCAACCAATGC




CAGCGCGACGGC




TTATGAGTCGCG




AC




(SEQ ID




NO: 918)






Non-Target 4
agaaattaatac




gactcactatag




ggCCAACCAATG




CCAGCGCGACGG




CTTATGAGTCGC




GACaggtgctac




atttgaagagat




aaattgcactga




aaCCAACCAATG




CCAGCGCGACGG




CTTATGAGTCGC




GACtaacccctc




tctaaacggagg




ggttt




(SEQ ID




NO: 919)









GFP signal was normalized to RFP signal, then the average fluorescence of three technical replicates was taken at each time point. GFP fluorescence depletion was then calculated by dividing the GFP signal of an effector incubated with a non-GFP targeting RNA guide (which instead targets a kanamycin resistance gene and does not deplete GFP signal) by the GFP signal of an effector incubated with a GFP targeting RNA guide. The resulting value is referred to as “Depletion” in FIG. 15B.


A Depletion of one or approximately one indicated that there was little to no difference in GFP depletion with respect to a non-GFP targeting pre-crRNA and a GFP targeting pre-crRNA (e.g., 10 RFU/10 RFU=1). A Depletion of greater than one indicated that there was a difference in GFP depletion with respect to a non-GFP targeting pre-crRNA and a GFP targeting pre-crRNA (e.g., 10 RFU/5 RFU=2). Depletion of the GFP signal indicated that the effector formed a functional RNP and interfered with the production of GFP by introducing double-stranded DNA cleavage within the GFP coding region. The extent of the GFP depletion was largely correlated to the specific activity of a CLUST.133120 effector.



FIG. 15B shows depletion curves for RNPs formed by the effector of SEQ ID NO: 1, measured every 20 minutes for each of the GFP targets (Targets 1-3). At each target, the depletion values for RNPs formed with the effector of SEQ ID NO: 1 were greater than one.


This indicated that the CLUST.133120 effector formed a functional RNP capable of interfering with the production of GFP.


Example 4-Identification of Components of CLUST.099129 CRISPR-Cas System

This protein family was identified using the computational methods described above. The CLUST.099129 system comprises single effectors associated with CRISPR systems found in uncultured metagenomic sequences collected from freshwater, wastewater, soil, and rhizosphere environments as well as from Anaerolineae bacterium (TABLE 9). Exemplary CLUST.099129 effectors include those shown in TABLES 9 and 10, below. Examples of direct repeat sequences for these systems are shown in TABLE 11. Optionally, the system includes a tracrRNA that is contained in a non-coding sequence listed in TABLE 12.









TABLE 9







Representative CLUST.099129 Effector Proteins













#
Effector
SEQ


Source
Effector Accession
Spacers
Size
ID NO














wastewater metagenome
SRR6837557_1470862_2|M
3
541
101


terrestrial-soil-tropical
3300012971|Ga0126369_10127246_1|M
7
586
102


forest soil


terrestrial-soil-tropical
3300005764|Ga0066903_100343966_1|M
6
600
103


forest soil


Anaerolineae bacterium
PMDR01000701_10|P
8
522
104


aquatic-freshwater-bog
3300014158|Ga0181521_10019591_3|P
2
520
105


aquatic-freshwater-bog
3300014159|Ga0181530_10005765_11|M
2
520
106


aquatic-freshwater-bog
3300014638|Ga0181536_10002122_15|P
2
520
107


aquatic-freshwater-
3300009632|Ga0116102_1009001_2|P
5
520
108


peatland


aquatic-freshwater-
3300009643|Ga0116110_1007258_2|M
5
534
109


peatland


aquatic-freshwater-
3300009643|Ga0116110_1007258_2|P
5
520
110


peatland


aquatic-freshwater-
3300017996|Ga0187891_1001667_23|M
2
520
111


peatland


aquatic-freshwater-
3300018003|Ga0187876_1014226_2|P
2
520
112


peatland


aquatic-freshwater-
3300025453|Ga0208455_1001030_8|P
5
520
113


peatland


aquatic-freshwater-
3300025507|Ga0208188_1002252_2|M
5
534
114


peatland


aquatic-freshwater-
3300025507|Ga0208188_1002252_2|P
5
520
115


peatland


biofilm metagenome
PJQE01000204_1|M
2
526
116


plants-rhizosphere-
3300006845|Ga0075421_100006223_8|P
2
586
117


populus rhizosphere


plants-rhizosphere-
3300006847|Ga0075431_100017297_1|M
2
586
118


populus rhizosphere


plants-rhizosphere-
3300027909|Ga0209382_10008589_8|P
2
586
119


populus rhizosphere


soil metagenome
ODAK010035847_2|M
4
506
120


soil metagenome
SRR6266511_1572288_18|M
4
615
121


soil metagenome
SRR6266511_203987_6|P
5
673
122


soil metagenome
SRR6266511_239355_1|M
17
602
123


soil metagenome
SRR6266511_838544_1|M
7
600
124


terrestrial-soil-fen
3300014502|Ga0182021_10233972_2|M
3
522
125


terrestrial-soil-surface
3300005529|Ga0070741_10001368_72|P
2
547
126


soil


terrestrial-soil-tropical
3300010046|Ga0126384_10047357_3|M
5
615
127


forest soil


terrestrial-soil-tropical
3300010359|Ga0126376_10030051_2|M
5
615
128


forest soil


terrestrial-soil-tropical
3300010362|Ga0126377_10111069_2|M
4
615
129


forest soil


terrestrial-soil-vadose
3300012204|Ga0137374_10002290_4|M
5
673
130


zone soil


terrestrial-soil-vadose
3300012204|Ga0137374_10009879_6|P
4
615
131


zone soil


terrestrial-soil-vadose
3300012350|Ga0137372_10022207_3|M
4
615
132


zone soil


terrestrial-soil-vadose
3300012350|Ga0137372_10022207_4|P
4
614
133


zone soil


terrestrial-soil-vadose
3300012353|Ga0137367_10000906_4|M
5
673
134


zone soil


terrestrial-soil-vadose
3300012353|Ga0137367_10004593_5|M
4
615
135


zone soil


terrestrial-soil-vadose
3300012355|Ga0137369_10001944_2|P
5
673
136


zone soil


terrestrial-soil-vadose
3300012355|Ga0137369_10007378_6|M
4
615
137


zone soil


terrestrial-soil-vadose
3300012355|Ga0137369_10043960_1|M
8
602
138


zone soil


terrestrial-soil-vadose
3300012358|Ga0137368_10001884_4|M
5
673
139


zone soil


terrestrial-soil-vadose
3300012358|Ga0137368_10007571_6|P
4
615
140


zone soil


terrestrial-soil-vadose
3300012360|Ga0137375_10064112_1|P
5
673
141


zone soil


terrestrial-soil-vadose
3300012532|Ga0137373_10033017_1|P
5
673
142


zone soil


terrestrial-soil-vadose
3300012944|Ga0137410_10000075_50|P
2
548
143


zone soil


terrestrial-soil-vadose
3300015245|Ga0137409_10000164_50|P
2
548
144


zone soil


wastewater metagenome
SRR6837571_912213_1|M
3
541
145
















TABLE 10





Amino acid sequences of Representative


CLUST.099129 Effector Proteins

















>SRR6837557_14708622|M



[wastewater metagenome]



MRTTKTPDYSNKNLSFWCEPVGEMPSVVFEKGRQMNRLWN



LLVECHTTFLAKHDGKKGGERTEAYKTEWQPLLKRIYNNE



AKSFGLNSDETNFVTDGFKNAIRAGYDQKRPGAGMPTFKA



RLRSIHIPFCDRNGGRAPAWFFEKPDRRIHLRPILLPDAA



KRVIDRGPARGHFTVDGQAISLRANLSQSIPPGALVKRVS



LVGKLERPFGWQWKLMFSIAYPPPPPAQSDAACVGVDLGY



RRFEDRIRFGMIFDGSRFHELALPLDLTNRRAAKAGKRWD



IREIWELESQIGCGVEACKASLKQLPKTDWPEEARGAMQG



IAKMRERGLLKVRRLLRDAEITVPELETWWDDYQRLFRKS



RHLELQIVATRTHLYRNLALSLARSCAAIAWEGDLSLRDL



AESAGKKKKQRKEAIAEGVSAERSPEDRIEEAAQKWRAYV



CLSDFRRFLKEAVEKTTAALIDRPAAGTTNTCEECGAPVD



TGPDLVLTCANGHRRDQDKGSAKMLFEEIDEGYRQQSAPL



SLDLFTDQAVRAIRTLNREMV



(SEQ ID NO: 101)






>3300012971|Ga0126369_10127246_1|M



[terrestrial-soil-tropical forest soil]



MIEEKTAKRKNPVRRERLNKDWPIKVYTYDCWPQEKPLKA



LWDTAHEMRRLWNDFTAIFRKILTDDKKDEASRPLLSKEE



RAILWAPINTKPLREIAKQRKKRLDAGCREAVVVRFLTTV



GNWRKNPSRCGPPRFQRADEMNAISIPLVYNDGKSAEWLI



GGEGTSSVRETRNLKTEAPEEYLNNGHFCVGVTRERLNLH



IAYGGRSGRKKYYLPEGCRIKQVTLCGRRDSAFNWSWSFQ



VRLEHPPEPARQPTGRVCGWDSCGWRLMDGYIRLGVIADN



AGHFYELMVPLAIGAACRRMRREKEYCLKQGWEYGKPLSF



DDAEALDARYGTTLEACKTQVRKIYEGEKENWPAGARKIM



SGIMKMRDTGLRRLRRKLEPIESEAKRTIDDWDAEAAKMN



ETIRAFEIHANNAKRDAYRQIAAWLNAFDIIAWEGDLSLK



QMAEKAGKKKQKRKEAHEETGQWNERTPEERQFEASQKYR



QIAGQRQLREFVKQKHESRLQNEKAAYSTRTCPECGGTIE



PGRKLLLVCENGHVRDQDVSAALHFLNKIEGVASITAPPV



EIPAHLGPYLRVMDASEVRLELAEKR



(SEQ ID NO: 102)






>3300005764|Ga0066903_100343966_1|M



[terrestrial-soil-tropical forest soil]



MEDISKKPERRKNPARRERLNKDWPIKVHNYRCSPNEKPP



QALWDTAHEMRRLWNDLTAVFRKILAEDKKDEDGKPLLSK



EERANLWAPINVKPLREIAKQRKDKLDIGCREYVVTHFIT



TVNNWRRNPRRFGPPRFQNAADMDSVHIPLVYTDGKSADW



LTGGNGTAWVRDTLHIKKNALRDKDGCPVLSENELEEYLN



NGHFCVGITREKLSLHIAYGGRSGRKKYHLPDKCRIKQVA



LCGRRNSAFGWSWSFQVRLEHPPDPERQVTGRVCGWDSGG



WRKMDSYIRLGVIADNAGHFYELMVPLAIGAASHRLRHER



EHCQKNGWEYNKPITFDDAEALQSRYGLALEACKTNLRII



FEEEKEKWPDDARKIMGGIIRMRDDGLRRLRRKLDEIESA



AKQTIDDWDAEAAKLNETIRAFQRHAGNAKRNAYRQITAW



LSAFDRIAWEGDLNLKWMAEQPGKKKQERKKTLAETGQWG



ERTAEDRQLEASQRYRQIVGQYRLRELVKQTHEARLQNEK



TAHSTRTCSECGARINPGGKLMLVCEKGHKRDQDVTASLY



LLSKIEGYASISGPPIEIPAHLSPYLRVMTASDVALEIVE



(SEQ ID NO: 103)






>PMDR01000701_10|P



[Anaerolineae bacterium]



MRPKKNADTIYQTYKFWIKPSDPLPQLLWDKAKAMNAAWT



SLVLMRQETLETWMAQRDTLTADQKRAFWNTFNLAVREKI



EECELDWETSGVLHDRFLVAHQRALKDKADLHGRTRLQRI



LLVHRYTGGGIPIEKLLSTRAWRFALDAFPTEDVYATNTR



QARRGRQTQGRFGLDNETAVEFSIILHRPLPPAAIVKRVA



LSGRRQKPPAHEWDWALVVSVEVPNPSRTAAGRVIGIDLG



WRKIDDYLRIGYAADDTDQQIELRLPLDFSTQKARSAGYP



CNHAELRALEGWIAVAVDATK



AAIGELITVPSLVLMRQGGLVRLQRTLSEKPDLSEAEVEA



LRILGAWRKQNDRLQKIYNFSTARFAARRRWLYQNLAAWL



CRNYDVIAIEGDLDVKGLAEEPDPDPALKAAQRYRQIAAP



GELREIIRWTAQREGVIVKDCNTAYSTTTCFTCGEQAEAG



PDLILECPAGHRFDQDANAAANLLSQILPLTEVQDGLRKN



QRDFLRIPPELQMVAWVHRD



(SEQ ID NO: 104)






>3300014158|Ga018152l_10019591_3|P



[aquatic-freshwater-bog]



MQRERKRKESHDIRPHKYRAWFAEGDGTRLPEPVYLLAKR



MQDCWTDIALHDQQAYDEWRTAHPVPTPPAGLEGEALAKW



RKENWPKPPKPFYVGNQEWAEGRVGQANLPDELGQTILDR



LAVTFKNMKKGGGPPKPHGRLDKFTFHHRYTGGGLPVNKL



GRQLGERFRISIPPPQAYQPKEDIMNPRASRCQRVCLAWF



RVDGVPVRLNVMMHRSLPEGDVYVKRVALVGRKSSAALPW



EVYLVFTLEVPSETEAQAPLGTRCGIDVGWRKLDDGRMRV



AVLHDGKPTPEELIMPLRIYDRKLGEVSLERLANLKRCRD



GLLERTKATVAAMFGTPLSDWTRIRNGGLIRLMREDGAPA



EVIAMLETWKRDSDRYLRMERMLENRMRRHYEWRYGKWAK



DVATRHRTVRIKKMDQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLAMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 105)






>3300014159|Ga0181530_10005765_11|M



[aquatic-freshwater-bog]



MQRERKRKESHDIRPHKYRAWFAEGDGTRLPEPVYLLAKR



MQDCWTDIALHDQQAYDEWRTAHPVPTPPAGLEGEALAKW



RKENWPKPPKPFYVGNQEWAEGRVGQANLPDELGQTILDR



LAVTFKNMKKGGGPPKPHGRLDKFTFHHRYTGGGLPVNKL



GRQLGERFRISIPPPQAYQPKEDIMNPRASRCQRVCLAWF



RVDGVPVRLNVMMHRSLPEGDVYVKRVALVGRKSSAALPW



EVYLVFTLEVPSETEAQAPLGTRCGIDVGWRKLDDGRMRV



AVLHDGKPTPEELIMPLRIYDRKLGEVSLERLANLKRCRD



GLLERTKATVAAMFGTPLSDWTRIRNGGLIRLMREDGAPA



EVIAMLETWKRDSDRYLRMERMLENRMRRHYEWRYGKWAK



DVATRHRTVRIKKMDQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLAMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 106)






>3300014638|Ga0181536_10002122_15|P



[aquatic-freshwater-bog]



MQRERKRKESHDIRPHKYRAWFAEGDGTRLPEPVYLLAKR



MQDCWTDIALHDQQAYDEWRTAHPVPTPPAGLEGEALAKW



RKENWPKPPKPFYVGNQEWAEGRVGQANLPDELGQTILDR



LAVTFKNMKKGGGPPKPHGRLDKFTFHHRYTGGGLPVNKL



GRQLGERFRISIPPPQAYQPKEDIMNPRASRCQRVCLAWF



RVDGVPVRLNVMMHRSLPEGDVYVKRVALVGRKSSAALPW



EVYLVFTLEVPSETEAQAPLGTRCGIDVGWRKLDDGRMRV



AVLHDGKPTPEELIMPLRIYDRKLGEVSLERLANLKRCRD



GLLERTKATVAAMFGTPLSDWTRIRNGGLIRLMREDGAPA



EVIAMLETWKRDSDRYLRMERMLENRMRRHYEWRYGKWAK



DVATRHRTVRIKKMDQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLAMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 107)






>3300009632|Ga0116102_1009001_2|P



[aquatic-freshwater-peatland]



MQRERKRKETHDIRPHKYRAWFAEGDGSRLPEPVFALARR



MQDCWTDIALHNQDAYDEWRMAHPAPAAPAGLEGQTIEKW



RRENWPKLPKPYYEGNQAWAESRVRQANLPGELGQTILDR



LSVTFKNMKKGGGPPKPHYRLDRFAFHHRYTSGGLPVLGL



RSQRSQRFHILLPSPHAYQTKGGTKNPRELRRQRVCPAWF



CVDGVSARLNVMMHRPLPEGDAYVKRVALVGKKSSAAMPW



EVSLALTVEVPVAKEPQAPAGTRCGLDVGWRKLDKDRMRV



AVLYNGGPNSEELVMPLRIHDRKLGEVSLERLARLNRCRD



ALLERTKAAVATMLGTEPSAWAQMRNGGLVRLMREDGAPP



EVIEVLEAWKQDNDRYLRLERLVEAHLRRHYEWRYGKWAK



DVATRYRTVRIRKMGQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLSMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 108)






>3300009643|Ga0116110_1007258_2|M



[aquatic-freshwater-peatland]



MSARTIEERKGKTSMQRERKRKETHDIRPHKYRAWFAEGD



GTRLPEPIFALAKRMQDCWTDIALHNQDAFEEWRMAHPLP



APPDGLAGEAFEDWRRKNWPRPPKPFYEANQAWAESRVRQ



ANLPGELGETILDRLSVTVNNMKKGGGPPKPHYRLDRFAF



HHRYTSGGLPVLGLRSQRSQRFHILLPPPNAYQPKGGMRN



PHELRRQRVCPAWFCVDGVPVRLNVMMHRPLPEGDAYLKR



VALVGKKSSAALPWEVFLVLTVEVPLAKEPQAPAGTRCGL



DVGWRKLDKDRMRVAVLYNGGPNSEELVMPLRIHDRKLGE



VSLERLARLNRCRDALLERTKAAVATMLGTEPSAWAQMRN



GGLVRLMREDGAPPEVIEVLEAWKQDNDRYLRLERLVEAH



LRRHYEWRYGKWAKDVATRYRTVRIRKMGQKEMWAVEKTK



DYPALKASAERRKLAAGGSLLSMVRHAVRKACGNLVEVEA



AHTTDTCAACGSHFEAGAGLMGRCEQGHVMDQDWNAAGNI



YAGRAGATAQAAVG



(SEQ ID NO: 109)






>3300009643|Ga0116110_1007258_2|P



[aquatic-freshwater-peatland]



MQRERKRKETHDIRPHKYRAWFAEGDGTRLPEPIFALAKR



MQDCWTDIALHNQDAFEEWRMAHPLPAPPDGLAGEAFEDW



RRKNWPRPPKPFYEANQAWAESRVRQANLPGELGETILDR



LSVTVNNMKKGGGPPKPHYRLDRFAFHHRYTSGGLPVLGL



RSQRSQRFHILLPPPNAYQPKGGMRNPHELRRQRVCPAWF



CVDGVPVRLNVMMHRPLPEGDAYLKRVALVGKKSSAALPW



EVFLVLTVEVPLAKEPQAPAGTRCGLDVGWRKLDKDRMRV



AVLYNGGPNSEELVMPLRIHDRKLGEVSLERLARLNRCRD



ALLERTKAAVATMLGTEPSAWAQMRNGGLVRLMREDGAPP



EVIEVLEAWKQDNDRYLRLERLVEAHLRRHYEWRYGKWAK



DVATRYRTVRIRKMGQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLSMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 110)






>3300017996|Ga0187891_1001667_23|M



[aquatic-freshwater-peatland]



MQRERKRKESHDIRPHKYRAWFAEGDGTRLPEPVYLLAKR



MQDCWTDIALHDQQAYDEWRTAHPVPTPPAGLEGEALAKW



RKENWPKPPKPFYVGNQEWAEGRVGQANLPDELGQTILDR



LAVTFKNMKKGGGPPKPHGRLDKFTFHHRYTGGGLPVNKL



GRQLGERFRISIPPPQAYQPKEDIMNPRASRCQRVCLAWF



RVDGVPVRLNVMMHRSLPEGDVYVKRVALVGRKSSAALPW



EVYLVFTLEVPSETEAQAPLGTRCGIDVGWRKLDDGRMRV



AVLHDGKPTPEELIMPLRIYDRKLGEVSLERLANLKRCRD



GLLERTKATVAAMFGTPLSDWTRIRNGGLIRLMREDGAPA



EVIAMLETWKRDSDRYLRMERMLENRMRRHYEWRYGKWAK



DVATRHRTVRIKKMDQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLAMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 111)






>3300018003|Ga0187876_1014226_2|P



[aquatic-freshwater-peatland]



MQRERKRKESHDIRPHKYRAWFAEGDGTRLPEPVYLLAKR



MQDCWTDIALHDQQAYDEWRTAHPVPTPPAGLEGEALAKW



RKENWPKPPKPFYVGNQEWAEGRVGQANLPDELGQTILDR



LAVTFKNMKKGGGPPKPHGRLDKFTFHHRYTGGGLPVNKL



GRQLGERFRISIPPPQAYQPKEDIMNPRASRCQRVCLAWF



RVDGVPVRLNVMMHRSLPEGDVYVKRVALVGRKSSAALPW



EVYLVFTLEVPSETEAQAPLGTRCGIDVGWRKLDDGRMRV



AVLHDGKPTPEELIMPLRIYDRKLGEVSLERLANLKRCRD



GLLERTKATVAAMFGTPLSDWTRIRNGGLIRLMREDGAPA



EVIAMLETWKRDSDRYLRMERMLENRMRRHYEWRYGKWAK



DVATRHRTVRIKKMDQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLAMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 112)






>3300025453|Ga0208455_1001030_8|P



[aquatic-freshwater-peatland]



MQRERKRKETHDIRPHKYRAWFAEGDGSRLPEPVFALARR



MQDCWTDIALHNQDAYDEWRMAHPAPAAPAGLEGQTIEKW



RRENWPKLPKPYYEGNQAWAESRVRQANLPGELGQTILDR



LSVTFKNMKKGGGPPKPHYRLDRFAFHHRYTSGGLPVLGL



RSQRSQRFHILLPSPHAYQTKGGTKNPRELRRQRVCPAWF



CVDGVSARLNVMMHRPLPEGDAYVKRVALVGKKSSAAMPW



EVSLALTVEVPVAKEPQAPAGTRCGLDVGWRKLDKDRMRV



AVLYNGGPNSEELVMPLRIHDRKLGEVSLERLARLNRCRD



ALLERTKAAVATMLGTEPSAWAQMRNGGLVRLMREDGAPP



EVIEVLEAWKQDNDRYLRLERLVEAHLRRHYEWRYGKWAK



DVATRYRTVRIRKMGQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLSMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 113)






>3300025507|Ga0208188_1002252_2|M



[aquatic-freshwater-peatland]



MSARTIEERKGKTSMQRERKRKETHDIRPHKYRAWFAEGD



GTRLPEPIFALAKRMQDCWTDIALHNQDAFEEWRMAHPLP



APPDGLAGEAFEDWRRKNWPRPPKPFYEANQAWAESRVRQ



ANLPGELGETILDRLSVTVNNMKKGGGPPKPHYRLDRFAF



HHRYTSGGLPVLGLRSQRSQRFHILLPPPNAYQPKGGMRN



PHELRRQRACPAWFCVDGVPVRLNVMMHRPLPEGDAYLKR



VALVGKKSSAALPWEVFLVLTVEVPLAKEPQAPAGTRCGL



DVGWRKLDKDRMRVAVLYNGGPNSEELVMPLRIHDRKLGE



VSLERLARLNRCRDALLERTKAAVATMLGTEPSAWAQMRN



GGLVRLMREDGAPPEVIEVLEAWKQDNDRYLRLERLVEAH



LRRHYEWRYGKWAKDVATRYRTVRIRKMGQKEMWAVEKTK



DYPALKASAERRKLAAGGSLLSMVRHAVRKACGNLVEVEA



AHTTDTCAACGSHFEAGAGLMGRCEQGHVMDQDWNAAGNI



YAGRAGATAQAAVG



(SEQ ID NO: 114)






>3300025507|Ga0208188_1002252_2|P



[aquatic-freshwater-peatland]



MQRERKRKETHDIRPHKYRAWFAEGDGTRLPEPIFALAKR



MQDCWTDIALHNQDAFEEWRMAHPLPAPPDGLAGEAFEDW



RRKNWPRPPKPFYEANQAWAESRVRQANLPGELGETILDR



LSVTVNNMKKGGGPPKPHYRLDRFAFHHRYTSGGLPVLGL



RSQRSQRFHILLPPPNAYQPKGGMRNPHELRRQRACPAWF



CVDGVPVRLNVMMHRPLPEGDAYLKRVALVGKKSSAALPW



EVFLVLTVEVPLAKEPQAPAGTRCGLDVGWRKLDKDRMRV



AVLYNGGPNSEELVMPLRIHDRKLGEVSLERLARLNRCRD



ALLERTKAAVATMLGTEPSAWAQMRNGGLVRLMREDGAPP



EVIEVLEAWKQDNDRYLRLERLVEAHLRRHYEWRYGKWAK



DVATRYRTVRIRKMGQKEMWAVEKTKDYPALKASAERRKL



AAGGSLLSMVRHAVRKACGNLVEVEAAHTTDTCAACGSHF



EAGAGLMGRCEQGHVMDQDWNAAGNIYAGRAGATAQAAVG



(SEQ ID NO: 115)






>PJQE01000204_1M



[biofilm metagenome]



MKRKERKRPYYPVTVFSFHLEPHSIPQQVWDTAKEMQALW



NLMTEAHKRILEQTAEMEKPQKVEPYRAFYKEVYNLTKAA



PLNAGCKWDVHDRFIATLKRFHKKQGGPPKFKKGLDRVRI



VRRFFDGGRPIEWLFSRTSDRQPVRLRQVAENRQGRLMRG



FFNVGDEQMDFEAVQHRAIPQGSFLKQIALTGRLIRAFND



AEHRGWQWSLNLTVEIPPQAMAASVGRVAALDVGWRVRGD



YLRIGLLTDTDGNLYELRLPFDLSNRSARRCEGGGYQMVS



SFKQMWEIESEQDEYLESVKERVRPRFDEMPEELRPDKGS



WHKVREGGLRRLLWSLVEANACPDVREILTRWRERNGAFE



KQIAGGRERMLKRREWMYRNIAAWIADRYDELVWEGDFNL



STVAADDTDDPALKAAQRYRQMAALYTLRQAIGQAMRKRG



RVIVESPAAYSTQTCSICKAHVPSGADLILRCESGHLMDQ



DVNAARIMLGERVGELRAMAGVSTSVDRSQVSGVVVPLNV



DAKVRG



(SEQ ID NO: 116)






>3300006845|Ga007542l_100006223_8|P



[plants-rhizosphere-populus rhizosphere]



MIDEKTAKRKSPIRRGRLNKDWPIKVYTYDCWPQEKPPQA



LWDTAHEMRRLWNDFTAIFRKILADDKKDEAGKPLLSKEE



RAILWAPINTKPLREIAKQRKEKLDAGCREAVVVRFLTTV



GNWRKNPSRVGPPRFKRADDMNAISIPLVYNDGKSAEWLN



GGEGTSSIRDTRNLKTEAPEEYLNNGHFCVGITRERLNLH



VAYGGRSGRNKYYLPAECRIKQVALCGRRDSAFSWSWSFQ



VRLEHPPDPARRPTGRVCGWDSGGWRLMDGYIRLGVIADN



AGHFYELMVPLVIGAASRRMRREKEYCHKHGWEYSKPMTF



DDAEALDASYGATLEACKTEVCKIFEEEKEDWPADAGKIM



SRIVKMRDMGLRRLRRKLEQIESEAKRTIDEWDAEAAKMN



ETIRAFEIHAYKAKRDAYRQIAAWLNAFDIIAWEGDLSLK



QMAEQVGKKKQKRKEAHKETGQWNERTPEELQFEASQKYR



QIAGQHGLREFVKQKHKSRLQNEKAAYSTQTCPECGGAIE



PGHKLLLVCENGHGRDQDVTAALHFLNKIEGVASIMVPPV



EIPAHLRPYLRVMDASEARLELAEKL



(SEQ ID NO: 117)






>3300006847|Ga0075431_100017297_1|M



[plants-rhizosphere-populus rhizosphere]



MIDEKTAKRKSPIRRGRLNKDWPIKVYTYDCWPQEKPPQA



LWDTAHEMRRLWNDFTAIFRKILADDKKDEAGKPLLSKEE



RAILWAPINTKPLREIAKQRKEKLDAGCREAVVVRFLTTV



GNWRKNPSRVGPPRFKRADDMNAISIPLVYNDGKSAEWLN



GGEGTSSIRDTRNLKTEAPEEYLNNGHFCVGITRERLNLH



VAYGGRSGRNKYYLPAECRIKQVALCGRRDSAFSWSWSFQ



VRLEHPPDPARRPTGRVCGWDSGGWRLMDGYIRLGVIADN



AGHFYELMVPLVIGAASRRMRREKEYCHKHGWEYSKPMTF



DDAEALDASYGATLEACKTEVCKIFEEEKEDWPADAGKIM



SRIVKMRDMGLRRLRRKLEQIESEAKRTIDEWDAEAAKMN



ETIRAFEIHAYKAKRDAYRQIAAWLNAFDIIAWEGDLSLK



QMAEQVGKKKQKRKEAHKETGQWNERTPEELQFEASQKYR



QIAGQHGLREFVKQKHKSRLQNEKAAYSTQTCPECGGAIE



PGHKLLLVCENGHGRDQDVTAALHFLNKIEGVASIMVPPV



EIPAHLRPYLRVMDASEARLELAEKL



(SEQ ID NO: 118)






>3300027909|Ga0209382_10008589_8|P



[plants-rhizosphere-populus rhizosphere]



MIDEKTAKRKSPIRRGRLNKDWPIKVYTYDCWPQEKPPQA



LWDTAHEMRRLWNDFTAIFRKILADDKKDEAGKPLLSKEE



RAILWAPINTKPLREIAKQRKEKLDAGCREAVVVRFLTTV



GNWRKNPSRVGPPRFKRADDMNAISIPLVYNDGKSAEWLN



GGEGTSSIRDTRNLKTEAPEEYLNNGHFCVGITRERLNLH



VAYGGRSGRNKYYLPAECRIKQVALCGRRDSAFSWSWSFQ



VRLEHPPDPARRPTGRVCGWDSGGWRLMDGYIRLGVIADN



AGHFYELMVPLVIGAASRRMRREKEYCHKHGWEYSKPMTF



DDAEALDASYGATLEACKTEVCKIFEEEKEDWPADAGKIM



SRIVKMRDMGLRRLRRKLEQIESEAKRTIDEWDAEAAKMN



ETIRAFEIHAYKAKRDAYRQIAAWLNAFDIIAWEGDLSLK



QMAEQVGKKKQKRKEAHKETGQWNERTPEELQFEASQKYR



QIAGQHGLREFVKQKHKSRLQNEKAAYSTQTCPECGGAIE



PGHKLLLVCENGHGRDQDVTAALHFLNKIEGVASIMVPPV



EIPAHLRPYLRVMDASEARLELAEKL



(SEQ ID NO: 119)






>ODAK010035847_2|M



[soil metagenome]



MAYKFRAYVTGTDASHGQMLPPAIYTVAKNMENCWSDIAN



HNEQEYGAWKAAHVGADGKLPINIKSKTPIKPPKEFYAAS



EAWAIERIEQAQLPDELGTTILDRLHTTYKMMKRGGGPPK



PKRRMDRFALHHRYTGGGMPVANLGGQRAERFRVLLPSGT



AYQPWGRVKNPRDRRRERTVKAWFRVGDQPIQLRVVMHRP



LSVEDCFVKRVYLTGEKPSVAMPWVYYLVILIELPKPIVK



NTNAATVGIDVGWRKLDDERLRVAVGYDGHSHPELVLPLT



FQARGLGEVSLDRISKVKTLRDNSLEATKDKLRTLLNPLP



PGFAQMRNGGLLRLLRLMQQNEPDSPVIGMLENWKTDNDR



YLRLERVLENKLMAHRDKMYEKWALVEIATKYGVVKIEKM



NQQEMWDAEANKKDPALRAAAERRKYASCGALLAYIRRTV



KRVGGEIVEVPAEHTTDICSECGALFEAGSEIIGRCTRGH



EKDQDWNAAENIYAYSSAPVAELLSA



(SEQ ID NO: 120)






>SRR6266511_1572288_18|M



[soil metagenome]



MMQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQR



YRQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 121)






>SRR6266511_203987_6|P



[soil metagenome]



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFASLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKERKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRDAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGQWEERT



PEERVFENSQKFRQIVGLHNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP



(SEQ ID NO: 122)






>SRR6266511_239355_1|M



[soil metagenome]



MEDISKKPERRKNFARRERLNKDWPFKVYPYRCMLREKPP



QALWDTAREMRRLWNDFTETFHKILKEDKKDEDGKPLLSK



EQRATLWASINIKPLREIAKKRKDKLDIGCREFIVTNFIT



TVGNWRKNPGKFGPPRFQPASEIRSIYIPLVYYDGKSAEW



LHCGKGTAWVQDTLHIKKNASRDEKGRPILTEEEMEQYLN



NSHFCVGITREKLNLHVAYGGRSGKKKRYLPDKCRIKWVA



LAGRRDSAFGWSWSFQVRLEHPPDPERQVTGRVCGWDSGG



WRKMDGYIRLGVIADNAGHFYELMVPLAIGAASHRLRHER



EHCQKNGWEYNKPITFDDAEALQSRYGLALEACKTNLRKI



FEEEKEKWPDDARKIMGGIVRMRDDGLRRLRRKLDAIESA



AKQTIDDWNAEAAKLNETIRAFQRHADNAKKDAYRQITAW



LSAFDRIAWEGVLNLKWMAEQPGKKKQERKKTLAETGQGG



ERTAEDRQLEASQRYRHIVGQYRLREFVKQTHEARLQNEK



TAYSTRTCPECGAHINPGGDLQLVCDNGHKRDQDVTTSLY



LLSKIEGYASASGPPIEIPAHLSQYLRVMHASEVRLEIVE



KH



(SEQ ID NO: 123)






>SRR6266511_838544_1|M



[soil metagenome]



MEDISKKPERRKNPARRERLNKDWPIKVHNYRCSLNEKPP



QTLWDTAHEMRRLWNDLTAVFRKILAEDKKDEDGKPLLSK



EERANLWAPINIKPLREIAKQRKDKLDIGCREYVVTHFIT



TVNNWRRNPRRFGPPRFQNAADMDSVHIPLVYTDGKSADW



LTGGNGTAWVRDTLHIKKNALRDKDGRPILSENELEEYLN



NGHFCVGITREKLSLHIAYGGRSGRKRYHLPDKCRIKQVA



LCGRRNSAFGWSWSFQVRLEHPPDPERQVTGRVCGWDSVG



WRKMDGYIRLGVIADNAGHFYELMVPLAIGAASHRLRHER



EHCQKNGWEYNKPITFDDAEALQSRYGLALEACKTNLRKI



FEEEKEKWPDDARKIMGGIVRMRDDGLRRLRRNIDAIESA



AKQTIDDWDAEAAKLNETIRAFQRHADNAKKDAYRQITAW



LSAFDKIAWEGDRSLKGMSEQGGKEKQKRKKMHEETGQWG



ERTAEERQLEASQRNRQIVGQHRLREFVKRMHADRLQNEK



TAHSTRICPECGAHINPGGDLQLVCDNGHKRDQDVTTSLY



LLSKIEGCASASGPPIEIPAHLSPYLRVMTASEVALEIVE



(SEQ ID NO: 124)






>3300014502|Ga0182021_10233972_2|M



[terrestrial-soil-fen]



MRPKKNADTIYQTYKFWIKPSDPLPQLLWDKAKAMNAAWT



SLVLMRQETLETWMAQRDTLTADQKRAFWNTFNLAVREKI



EECELDWETSGVLHDRFLVAHQRALKDKADLHGRTRLQRI



LLVHRYTGGGIPIEKLLSTRAWRFALDAFPTEDVYATNTR



QARRGRQTQGRFGLDNETAVEFSIILHRPLPPAAIVKRVA



LSGRRQKPPAHEWDWALVVSVEVPNPSRTAAGRVIGIDLG



WRKIDDYLRIGYAADDTDQQIELRLPLDFSTQKARSAGYP



CNHAELRALEGRIAVAVDATK



AAIGELIAVPSLALMRQGGLVRLQRTLSEKPDLSEAEVEA



LRILGAWRKQNDRLQKIYNFSTARFAARRRWLYQNLAAWL



CRNYDVIAIEGDLDVKGLAEEPDPDPALKAAQRYRQIAAP



GELREIIRWTAQREGVIVKDCNTAYSTTTCFTCGEQAEAG



PDLILECPAGHRFDQDANAAANLLSQILPSTEVQDGLRKN



QRDFLRIPPELQMVAWVHRD



(SEQ ID NO: 125)






>3300005529|Ga0070741_10001368_72|P



[terrestrial-soil-surface soil]



MSAIIEVQKPQHRKERANPDWPVKVYSYWIEPIGDIPEWF



WLFHDHMQLLWNDMVIAHDAFIDEREFSEESDGKWDTDRK



RLEFSGLREKLKNVAKSKKGILPSSCYYEVRDRFLITMGR



YWNPDSTLKRRRNETKNFDLGRPGMKFGRNKVLIPHDLNA



ANISTSILFSNKKPLTILQRTKQQGPTRGIFETLGYNFNF



RINLHRPIPNGNIKRIAIVGEMVKPFGWQWRLNLTIEEPP



VRPQRKNGRVAAIDLGWRLMDDCIRIGVLVDNSDNAIELS



IPLDFANNSLRRQREHFMDVTDACLPIHSIPDIWKAQQES



DLILEVCKNRLTALIPELLPNKVAWDKARHKSLIKLLNTL



REDHPESSAIAVIEQWRTTNWVLHRRWRAAYERFMRWRRE



IYRVLAAEIASTYDEIVLEDRLNLAEMSRDEQAPPAIKAS



QKYRHWTSLYLFKECLKYAMDKQQKLIIAGKTAYSTATCS



TCDGKINTDASLYLTCANGHTLDQDLNAARNLLKSYPECE



SLPGLESPIRHSQLSKCVRTLSLLKSL



(SEQ ID NO: 126)






>3300010046|Ga0126384_10047357_3|M



[terrestrial-soil-tropical forest soil]



MMQDTLLLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILSKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDELDAGTREGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNETIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTPEDRQLEASQR



YRQIAGLYMLRQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKMEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 127)






>3300010359|Ga0126376_10030051_2|M



[terrestrial-soil-tropical forest soil]



MMQDTLLLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILSKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDELDAGTREGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNETIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTPEDRQLEASQR



YRQIAGLYMLRQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPHKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 128)






>3300010362|Ga0126377_10111069_2|M



[terrestrial-soil-tropical forest soil]



MMQDTLLLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILSKDLKDELGKPLLSK



RERAILWAPINTKPLREIAKQRKDELDAGAREGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVHDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNETIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGRKKEKRKKQYAETGKYGERTPEDRQLEASQR



YRQIAGLYMLRQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 129)






>3300012204|Ga0137374_10002290_4|M



[terrestrial-soil-vadose zone soil]



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFASLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKERKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRDAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGQWEERT



PEERVFENSQKFRQIVGLHNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP



(SEQ ID NO: 130)






>3300012204|Ga0137374_100098796|P



[terrestrial-soil-vadose zone soil]



MMQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQR



YRQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 131)






>3300012350|Ga0137372_10022207_3|M



[terrestrial-soil-vadose zone soil]



MMQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQR



YRQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 132)






>3300012350|Ga0137372_10022207_4|P



[terrestrial-soil-vadose zone soil]



MQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIPS



ALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSKQ



ERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMTT



VGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEWL



LSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLNL



HIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWSF



QVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIAD



NAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPIT



FDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARKI



MGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAASL



NGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLNL



KQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQRY



RQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCGC



ESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCENG



HKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLRV



MDASEVRLELVDKQ



(SEQ ID NO: 133)






>3300012353|Ga0137367_10000906_4|M



[terrestrial-soil-vadose zone soil]



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFASLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKERKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRDAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGQWEERT



PEERVFENSQKFRQIVGLHNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP



(SEQ ID NO: 134)






>3300012353|Ga0137367_10004593_5|M



[terrestrial-soil-vadose zone soil]



MMQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQR



YRQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 135)






>3300012355|Ga0137369_10001944_2|P



[terrestrial-soil-vadose zone soil]



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFASLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKGWKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRAAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGQWEERT



PEERVFENSQKFRQIVGLHNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP



(SEQ ID NO: 136)






>3300012355|Ga0137369_10007378_6|M



[terrestrial-soil-vadose zone soil]



MMQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQR



YRQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 137)






>3300012355|Ga0137369_10043960_1|M



[terrestrial-soil-vadose zone soil]



MEDISKKPERRKNFARRERLNKDWPFKVYPYRCMLREKPP



QALWDTAREMRRLWNDFTETFHKILKEDKKDEEGRPLLSK



EQRATLWASINIKPLREIAKKRKDKLDIGCREFIVTNFIT



TVGNWRKNPGKFGPPRFQPASEIRSIYIPLVYYDGKSAEW



LHCGKGTAWVQDTLHIKKNASRDEKGRPILTEEEMEQYLN



NSHFCVGITREKLNLHVAYGGRSGKKKRYLPDKCRIKWVA



LAGRRDSAFGWSWSFQVRLEHPPDPERQVTGRVCGWDSGG



WRKMDGYIRLGVIADNAGHFYELMVPLAIGAASHRLRHER



EHCQKNGWEYNKPITFDDAEALQSRYGLALEACKTNLRKI



FEEEKEKWPDDARKIMGGIVRMRDDGLRRLRRKLDAIESA



AKQTIDDWNAEAAKLNETIRAFQRHADNAKKDAYRQITAW



LSAFDRIAWEGDLNLKWMAEQPGKKKQERKKTLAETGQGG



ERTAEDRQLEASQRYRHIVGQYRLREFVKQTHEARLQNEK



TAHSTRTCPECGAHINPGGDLQLVCDNGHKRDQDVTTSLY



LLSKIEGCARVSAPPIEIPAHLSQYLRVMHASEVRLEIVE



KH



(SEQ ID NO: 138)






>3300012358|Ga0137368_10001884_4|M



[terrestrial-soil-vadose zone soil]



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFASLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKERKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRDAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGQWEERT



PEERVFENSQKFRQIVGLHNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP



(SEQ ID NO: 139)






>3300012358|Ga0137368_10007571_6|P



[terrestrial-soil-vadose zone soil]



MMQDTLQLKQRKNLARRERLNKDWPIKVYTYACWPQGTIP



SALWDTAHEMRRLWNDFTAIFRDILGKDLKDELGKPLLSK



QERAILWAPINTKPLREIAKQRKDRLDAGAGEGVVVRFMT



TVGNWRKNPARYGPPRFQRADEMDTILIPLVYNDGKSAEW



LLSGNGTSAVRDTRQLKTAAPQEYLNNGHFCIGITREKLN



LHIAYGGRSGQKKHHLPAKCRIKQVALAGKRDSVFGWSWS



FQVRLEYPPEPARQSTGRVCGWDSAGWRKMDDYIRLGVIA



DNAGHFYELRVPLAIGAASKRVRRERKHCQKNGWEYSKPI



TFDDAQALHSRYGTALEACKANVHKIFEEEKETWPEDARK



IMGGIVRMRDSGLRRLRQKLAPIDSVAKQTIDDWDVEAAS



LNGTIRAFEKHVDNVKKGAYRQIAAWLNTFDRVVWEGDLN



LKQLAEAAGGKKEKRKKQYAETGKYGERTSEDRQLEASQR



YRQIAGLYMLGQFVFEKIAICECSHSTQQHFRQIGPCHCG



CESYQEARLIDGSTAYSTQTCPECGASIEAGGKLLLVCEN



GHKRDQDCATSLYFLNKIEGRASISAPPLKIPAHLKPYLR



VMDASEVRLELVDKQ



(SEQ ID NO: 140)






>3300012360|Ga0137375_10064112_1|P



[terrestrial-soil-vadose zone soil]



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFVSLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKERKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRDAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGQWEERT



PEERVFENSQKFRQIVGLHNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP



(SEQ ID NO: 141)






>3300012532|Ga0137373_10033017_1|P



[terrestrial-soil-vadose zone soil]



(SEQ ID NO: 142)



MNTKSNMRVKGETQETPLASIPPRSTAATSGSAPAPPGPG



SSIVKDNRKKTPRRERLHKDWPIKVLVYPCWPIGEPPVEL



WDTAHEMRRLWNAFASLFRDALEADVKDEAGKPSLSKEDR



AKVWAPINMNNLREVGKERKEKLDQACRESVVNRFLKTVN



NWRKNSRENGPPRFRRAAEMDTVSIPLEYNYGKSAEWLNK



GEGTAGVRYTLDIKKNAPRDGNGAPLLSEEDLLAYLNNGH



FSVGVSRARLDLHIAYGGRSGKKKYFLPPGCRIKAVSLCG



KRDSAHGWSWSFQVRLEHPPGSSRPLTGRVCGWDAVGWRL



MDGYIRIGVIADNAGHFYEVRVPLAIGELSRRVRREKAHC



EKQGWEYTKPTTWDDLRELDSRYSKALDACKNEVRKTYEE



EKDKWPPEARRRMGGFAKMRDSGLRRLRRKLEESDSAAKE



TIDNWDAEAAQLNKMIRAFEIHAAMAKRDAFRQIAAWLDA



FDRVAWSAEPGLKSMAEAAGKRKQRRKEKYLETGOWEERT



PEERVFENSQKFRQIVGLYNLRQFVKERHGVGCFCGDHLL



QHEDNQGGCLACDCQAFNPRLMNCDAPYSTQACPECGGAI



KRGHKLLLRCENGHERDQDVSQSLHLLGSIEGYTSIAAPP



LDIPPHLRPYLRLMDASEAQITECARHSFRRRP






>3300012944|Ga0137410_10000075_50|P



[terrestrial-soil-vadose zone soil]



MTRKLNNPDMPTLAYKYDVRIIGDLPQEIWDTGKAMNALY



SDLAERHEAFCGAFKDASKEMRKEQFAKLTKNGKGGILYE



RAKASKDALNFRYYYTVHEQFRKSQQRFAKRQGGAPKPKR



CLERMLFPMEFGSFSEPTTWIHSNSENRAYVREAQGPTRG



HFVIHTPYDEITIPFEIVMDRPLPDGALIKGIALSGFHER



PFEWKWSLVFSLQVPPHPKAPSVGRVAGLDLGWRDMGDCI



RIGMLADSAGDFRELRLPYDLSRNQDRKFIKRLESQGVVD



RPMLRDIRLIRDAQRKMDDHLEACKIDLAGVDRSVWPDEA



RASMAGWKMRAGGLQRIRRTLFEAGISYEFLEDWHFWHDT



NLRRYRAAQIDWIAARDYIYRCIAAWIADNYDTVAWEGDL



GLKRMAEAAGKRKKARKEEHEETGEWQERTVDDRISEASQ



KRRQWASLHTLRGYIAEAMKKRGRDLQGHPAAYSTQTCDE



CGQHIAPGHELIRECAERHVEDQDATAALYYLRIVQDYLR



AVTGFSASVNHSQLLKAIKPISPMNAA






>3300015245|Ga0137409_10000164_50|P



[terrestrial-soil-vadose zone soil]



(SEQ ID NO: 144)



MTRKLNNPDMPTLAYKYDVRIIGDLPQEIWDTGKAMNALY



SDLAERHEAFCGAFKDASKEMRKEQFAKLTKNGKGGILYE



RAKASKDALNFRYYYTVHEQFRKSQQRFAKRQGGAPKPKR



CLERMLFPMEFGSFSEPTTWIHSNSENRAYVREAQGPTRG



HFVIHTPYDEITIPFEIVMDRPLPDGALIKGIALSGFHER



PFEWKWSLVFSLQVPPHPKAPSVGRVAGLDLGWRDMGDCI



RIGMLADSAGDFRELRLPYDLSRNQDRKFIKRLESQGVVD



RPMLRDIRLIRDAQRKMDDHLEACKIDLAGVDRSVWPDEA



RASMAGWKMRAGGLQRIRRTLFEAGISYEFLEDWHFWHDT



NLRRYRAAQIDWIAARDYIYRCIAAWIADNYDTVAWEGDL



GLKRMAEAAGKRKKARKEEHEETGEWQERTVDDRISEASQ



KRRQWASLHTLRGYIAEAMKKRGRDLQGHPAAYSTQTCDE



CGQHIAPGHELIRECAERHVEDQDATAALYYLRIVQDYLR



AVTGFSASVNHSQLLKAIKPISPMNAA



(SEQ ID NO: 143)






>SRR6837571_912213_1|M



[wastewater metagenome]



MRTTKTPDYSNKNLSFWCEPVGEMPSVVFEKGRQMNRLWN



LLVECHTTFLAKHDGKKGGERTEAYKTEWQPLLKRIYNNE



AKSFGLNSDETNFVTDGFKNAIRAGYDQKRPGAGMPTFKA



RLRSIHIPFCDRNGGRAPAWFFEKPDRRIHLRPILLPDAA



KRVIDRGPARGHFTVDGQAISLRANLSQSIPPGALVKRVS



LVGKLERPFGWQWKLMFSIAYPPPPPAQSDAACVGVDLGY



RRFEDRIRFGMIFDGSRFHELALPLDLTNRRAAKAGKRWD



IREIWELESQIGCGVEACKASLKQLPKTDWPEEARGAMQG



IAKMRERGLLKVRRLLRDAEITVPELETWWDDYQRLFRKS



RHLELQIVATRTHLYRNLALSLARSCAAIAWEGGLSLRDL



AESAGKKKKQRKEDIAEGVSAERSPEDRIEEAAQKWRAYV



CLSDFRRFLKEAVEKTTAALIDRPAAGTTNTCEECGAPVD



TGPDLVLTCANGHRRDQDKGSAKMLFEEIDEGYRQQSAPL



SLDLFTDQAVRAIRTLNREMV



(SEQ ID NO: 145)
















TABLE 11







Nucleotide sequences of Representative CLUST.099129


Direct Repeats and Spacer Lengths











Spacer


Effector Accession
Direct Repeat Nucleotide Sequence
Length(s)





SRR6837557_1470862_2|M (SEQ ID
AGTCGCGAATAACTGTTCAGCGGAGAAGCCGCTG
32-34


NO: 101)
AAAC (SEQ ID NO: 146)




GTTTCAGCGGCTTCTCCGCTGAACAGTTATTCGC




GACT (SEQ ID NO: 200)






3300012971|Ga0126369_10127246_
GTGATTGCAGACTGGTCGTGCGAATGCGCACGGC
34-36


UM (SEQ ID NO: 102)
AC (SEQ ID NO: 147)




GTGCCGTGCGCATTCGCACGACCAGTCTGCAATC




AC (SEQ ID NO: 201)






3300005764|Ga0066903_100343966
AGTAATTGAAAGTTGGTCGTGCGAATCCGCACGG
32-34


_1|M (SEQ ID NO: 103)
CAC (SEQ ID NO: 148)




GTGCCGTGCGGATTCGCACGACCAACTTTCAATT




ACT (SEQ ID NO: 202)






PMDR01000701_10|P (SEQ ID NO:
GTTGCAGTGGTTGTCCATCGGGATTGAGCGATGG
36-52


104)
AAC (SEQ ID NO: 149)




GTTCCATCGCTCAATCCCGATGGACAACCACTGC




AAC (SEQ ID NO: 203)






3300014158|Ga0181521_10019591_
GTTTCAATATTAGGTCCAGCCGGAGTCAGGCTGG
35-37


3|P (SEQ ID NO: 105)
AAC (SEQ ID NO: 150)




GTTCCAGCCTGACTCCGGCTGGACCTAATATTGA




AAC (SEQ ID NO: 204)






3300014159|Ga0181530_10005765_
GTTTCAATATTAGGTCCAGCCGGAGTCAGGCTGG
35-37


11|M (SEQ ID NO: 106)
AAC (SEQ ID NO: 150)




GTTCCAGCCTGACTCCGGCTGGACCTAATATTGA




AAC (SEQ ID NO: 204)






3300014638|Ga0181536_10002122_
GTTTCAATATTAGGTCCAGCCGGAGTCAGGCTGG
35-37


15|P (SEQ ID NO: 107)
AAC (SEQ ID NO: 150)




GTTCCAGCCTGACTCCGGCTGGACCTAATATTGA




AAC (SEQ ID NO: 204)






3300009632|Ga0116102_1009001_2|
GTTTCAACATTAGGTCCAGCCGGAGTCAGGCTGG
29-37


P (SEQ ID NO: 108)
AAC (SEQ ID NO: 151)




GTTCCAGCCTGACTCCGGCTGGACCTAATGTTGA




AAC (SEQ ID NO: 205)






3300009643|Ga0116110_1007258_2|
GTTTCAACATTAGGTCCAGCCGGAGTCAGGCTGG
29-37


M (SEQ ID NO: 109)
AAC (SEQ ID NO: 151)




GTTCCAGCCTGACTCCGGCTGGACCTAATGTTGA




AAC (SEQ ID NO: 205)






3300009643|Ga0116110_1007258_2|
GTTTCAACATTAGGTCCAGCCGGAGTCAGGCTGG
29-37


P (SEQ ID NO: 110)
AAC (SEQ ID NO: 151)




GTTCCAGCCTGACTCCGGCTGGACCTAATGTTGA




AAC (SEQ ID NO: 205)






3300017996|Ga0187891_1001667_2
GTTTCAATATTAGGTCCAGCCGGAGTCAGGCTGG
35-37


3|M (SEQ ID NO: 111)
AAC (SEQ ID NO: 150)




GTTCCAGCCTGACTCCGGCTGGACCTAATATTGA




AAC (SEQ ID NO: 204)






3300018003|Ga0187876_1014226_2|
GTTTCAATATTAGGTCCAGCCGGAGTCAGGCTGG
35-37


P (SEQ ID NO: 112)
AAC (SEQ ID NO: 150)




GTTCCAGCCTGACTCCGGCTGGACCTAATATTGA




AAC (SEQ ID NO: 204)






3300025453|Ga0208455_1001030_8|
GTTTCAACATTAGGTCCAGCCGGAGTCAGGCTGG
29-37


P (SEQ ID NO: 113)
AAC (SEQ ID NO: 151)




GTTCCAGCCTGACTCCGGCTGGACCTAATGTTGA




AAC (SEQ ID NO: 205)






3300025507|Ga020818 8_1002252_2|
GTTTCAACATTAGGTCCAGCCGGAGTCAGGCTGG
29-37


M(SEQ ID NO: 114)
AAC (SEQ ID NO: 151)




GTTCCAGCCTGACTCCGGCTGGACCTAATGTTGA




AAC (SEQ ID NO: 205)






3300025507|Ga020818 8_1002252_2|
GTTTCAACATTAGGTCCAGCCGGAGTCAGGCTGG
29-37


P (SEQ ID NO: 115)
AAC (SEQ ID NO: 151)




GTTCCAGCCTGACTCCGGCTGGACCTAATGTTGA




AAC (SEQ ID NO: 205)






PJQE01000204_l|M (SEQ ID NO:
TTCGGATCATCCGAAGATTT (SEQ ID NO:
37-43


116)
152)




AAATCTTCGGATGATCCGAA (SEQ ID NO:




206)






3300006845|Ga0075421_100006223
GTGACTGCAGACTGGTCGTGCGAATGCGCACGGC
34-35


_8|P(SEQID NO: 117)
AC (SEQ ID NO: 153)




GTGCCGTGCGCATTCGCACGACCAGTCTGCAGTC




AC (SEQ ID NO: 207)






3300006847|Ga0075431_100017297
GTGACTGCAGACTGGTCGTGCGAATGCGCAC
39-40


_1|M (SEQ ID NO: 118)
(SEQ ID NO: 154)




GTGCGCATTCGCACGACCAGTCTGCAGTCAC




(SEQ ID NO: 208)






3300027909|Ga0209382_10008589_
GTGACTGCAGACTGGTCGTGCGAATGCGCACGGC
34-35


8|P(SEQ ID NO: 119)
AC (SEQ ID NO: 153)




GTGCCGTGCGCATTCGCACGACCAGTCTGCAGTC




AC (SEQ ID NO: 207)






ODAK010035847_2|M (SEQ ID NO:
GTTGCAGATATTGGTCCAGCCGGGGTTGGGCTGG
36-38


120)
AAC (SEQ ID NO: 155)




GTTCCAGCCCAACCCCGGCTGGACCAATATCTGC




AAC (SEQ ID NO: 209)






SRR6266511_1572288_18|M (SEQ
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
33-35


ID NO: 121)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






SRR6266511_203987_6|P (SEQ ID
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


NO: 122)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






SRR6266511_239355_1|M (SEQ ID
GTAATTGAAAGTTGGTCGTGCGAATCCGCACGGC
26-40


NO: 123)
AC (SEQ ID NO: 158)




GTGCCGTGCGGATTCGCACGACCAACTTTCAATT




AC (SEQ ID NO: 180)






SRR6266511_838544_1|M (SEQ ID
GTAATTGAAAGTTGGTCGTGCGAATCCGCACGGC
34 -36


NO: 124)
AC (SEQ ID NO: 158)




GTGCCGTGCGGATTCGCACGACCAACTTTCAATT




AC (SEQ ID NO: 180)






3300014502|Ga0182021_10233972_
GTTGCAGTGGTTGTCCATCGGGATTGAGCGATGG
36


2|M (SEQ ID NO: 125)
AAC (SEQ ID NO: 149)




GTTCCATCGCTCAATCCCGATGGACAACCACTGC




AAC (SEQ ID NO: 203)






3300005529|Ga0070741_10001368_
GTGACAACTCTTGCTCAACCGAGTCTCGGTTGAG
36


72|P (SEQ ID NO: 126)
AC (SEQ ID NO: 159)




GTCTCAACCGAGACTCGGTTGAGCAAGAGTTGTC




AC (SEQ ID NO: 212)






3300010046|Ga0126384_10047357_
GTGATTGAAGGCTGGTCGTGCGAATGCGCACGGC
34-37


3|M (SEQ ID NO: 127)
AC (SEQ ID NO: 160)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




AC (SEQ ID NO: 213)






3300010359|Ga0126376_10030051_
GTGATTGAAGGCTGGTCGTGCGAATGCGCACGGC
35-37


2|M (SEQ ID NO: 128)
AC (SEQ ID NO: 160)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




AC (SEQ ID NO: 213)






3300010362|Ga0126377_101l1069_
GTGATTGAAGGCTGGTCGTGCGAATGCGCACGGC
35-37


2|M (SEQ ID NO: 129)
AC (SEQ ID NO: 160)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




AC (SEQ ID NO: 213)






3300012204|Ga0137374_10002290_
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


4|M (SEQ ID NO: 130)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






3300012204|Ga0137374_10009879_
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
33-35


6|P(SEQID NO: 131)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






3300012350|Ga0137372_10022207_
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
33-35


3|M (SEQ ID NO: 132)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






3300012350|Ga0137372_10022207_
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
33-35


4|P(SEQID NO: 133)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






3300012353|Ga0137367_10000906_
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


4|M (SEQ ID NO: 134)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






3300012353|Ga0137367_10004593_
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
33-35


5|M (SEQ ID NO: 135)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






3300012355|Ga0137369_10001944_
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


2|P(SEQID NO: 136)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






3300012355|Ga0137369_10007378_
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
34-35


6|M (SEQ ID NO: 137)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






3300012355|Ga0137369_10043960_
AGTAATTGAAAGTTGGTCGTGCGAATCCGCACGG
33-36


UM (SEQ ID NO: 138)
CAC (SEQ ID NO: 148)




GTGCCGTGCGGATTCGCACGACCAACTTTCAATT




ACT (SEQ ID NO: 202)






3300012358|Ga0137368_10001884_
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


4|M (SEQ ID NO: 139)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






3300012358|Ga0137368_10007571_
AGTGATTGAAGGCTGGTCGTGCGAATGCGCACGG
33-35


6|P (SEQ ID NO: 140)
CAC (SEQ ID NO: 156)




GTGCCGTGCGCATTCGCACGACCAGCCTTCAATC




ACT (SEQ ID NO: 210)






3300012360|Ga0137375_10064112_
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


UP (SEQ ID NO: 141)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






3300012532|Ga0137373_10033017_
GCCGTGCGAATGCGCACGGCATG (SEQ ID
33-51


UP (SEQ ID NO: 142)
NO: 157)




CATGCCGTGCGCATTCGCACGGC (SEQ ID




NO: 211)






3300012944|Ga0137410_10000075_
CGTAGCAATTGATGTTCAATGGATGAGCC (SEQ
44


50|P (SEQ ID NO: 143)
ID NO: 161)




GGCTCATCCATTGAACATCAATTGCTACG (SEQ




ID NO: 214)






3300015245|Ga0137409_10000164_
CGTAGCAATTGATGTTCAATGGATGAGCC (SEQ
44


50|P (SEQ ID NO: 144)
ID NO: 161)




GGCTCATCCATTGAACATCAATTGCTACG (SEQ




ID NO: 214)






SRR6837571_912213_1|M (SEQ ID
GTCGCGAATAACTGTTCAGCGGAGAAGCCGCTGA
33-34


NO: 145)
AAC (SEQ ID NO: 162)




GTTTCAGCGGCTTCTCCGCTGAACAGTTATTCGC




GAC (SEQ ID NO: 215)
















TABLE 12





Non-coding Sequences of Representative


CLUST.099129 Systems

















>SRR6837557_1470862_2|M



ACGAAGGGTTGGCCACGTTTGTGGAGCCGTGGCCGGGCGATGA



TGTGGCCGTATACGTGAAAGATGAAGCCGAGAATGTGAAACAG



GTGTTGGCGGTGACCAAGGCCGCCGGGCTGACGCCGATTGGGT



TTGTGAAAACGGAAGGGCTGTAATCTCGCCTTGATATTGGCTT



AATTTCAGGTTGAAAGTAAGAACGGGACACATAATGAGAACAA



CCAAAACCCCTGATTATTCCAATAAAAATCTGTCCTTCTGGTG



TGAGCCGGTCGGCGAAATGCCGAGTGTGGTTTTTGAAAAGGGT



CGGCAGATGAACCGGCTCTGGAATCTGCTGGTTGAGTGTCACA



CTACGTTTCTCCACCGACGGGATCAAGACAAGGGTTCCGCGAA



AATGCTATTTGAAGAGATTGACGAAGGTTATCGGCAGCAATCG



GCCCCGCTAAGCCTGGATTTGTTTACGGATCAGGCGGTTCGCG



CCATTCGCACCTTAAATCGCGAGATGGTTTGAGTTATAGGGCT



GACTACTCTC



(SEQ ID NO: 163)







>SRR6266511_239355_1|M



AAACAGTGGCGAGAGCCATATTATTGGGCCGCCTTCGTTCTGC



AGGGTGAATGGAAATAGCGATGGGCGCGTCAATTTCTCGGAAG



AAGGGATGGGGTGTCGCGCGACATAGATGAAAATGCAATGATG



CGGCAGGAGTTCAGCAAAGTGCAGGCGCAATCCGGAGGCATAG



ACAGAAGGCCCCTTCCGTGATTACATTAGTCTTCGCGCCTTCG



ATTGCCGGTTATAAACCGATAGCTCCCTTTCGCAAAATTTATG



GAAGATATATCCAAGAAGCCGGAGCGGCGTAAAAACTTCGCGC



GCCGAGAACGGCTGAACAAAGATTGGCCGTTTAAGGTCTACCC



CTACAGATGCATGCTGCGGGAGAAACCGCCCCAAGCGCTGTGG



GACACAGCGCGTGAGATGGACGTGACCACAAGCCTATACCTGC



TGAGTAAGATAGAAGGCTACGCAAGCGCCAGTGGCCCTCCTAT



TGAAATTCCGGCGCATCTGAGCCAATACTTGCGAGTGATGCAC



GCAAGTGAAGTGCGGCTTGAGATTGTTGAAAAGCATTGACACT



CCCACCGCTGGAAGCGGCGGGATTCTTGCTTCAACGCGAACGG



CCTGCCGTGGCAGGTCTTACACTCGCTCCACAAGCGTTTTGAC



TCTCCGCGTGCCCCGCGGCGAGGAGAATGTTGATTCCTTCGTT



TCTGATGTTTTTGGCCGCGTTACGATCTCGATCATGCCGCGCG



CCGCAATTGACGGATTTGCCTGTTTGTTGATAGGCCTCCTTTC



GGCGCGCCAACGCCCAGTTGAAGACGAATCTGCGCGCGCCCGC



GAAACGGGCGAAAGCCGTCTCCTCGTCGGCGGTCGGATCGAGC



CTGAATCTGTAGACCTTTCGTTCCGGCATTCAATCTCTAGTGC



CCTGCGAGTTGATGTATTCGCCAAATCCACGTCGTGGGCGGGC



ATCGGGGAGTCAATGGCGTTACGCGTTGCTTCGCGCCGCGCCT



GTCATCCCCCCGCTGGAAGCGGAGGGCTTTCTTTGGCTTTTTT



TGAAAGTGGCTAAGGTGCCCATCACAGTTCGAAAAAGTAATTG



AAATGGTGATCTATGTTCAATCAAACCGTACCAGTCGCAAACC



CGCAGGGTAGGCGGGGAGCGACTGCCCGCCACACCGTTCAGAT



TATCAACCTGATCCTTTGGGCTGGATTGTCAGTTTCTCCATGC



CTGTGGCCAGGGGCGGAGCCTGCGCAAGCCTCC



(SEQ ID NO: 164)







>SRR6837571_912213_1|M



GAAGGGTTGGCCACGTTAGTGGAGCCGTGGCCGGGCGATGATG



TGGCCGTATACGTGAAAGATGAAGCCGAGAATGTGAAACAGGT



GTTGGCGGTGACCAAGGCCGCCGGGCTGACGCCGATTGGGTTT



GTGAAAACGGAAGGGCTGTAATCTCGCCTTGATATTGGCTTAA



TTTCAGGTTGAAAGTAAGAACGGGACACATAATGAGAACAACC



AAAACCCCTGATTATTCCAATAAAAATCTGTCCTTCTGGTGTG



AGCCGGTCGGCGAAATGCCGAGTGTGGTTTTTGAAAAGGGTCG



GCAGATGAACCGGCTCTGGAATCTGCTGGTTGAGTGTCACACT



ACGTTTCTCCACCGACGGGATCAAGACAAGGGTTCCGCGAAAA



TGCTATTTGAAGAGATTGACGAAGGTTATCGGCAGCAATCGGC



CCCGCTAAGCCTGGATTTGTTTACGGATCAGGCGGTTCGCGCC



ATTCGCACCTTAAATCGCGAGATGGTTTGAGTTATAGGGCTGG



CAGAGCCGTTGAAATACTCTCGTCAAAGATCAAAAGTTAGTTT



GGCAATAAATGTGGCTTTACTTTATAACCTAGTAGTGTTATAG



TTCACCCGTTGTTGGATGTGCTTAACTTTTACAACTTTGGTG



(SEQ ID NO: 165)







>SRR6266511_838544_1|M



AAACAGTGGCGAGAGCCATATTATTGGGCCGCCTTCGTTCTGC



AGGGTGAATGGAAATAGCGATGGGCGCGTCAATTTCTCGGAAG



AAGGGATGGGGTGTCGCGCGACATAGATGAAAATGCAATGATG



CGGCAGGAGTTCAGCAAAGTGCAGGCGCAATCCGGAGGCATAG



ACAGAGAGCCCCTTCCGTGATTACATTAGTCTTCGCGCCTTCG



ATTGTCGGTTATTAACCGATAGCTCCCTTTCGCAAAATTTATG



GAAGATATATCCAAGAAGCCGGAGCGGCGTAAAAACCCCGCGC



GCCGAGAGCGACTGAACAAAGATTGGCCAATTAAGGTCCATAA



CTATAGATGCTCGCTGAATGAGAAACCGCCCCAGACGCTCTGG



GATACGGCGCACGAGATGGATCAGGACGTGACCACAAGCCTAT



ACCTGCTGAGTAAGATAGAAGGCTGCGCAAGCGCCAGTGGCCC



TCCTATTGAAATTCCAGCGCATCTGAGCCCATACTTGCGAGTG



ATGACCGCAAGTGAAGTGGCTCTTGAGATTGTTGAATAGCATG



AAAGTGGCTAAAGTACCCATCAAAGTTCGAAAAAGTAATTGAA



ATGGTGATCTATGTTCAATCAAATCGTACCAGTCGCAAACCCG



CAGGGTAGGCGGGGAGCGACTGCCCGCCACACCGTTCAAATTA



TCAACCTGATCCTTTGGGCTGGATTGTCAGTTTCTCCATGCCT



GTGGCCAGGGGCGGAGCCTGCGCAAGCCTCCGCTAGTGAACGC



GGCGCGGCGCGCCGCGTTCAGGAGAGTATTTCGCTGGAACCGG



GCAAGCCGATCGAGCGAGAGCCCTCCGGCGGCGAGTCGCATTC



CTAC



(SEQ ID NO: 166)







>3300025507|Ga0208188_1002252_2|M



GCAACGATGTTCTTTGTATATGCCAGGCTGTTCTTTTCTCCGG



CCGCTTCTTTGGGGCAGACAAGCAAAATGGTCGCGTTGGATGA



CCTGAGGTCAATTAGAGAATTGTCCCTAGCGAGATCCAGGAGC



CGTTCGAGCTTCTTAACCAAACTGCCCGTACTTCTCACAGAGC



GGTTTGGGATCGGACGCCGCGCAAGGTATCGCCTCATGTAATC



GGGGTTCGCTTTACGCCATTTCCGCTGGCTGCGACGGCACTGT



TCCTTGTAGGCAGGATCGGTGTCGAGTTTCCATCGGTGATAGT



CCGCGCGGCGTCGACGTTGGCATTCGCCGGAGCCGCAGACTTT



CTGATTAGGATGATAGCGGGATGGCTTAAATCTTCGTTTGCAG



TAAGGACATGTCTTTTGTCGCATACGATTTGTGGAAGCAGTCT



GTGTTAGAACTACTTCGGAGGGGAGAGCGAGGCGCCAATTAGA



CGTTCACTCAGCAACCGCGCCCTGTATAATGAGAGCGGAATGG



GATATTGATAATCGTGCTCAGCGTCCTAGGACAGGTGGGCTGG



ACACCGTCCCGGCGCTTGAGTGAGTGGTGAAGATAGCTCACGG



CATCGAAGAATGTCCGCAAGGACGATAGAGGAAAGAAAAGGCA



AAACCAGCATGCAGAGAGAGCGCAAGCGCAAAAAGACCCACGA



CATAAGGCCACATAAGTACCGCGCATGGTTCGCCGAAGGTGAT



GGAACCCGGCTGCCGGAGCCCATCTTTGCGACCTGCGCGGCTT



GCGGCTCGCATTTCGAAGCGGGGGCCGGGCTCATGGGGCGCTG



CGAGCAGGGGCACGTGATGGACCAGGACTGGAATGCGGCCGGG



AACATCTACGCAGGCCGAGCGGGCGCCACCGCGCAAGCGGCAG



TCGGGTAAGAATGGGGGCGGCACGAGGAGGCGACCAGGTGCGT



TTGCATCCCGCGTGGGGGGTCGGCACATCAGAGTCCAGCCGTA



CGCAGGCTGGGGCTAGCAACTGATGCACTGGGGGGTAAGAACG



GGTATTTGCGAAAAGGGTCATGCTACGGGCCAGGACCTTGACG



GAGCAGAGAGCAACTACGCAAACCGGGGCGGGGCTGCCGCCGC



CGCGGGGTTTGCGTAAAAGCTGTGCCGACAAATGCGCCAAATA



TATGTTAGTGTTGTGGGTTGTGGAGCGGTTCGTGCTTCCCTCG



CGGCGGGAATCGGTCAGATGCTGCGGGATCAATTATCCGTTTT



CGGATCTGCTTGACGCACGCGCTCCGAAAGCTCACCATTTACA



CAAGACCTCGACGGGATCGGTCTGGCAAGCGACGACCCTGACA



CCTGCGGAGATGGCGTCGATCAGCTACTCCGATTCAGAGCAAT



CCAGTAGCAGAATGGAACGTGTGGTTGGGGCAGAAGCGCGCAG



CTCTCGAACGACCTTAACACCCCCTGGGGACCACCTTCCAGAT



TCGAGCTGATCACAGCTGCATTCGGGCGATACTCGGCTACTTG



CTCAAAAACTCCTTTGGTGTGTGTTTAGCCCCCAACAACCAAG



TGCTTGCGCTGCTTTTTGAGCGCACGGCACAGCACCTTGCCGA



CCAGCGCTGTGCGTTGGGCGACGACAACTGATATAGGCACGGG



CGTGATTCCCTCCTAACCCGAAGTTCCAAGAGGCTGCAGAGAG



TATTCTACTGATTCACTGAGAGATAGTAGCAAACTCAATTTCC



CGTTACTGGGAACGTACGAATCAGTTCGCGCGCCCGCGCTTGT



AGGGGTGTGGGAGTCGGCACCTGTTGGCAGGTCAGGCTCGCGT



CTCCCGATTTGATCTGATAGGTGACCCTCGCCCGGCTGGCCAA



CTCGGCGAGCAG



(SEQ ID NO: 167)







>3300014158|Ga018152l_10019591_3|P



AACCAATTGAAGGCTGCATAGAATAGTGGCCAGCGCCATCTTC



TCAAAACGGCAATTCAGCTTGCTCGCCGCAGCAGGCGACAATC



GCTTGCTGCCGAAATGTTGAGAGGCCTCGCGAATGTGGGCTGC



GAGATTACGTATGCTTTTCATTTTGTTTGGTTCGGACTAGACT



CAATATCCTATGCAAAGGGAGCGCAAGCGCAAGGAGAGCCACG



ACATAAGGCCACACAAGTACCGGGCGTGGTTCGCCGAGGGCGA



CGGGACCAGGCTTCCCGAGCCTGTCTATTTGCTTGCAAAGCGC



ATGCAGGATTGCTGGACGGACATTGCGCTCACATGCGCGGCTT



GCGGCTCGCATTTCGAGGCGGGGGCCGGGCTCATGGGGCGCTG



CGAGCAGGGGCACGTGATGGACCAGGACTGGAATGCGGCCGGG



AACATCTACGCAGGCCGAGCGGGCGCCACGGCGCAAGCGGCAG



TCGGGTAAGAATGGGGGCGGCGCGAGGAGGCGACCAGGTGCGT



TTGCATCCGGCGTGGAGGGTCGGCACATCAGAGTCCAGCCGCA



CCCAGGCTGGGGCAAGCAACTGATGCACAGGGGTGTAAGAACG



GGTACTTGCGAAAAGGGTCATGCTATGGGCCAGGACCTTGACG



GAGCAGAGAGCAATTGCGCAAACCGGGGCGGGGCTGCCGCCGC



CGCGGGGTTTGCGTAAAATCTGTGCCGACAAATGCGCCAAATA



TATGTTAGTGTTGTGGGTTGTGGAGCGCTTCATGGAAATGAAT



CACTGCGAATCTCTTCGCAAGATTCAAATACTGAACTGATTAA



ACGTCAGCTACGGGCTGTCCGATAGTATGGCGCAATGATACCG



GTGATGGAGATGTTACAATCTGCGTGAATAGTGGGGACGAAGT



ACAAGTAGACGGCCCCGGCGGCAGTACGTCAATTGGAACCGAT



CACGTTCTGCCCCCCATCGCCGCAAAGGGATCATGATAAAGTG



TCGTCATTTTGCAGCCTGCGGCGCCCCGCGACCGCGTTCAGAT



CCCGTGATTCGACCTCCAATGGCATGCTTCTCCTTGGGCCCTG



CGCGACTGTAGCTTCCGACTTGTTCACTATCCTCCTGCTTCGT



CTGACCCTCGCTCGATTTTACTTTTATGGTAAGATTGCCTCCA



TCTGGCCGCTGGGGCTCTGGTGGAGATCGTGTGATTACGGCAA



AGGACACGAGCAATCCAGTAGGAGGATGGAACGCGTAGTTGGG



GCAGAAGCGCGCAGCTCTCGAACGACCTTAACACCCGCCTGGG



GATTACCTTCCAGATTCGAGCTGATCACAGCTACATTCGGTTG



ATACTCAACTACGTGCTCAAAAAACTTCTTTGGTGTGTGTTCA



GCCCACAACAACCAAGCGCCTGCGCTGCTCTTTGAGCGCACGG



ACCAGCACCTTGCCGACCAGCGCTGTGCGTTGGGCGACGATAA



CTGATATAGGCCAGGGCGTGATTCCTTCCTAACCGCTCCGGTA



TTGTCCGGGGTAGCCCGCTGATCGCTGAACAGAAGTCTCGTAG



CCTCATTTAGCAGGAGCAGTTCGCTGGTCGGCCATCACCACGC



GCCCCTCGCCGACTGAGAGGATGCTATCCGCCAACTCCCAGAC



AAGTGCTGTATGGCAGATAAAGATCATTTGGTGGAATCCGCCA



AGATCCATGGCACGGCGCAGCAT



(SEQ ID NO: 168)







>3300014502|Ga0182021_10233972_2|M



AGAGGCTGACACCGCACCGCAGCAGCCTCAACTGCCCGTCTGG



TTGACGGCGCTGAACCCCAGGCGCATCACTGCCTGGGTCTACG



AACTGAGTAACGGAGTACGCTTCGAAGCACGCGGCGGCGGATG



GGTGCAGCAAGGCGGGAGAAATTCGGAGTGGGTCTATACCACC



ACGAACGGTCCGCGAGATTTCGGTGTCGCTGGTTAACAACGGC



TTCTACTCGACCGGGCGACGGGAAAGTTGTAACACGCGCGCCA



GTGGGATATTCGTTTCTATAGAAACACTGTGAGCGATGTGACG



TTTTATTTCGAATTGATTAGAAGCCTGTTGGAGCAGCAATGAA



ACCTAAAAAGAACGCCGACACGATCTACCAAACCTACAAATTC



TGGATCAAGCCGAGCGACCCCCTGCCTCAATTATTGTGGGACA



AAGCGAAGGCCATGAATGCCGCGTGGACGAGTTTAGTCCTCAT



GCGTCAGGAGACGCTGGTGAGAAACCTAACC



(SEQ ID NO:



169)







>3300005764|Ga0O66903_100343966_1|M



CGGTTATAAACCGATAGCTCCCTTTCGCAAAATTTATGGAAGA



TATATCCAAGAAGCCGGAGCGGCGTAAAAACCCCGCGCGCCGA



GAACGACTGAACAAAGATTGGCCAATTAAGGTCCATAACTATA



GGTGCTCGCCGAATGAGAAACCGCCCCAGGCGCTCTGGGACAC



GGCGCACGAAATGGATCAGGATGTAACTGCAAGTCTGTACTTG



CTGAGTAAGATAGAAGGCTACGCAAGCATCAGTGGCCCTCCTA



TTGAAATTCCGGCGCATCTGAGCCCTTACTTGCGGGTGATGAC



CGCAAGTGATGTGGCTCTTGAGATTGTTGAATAGCTGAAAGTG



GCTAAGGTAGTCGCACGTGAAAAAGTGTAAAAGCCAATAAAAA



CGGCATGTTCATCGAGAATCACACCGTGTAGAATTGCAAGAAA



GCAGTAGAAACCT



(SEQ ID NO: 170)







>3300009643|Ga0116110_1007258_2|M



CGGAGGGGAGAGCGAGGCGCCAATTAGACGTTCACTCAGCAAC



CGCGCCCTGTATAATGAGAGCGGAATGGGATATTGATAATCGT



GCTCAGCGTCCTAGGACAGGTGGGCTGGACACCGTCCCGGCGC



TTGAGTGAGTGGTGAAGATAGCTCACGGCATCGAAGAATGTCC



GCAAGGACGATAGAGGAAAGAAAAGGCAAAACCAGCATGCAGA



GAGAGCGCAAGCGCAAAGAGACTCACGACATAAGGCCACATAA



GTACCGCGCATGGTTCGCCGAAGGTGATGGAACCCGGCTGCCG



GAGCCCATCTTTGCGACCTGCGCGGCTTGCGGCTCGCATTTCG



AAGCGGGGGCCGGGCTCATGGGGCGCTGCGAGCAGGGGCACGT



GATGGACCAGGACTGGAATGCGGCCGGGAACATCTACGCAGGC



CGAGCGGGCGCCACCGCGCAAGCGGCAGTCGGGTAAGAATGGG



GGCGGCACGAGGAGGCGACCAGGTGCGTTTGCATCCCGCGTGG



GGGGTCGGCACATCAGAGTCCAGCCGTACGCAGGCTGGGGCTA



GCAACTGATGCACTGGGGGGTAAGAACGGGTATTTGCGAAAAG



GGTCATGCTACGGGCCAGGACCTTGACGGAGCAGAGAGCAACT



ACGCAAACCGGGGCGGGGCTGCCGCCGCCGCGGGGTTTGCGTA



AAAGCTGTGCCGACAAATGCGCCAAATATATGTTAGTGTTGTG



GGTTGTGGAGCGGTTCGTGCTTCCCTCGCGGCGGGAATCGGTC



AGATGCTGCGGGATCAATTATCCGTTTTCGGATCTGCTTGACG



CACGCGCTCCGAAAGCTCACCATTTACACAAGACCTCGACGGG



ATCGGTCTGGCAAGCGACGACCCTGACACCTGCGGAGATGGCG



TCGATCAGCTACTCCGATTCAGAGCAATCCAGTAGCAGAATGG



AACGTGTGGTTGGGGCAGAAGCGCGCAGCTCTCGAACGACCTT



AACACCCCCTGGGGACCACCTTCCAGATTCGAGCTGATCACAG



CTGCATTCGGGCGATACTCGGCTACTTGCTCAAAAACTCCTTT



GGTGTGTGTTTAGCCCCCAACAACCAAGTGCTTGCGCTGCTTT



TTGAGCGCACGGCACAGCACCTTGCCGACCAGCGCTGTGCGTT



GGGCGACGACAACTGATATAGGCACGGGCGTGATTCCCTCCTA



ACCCGAAGTTCCAAGAGGCTGCAGAGAGTATTCTACTGATTCA



CTGAGAGATAGTAGCAAACTCAATTTCCCGTTACTGGGAACGT



ACGAATCAGTTCGCGCGCCCGCGCTTGTAGGGGTGTGGGAGTC



GGCACCTGTTGGCAGGTCAGGCTCGCGTCTCCCGATTTGATCT



GATAGGTGACCCTCGCCCGGCTGGCCAACTCGGCGAGCAG



(SEQ ID NO: 171)







>ODAK010035847_2|M



CCTCTTCCCTTAACTGTTTTCCTCCCGTGGCGGATTCCGTTCT



GATGCCATCGAGTTTTTCGCCACTGCTCTTCGTCAATGAGACG



ATCTGCCCGGAGAATTTTTCAAGTTGAATTTTCTCGGCACCCG



CCAAATCTTTAATTGTCTTGGACATCGTTTCGGAAATACTGTT



GAGCGTGGTAACAACTTCTTCTCGAAGGTGCTGGGCACTAGCG



GCGGACTCGGTACGACCACAGTCGAGCCTTTCGACGCTGGTTT



GGGCAAAGGCGGCAAGCTGGGTTGCAAATCCTTCAAACTGTGA



CTTTTGGGCTGAAGCCAGACCGCTTATCGTTTTTGTTATCGTC



TCGGAAATGGTGCTGAGAGTCGCTACTACTTCTTCCCGTAGTT



GCTTGGCTCCCGTGGCGGATTCGGTGCGAACACCATCCAATCG



CGCACCGCTCGCTTTAGCGAACGAGGCAAGCTGCTCAGAGAAA



GCGTCAAGTTGGCTTTTCTGGACATTAGCCCACTCCCGCATCG



TCCCCGTCGTCGTCTCCGAGATGCTAGTCAGCGTTGCCACGAC



TTCCTGCCGCTGCTCCTTCGCGGCCTTACCCAGTTCGACCCTA



CTCTGGGCAACTTCCTCACCCAGTTCGTCCCTACTCTGGGCAA



CTTCCTCTCTGACTGCACGCTCGGTGCGTTCTTGAGCCTTTTC



AAAAGCATCCAGACGGGAATCGAGCATTGGCGAGCCGACTTTG



GATGTTTTCATCAAAAGGGCAAGGAGAAGAGCCACCACAACGA



CCAGCAGGACGAGAGTCACGACAGGCATAAATTTGAAGTCTTT



CCGAGTAGGGACGATTATCGAACCCACTCATCAGGGTCGGGGG



TTCAAGCCGCAGCCAGTTGTCTCAGTCTGGGTTCCCTTGGAGT



GTTGGCTGAGGTTCAAGTCGCCGGGGAAGAAAATGCGACCAGT



ATGTAACCTTAACGCAAGAACCTACCGAAACTCGTGACCCAAA



TCACAGTCTGTGGTGACTGGAAACACCAAGGCCCCAAACACTC



CGGAGGCAATCAAAGTGGCAGCACGCGGGTCACCCTTTCGCTG



GCGGAACGTGATGCCCAAGATCGGCGTATCGCCGCCGTCGCTG



AAACACTAGGAGGGAAGGCTTTTTGAATTAGGGACGAGAAATC



CACATTAAATTCACATTGAAATCGTGCTACATTTCGGCGGATA



TGTAGAGCCGAGTGACGGCTTTCGGCTGGAAACGTATACTACG



ATTATGCGAGAGCGTAAGCGCCAAGAGACGCACGGACAGATGG



CTTATAAGTTTCGTGCCTACGTCACCGGAACAGACGCCAGCCA



CGGGCAGATGTTGCCCCCGGCGATTTACACCGTCGCTAAGAAC



ATGGAGAACTGCTGGTCGGACATCGCCAATCATAACGAGCAAG



AATACGGGGCTTGGAAGATCTGTTCCGAATGTGGGGCTTTGTT



TGAAGCAGGTAGCGAGATTATAGGACGTTGCACGCGGGGGCAC



GAAAAAGACCAAGATTGGAATGCAGCCGAGAACATTTACGCAT



ACTCCAGCGCTCCAGTCGCAGAACTATTATCTGCGTAAAAACG



CAGGCGAAGGATGCTCTTTGACAATTCATTTTGTGCAACTTGT



GGAGCG



(SEQ ID NO: 172)







>3300009632|Ga0116102_1009001_2|P



ACCTGCGCGGCTTGCGGCTCGCATTTCGAAGCGGGGGCCGGGC



TCATGGGGCGCTGCGAGCAGGGGCACGTGATGGACCAGGACTG



GAATGCGGCCGGGAACATCTACGCAGGCCGAGCGGGCGCCACC



GCGCAAGCGGCAGTCGGGTAAGAATGGGGGCGGCACGAGGAGG



CGACCAGGTGCGTTTGCATCCCGCGTGGGGGGTCGGCACATCA



GAGTCCAGCCGTACGCAGGCTGGGGCTAGCAACTGATGCACTG



GGGGGTAAGAACGGGTATTTGCGAAAAGGGTCATGCTACGGGC



CAGGACCTTGACGGAGCAGAGAGCAACTACGCAAACCGGGGCG



GGGCTGCCGCCGCCGCGGGGTTTGCGTAAAAGCTGTGCCGACA



AATGCGCCAAATATATGTTAGTGTTGTGGGTTGTGGAGCGGTT



CGTGCTTCCCTCGCGGCGGGAATCGGTCAGATGCTGCGGGATC



AATTATCCGTTTTCGGATCTGCTTGACGCACGCGCTCCGAAAG



CTCACCATTTACACAAGACCTCGACGGGATCGGTCTGGCAAGC



GACGACCCTGACACCTGCGGAGATGGCGTCGATCAGCTACTCC



GATTCAGAGCAATCCAGTAGCAGAATGGAACGTGTGGTTGGGG



CAGAAGCGCGCAGCTCTCGAACGACCTTAACACCCCCTGGGGA



CCACCTTCCAGATTCGAGCTGATCACAGCTGCATTCGGGCGAT



ACTCGGCTACTTGCTCAAAAACTCCTTTGGTGTGTGTTTAGCC



CCCAACAACCAAGTGCTTGCGCTGCTTTTTGAGCGCACGGCAC



AGCACCTTGCCGACCAGCGCTGTGCGTTGGGCGACGACAACTG



ATATAGGCACGGGCGTGATTCCCTCCTAACCCGAAGTTCCAAG



AGGCTGCAGAGAGTATTCTACTGATTCACTGAGAGATAGTAGC



AAACTCAATTTCCCGTTACTGGGAACGTACGAATCAGTTCGCG



C



(SEQ ID NO: 173)







>3300012971|Ga0126369_10127246_1|M



ACCCAATGCCAGTCCAGCATGTGCAGAGAACACCAATGATTGA



AGAGAAGACTGCTAAGCGTAAAAACCCAGTCAGGCGAGAGCGC



CTGAACAAAGACTGGCCGATCAAGGTCTACACCTATGACTGTT



GGCCGCAAGAAAAGCCGCTCAAGGCGCTATGGGACACGGCGCA



TGAGATGAGGCGGTCTGATGCGTTGGAATATTTGCGGGGATTG



ATTG



(SEQ ID NO: 174)










Example 5—Functional Validation of Three Engineered CLUST.099129 CRISPR-Cas Systems

Having identified components of CLUST.099129 CRISPR-Cas systems, three loci were selected for functional validation: 1) a locus from the metagenomic source designated SRR6837557 (SEQ ID NO: 101), 2) a locus from the metagenomic source designated 3300012971 (SEQ ID NO: 102), and 3) a locus from the metagenomic source 3300005764 (SEQ ID NO: 103).


DNA Synthesis and Effector Library Cloning

To test the activity of the exemplary CLUST.099129 CRISPR-Cas systems, systems were designed and synthesized using a pET28a(+) vector. Briefly, an E. coli codon-optimized nucleic acid sequence encoding the CLUST.099129 SRR6837557 effector (SEQ ID NO: 101 shown in TABLE 10), an E. coli codon-optimized nucleic acid sequence encoding CLUST.099129 3300012971 effector (SEQ ID NO: 102 shown in TABLE 10), and an E. coli codon-optimized nucleic acid sequence encoding CLUST.099129 3300005764 effector (SEQ ID NO: 103 shown in TABLE 10) were synthesized (Genscript) and individually cloned into a custom expression system derived from pET-28a(+) (EMD-Millipore). The vectors included the nucleic acid encoding CLUST.099129 effectors under the control of a lac promoter and an E. coli ribosome binding sequence. The vector also included an acceptor site for a CRISPR array library driven by a J23119 promoter following the open reading frame for the CLUST.099129 effector. The non-coding sequence used for the CLUST.099129 SRR6837557 effector (SEQ ID NO: 101) is set forth in SEQ ID NO: 163, the non-coding sequence used for the CLUST.099129 3300012971 effector (SEQ ID NO: 102) is set forth in SEQ ID NO: 174, and the non-coding sequence used for the CLUST.099129 3300005764 effector (SEQ ID NO: 103) is set forth in SEQ ID NO: 170, as shown in TABLE 12. An additional condition was tested, wherein the CLUST.099129 SRR6837557 effector (SEQ ID NO: 101) was individually cloned into pET28a(+) without the non-coding sequence. See FIG. 1A.


An oligonucleotide library synthesis (OLS) pool containing “repeat-spacer-repeat” sequences was computationally designed, where “repeat” represents the consensus direct repeat sequence found in the CRISPR array associated with the effector, and “spacer” represents sequences tiling the pACYC184 plasmid or E. coli essential genes. In particular, the repeat sequence used for the CLUST.099129 SRR6837557 effector (SEQ ID NO: 101) is set forth in SEQ ID NO: 146, the repeat sequence used for the CLUST.099129 3300012971 effector (SEQ ID NO: 102) is set forth in SEQ ID NO: 147, and the repeat sequence used for the CLUST.099129 3300005764 effector (SEQ ID NO: 103) is set forth in SEQ ID NO: 148, as shown in TABLE 11. The spacer length was determined by the mode of the spacer lengths found in the endogenous CRISPR array. The repeat-spacer-repeat sequence was appended with restriction sites enabling the bi-directional cloning of the fragment into the aforementioned CRISPR array library acceptor site, as well as unique PCR priming sites to enable specific amplification of a specific repeat-spacer-repeat library from a larger pool.


Next, the repeat-spacer-repeat library was cloned into the plasmid using the Golden Gate assembly method. Briefly, each repeat-spacer-repeat was first amplified from the OLS pool (Agilent Genomics) using unique PCR primers and pre-linearized the plasmid backbone using BsaI to reduce potential background. Both DNA fragments were purified with Ampure XP (Beckman Coulter) prior to addition to Golden Gate Assembly Master Mix (New England Biolabs) and incubated per the manufacturer's instructions. The Golden Gate reaction was further purified and concentrated to enable maximum transformation efficiency in the subsequent steps of the bacterial screen.


The plasmid library containing the distinct repeat-spacer-repeat elements and CRISPR effectors was electroporated into E. Cloni electrocompetent E. coli (Lucigen) using a Gene Pulser Xcell® (Bio-rad) following the protocol recommended by Lucigen. The library was either co-transformed with purified pACYC184 plasmid or directly transformed into pACYC184-containing E. Cloni electrocompetent E. coli (Lucigen), plated onto agar containing chloramphenicol (Fisher), tetracycline (Alfa Aesar), and kanamycin (Alfa Aesar) in BioAssay® dishes (Thermo Fisher), and incubated for 10-12 hours at 37° C. After estimation of approximate colony count to ensure sufficient library representation on the bacterial plate, the bacteria were harvested, and plasmid DNA WAS extracted using a QIAprep Spin Miniprep® Kit (Qiagen) to create an “output library.” By performing a PCR using custom primers containing barcodes and sites compatible with Illumina sequencing chemistry, a barcoded next generation sequencing library was generated from both the pre-transformation “input library” and the post-harvest “output library,” which were then pooled and loaded onto a Nextseq 550 (Illumina) to evaluate the effectors. At least two independent biological replicates were performed for each screen to ensure consistency. See FIG. 1B.


Bacterial Screen Sequencing Analysis

Next generation sequencing data for screen input and output libraries were demultiplexed using Illumina bcl2fastq. Reads in resulting fastq files for each sample contained the CRISPR array elements for the screening plasmid library. The direct repeat sequence of the CRISPR array was used to determine the array orientation, and the spacer sequence was mapped to the source (pACYC184 or E. Cloni) or negative control sequence (GFP) to determine the corresponding target. For each sample, the total number of reads for each unique array element (ra) in a given plasmid library was counted and normalized as follows: (ra+1)/total reads for all library array elements. The depletion score was calculated by dividing normalized output reads for a given array element by normalized input reads.


To identify specific parameters resulting in enzymatic activity and bacterial cell death, next generation sequencing (NGS) was used to quantify and compare the representation of individual CRISPR arrays (i.e., repeat-spacer-repeat) in the PCR product of the input and output plasmid libraries. The array depletion ratio was defined as the normalized output read count divided by the normalized input read count. An array was considered to be “strongly depleted” if the depletion ratio was less than 0.3 (more than 3-fold depletion), depicted by the blue dashed line in FIG. 17, FIG. 20, FIG. 23, and FIG. 26. When calculating the array depletion ratio across biological replicates, the maximum depletion ratio value for a given CRISPR array was taken across all experiments (i.e. a strongly depleted array must be strongly depleted in all biological replicates). A matrix including array depletion ratios and the following features were generated for each spacer target: target strand, transcript targeting, ORI targeting, target sequence motifs, flanking sequence motifs, and target secondary structure. The degree to which different features in this matrix explained target depletion for CLUST.099129 systems was investigated.



FIG. 17, FIG. 23, and FIG. 26 show the degree of interference activity of the engineered compositions, with a non-coding sequence, by plotting for a given target the normalized ratio of sequencing reads in the screen output versus the screen input. The results are plotted for each DR transcriptional orientation. In the functional screen for each composition, an active effector complexed with an active RNA guide will interfere with the ability of the pACYC184 to confer E. coli resistance to chloramphenicol and tetracycline, resulting in cell death and depletion of the spacer element within the pool. Comparison of the results of deep sequencing the initial DNA library (screen input) versus the surviving transformed E. coli (screen output) suggests specific target sequences and DR transcriptional orientations that enable an active, programmable CRISPR system. The screen also indicates that the effector complex is only active with one orientation of the DR. As such, the screen indicated that the CLUST.099129 SRR6837557 effector was active in the “reverse” orientation (5′-AGTC . . . AAAC-[spacer]-3′) of the DR (FIG. 17), that the CLUST.099129 3300012971 was active in the reverse orientation (5′-GTGA . . . GCAC-[spacer]-3′) of the DR (FIG. 23), and that the CLUST.099129 3300005764 effector was active in the forward orientation (5′-GTGC . . . TACT-[spacer]-3′) of the DR (FIG. 26).



FIG. 18A and FIG. 18B depict the location of strongly depleted targets for the CLUST.099129 SRR6837557 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively FIG. 24A and FIG. 24B depict the location of strongly depleted targets for the CLUST.099129 3300012971 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. FIG. 27A and FIG. 27B depict the location of strongly depleted targets for the CLUST.099129 3300005764 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. Flanking sequences of depleted targets were analyzed to determine the PAM for CLUST.099129 effectors. WebLogo representations (Crooks et al., Genome Research 14: 1188-90, 2004) of the PAM sequences for CLUST.099129 SRR6837557, CLUST.099129 3300012971, and CLUST.099129 3300005764 are shown in FIG. 19, FIG. 25, and FIG. 14, respectively. The “20” position corresponds to the nucleotide adjacent to the 5′ end of the target. As such, multiple effectors of CLUST.099129 revealed activity in vivo.


Furthermore, FIG. 20 shows that the CLUST.099129 SRR6837557 effector retains activity in the absence of the non-coding sequence. In agreement with FIG. 17, the CLUST.099129 SRR6837557 effector, without the non-coding sequence, was active in the reverse orientation (5′-AGTC . . . AAAC-[spacer]-3′) of the DR. FIG. 21A and FIG. 21B depict the locations of the strongly depleted targets for the CLUST.099129 SRR6837557 effector, without the non-coding sequence, targeting pACYC184 and E. coli E. Cloni essential genes, respectively. A WebLogo of the PAM sequence for CLUST.099129 SRR6837557, without the non-coding sequence, is shown in FIG. 22, where the “20” position corresponds to the nucleotide adjacent to the 5′ end of the target. This result suggests that effectors of CLUST.099129 do not require a tracrRNA. CLUST.099129 effectors may thus be self-processing, allowing for ease in multiplexing.


Example 6—Targeting of GFP by a CLUST.099129 Effector

This Example describes use of a fluorescence depletion assay (FDA) to measure activity of a CLUST.099129 effector.


In this assay, an active CRISPR system designed to target GFP binds and cleaves the double-stranded DNA region encoding GFP, resulting in depletion of GFP fluorescence. The FDA assay involves in vitro transcription and translation, allowing production of an RNP from a DNA template encoding a CLUST.099129 effector and a DNA template containing a pre-crRNA sequence under a T7 promoter with direct repeat (DR)-spacer-direct repeat (DR); the spacer targeted GFP. In the same one-pot reaction, GFP and RFP were also produced as both the target and the fluorescence reporter (FIG. 29A). The target GFP plasmid sequence is set forth in SEQ ID NO: 192, and the RFP plasmid sequence is set forth in SEQ ID NO: 193. GFP and RFP fluorescence values were measured every 20 min at 37° C. for 12 hr, using a TECAN Infinite F Plex plate reader. Since RFP was not targeted, its fluorescence was not affected and was therefore used as an internal signal control.











SEQ ID NO: 192



ccccttgtattactgtttatgtaagcagacaggatgcgtc






cggcgtagaggatcgagatctcCAAAAAATGGCTGTTTTT






GAAAAAAATTCTAAAGGTTGTTTTACGACAGACGATAACA






GGGTTgaaataattttgtttaactttaagaaggagATTTA






AATatgAAAATCGAAGAAGGTAAAGGTCACCATCACCATC






ACCACggatccatgacggcattgacggaaggtgcaaaact






gtttgagaaagagatcccgtatatcaccgaactggaaggc






gacgtcgaaggtatgaaatttatcattaaaggcgagggta






ccggtgacgcgaccacgggtaccattaaagcgaaatacat






ctgcactacgggcgacctgccggtcccgtgggcaaccctg






gtgagcaccctgagctacggtgttcagtgtttcgccaagt






acccgagccacatcaaggatttctttaagagcgccatgcc






ggaaggttatacccaagagcgtaccatcagcttcgaaggc






gacggcgtgtacaagacgcgtgctatggttacctacgaac






gcggttctatctacaatcgtgtcacgctgactggtgagaa






ctttaagaaagacggtcacattctgcgtaagaacgttgca






ttccaatgcccgccaagcattctgtatattctgcctgaca






ccgttaacaatggcatccgcgttgagttcaaccaggcgta






cgatattgaaggtgtgaccgaaaaactggttaccaaatgc






agccaaatgaatcgtccgttggcgggctccgcggcagtgc






atatcccgcgttatcatcacattacctaccacaccaaact






gagcaaagaccgcgacgagcgccgtgatcacatgtgtctg






gtagaggtcgtgaaagcggttgatctggacacgtatcagT






AATAAaaagcccgaaaggaagctgagttggctgctgccac






cgctgagcaataactagcataaccccttggggcctctaaa






cgggtcttgaggggttttttgctgaaaggaggaactatat






ccggCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTC






GGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAT






ACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC






ATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA






AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCC






TGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG






CGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCC






CTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC






GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC






GTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTT






CGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGA






ACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAAC






TATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGC






CACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG






GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCT






AACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCG






CTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAG






CTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGT






TTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG






GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA






CGCTCAGTGGAACGAAAACTCACGggtggcacttttcggg






gaaatgtgcgcggaacccctatttgtttatttttctaaat






acattcaaatatgtatccgctcatgaattaattcttagaa






aaactcatcgagcatcaaatgaaactgcaatttattcata






tcaggattatcaataccatatttttgaaaaagccgtttct






gtaatgaaggagaaaactcaccgaggcagttccataggat






ggcaagatcctggtatcggtctgcgattccgactcgtcca






acatcaatacaacctattaatttcccctcgtcaaaaataa






ggttatcaagtgagaaatcaccatgagtgacgactgaatc






cggtgagaatggcaaaagtttatgcatttctttccagact






tgttcaacaggccagccattacgctcgtcatcaaaatcac






tcgcatcaaccaaaccgttattcattcgtgattgcgcctg






agcgagacgaaatacgcgatcgctgttaaaaggacaatta






caaacaggaatcgaatgcaaccggcgcaggaacactgcca






gcgcatcaacaatattttcacctgaatcaggatattcttc






taatacctggaatgctgttttcccggggatcgcagtggtg






agtaaccatgcatcatcaggagtacggataaaatgcttga






tggtcggaagaggcataaattccgtcagccagtttagtct






gaccatctcatctgtaacatcattggcaacgctacctttg






ccatgtttcagaaacaactctggcgcatcgggcttcccat






acaatcgatagattgtcgcacctgattgcccgacattatc






gcgagcccatttatacccatataaatcagcatccatgttg






gaatttaatcgcggcctagagcaagacgtttcccgttgaa






tatggctcataaca






SEQ ID NO: 193



ccccttgtattactgtttatgtaagcagacaggatgcgtc






cggcgtagaggatcgagatctcCAAAAAATGGCTGTTTTT






GAAAAAAATTCTAAAGGTTGTTTTACGACAGACGATAACA






GGGTTgaaataattttgtttaactttaagaaggagATTTA






AATatgAAAATCGAAGAAGGTAAAGGTCACCATCACCATC






ACCACggatccaTGGTCAGCAAGGGGGAGGAAGACAATAT






GGCTATTATCAAGGAATTCATGCGCTTCAAGGTGCATATG






GAAGGAAGCGTGAATGGACACGAATTCGAGATCGAAGGCG






AGGGGGAGGGTCGCCCTTATGAAGGCACACAAACAGCTAA






ACTGAAAGTGACGAAGGGAGGGCCGCTTCCCTTCGCTTGG






GACATTCTTTCACCCCAGTTCATGTATGGTTCAAAGGCTT






ATGTCAAGCACCCGGCGGACATTCCAGACTACTTAAAATT






GTCGTTCCCCGAGGGGTTTAAATGGGAACGCGTTATGAAT






TTCGAGGATGGGGGAGTCGTAACGGTTACCCAGGACAGTA






GCCTGCAGGATGGCGAGTTCATCTACAAAGTGAAATTGCG






CGGGACGAACTTCCCTAGCGATGGGCCAGTCATGCAGAAG






AAAACGATGGGATGGGAAGCGTCATCCGAGCGCATGTATC






CTGAAGATGGTGCTTTAAAAGGTGAGATCAAGCAGCGTTT






GAAACTGAAGGACGGGGGCCATTATGATGCTGAAGTTAAA






ACGACATATAAGGCCAAGAAGCCAGTTCAACTGCCAGGGG






CTTATAATGTTAATATTAAATTAGACATTACGAGCCATAA






TGAAGATTACACGATTGTCGAGCAATACGAGCGCGCAGAA






GGACGCCACTCAACGGGGGGCATGGACGAGCTGTACAAGT






AAaaagcccgaaaggaagctgagttggctgctgccaccgc






tgagcaataactagcataaccccttggggcctctaaacgg






gtcttgaggggttttttgctgaaaggaggaactatatccg






gCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGC






TGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACG






GTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG






TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGG






CCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGA






CGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGA






AACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTG






GAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT






TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG






GCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGG






TGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACC






CCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTAT






CGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCAC






TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA






TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAAC






TACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTC






TGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC






TTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTT






TTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT






CTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC






TCAGTGGAACGAAAACTCACGggtggcacttttcggggaa






atgtgcgcggaacccctatttgtttatttttctaaataca






ttcaaatatgtatccgctcatgaattaattcttagaaaaa






ctcatcgagcatcaaatgaaactgcaatttattcatatca






ggattatcaataccatatttttgaaaaagccgtttctgta






atgaaggagaaaactcaccgaggcagttccataggatggc






aagatcctggtatcggtctgcgattccgactcgtccaaca






tcaatacaacctattaatttcccctcgtcaaaaataaggt






tatcaagtgagaaatcaccatgagtgacgactgaatccgg






tgagaatggcaaaagtttatgcatttctttccagacttgt






tcaacaggccagccattacgctcgtcatcaaaatcactcg






catcaaccaaaccgttattcattcgtgattgcgcctgagc






gagacgaaatacgcgatcgctgttaaaaggacaattacaa






acaggaatcgaatgcaaccggcgcaggaacactgccagcg






catcaacaatattttcacctgaatcaggatattcttctaa






tacctggaatgctgttttcccggggatcgcagtggtgagt






aaccatgcatcatcaggagtacggataaaatgcttgatgg






tcggaagaggcataaattccgtcagccagtttagtctgac






catctcatctgtaacatcattggcaacgctacctttgcca






tgtttcagaaacaactctggcgcatcgggcttcccataca






atcgatagattgtcgcacctgattgcccgacattatcgcg






agcccatttatacccatata aatcagcatccatgttgga






atttaatcgcggcctagagcaagacgtttcccgttgaata






tggctcataaca






5 GFP targets (plus 1 non-target) were designed for the effector of SEQ ID NO: 101. RNA guide sequences, target sequences, and the non-target control sequences used for the FDA assay are listed in Table 13. A 5′-GTN-3′ PAM was used for the target sequences.









TABLE 13







RNA guide and Target Sequences for FDA Assay.









Target
Mature crRNA Sequence
Target Sequence





Target 1
ATAACTGTTCAGCGGAGAAGCCGCTGAAACa
aaacaacctttagaatttttttca



aacaacctttagaatttttttca (SEQ ID
(SEQ ID NO: 175)



NO: 194)






Target 2
ATAACTGTTCAGCGGAGAAGCCGCTGAAACg
gaactcaacgcggatgccattgtt



aactcaacgcggatgccattgtt (SEQ ID
(SEQ ID NO: 176)



NO: 195)






Target 3
ATAACTGTTCAGCGGAGAAGCCGCTGAAACg
gctcgggtacttggcgaaacactg



ctcgggtacttggcgaaacactg (SEQ ID
(SEQ ID NO: 177)



NO: 196)






Target 4
ATAACTGTTCAGCGGAGAAGCCGCTGAAACt
tacaagacgcgtgctatggttacc



acaagacgcgtgctatggttacc (SEQ ID
(SEQ ID NO: 178)



NO: 197)






Target 5
ATAACTGTTCAGCGGAGAAGCCGCTGAAACa
aacaatggcatccgcgttgagttc



acaatggcatccgcgttgagttc (SEQ ID
(SEQ ID NO: 179)



NO: 198)






Non-Target 4
ATAACTGTTCAGCGGAGAAGCCGCTGAAACa




ggtgctacatttgaagagataaa (SEQ ID




NO: 199)









GFP signal was normalized to RFP signal, then the average fluorescence of three technical replicates was taken at each time point. GFP fluorescence depletion was then calculated by dividing the GFP signal of an effector incubated with a non-GFP targeting RNA guide (which instead targets a kanamycin resistance gene and does not deplete GFP signal) by the GFP signal of an effector incubated with a GFP targeting RNA guide. The resulting value is referred to as “Depletion” in FIG. 29B.


A Depletion of one or approximately one indicated that there was little to no difference in GFP depletion with respect to a non-GFP targeting pre-crRNA and a GFP targeting pre-crRNA (e.g., 10 RFU/10 RFU=1). A Depletion of greater than one indicated that there was a difference in GFP depletion with respect to a non-GFP targeting pre-crRNA and a GFP targeting pre-crRNA (e.g., 10 RFU/5 RFU=2). Depletion of the GFP signal indicated that the effector formed a functional RNP and interfered with the production of GFP by introducing double-stranded DNA cleavage within the GFP coding region. The extent of the GFP depletion was largely correlated to the specific activity of a CLUST.099129 effector.



FIG. 29B shows depletion curves for RNPs formed by the effector of SEQ ID NO: 101, measured every 20 minutes for each of the GFP targets (Targets 1-5). At each target, the depletion values for RNPs formed with the effector of SEQ ID NO: 101 were greater than one.


This indicated that the CLUST.099129 effector formed a functional RNP capable of interfering with the production of GFP.


Example 7—Identification of Components of CLUST.342201 CRISPR-Cas Systems

This protein family was identified using the computational methods described above. The CLUST.342201 system comprises single effectors associated with CRISPR systems found in uncultured metagenomic sequences collected from wastewater, freshwater, marine, lake sediment, gut, microbial mat, and soil environments (TABLE 16). Exemplary CLUST.342201 effectors include those shown in TABLES 16 and 17, below. Examples of direct repeat sequences and spacer lengths for these systems are shown in TABLE 18. Optionally, the system includes a tracrRNA that is contained within a non-coding sequence listed in TABLE 19.









TABLE 16







Representative CLUST.342201 Effector Proteins













#
effector
SEQ


source
effector accession
spacers
size
ID NO














wastewater
3300006417|Ga0069787_10357475_9|M
3
387
301


metagenome


aquatic-freshwater
3300022602|Ga0248169_134333_3|P
5
345
302


aquatic-freshwater
3300022602|Ga0248169_134333_4|M
5
369
303


aquatic-freshwater-
3300025018|Ga0210043_1027795_3|M
2
381
304


aquifer


aquatic-freshwater-
3300020198|Ga0194120_10001032_39|P
4
391
305


freshwater lake


aquatic-freshwater-
3300014060|Ga0119967_10019787_9|M
5
381
306


freshwater metagenome


aquatic-freshwater-
3300020180|Ga0163155_10006838_6|M
2
398
307


freshwater microbial


mat


aquatic-freshwater-
3300020180|Ga0163155_10006838_8|P
2
419
308


freshwater microbial


mat


aquatic-freshwater-
3300020219|Ga0163146_10008638_12|M
2
332
309


freshwater microbial


mat


aquatic-freshwater-
3300020219|Ga0163146_10008638_11|P
2
398
310


freshwater microbial


mat


aquatic-freshwater-
3300001380|JGI1356J14229_10025169_2|P
2
297
311


groundwater


aquatic-freshwater-
3300014613|Ga0180008_1001166_14|P
2
382
312


groundwater


aquatic-freshwater-
3300014613|Ga0180008_1001166_12|M
2
374
313


groundwater


aquatic-freshwater-
3300014656|Ga0180007_10002258_14|P
2
382
314


groundwater


aquatic-freshwater-
3300014656|Ga0180007_10002258_12|M
2
374
315


groundwater


aquatic-freshwater-
3300013127|Ga0172365_10076875_1|P
7
398
316


sediment


aquatic-marine-aqueous
3300007960|Ga0099850_1017825_5|M
4
365
317


aquatic-marine-aqueous
3300025687|Ga0208019_1031224_1|P
3
389
318


aquatic-marine-aqueous
3300025687|Ga0208019_1031224_1|M
3
365
319


aquatic-non marine
3300017963|Ga0180437_10001136_84|M
3
351
320


saline and alkaline -


hypersaline lake


sediment


aquatic-non marine
3300017963|Ga0180437_10001136_87|P
3
408
321


saline and alkaline -


hypersaline lake


sediment


aquatic-non marine
3300017971|Ga0180438_10021976_13|P
2
408
322


saline and alkaline -


hypersaline lake


sediment


aquatic-non marine
3300017971|Ga0180438_10021976_11|M
2
360
323


saline and alkaline -


hypersaline lake


sediment


aquatic-non marine
3300025586|Ga0207996_1000986_11|P
4
399
324


saline and alkaline-


saline lake


aquatic-non marine
3300025642|Ga0208648_1003027_2|M
2
399
325


saline and alkaline-


saline lake


aquatic-non marine
3300028299|Ga0268276_1017374_5|P
2
403
326


saline and alkaline-


saline water


aquatic-non marine
3300028299|Ga0268276_1017374_4|M
2
384
327


saline and alkaline-


saline water


gut metagenome
SRR1221442_902393_36|P
3
303
328


mammals-digestive
3300001598|EMG_10002624_36|P
3
303
329


system-asian elephant


fecal-elephas maximus


microbial mat
ORBV01001191_65|M
2
332
330


metagenome


microbial mat
ORBV01001191_63|P
2
398
331


metagenome


seawater metagenome
OVSM01005865_8|M
2
331
332


seawater metagenome
OVXX01005191_2|P
2
331
333


terrestrial-soil-corn,
3300005549|Ga0070704_100000680_37|P
3
608
334


switchgrass and


miscanthus rhizosphere


terrestrial-soil-corn,
3300005549|Ga0070704_100000680_28|M
3
617
335


switchgrass and


miscanthus rhizosphere


terrestrial-soil-
3300010400|Ga0134122_10000002_228|P
5
602
336


terrestrial soil


terrestrial-soil-vadose
3300009089|Ga0099828_10012481_2|M
4
341
337


zone soil


terrestrial-soil-vadose
3300012201|Ga0137365_10010044_6|P
4
573
338


zone soil


terrestrial-soil-vadose
3300012356|Ga0137371_10006599_2|M
4
573
339


zone soil


wastewater metagenome
3300006417_501592_1|M
6
387
340


wastewater metagenome
SRR6837571_682758_2|M
6
387
341
















TABLE 171





Amino Acid Sequences of Representative CLUST.342201 Effector Proteins















>3300006417|Ga0069787_10357475_9|M


[wastewater metagenome]


MLKAHVIRLNPTKEQETYFWRCAGVARFTWNWALAELNAAYEKGERPAVGSLKLEFNRLRNEEGFAPFVGEVQSYAYQQAFGDLQK


ALSSYHDFRKRGMLKPPTSWKGRKDHKPFGWPRFKVRNRSTPAFYLANNGGLRMNGHQVTIQRCPGGPVNMAEPLRFTGKVMGGRV


RYRAGHWYLTVQVDVPVEPDPAHTGPAVGLDVGIKVLAFTSDGVIYDNPKALAHYQRKLRLLQRSLSRQTRGGSNYRKTQAKIARL


HDRIANIRKHALHQVSHEITRDYGLIGLEDLNVSGMLKNGKLARSISDVALGELRRQIEYKADWRGSRVMIVSRWFPSSKTCNDCG


YVMADMLLSVRWWQCPACGAEHDRDGNAAVNIRNEAVKMAGAA (SEQ ID NO: 301)





>3300022602|Ga0248169_134333_3|P


[aquatic-freshwater]


MNSQSLLAALLDVDNAFKRFFTQGAGYPKFASKYDPWQSFSCPQHVRLEGGQVHLPKLGLMDLVLHRQIPSDGTIKNCVIKRSPTG


KYQISLLIERNINEVICAPVIKDQSIGIDLGIKTFAVGSDGYSIQNPRFLSRQLPRLKTEQRKFARMQKDSNNRAKQKKVVAKIHE


DVANARHHFIHQESYRLAVKNHATTVMMETLMIKNMVRNHKLARHITDCGWGMFEKALEYKLAERGKNLIKIDTFLPSTKKCRICK


TKNTAMTLKDRVFVCGSCGHIEDRDLHAAQNVRDFGYEQYTRSLGTCETVKRSPVSISVGADEFAKGSKKFGTGRLEEAPAIAALA


A (SEQ ID NO: 302)





>3300022602|Ga0248169_134333_4|M


[aquatic-freshwater]


MSRRQLQDHLVKKKKKSKFTWLNEVNSQSLLAALLDVDNAFKRFFTQGAGYPKFASKYDPWQSFSCPQHVRLEGGQVHLPKLGLMD


LVLHRQIPSDGTIKNCVIKRSPTGKYQISLLIERNINEVICAPVIKDQSIGIDLGIKTFAVGSDGYSIQNPRFLSRQLPRLKTEQR


KFARMQKDSNNRAKQKKVVAKIHEDVANARHHFIHQESYRLAVKNHATTVMMETLMIKNMVRNHKLARHITDCGWGMFEKALEYKL


AERGKNLIKIDTFLPSTKKCRICKTKNTAMTLKDRVFVCGSCGHIEDRDLHAAQNVRDFGYEQYTRSLGTCETVKRSPVSISVGAD


EFAKGSKKFGTGRLEEAPAIAALAA (SEQ ID NO: 303)





>3300025018|Ga0210043_1027795_3|M


[aquatic-freshwater-aquifer]


MNRAHRIRLNPTAEQAAYFWRCAGVARFTWNWALGEYNAALARGEKPSLTALKLEFNRRRSEDRFAPWVGEVQSYAYQYAFQDLQT


AISRYHERRQADKLKPPAGWKPRKDGKPFGWPRFKARDNTTPAFGLANNGGIRCTGHQAQIQRCPGPVNMAEELRFDGRILSGRVT


YIAGHWYLAVAIELPDPQPEPLPGRVGVDLGIKSLAVTSDGVIYENPKHLRGSQRKLAHLQREFSRRQKGSRNWAKTKAKITRLHA


RIGNQRREVLHEMTTDLVRTYGTVVVEDLNVSGMLQNHHLAQAVSDASFGEIRRQLEYKASAFGSKVVIADRWYPSSKTCNDCGQI


VELTLAERTWTCPRCGVIHDRDLNAARNLRDYSAVTG (SEQ ID NO: 304)





>3300020198|Ga0194120_10001032_39|P


[aquatic-freshwater-freshwater lake]


MRVNKVFRYELKPNEVQKQIMAQHAGSARYAYNWALEKINSKVFNTTNDKKLHALWRQYRPGWWDFSVSKCVPQEALVNLSNSFKN


HRVNPGYFKDPVFKKKFIHDSFRLTGTVKVFANHVQLPILGKIRLKEVIDKYLRSLKSKNTKKLSTKDYKKTDRILSATVTRTADR


WYVSILVDIDIPEITDIPTGVVGIDFGIKKFLTLSNGLKFDHPKALKKHLKLLKRRQKQKDKKQKGSHNRLKSSLKLARLHAKIAN


IRRDYLNKITTWLARSKSVIVLENLNLKGMGKWHALAQALADAGFGLFKSMLQYKCQWYGSKLILADRWYGSSKTCSNCGWYYKDL


SLKERSWICKSCNTDHDRDLNAAINLKKIGVLSHSRGIYACGDSYAG (SEQ ID NO: 305)





>3300014060|Ga0119967_10019787_9|M


[aquatic-freshwater-freshwater metagenome]


MNRAHRIRLNPTAEQAAYFWRCAGVARFTWNWALGEYNAALARGEKPSLTALKLEFNRRRSEDRFAPWVGEVQSYAYQYAFQDLQT


AISRYHERRQADKLKPPAGWKPRKDGKPFGWPRFKARDNTTPAFGLANNGGIRCTGHQAQIQRCPGPVNMAEELRFDGRILSGRVT


YIAGHWYLAVAIELPDPQPEPLPGRVGVDLGIKSLAVTSDGVIYENPKHLRGSQRKLAHLQREFSRRQKGSHNWAKTKAKITRLHA


RIGNQRREVLHEMTTDLVRTYGTVVVEDLNVSGMLQNHHLAQAVSDASFGEIRRQLEYKASAFGSKVVIADRWYPSSKTCNDCGQI


VELTLAERTWTCPRCGVIHDRDLNAARNLRDYSAVTG (SEQ ID NO: 306)





>3300020180|Ga0163155_10006838_6|M


[aquatic-freshwater-freshwater microbial mat]


MATVRYRYRLYPTPAQRVALARTFGAVRFVWNQELARSQIHDAKYQGFSAASRRLTAAKKTTDLAWLNAISCVPIQQSLRNLDVSY


RNFFRGCKSKGPRRGYPRFKSKYDEQSAEYTRSGFKVEHGKLCLAKLGSIEVRWSRLLPSIPKTATVKLDATGRYFVSFTVEVNAQ


PLVGGTPVGIDLGIKCFAALSTGEMVQAPSYKRRERKIAHVQRELARRKNGSRRRAVTKKKLARLHAKISDTRRDFLDKLSTRLVR


SHDVIVVEDLNVSGMVKNHHLARSISRQGWRAFRTMLESKCTRYGRELQVVNRWTPTSQICSTCGHRWGRLDLSVRQVTCEGCGAA


HDRDVNAAKNIVAAGQVETKNGRGGHVRRMVPLGTCAVLDEASTSGPTPESSAF (SEQ ID NO: 307)





>3300020180|Ga0163155_10006838_8|P


[aquatic-freshwater-freshwater microbial mat]


MTTAIERLHGHVLQSMVSCRPMATVRYRYRLYPTPAQRVALARTFGAVRFVWNQELARSQIHDAKYQGFSAASRRLTAAKKTTDLA


WLNAISCVPIQQSLRNLDVSYRNFFRGCKSKGPRRGYPRFKSKYDEQSAEYTRSGFKVEHGKLCLAKLGSIEVRWSRLLPSIPKTA


TVKLDATGRYFVSFTVEVNAQPLVGGTPVGIDLGIKCFAALSTGEMVQAPSYKRRERKIAHVQRELARRKNGSRRRAVTKKKLARL


HAKISDTRRDFLDKLSTRLVRSHDVIVVEDLNVSGMVKNHHLARSISRQGWRAFRTMLESKCTRYGRELQVVNRWTPTSQICSTCG


HRWGRLDLSVRQVTCEGCGAAHDRDVNAAKNIVAAGQVETKNGRGGHVRRMVPLGTCAVLDEASTSGPTPESSAF (SEQ ID


NO: 308)





>3300020219|Ga0163146_10008638_12|M


[aquatic-freshwater-freshwater microbial mat]


MNDVSSVPVQQSIRNLDVAFRRFFNGLKGKGPKVGFPTWKRKDGKQSAEFTRSGFKLQRGKLYIAKVGDVDVRWSRALPSVPKTAT


VTLDAAGRYHVSFTVEKTDVALNGGSPVGVDLGIKTFAALSTGELVHAPDTKRLERRIGKAQRGLSRCRKGSARRGRAKLRVAKLH


AVLADTRRDFLEKFSTRLVREHSLIALEDLNVAGMAKNHCLARAVNRQGWRMFRTMVQSKCERYGREVRIVGRWEPTSQVCSGCGH


RWGRVGLGVRTIACEGCGEVHDRDVNAAKNVVAAGLADTENGRGEWVSRVVSMGTGVPFVEASTAGASPGISAL (SEQ ID NO:


309)





>3300020219|Ga0163146_10008638_11|P


[aquatic-freshwater-freshwater microbial mat]


MASLRYSYRLYPTTEQRRALAQTFGCVRVAWNDALARSQVSGAKYPGFAATSRLLTESKKSPERAWLNDVSSVPVQQSIRNLDVAF


RRFFNGLKGKGPKVGFPTWKRKDGKQSAEFTRSGFKLQRGKLYIAKVGDVDVRWSRALPSVPKTATVTLDAAGRYHVSFTVEKTDV


ALNGGSPVGVDLGIKTFAALSTGELVHAPDTKRLERRIGKAQRGLSRCRKGSARRGRAKLRVAKLHAVLADTRRDFLEKFSTRLVR


EHSLIALEDLNVAGMAKNHCLARAVNRQGWRMFRTMVQSKCERYGREVRIVGRWEPTSQVCSGCGHRWGRVGLGVRTIACEGCGEV


HDRDVNAAKNVVAAGLADTENGRGEWVSRVVSMGTGVPFVEASTAGASPGISAL (SEQ ID NO: 310)





>3300001380|JGI1356J14229_10025169_2|P


[aquatic-freshwater-groundwater]


MKKQGNKAGFPRFKPFEKMKSLHYPQYGNGFFLDKTLEASPFGKIQIVRHREIKGRIKTLSIKREASGKWFACISADAPLIIKFSN


NQPKVGIDLGLETFATLSNGEKVQNPRHIKKYEKRLAFLQRKRSRKTKGSRNRKKANEIAARQYLKLKNTRLDFLHKLSHNLVNSY


SLICLEDLACQEMAENRFGKQINDAGWGRFATMIQYKAESAGAEVIFVNPENTSKTCCICGNLQDMPLNERAYNCKSCGNSLDRDI


NAALNILTRATAGMAGSNASGDETIIPSLKEEAHAFTRG (SEQ ID NO: 311)





>3300014613|Ga0180008_1001166_14|P


[aquatic-freshwater-groundwater]


MHRAHRIRLNPTPEQEKYLWRCAGVARFTWNWALAAYNDTLVRGEKPSIAKLKVEFNRQRAEEAFAPWVGEVQSYAYQYAFQDLRT


AINRYHELRKADKLKPRAGWKPRKDGRPFGWPRFKARALTTPAFGLANNGGVHCAGNLAYLQRCPSPINMAEELRFTGRILSGHVS


YTGGHWHLSVSLDLPDPQPEPLPGRVGVDLGIKSLAVTSDGVVYENPKHLRASQRKLARLQRELARRTKGGKNRAKTQTKIARLHE


RIANQRRETLHEMTTDLVSRYGTVVVEDLNVSGMLSNHRLALAVSDASFGEIRRQLEYKAPAHGSQVLVANQWFPSSKTCNDCGCV


TALTLSDRVWTCPNCGVVHDRDINAAQNLRDYQPVSVA (SEQ ID NO: 312)





>3300014613|Ga0180008_1001166_12|M


[aquatic-freshwater-groundwater]


MNPTPEQEKYLWRCAGVARFTWNWALAAYNDTLVRGEKPSIAKLKVEFNRQRAEEAFAPWVGEVQSYAYQYAFQDLRTAINRYHEL


RKADKLKPRAGWKPRKDGRPFGWPRFKARALTTPAFGLANNGGVHCAGNLAYLQRCPSPINMAEELRFTGRILSGHVSYTGGHWHL


SVSLDLPDPQPEPLPGRVGVDLGIKSLAVTSDGVVYENPKHLRASQRKLARLQRELARRTKGGKNRAKTQTKIARLHERIANQRRE


TLHEMTTDLVSRYGTVVVEDLNVSGMLSNHRLALAVSDASFGEIRRQLEYKAPAHGSQVLVANQWFPSSKTCNDCGCVTALTLSDR


VWTCPNCGVVHDRDINAAQNLRDYQPVSVA (SEQ ID NO: 313)





>3300014656|Ga0180007_10002258_14|P


[aquatic-freshwater-groundwater]


MHRAHRIRLNPTPEQEKYLWRCAGVARFTWNWALAAYNDTLVRGEKPSIAKLKVEFNRQRAEEAFAPWVGEVQSYAYQYAFQDLRT


AINRYHELRKADKLKPRAGWKPRKDGRPFGWPRFKARALTTPAFGLANNGGVHCAGNLAYLQRCPSPINMAEELRFTGRILSGHVS


YTGGHWHLSVSLDLPDPQPEPLPGRVGVDLGIKSLAVTSDGVVYENPKHLRASQRKLARLQRELARRTKGGKNRAKTQTKIARLHE


RIANQRRETLHEMTTDLVSRYGTVVVEDLNVSGMLSNHRLALAVSDASFGEIRRQLEYKAPAHGSQVLVANQWFPSSKTCNDCGCV


TALTLSDRVWTCPNCGVVHDRDINAAQNLRDYQPVSVA (SEQ ID NO: 314)





>3300014656|Ga0180007_10002258_12|M


[aquatic-freshwater-groundwater]


MNPTPEQEKYLWRCAGVARFTWNWALAAYNDTLVRGEKPSIAKLKVEFNRQRAEEAFAPWVGEVQSYAYQYAFQDLRTAINRYHEL


RKADKLKPRAGWKPRKDGRPFGWPRFKARALTTPAFGLANNGGVHCAGNLAYLQRCPSPINMAEELRFTGRILSGHVSYTGGHWHL


SVSLDLPDPQPEPLPGRVGVDLGIKSLAVTSDGVVYENPKHLRASQRKLARLQRELARRTKGGKNRAKTQTKIARLHERIANQRRE


TLHEMTTDLVSRYGTVVVEDLNVSGMLSNHRLALAVSDASFGEIRRQLEYKAPAHGSQVLVANQWFPSSKTCNDCGCVTALTLSDR


VWTCPNCGVVHDRDINAAQNLRDYQPVSVA (SEQ ID NO: 315)





>3300013127|Ga0172365_10076875_1|P


[aquatic-freshwater-sediment]


MTAISISHKIALEPTKLQAAHFALCVGASRKAYNWALDTWNRQWDDGRKPKAADIRKLFNEVKWHDDTLRWMTGARNFVADRSIQN


LGEAWKKHFRAPAQWRKPTFHSTRIHRSFYVSIGNRKAPNIQVQGRRVRLCLEGTNYPEGQARIGWVKMREELRWDGRIESATISR


DEKRWYISFSCSGAENYPHRAGEGLLGVAIGFNTVALSNGTVFDQRRPLERYLVKKQRLSRSLSRKQSRLWNKKTKEVQRQSSANW


EKARARLARLDDRIANLRSDFIHRVTTDIVRTGKALVIEAVNVQRLLKDGRTARAASDVSFFEWKRQLQYKTQVAGGSLQQVPTSI


DLYQVCSRCGRRNYDARKYGKRFVCPHCGLDIENGVNIASNLATVKSAESQACG (SEQ ID NO: 316)





>3300007960|Ga0099850_1017825_5|M


[aquatic-marine-aqueous]


MSRFTWNWALAAYNDGVPFSYLKTEFNRLRSEDGFAPFVSEVQSYAYQQAFNDLNAALSRYFKFQKEGRLKPPAGWKPRKDRKPFG


WPRFKSRDKSTPSFYLANNGGMRFDGHGVVIQKCPGGPVNMAEPLRFDGKIMGGRVSYTGGYWYLAVSVQMGDPEPTADTSAAVGV


DMGIKYRAVTSDGVIYNNPKSLAQNLRKLRKLQRSLSRMRDAAKAEGRKLGESNNYQKRKREIAKLHATIANIRREHAHEMTTELV


REYGVVGVEDLNIRGMVKNRRLSRAVMDASMYQVRTQLDYKLKTSGGELVVVDRWYASSKTCNACGEKVDALPLSIRQWACPSCGA


EHDRDGNAAKNIRDEALRMRG (SEQ ID NO: 317)





>3300025687|Ga0208019_1031224_1|P


[aquatic-marine-aqueous]


MNRAHRIRLNPTTEQEEYFWQCAGVSRFTWNWALAAYNDGVPFSYLKTEFNRLRSEDGFAPFVSEVQSYAYQQAFNDLNAALSRYF


KFQKEGRLKPPAGWKPRKDRKPFGWPRFKSRDKSTPSFYLANNGGMRFDGHGVVIQKCPGGPVNMAEPLRFDGKIMGGRVSYTGGY


WYLAVSVQMDDPEPTADTSAAVGVDMGIKYRAVTSDGVIYNNPKSLAQNLRKLRKLQRSLSRMRDAAKAEGRKLGESNNYQKRKRE


IAKLHATIANIRREHAHEMTTELVREYGVVGVEDLNIRGMVKNRRLSRAVMDASMYQVRTQLDYKLKTSGGELVVVDRWYASSKTC


NACGEKVDALPLSIRQWACPSCGAEHDRDGNAAKNIRDEALRMRG (SEQ ID NO: 318)





>3300025687|Ga0208019_1031224_1|M


[aquatic-marine-aqueous]


MSRFTWNWALAAYNDGVPFSYLKTEFNRLRSEDGFAPFVSEVQSYAYQQAFNDLNAALSRYFKFQKEGRLKPPAGWKPRKDRKPFG


WPRFKSRDKSTPSFYLANNGGMRFDGHGVVIQKCPGGPVNMAEPLRFDGKIMGGRVSYTGGYWYLAVSVQMDDPEPTADTSAAVGV


DMGIKYRAVTSDGVIYNNPKSLAQNLRKLRKLQRSLSRMRDAAKAEGRKLGESNNYQKRKREIAKLHATIANIRREHAHEMTTELV


REYGVVGVEDLNIRGMVKNRRLSRAVMDASMYQVRTQLDYKLKTSGGELVVVDRWYASSKTCNACGEKVDALPLSIRQWACPSCGA


EHDRDGNAAKNIRDEALRMRG (SEQ ID NO: 319)





>3300017963|Ga0180437_10001136_84|M


[aquatic-non marine saline and alkaline-hypersaline lake sediment]


MDETCPELLWVRDELGMNKQIQQVPCEDLEKAWKRFFDWCRARKKGNVGLRRVGPPKFKSSRWMVGMSFGAKQGVEHDPETRKVRI


PSIGWIRHFEKDVDFSNDKIKCCRVVWRASGWYCSLSMDNDIEIKSPLKWKKRKTHSVHLGIRHYAVLSDGNNVDHPRNLERNLDR


LSKLCREWSRKKKGSRRWRIWRDRVRRVHEKIANCRKDFIHKMTDDLLKKYPCLISEKWSISDMVENEKTKRKRRKIKAGRRKPGS


RMMEKLLHRGIMDSSWYEVRRQLKYKSEWRRKPYHETHMGFKSTQTCFHCKHVNDFVTLNMKTFTCRGCGRKIERESNAAANVREM


GFSELGL (SEQ ID NO: 320)





>3300017963|Ga0180437_10001136_87|P


[aquatic-non marine saline and alkaline-hypersaline lake sediment]


MRRSHALKLDPNAGQARKLRLYCIAHCKIWNHFLEKCKKGLIPKKSNAMTHQLGNKRMDETCPELLWVRDELGMNKQIQQVPCEDL


EKAWKRFFDWCRARKKGNVGLRRVGPPKFKSSRWMVGMSFGAKQGVEHDPETRKVRIPSIGWIRHFEKDVDFSNDKIKCCRVVWRA


SGWYCSLSMDNDIEIKSPLKWKKRKTHSVHLGIRHYAVLSDGNNVDHPRNLERNLDRLSKLCREWSRKKKGSRRWRIWRDRVRRVH


EKIANCRKDFIHKMTDDLLKKYPCLISEKWSISDMVENEKTKRKRRKIKAGRRKPGSRMMEKLLHRGIMDSSWYEVRRQLKYKSEW


RRKPYHETHMGFKSTQTCFHCKHVNDFVTLNMKTFTCRGCGRKIERESNAAANVREMGFSELGL (SEQ ID NO: 321)





>3300017971|Ga0180438_10021976_13|P


[aquatic-non marine saline and alkaline-hypersaline lake sediment]


MRRSHALKLDPNAGQARKLRLYCIAHCKIWNHFLEKCKKGLIPKKSNAMTHQLGNKRMDETCPELLWVRDELGMNKQIQQVPCEDL


EKAWKRFFDWCRARKKGNVGLRRVGPPKFKSSRWMVGMSFGAKQGVEHDPETRKVRIPSIGWIRHFEKDVDFSNDKIKCCRVVWRA


SGWYCSLSMDNDIEIKSPLKWKKRKTHSVHLGIRHYAVLSDGNNVDHPRNLERNLDRLSKLCREWSRKKKGSRRWRIWRDRVRRVH


EKIANCRKDFIHKMTDDLLKKYPCLISEKWSISDMVENEKTKRKRRKIKAGRRKPGSRMMEKLLHRGIMDSSWYEVRRQLKYKSEW


RRKPYHETHMGFKSTQTCFHCKHVNDFVTLNMKTFTCRGCGRKIERESNAAANVREMGFSELGL (SEQ ID NO: 322)





>3300017971|Ga0180438_10021976_11|M


[aquatic-non marine saline and alkaline-hypersaline lake sediment]


MTHQLGNKRMDETCPELLWVRDELGMNKQIQQVPCEDLEKAWKRFFDWCRARKKGNVGLRRVGPPKFKSSRWMVGMSFGAKQGVEH


DPETRKVRIPSIGWIRHFEKDVDFSNDKIKCCRVVWRASGWYCSLSMDNDIEIKSPLKWKKRKTHSVHLGIRHYAVLSDGNNVDHP


RNLERNLDRLSKLCREWSRKKKGSRRWRIWRDRVRRVHEKIANCRKDFIHKMTDDLLKKYPCLISEKWSISDMVENEKTKRKRRKI


KAGRRKPGSRMMEKLLHRGIMDSSWYEVRRQLKYKSEWRRKPYHETHMGFKSTQTCFHCKHVNDFVTLNMKTFTCRGCGRKIERES


NAAANVREMGFSELGL (SEQ ID NO: 323)





>3300025586|Ga0207996_1000986_11|P


[aquatic-non marine saline and alkaline-saline lake]


MTNRLRYSYRLYPTPEQRHALAQTFGCARVVWNDALARAQVGGAKYPGFAATSRLLTESKKSPARAWLNDVSCVPVQQSIRNLDIA


FRHFFNGLKGKGPKTGFPAWKRKDGKQSAEFTRRGFKLQRGKLCLAKIGDVEVRWSRSLPSAPKTATVTLDTAGRYHVSFTVEKVD


VAMEGGSPVGIDLGIKTFAALSTGELVHAPELKRLERRIDKAQRALSRCQKGSARRGRAKLRVAKLNATLADTRRDFLEKFSTRLV


RQHSLIALEDLAVANMTKNHCLARAVSRQGWRMFRTMVESKCERYGREIRIVNRWEPTSQVCSGCGHRWGKLGLGVREIACEGCGE


VHDRDINAAKNVVAAGLAETKNGRGEWVNRVVSMGTGVPFVEASTAGASPGVSAL (SEQ ID NO: 324)





>3300025642|Ga0208648_1003027_2|M


[aquatic-non marine saline and alkaline-saline lake]


MTNRLRYSYRLYPTPEQRHALAQTFGCARVVWNDALARAQVGGAKYPGFAATSRLLTESKKSPARAWLNDVSCVPVQQSIRNLDIA


FRHFFNGLKGKGPKTGFPAWKRKDGKQSAEFTRRGFKLQRGKLCLAKIGDVEVRWSRSLPSAPKTATVTLDTAGRYHVSFTVEKVD


VAMEGGSPVGIDLGIKTFAALSTGELVHAPELKRLERRIDKAQRALSRCQKGSARRGRAKLRVAKLNATLADTRRDFLEKFSTRLV


RQHSLIALEDLAVANMTKNHCLARAVSRQGWRMFRTMVESKCERYGREIRIVNRWEPTSQVCSGCGHRWGKLGLGVREIACEGCGE


VHDRDINAAKNVVAAGLAETKNGRGEWVNRVVSMGTGVPFVEASTAGASPGVSAL (SEQ ID NO: 325)





>3300028299|Ga0268276_1017374_5|P


[aquatic-non marine saline and alkaline-saline water]


MPMRWRWQTYTPRVRGVRVMKMHRAHRIRLNPTPEQEQYLWRCAGVARFTWNWALAAYNDTLARGEKPSIAKLKVEFNRLRAEESF


APWVGEVQSYAYQYAFGDLRTAINRYHKLRKADKLKPRAGWKPRKDGRPFGWPRFKARALTTPAFGLANNGGVHCAGNLAYLQRCP


SPINMAEELRFTGRILSGRVSYTGGHWYLSVSLDLPDPQPEPLSGRVGVDLGIKSLAVTSDGVVYENPKHLRANQRKLARLQRELS


RRTKGGKNRAKTQAKIARLHEQIANRRRETLHEMTTDLVSSYGTVVVEDLNVSGMLSNHRLALAVSDAAFGEIRRQLEYKAPAHGS


QVLVANQWFPSSKTCNDCGYITTLTLSDRVWTCPNCGVVHDRDINAAQNLRDYQPASAA (SEQ ID NO: 326)





>3300028299|Ga0268276_1017374_4|M


[aquatic-non marine saline and alkaline-saline water]


MKMHRAHRIRLNPTPEQEQYLWRCAGVARFTWNWALAAYNDTLARGEKPSIAKLKVEFNRLRAEESFAPWVGEVQSYAYQYAFGDL


RTAINRYHKLRKADKLKPRAGWKPRKDGRPFGWPRFKARALTTPAFGLANNGGVHCAGNLAYLQRCPSPINMAEELRFTGRILSGR


VSYTGGHWYLSVSLDLPDPQPEPLSGRVGVDLGIKSLAVTSDGVVYENPKHLRANQRKLARLQRELSRRTKGGKNRAKTQAKIARL


HEQIANRRRETLHEMTTDLVSSYGTVVVEDLNVSGMLSNHRLALAVSDAAFGEIRRQLEYKAPAHGSQVLVANQWFPSSKTCNDCG


YITTLTLSDRVWTCPNCGVVHDRDINAAQNLRDYQPASAA (SEQ ID NO: 327)





>SRR1221442_902393_36|P


[gut metagenome]


MKQAIRQMDGAYQKFFKQHNGFPKFKSKKDKQSALFPYEAISKHNTFETRHISLTTLLKNIRFRCSDLYFSRLQKYNKNIRSATLS


KTKSGNFFLSILIEMEDAELKRFGHTNKQVGIDLGVKDFVITSDGEVFENKHFFRKEERQVKKLHRQLSKKVKGSNNRKKTQVRIA


KLFERITNKKNAYIHYVTNELLTYFDTIFMEELNVKGMLRNHHLAKAIQEVGFYKFKETLVNKAFVNDKQVVFIDRFYPSSKTCSV


CGYKKQDLRLSDREWVCPKCGTKHNRDINAAVNILLEGQRMLTAG (SEQ ID NO: 328)





>3300001598|EMG_10002624_36|P


[mammals-digestive system-asian elephant f ecal-elephas maximus]


MKQAIRQMDGAYQKFFKQHNGFPKFKSKKDKQSALFPYEAISKHNTFETRHISLTTLLKNIRFRCSDLYFSRLQKYNKNIRSATLS


KTKSGNFFLSILIEMEDAELKRFGHTNKQVGIDLGVKDFVITSDGEVFENKHFFRKEERQVKKLHRQLSKKVKGSNNRKKTQVRIA


KLFERITNKKNAYIHYVTNELLTYFDTIFMEELNVKGMLRNHHLAKAIQEVGFYKFKETLVNKAFVNDKQVVFIDRFYPSSKTCSV


CGYKKQDLRLSDREWVCPKCGTKHNRDINAAVNILLEGQRMLTAG (SEQ ID NO: 329)





>ORBV01001191_65|M


[microbial mat metagenome]


MNDVSSVPVQQSIRNLDVAFRRFFNGLKGKGPKVGFPTWKRKDGKQSAEFTRSGFKLQRGKLYIAKVGDVDVRWSRALPSVPKTAT


VTLDAAGRYHVSFTVEKTDVALNGGSPVGVDLGIKTFAALSTGELVHAPDTKRLERRIGKAQRGLSRCRKGSARRGRAKLRVAKLH


AVLADTRRDFLEKFSTRLVREHSLIALEDLNVAGMAKNHCLARAVNRQGWRMFRTMVQSKCERYGREVRIVGRWEPTSQVCSGCGH


RWGRVGLGVRTIACEGCGEVHDRDVNAAKNVVAAGLADTENGRGEWVSRVVSMGTGVPFVEASTAGASPGISAL (SEQ ID NO:


330)





>ORBV01001191_63|P


[microbial mat metagenome]


MASLRYSYRLYPTTEQRRALAQTFGCVRVAWNDALARSQVSGAKYPGFAATSRLLTESKKSPERAWLNDVSSVPVQQSIRNLDVAF


RRFFNGLKGKGPKVGFPTWKRKDGKQSAEFTRSGFKLQRGKLYIAKVGDVDVRWSRALPSVPKTATVTLDAAGRYHVSFTVEKTDV


ALNGGSPVGVDLGIKTFAALSTGELVHAPDTKRLERRIGKAQRGLSRCRKGSARRGRAKLRVAKLHAVLADTRRDFLEKFSTRLVR


EHSLIALEDLNVAGMAKNHCLARAVNRQGWRMFRTMVQSKCERYGREVRIVGRWEPTSQVCSGCGHRWGRVGLGVRTIACEGCGEV


HDRDVNAAKNVVAAGLADTENGRGEWVSRVVSMGTGVPFVEASTAGASPGISAL (SEQ ID NO: 331)





>OVSM01005865_8|M


[seawater metagenome]


MRWWMVRLKESQEYSFLRELNSQSLVSRLRELDNTYWDCFLKRKEGAQLPVIKKRSKHNSFHLPDPKKQAQVKGNKVKLSKIGEVT


FFKSRKIDGEIRTARVFYRTGYWYISFQVKQEIDIPKRKDKGRAGIYLGGKNLLTLVTNKNKKERYDLLNIYGKYEPLLKKKQKSL


KRKVSFSKNWEKKQAEIKKIHRKIFNTRRDTLHKISTEVCKNHATIYLSDFRVLKTLNKGRLKKKEKEKNKKVLDQGLWYLKEFIV


YKGLWRGNIVKKVNNENSILTCSSCGVINDTRQGEKFCCNDCGLKESLEINAAKNILAAGHAVTVCEANQLRN (SEQ ID NO:


332)





>OVXX01005191_2|P


[seawater metagenome]


MRWWMVRLKESQEYSFLRELNSQSLVSRLRELDNTYWDCFLKRKEGAQLPVIKKRSKHNSFHLPDPKKQAQVKGNKVKLSKIGEVT


FFKSRKIDGEIRTARVFYRTGYWYISFQVKQEIDIPKRKDKGRAGIYLGGKNLLTLVTNKNKKERYDLLNIYGKYEPLLKKKQKSL


KRKVSFSKNWEKKQAEIKKIHRKIFNTRRDTLHKISTEVCKNHATIYLSDFRVLKTLNKGRLKKKEKEKNKKVLDQGLWYLKEFIV


YKGLWRGNIVKKVNNENSILTCSSCGVINDTRQGEKFCCNDCGLKESLEINAAKNILAAGHAVTVCEANQLRN (SEQ ID NO:


333)





>3300005549|Ga0070704_100000680_37|P


[terrestrial-soil-corn, switchgrass and miscanthus rhizosphere]


MPGDAPAGHVYLRAFQTELDPTVAERRLLGRHVAAARVSHNWALERWNSLQCPRAIVRGLRALAGLDVKGGEAANMLGVFLRALVF


GTPVAVRTPKGAARRYRYKPPEPPDVDVSPNGPSIHASLVREKNNAQDLAWLGEVSAFAVREAVEDVADGWKHFFEHLKAGRFDKA


GPPQFRKARDRHYHVDQPDPIRVTDRAVKIPGVGWVRLKERGYLPPTRADSHALVGGGKCVGLGISERDGRWYVSLRAHVPRPMPQ


KRAPGRAKRDAPVPRNPNLTLGVEVGVRSLVTLSTGAHFAGLREDERIIAATRRLHLWQRRQERRWQRGKSRREQSAGWREAVRWV


GHYHAQLTDLRADLTGKAVRAIVDTGAAVIVMREPATAKMLARRHASEPRTRNALAPAVHAARMGDVLRRVGYKQKWAGGQLVEVP


VAEPVTRRCNKCGAVRDTEPAYPDFHCTACGHREERDDNAAANLKDYPGRNPGADPGRSGPDSPSAHTEGVTAGGTAGTASGESPG


HGSGRKARERASLGPGNRPRAGARLTAQADQPLTSPRYDGALREHRGDAPEQSQGNHTPAAPVPADDGDRSQTVSQPRERTAELRG


VSGAQP (SEQ ID NO: 334)





>3300005549|Ga0070704_100000680_28|M


[terrestrial-soil-corn, switchgrass and miscanthus rhizosphere]


MKLKDGGNIMPGDAPAGHVYLRAFQTELDPTVAERRLLGRHVAAARVSHNWALERWNSLQCPRAIVRGLRALAGLDVKGGEAANML


GVFLRALVFGTPVAVRTPKGAARRYRYKPPEPPDVDVSPNGPSIHASLVREKNNAQDLAWLGEVSAFAVREAVEDVADGWKHFFEH


LKAGRFDKAGPPQFRKARDRHYHVDQPDPIRVTDRAVKIPGVGWVRLKERGYLPPTRADSHALVGGGKCVGLGISERDGRWYVSLR


AHVPRPMPQKRAPGRAKRDAPVPRNPNLTLGVEVGVRSLVTLSTGAHFAGLREDERIIAATRRLHLWQRRQERRWQRGKSRREQSA


GWREAVRWVGHYHAQLTDLRADLTGKAVRAIVDTGAAVIVMREPATAKMLARRHASEPRTRNALAPAVHAARMGDVLRRVGYKQKW


AGGQLVEVPVAEPVTRRCNKCGAVRDTEPAYPDFHCTACGHREERDDNAAANLKDYPGRNPGADPGRSGPDSPSAHTEGVTAGGTA


GTASGESPGHGSGRKARERASLGPGNRPRAGARLTAQADQPLTSPRYDGALREHRGDAPEQSQGNHTPAAPVPADDGDRSQTVSQP


RERTAELRGVSGAQP (SEQ ID NO: 335)





>3300010400|Ga0134122_10000002_228|P


[terrestrial-soil-terrestrial soil]


MTTILRAYKTELDPTDEQRVVLARHVAGARVAHNWALEKWKELDGTRGVALGCRALAGIDAKGGEAAALFGYCLAALIRGEPVKVR


TPKSEAGSRYRYRPASGVQLPDFRAGRVDWYSQLVSAKEEQPERFGWLSELSAFAIREAVLDVADGWKHFFEHLKAGRYASAGPPR


FRGRQRASYHSDQPDPIRVTERAVKIPGVGWVRMKERGYLPVTEENSHRFIGGGKACGLGVSEKDGRWYVALRCEVPRPFPQKRGP


GRALAMHQTKRVPGRELGVEVGVRVLAVASTGERAGHVWHSPLRDDRRIDKFEMLRKRWERRMARRWKDGVKTRDQSQGWKEAAMR


VAHYHARIKSLRDDVCGKAARQIADMGAETVRMRGPGIAKMLSRAGKRGDAARTRNRLAKNVHAARMGDLRRRLEYKQAWAGGRLE


LVPIEEPTTNRCSACNAVRDTNAGYPTFMCPTCGYQEDRDDNSAINLLNYRAPSGDPAAGPRSAGLKPPKGDNGRRKRTARAEEKS


SVTAPHGDVTSAPGPGNRVSGASHSVRPIDAYHEVPFEQSGDAHLGSRQFGLDTALFGADDPNRSQIEPQRSEFPGLLAHRAGGTS


(SEQ ID NO: 336)





>3300009089|Ga0099828_10012481_2|M


[terrestrial-soil-vadose zone soil]


MKQLCAMQEALRDLETAYRNFFRRVALGKQGLWRGKLGFPKMKKKSKAIGSFRLTGSIKVFSGTVQLPRLGCLRLHEHDFIPTDAK


VLSATVSEQAGRWFVSIQVEEEQEKPPPTATTAIGVDLGIKTLATCSDGKIFANPRALSHAHKMLRRLERQKSRRKKGGKNRKKIC


RKLAKQHARVANIRKDAAHKLSSYLCKNHALVAIEDLHVAGMLKNHKLAQAVSDSNFGEIRRQLEYKAFWQGVHLVIIDRWYASSK


TCSGCGWVDENQDLSDRTFICQECGLVMDRDENAAINILNEALRTTGSYSGSHAYGESSSGLVSGSGETALVEIGTNLHVGMS


(SEQ ID NO: 337)





>3300012201|Ga0137365_10010044_6|P


[terrestrial-soil-vadose zone soil]


MKRAAPLESGMIRRAYRVRLEPTAEQRRELARCVGVARAAFNWALAEWRRQYRAYKLAEKAPARALRLLARWQSPLAEDPRWQGGD


NPKPNGFAIHKRLTAIKREQFPWMTDVPALVVREAVGDVGAAYEHFFRRLKEGAVGREAGEPRFRSRHRRKSFHMDQGDAIKIARF


VRADETTGRHADAIVLPVLGSVHVHKRQNGFLPAGAKLCGVGISEHLGLWYAAVRAEVPAPAPRRKRMAEKRLGVEVGVRSLAVTS


DGKRIGALRDLDKTKSGERRLALWLRRMSRRFRQGAKKQSAGWVEAKHHVQRLHSEIAETRDELLHYASRRVVDSGAAVVVMREPN


VRGMIGKAGKTGEAARARNVIAPMVSKVGWYELRRKVEYKQQWAGGAFVEAPAEIESTKTCSVCGSVRDTDPGYPLFRCPSCGHQE


DREANSSKVLRDYRPPSGGPVGGDRADRRKTARKRGTMAERTGKPGGEQSAPTGPDGVATSPHGSGNGAASQEAETGAVIRDPTRP


PGEPGARLRVPSATASDGGHEPIDSQESCVFASPPDGPDGDRSQTASQASETSGGSA (SEQ ID NO: 338)





>3300012356|Ga013737l_10006599_2|M


[terrestrial-soil-vadose zone soil]


MKRAAPLESGMIRRAYRVRLEPTAEQRRELARCVGVARAAFNWALAEWRRQYRAYKLAEKAPARALRLLARWQSPLAEDPRWQGGD


NPKPNGFAIHKRLTAIKREQFPWMTDVPALVVREAVGDVGAAYEHFFRRLKEGAVGREAGEPRFRSRHRRKSFHMDQGDAIKIARF


VRADETTGRHADAIVLPVLGSVHVHKRQNGFLPAGAKLCGVGISEHLGLWYAAVRAEVPAPAPRRKRMAEKRLGVEVGVRSLAVTS


DGKRIGALRDLDKTKSGERRLALWLRRMSRRFRQGAKKQSAGWVEAKHHVQRLHSEIAETRDELLHYASRRVVDSGAAVVVMREPN


VRGMIGKAGKTGEAARARNVIAPMVSKVGWYELRRKVEYKQQWAGGAFVEAPAEIESTKTCSVCGSVRDTDPGYPLFRCPSCGHQE


DREANSSKVLRDYRPPSGGPVGGDRADRRKTARKRGTMAERTGKPGGEQSAPAGPDGVATSPHGSGNGAASQEAETGAVIRDPTRP


PGEPGARLRVPSATASDGGHEPIDSQESCVFASPPDGPDGDRSQTASQASETSGGSA (SEQ ID NO: 339)





>3300006417_501592_1|M


[wastewater metagenome]


MLKAHVIRLNPTEEQASYFWRCAGIARFTWNWALAELNAAYDRGERPAIGSLKLAFNRLRKEEGFAPFVGEVQSYAYQQAFTDLQK


ALSRYHDFRKRGLLKPPAGWKGRKDHKPFGWPRFKARNRSTPAFYLANNGGLRLQGHQVTIQRCPGGPVNMAEQLRFAGRVMGGRV


RYRAGHWYLTVQVDVPVEPVPAHTGPAVGLDVGIKALAVTSDGEIYDNPKALGRHQRKLRLLQRSLARQTRGGSNYRKTQAKIARL


HERIANIRKHTLHQISHEITRDYGLIGLEDLNVAGMLENGKLARSISDVAFGELRRQIGYKSEWRGSRVVIVSRWFPSSKTCNECG


HVMADMPLSVRWWQCPTCGAEHDRDGNAAVNIRNEAVKMAGAA (SEQ ID NO: 340)





>SRR6837571_682758_2|M


[wastewater metagenome]


MLKAHVIRLNPTEEQASYFWRCAGIARFTWNWALAELNAAYDRGERPAIGSLKLAFNRLRKEEGFAPFVGEVQSYAYQQAFTDLQK


ALSRYHDFRKRGLLKPPAGWKGRKDHKPFGWPRFKARNRSTPAFYLANNGGLRLQGHQVTIQRCPGGPVNMAEQLRFAGRVMGGRV


RYRAGHWYLTVQVDVPVEPVPAHTGPAVGLDVGIKTLAVTSDGEIYDNPKALGRHQRKLRLLQRSLARQTRGGSNYRKTQAKIARL


HERIANIRKHTLHQISHEITRDYGLIGLEDLNVAGMLKNGKLARSISDVAFGELRRQIGYKSEWRGSRVVIVSRWFPSSKTCNECG


HVMADMPLSVRWWQCPTCGAEHDRDGNAAVNIRNEAVKMAGAA (SEQ ID NO: 341)
















TABLE 182







Nucleotide Sequences of Representative CLUST.342201 Direct Repeats and Spacer


Lengths











Spacer


CLUST.342201 Effector Protein

Length


Accession
Direct Repeat Nucleotide Sequence
(s)





3300006417|Ga0069787_
GTTCACCCCACGGGTGCGTGGAGTGATGG (SEQ ID NO: 342)
32-33


10357475_9|M (SEQ ID NO: 301)
CCATCACTCCACGCACCCGTGGGGTGAAC (SEQ ID NO: 451)






3300022602|Ga0248169_134333_
GTTCGCCGCGCATACGCGGCTTAAAAG (SEQ ID NO: 343)
33


3|P (SEQ ID NO: 302)
CTTTTAAGCCGCGTATGCGCGGCGAAC (SEQ ID NO: 452)






3300022602|Ga0248169_134333_
GTTCGCCGCGCATACGCGGCTTAAAAG (SEQ ID NO: 343)
33


4|M (SEQ ID NO: 303)
CTTTTAAGCCGCGTATGCGCGGCGAAC (SEQ ID NO: 452)






3300025018|Ga0210043_1027795_
GGTTACCCCGCGCGGGTGTGGAGTGAGGG (SEQ ID NO: 344)
32-33


3|M (SEQID NO: 304)
CCCTCACTCCACACCCGCGCGGGGTAACC (SEQ ID NO: 384)






3300020198|Ga0194120_10001032_
CTTGCGGGATCGGTTTGAATGGATAGGAAAGTGACAT (SEQ ID NO:
33-36


39|P (SEQ ID NO: 305)
345)




ATGTCACTTTCCTATCCATTCAAACCGATCCCGCAAG (SEQ ID NO:




385)






3300014060|Ga0119967_10019787_
GGTTACCCCGCGCGGGTGTGGAGTGAGGG (SEQ ID NO: 344)
32


9|M (SEQ ID NO: 306)
CCCTCACTCCACACCCGCGCGGGGTAACC (SEQ ID NO: 384)






3300020180|Ga0163155_10006838_
CAGCGCACGAGGAGGTGCTG (SEQ ID NO: 346)
22


6|M (SEQ ID NO: 307)
CAGCACCTCCTCGTGCGCTG (SEQ ID NO: 386)






3300020180|Ga0163155_10006838_
CAGCGCACGAGGAGGTGCTG (SEQ ID NO: 346)
22


8|P (SEQ ID NO: 308)
CAGCACCTCCTCGTGCGCTG (SEQ ID NO: 386)






3300020219|Ga0163146_10008638_
CTGCCATGGTGGCGTGGTCGGGAAGTCCCCATGGCATGGGCTCTGTCTCAT
20-21


12|M (SEQ ID NO: 309)
TCGGCGAACCGCCC (SEQ ID NO: 347)




GGGCGGTTCGCCGAATGAGACAGAGCCCATGCCATGGGGACTTCCCGACCA




CGCCACCATGGCAG (SEQ ID NO: 387)






3300020219|Ga0163146_10008638_
CTGCCATGGTGGCGTGGTCGGGAAGTCCCCATGGCATGGGCTCTGTCTCAT
20-21


11|P (SEQID NO: 310)
TCGGCGAACCGCCC (SEQ ID NO: 347)




GGGCGGTTCGCCGAATGAGACAGAGCCCATGCCATGGGGACTTCCCGACCA




CGCCACCATGGCAG (SEQ ID NO: 387)






3300001380|JGI1356J14229_
GGCACAGTGGTTGGCTTCTTCTTCCCA (SEQ ID NO: 348)
21


10025169_2|P (SEQ ID NO: 311)
TGGGAAGAAGAAGCCAACCACTGTGCC (SEQ ID NO: 388)






3300014613|Ga0180008_1001166_
GTACACCCCACGGGTGCGTGGAGTGAGGG (SEQ ID NO: 349)
32-33


14|P (SEQ ID NO: 312)
CCCTCACTCCACGCACCCGTGGGGTGTAC (SEQ ID NO: 389)






3300014613|Ga0180008_1001166_
GTACACCCCACGGGTGCGTGGAGTGAGGG (SEQ ID NO: 349)
32-33


12|M (SEQ ID NO: 313)
CCCTCACTCCACGCACCCGTGGGGTGTAC (SEQ ID NO: 389)






3300014656|Ga0180007_10002258_
GTACACCCCACGGGTGCGTGGAGTGAGGG (SEQ ID NO: 349)
32-33


14|P (SEQ ID NO: 314)
CCCTCACTCCACGCACCCGTGGGGTGTAC (SEQ ID NO: 389)






3300014656|Ga0180007_10002258_
GTACACCCCACGGGTGCGTGGAGTGAGGG (SEQ ID NO: 349)
32-33


12|M (SEQ ID NO: 315)
CCCTCACTCCACGCACCCGTGGGGTGTAC (SEQ ID NO: 389)






3300013127|Ga0172365_10076875_
GTCGGGCCCACGCGTACGTGGGCGATTGG (SEQ ID NO: 350)
32-39


1|P (SEQ ID NO: 316)
CCAATCGCCCACGTACGCGTGGGCCCGAC (SEQ ID NO: 390)






3300007960|Ga0099850_1017825_
ATACGCCCCACGTGCGTGTGGGGTGAGGG (SEQ ID NO: 351)
32-33


5|M (SEQ ID NO: 317)
CCCTCACCCCACACGCACGTGGGGCGTAT (SEQ ID NO: 391)






3300025687|Ga0208019_1031224_
ATACGCCCCACGTGCGTGTGGGGTGAGGG (SEQ ID NO: 351)
32-33


1|P (SEQ ID NO: 318)
CCCTCACCCCACACGCACGTGGGGCGTAT (SEQ ID NO: 391)






3300025687|Ga0208019_1031224_
ATACGCCCCACGTGCGTGTGGGGTGAGGG (SEQ ID NO: 351)
32-33


1|M (SEQ ID NO: 319)
CCCTCACCCCACACGCACGTGGGGCGTAT (SEQ ID NO: 391)






3300017963|Ga0180437_10001136_
CGTGTGAATGCGTGAAATTGAGTAGAGGATATGTCAG (SEQ ID NO:
28-37


84|M (SEQ ID NO: 320)
352)




CTGACATATCCTCTACTCAATTTCACGCATTCACACG (SEQ ID NO:




392)






3300017963|Ga0180437_10001136_
CGTGTGAATGCGTGAAATTGAGTAGAGGATATGTCAG (SEQ ID NO:
28-37


87|P (SEQ ID NO: 321)
352)




CTGACATATCCTCTACTCAATTTCACGCATTCACACG (SEQ ID NO:




392)






3300017971|Ga0180438_10021976_
GTGTGAATGCGTGAAATTGAGTAGAGGATATGTCAG (SEQ ID NO:
35-36


13|P (SEQ ID NO: 322)
353)




CTGACATATCCTCTACTCAATTTCACGCATTCACAC (SEQ ID NO:




393)






3300017971|Ga0180438_10021976_
GTGTGAATGCGTGAAATTGAGTAGAGGATATGTCAG (SEQ ID NO:
35-36


11|M (SEQ ID NO: 323)
353)




CTGACATATCCTCTACTCAATTTCACGCATTCACAC (SEQ ID NO:




393)






3300025586|Ga0207996_1000986_
CGCAAGCCGAAGGCTTACGGATGCGG (SEQ ID NO: 354)
15-50


11|P (SEQ ID NO: 324)
CCGCATCCGTAAGCCTTCGGCTTGCG (SEQ ID NO: 394)






3300025642|Ga0208648_1003027_
CTGCGCAAGCCGAAGGCTTACGGATGCGG (SEQ ID NO: 355)
12-18


2|M (SEQ ID NO: 325)
CCGCATCCGTAAGCCTTCGGCTTGCGCAG (SEQ ID NO: 395)






3300028299|Ga0268276_1017374_
GTACACCCCACGGGTGCGTGGAGTGAGGG (SEQ ID NO: 349)
32


5|P (SEQ ID NO: 326)
CCCTCACTCCACGCACCCGTGGGGTGTAC (SEQ ID NO: 389)






3300028299|Ga0268276_1017374_
GTACACCCCACGGGTGCGTGGAGTGAGGG (SEQ ID NO: 349)
32


4|M (SEQ ID NO: 327)
CCCTCACTCCACGCACCCGTGGGGTGTAC (SEQ ID NO: 389)






SRR1221442_902393_361P
TCTTCATCAACCTTCACATCTAC (SEQ ID NO: 356)
17-20


(SEQ ID NO: 328)
GTAGATGTGAAGGTTGATGAAGA (SEQ ID NO: 396)






33000015981 EMG_10002624_
TCTTCATCAACCTTCACATCTAC (SEQ ID NO: 356)
17-20


36|P (SEQ ID NO: 329)
GTAGATGTGAAGGTTGATGAAGA (SEQ ID NO: 396)






ORBV01001191_65|M
CTGCCATGGTGGCGTGGTCGGGAAGTCCCCATGGCATGGGCTCTGTCTCAT
20-21


(SEQ ID NO: 330)
TCGGCGAACCGCCC (SEQ ID NO: 347)




GGGCGGTTCGCCGAATGAGACAGAGCCCATGCCATGGGGACTTCCCGACCA




CGCCACCATGGCAG (SEQ ID NO: 387)






ORBV01001191_63|P
CTGCCATGGTGGCGTGGTCGGGAAGTCCCCATGGCATGGGCTCTGTCTCAT
20-21


(SEQ ID NO: 331)
TCGGCGAACCGCCC (SEQ ID NO: 347)




GGGCGGTTCGCCGAATGAGACAGAGCCCATGCCATGGGGACTTCCCGACCA




CGCCACCATGGCAG (SEQ ID NO: 387)






OVSM01005865_8|M
AATATTACACATAAAACTACATACATAATTACATA (SEQ ID NO:
25


(SEQ ID NO: 332)
357)




TATGTAATTATGTATGTAGTTTTATGTGTAATATT (SEQ ID NO:




397)









OVXX01005191_2|P
AATATTACACATAAAACTACATACATAATTACATA (SEQ ID NO:
25


(SEQ ID NO: 333)
357)




TATGTAATTATGTATGTAGTTTTATGTGTAATATT (SEQ ID NO:




397)









3300005549|Ga0070704_
CCGTGACGGGGCGTCGTGGTCAG (SEQ ID NO: 358)
49-50


100000680_37|P (SEQ ID NO: 334)
CTGACCACGACGCCCCGTCACGG (SEQ ID NO: 398)






3300005549|Ga0070704_
CCGTGACGGGGCGTCGTGGTCAG (SEQ ID NO: 358)
49-50


100000680_28|M (SEQ ID NO: 335)
CTGACCACGACGCCCCGTCACGG (SEQ ID NO: 398)






3300010400|Ga0134122_
TCGTGACGGGCGGCGCTTGTCAG (SEQ ID NO: 359)
36-55


10000002_228|P (SEQ ID NO: 336)
CTGACAAGCGCCGCCCGTCACGA (SEQ ID NO: 399)






3300009089|Ga0099828_
TTGATCAGATCATCGAGTTGAGTGAGCACGAGGT (SEQ ID NO: 360)
52-62


10012481_2|M (SEQ ID NO: 337)
ACCTCGTGCTCACTCAACTCGATGATCTGATCAA (SEQ ID NO: 454)






3300012201|Ga0137365_
CTTGCAATGCGCGAAGGAAAGCGTCGACGTGGTCAC (SEQ ID NO:
29-40


10010044_6|P (SEQ ID NO: 338)
361)




GTGACCACGTCGACGCTTTCCTTCGCGCATTGCAAG (SEQ ID NO:




401)






3300012356|Ga0137371_
CTTGCAATGCGCGAAGGAAAGCGTCGACGTGGTCAC (SEQ ID NO:
29-40


10006599_2|M (SEQ ID NO: 339)
361)




GTGACCACGTCGACGCTTTCCTTCGCGCATTGCAAG (SEQ ID NO:




401)



3300006417_501592_1|M (SEQ ID
GTTCACCCCACAGGCGCGTGGAGTGATGG (SEQ ID NO: 362)
32


NO: 340)
CCATCACTCCACGCGCCTGTGGGGTGAAC (SEQ ID NO: 402)






SRR6837571_682758_2|M (SEQ ID
GTTCACCCCACAGGCGCGTGGAGTGATGG (SEQ ID NO: 362)
32


NO: 341)
CCATCACTCCACGCGCCTGTGGGGTGAAC (SEQ ID NO: 402)
















TABLE 193





Non-coding Sequences of Representative CLUST.342201 Systems















>3300013127|Ga0172365_10076875_1|P


GTTAGCACACAAGCGATAGCACATGACCGCGCCGAGGAGAGCGCAAGCTCTGCCAAACCCTCGGCGCGGTTTTTGTGCGCCTATGC


AGCCCGCCCTAATAACGTATATTATCGGACGTTATCCAGGGGCGGTTCGGGTCAGAAGCGGTCAGAAAAATGACGGCAATTTCGAT


TTCGCACAAGATTGCGCTTGAGCCTACGAAATTGCAGGCTGCCCACTTCGCGCTGTGCGTCGGTGCCTCGCGAAAGGCATACAATT


GGGCGCTGGATACGTGGAATCGCCAGTGGGACGATGGCAGAAAGCCGTGTTCGCGGTGCGGCCGCCGCAACTATGATGCGCGGAAG


TATGGCAAGCGATTTGTATGCCCGCATTGCGGGCTGGACATCGAGAACGGCGTGAACATTGCGTCGAATCTCGCTACCGTCAAATC


GGCGGAAAGTCAAGCCTGTGGATAGGCCGGCGTCAACCCCACGCTGCCCGTGAACGTGGCGCTACAATGGCCGAGAAGCAGGAACC


CGTGTACGCGTGGTCTTTGATATTTTGTGTGGGCTTGGACTGGGCACCACAAGATGTGGTCTTCAAGCGGCTCGTTCGGTGCGGGC


GGCATTTAACAATCTGACAACCCGCAGTCTGTAGCCGCCCGCGCCGGATGTTGAGGAGTAAACAATGGACACTCTAAGCGTGATCG


TAAATTGTGTAGCGCTTGCGGTCGTGGCCGGTGCTCTCGTTTACCTCGGATGGGCGCTCTACCAAGCGTATAGGAGGCGAATATGA


TGTTCTTAACTGATCTGCTTCACGATGCGGA (SEQ ID NO: 363)





>OVSM01005865_8|M


AAAACTACATACGATATTACATATAATTTATAACATAATATTACACACAAACTACATACATAATTACATACAATTTACAACATAGT


ATTACATACAAAACTACACATGATATTACATATTTTTATAAACCTATAAAACAAAATTCCTTCTTATAAACAAGATTACCCTAGTT


GATGATATTATACACAACACCACATTATGTCATAGAAATATATATCTTTCATTTTTCTGTAAAAAAACACTAGGTTTGTATAGTTT


TTTGCAAAAAAACGTTCCCCCCCTAAAATAATTTTTTTCTTCTAAAAGAATTTTTTTGCCTTTACAAGTTACCACTGTTAATGCAT


GATGAACTTAAACTTAAAAAATGGTGAAATATATTTTGTAAAAAACCTTCAAAAAGACAAAAAAAAAGAGCTAGACTCTTGCTTCA


AAGACAAAACCAAGAAACAAAAATCTAATCTCTCTAACATCAAGATTATGATACTATATTTCAACAGAACTATTTTAGTTATGGGT


AGTGATTTTAAGGTGTCTTATGTGAAAGCGACCTTTTGGAGAGAGCTTGAAGAGCTTAAGAAATCCTTTTTTTCTACAAGAGACTT


TTCTGTAGAAAAGAGAGAAGCACACCAACAAGGGAGTTAAGTGTGCTTCTAATAATGAAAATCTACTAACAGATTCGCGTTCCATT


TTACTCTAAAAAGATAATTTTAACAAATAGGAAAAAATATTTCTTTAATTGAGAAAATTTACATTTCTGGTTACAATGATCATTGC


AAAAGGGATGCGAAAATAGGTTTTTAAGTGATAATCCACAAAACATATCAGTTTAGATTAAAGCCAACAAAAGAACAGGAGGCTTT


GTTTTGGCGGTTTTCCGGTCATTGCAGGTTTATCTGGAATTACTTTTGGAAAATAAATAAAATCAGACTCGATAACAAACAAAAAA


TAATGAAGTTCTACGAAATGCGCTGGTGGATGGTTCGTCTGAAAGAGTCGCAGGAATATAGCTTTTTAAGAGAATTAAATTCTCAG


TCTTTAGTTTCTCGTTTGAGGGAGTTGGATAATACGTATTGGGATTGTTTTTTAAAGAGAAAAGAAGGAGTTCAACTTCCTTGTGG


CGTTATTAATGATACCAGACAAGGAGAAAAATTTTGTTGCAATGATTGCGGTTTAAAAGAGTCGCTAGAGATAAATGCAGCAAAAA


ATATATTGGCGGCAGGGCATGCCGTGACGGTCTGTGAAGCGAATCAATTAAGAAATTAAGAGATCGGCAGCAGAAACCTGTAGAGA


TATGTGAATATATCTACCTTAGAAATAGGAATCTCATACCGTAAAGGGAAGAGAGGATGCCAACCTGCGTATTTTAATCTATATTT


GGAGAACTTGCTCTAAATGAAAAAGGAAGTTAGCATAGGAAATGTAAATAGTATTAAGACAGGAAAAATATCAATGAATAAATCTT


TAAGAAATCTAATTGTCATTCTTTCTTTTTTTGCTTTATCTGGCTGCCAGAATAAAGATATAAACACTACAGGTAATTCT (SEQ


ID NO: 364)





>3300014613|Ga0180008_1001166_12|M


GCCGATGAAACGCTCAAGGCTTGTATTGCCTGGCCGCTGTTGACCCTGGCTGATCTGGAGACGTTGCTTTCGGTAATAAACGAGGC


GTGCGAAACCCGATTCACCATCATCTCCGAGATGCAGAAACGCAATCGGCGCGCCCGCATTTGATCGAAAGTGTAGGAAGTTGCGA


ATAACTATTGACATTTTAGCAGAGGTGTGCTAGAATACATTTGCTTGGAACTGACAAGCCAAGTAGTTATAAATGGACTCTCCGCT


AAGACTCCTGCTCCGAAAGTTGGGGCCGACTTGCCTTAGCGCCTGTCAAGCGCAAATGCGGAGAGTCGGCGGTCGGAACCAACTTT


TAGCGCAGGAGTTTCTTTGTCTACAAATATCGCCGAAATACTCATGCGGAGATGTAAAACGCCTGGGGATGGTCGAGGTTCAACTA


AACCAGATGAACCAGGAATCCATACACTCGTTAGGAGCGAGAGAAATGCATAGAGCACATCGAATCCGATTGAATCCAACGCCGGA


ACAGGAAAAATATCTCTGGCGTTGCGCTGGCGTAGCCCGCTTCACCTGGAATTGGGCGCTGGCAGCTTACAATGACACTCTGGTCC


GCGGCGAGAAGCCATCAATTGCCAAGCTCAAAGTCAAATTCAATCGCAGTAGCAAAACGTGCAACGACTGCGGTTGCGTCACTGCG


CTAACGTTGTCTGACCGCGTATGGACATGCCCGAATTGTGGCGTTGTCCATGATCGAGATATCAATGCTGCGCAAAACCTGCGTGA


TTATCAGCCCGTTAGCGTAGCTTGATGGAATACAATATGTCGCCGGAGTACTCACCTGGAGACGCTAAACGCCTAGGGATGGTAGT


GGTAGTAGTCACGCCAAACGAACTAGGAATCTACGTGCTCCGTAAGCGCGTGGAGTGAGGGAAACGGGTGCGTCTACACCGAACGG


TGAACGCTTCCCGCCAGACACAGAAAACACCTGGCGCTCCGGCTTGACAGCCTGAGCGTTCCGTCGGTTTGCCGAAAGGCAGTGAG


CTTCGCACGAGTGCCGCCAACGCGGCCACCCTGTAAATTCAACCACCTGGAAGGGTCTGAATGCGAGTGCCCATCCCGCCAAGGGG


TGGGTCTGCCCTGTTCTCGCCAACCTTATCGTGTAATTCCAATCCTCTTGCCAGCCTATGGCCTCTGCACATCCTCCAATTGCTGA


AGAATGTAACTGGTCGTGTTTCCCTGTAAATTGGTTTCCAAATCCACGATATTGTCTATTGACAAACGGTAAAACCGTGATATAAT


GGGTTTAGGATGAAACGAAAGCAACGGGCACATGAAGGGAATCGCAAATGGAACACAGCGAAACTAGAGAAGAGCTGATCCAAGGC


ATTACCATGAATACTCAGGCTTGGCTGGCAGTGTTCTGAACCGGCAGGGTTGCGCAACAAGACCCGCTATCGCAAGCCGACTGCAC


CTTACGCAGAATCACTACAACTCGCGCGGACTTTCAACCAACACAGGAGGATAACCGCCATGGAACCCAAAATCAGCCAGTGCGAA


TGCGCCAACTGTGGCCGGTGCTGGAAA (SEQ ID NO: 365)





>3300020198|Ga0194120_10001032_39|P


TATGTAATAACTGAGAGACAGCTTAGGATAATTGAGGATGAGCTATTTAATATAAAAGATTTGGTTTCTAGTTTAGAGGATAGTGA


TATAAAATTTAGTATAGAAAAAAGTGTAGATAGGCTGATAGAAAGTATGTTTGATGGAGGATGATCTGCGAGGGCTCTGGTGCTGT


TCCAAATCTTAGGAACCTCTCGCGGTAGGCGGTGACTGGATCTTAGCCAGATATGTTTAAAATTTGAGCTTAGCTGCTATAATTAA


GAACGTACCCCTCGCAAGGGGAGCCTCAGAGACAGTCAGTATCTAGGCTTTACAGAAAGCCCACCTTCCAGCAGCGGCCCCGGCGT


GGCGCAACGAGACTACATTCCATTTTGATTATTAAATAAACTATAATAAAATGATATGGAGGAATCAACAAAGGAATGAATAATAA


TTTTGTAGTAATAGATTTTGAAACAGGAGGTTTAGATGCTAGTCTACACGATCCAGTGCAGATAGCAGCTATTATTTTAGACGGGA


AAACACTAAAAGAACGTGGAAGGTTTGTTTCTATGATAAAAGCCAGTAGAGACGTTTATGATACAGAGAATAATATAATTTCCCAT


AATATAGTACCTACAAGTCTTTTAACTAATATAGTAACAATGTCTACTAAGAGAAACAGAGAAAAATACGAGGTACTTTTAAAGGA


AGAAAATATTTCTAGGGATAGGATTGACTAGAAATAGTTTTTAATTAAATGCCCTCCTTTAGTGGAGGGCATTTTTTCTTAGTGAA


AGTACTTAGCAGTTTACCAAAAAAATCTATAAAAACTTTTAAAATATATATAAATTTTCATCAACAATGTGTCTATAATAAATTAA


ATGAGAGTAAATAAAGTTTTCCGTTACGAATTAAAACCTAACGAAGTACAAAAACAAATTATGGCGCAGCATGCCGGATCGGCTCG


TTATGCTTATAATTGGGCTCTGGAAAAAATAAACAGTAAAGTTTTTAATACTACAAATGATAAAGATCTTTCTTTAAAAGAAAGAT


CTTGGATCTGTAAATCTTGTAATACAGATCATGATCGGGATCTGAATGCTGCAATTAACTTAAAGAAAATTGGAGTACTCTCTCAT


TCGAGAGGAATTTACGCCTGCGGAGACAGCTATGCTGGATGATCGTCTTGCGTTAATACCGCAAGACCTAAAAAGGTATCTGTCGT


TGACTGAACAGCGAAGTTGTGAAGACTTGAATCAGGAATTAGAAAGAGATCTGTTAAATGTTTAGATTTTTACAGATTTTCAGGAA


CGGCTTTAAATTTATATATGAATAAGAAAAAATTTAATGATGATTTTGATGAAATGGTATATAACTTATCAAAAATATTTAAAATG


AAAGATTCTGTTATTCCTTTTTCAAAAATACAATCCAGGCTTTATCAGTTACTAAGAGAAGACCGTTATAATATTTTGACT (SEQ


ID NO: 366)





>3300007960|Ga0099850_1017825_5|M


CTCTGCTTCTTCCTCCATGCGTTCCCGAATGTCGTGTTCGTCCCATTCCGGCGAACCAACAAATGCGTCTAGGAGCGCCGCCAACG


TGTGGCCGGGCTGCCAAGAATCAATCTCGGCTTCTGTCGGGAAATCTGCGGGGCGTGTGTTCATGTTCTGCCTGCCTCTCTCCGCC


TGCCAGCGGGATTGTTGGTGAAATGGACGGTGACATGTCTCAAGCCGTCCGGTACTCGGTGCGCCTGCCGTGCACTTCGTACTGAG


GTCAAGTATACTGCAAAATTCTGCACTTGTCAAGCATTAATTTGCGTGAGTTTCTTGACAGTCTGCACAAGTTTGCAGTATAATGG


ACTCATGAACAGAGCACACCGTATTAGACTAAATCCAACAACGGAGCAAGAAGAATACTTTTGGCAGTGTGCGGGGGTGTCTCGGT


TTACGTGGAACTGGGCATTAGCAGCGTATAACGATGGCGTTCCGTTTAGCTACTTAAAAACAGAGTTCAATCGTTTGCGCAGTGAA


GACGGGTTTGCCCCGTTTGTATCAGAGGTTCAAAGCTACGCATATCAGCAGGCGTCAAAGACTTGTAACGCTTGCGGGGAAAAGGT


AGATGCATTGCCGTTGTCGATTCGCCAGTGGGCTTGCCCGAGCTGCGGCGCAGAACACGACCGAGACGGGAATGCTGCCAAGAACA


TTAGAGACGAAGCCTTGCGAATGCGAGGATGATTGTCTAGCCTGCGGGAGTACTCACATCGTGGGCTTAAAAATGGCCTGGGGAGG


ATAGCACGTAGGTGCGCCGATGAACCAGGAACCTACACGCACATTACAAACGATAAACGCACGTGGAACAAACATGCATCGGGGAG


TTCATCCGCAGCGGGCACATTGACGACTGCA (SEQ ID NO: 367)





>3300025687|Ga0208019_1031224_1|M


AGTAAGCCTTGTACGCTGCCGTGCCCGGCACGAAGTACTGTTCCGGCACGAAGTGAATGCCGTTGGCGCAATCCTCTGCGCCCATG


CGCCGGTACTCTGCTTCTTCCTCCATGCGTTCCCGAATGTCGTGTTCGTCCCATTCCGGCGAACCAACAAATGCGTCTAGGAGCGC


CGCCAACGTGTGGCCGGGCTGCCAAGAATCAATCTCGGCTTCTGTCGGGAAATCTGCGGGGCGTGTGTTCATGTTCTGCCTGCCTC


TCTCCGCCTGCCAGCGGGATTGTTGGTGAAATGGACGGTGACATGTCTCAAGCCGTCCGGTACTCGGTGCGCCTGCCGTGCACTTC


GTACTGAGGTCAAGTATACTGCAAAATTCTGCACTTGTCAAGCATTAATTTGCGTGAGTTTCTTGACAGTCTGCACAAGTTTGCAG


TATAATGGACTCATGAACAGAGCACACCGTATTAGACTAAATCCAACAACGGAGCAAGAAGAATACTTTTGGCAGTGTGCGGGGGT


GTCTCGGTTTACGTGGAACTGGGCATTAGCAGCGTATAACGATGGCGTTCCGTTTAGCTACTTAAAAACAGAGTTCAATCGTTTGC


GCAGTGAAGACGGGTTTGCCCCGTTTGTATCAGAGGTTCAAAGCTACGCATATCAGCAGGCGTCAAAGACTTGTAACGCTTGCGGG


GAAAAGGTAGATGCATTGCCGTTGTCGATTCGCCAGTGGGCTTGCCCGAGCTGCGGCGCAGAACACGACCGAGACGGGAATGCTGC


CAAGAACATTAGAGACGAAGCCTTGCGAATGCGAGGATGATTGTCTAGCCTGCGGGAGTACTCACATCGTGGGCTTAAAAATGGCC


TGGGGAGGATAGCACGTAGGTGCGCCGATGAACCAGGAACCTACACGCACATTACAAACGATAAACGCACGTGGAACAAACATGCA


TCGGGGAGTAAATCGGCTTGTCGTCTTT (SEQ ID NO: 368)





>3300009089|Ga0099828_10012481_2|M


ACCACGAGGTTAAGCCTGCATATGTCAGAGCGCTGCGAGAGGCCGGGCTGATGGATCTCTCTGTTGACCAGGTGATCGAATTGAGC


GAGCATGAGATCAAACCTTCCTATCTCGCCAAATTGCGCGAGGCTGGATTGACCGATCTTACTTTTGACCAGGTCATCGAATTGAA


CGATCACGAGGTTAAGCCTGCGTATATCAAGGCGCTACGCGAGGCCGGGCTCGTTGACCTGACCTTCGACCAAGTGATTGAATTGA


GCGAACGAGAGGTTGATCCCGCTTATGTCAGGGCACTGCACGGCGAGATTCATTGATTTTCTCGTGAGGCAGATCACCCGGCGATA


CAGGATCTGCACAAGATCCTGACGCTATTGGGGTGACCTGTCTTTTTTTATCAAACCGCGCCATAAAACCCCTCGCTTCAGCGAAG


GGGATACAAGGCGCGTTCCTCTTGGGGCGCCTTGGGCACGGGGCTCGTGCCATTTCCGACTTGCTCTCTTAGAAACAGAATGGTAG


CATATGAGCAGGAGCTACTGCGAGGAGCAGACTGTGACGAAGCGAGCATACAAGTTCAGGTGTTATCCGACAGATGAGCAAAAGCA


GATTCTTGCTCGCACGTTCGGCTGCTGTCGCTGGGTCTACAATTGGGCGTTGCGTCTGAAAACCGATGCGATCAACATTCTGAATG


AAGCATTGAGAACTACCGGGAGTTACTCGGGAAGTCACGCCTATGGAGAGAGCAGCTCTGGCCTGGTCAGTGGATCAGGTGAAACT


GCTCTCGTCGAAATAGGAACCAACCTGCATGTAGGCATGTCCTAGATGTCTAAGTATTGGAGAACGGATTTTTATGAGCAAAGGTG


AGCAAACGAAAGAGAGAATCCTCGGACGAGCCGCGCAGCTTTTCAACCAGCAGGGATACTTCGGCTCGTCACTCTCCGATATCATG


CACGAAACGGGTTTGGAGAAGGGCGGTATCTATAATCATTTT (SEQ ID NO: 369)





>3300006417_501592_1|M


TGGGCAGGTCGCCAGACGATGGCGACGCGGTGGTGATGGCGTTCTGGGAAGAACCGCCTGAGCCGACCGGCGGCGTGGGGTTTGTG


CTGTAATGTTAAAAGCGCATGTGATCCGTCTCAACCCAACCGAAGAACAGGCCAGCTACTTCTGGCGCTGCGCGGGGATTGCTCGC


TTCACCTGGAATTGGGCGCTGGCTGAGTTGAACGCCGCCTATGACCGGGGTGAACGGCCTGCGATTGGAACCTGCAATGAGTGCGG


CCACGTCATGGCCGACATGCCGCTATCGGTGCGCTGGTGGCAGTGCCCGACCTGCGGCGCAGAACATGATCGGGACGGCAACGCAG


CGGTCAACATCCGCAACGAGGCCGTGAAGATGGCAGGCGCTGCCTAGTGCGCCCGTCGCGGTAGTAATCACGTCGAGACGCAAAAC


GCCTGGGGACGGTGTAGGTAGCAAACCGGATGAACCAGAAATTCACGCAATTGAATAGGTGAACAAGCATAACACCTGGAAGGAGT


GTCTCAGCGACACAACTAAGGACTGACCTATGACGATCCTCATCACCATGCGCGAGCCGAACCGGGAGGACGCC (SEQ ID NO:


370)





>3300025018|Ga0210043_1027795_3|M


TCGCTCGGCAAGAGCCAACTCCAGAACGCGCACGATCTGCCAGTTTAGCGGGCGACGTTCCTCTTGCGCCCACCTTTTCAGCGCGG


CGTGAAGCTCGGGCGGCAAGCGCAACAAGATGTTGATGGTCTTGGGTTTCTCTTTCTTTGCCATATCACCAGTATATCACAGTGAT


GCAAGATGGTATCAACCCAGGAGTCTTTGATGCTGAAGTTCCATCCCGTTGCCGAAATGAAAATCCGTGAGGACACATGAATCGTG


CTCATCGCATCCGGCTCAACCCGACAGCCGAGCAGGCGGCCTACTTTTGGCGCTGTGCCGGAGTCGCGCGCTTCACCTGGAACTGG


GCCCTGGGCGAATATAATGCCGCCCTCGCCCGCGGCGAAAAGCCAAGCCTCACCCCCAGTAGTAAAACGTGCAACGACTGCGGTCA


GATCGTCGAGTTGACCCTGGCCGAGCGCACCTGGACTTGCCCCCGCTGCGGGGTGATTCATGATCGAGATCTGAATGCCGCCCGGA


ATCTGCGAGACTACAGTGCAGTGACCGGTTAGGAATGCGCCGCCGGAGTACTCACACGGAGGCGTTAAACGCCTGTGGATGGTGGT


CGTAGTAGAGGCGCCAGATGAAGCAGGAGTTCACACATACGTGGATAGAATACGCGTTAGGGAACGCACGGCGTACCTGGCAAACG


GGGCCTCGG (SEQ ID NO: 371)





>3300017963|Ga0180437_10001136_84|M


AGAAGGTCGCACGCACTGAAACTTGATCCGAATGCCGGGCAGGCGCGGAAACTGCGGCTGTACTGCATCGCGCATTGCAAGATATG


GAATCATTTTCTTGAAAAGTGCAAAAAGGGCTTGATTCCGAAAAAAAGTAACGCGATGACGCATCAGCTCGGAAATAAAAGGATGG


ATAAGACCTGTCCGGAACTGCTGTGGGTCCGGGATGAGCTGGGAATGAACAAGCAGATTCAGCAGGTTCCATGCGAAGATCTGGAG


AAGGCATGGAAGCGATTCTTCGACTGGTGCAGGGCGAGAAAGAAGGGGAATGTCGGTCTGCAGACCTGCTTTCACTGCAAGCACGT


GAACGATTTCGTGACGCTGAATATGAAAACGTTCACCTGTCGCGGATGCGGACGAAAGATCGAGCGGGAATCGAATGCTGCCGCCA


ATGTCAGGGAGATGGGATTCAGTGAGCTTGGTCTTTAACAGTATTGAATGTCGCCGTCGGGCAGACGGAGACTCTAAACGCTCGCT


GAGCGGACGGCCGCTGTCGTGGAAGGATGTGCTCTTTCGCGTTCATGCTGACTGCGTTGAAGCGAGAATTTCTCTACGATTCGAGA


GGTGCGGTGACCTCAGGGTTGCCGTACCCTCTCGAATTTTTAAACTGATTTCCTGCAATGATTTAGGGAAATCTCATGTTCGACGC


AGCGCATTATGTGCGTATATTTATGGATCGCTCGAAAAGCGATATACAAGTAACTGTCAGCAACATGCTTATGCATGGAACGGTGT


GAATGCGTGAAATTGAGTAGAGGATATGTCAGTAAGGGTCGACCGTCGGGCATGCCGGAGGTGGCGTGTGTGAATGCGTGAAATTG


AGTAGAGGATATGTCAGACTT (SEQ ID NO: 372)





>3300006417|Ga0069787_10357475_9|M


CATCGCCAGCTTACCGGGCGCTGCCCAGTGTGCGGCGAGCCGGCTTTTGGACCCGGTGTCACGTGCAAACGGCTGACTTGCATATC


AGATTGGGTAGGCACCAACAAGGAGCACATCAAGGAGCACATCAATGACGAACCGACTGATTGACGCAAGAATCTGAAGCTGTTTC


CAAATTTGACAACGTAGGTATTTGTAGGTAAAATAAATACACCATGAACGCAACAGTCAAACCACTGAGCATCCGTGTCCCTCCTG


ATATGCGAGAAAAGATCAATCGCCTGGCCCAAAGCGAGCGCCGTTCCCAACACTCGATGATGTTGATTCTGCTTGAAGACGCGCTT


CTAAAGCGGAGCGTAGTAGAACAAGCACCATCGAGTGAAGCGACCGCATCTCTTGTTCTGCCAACGTTTCGATCTGCTGGCGCATC


TCAACAGGCAGACGCACGCTAAACGGGCCGTACTCTTGTTTGGTTCGTGGTTTCGCCATGTAGTTATTCTACCACCAAAACAGGTA


CACGGTCAACATGCTAAAAGCTCACGTGATTCGCCTCAACCCAACCAAAGAACAGGAAACGTATTTCTGGCGCTGCGCGGGGGTTG


CCCGCTTCACTTGGAATTGGGCGCTGGCCGAGTTAAACGCAGCTTACGAGAAAGGCGAGCGGCCTGCCGTTGGAACATGCAACGAC


TGCGGCTACGTGATGGCTGACATGCTGCTCTCGGTGCGCTGGTGGCAGTGCCCGGCCTGCGGTGCAGAACATGATCGGGACGGCAA


CGCGGCGGTCAACATCCGCAACGAAGCCGTAAAGATGGCAGGCGCTGCCTAGTGCGCCCGTCGCGGTAGTAATCACGTCGAGACGC


AAAACGCCTGGGGACGGTGTAGGTAGCGAACCGGATGAACCAGGAATCTACGCACACTAACAGGTGAACAGCACAATACCCGGAAG


GAAGATAAAGATAAAGCGGCCGCGCCGCCAATTTACCCCACGGTAGCGTGGAATTATAGGATTTTTAGCTATGGCTATGGACTGGT


TTCGCTCCTGGCACAACGCACCAACAGACCCAAAATGGCTGCTGATTGCACGCAAGGCCAACGTGCCACCCGGCATGGTGTCAGCC


GTTTTCTGGGCGCTACTCGACTATGCAAGCCAAGAGAAGGAACGTGGCAGCATA (SEQ ID NO: 373)





>3300014060|Ga0119967_10019787_9|M


TCGCTCGGCAAGAGCCAACTCCAGAACGCGCACGATCTGCCAGTTTAGCGGGCGACGTTCCTCTTGCGCCCACCTTTTCAGCGCGG


CGTGAAGCTCGGGCGGCAAGCGCAACAAGATGTTGATGGTCTTGGGCCTCTCTTTCTTTGCCATATCACCAGTATATCACAGTGAT


GCAAGATGGTACTAACCCAGGAGTCTTTGATGCTGAAGTTCCATCCCGTTGCCGAAATGAAAATCCGTGAGGACACATGAATCGTG


CTCATCGCATCCGGCTCAACCCGACAGCCGAGCAGGCGGCCTACTTTTGGCGCTGTGCCGGAGTCGCGCGCTTCACCTGGAACTGG


GCCCTGGGCGAATATAATGCCGCCCTCGCCCGCGGCGAAAAGCCAAGCCTCACCCCCAGTAGTAAAACGTGCAACGACTGCGGTCA


GATCGTCGAGTTGACCCTGGCCGAGCGCACCTGGACTTGCCCCCGCTGCGGGGTGATTCATGATCGGGACCTGAATGCCGCCCGGA


ATCTGCGAGACTACAGTGCAGTGACCGGTTAGGAATGCGCCGCCGGAGTACTCACACGGAGGCGTTAAACGCCTGTGGATGGTGGT


CGTAGTAGAGGCGCCAGATGAAGCAGAAATTCAGACCAGATGTGTGATCCATCAACAAGCCATGTCGAGAGCCTGCTGACCACCTT


TGAGCGCCTTGTGCGCGCTCAGTGGGCGACTACCGGCCGCGGCTCGGAGCATACTATCCGGGCCTACCTGACCGATACTCGCCAAC


ACCTGGCCTGGCTGGAA (SEQ ID NO: 374)





>3300017971|Ga0180438_10021976_11|M


CAGACCTGCTTTCACTGCAAGCACGTGAACGATTTCGTGACGCTGAATATGAAAACGTTCACCTGTCGCGGATGCGGACGAAAGAT


CGAGCGGGAATCGAATGCTGCCGCCAATGTCAGGGAGATGGGATTCAGTGAGCTTGGTCTTTAACAGTATTGAATGTCGCCGTCGG


GCAGACGGAGACTCTAAACGCTCGCTGAGCGGACGGCCGCTGTCGTGGAAGGATGTGCTCTTTCGCGTTCATGCTGACTGCGTTGA


AGCGAGAATTTCTCTACGATTCGAGAGGTGCGGTGACCTCAGGGTTGCCGTACCCTCTCGAATTTTTAAACTGATTTCCTGCAATG


ATTTAGGGAAATCTCATGTTCGACGCAGCGCATTATGTGCGTATATTTATGGATCGCTCGAAAAGCGATATACAAGTAACTGTCAG


CAACATGCTTATGCATGGAACGGGTGTCCAGCCGTTCAGCCAGACGACGACGC (SEQ ID NO: 375)





>3300020180|Ga0163155_10006838_6|M


CATCTCCGATGCGACGCGTTGCATCGCTTGCTCCAACGTCACCAGGCTCTGTGCCGTCAGGATCTTTCGGCGAAACTTCGTTACGA


AGACCAAGTGCACTAGGAGCTTGGTCACGCTGTGACGACCGCGATCGAGCGCTTGCATGGCCATGTTTTGCAGAGTATGGTCAGTT


GCAGACCAATGGCAACCGTTCGCTACCGATATCGACTTTACCCTACGCCTGCGCAGCGCGTGGCGTTGGCGAGGACGTTCGGTGCG


GTGCGGTTCGTGTGGAATCAAGAGCTTGCGCGATCGCAGATCCATGATGCTAAATACCAGGGCTTCAGTGCTAATGCTGCGAAGAA


CATTGTCGCGGCCGGGCAGGTCGAGACGAAAAACGGACGTGGAGGGCATGTGAGACGGATGGTGCCTTTGGGTATCTGCGCAGTGC


TCGATGAAGCGTCAACCTCGGGGCCGACCCCGGAATCCTCAGCCTTCTAGGCCGAGGAGGATGTCAAGGCATAGGTAAACCCTAAC


ATCGGGGCCCCTAACATCGGGGCCGTACGAGAAGATCTGTTCGTACCCGAATGCCCTTGCGGCATCGATCACGACTGTAGAGATTC


TCTTGCGCAGGGCGGTCAACCCTTTCAGGGACGATGTCGGAGATGTTTTTTTCAGTCGCACGTGTCGTTACCTCTCGGGTGGCAAC


CAGATCTTTCCTGGTTCAGCATCAGGCATCCGCCTTCGCCGCGCGCTTGGTGGCGGTGGGAAACGCAATGGGGAACAGCGCGGCGC


ACTGGCGCGCGTACTTGCGGGTGATGATCCACTGGCTCGCGCTGGTCGGCATCGGGGTTTCGCTCGGGCCGGCTCCTCGCCAGGCT


CTCACACGTACGACGCCCCGCCGCGCGCGTCCATTTCCCTCCTGGTGCGCTCAGGCGGTCAGGCAGCGCACGAGGAGGTGCTGTGG


AGCCCAGGAAGAGAGGCACCAGCGCACGAGGAGGTGCTGTGGAGCCCAGGAAGAGAGGCACCAGCGCACGAGGAGGTGCTGGTAGC


CATCGGGTAGGTCGAAAATATAAAAAACATCATCCAAGCGCATCAGGAGCCGCATAGCGCGACTTCTGATGCGCTTGCACCCCCGG


GGGTACTCGCTTGTACATGGTGGAGTATTCAGACGATGACAGCTGCACGCACCGACACCGACGACGACCTGATTGCACGGGCTGAG


GTCGCGAAGATCTTCGCCGTCGCCGAGGGCACCGTTTCCGCTTGGATGGTCCGCAAGGGTCCTCAGATCCCACCGCCCGTGATCCG


CGGCAAGAACTTC (SEQ ID NO: 376)





>3300028299|Ga0268276_1017374_4|M


ATGGAAAAGAAATGCAAAACTACTATTGTATTTTCTGCTGTCGCCAAAGATCTCCTGGTCGCGCTGGCTAAAAAGTATGGCCTGAC


TATGACGGCCACGCTGGAGATGATCCTTCGTGACAGGGCTAAACAGGAGGGTCCCTGGCAATAATCCGCACCCATTGTGCATCTAC


TGAAAAATACATAACATCGCCGAAATACTCATGCGGAGATGTAAAACGCCTGGGGATGGTCGAGGTTCAACTAAGCCAAATGAACC


AGGAATCCTACACTCGTTAGGTAATGAAAATGCACAGAGCACATCAAATTCGATTGAATCCAACGCCGGAACAGGAACAATATCTT


TGGCGTTGCGCTGGCGTGGCCCGCTTCACCTGGAATTGGGCGCTGGCGGCTTACAATGACACTCTGGCCCGCGGCGAGAAACCATC


AAGTAGCAAAACGTGCAACGACTGCGGTTATATCACCACGCTAACGTTGTCTGACCGCGTATGGACATGCCCGAATTGTGGCGTTG


TCCATGATCGAGATATCAATGCTGCGCAAAACCTGCGTGATTATCAGCCCGCTAGCGCAGCTTAATGGAACACGTCGCCGAGGTAC


TCACGCGGAGACGCTAAACGCCTAGGGATGGTAGTGGTAGTAGTCACGCCAAACGAACTAGGAGTTCACACACTCGTTAGGGTTCA


CCCCGCGAGTGCGTGGAGTGAGGGTGCGATAGAATACAGATAATGAAAGTTGAGTAATATTGATAGCTGATTCTGGGGCCTAACTC


GTGATCTATGCTACTGTTTGGTTACCTAAATCACCAAGTGGGATTGCCCGACTACTAAAAGCCGGTTATCCGTGTGCTCCGTTTGT


GTTTACGGAACAAGGTCGCCAACTAGCACTTGGTATCAAACGTCCGAATCCCTACATGGCCCAAGACACATTGCCAGATGGTCGCA


TCATTATCGTAGTAAGTGCTATCGCGATCAATGGAGAGGTACATGATAGATTGATACCCGACCCCATTGCGCTACCGATACCCATA


CTAAGTTGGATGCTAACCGCTAGTAGCGGCGGTACACGTCTAACAGTGGTATTTGATCTTCCCGCGGTTTGGCAGTACGTTGATAC


TTACCTGGCGTTTTTAGCCAGGGATTTCCATGACCAGTTCCACGCAATCCAAACTGCCCGCGCAGCATTGGTGAATGCTGATTGAT


TTATGAGGTTTCACATGAGCGAACGTAGAAATATTTCCGTACTGGTCGAAACCCGCAAAAAGGTCAGGCTCCTGGCCGCTACGCTG


GGAGTCAACATGGCCGAGGCCGTCGAACTAGCAGTTGCTAAACTGCTGGACGAGAGCACGCCCGGT (SEQ ID NO: 377)





>SRR6837571_682758_2|M


CGGCTTTGCTATGGCGTGCGTCAACTGGCGGCCCGGCGATACGCCCGCGCCCTACCAGGTCGAAGTGCTGGCGGCGCTGGCCGAGC


GGCGGCGGACCAGTGTGCGCGGGCCGCACGGGCTGGGCAAGACGGCGCTGGCCTCGCTGGCCATCCTGTGGTTTGCGCTGACCAGA


GACGGGGAAGACTGGAAGATACCGACCACCGCCAGCGCCTGGCGGCAATTGACCAAGTTCCTGTGGCCGGAGATCCACAAATGGGC


GGGCCGGCTGCGCTGGGAGTTGATCGGCCGCGACCCGCTGAACCGGCGCACGGAGCTGCTGACGCTCTCGATGAAGCTGCGCACAG


GGGAGGCATTTGCCCTGGCCTCGGACAATGCGGCGCTGATCGAAGGCGCGCACGCCGATCACCTGCTGTACCTGTTCGACGAAGCG


AAGGTTATCCCGCCGGCCACCTGGGACAGCGCAGAGGGCGCCATGTCTTCCGGTGACACCTACTGGCTGGCCATCTCGACGCCGGG


CGAGCCGGTGGGGCGCTTCTACGACATCCACCGGCGCCGGCCAGGCTATGAAGACTGGTGGGTGCGCCACGTGACCAAGACCGAAG


CCATCGCCGCCGGCCGCATCCGGGCCGATTGGGCCGAGAAGCGGCGCCAGCAGTGGGGCGAAACATCTGCCGTCTACCAAAACCGT


GTCGAGGGGCAATTCGCCAGCGGCGATGAAGACGGCGTTATCCCGCTGTCGTGGATCGAGGCGGCTAACGAGCGCTGGCACAGCCT


GAACGAGACGGACGGTTGGGGGCCGCTGCTGGCCGTGGGCGTGGACGTGGCGCGCTACGGGGAAGACCGCACGGTGCTGGCGCTCA


GGCACAGGCCGGGCGTCAAGGCGCTGCGCCGGCACGCCAAAGAGGATACGATGGCTACATCGGGCCGGGTGACGGGCATCCTGGAG


GCGCAAGGGGGCCGGGCCGTGGTGGACGTGATCGGCGTGGGTTCGGGCGTGGTCGACCGGCTGCGCGAGTTGGGCAAGCCGGTGCA


GGCGTTCAACTCAGCCGAGCGCACGGACAAGCGGGACGCCTCTGGCGAGCTGGGCTTTGCCGACAAGCGCGCGGCGGCCTACTGGC


AGGTGCGGGAGATGCTGGACCCGGCCAACGCGGACGCCATCGCCCTGCCGCCGGACGATCTGCTGACGGGCGACCTGACCGCGCCG


CACTGGCGGGTGCAGTCGGGCGGCAAAATCCGGGTGGAAAGCAAGGACGACATCCGGGCGCGGCTGGGCAGGTCGCCAGACGATGG


CGACGCGGTGGTGATGGCGTTCTGGGAAGAACCGCCTGAGCCGACCGGCGGCGTGGGGTTTGTGCTGTAATGTTAAAAGCGCATGT


GATCCGTCTCAACCCAACCGAAGAACAGGCCAGCTACTTCTGGCGCTGCGCGGGGATTGCTCGCTTCACCTGGAATTGGGCGCTGG


CTGAGTTGAACGCCGCCTATGACCGGGGTGAACGGCCTGCGATTGGAACCTGCAATGAGTGCGGCCACGTCATGGCCGACATGCCG


CTATCGGTGCGCTGGTGGCAGTGCCCGACCTGCGGCGCAGAACATGATCGGGACGGCAACGCAGCGGTCAACATCCGCAACGAGGC


CGTGAAGATGGCAGGCGCTGCCTAGTGCGCCCGTCGCGGTAGTAATCACGTCGAGACGCAAAACGCCTGGGGACGGTGTAGGTAGC


AAACCGGATGAACCAGGAGTTCACGCAATTGAATAGGTGAACAAGCATAACACCTGGAAGGAGTGTCTCAGCGACACAACTAAGGA


CTGACCTATGACGATCCTCATCACCATGCGCGAGC (SEQ ID NO: 378)





>3300020219|Ga0163146_10008638_12|M


GCTCTTGGCGTCGCTCCCCTCGAAGTCGGGCAGGTAGTCGTTGACGTTCTTCGCCACCACGTCAAACACTTCGCGTTCGGTGCGTT


CGATGATGCTTCTCGGCTCGCCCTCGAAGGGGTAGACCCGCTCCGCCTTCCACTGCTCGATCAACCCCCGAGCTTCCTGCACGCGA


CGTGCGCGGAAGTATAGTCTTGCGCAGACCAATGGCAAGCCTCCGCTACTCGTACCGCCTCTACCCGACGACGGAGCAGCGCCGCG


CGCTTGCTCAGACGTTCGGGTGTGTGCGTGTCGCGTGGAACGACGCTCTTGCTCAGTCTCAAGTGAGCGGTGCGAAGTACCCTGGG


TTCGCGGCGACGAGCAGACTCCTTACGGAGTCGAAGAAGTCGCCTGAGCGCGCGTGGTTGAACGACGTGTCCAGCGTCCCGGTGCA


GCAGTCGATCCGAAATCTCGACGTGGCCTTCCGCCGCTTCTTTAACGGGCTGAAAGGCAAGGGGCCGAAGGTCGGCTTTCCAACTT


GGAAGCGGAAGGACGGCAAGCAGTCCGCCGAGTTCAACGCCGCTAAGAACGTCGTGGCGGCAGGGCTTGCCGACACGGAAAACGGA


CGTGGAGAATGGGTAAGCCGGGTGGTGTCGATGGGCACTGGCGTTCCGTTCGTTGAAGCGTCAACCGCCGGGGCCTCCCCCGGAAT


CTCCGCCCTTTAGGGCGGGGAGGATGTCAACGGTACGGCTCGCCGGGAAAGATAGCCCAGGGCGTTTGTGGGGGTTCTCTAAAAAC


GGAAGTGTGTGAAAAAAATGGGCGCGTTTGCAGAGGGACGTCGCGCTGGTCCCCAACCCCCCTTGCCATGGGGCTTTTCTCATTCT


GCGAATCGCCCTTGCCATCGGCCCTTGGGCGCATGGCAAGGGCCCTGGGACGAGGGGGCCCTGGGACGAGGGGGCCCTGGGACGAG


GGGGCCCTGGGACGAGGGGGCCCTGGGACGAGGGGCCCTGGGGCGAGGGGCCCTGGGA (SEQ ID NO: 379)





>3300001380|JGI1356J14229_10025169_2|P


TTGGGGGGTTTGGAGTAGTTGTCCGGAGTCATGATGTTGAGGTTTTGCCGCGTGCCAAGGTCTATGCCAACCCTGTCCCCGATTTG


GCACCTGGCGCCAAGGTCAAGCGAATGCCCCCACACGCCCGTCTTGTCGCCAATGGACTCCACAAGGTATTTTGCAAACGGCCCGA


CCGACTGCTTGCTGCCCATGGAGAGCATGTAATACGCGCCAGCCGCACCTTCCACCTGGTCCAGCATCTTGAAGCTAAGCTGCACT


CCGGCATATTCGTTCTGGTAAAACGCATGGGCCTTGGGGCCCGCATACACTTTGGGGTCGATGCTCCTTCCCGCCCCGGTATTTTT


CATCGTGCTTGAAAGGTAGCCTGCACCGCCAAGGCCAACCCCTATCCGCCCCGCACCCGGCTTCCACACCCAGCCAAGGTTCAAAT


CCACCCCTACCGTGCCCATGAAGGCCTTGTCGGTTGGCGTCACCCCGCCTGGCAAATACATCTGCATCATCACTTTGGGCGAGTTG


CCATCGAACCCAATCTTGGAAAGGGCAAAATTTTTCCTGTTCACATTTCCAACCGCAAGCCCCATCGCGGAAATATTGAACCCTTC


CTCCGGCTTGTCCTGGTAGCCGAATGCAAATCCAAGGTATGGCACTTCGGAATCAAGCTGGGTCCTTTTTCCCCACGCGCCAATGA


GGTTCAGCGGGCTTTTCTCCACCCAGGCGGCAACGCCAAGGCCGTGCCCTAAATTGTACCCATAATATATCCCTGCCTGTGCGGCA


TCAGTCACTTTTGTCGCAACAGAAAATCCCATGTTGGAAAATGCGAAATTGGCCGACTCCTGCGCCATGGAAAACAGGCGCCCGGT


CCCCCGCTTCAAAAGCTCGGAATAGCTTATGTCAAGAAGCGCATTGGCCGCAGCTTCCAACCGGAGCCTGCCCGTTGTTTGGGCAT


CCGGCCCCCTTATTTTCTCAATTTCAACAAATTCGCTTTCCATCCCGTTGGCATAAAACGCCTGCTTCAGCGATGGAAGCGAGAGC


AGGCTGCCGGCAACGAGCTTCTGCGCCTTGTTGGATTTCCAATCTACATTTTGCACTTGCGGGAAGATTGTTCCCAAATCCATGGC


GCGGCTGCGTGTTGAGGAAAATGCGTTCTCCCCAGGTTTAGCCTCCATCGGAATTGCGCCATCCACCAGCCCGTCATCCTCCGGAA


CCGTGGTTGGCTTCTTTTTCCCAGCATCAGCAAGGTCATCCTCCGGAATCGTGGTCGGGATTTTCTTCTTTTTTGCCTCTTCCTCT


TCAGGCGGAACTGTGGAAGGCTTTTTCTTTCCTCCATCCACCAGCCCGTCATCCTCAGGAACAGTGGTTGGCTTCTTTTTCCCAGC


ATCAGCAAGGTCATCCTCCGGCACAGTGGTTGGCTTCTTCTTCCCAATATCAGCAAGCCCATCCTCCGGCACAGTGGTTGGCTTCT


TCTTCCCAATATCAGCAAGCCCATCCTCCGGAACCGTGGTCGGGATTTTTTTCTTTTTTGCCTCTTCCTCTTCAGGCGGAACTGTG


GAAGGCCTCTTCTTGGCGGCATCCGCCAAATCATCGCCAGGCACTGTGGATGGCGTTTTTTTCTTTCCAGCGTCTGCCACTACTGG


CGGCTGCTCGGCTTCGGGTTTTTCAGGCGCATCCTTTAGGGGAAGAGCAAGGCCGTGCGCTGCCATTCTCCTGTTCCATGCTTCAC


GCACCGCCAATGGCACGCGTTCACTCACGGCTTCGGCCGGATTTTTGCTATTTCGAATGGCCGCATCCGCCAACTTGATTATCATG


TCTTCTTTTTCCTTAGCAGTGCCCGCGCCTTTCATTTTCAGCAAATCCTGGGCGAATTTCCGAAACGAATCCCCCACCGCGATGCT


TTTGTTGCGCTCGGCAGGAACGCGCCTCCAATAGTCATCCTCGGTTATTTCCCCGGCGTTCACTTTCTTCGTGTTTCCATTCATGA


GGCCGTCATATTTTGCCCGTTCGATTTCCTTTGCCTTCTTCTCCGCCTGCCCAAGCTGCGCAGTTTCCCCGTATTTCACCGCCTGC


ATCAGGAAAAACATATTTTCATCCGACAACTGCTTTCAAATGGGCGATTTATTAATATGCATGGTGCGCGCTAAATCCAGCGAGTT


TTACATGGCACTCCGCCGCCTTAACTCCGGAGTTTTCGGAAAGCCCGGAAAGCCACCCTTTCGAAAGCCGTATATAAACCACATCA


TTCTTTTTTCCGGGATGTTCCAATGAGGTCATACAAATTCCGCATCTATCCTTCCAAGAATCAGGAAAAGGAAATGCTGCATCACT


TATGGGTTGCAAAAAACCTATGGAATGAATTACTTGCACACTGCAAATCATTCTATGCCTATTTCCAGAAATTCCCCTCAAAATCA


GCGCTGCAAATCATGTCAAAGAGTTCAGGTTTGTTTTCACAAACCTCACAGGAAATAGCGCACAGGGTGGAAAAGGCAATTTGGAG


ATTTGTCATGATGAAAAAGCAGGGTAATAAAGCAGGCTTCCCAAGGTTCAAGCCTTTTGAGAAAATGAAATCATTGCATTATCCGC


AATATGGAAACGGCTTTTTCCTTGATAAAACGCTTGAAGCCTCTCCATTTGGGAAAATCCAGATTGTAAGGCACTCGTGCGGCAAT


TCCCTTGACCGGGATATAAATGCCGCCCTGAACATACTCACACGAGCTACGGCCGGAATGGCCGGAAGTAACGCCTCCGGAGACGA


AACGATAATTCCGTCATTGAAGGAGGAAGCCCACGCCTTCACGCGTGGGTGATTCACCTTATTCGAGCGGCTTGCGCGCAAAAGCA


AGATACCCGGTGTGCGTGAGGCCGGTGTTTTCCGGGCGCACCCCCGCATCGCGCACCAGAATCTCGCGCATAATCACTTCGCAGCA


AAACGTGCCAGGGGAAAAGCC (SEQ ID NO: 380)





>3300022602|Ga0248169_134333_4|M


TAAAAGATGTAAAACACACTGTCAAAACACAGTTTGAAATTAATGTAATATACGAATTTTCATCTAGCAAATAACAATGGCTGTAC


ACCTACTTAATTCGCCAATCATGATGGACATGGGGACCTTCATACATGAGGGCCCTATTCGCCTTCCGGAAGTAGAAAGAATCATA


AAAAATGGCTTCATTTCTGGAATTACCCAGCTTGATACAGCCAGATACTTAACATCACTGTTGGGGGTTCATGTGGAATTTAAACC


AGTTATTACATTGCTCTTCAAAAATCACCCTTAACCTCTTAAGCATTTCTTTATTGATACATTGAGAGCGATATTTGGTTACTAAC


ACTAAATGATAATTTAGCTTATAAACAGCATGGAAGTGGCTTTTTGTAAGGGTATTTTTCATATTCACATATTAACACTAATTGAT


TTATCTGTTATAATAGATCCATGCTTTCGCACAAAGGATATGTTTACCGATTAAAGCCTAACGCTGAACAAGAACTCTTACTTGCC


CAGCATTTTGGCCATGTCCGCTTTGTTAAGAATTGACAAGATCTATAGCAAAAACTTGTCTCGCCGCCAGCTTCAAGATCACCTAG


TTAAAAAGAAGAAAAAGAGCAAATTTACATGGCTCAACGAGGTGAACTCTCAATCATTATTAGCAGCTCTATTGGACGTAGATAAT


GCTTTTAAGCGATTTTTTACACAAGGGGCTGGTCAATACACCAGGTCGCTAGGTACTTGCGAAACTGTAAAGCGCTCCCCAGTCTC


TATATCCGTTGGTGCGGATGAGTTTGCGAAAGGTTCCAAGAAGTTTGGAACGGGTCGGTTAGAAGAAGCTCCAGCTATAGCCGCTT


TAGCGGCTTAGCGGGAGTAGTTCACCTTCACCAGGTTGACGATGATTTCCAAATGAAGGCACCTTCAAAAGTCAGCCACTAATCTT


ATCCTCAATTTGCTTAATCACGCTTCTACCAGAATCATCTTTCACAGCAAATAGAAACAAGCATTTCCCTCTACTGGCTTTTTCCC


ATTGCAAGCCAATATTTTTCTTCTCTTGAGAATCATCATTGCTTGCATAAACCTCGCCCTTGTATTCAATCGCCATTATTCGGCCA


TCAGTAAGCTCAACAA (SEQ ID NO: 381)





>SRR1221442_902393_36|P


CCAAAGGTTGTAAAAGTTACAAAAACTGATTATACTCTTGACAATGATGATGTTTATGAACATACCTTTAAAAATAGAATAACAAT


TTATGTTAAGAGCAATCAAAATAAGATTATATCCAAACAAAACACAAGAACAAACACTAAATAAGGTGCTTGGTAGTTATCGTTTT


GTCTATAATCAAGTACTTGCTCAAAAACAAAATGCTTATAAACAAGACAAGACAAACCTAAAGGTAACTGATTTGTCAAAGTGGTT


TCACTGAACTCTGCTGAAGGATGAACATTATGCTTGGTTGAAAGAACAGAACACAAAGGTGATGAAACAAGCCATCAGACAGATGG


ACGGAGCGTACCAGAAGTTCTTCAAACAACATAACGGATTCCCAAAATTTAAATCCAAAAAGGATAAGCAATCCGCATTGTTCCCT


TATGAAGCTATTTCAAAACATAATACATTTGAAACAAGAACTTGTTCGGTTTGTGGTTACAAGAAACAAGATTTGAGGTTAAGTGA


CAGAGAATGGGTTTGTCCTAAATGTGGAACAAAACACAATAGAGATATAAATGCTGCTGTGAACATATTGTTGGAAGGACAACGAA


TGCTCACAGCAGGATAAGATAAAATGAAATACAGTAGGTGTCCGTAGCACCGAATTTACGCTTGTGGACTATCCTCCTATGGATGA


CCGTTCTGTAATGAACCTAAAAGTAGTGATAGATTGAAACAAGAAGTGAAATATACCTAAATCATAGATTTTCGTAGAATTTCATA


TACGGTAATTTCAATGATAACAGACTTACTTCTGATATGACAGAAGATGAATGTTATCTCTTGGTTACAGGTAAAACCAAGGCACA


ATACGAAGAAAGTAAAAGAAAAAGTGAAGAAGAATATCGAAGAAGAGAAGAAGAGGATAAGAAACAAATTCCAGAATTATGTAAGG


CATATGAGAAGGATTGGAGTTTCTACAGTCTTCTGTGTCTTGGTATTTGCAACTGCACCAAGATTTCTTTGAATAGGACGTCTAAC


TCTGTTTAAAGTTACACATGGTAATACTACTTTTTTCATATTATTTTTTAATTTATTTTATTGAATATTTGTCAAATTAGTGAAAC


TGCACGTTGATACATTACTGTTTCAATATATGTATCAATATCTCTTTTTTCAATGCCTATTGATACAAGTATGTCTGTCATCTGTT


CAACATCTTCTGAGTCAACACAAAGGACAAACCAACCTTTCTTGTCACT (SEQ ID NO: 382)





>3300025586|Ga0207996_1000986_11|P


GCGAATGACGATGTGAACGTGGTCGGCCTCGCCATTCAACTCAACGACCGTGAACGCCATCTCCGTCGCGACACGGCGCATCGCCG


CCTCGATCGTTGCGAGCCCTTTCGCGTCCAGGACCTTCCGCCGGTACTTCGTTACGCAGACCAAGTGGGCCAAAAACTTCGTAACG


CTGTGCCGCCCCTTGTCTAGCCCTTGCGTTTTCGCCACGCGGGCACCATACTCTCGTGCAGACCAATGACAAATCGTCTCCGCTAC


TCGTACCGCCTCTACCCCACGCCGGAGCAGCGCCATGCGCTCGCTCAGACGTTCGGCTGCGCGCGAGTGGTGTGGAACGACGCTCT


CGCCCGGGCTCAGGTGGGCGGTGCGAAGTACCCCGGTTTCGCCAATGCTGCCAAGAATGTTGTCGCGGCGGGGCTCGCCGAGACGA


AAAACGGACGTGGAGAATGGGTAAATCGGGTGGTGTCGATGGGCACTGGCGTTCCGTTCGTTGAAGCGTCAACCGCCGGGGCCTCC


CCCGGAGTCTCCGCCCTTTAGGGCGGGGAGGATGTCAACATCGACGCAAGACAAGACAGCTCTCTGCCGAGTCTAGCTGGCTTGAT


AGGGGAGGCTCTCGTCCTACGGTTACACACCCTTCTCCCTTTTTCGTGGCTATCTCCGATGCTCTTTCGGCCAAGATCTCCGAGGC


CCTGGAACTGATCGACTCCTTTGCGGAGCCCAAGCGCTCCGCCTGTCTTTGGAGCAGCGGCAAGGACTCCATGCTGCTGCTGCATT


TGCTCAGAAAGGCGGGGATCGACCTGAGGACTCTCTTTCTTCAGCGTCAGTCTACGAGGACTGAATGGCTTCCTCCTTAGCCGAAG


GCTTACGGATGTGGGAGCGAACGAAGCCAGCGCAAGCCGAAGGCTTACGGATGCGGCTGCTTAAGACGCTGCGCGTCTTTTCAACC


CTTCATACACCCTCTGCTGCCACCTCTTTTGATCCATTGCCAGCAGAGCGCAGGACGTACGCCGCTCTCGCATGTATCGATCCAGG


TGGCTGTCATCGTTTCGCAAGCCGAAGGCTTGCGGGGGTGAGAGCGATAGACCCTGCGCAAGCCGAAGGCTTACGGATGCGGGAGC


GAGAGACGCTGCGCAAGCCGAAGGCTTACGGATGCGGCTGCTTAAGACGCTGCGCGTCTTTTCACCCCACTGAGATGGGTGGCACA


TTCCTCCCGCATCCGATTGCTTGAGCACTGCAATGCGTTCTGCACCCACTTGTGGTTGACTCCCCTTGAAGCGCTCACTCCCCCTC


CTCCCGATCGTCTTCGCCCCAGCATTCCTTGCTTCCGTCGCGAAATCCCTCCAGGAAGCAGAATCCCTGCCACTCAGCCTCCCACC


TCTCGTCCAT (SEQ ID NO: 383)









Example 8—Identification of Transactivating RNA Elements

In addition to an effector protein and a crRNA, some CRISPR systems described herein may also include an additional small RNA that activates robust enzymatic activity referred to as a transactivating RNA (tracrRNA). Such tracrRNAs typically include a complementary region that hybridizes to the crRNA. The crRNA-tracrRNA hybrid forms a complex with an effector resulting in the activation of programmable enzymatic activity.

    • tracrRNA sequences can be identified by searching genomic sequences flanking CRISPR arrays for short sequence motifs that are homologous to the direct repeat portion of the crRNA. Search methods include exact or degenerate sequence matching for the complete direct repeat (DR) or DR subsequences. For example, a DR of length n nucleotides can be decomposed into a set of overlapping 6-10 nt kmers. These kmers can be aligned to sequences flanking a CRISPR locus, and regions of homology with 1 or more kmer alignments can be identified as DR homology regions for experimental validation as tracrRNAs. Alternatively, RNA cofold free energy can be calculated for the complete DR or DR subsequences and short kmer sequences from the genomic sequence flanking the elements of a CRISPR system. Flanking sequence elements with low minimum free energy structures can be identified as DR homology regions for experimental validation as tracrRNAs.
    • tracrRNA elements frequently occur within close proximity to CRISPR associated genes or a CRISPR array. As an alternative to searching for DR homology regions to identify tracrRNA elements, non-coding sequences flanking CRISPR effectors or the CRISPR array can be isolated by cloning or gene synthesis for direct experimental validation of tracrRNAs.
    • Experimental validation of tracrRNA elements can be performed using small RNA sequencing of the host organism for a CRISPR system or synthetic sequences expressed heterologously in non-native species. Alignment of small RNA sequences from the originating genomic locus can be used to identify expressed RNA products containing DR homology regions and sterotyped processing typical of complete tracrRNA elements.
    • Complete tracrRNA candidates identified by RNA sequencing can be validated in vitro or in vivo by expressing the crRNA and effector in combination with or without the tracrRNA candidate and monitoring the activation of effector enzymatic activity.
    • In engineered constructs, the expression of tracrRNAs can be driven by promoters including, but not limited to U6, U1, and H1 promoters for expression in mammalian cells or J23119 promoter for expression in bacteria.
    • In some instances, a tracrRNA can be fused with a crRNA and expressed as a single RNA guide.


Example 9—Identification of Novel RNA Modulators of Enzymatic Activity

In addition to the effector protein and the crRNA, some CRISPR systems described herein may also include an additional small RNA to activate or modulate the effector activity, referred to herein as an RNA modulator.

    • RNA modulators are expected to occur within close proximity to CRISPR-associated genes or a CRISPR array. To identify and validate RNA modulators, non-coding sequences flanking CRISPR effectors or the CRISPR array can be isolated by cloning or gene synthesis for direct experimental validation.
    • Experimental validation of RNA modulators can be performed using small RNA sequencing of the host organism for a CRISPR system or synthetic sequences expressed heterologously in non-native species. Alignment of small RNA sequences to the originating genomic locus can be used to identify expressed RNA products containing DR homology regions and sterotyped processing.
    • Candidate RNA modulators identified by RNA sequencing can be validated in vitro or in vivo by expressing a crRNA and an effector in combination with or without the candidate RNA modulator and monitoring alterations in effector enzymatic activity.
    • In engineered constructs, RNA modulators can be driven by promoters including U6, U1, and H1 promoters for expression in mammalian cells, or J23119 promoter for expression in bacteria.
    • In some instances, the RNA modulators can be artificially fused with either a crRNA, a tracrRNA, or both and expressed as a single RNA element.


Example 10—Functional Validation of Engineered CLUST.342201 CRISPR-Cas System

Having identified components of CLUST.342201 CRISPR-Cas systems, a locus from the metagenomic source designated 3300006417 (SEQ ID NO: 301) was selected for functional validation.


DNA Synthesis and Effector Library Cloning

To test the activity of the exemplary CLUST.342201 CRISPR-Cas system, the system was designed and synthesized using a pET28a(+) vector. Briefly, an E. coli codon-optimized nucleic acid sequence encoding the CLUST.342201 3300006417 effector (SEQ ID NO: 301 shown in TABLE 17) was synthesized (Genscript) and cloned into a custom expression system derived from pET-28a(+) (EMD-Millipore). The vectors included the nucleic acid encoding CLUST.342201 effectors under the control of a lac promoter and an E. coli ribosome binding sequence. The vector also included an acceptor site for a CRISPR array library driven by a J23119 promoter following the open reading frame for the CLUST.342201 effector. The non-coding sequence used for the CLUST.342201 3300006417 effector (SEQ ID NO: 301) is set forth in SEQ ID NO: 373, as shown in TABLE 19. A separate condition was tested, wherein the CLUST.342201 3300006417 effector (SEQ ID NO: 301) was individually cloned into pET28a(+) without the non-coding sequence. See FIG. 1A.


An oligonucleotide library synthesis (OLS) pool containing “repeat-spacer-repeat” sequences was computationally designed, where “repeat” represents the consensus direct repeat sequence found in the CRISPR array associated with the effector, and “spacer” represents sequences tiling the pACYC184 plasmid or E. coli essential genes. In particular, the repeat sequence used for the CLUST.342201 3300006417 effector (SEQ ID NO: 301) is set forth in SEQ ID NO: 342, as shown in TABLE 18. The spacer length was determined by the mode of the spacer lengths found in the endogenous CRISPR array. The repeat-spacer-repeat sequence was appended with restriction sites enabling the bi-directional cloning of the fragment into the aforementioned CRISPR array library acceptor site, as well as unique PCR priming sites to enable specific amplification of a specific repeat-spacer-repeat library from a larger pool.


Next, the repeat-spacer-repeat library was cloned into the plasmid using the Golden Gate assembly method. Briefly, each repeat-spacer-repeat was first amplified from the OLS pool (Agilent Genomics) using unique PCR primers and pre-linearized the plasmid backbone using BsaI to reduce potential background. Both DNA fragments were purified with Ampure XP (Beckman Coulter) prior to addition to Golden Gate Assembly Master Mix (New England Biolabs) and incubated per the manufacturer's instructions. The Golden Gate reaction was further purified and concentrated to enable maximum transformation efficiency in the subsequent steps of the bacterial screen.


The plasmid library containing the distinct repeat-spacer-repeat elements and CRISPR effectors was electroporated into E. Cloni electrocompetent E. coli (Lucigen) using a Gene Pulser Xcell® (Bio-rad) following the protocol recommended by Lucigen. The library was either co-transformed with purified pACYC184 plasmid or directly transformed into pACYC184-containing E. Cloni electrocompetent E. coli (Lucigen), plated onto agar containing chloramphenicol (Fisher), tetracycline (Alfa Aesar), and kanamycin (Alfa Aesar) in BioAssay® dishes (Thermo Fisher), and incubated for 10-12 hours at 37° C. After estimation of approximate colony count to ensure sufficient library representation on the bacterial plate, the bacteria were harvested, and plasmid DNA WAS extracted using a QIAprep Spin Miniprep® Kit (Qiagen) to create an “output library.” By performing a PCR using custom primers containing barcodes and sites compatible with Illumina sequencing chemistry, a barcoded next generation sequencing library was generated from both the pre-transformation “input library” and the post-harvest “output library,” which were then pooled and loaded onto a Nextseq 550 (Illumina) to evaluate the effectors. At least two independent biological replicates were performed for each screen to ensure consistency. See FIG. 1B.


Bacterial Screen Sequencing Analysis

Next generation sequencing data for screen input and output libraries were demultiplexed using Illumina bcl2fastq. Reads in resulting fastq files for each sample contained the CRISPR array elements for the screening plasmid library. The direct repeat sequence of the CRISPR array was used to determine the array orientation, and the spacer sequence was mapped to the source (pACYC184 or E. Cloni) or negative control sequence (GFP) to determine the corresponding target. For each sample, the total number of reads for each unique array element (ra) in a given plasmid library was counted and normalized as follows: (ra+1)/total reads for all library array elements. The depletion score was calculated by dividing normalized output reads for a given array element by normalized input reads.


To identify specific parameters resulting in enzymatic activity and bacterial cell death, next generation sequencing (NGS) was used to quantify and compare the representation of individual CRISPR arrays (i.e., repeat-spacer-repeat) in the PCR product of the input and output plasmid libraries. The array depletion ratio was defined as the normalized output read count divided by the normalized input read count. An array was considered to be “strongly depleted” if the depletion ratio was less than 0.3 (more than 3-fold depletion), depicted by the blue dashed line in FIG. 31. When calculating the array depletion ratio across biological replicates, the maximum depletion ratio value for a given CRISPR array was taken across all experiments (i.e. a strongly depleted array must be strongly depleted in all biological replicates). A matrix including array depletion ratios and the following features were generated for each spacer target: target strand, transcript targeting, ORI targeting, target sequence motifs, flanking sequence motifs, and target secondary structure. The degree to which different features in this matrix explained target depletion for CLUST.342201 systems was investigated.



FIG. 31 shows the degree of interference activity of the engineered compositions, with a non-coding sequence, by plotting for a given target the normalized ratio of sequencing reads in the screen output versus the screen input. The results are plotted for each DR transcriptional orientation. In the functional screen for each composition, an active effector complexed with an active RNA guide will interfere with the ability of the pACYC184 to confer E. coli resistance to chloramphenicol and tetracycline, resulting in cell death and depletion of the spacer element within the pool. Comparison of the results of deep sequencing the initial DNA library (screen input) versus the surviving transformed E. coli (screen output) suggests specific target sequences and DR transcriptional orientations that enable an active, programmable CRISPR system. The screen also indicates that the effector complex is only active with one orientation of the DR. As such, the screen indicated that the CLUST.342201 3300006417 effector was active in the “reverse” orientation (5′-GTTC . . . ATGG-[spacer]-3′) of the DR (FIG. 31). The CLUST.342201 3300006417 effector did not retain activity in the absence of the non-coding sequence, indicating that CLUST.342201 effectors require a tracrRNA. Likewise, the negative control (plasmid without the effector) did not demonstrate activity.



FIG. 32A and FIG. 32B depict the location of strongly depleted targets for the CLUST.342201 3300006417 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. Flanking sequences of depleted targets were analyzed to determine the PAM sequence for CLUST.342201 3300006417. A WebLogo representation (Crooks et al., Genome Research 14: 1188-90, 2004) of the PAM sequence for CLUST.342201 3300006417 is shown in FIG. 33.


Example 11—Identification of Components of CLUST.195009 CRISPR-Cas System

This protein family was identified using the computational methods described above. The CLUST.195009 system comprises single effectors associated with CRISPR systems found in uncultured metagenomic sequences collected from environments not limited to hypersaline lake, aquatic, landfill, soil, and wastewater environments as well as from Acidobacteria (TABLE 22). Exemplary CLUST.195009 effectors include those shown in TABLES 22 and 23, below. Examples of direct repeat sequences and spacer lengths for these systems are shown in TABLE 24. Optionally, the system includes a tracrRNA that is contained in a non-coding sequence listed in TABLE 25.









TABLE 224







Representative CLUST.195009 Effector Proteins













#
effector
SEQ


source
effector accession
spacers
size
ID NO














hypersaline lake metagenome
SRR6201554_1444827_42|M
14
560
501


Acidobacteria bacterium RBG_13_68_16
OFV81970.1
8
523
502


(MEKI01000059)


aquatic-freshwater-groundwater
3300009448|Ga0114940_10001413_14|P
2
552
503


aquatic-marine-estuarine
3300001245|JGI12048J13642_11056368_2|M
14
560
504


aquatic-marine-estuarine
3300001245|JGI12048J13642_11056369_15|M
14
560
505


aquatic-marine-seawater
3300027881|Ga0255055_10005864_11|P
5
541
506


aquatic-non marine saline and alkaline-
3300001256|JGI12210J13797_10707440_22|P
6
559
507


hypersaline mat


aquatic-non marine saline and alkaline-
3300001256|JGI12210J13797_10707440_21|M
6
471
508


hypersaline mat


aquatic-non marine saline and alkaline-
3300001256|JGI12210J13797_10707441_3|P
6
559
509


hypersaline mat


aquatic-non marine saline and alkaline-
3300001256|JGI12210J13797_10707441_2|M
6
471
510


hypersaline mat)


aquatic-non marine saline and alkaline-
3300001256|JGI12210J13797_11264632_33|M
14
560
511


hypersaline mat


aquatic-non marine saline and alkaline-
3300001256|JGI12210J13797_11264634_48|M
14
560
512


hypersaline mat


aquatic-non marine saline and alkaline-
3300001357|JGI11876J14442_10000221_42|P
14
560
513


hypersaline mat


hypersaline lake metagenome
SRR6201554_128554_7|P
4
559
514


hypersaline lake metagenome
SRR6201554_128554_6|M
4
471
515


solid waste-landfill-landfill leachate
3300014204|Ga0172381_10020148_1|P
2
545
516


solid waste-landfill-landfill leachate
3300028603|Ga0265293_10119881_1|M
5
538
517


terrestrial-soil-agricultural soil
3300009095|Ga0079224_100009227_18|M
4
524
518


terrestrial-soil-agricultural soil
3300009095|Ga0079224_100214048_3|P
3
558
519


wastewater-industrial wastewater-
3300002220|MLSBCLC_10211263_4|M
4
476
520


hydrocarbon resource environments


wastewater-industrial wastewater-
3300002220|MLSBCLC_10211263_3|P
4
530
521


hydrocarbon resource environments
















TABLE 235





Amino acid sequences of Representative CLUST.195009 Effector Proteins















>SRR6201554_1444827_42|M


[hypersaline lake metagenome]


MRQTLTLCRPARLISSEVRLDQEYRAARWAHHRLLDFEDEHQRHLNQVAEAIVPGIVRVGRVIARLSRRAKRRSRATRGSWTPD


PRPQLMTSLRARLVEMKKQRDADPRWKAALAWGDDAVGAPKKVRRRRAKDPSKVKRRKNESDEAWANRFAMLTSDETAEHFEAK


VAAAPRRSRREEYRAALYAQRRCYHGTWNALVRSVDQARSDVLRQRRSGLPADWRRPRFGGSQSICADRSGFRVVERGKPWWVV


EMRIGTASGKGAEWVRLRAKCGNWHAIPDDAAITTAKLTRRKDGQRWSYSLSLTVDGAQKAARAASSSGLVSFDWGHREHGHPR


ARDGIRAFVWLGDDGSTGEVIIPAECRQCLDEIDALKSRVDQAFDARRESMGLRDKNRHTYRRRVLRSGVRTEEEAQWLTWETR


YERRVARLRKRWQSLRREAYTRAVRELRTQYARFAFETESSASLKRQQRDEHMRRRARANRDLTARYEFVSLCERFGAEIIPVS


ARNTTKECPSCGHLGDNTSELVTVCPACGTARDKDVGAAEVILRRAEEALAKHSAE (SEQ ID NO: 501)





>OFV81970.1


[Acidobacteria bacterium RBG_13_68_16]


MTIRVIHRPAKVVDGLEALDREFRSARWAHHQLLRIEDDQAEQLDLVADMCAPGLRRVGRILAKLRRRACRAERATGWSPNPRV


ELRKTMAARMRSLKAQRDADPRWKIARGWLDASADDAPVKACRRKAGESDALYDARVARRKRRSRREEKRLELYSQIRCHYDTW


NELVKQVDQAIRSVRAVRKTGQSARWKHPRYDDPTTIASDHWDLVERGPVWWVIDLKLRAGVRVRLRTKAGTYDGVPADPDFRT


LKLTRRRVGRFGWEYSCSIAVNLAERVPSGTGVVALDWGHREHGHATADQGIRVFTWAGDDGQTGEVLLPIACRDLLSELDELK


GRLDTVYAARGEPELNRARYRRRLNMCGVLTREEQDWLRWETRQDRRLSAMRDRIEHIRRESYLKAIHELGRRYRVFAFEDLQG


QQIKDLQTENQMGRRKRQNRDLSARYLFESLCKQSGAERITVPARNSTRQCPACGKLREKTADLLVACDACGYVGDRDRDACRT


LLARAKEALAKRGASVQND (SEQ ID NO: 502)





>3300009448|Ga0114940_10001413_14|P


[aquatic-freshwater-groundwater]


MLTLNRPALLESDEQRLDAEYRSTNWAHHRLLDFEQEHQRVLDAAADEIAPGIIRAGRIVARLARRAKRADRTTGGQWFPPPRS


ELCTRLRVLLGELREQRNADPRWKLALGWADEQVGEPKAPRRRRAKPSSAVKRRKAETDDAFAKRFALLTSDESAEHYAAKLAT


PPRDSRRDMARKALYQQRRIYWGTWNALIRSVDQARKDVLDHRKRGMPADLRRPKFRDPSSIAADAGGFRIVERGALWWTIEMR


IGLGDEWARVRAKCGNWHAIPSDAKIGTAKLTRRRDGHRWSYSLSLTVDVAKNVDAHAPRGVVSFDWGHREHGHPSWRDGIRAF


TWLGDDGATGEVLIPIECRQALDEIDAMKARVDGAFNARKKAHDLPDVNRYTYRQRLMASGVRTEEQTAWLRWEMRYERRMDAR


RDRVQNLRKDAYTRAVRELRSRYAVFAFEDEDGASIRREQKEEQVLRRKRSNRDLATRYEFVALCERYGAELIAVPARNTTREC


PDCGELLKENGPELLVVCPGCGTARDKDHGAARVILGRAKEALAKRAA (SEQ ID NO: 503)





>3300001245|JGI12048J13642_11056368_2|M


[aquatic-marine-estuarine]


MRQTLTLCRPARLISSEVRLDQEYRAARWAHHRLLDFEDEHQRHLNQVAEAIVPGIVRVGRMIARLSRRAKRRSRATRGSWTPD


PRPQLMTSLRARLVEMKKQRDADPRWKAALAWGDDAVGAPKKVRRRRAKDPSKVKRRKNESDEAWANRFAMLTSDETAEHFEAK


VAAAPRRSRREEYRAALYAQRRCYHGTWNALVRSVDQARSDVLRQRRSGLPADWRRPRFGGSQSICADRSGFRVVERGKPWWVV


EMRIGTASGKGAEWVRLRAKCGNWHAIPDDAAITTAKLTRRKDGQRWSYSLSLTVDGAQKAARAASSSGLVSFDWGHREHGHPR


ARDGIRAFVWLGDDGSTGEVIIPAECRQCLDEIDALKSRVDQAFDARRESMGLRDKNRHTYRRRVLRSGVRTEEEAQWLTWETR


YERRVARLRKRWQSLRREAYTRAVRELRTQYARFAFETESSASLKRQQRDEHMRRRARANRDLTARYEFVSLCERFGAEIIPVS


ARNTTKECPSCGHLGDNTSELVTVCPACGTARDKDVGAAEVILRRAEEALAKHSAE (SEQ ID NO: 504)





>3300001245|JGI12048J13642_11056369_15|M


[aquatic-marine-estuarine]


MRQTLTLCRPARLISSEVRLDQEYRAARWAHHRLLDFEDEHQRHLNQVAEAIVPGIVRVGRMIARLSRRAKRRSRATRGSWTPD


PRPQLMTSLRARLVEMKKQRDADPRWKAALAWGDDAVGAPKKVRRRRAKDPSKVKRRKNESDEAWANRFAMLTSDETAEHFEAK


VAAAPRRSRREEYRAALYAQRRCYHGTWNALVRSVDQARSDVLRQRRSGLPADWRRPRFGGSQSICADRSGFRVVERGKPWWVV


EMRIGTASGKGAEWVRLRAKCGNWHAIPDDAAITTAKLTRRKDGQRWSYSLSLTVDGAQKAARAASSSGLVSFDWGHREHGHPR


ARDGIRAFVWLGDDGSTGEVIIPAECRQCLDEIDALKSRVDQAFDARRESMGLRDKNRHTYRRRVLRSGVRTEEEAQWLTWETR


YERRVARLRKRWQSLRREAYTRAVRELRTQYARFAFETESSASLKRQQRDEHMRRRARANRDLTARYEFVSLCERFGAEIIPVS


ARNTTKECPSCGHLGDNTSELVTVCPACGTARDKDVGAAEVILRRAEEALAKHSAE (SEQ ID NO: 505)





>3300027881|Ga0255055_10005864_11|P


[aquatic-marine-seawater]


MMKALARPARLVTGQAELDAEMRSARWIYHRLLDFEDAHQQVLDAAAEAVAPGISRVARLVARLLRRTRRRERTASSSWSPNPH


SAWLAGLRAQLNALRKVRNAHQVWRDAVKWADTPAPGAPERGGPRRRAGETAEEFAARCATRRTMLTRREAWRAELYRGHVADG


ARGRSRIYWGTWNSLLKSVDQARKSVLQARKAGLPANWRRPQWNDPSTIAADAGGFRVLERGRPWWALETRLCDGWVRFRAKCG


NWHSIPESAKLRTLKLTRRKNGCGWSYSVSIAVAGMPEPAHAGDGVVALDWGYREHGHPHERDGLRVFTWRGEDGAIGEILLPS


ECRAAKDREQQLQARIDAIWNARCASMKLPERNRHSYRSRLMRSGVRTAEEQRWLNWETRYERRRAAARKRWQNLRSETYLQAV


HALRRRYDMFAVENETIVGHRRTDKDEQTRHRKRQNRELSARYEFLQICERSGATILPVPSRNSTRECPHCGGLHENGPELYRA


CPATGVVDDKDEIACVTILARAKAALANRAVSAEKHA (SEQ ID NO: 506)





>3300001256|JGI12210J13797_10707440_22|P


[aquatic-non marine saline and alkaline-hypersaline mat]


MTILTLNRPALIISDDVRLDAEFRAARWAHHRLLDFEDQHQRHLDEEAERCAPGIVRVGRIIARLSRRAKRMSRATRGSWTPDP


RPQLMASLRVRLAEMKTQRDADPRWKAALAWADEPIGAPKKVRRRRAKDPSKVKRRKSETDEAFEKRFALFTSDETEEHYQKKV


AAAPRRTRREEYRAELYTKRRCYWGTWNALLRSVDQARSDVLTQRKKGLPADWQRPRFGDAQSLSAESGGFRIVERGKLWWVID


LRIGTATGKNAEWVRVRAKCGNWHHIPEGASITTAQLTRRKDGQRWSYSLSLTVDGAQKSAREVSNTGLVSFDWGHREHGHGRA


KEGIRAFVWIGDDGQQGEVILPAECRRCLDEIDALKSRMDQAFDARRESMGLREKNRHTYRRRLLRSGVQTDEEGQWLTWEMRY


ERRVGRLRKRWQNLRKETYVQAVRALRSRYAQFAFESESNASLKRQQKDEQMLRRARANRDLTARYEFVSLCERFGAEIVPVSA


RNTTKECPSCGHLGDNTAELVTVCPACGTARDKDFGAAKVIFRRAEGALAKHAAE (SEQ ID NO: 507)





>3300001256|JGI12210J13797_10707440_21|M


[aquatic-non marine saline and alkaline-hypersaline mat]


MASLRVRLAEMKTQRDADPRWKAALAWADEPIGAPKKVRRRRAKDPSKVKRRKSETDEAFEKRFALFTSDETEEHYQKKVAAAP


RRTRREEYRAELYTKRRCYWGTWNALLRSVDQARSDVLTQRKKGLPADWQRPRFGDAQSLSAESGGFRIVERGKLWWVIDLRIG


TATGKNAEWVRVRAKCGNWHHIPEGASITTAQLTRRKDGQRWSYSLSLTVDGAQKSAREVSNTGLVSFDWGHREHGHGRAKEGI


RAFVWIGDDGQQGEVILPAECRRCLDEIDALKSRMDQAFDARRESMGLREKNRHTYRRRLLRSGVQTDEEGQWLTWEMRYERRV


GRLRKRWQNLRKETYVQAVRALRSRYAQFAFESESNASLKRQQKDEQMLRRARANRDLTARYEFVSLCERFGAEIVPVSARNTT


KECPSCGHLGDNTAELVTVCPACGTARDKDFGAAKVIFRRAEGALAKHAAE (SEQ ID NO: 508)





>3300001256|JGI12210J13797_10707441_3|P


[aquatic-non marine saline and alkaline-hypersaline mat]


MTILTLNRPALIISDDVRLDAEFRAARWAHHRLLDFEDQHQRHLDEEAERCAPGIVRVGRIIARLSRRAKRMSRATRGSWTPDP


RPQLMASLRVRLAEMKTQRDADPRWKAALAWADEPIGAPKKVRRRRAKDPSKVKRRKSETDEAFEKRFALFTSDETEEHYQKKV


AAAPRRTRREEYRAELYTKRRCYWGTWNALLRSVDQARSDVLTQRKKGLPADWQRPRFGDAQSLSAESGGFRIVERGKLWWVID


LRIGTATGKNAEWVRVRAKCGNWHHIPEGASITTAQLTRRKDGQRWSYSLSLTVDGAQKSAREVSNTGLVSFDWGHREHGHGRA


KEGIRAFVWIGDDGQQGEVILPAECRRCLDEIDALKSRMDQAFDARRESMGLREKNRHTYRRRLLRSGVQTDEEGQWLTWEMRY


ERRVGRLRKRWQNLRKETYVQAVRALRSRYAQFAFESESNASLKRQQKDEQMLRRARANRDLTARYEFVSLCERFGAEIVPVSA


RNTTKECPSCGHLGDNTAELVTVCPACGTARDKDFGAAKVIFRRAEGALAKHAAE (SEQ ID NO: 509)





>3300001256|JGI12210J13797_10707441_2|M


[aquatic-non marine saline and alkaline-hypersaline mat]


MASLRVRLAEMKTQRDADPRWKAALAWADEPIGAPKKVRRRRAKDPSKVKRRKSETDEAFEKRFALFTSDETEEHYQKKVAAAP


RRTRREEYRAELYTKRRCYWGTWNALLRSVDQARSDVLTQRKKGLPADWQRPRFGDAQSLSAESGGFRIVERGKLWWVIDLRIG


TATGKNAEWVRVRAKCGNWHHIPEGASITTAQLTRRKDGQRWSYSLSLTVDGAQKSAREVSNTGLVSFDWGHREHGHGRAKEGI


RAFVWIGDDGQQGEVILPAECRRCLDEIDALKSRMDQAFDARRESMGLREKNRHTYRRRLLRSGVQTDEEGQWLTWEMRYERRV


GRLRKRWQNLRKETYVQAVRALRSRYAQFAFESESNASLKRQQKDEQMLRRARANRDLTARYEFVSLCERFGAEIVPVSARNTT


KECPSCGHLGDNTAELVTVCPACGTARDKDFGAAKVIFRRAEGALAKHAAE (SEQ ID NO: 510)





>3300001256|JGI12210J13797_11264632_33|M


[aquatic-non marine saline and alkaline-hypersaline mat]


MRQTLTLCRPARLISSEVRLDQEYRAARWAHHRLLDFEDEHQRHLNQVAEAIVPGIVRVGRMIARLSRRAKRRSRATRGSWTPD


PRPQLMTSLRARLVEMKKQRDADPRWKAALAWGDDAVGAPKKVRRRRAKDPSKVKRRKNESDEAWANRFAMLTSDETAEHFEAK


VAAAPRRSRREEYRAALYAQRRCYHGTWNALVRSVDQARSDVLRQRRSGLPADWRRPRFGGSQSICADRSGFRVVERGKPWWVV


EMRIGTASGKGAEWVRLRAKCGNWHAIPDDAAITTAKLTRRKDGQRWSYSLSLTVDGAQKAARAASSSGLVSFDWGHREHGHPR


ARDGIRAFVWLGDDGSTGEVIIPAECRQCLDEIDALKSRVDQAFDARRESMGLRDKNRHTYRRRVLRSGVRTEEEAQWLTWETR


YERRVARLRKRWQSLRREAYTRAVRELRTQYARFAFETESSASLKRQQRDEHMRRRARANRDLTARYEFVSLCERFGAEIIPVS


ARNTTKECPSCGHLGDNTSELVTVCPACGTARDKDVGAAEVILRRAEEALAKHSAE (SEQ ID NO: 511)





>3300001256|JGI12210J13797_11264634_48|M


[aquatic-non marine saline and alkaline-hypersaline mat]


MRQTLTLCRPARLISSEVRLDQEYRAARWAHHRLLDFEDEHQRHLNQVAEAIVPGIVRVGRMIARLSRRAKRRSRATRGSWTPD


PRPQLMTSLRARLVEMKKQRDADPRWKAALAWGDDAVGAPKKVRRRRAKDPSKVKRRKNESDEAWANRFAMLTSDETAEHFEAK


VAAAPRRSRREEYRAALYAQRRCYHGTWNALVRSVDQARSDVLRQRRSGLPADWRRPRFGGSQSICADRSGFRVVERGKPWWVV


EMRIGTASGKGAEWVRLRAKCGNWHAIPDDAAITTAKLTRRKDGQRWSYSLSLTVDGAQKAARAASSSGLVSFDWGHREHGHPR


ARDGIRAFVWLGDDGSTGEVIIPAECRQCLDEIDALKSRVDQAFDARRESMGLRDKNRHTYRRRVLRSGVRTEEEAQWLTWETR


YERRVARLRKRWQSLRREAYTRAVRELRTQYARFAFETESSASLKRQQRDEHMRRRARANRDLTARYEFVSLCERFGAEIIPVS


ARNTTKECPSCGHLGDNTSELVTVCPACGTARDKDVGAAEVILRRAEEALAKHSAE (SEQ ID NO: 512)





>3300001357|JGI11876J14442_10000221_42|P


[aquatic-non marine saline and alkaline-hypersaline mat]


MRQTLTLCRPARLISSEVRLDQEYRAARWAHHRLLDFEDEHQRHLNQVAEAIVPGIVRVGRMIARLSRRAKRRSRATRGSWTPD


PRPQLMTSLRARLVEMKKQRDADPRWKAALAWGDDAVGAPKKVRRRRAKDPSKVKRRKNESDEAWANRFAMLTSDETAEHFEAK


VAAAPRRSRREEYRAALYAQRRCYHGTWNALVRSVDQARSDVLRQRRSGLPADWRRPRFGGSQSICADRSGFRVVERGKPWWVV


EMRIGTASGKGAEWVRLRAKCGNWHAIPDDAAITTAKLTRRKDGQRWSYSLSLTVDGAQKAARAASSSGLVSFDWGHREHGHPR


ARDGIRAFVWLGDDGSTGEVIIPAECRQCLDEIDALKSRVDQAFDARRESMGLRDKNRHTYRRRVLRSGVRTEEEAQWLTWETR


YERRVARLRKRWQSLRREAYTRAVRELRTQYARFAFETESSASLKRQQRDEHMRRRARANRDLTARYEFVSLCERFGAEIIPVS


ARNTTKECPSCGHLGDNTSELVTVCPACGTARDKDVGAAEVILRRAEEALAKHSAE (SEQ ID NO: 513)





>SRR6201554_128554_7|P


[hypersaline lake metagenome]


MTILTLNRPALIISDDVRLDAEFRAARWAHHRLLDFEDQHQRHLDEEAERCAPGIVRVGRIIARLSRRAKRMSRATRGSWTPDP


RPQLMASLRVRLAEMKTQRDADPRWKAALAWADEPIGAPKKVRRRRAKDPSKVKRRKSETDEAFEKRFALFTSDETEEHYQKKV


AAAPRRTRREEYRAELYTKRRCYWGTWNALLRSVDQARSDVLTQRKKGLPADWQRPRFGDAQSLSAESGGFRIVERGKLWWVID


LRIGTATGKNAEWVRVRAKCGNWHHIPEGASITTAQLTRRKDGQRWSYSLSLTVDGAQKSAREVSNTGLVSFDWGHREHGHGRA


KEGIRAFVWIGDDGQQGEVILPAECRRCLDEIDALKSRMDQAFDARRESMGLREKNRHTYRRRLLRSGVQTDEEGQWLTWEMRY


ERRVGRLRKRWQNLRKETYVQAVRALRSRYAQFAFESESNASLKRQQKDEQMLRRARANRDLTARYEFVSLCERFGAEIVPVSA


RNTTKECPSCGHLGDNTAELVTVCPACGTARDKDFGAAKVIFRRAEGALAKHAAE (SEQ ID NO: 514)





>SRR6201554_128554_6|M


[hypersaline lake metagenome]


MASLRVRLAEMKTQRDADPRWKAALAWADEPIGAPKKVRRRRAKDPSKVKRRKSETDEAFEKRFALFTSDETEEHYQKKVAAAP


RRTRREEYRAELYTKRRCYWGTWNALLRSVDQARSDVLTQRKKGLPADWQRPRFGDAQSLSAESGGFRIVERGKLWWVIDLRIG


TATGKNAEWVRVRAKCGNWHHIPEGASITTAQLTRRKDGQRWSYSLSLTVDGAQKSAREVSNTGLVSFDWGHREHGHGRAKEGI


RAFVWIGDDGQQGEVILPAECRRCLDEIDALKSRMDQAFDARRESMGLREKNRHTYRRRLLRSGVQTDEEGQWLTWEMRYERRV


GRLRKRWQNLRKETYVQAVRALRSRYAQFAFESESNASLKRQQKDEQMLRRARANRDLTARYEFVSLCERFGAEIVPVSARNTT


KECPSCGHLGDNTAELVTVCPACGTARDKDFGAAKVIFRRAEGALAKHAAE (SEQ ID NO: 515)





>3300014204|Ga0172381_10020148_1|P


[solid waste-landfill-landfill leachate]


MKTLSRPAVIVDGIDDLGREYSSARWIYHRLLDFEDTHQSVLAAAAERAAPGITRVGRIVSRLSRRIRWSERSTGWSPPLHTPW


LTSLRARLIELRAERNASDGWREAMCWADDSEPGAPARGGARRKAGETDEDFAARSAKRRTTLTRREAHRAALYAEHVAVGSSG


RSRIHWGTWNGLVKSVDQARAAVLKARKQGLPAEWRRPRWSDDSTLFADTHGFRIVSKDDSGPWWTLELRTHFGWVRFRAKCGN


WHEIPESASMRTLKLTRRQKTLGSSGRSTRKGWAYSVSIAIEGVEPAAHTGAGLVALDWGHREHGHPHESEGIRAFTWLGDDGA


LGEILLPRECREATDAVDEMKARVDGAFNARKSALGLPDRNRHRYRSRLMRAGVRTDEEQLWLTWEDRYEMRMQRARKRVKNLR


QETYLKAVRMLRSRYSQFAIEDESIMRHRAADIDKETSHRKRSNRELTARYLFVSICERLGAEMIPVPARNSTRECPKCGHLDE


NTAELIIVCGGCGTARDKDHGAVQVILRRAKEALEKRLASP (SEQ ID NO: 516)





>3300028603|Ga0265293_10119881_1|M


[solid waste-landfill-landfill leachate]


MKTLSRPAVVDRDTATRLDREYTAARWLHNRILDFEAEHQRVIDAAADTAAPGISRCARIVAKLRGRVRRRERSTGWSPPLHEE


WRKILEARIAELRKARNADPAYQAALRWDRESAPGAVVKLPRRKAGETDEAFAARKAAGKTRSRREAWRTEVCYPQRRCFISSY


NALCRIVDQARSAVLAERKAGRPAEWRRPRHSDPTATLHWEPGSWEIVDMGPVWWTIRLAVGYSDRQTKADHVTVRAKCGTWHD


TTGREFATAKLTRIRDGRGYRYSLSLCVDVAAAPLPGDGVVGLDWGHREHGHPEQDEGIRAWSWHGDDGRSGVVILPAEIREQL


DRVHELQSRIDTVWDARRREQKLPERSRQGYRTRLLREGAPTAEEAAWLDWETRYERRAQRSRQRVQALRRETYLRAVRELRQR


YRVFAVEDQPGRAHRDLDTEEQTRRRKRENRDVVARYEFLSICERLGADVIPVPARDTTRECPDCGHLAERTSDLTIACVSCGR


VRDRDAGAARVILRRGIEALANRAAKARNSEAAE (SEQ ID NO: 517)





>3300009095|Ga0079224_100009227_18|M


[terrestrial-soil-agricultural soil]


MIFAIKRPGILESDPSALDTELRAARRTHHLLLDFEDKHQALLDEVAETVAPGIGRIARIVNKLISRKHRMERSTGWSPPLHDN


WRLVLKDRLQSLRNQRNSDPRWKTALKWADMPGENAPPRGGARRKVGETDEAFAARVSSRRTVLTRREAYRAELYTGRTIYWGT


WNGLLKQVDQARSMVVSQRAAGLPAEWHRPRWDKPTTLYADRGGFTVHRENKHWVVDIRLLKGSARFRLSTRGKISDNFTEFRT


AKVTRFKNGAGWSYSVSLTVSSESSLPAVGAGVVAFDGGYRERGHDAEQQGIRALVWTGNDGKSGEVLLPLACRTLADQNKQLL


SKLDTEFTQLNVPFRSRHHYRSALMRAGVRTELEHAWLGDERRIERRVAANRKRIENLRKETYLRVVKELLASYGTFVFEDTSG


QALRDIGTDKQALRRSRQNRDMVAEYSFRKLIERRGGNVITVTARNSTRECPTCGYLCESTAQISIKCPACSTIRDQDFGASQV


LLRRGLEALEKHNSNTRIAS (SEQ ID NO: 518)





>3300009095|Ga0079224_100214048_3|P


[terrestrial-soil-agricultural soil]


MLVLHRPAKLESDERRLDQEYRSARWLHHRILDFEDEHQRVLDTVAEQIAPGVVRIGQILARLNGRARRAERSSKGVWCPNPHP


DLAERLKARLQELRKVRDADPRWKAATKWPDEEIGEPKQVRRRRAKPASKIQRRKSESEEAFRKRFELLTQDESDEHYAQKLAN


ARRDSRRDVHRKKLYAERRIYWGTWNSLCERVDAARQAVLKRRKQGLPAEWRRPRWDQSNTIAAPAAGFRIVEQGPLWWTAEMR


LGTGDGNEAEWVRFRFKGGNWHKLGPEAKLVACELTRRRDGMRWNYSVSITVDGVTKASAPAATTRCVAFDWGHREHGHDRARE


GIRAFVWVGDDGRSGEVLIPRECREAQDEIDALKSRVDTAFLARKQSLELLDHTRYSYRRRLTRSGCCTREESAWLRWEQRYER


RIQKRRKRIDNLREETYLRTVQELRSHYAFFGFEDESGQGLRRKQADDQMARRKRANRDLATRFEFVSLCERFGAEVVTVPARN


TTRECPSCGHVGENGPELVTVCQACGTARDKDFGAAMVILKRMQQALANRDAAA (SEQ ID NO: 519)





>3300002220|MLSBCLC_10211263_4|M


[wastewater-industrial wastewater-hydrocarbon resource environments]


MRVGRIVARLLRRSKRRARASIGTWTPDPRPALLVSLKARLDELREQRNADPRWREACRWADTPADDAPVRGEARRKASETDED


FAKRCEKRRDRLTRREAYRHALYEQRRCYWGTYNALCKCVDQARVSVIKARKAGLPAEWRRPRFPQSPQSIWADKGFRIVERGK


LWWTLEMPLGVKPIQWVRFRAKCGNWHAIPEDAHLRMVQLRRERDGHRWRYSVSIVIAGIPERRHNGSGVVGLDWGHREHGHGL


EREGIRAFTWIGDDGASGEILIPRECRDQLDRIDELKARADDAFNARGLPDRNRYSYRRRLMGLGVRTHEESLWLQWEMRYERR


MASARKRWQALRQGVYLSAVRQLRQRYAVFAFEDETGRGHRKLDTEEQTRHRKRSNRDLTARYEFLQICERSGARVITVPARNS


TRECPEPECGGLLPENGPELLVACPKCGRVRDKDYGAARVILRRALEALATEAQSA (SEQ ID NO: 520)





>3300002220|MLSBCLC_10211263_3|P


[wastewater-industrial wastewater-hydrocarbon resource environments]


MVTLALKRPAIVDATEALDAEYRSARWLHHRLLDFEDEHQRLLDCVANECAPGVVRVGRIVARLLRRSKRRARASIGTWTPDPR


PALLVSLKARLDELREQRNADPRWREACRWADTPADDAPVRGEARRKASETDEDFAKRCEKRRDRLTRREAYRHALYEQRRCYW


GTYNALCKCVDQARVSVIKARKAGLPAEWRRPRFPQSPQSIWADKGFRIVERGKLWWTLEMPLGVKPIQWVRFRAKCGNWHAIP


EDAHLRMVQLRRERDGHRWRYSVSIVIAGIPERRHNGSGVVGLDWGHREHGHGLEREGIRAFTWIGDDGASGEILIPRECRDQL


DRIDELKARADDAFNARGLPDRNRYSYRRRLMGLGVRTHEESLWLQWEMRYERRMASARKRWQALRQGVYLSAVRQLRQRYAVF


AFEDETGRGHRKLDTEEQTRHRKRSNRDLTARYEFLQICERSGARVITVPARNSTRECPEPECGGLLPENGPELLVACPKCGRV


RDKDYGAARVILRRALEALATEAQSA (SEQ ID NO: 521)
















TABLE 246







Nucleotide Sequences of Representative CLUST.195009 Direct Repeats and Spacer


Lengths











Spacer


CLUST.195009 Effector Protein Accession
Direct Repeat Nucleotide Sequence
Length(s)





SRR6201554_1444827_42|M (SEQ ID NO: 501)
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGCGAC (SEQ
24-39



ID NO: 522)




GTCGCAGTACTAGTAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 539)






OFV81970.1 (SEQ ID NO: 502)
CCACCAACAGCCGCGCAGGGCTTCGAATACTGCGAC (SEQ
33-54



ID NO: 523)




GTCGCAGTATTCGAAGCCCTGCGCGGCTGTTGGTGG (SEQ




ID NO: 540)






3300009448|Ga0114940_10001413_14|P
CCAACAACAGCCGCGCAGGGCTTCGAGTACTGCGAC (SEQ
37-38


(SEQ ID NO: 503 )
ID NO: 524)




GTCGCAGTACTCGAAGCCCTGCGCGGCTGTTGTTGG (SEQ




ID NO: 541)






3300001245|JGI12048J13642_11056368_2|M
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGCGAC (SEQ
23-39


(SEQ ID NO: 504)
ID NO: 522)




GTCGCAGTACTAGTAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 539)






3300001245|JGI12048J13642_11056369_15|M
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGCGAC (SEQ
24-39


(SEQ ID NO: 505)
ID NO: 522)




GTCGCAGTACTAGTAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 539)






3300027881|Ga0255055_10005864_11|P
CTCCCACCAGCCGCGCAGGGCTACGAGTACTGCGAC (SEQ
35-37


(SEQ ID NO: 506)
ID NO: 525)




GTCGCAGTACTCGAAGCCCTGCGCGGCTGTTGTTGG (SEQ




ID NO: 542)






3300001256|JGI12210J13797_10707440_22|P
CCAGCAACAGCCGCGTGGGGCTTCAAATACTGCGAC (SEQ
37-39


(SEQ ID NO: 507)
ID NO: 526)




GTCGCAGTATTTGAAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 543)






3300001256|JGI12210J13797_10707440_21|M
CCAGCAACAGCCGCGTGGGGCTTCAAATACTGCGAC (SEQ
37-39


(SEQ ID NO: 508)
ID NO: 526)




GTCGCAGTATTTGAAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 543)






3300001256|JGI12210J13797_10707441_3|P
CCAGCAACAGCCGCGTGGGGCTTCAAATACTGCGAC (SEQ
37-39


(SEQ ID NO: 509)
ID NO: 526)




GTCGCAGTATTTGAAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 543)






3300001256|JGI12210J13797_10707441_2|M
CCAGCAACAGCCGCGTGGGGCTTCAAATACTGCGAC (SEQ
37-39


(SEQ ID NO: 510)
ID NO: 526)




GTCGCAGTATTTGAAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 543)






3300001256|JGI12210J13797_11264632_33|M
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGCGAC (SEQ
23-39


(SEQ ID NO: 511)
ID NO: 522)




GTCGCAGTACTAGTAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 539)






3300001256|JGI12210J13797_11264634_48|M
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGCGAC (SEQ
24-39


(SEQ ID NO: 512)
ID NO: 522)




GTCGCAGTACTAGTAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 539)






3300001357|JGI11876J14442_10000221_42|P
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGCGAC (SEQ
24-39


(SEQ ID NO: 513)
ID NO: 522)




GTCGCAGTACTAGTAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 539)






SRR6201554_128554_71P (SEQ ID NO: 514)
CCAGCAACAGCCGCGTGGGGCTGCAAATACTGCGAC (SEQ
37-39



ID NO: 527)




GTCGCAGTATTTGCAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 544)






SRR6201554_128554_6|M (SEQIDNO: 515)
CCAGCAACAGCCGCGTGGGGCTGCAAATACTGCGAC (SEQ
37-39



ID NO: 527)




GTCGCAGTATTTGCAGCCCCACGCGGCTGTTGCTGG (SEQ




ID NO: 544)






3300014204|Ga0172381_10020148_1|P
CTCGCACACCAGCCGCTCAGGGCTTCGTACTGAGAC (SEQ
35-38


(SEQ ID NO: 516)
ID NO: 528)




GTCTCAGTACGAAGCCCTGAGCGGCTGGTGTGCGAG (SEQ




ID NO: 545)






3300028603|Ga0265293_10119881_1|M
CCAACAACAGCCGCGCGGGGCTGCGAATACTGCGAC (SEQ
36-37


(SEQ ID NO: 517)
ID NO: 529)




GTCGCAGTATTCGCAGCCCCGCGCGGCTGTTGTTGG (SEQ




ID NO: 546)






3300009095|Ga0079224_100009227_18|M
CTTCCAACAGCCGTGCAGGGCTTCGAATGCTGCA (SEQ
37-44


(SEQ ID NO: 518)
ID NO: 530)




TGCAGCATTCGAAGCCCTGCACGGCTGTTGGAAG (SEQ




ID NO: 547)






3300009095|Ga0079224_100214048_3|P
CCACCAACAGCCGCCGAGGGCTTCAAATTCTCGGACG
35


(SEQ ID NO: 519)
(SEQ ID NO: 531)




CGTCCGAGAATTTGAAGCCCTCGGCGGCTGTTGGTGG




(SEQ ID NO: 548)






33000022201|MLSBCLC_10211263_4|M
GATCACAACAGCCGCGAGAGGCTTCGAATATCTCGAC
35-37


(SEQ ID NO: 520)
(SEQ ID NO: 532)




GTCGAGATATTCGAAGCCTCTCGCGGCTGTTGTGATC




(SEQ ID NO: 549)






33000022201|MLSBCLC_10211263_3|P
GATCACAACAGCCGCGAGAGGCTTCGAATATCTCGAC
35-37


(SEQ ID NO: 521)
(SEQ ID NO: 532)




GTCGAGATATTCGAAGCCTCTCGCGGCTGTTGTGATC




(SEQ ID NO: 549)
















TABLE 257





Non-coding Sequences of Representative CLUST.195009 Systems















>SRR6201554_1444827_42|M


GCCGACATCGCCGACACGGCCTACCTCATGCTGAGGCCTTTGACGGGCAAGCGCGCCCGCACGATCGACGAGGAGAACGCGCAG


CCGGGCCGCATGGACCCCCGCAACATCGGCAACGTCGTCGCCGAGGGGCAGAGCAAGAACCTATGAGCTGCTGCTGCTCCGATG


AGATCTGCCCGGTCTGGGAGGAAACCACCCCCCGGGCCCGAAGAGCCTACACGTGCTGCGAGTGCAGCGGCCCCATTCGCGTGG


GGGAACGTCACCACAAGATCTCTTCCCTTTTCGATGGGTCGTGGAGCACATCGCGTTCGCACGAGCGCTGTCATGCCATCAGCA


GCCTGCTGCAGGCGGACTGCGACGTGTACTGCGTAGGGATGCTTCGTGAGTGCCTCCATGCGCAGTCGGCCGGGCACCTTCCGG


AGGACCTTCGGCCTTACGCCAAGGGGCTCATGTTCAAGTTCTCGGAGCACTACTACGAGCACCAAGCGCGACTGCTGTCGAAAC


GTCGCTACGGGGCCCAGGCCGTATCCTCAAGGTCGGTTTCATGAGGCAGACTCTGACGCTGTGCCGGCCAGCCAGGTTGATCTC


CAGCGAAGTGCGGCTGGACCAGGAGTACCGGGCAGCCCGCTGGGCTCACCACCGCCTGCTGGACTTCGAGGACGAGCACCAGCG


ACACCTCAATCAGGTGGCAGAATGCCCATCGTGTGGTCACCTTGGTGATAATACGTCGGAATTGGTGACGGTGTGTCCGGCTTG


CGGCACCGCCAGGGACAAGGACGTTGGCGCGGCCGAGGTGATCCTTCGGCGCGCAGAGGAGGCGCTCGCAAAGCATTCTGCAGA


GTAGCGAAATCAAAGGGGTCGCGAGGCGTCCCCTCAAGGGACACCGCACCAACAGCCGCGTGGGGCTTCCAATACCTCGACAGT


CGCCCCACCGCTCGACGTGCGAACCCCACCGCTTCTGCGACTCGCCCCCTCACCCTAGCCCTTCACGCTGCCCCTCTCATGCTG


CCAACAAGCTCTTCGAAGCTCTGTCGCTCCAGCGCCTCCTCGTCAGGCCGGTCGCGGTCGTCGACCACGGCGTCGATGATACGT


TGTTTGGCGGCCAACACGCGCCCGATGTGCTCGTCGATGGTGTC (SEQ ID NO: 533)





>3300028603|Ga0265293_10119881_1|M


GAGTGAAGACACTATCCAGACCAGCGGTCGTAGACCGCGATACAGCGACCAGGCTCGACCGTGAGTACACGGCGGCACGATGGC


TGCACAACCGCATCCTCGACTTCGAGGCGGAGCACCAGCGGGTGATCGATGCCGCGGCAGACACCGCTGAGAGGACTAGCGATC


TAACCATAGCGTGCGTATCATGTGGACGTGTACGCGACCGTGATGCGGGGGCTGCCCGCGTCATCCTACGGCGCGGAATCGAGG


CGCTCGCAAACCGTGCCGCAAAGGCGCGGAACAGCGAGGCAGCAGAGTGAACAAA (SEQ ID NO: 534)









Example 12—Functional Validation of an Engineered CLUST.195009 CRISPR-Cas System

Having identified components of CLUST.195009 CRISPR-Cas systems, a locus from the metagenomic source designated SRR6201554 (SEQ ID NO: 501) was selected for functional validation.


DNA Synthesis and Effector Library Cloning

To test the activity of the exemplary CLUST.195009 CRISPR-Cas systems, systems were designed and synthesized using a pET28a(+) vector. Briefly, an E. coli codon-optimized nucleic acid sequence encoding the CLUST.195009 SRR6201554 effector (SEQ ID NO: 501 shown in TABLE 23) was synthesized (Genscript) and cloned into a custom expression system derived from pET-28a(+) (EMD-Millipore). The vector included the nucleic acid encoding the CLUST.195009 effector under the control of a lac promoter and an E. coli ribosome binding sequence. The vector also included an acceptor site for a CRISPR array library driven by a J23119 promoter following the open reading frame for the CLUST.195009 effector. The non-coding sequence used for the CLUST.195009 SRR6201554 effector (SEQ ID NO: 501) is set forth in SEQ ID NO: 533, as shown in TABLE 25. An additional condition was tested, wherein the CLUST.195009 SRR6201554 effector (SEQ ID NO: 501) was individually cloned into pET28a(+) without the non-coding sequence. See FIG. 1A.


An oligonucleotide library synthesis (OLS) pool containing “repeat-spacer-repeat” sequences was computationally designed, where “repeat” represents the consensus direct repeat sequence found in the CRISPR array associated with the effector, and “spacer” represents sequences tiling the pACYC184 plasmid or E. coli essential genes. In particular, the repeat sequence used for the CLUST.195009 SRR6201554 effector (SEQ ID NO: 501) is set forth in SEQ ID NO: 522, as shown in TABLE 24. The spacer length was determined by the mode of the spacer lengths found in the endogenous CRISPR array. The repeat-spacer-repeat sequence was appended with restriction sites enabling the bi-directional cloning of the fragment into the aforementioned CRISPR array library acceptor site, as well as unique PCR priming sites to enable specific amplification of a specific repeat-spacer-repeat library from a larger pool.


Next, the repeat-spacer-repeat library was cloned into the plasmid using the Golden Gate assembly method. Briefly, each repeat-spacer-repeat was first amplified from the OLS pool (Agilent Genomics) using unique PCR primers and pre-linearized the plasmid backbone using BsaI to reduce potential background. Both DNA fragments were purified with Ampure XP (Beckman Coulter) prior to addition to Golden Gate Assembly Master Mix (New England Biolabs) and incubated per the manufacturer's instructions. The Golden Gate reaction was further purified and concentrated to enable maximum transformation efficiency in the subsequent steps of the bacterial screen.


The plasmid library containing the distinct repeat-spacer-repeat elements and CRISPR effectors was electroporated into E. Cloni electrocompetent E. coli (Lucigen) using a Gene Pulser Xcell® (Bio-rad) following the protocol recommended by Lucigen. The library was either co-transformed with purified pACYC184 plasmid or directly transformed into pACYC184-containing E. Cloni electrocompetent E. coli (Lucigen), plated onto agar containing chloramphenicol (Fisher), tetracycline (Alfa Aesar), and kanamycin (Alfa Aesar) in BioAssay® dishes (Thermo Fisher), and incubated for 10-12 hours at 37° C. After estimation of approximate colony count to ensure sufficient library representation on the bacterial plate, the bacteria were harvested, and plasmid DNA WAS extracted using a QIAprep Spin Miniprep® Kit (Qiagen) to create an “output library.” By performing a PCR using custom primers containing barcodes and sites compatible with Illumina sequencing chemistry, a barcoded next generation sequencing library was generated from both the pre-transformation “input library” and the post-harvest “output library,” which were then pooled and loaded onto a Nextseq 550 (Illumina) to evaluate the effectors. At least two independent biological replicates were performed for each screen to ensure consistency. See FIG. 1B.


Bacterial Screen Sequencing Analysis

Next generation sequencing data for screen input and output libraries were demultiplexed using Illumina bcl2fastq. Reads in resulting fastq files for each sample contained the CRISPR array elements for the screening plasmid library. The direct repeat sequence of the CRISPR array was used to determine the array orientation, and the spacer sequence was mapped to the source (pACYC184 or E. Cloni) or negative control sequence (GFP) to determine the corresponding target. For each sample, the total number of reads for each unique array element (ra) in a given plasmid library was counted and normalized as follows: (ra+1)/total reads for all library array elements. The depletion score was calculated by dividing normalized output reads for a given array element by normalized input reads.


To identify specific parameters resulting in enzymatic activity and bacterial cell death, next generation sequencing (NGS) was used to quantify and compare the representation of individual CRISPR arrays (i.e., repeat-spacer-repeat) in the PCR product of the input and output plasmid libraries. The array depletion ratio was defined as the normalized output read count divided by the normalized input read count. An array was considered to be “strongly depleted” if the depletion ratio was less than 0.3 (more than 3-fold depletion), depicted by the blue dashed line in FIG. 35 and FIG. 38. When calculating the array depletion ratio across biological replicates, the maximum depletion ratio value for a given CRISPR array was taken across all experiments (i.e. a strongly depleted array must be strongly depleted in all biological replicates). A matrix including array depletion ratios and the following features were generated for each spacer target: target strand, transcript targeting, ORI targeting, target sequence motifs, flanking sequence motifs, and target secondary structure. The degree to which different features in this matrix explained target depletion for CLUST.195009 systems was investigated.



FIG. 35 shows the degree of interference activity of the engineered composition, with a non-coding sequence, by plotting for a given target the normalized ratio of sequencing reads in the screen output versus the screen input. The results are plotted for each DR transcriptional orientation. In the functional screen for the composition, an active effector complexed with an active RNA guide will interfere with the ability of the pACYC184 to confer E. coli resistance to chloramphenicol and tetracycline, resulting in cell death and depletion of the spacer element within the pool. Comparison of the results of deep sequencing the initial DNA library (screen input) versus the surviving transformed E. coli (screen output) suggests specific target sequences and DR transcriptional orientations that enable an active, programmable CRISPR system. The screen also indicates that the effector complex is only active with one orientation of the DR. As such, the screen indicated that the CLUST.195009 SRR6201554 effector was active in the “forward” orientation (5′-CCAG . . . CGAC-[spacer]-3′) of the DR (FIG. 35).



FIG. 36A and FIG. 36B depict the location of strongly depleted targets for the CLUST.195009 SRR6201554 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. Flanking sequences of depleted targets were analyzed to determine the PAM for CLUST.195009 effectors. A WebLogo representation (Crooks et al., Genome Research 14: 1188-90, 2004) of the PAM sequence for CLUST.195009 SRR6201554 is shown in FIG. 37, where the “20” position corresponds to the nucleotide adjacent to the 5′ end of the target.


Furthermore, FIG. 38 shows that the CLUST.195009 SRR6201554 effector retains activity in the absence of the non-coding sequence. In agreement with FIG. 35, the CLUST.195009 SRR6201554 effector, without the non-coding sequence, was active in the “forward” orientation (5′-CCAG . . . CGAC-[spacer]-3′) of the DR. FIG. 39A and FIG. 39B depict the locations of the strongly depleted targets for the CLUST.195009 SRR6201554 effector, without the non-coding sequence, targeting pACYC184 and E. coli E. Cloni essential genes, respectively. A WebLogo of the PAM sequence for CLUST.195009 SRR6201554, without the non-coding sequence, is shown in FIG. 40, where the “20” position corresponds to the nucleotide adjacent to the 5′ end of the target.


These results suggest that effectors of CLUST.195009 do not require a tracrRNA. CLUST.195009 effectors may thus be self-processing, allowing for ease in multiplexing.


Example 13—Identification of Components of CLUST.057059 CRISPR-Cas Systems

This protein family was identified using the computational methods described above. The CLUST.057059 system comprises single effectors associated with CRISPR systems found in particular environments, including freshwater, aquatic, biofilm, crustacean, microbial mat, sediment and soil crust environments as well as in Aphanizomenon phage, Cyanothece sp., Propionimicrobium lymphophilum, Sphaerospermopsis reniformis (TABLE 28). Exemplary CLUST.057059 effectors include those shown in TABLES 28 and 29, below. Examples of direct repeat sequences and spacer lengths for these systems are shown in TABLE 30. Optionally, the system includes a tracrRNA that is contained within a non-coding sequence listed in TABLE 31.









TABLE 288







Representative CLUST.057059 Effector Proteins














effector
SEQ


source
effector accession
# spacers
size
ID NO














aquatic-freshwater
3300023179|Ga0214923_10000634_60|P
10
623
601


Aphanizomenon phage
ATW59329.1
10
466
602


vB_AphaS-CL131 (MG209611)


aquatic metagenome
SRR3727507_43825_27|P
22
505
603


aquatic metagenome
SRR3727511_164637_6|M
3
505
604


aquatic metagenome
SRR3727516_4364_11|P
11
505
605


aquatic metagenome
SRR3727519_259012_1|M
5
505
606


aquatic metagenome
SRR3727519_13189_1|M
11
505
607


aquatic metagenome
SRR5216639_261560_2|P
10
560
608


aquatic metagenome
SRR5216639_2064603_3|P
3
522
609


aquatic metagenome
SRR5216639_2018995_2|M
13
553
610


aquatic metagenome
SRR5216639_409921_41|M
9
633
611


aquatic metagenome
SRR5216639_409921_40|P
9
622
612


aquatic metagenome
SRR8571171_1127661_43|P
9
622
613


aquatic-freshwater
3300002370|release|scaffold29556_3|P
3
557
614


aquatic-freshwater
3300002382|1017448|scaffold9922858_2|M
8
506
615


aquatic-freshwater
3300002396|B570J29629_1000007_3|P
3
557
616


aquatic-freshwater
3300002396|B570J29629_1000558_1|M
9
506
617


aquatic-freshwater
3300002408|1017274|scaffold00152_5|M
8
557
618


aquatic-freshwater
3300013005|Ga0164292_10021448_2|P
15
391
619


aquatic-freshwater-freshwater
3300027808|Ga0209354_10002575_5|M
11
559
620


lake


aquatic-freshwater-freshwater
3300020048|Ga0207193_1000230_60|P
10
557
621


lake sediment


aquatic-freshwater-freshwater
3300015360|Ga0163144_10269315_2|M
4
504
622


microbial mat


aquatic-freshwater-glacier
3300022561|Ga0212090_10036221_2|M
6
585
623


valley


aquatic-freshwater-lake
3300005805|Ga0079957_1000538_44|M
6
507
624


aquatic-freshwater-lake
3300005805|Ga0079957_1019747_2|M
19
624
625


aquatic-marine
3300001043|JGI12316J14372_10004500_6|M
4
484
626


aquatic-marine
3300001043|JGI12316J15309_10000277_14|M
2
484
627


aquatic-marine
3300001341|1010336|scaffold_14_1570|P
2
484
628


aquatic-marine
3300027607|Ga0207422_1002635_7|P
2
484
629


aquatic-marine-aqueous
3300007960|Ga0099850_1030516_1|P
2
574
630


aquatic-thermal springs-
3300028735|Ga0272446_1017865_2|M
3
454
631


microbial mat


biofilm metagenome
SRR6869054_1535443_5|P
2
484
632


biofilm metagenome
SRR6869054_457352_2|P
7
614
633


biofilm metagenome
SRR6869055_1317318_5|P
2
484
634


crustacean metagenome
SRR3137750_862387_23|M
6
553
635


crustacean metagenome
SRR3138838_558748_1|P
2
547
636


crustacean metagenome
SRR3139299_296800_1|M
2
557
637


crustacean metagenome
SRR3139690_493772_1|M
2
550
638


(SRR3139690)


crustacean metagenome
SRR3139690_185157_1|M
3
500
639


(SRR3139690)


crustacean metagenome
SRR3139690_493772_1|P
2
618
640


(SRR3139690)



Cyanothece sp. PCC 8801

WP_015957291.1
38
494
641


(CP001287)



Cyanothece sp. PCC 8801

CP001287_4134|P
38
505
642


(CP001287)



Cyanothece sp. PCC 8802

WP_015785111.1
11
494
643


(NC_013161)



Cyanothece sp. PCC 8802

NC_013161_4122|P
11
505
644


(NC_013161)


freshwater bacterium LH6-2
OVJI010000022_17|P
4
649
645


Bacteria. (OVJI010000022)


freshwater metagenome
CAAAFE010002307_2|M
5
515
646


(CAAAFE010002307)


freshwater metagenome
OGWG01000020_5|P
19
660
647


(OGWG01000020)


freshwater metagenome
OGWG01000020_4|M
19
657
648


(OGWG01000020)


freshwater metagenome
OGWL01001214_2|P
9
556
649


(OGWL01001214)


freshwater metagenome
OGWO01000325_8|P
13
560
650


(OGWO01000325)


freshwater metagenome
OGWP01000327_5|M
7
657
651


(OGWP01000327)


freshwater metagenome
OGWP01001429_1|P
4
572
652


(OGWP01001429)


freshwater metagenome
OGWP01001429_1|M
4
581
653


(OGWP01001429)


freshwater metagenome
SRR3989431_2283179_3|M
11
557
654


(SRR3989431)


freshwater metagenome
SRR3989431_168870_5|M
10
558
655


(SRR3989431)


freshwater metagenome
SRR4754862_508403_7|P
18
557
656


(SRR4754862)


freshwater metagenome
SRR5468113_274154_3|M
2
574
657


(SRR5468113)


freshwater metagenome
SRR5468149_1084624_1|P
3
613
658


(SRR5468149)


freshwater metagenome
SRR5574091_1575611_4|M
13
548
659


(SRR5574091)


freshwater metagenome
SRR6475630_1852385_2|M
2
557
660


(SRR6475630)


freshwater metagenome
SRR6475633_3251865_1|M
12
471
661


(SRR6475633)


fungi-freshwater
3300031784|Ga0315899_10084352_2|M
2
525
662


(3300031784|Ga0315899_10084352)


fungi-freshwater
3300031857|Ga0315909_10035026_2|M
5
548
663


(3300031857|Ga0315909_10035026)


fungi-freshwater
3300032092|Ga0315905_10155087_1|P
5
550
664


(3300032092|Ga0315905_10155087)


fungi-freshwater
3300032092|Ga0315905_10155087_2|M
5
559
665


(3300032092|Ga0315905_10155087)


lake water metagenome
SRR6476078_1283286_3|P
15
391
666


(SRR6476078)


lake water metagenome
SRR6476078_1283286_3|M
15
385
667


(SRR6476078)


lake water metagenome
SRR7812565_865334_1|P
3
623
668


(SRR7812565)


microbial mat metagenome
SRR6448207_482583_3|P
7
613
669


(SRR6448207)


microbial mat metagenome
SRR7244345_343276_44|P
39
522
670


(SRR7244345)



Propionimicrobium

WP_016456110.1
15
532
671



lymphophilum ACS-093-V-



SCH5 (AGZR01000008)



Propionimicrobium

AGZR01000008_18|M
15
513
672



lymphophilum ACS-093-V-



SCH5 (AGZR01000008)


sediment metagenome
SRR8162779_1368970_53|P
5
522
673


(SRR8162779)


soil crust metagenome
SRR5855413_300079_4|M
3
524
674


(SRR5855413)


soil crust metagenome
SRR5855413_1311040_12|M
12
516
675


(SRR5855413)


soil crust metagenome
SRR5855415_346708_105|P
2
502
676


(SRR5855415)


soil crust metagenome
SRR5855420_1331858_67|P
12
509
677


(SRR5855420)


soil crust metagenome
SRR5855420_1331858_68|M
12
516
678


(SRR5855420)


soil crust metagenome
SRR5855435_639752_6|P
3
524
679


(SRR5855435)


soil metagenome
SRR6201738_878635_2|M
4
685
680


(SRR6201738)


soil metagenome
SRR6201739_286584_1|P
3
685
681


(SRR6201739)


Sphaerospermopsis reniformis
GCL37732.1
26
626
682


(BJCE01000094)
















TABLE 299





Amino acid Sequences of Representative CLUST.057059 Effector Proteins















>3300023179|Ga0214923_10000634_60|P


[aquatic-freshwater]


MKTIKIKIKLTTDQVQLCDRYLEELTWLWNLTLSNQLHNHCVTWYDWAAKLSANLDKATEKLDKLKPEQQQLIKDYYRT


KDKPKLSKKEQELVAKFDIFARWNSFSLDGIIPVPLRLGNSGYEGLSCQIATGGNYWKRDENINIPINTKKGIVHVKGY


KLVKGDKPWQRIEIVPHKYRTFPGGKFEGRELTTLEKLDNVNGLNTLRAFQNLPDLQVSSHYIGGLLAFFKESWSAFLD


PKRMNSRKPKFKKDSDKITTLSNNQCAPNRIDVNKNIVTVTGFSPIAIIDKNWVKRLNLSEVLPRTYMLTQNPSGYYIN


IVIAHPLHEEKTALVKKLPKVKKEFGEDSQEYEDIKSKIKFLEQQIKEASIVKGKDLSVGIDPGVQAVVSTDHGALFLP


NLTRERVSIHIEELQSRLDNIELINDKKWKSLGNKTPRIKTKNETKLQEKISRLHERGANSSNAFNHKLSTRLSRTYEH


IAWEDTQINNLLKQVEPKALPEGIGYAHNGASAKRGLNWIMRQRCLSDLKAKTKQKTENRGGNFHEPPANYSSQTCHCC


KQKGERRSQHEFICKNSDCKLFDIPQQADTNAARNHKQNGGFELGEVKYHNVKLVYQKPKRFKKKRLTNQ


(SEQ ID NO: 601)





>ATW59329.1


[Aphanizomenon phage vB_AphaS-CL131]


MKTKTIEFKIYPTLAQSQTIDKWLQDIKWVWNKGLSLKFADRQKHYRTQIGDRNIPDGLPLRWKWRKVEATDKKGKITE


KWEKIRLVGGGVVRPKSGYPYCPIREHRNIEDPGKFKYFRNDNSPQFVIDIPSEFKEGMADTLKKAWQAYSDPKRPTQK


PKFKGKQDKVRSLTSLHAGGKSKLLKPERIPGSDNGFVQFPKLGKLKVKGLYSRHDWVEWGSAKIVKEPSGYYLHVCVD


VPNDPLPKSDKSVGIDPGLLSVITTDQGREVAPPKLFRKQQTKLRRLQRKASRQQKGGSNQKKTYQKVALQHEKIRRSR


NAFNHKLSTKVVREYSGIVMEDLKIQNLSRKPKAKKREDGNGYEQNGAKRKAGLNKSFADSALGDLISKIETKCKDTDR


EFVKVAAHHTTVDCSNCGAKIKKALSQRTHRCTECGYEDGRDSNAAKNILIKGQKEFKTVYRAWAWEHGET


(SEQ ID NO: 602)





>SRR3727507_43825_27|P


[aquatic metagenome]


MKTLEFKLTLNQSQRAKLNDWMSANKYVWNEGVRHIEWFNEFNRYHKPDKKSYPCSPIRSQNFWKKYRGQEPIENYGLG


EFPSCPIGWINDSFNPELPSFPVSRSPEHEQIHNISLFSFIKLFAHSRNQDKPWLLEVPSKFINGEVDCLINSWNAFVK


SPANLKRRPPKYKGKHDKIDALIHNNSKGMGTKGDSINVPKLGYVRVKGFSDRWYFEDGKPIDFCPLKICKKASGWYLL


ITGNTPDRHYQKSDSIAGFDLGVHEILTDEKNYHATSPRYLKNSQASLKRLQRKMSRQFRMNEGDKTWERKNWNRTKLK


LARTHERIARQRRALNHFLSHKVVNTHAVIALEDLKLLNMTKAVKTGEAGVQNGRKSKSGLNRAMLDNGLGQLVGMIET


KAKVADRIVVQVDPKHTSQECPHCGHIEKKANKKNREVTCGNCGASFHRDTSAAEIIKRRGIARLEGGNVESKAKKERK


AKYGKRSKVVESAIDPRTIFVEALQDLPLFG 


(SEQ ID NO: 603)





>SRR3727511_164637_6|M


[aquatic metagenome]


MKTLEFKLTLNQSQRAKLNDWMSANKYVWNEGVRHIEWFNEFNRYHKPDKKSYPCSPIRSQNFWKKYRGQEPIENYGLG


EFPSCPIGWINDSFNPELPSFPVSRSPEHEQIHNISLFSFIKLFAHSRNQDKPWLLEVPSKFINGEVDCLINSWNAFVK


SPANLKRRPPKYKGKHDKIDALIHNNSKGMGTKGDSINVPKLGYVRVKGFSDRWYFEDGKPIDFCPLKICKKASGWYLL


ITGNTPDRHYQKSDSIAGFDLGVHEILTDEKNYHATSPRYLKNSQASLKRLQRKMSRQFRMNEGDKTWERKNWNRTKLK


LARTHERIARQRRALNHFLSHKVVNTHAVIALEDLKLLNMTKAVKTGEAGVQNGRKSKSGLNRAMLDNGLGQLVGMIET


KAKVADRIVVQVDPKHTSQECPHCGHIEKKANKKNREVTCGNCGASFHRDTSAAEIIKRRGIARLEGGNVESKAKKERK


AKYGKRSKVVESAIDPRTIFVEALQDLPLFG 


(SEQ ID NO: 604)





>SRR3727516_4364_11|P


[aquatic metagenome]


MKTLEFKLTLNQSQRAKLNDWMSANKYVWNEGVRHIEWFNEFNRYHKPDKKSYPCSPIRSQNFWKKYRGQEPIENYGLG


EFPSCPIGWINDSFNPELPSFPVSRSPEHEQIHNISLFSFIKLFAHSRNQDKPWLLEVPSKFINGEVDCLINSWNAFVK


SPANLKRRPPKYKGKHDKIDALIHNNSKGMGTKGDSINVPKLGYVRVKGFSDRWYFEDGKPIDFCPLKICKKASGWYLL


ITGNIPDRHYQKSDSIAGFDLGVHEILTDEKNYHATSPRYLKNSQASLKRLQRKMSRQFRMNEGDKTWERKNWNRTKLK


LARTHERIARQRRALNHFLSHKVVNTHAVIALEDLKLLNMTKAVKTGEAGVQNGRKSKSGLNRAMLDNGLGQLVGMIET


KAKVADRIVVQVDPKHTSQECPHCGHIEKKANKKNREVTCGNCGASFHRDTSAAEIIKRRGIARLEGGNVESKAKKERK


AKYGKRSKVVESAIDPRTIFVEALQDLPLFG 


(SEQ ID NO: 605)





>SRR3727519_259012_1|M


[aquatic metagenome]


MKTLEFKLTLNQSQRAKLNDWMSANKYVWNEGVRHIEWFNEFNRYHKPDKKSYPCSPIRSQNFWKKYRGQEPIENYGLG


EFPSCPIGWINDSFNPELPSFPVSRSPEHEQIHNISLFSFIKLFAHSRNQDKPWLLEVPSKFINGEVDCLINSWNAFVK


SPANLKRRPPKYKGKHDKIDALIHNNSKGMGTKGDSINVPKLGYVRVKGFSDRWYFEDGKPIDFCPLKICKKASGWYLL


ITGNTPDRHYQKSDSIAGFDLGVHEILTDEKNYHATSPRYLKNSQASLKRLQRKMSRQFRMNEGDKTWERKNWNRTKLK


LARTHERIARQRRALNHFLSHKVVNTHAVIALEDLKLLNMTKAVKTGEAGVQNGRKSKSGLNRAMLDNGLGQLVGMIET


KAKVADRIVVQVDPKHTSQECPHCGHIEKKANKKNREVTCGNCGASFHRDTSAAEIIKRRGIARLEGGNVESKAKKERK


AKYGKRSKVVESAIDPRTIFVEALQDLPLFG 


(SEQ ID NO: 606)





>SRR3727519_13189_1|M


[aquatic metagenome]


MKTLEFKLTLNQSQRAKLNDWMSANKYVWNEGVRHIEWFNEFNRYHKPDKKSYPCSPIRSQNFWKKYRGQEPIENYGLG


EFPSCPIGWINDSFNPELPSFPVSRSPEHEQIHNISLFSFIKLFAHSRNQDKPWLLEVPSKFINGEVDCLINSWNAFVK


SPANLKRRPPKYKGKHDKIDALIHNNSKGMGTKGDSINVPKLGYVRVKGFSDRWYFEDGKPIDFCPLKICKKASGWYLL


ITGNTPDRHYQKSDSIAGFDLGVHEILTDEKNYHATSPRYLKNSQASLKRLQRKMSRQFRMNEGDKTWERKNWNRTKLK


LARTHERIARQRRALNHFLSHKVVNTHAVIALEDLKLLNMTKAVKTGEAGVQNGRKSKSGLNRAMLDNGLGQLVGMIET


KAKVADRIVVQVDPKHTSQECPHCGHIEKKANKKNREVTCGNCGASFHRDTSAAEIIKRRGIARLEGGNVESKAKKERK


AKYGKRSKVVESAIDPRTIFVEALQDLPLFG 


(SEQ ID NO: 607)





>SRR5216639_261560_2|P


[aquatic metagenome]


MSNVSENVRTKEFKLILTPEQERTLEDWMLVCKWVWNRSLGLIEEFNDWNPYDKISKSYVPAMPLQRYDRKLKQFVRVE


IPDWKLSTERKETSKGLVHPVSIDKDTPQIDSLNSKKSILYGFLKVFGHQYHKDRIITYMVRGQERKVKFTDCPAKFIQ


GVSHELSKAWDGFLAGRHSRPRFKTARDKVMTLLHYNAKDIGVKGSSINIPKLGYVEVIGFDNRWYGVDFNPMKICKKA


SGWYVQFTATVPVKKFKKTGLACGIDPGHQFVMALDNGHTIKAAQPLKQNLRRLKRMQKRLSRKFRINNGKTKNWEKLN


QRIAKLHEKIARHRRSFNHWHSTNLVKWFDVIFVEDYKPANVYRKAKAKTKTDEQGNPMTADNGAVVYEKNNQKRKKGS


NRTGSDIAIGQAIELLETKAKEHDKLVIRVPAYGTTLRCANCGHEERKSLSQRIHHCANCGYTVARDVNSGQNVKLKGL


AQLALDHGVELVDNFWYQILKNATTSSCSEKKGKKKAKKKDVVSIPDDLFKNGVSAFLIAETVKTRAIIKQKYLENLNK


TAKTLMG 


(SEQ ID NO: 608)





>SRR5216639_2064603_3|P


[aquatic metagenome]


MDPSIKVRKVEFKVPLDTQQRQIFEHHSQALRFIWNTGLACIQWREWWEKWQQVLESPEYQGYAPEPVEMDWGYNLIGK


KKVYGLCCDRVRFRIEKEDPVLDVGEWIDGTKLGSGKSIAGYWVAYPCKPDSVREHWTEQPRLPLLMKNPYMALRSMFA


KKNWDPDSVEGKIIHSLNTAWVAGELKALGDAWSSYKSGVRKRPRFKKRHDRSNLINPSSKQTKFCKNSLTLPGMGRVT


VKGLQKRWGNKPACPISLIKEGDEFYLQLSGGVEVPATRSNGVTIGIDPGSVRLATDDSGRAIDAPKFGKRAMRRAQKL


QAAINRKLRLNSDRVYDDADPSKFYLKPRRDWKRKNLQKVRTKLQRLSAKTARQRRAFNHFHSTRLVQSADVIIMEGIE


LKNVTRAVKKGKSGEHNKRKAKAGLNRSLLDNAIGQFYGMVEQKAKDAGKVTARVNPFRTSMTCHQCGFSDAKNRKTQA


VFHCQKCGHHDNADRNAAANIKRMGILGITKLTFDNEWNITVPDWDKI 


(SEQ ID NO: 609)





>SRR5216639_2018995_2|M


[aquatic metagenome]


MNTITKTRKVEFKVTLDTQQRQVFDHHSHALRFVWNTGLACIQWREWWEKWQQVLESPDRVGYAPEPVEMEWAYNLVGK


KKVYGLACDRVRFRLEKSDPTLANGEWVANGKKEGGYWVAYPCKPQPVREHWTEEPRLMLLMKNPYMALRTMFAKKNWD


PDSVQGKIIHSLNTAWVAGELKALGDAWSSYKSGVRKRPRFKKRHDRSNLINPSSKQTKFSGNSLTLPGMGRVTVKGLQ


QRWGDKPACPIALIKEGDEFYLQLTGEVQVPAVRSNGVTIGLDPGSVRLATADNGSAIEAPKFGRNIMRRNKKLQASIN


RKLRLNSDRVHDEADPSKFYLKPRKNWKRKNLQKVRTKLQRLNTKAARQRRAYNHFHSTRIVQSADVIIMEGLELKNVT


RAVKKGKSGQHNKRKAKAGLNRSLLDNAIGQFYGMVEQKAKDAGKVTTRVNPFRTSMTCHQCGFSDAKNRTTQAVFHCQ


KCGHRDNADRNAALNIKRMGVLGVTKLTFDNDWNITIEGWGSVAALHSKGLKPVGTDKKRSKRVQKEHPSQMVLELGAP


(SEQ ID NO: 610)





>SRR5216639_409921_41|M


[aquatic metagenome]


MTRENKQAVNNMKTIKIKVKLTPSQIESCNKYLEELSWLWNLVLANQLHNHCIRWYEWAAKLSAELAKTNEKLEKLKPE


QQQLIKDYYNSTTKPKLSKKDQELVNKFNILSRWSPFDLEGIIPVPLRIGNSAYEGLSCQIATGGSYWKRDDNTVIPVN


TKKGIAFIKGSKLVKGDRPWQRIEIKPHEYRKFPGGKYEGRELVTLEKFDNLNGLNTLRASQNLPDLTVSSHYIGGLLG


FFKESWKAFLDSKRTISRKPKFKKDNDKIATLSNSQCPPNRIDVDKNIIAITGFSAVKVDDKSWVKRLNLSQSLPRTYM


LTKQQSGYYINIIVAHPLQEEKSILANKLPKVKKQFGEDSQEYADIKSKLKFIEQQIKESSVIEGKGLSVGIDPGIQSV


VSTDHGALFLPNLSRERISIHIEELQSKLDNAESINDKKWKEAGNKTPRPRTNAEIKLQDKIRRLHERGSNSSNAFNHK


LSTRLSRTYEHIAWENTQIKNLLKQVEPKSLPEGTGYAHNGASAKRGLNWIMRQRCLGDLEKKTKLKVENRGGSFQQPP


ANYTSQTCHQCKQKGERLSQHEFICKNSECRLFNVPQQADTNAARNHKQNAGFELGEVKYNSVRLTYEKPQRFKKKRAD


N 


(SEQ ID NO: 611)





>SRR5216639_409921_40|P


[aquatic metagenome]


MKTIKIKVKLTPSQIESCNKYLEELSWLWNLVLANQLHNHCIRWYEWAAKLSAELAKTNEKLEKLKPEQQQLIKDYYNS


TTKPKLSKKDQELVNKFNILSRWSPFDLEGIIPVPLRIGNSAYEGLSCQIATGGSYWKRDDNTVIPVNTKKGIAFIKGS


KLVKGDRPWQRIEIKPHEYRKFPGGKYEGRELVTLEKFDNLNGLNTLRASQNLPDLTVSSHYIGGLLGFFKESWKAFLD


SKRTISRKPKFKKDNDKIATLSNSQCPPNRIDVDKNIIAITGFSAVKVDDKSWVKRLNLSQSLPRTYMLTKQQSGYYIN


IIVAHPLQEEKSILANKLPKVKKQFGEDSQEYADIKSKLKFIEQQIKESSVIEGKGLSVGIDPGIQSVVSTDHGALFLP


NLSRERISIHIEELQSKLDNAESINDKKWKEAGNKTPRPRTNAEIKLQDKIRRLHERGSNSSNAFNHKLSTRLSRTYEH


IAWENTQIKNLLKQVEPKSLPEGTGYAHNGASAKRGLNWIMRQRCLGDLEKKTKLKVENRGGSFQQPPANYTSQTCHQC


KQKGERLSQHEFICKNSECRLFNVPQQADTNAARNHKQNAGFELGEVKYNSVRLTYEKPQRFKKKRADN


(SEQ ID NO: 612)





>SRR8571171_1127661_43|P


[aquatic metagenome]


MKTIKIKVKLTPSQIESCDKYLEELSWLWNLVLANQLHNHCIRWYEWAAKLSAELAKTNEKLEKLKPEQQQLIRDYYNS


TTKPKLSKKDQELVNKFNILSRWSPFDLEGIIPVPLRIGNSAYEGLSCQIATGGSYWKRDDNTVIPVNTKKGISFIKGS


KLVKGDKPWQRVEIKPHEYRKFPGGKYEGRELVTLEKFDNLNGLNTLRASQNLPDLTVSSHYIGGLLGFFKESWKAFLD


SKRTISRKPKFKKDNDKIATLSNSQCPPNRIDVDKNIIAITGFSAVKVDDKSWVKRLNLSQSLPRTYMLTKQQSGYYIN


IIVAHPLQEEKSILANKLPKVKKQFGEDSQEYADIKSKLKFIEQQIKESSVIEGKGLSVGIDPGIQSVVSTDHGALFLP


NLSRERVSIHIEELQSKLDNAESINDKKWKEAGNKTSRPRTNTEIKLQDKIRRLHERGSNSSNAFNHKLSTRLSRTYEH


IAWENTQIKNLLKQVEPKSLPEGTGYAHNGASAKRGLNWIMRQRCLGDLEKKTKLKVENRGGSFQQPPANYTSQTCHQC


KQKGERLSQHEFICKNSECRLFNVPQQADTNAARNHKQNAGFELGEVKY


NGVRLTYEKPQRFKKKRADN 


(SEQ ID NO: 613)





>3300002370|release|scaffold29556_3|P


[aquatic-freshwater]


MSNFSENVRTKEFKLILSSEQERTLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKLSKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGLIHPVAIDENSPIIDSLDSKKSVLYGFLKVFGHQHHKDRIVTYLVRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDSKVNIPKLGYIEVIGFDKRWYGCDFNPMKICKKA


SGWYIQLTASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRSLKRLRKMQQQLSRKYRMNEGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGNPVVAENGTVIYDKNSQKRKRGS


NRTGSDVAIGQAIDLLETKAKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLINKNSATPSCSKKATKKKTKKSDTITIPDDLFKNGVHDFLVAETAKTHAIINRMSLGDF


DRNA 


(SEQ ID NO: 614)





>3300002382|1017448|scaffold9922858_2|M


[aquatic-freshwater]


MGNSGYEGLSCQIATGGNYWKRDENINIPINTKKGIIHVKGYKLVKGDKLWQRIEIVPHKYRTFPGGKFEGRELTTLEK


LDNVNGLNTLRAFQNLPDLQVSSHYIGGLLAFFKESWSAFLDPKRMNSRKPKFKKDSDKITTLSNNQCAPNRIDVNKNI


VTVTGFSPITIIDKNWVKRLNLSQVLPRTYMLTQNPSGYYINIVIAHPLHEEKIALVKKLPKVKKEFGEDSQEYEDIKS


KIKFLEQQIKESSIVKGKDLSVGIDPGVQAVVSTDHGALFLPNLTRERVSIHIEELQSRLDNAELINDKKWKSLGNKTP


RIKTKNETKLQEKISRLHERGANSSNAFHKLSTRLSRTYEHIAWEDTQINNLLKQVEPKALPEGVGYAHNGASAKRGNL


NWIMRQRCLSDLKAKTKQKTENRGGNFHEPPANYSSQTCHCCGQKGERRSQHEFVCKNSDCKLFDIPQQADTNAARNHK


QNGGFELGEVKYHNVKLVYQKPKRFKKKRLTK 


(SEQ ID NO: 615)





>3300002396|B570J29629_1000007_3|P


[aquatic-freshwater]


MSNFSENVRTKEFKLILSSEQERTIEDWMLVCKWVWNRSLGLIEEFNEWNPYDKLSKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGLIHPVAIDENSPIIDSLDSKKSVLYGFLKVFGHQHHKDRIVTYLVRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDSKVNIPKLGYIEVIGFDKRWYGCDFNPMKICKKA


SGWYIQLTASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRSLKRLRKMQQQLSRKYRMNEGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGNPVVAENGTVIYDKNSQKRKRGS


NRTGSDVAIGQAIDLLETKAKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLINKNSATPSCSKKATKKKTKKSDTITIPDDLFKNGVHDFLVAETAKTHAIINRMSLGDF


DRNA 


(SEQ ID NO: 616)





>33000023961B570J29629_1000558_1|M


[aquatic-freshwater]


MGNSGYEGLSCQIATGGNYWKRDENINIPINTKKGIIHVKGYKLVKGDKLWQRIEIVPHKYRTFPGGKFEGRELTTLEK


LDNVNGLNTLRAFQNLPDLQVSSHYIGGLLAFFKESWSAFLDPKRMNSRKPKFKKDSDKITTLSNNQCAPNRIDVNKNI


VTVTGFSPITIIDKNWVKRLNLSQVLPRTYMLTQNPSGYYINIVIAHPLHEEKIALVKKLPKVKKEFGEDSQEYEDIKS


KIKFLEQQIKESSIVKGKDLSVGIDPGVQAVVSTDHGALFLPNLTRERVSIHIEELQSRLDNAELINDKKWKSLGNKTP


RIKTKNETKLQEKISRLHERGANSSNAFNHKLSTRLSRTYEHIAWEDTQINNLLKQVEPKALPEGVGYAHNGASAKRGL


NWIMRQRCLSDLKAKTKQKTENRGGNFHEPPANYSSQTCHCCGQKGERRSQHEFVCKNSDCKLFDIPQQADTNAARNHK


QNGGFELGEVKYHNVKLVYQKPKRFKKKRLTK 


(SEQ ID NO: 617)





>3300002408|1017274|scaffold00152_5|M


[aquatic-freshwater]


MSNFSENVRTKEFKLILSSEQERTLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKLSKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGLIHPVAIDENSPIIDSLDSKKSVLYGFLKVFGHQHHKDRIVTYLVRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDSKINIPKLGYIEVIGFDKRWYGCDFNPMKICKKA


SGWYIQLTASVPIKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRSLKRLRKMQQQLSRKYRMNEGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGNPVVAENGTVIYDKNSQKRKRGS


NRTGSDVAIGQAIDLLETKAKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLINKNSATPSCSKKATKKKTKKSDTITIPDDLFKNGVHDF


LVAETAKTHAIINRMSLGDFDRNA 


(SEQ ID NO: 618)





>3300013005|Ga0164292_10021448_2|P


[aquatic-freshwater]


MIFEPNVKVLEFKIHPTEEQVSKIDQSLAACKLLWNLSIALKEESKQRYYRKKHKFDEFSPEIWELSYSGHYDEKEFKS


LKDKEKKLLIGNPCCKIAYFKKTSNGKEYTPLDAIPIRRFMNAENIDKDAVNYLNRKKLAFYFRENTAKFIGEIETEFK


KGFFKSVIKPAYDAAKKGIRGIPRFKGRRDKVETLVNGQPGTIKIKSNGVIVSSKIGLLKVRGLDRLQGKAPRMAKITR


KATGYYLQLTVETDDTIYKESDKCVGLDMGAVAIFTDDLGRQSEAKRYAKIQKKRLDRLQRQASRQKDGSNNQRKTYAK


LARVHEKIARQRKGRNAQLAHKITSEYQSVILEDLKLKNMTAAAKPKEREDGDGYKQNGKKRKSGLNKALLEMSV


(SEQ ID NO: 619)





>3300027808|Ga0209354_10002575_5|M


[aquatic-freshwater-freshwater lake]


MIQANIEDKMTQENITRVIKFRLTLTEEQRLLIDEKMRLLKYLWNLAVSLQEEVNQRRLRDKFGFKEFSPEFWELSYLK


LYSGFSHIEKLPKDKLRLLTGNPCCKIAYLKNKKEYVSLKLEERKKRPYLGNPDAKKHTTKPPDKKDLKKYFYPDLADK


IFEIGSEFRGCFYRYVISKAFETAKKGIRGFPKYKGKLDSVESLIVGHPTLIKIRDGEIFLNKQIGLLVIDDINRLPKD


ADVRMASIVRKASGYYLHLTVNLPVPMHLPSDRQIGIDVGCVNLYTDSEGRHIETKAYYRNKERKIAHLQRKMARQEKG


SANYLKSKEKLALLHEQIKDRRAGYLHQVSHKLTQKYSHIAMEDLKLKNMTKRANVKENEDGTYAHNGASAKSGLNKSI


LDQGIGELKRQLLYKSQEKGGQVVLVNPKFTSQTCFECGHKHKDNRKSQSEFICVSCGHSANADENAAKNILTLSLISS


TIGVLRSSLFSYPSLLGKAVSLLAYVCGSPKGTCEAERERSDPPIDPPAKGGNCLDNFSTLTIKDPRHQLEKASQPIDS


VQLTLF 


(SEQ ID NO: 620)





>3300020048|Ga0207193_1000230_60|P


[aquatic-freshwater-freshwater lake sediment]


MSNFSENVRTKEFKLILSSEQERTLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKLSKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGLIHPVAIDENSPIIDSLDSKKSVLYGFLKVFGHQHHKDRIVTYLVRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDSKINIPKLGYIEVIGFDKRWYGCDFNPMKICKKA


SGWYVQLTASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRSLKRLRKMQQQLSRKYRMNEGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGNPVVAENGTVIYDKNNQKRKRGS


NRTGSDVAIGQAIDLLETKAKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLINKNSATPSSSKKATKKKTKKSDTITIPDDLFKNGVHDFLVAETAKTHAIINRMSLGDF


DRNA 


(SEQ ID NO: 621)





>3300015360|Ga0163144_10269315_2|M


[aquatic-freshwater-freshwater microbial mat]


MKTAEFKLNLNNAQKAELNDWMSALKWVWNEGVRMIDYFNQFNAYHKPDKRSYPCSPILGVNHKRRYKKGFNGCTKSGD


RPMGIYPSCPIGWIADSFNPEEPAYAVSQKADSIQVKNLSFFSLQKLFTHSRNQDRPWLISVPSKFIDGETQSLVNSWE


AFKSGVANRKPPKYKGKRDKIESLIHNNSKGMGVKGDSINIPKIGYVRVKGFSDRWLFEDGKPIDFCPMKICKKASGWY


LQITGHLPDRKYKKTSSIAGFDVGVHEIVTDDIALSVKSPRWLKTNGAKLKKLQRKVSRQWRMNENNDAWERKNWQKTQ


NKIARLHEKIARQRRAFNHYLSHKIVNTHQVIALEDLKLLNMTKAVKTGEAGVANGRKAKSGLNRAMLDVGIGQLVSMI


ETKAKVAGRDVVFVDPKHTSQICPECGHVEKKKNRKNRNVKCSNCGAEFHRDRSAAIEIKKRAVTKMSIPKEVKKERKP


RGVGAFAAKKKAKDSRPIFDPSLIDLPLFG 


(SEQ ID NO: 622)





>3300022561|Ga0212090_10036221_2|M


[aquatic-freshwater-glacier valley]


MLTLEFSVQLTEEQKTIAGEWMDSLKHQWNLGLSALEEFDRFSWYNKHDKKPALCCPIAEGEWIKEEKRVASTCSLIRD


PAPKLTSSALQTGGDSLGTMARSDRLPEFLQQVPSKFRMGMLALLSVSWDAYIKDRKNKGKPKYKRRRDRWDVLYSGNL


KDGLSCNGDILKGIPKLGTVVVPKLNQRWKTPTGETPPICAFKLLRDGDKFKVQLTGELQRSYKAKPSDLAVGIDLGFV


YSHILSDGERSPLLSKSESKLENRKQLLQSQLDAKIDQRLTLWLHHPDTGFEQCRELIRVSVETWEKIRECRVAGEVAQ


IIGQKRDKRYMSLRHKLPKSKAEKQLRHQIKNLDRKLADTRKSKDEKLATRLVKKFGHVAIENGLQRQELRERPDPVPN


ESNGHDPNGANAQSEVNKQLKALAPGRKISIIEQRAKRYGRSFVKAESQFTTQECPVCGSLNQPSLKIEETGDRAYHCN


NCGWHCDQDLNAAINIELRSFAFVPQVVLTLMAERARVMSYQKEGDGKIPVNPSWRGKRSAIEGETDSRTKKSKGSSDS


GGRKGKEGAKLKAASRKSQSKAIPKKGSEVLQ 


(SEQ ID NO: 623)





>3300005805|Ga0079957_1000538_44|M


[aquatic-freshwater-lake]


MKTLEFKLTLNRSQKARLNDWMTANKWVWNEAVRHIEWFNEFNKYHKPDKKNYPCSPIRSQNFWKKFRGQEPLENYGLG


EFPSCPIGWINDSFDPELPSFPVSRSPKHEQIHNISLFSFIKLFAHSRNQDKPWLLEVPSKFINGEVDCLINSWNAFVK


SPANLKRRPPKYKGKHDKIDALIHNNSKGIGTKGDSINIPKLGYVRVKGFTDRWLFADGKPIDFCPLKICKKASGWYLQ


ISGEVPDRKYRKSESMAGFDLGVHEILTDEKNYHATSPRYLKTSQDKLKRLQRKMSRQFRMNEKDKTWERKNWDKTKIK


LAKAHEKVARQRRTLNHYLSHKAVNTHAVIALEDLKLLNMTKSVKTGEAGVQNGRKAKAGLNRAMLDNGLGQLVGMIET


KAKVADRIVVKVDPKNTSQECPHCGHIEKKANKKNRYVTCSNCGASFHRDTSAAEIIKRRGIARLDGSDTEPKVKKERK


PKYGKRSKPVEPVEAPRPIVDKDLQHLPLFCCA 


(SEQ ID NO: 624)





>3300005805|Ga0079957_1019747_2|M


[aquatic-freshwater-lake]


MKTIKIKIKLSSEQAAVCDRYLDELTWLWNLALSNQLHNHCVDWYAWAAKRSADLTKATEKLEKLKPEQQQLVKDYYST


KDKPKLSKKEQELVSKKEFEIFTRWSPFSLEGIIPVPLRLGNSAYEGLSCQIATGGNYWKRDENINIPVNTKKGVIYVK


GYKLVKGDKPWQRIEIVPHKYRTFPSGKYEGRELTTLEKLDNVTGLNTLRAFQNLPDLQVSSHYIGGLLAFFKESWKAF


LDPKRINSRKPKFKKDVDKIATLSNNQCAPNRIDIDKNIVTVTGLTPITIADKNWVKRLNLSQVLPRTYMITKQQSGYY


INIVVAHPLQEEKSVLTNKLPKVKKEFGEDSEEYQDIKSKLKFIEQQIKQSSVLKGKNLSAGIDPGVQAVVSTDHGALF


LPNLTRERISIHIEELQSRLDNAELINDKKWKSLGNKTSRIKTKNESKLQQKISRLHERGANSSNAFNHKLSTRLSRTY


EHISWEDTQVTNLLKQVDPKALPEGVGYAHNGASAKRGLNWIMRQRCLGDLKAKTKQKTENRGGNFHEPPANYSSQICH


CCGQKGERRSQYEFVCKNPDCKLFDVAQQADTNAARNHKQNGGFELGEVKYHNVRLVYQKPKRFKKKRLTK


(SEQ ID NO: 625)





>3300001043|JGI12316014372_10004500_6|M


[aquatic-marine]


MKTLEFKLDLTQEQQALINQWLADLKWVWNRGLRLLEEDQQRRWRDKHGHLLPDSLKLQWRNGQPTGSGVRKTRDGYKY


CAIRQDRDVEDVRKFFSSDSYHNKKNTPQWLHDVPAKFRVGVSAQLKQAWKSYQDPKHPAKRPRYKGKRDCLRSLVNRN


AGGKNKELNPEQIGDSWNAYVRFPKLGKLKVKGFYRRFFPNDGWGSARILVEPSGYYLQVAVEQPDEVVKESDKAVGID


PGVANTLTLDNGRHVKPNAKLDRHQKRLLRLQRRASRQKRGSNSQQRTHQAIARQHEKIRRSRNAFNHKLSTKLTREYG


AIAFEDTQLQNMTRRSKPKPREDGKGWEQNGAKRKTGLNRSLANIAIGDLKQKTKDKATALGREFITPDAKYSSQECHV


CGERGERLSQSVFICLNPDCKEFRCEQHADTNAARNLLLRALPDLEREYRPWGWELKREESVSPTGGTTSNGETPSKLG


MPPEAVTVLC 


(SEQ ID NO: 626)





>3300001043|JGI12316J15309_10000277_14|M


[aquatic-marine]


MKTLEFKLDLTQEQQALINQWLADLKWVWNRGLRLLEEDQQRRWRDKHGHLLPDSLKLQWRNGQPTGSGVRKTRDGYKY


CAIRQDRDVEDVRKFFSSDSYHNKKNTPQWLHDVPAKFRVGVSAQLKQAWKSYQDPKHPAKRPRYKGKRDCLRSLVNRN


AGGKNKELNPEQIGDSWNAYVRFPKLGKLKVKGFYRRFFPNDGWGSARILVEPSGYYLQVAVEQPDEVVKESDKAVGID


PGVANTLTLDNGRHVKPNAKLDRHQKRLLRLQRRASRQKRGSNSQQRTHQAIARQHEKIRRSRNAFNHKLSTKLTREYG


AIAFEDTQLQNMTRRSKPKPREDGKGWEQNGAKRKTGLNRSLANIAIGDLKQKTKDKATALGREFITPDAKYSSQECHV


CGERGERLSQSVFICLNPDCKEFRCEQHADTNAARNLLLRALPDLEREYRPWGWELKREESVSPTGGTTSNGETPSKLG


MPPEAVTVLC 


(SEQ ID NO: 627)





>3300001341|1010336|scaffold_14_1570|P


[aquatic-marine]


MKTLEFKLDLTQEQQALINQWLADLKWVWNRGLRLLEEDQQRRWRDKHGHLLPDSLKLQWRNGQPTGSGVRKTRDGYKY


CAIRQDRDVEDVRKFFSSDSYHNKKNTPQWLHDVPAKFRVGVSAQLKQAWKSYQDPKHPAKRPRYKGKRDCLRSLVNRN


AGGKNKELNPEQIGDSWNAYVRFPKLGKLKVKGFYRRFFPNDGWGSARILVEPSGYYLQVAVEQPDEVVKESDKAVGID


PGVANTLTLDNGRHVKPNAKLDRHQKRLLRLQRRASRQKRGSNSQQRTHQAIARQHEKIRRSRNAFNHKLSTKLTREYG


AIAFEDTQLQNMTRRSKPKPREDGKGWEQNGAKRKTGLNRSLANIAIGDLKQKTKDKATALGREFITPDAKYSSQECHV


CGERGERLSQSVFICLNPDCKEFRCEQHADTNAARNLLLRALPDLEREYRPWGWELKREESVSPTGGTTSNGETPSKLG


MPPEAVTVLC 


(SEQ ID NO: 628)





>3300027607|Ga0207422_1002635_7|P


[aquatic-marine]


MKTLEFKLDLTQEQQALINQWLADLKWVWNRGLRLLEEDQQRRWRDKHGHLLPDSLKLQWRNGQPTGSGVRKTRDGYKY


CAIRQDRDVEDVRKFFSSDSYHNKKNTPQWLHDVPAKFRVGVSAQLKQAWKSYQDPKHPAKRPRYKGKRDCLRSLVNRN


AGGKNKELNPEQIGDSWNAYVRFPKLGKLKVKGFYRRFFPNDGWGSARILVEPSGYYLQVAVEQPDEVVKESDKAVGID


PGVANTLTLDNGRHVKPNAKLDRHQKRLLRLQRRASRQKRGSNSQQRTHQAIARQHEKIRRSRNAFNHKLSTKLTREYG


AIAFEDTQLQNMTRRSKPKPREDGKGWEQNGAKRKTGLNRSLANIAIGDLKQKTKDKATALGREFITPDAKYSSQECHV


CGERGERLSQSVFICLNPDCKEFRCEQHADTNAARNLLLRALPDLEREYRPWGWELKREESVSPTGGTTSNGETPSKLG


MPPEAVTVLC 


(SEQ ID NO: 629)





>3300007960|Ga0099850_1030516_|P


[aquatic-marine-aqueous]


MNTITKVRKIEFKVTLDAQQRQVFEHHSRDLRFIWNTGLACIQWREWWEKWQQVLESPDRVGYEPETVPINWACNIVKS


PKKKKKDEESEKKVYALACDRVQYRLEKTTNLELGTGEWTEPRKDRNGKIDEDHCWVAYPCKPEPVREHWTEEPRLLLL


MKNPYMALRTMFAKKNWDPETVEGKIIHGLNTAWVAGECKALGDAWSSYKSGVRKRPRFKKRHDRSNLINPSSKQTKFS


GNSLTLPGLGRVTVKGLQQRWGEKPACPIALIKEGDEFYLQLTGELEIPVVRSNKVTIGIDPGSVRLATTDNGAVIEAH


KFGKQMTRRQKKLQASINRKLRLNSDRVYDESDSSRFYLKPRKNWKRKNLQKVRTKLQKLSAKTARQRRAYNHFHSTRI


VQSADVIIMEGLELKNVTRAVKKGKSGEHNKRKAKAGLNRSLLDNAIGQFYGMIEQKAKDAGKVTARVNPFRTSMTCNK


CGFSDAKNRKTQAGFHCQKCGHSDNADRNAALNIKRMGVLGVTKLTFDNDWNITVPGWIEPGDLVALHSKGLKPVGTAK


KRSKRAGKEHPSQLALEIGSQ 


(SEQ ID NO: 630)





>3300028735|Ga0272446_1017865_2|M


[aquatic-thermal springs-microbial mat]


MSQNNLTPKNIQHGCRLTKMQQQICEQWLDELRRLWNEALSYLLEVEENTVYNFADKCRYAVCKLSTEYRHYRWDDADG


EPPINHYKVEESVDESRKKRTAGTYIFVPYTVCVAPKKPYAPICPIPQGHNHLDWTGSSGTFPEGFLRLDPSKLNRATG


YAKLALLQKFTHKNCPHLKHIPANFIRGVLFSLATAWEKRFQRRDKYGRPGYPKFKSRKFPLTSLQYVDAVNLKREGDS


LRFPVLGCVTARGISERFPVDIEIKVATLQKQPDGWYMIWNGWFPAIVAKPKNRSIAISFRQNNNLYVADNGYVMMPYQ


PPEQKLRRLERLRQILCGKQFLSKNWHRVKAKIAKYEHRLAMARRNHNHKISTFLVRKYDQLVVDNRKLGLIRKPEPIP


VGVTPPRWAPNGATAVSEINQRKAHNAKGQFRNMVIEKSKTYQRAVRLAPVEPPSNTPS


(SEQ ID NO: 631)





>SRR6869054_1535443_5|P


[biofilm metagenome]


MKTLEFKLDLTQEQQALINQWLADLKWVWNRGLRLLEEDQQRRWRVKHGHPLPDSLRLKWRNGKLVGCGIRKSREGYLC


CPVRQDRDIEDARKLFASDSYHNKRNAPQWLHDVPARFRVGVRAQLKQAWKSYQDPKHPARRPRYKGKRDRLRSLTNLN


AGGKKKELSPEQIGDSWNAYVRFPKLGRLKVKGFYKRFLPNDGWGSARILVEPSGYYLQVAVEQPDEPVKESDKAVGID


PGVANTLTLDNGRHVKPNAKLDRGQKRLLRLQRKASRQQRGSNSQQRTYQAIARQHEKIRRSRNAFNHKLSTKLTREYG


AIAFEDTQLQNMTRRSKPKPREDGKGWEQNGAKRKTGLNRSLANIAIGDLRQKTKDKAAELGREFVTPDAKYSSQECHA


CGEKGERLSQSVFICLNPDCKEFNCEQHADTNAARNLLLRALPDLEREYRPWGWELKREESVSPTGGTTIFGETPSKLG


MPPEAAMVSV 


(SEQ ID NO: 632)





>SRR6869054_457352_2|P


[biofilm metagenome]


MILCQEFAVELSPPQEKNAIAWLEASKSLYNSALYELLRWDENTGFYCKETKSYLPCCSVPWEYRWHKESETLIPFSRI


ASEKSRWYIKNLPRHRVPTPAEEKDSWGWHCKDGGSGYSCPIPKDYCEPLLTRWERQARGGLGLVAKGDYWEKGHSVLD


IPYKFRSGVLTMLETPWQEYLKSRFGQTTVKRGCPRFKRKRDRINTLIHPNPKGVIVPNRNQLKGVPKLGSLKVKGLVR


RWRNPDGFVPPISIFKLIRRQGQWFVQLTGDLERSYPVKNTNRALGIDPGLKLEFGTSDGWSLPAARRYRKGQKQREKL


QKQIAHKRKHNLVLWLNQAERQLQDVAGTIIPLKAESWAALQQCRTEKEFINLIGAARYNRLKYSVPTSNKILKLEERA


AKHEARIARTRKAADDKLTSRIVREYGFIAIEHGLQGQKLRGKAKAKKREDGKGYAQTGAKRKSGVSKSLSDASIGRKT


AMLERKAKRSNRTFAKIESAYTSQSCPVCGHLHKAPMDGDRVYHCECCGWHCDRDQSAGINIELMAYAANSTAKLSSAA


ELARVYGCFWMQDNPKETKPLWAKKLSKKKLAEWMKNIRASYPDKVLQNFELEYRKMKAQK


(SEQ ID NO: 633)





>SRR6869055_1317318_5|P


[biofilm metagenome]


MKTLEFKLDLTQEQQALINQWLADLKWVWNRGLRLLEEDQQRRWRVKHGHPLPDSLRLKWRNGKLVGCGIRKSREGYLC


CPVRQDRDIEDARKLFASDSYHNKRNAPQWLHDVPARFRVGVRAQLKQAWKSYQDPKHPARRPRYKGKRDRLRSLTNLN


AGGKKKELSPEQIGDSWNAYVRFPKLGRLKVKGFYKRFLPNDGWGSARILVEPSGYYLQVAVEQPDEPVKESDKAVGID


PGVANTLTLDNGRHVKPNAKLDRGQKRLLRLQRKASRQQRGSNSQQRTYQAIARQHEKIRRSRNAFNHKLSTKLTREYG


AIAFEDTQLQNMTRRSKPKPREDGKGWEQNGAKRKTGLNRSLANIAIGDLRQKTKDKAAELGREFVTPDAKYSSQECHA


CGEKGERLSQSVFICLNPDCKEFNCEQHADTNAARNLLLRALPDLEREYRPWGWELKREESVSPTGGTTIFGETPSKLG


MPPEAAMVSV 


(SEQ ID NO: 634)





>SRR3137750_862387_23|M


[crustacean metagenome]


MPKAKPTDKEKDKRPIKTLEFKLYPNQSQVLTLTDWLDRGRKVWNNGLAVLLEKDQQDWRKKAGFDPMEGSEAWQWFPN


QVGSKTVFGACCAITFYNRRQNEHYPACPIRHPQDVDGAPRSLIYRATQLDNFCTRFKGGIGDDLLESWKAYKDKNRPT


AKLPKFKGKQFPLKSLSNGECTAKIVGKTAIKFPLLGNIRTKGLERVPQDSKICTARICRKASGWYLQLAIRWDWPVPN


VKMPDVAVAIDPGVRFATSTDYGRQVDAPQFMLKQTKKLRREQRKLSRRKLKGKNWQKQAAKIARLHEKVSRQRNAFWH


KESTYFVTSFGGVAIEDNNFNNMGRKAKAKPKEDGKGYERNNQAQKRGLNRSLKDVACGRLKVMVETKAKTINNEVHLV


RSHHNSQTCSECGHVAKDNRKSQSNFSCVACGHSLNADINAAINIYNRAAWSNRYNLHPVRLQVSNLERYPSFVGGIGK


SHKPASASRKSRNGIEGQQEGGSLPPLEITKESRSPGLTRNKPASVSPSIGKPKRGQKPSTLCQIPETHTQLTLWDLTG


(SEQ ID NO: 635)





>SRR3138838_558748_1|P


[crustacean metagenome]


MENMTRVIKFRLTLTQNQQSLIDEKMRLLKYLWNLAVGLQEEVNQRRLRDKFEFKEFSPEFWETSYLSLYSSFPHIEKL


PKDKIKLLAGNPCCKIAYLKNKKEYVSLKLEERKKRPYLGNPDAKKHTTKPPDKEDLKKYFYSDLADKIFEIGSEFRGC


FYRYVISKAFETAKKGIRGFPKYKGKLDSVQSLIVGHPTLIKVRDGGIFLNKQIGLLVIDDINRLPKESDVRMASIVRK


ASGYYLHLTINLPVPMHFPSDRQIGIDVGCVNLYTDSEGRHIETKAYYRNKERKIAHLQRKMARQEKGSANYLKSKEKL


ALLHEQIKDRRAGYLHQVSHKLTQKYSHIAMEDLKLKNMTKRAGVKENEDGTYAHNGASAKSGLNKSILDQGIGELKRQ


LIYKSQEKGGRVVLVNPKYTSQTCFNCGHKHKDNRKSQSEFICVSCGYSANADENAAKNILTLSLISSTIGVLRSSLLS


YPSLLGKAVSLLAYVCGSPKGTCEAERERSDPPINPPVKGGNCLDNFSTLTINPRHQSEKVSQPIDSVQLTIW


(SEQ ID NO: 636)





>SRR3139299_296800_1|M


[crustacean metagenome]


MSNFSENVRTKEFKLILSSEQERTLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKLSKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGLIHPVAIDENSPIIDSLDSKKSVLYGFLKVFGHQHHKDRIVTYLVRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDSKVNIPKLGYIEVIGFDKRWYGCDFNPMKICKKA


SGWYIQLTASVTVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRSLKRLRKMQQQLSRKYRMNEGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGNPVVAENGTVIYDKNSQKRKRGS


NRTGSDVAIGQAIDLLETKAKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLINKNSATPSCSKKATKKKPKKSDTITIPGDLFKNGVHDFLVAETAKTHAIINQMSLGDF


DRNA 


(SEQ ID NO: 637)





>SRR3139690_493772_1|M


[crustacean metagenome]


MLPKRHAYIGATCELIRDGGWWAKDESATPIAYRGKKLSADKLAKTKESDIWWSDGVAHERLYKFPMSKWMPPKPGKIP


QDVANKPFQYMRVPSTLGGGLEIKKFEQLNNAKHLKEFGIHLPPGVSHFLCGLFAQFSESYKAWIDPKRPNAHKPRYRQ


PDDLMRSLYSNQMRYSTTYGCNAAPIEFLSRDGVGVIAMNSIFGDVEMYRGEIDRMPDGLIPRSFNFTQDASGYYISVV


FCTMAEVNNTFAKAQYRRFAGKADEDRKAELKAAVDDAAAALKAETYNPGNGKTLGIDPGIKRQITAHDGEKTFHVKLS


KRRHDKARRLVNRIDRLKSKLSRIKTANNIRLNAGKDLRRAAGVITIDGVTTTLKNEAKLQHRIRRLQLLQANMRRAYQ


HRVAVRLFRGGYSTIRFEATQVGNMSKRSKVKIKANGKYAKNNAAAKSGLNKSLANTAMAAQSTKIEARFKAAGRSFIA


VPAHNTSQICHCCQIKGDRASQELFLCLNNLCVMAGIRQNADDNAAKNMYRETLATEPKRSTGSGLELGEEGDIDD


(SEQ ID NO: 638)





>SRR3139690_185157_1|M


[crustacean metagenome]


MDTSIVDQQQTETELSVIEFKLSPHNEAVKAWEYQLNELKTVWNSALALRIEADDRYWIKRLNLDAVCPSTALKRKGNK


KQGKGQSPTQWRTIASGVVRPEKTKPIRARGAKTGIIAGPYCRVRKLQGVEPLDKQIIDADGNKITSALSRTQAISNYP


WLDSSLVDSRYIAGVYRTLDQAWKAYKKGVRNRPKFKGKKDKLKSLANYSGSVRFERIGGGPNGWVNFPKLKPVKCKGL


YKRYDDRMKTGTVKLCKKGGNWYLQLTRKDVPFNRLSDSDKAIGIDLGVKQNATTSEGKVYHCKQSKRIQQRIERLQRK


AARQYRMNADEKHPTGRSTLGHQRTIGEISRLQDKQKRSRHAWQHKTSTKILKSNGVIVFEDLKLQNMTKRPKPKSDEK


GGYAKNGAKAKAGLNRVILKSGLGGLRSKVESKGDRNNRTVIRVNPAYTSATCSNCGHRHTKEEKASYRPTQSQFICQK


CGHTDNADINAAENILVSGLTMLDTV 


(SEQ ID NO: 639)





>SRR3139690_493772_1|P


[crustacean metagenome]


MKAIRFKVCPTDEQVRSFNDLRSDLTQVWNLIHRVAMHNRSVEWFRWAEKTSSKDGSWDLHDCSLTPIMLPKRHAYIGA


TCELIRDGGWWAKDESATPIAYRGKKLSADKLAKTKESDIWWSDGVAHERLYKFPMSKWMPPKPGKIPQDVANKPFQYM


RVPSTLGGGLEIKKFEQLNNAKHLKEFGIHLPPGVSHFLCGLFAQFSESYKAWIDPKRPNAHKPRYRQPDDLMRSLYSN


QMRYSTTYGCNAAPIEFLSRDGVGVIAMNSIFGDVEMYRGEIDRMPDGLIPRSFNFTQDASGYYISVVFCTMAEVNNTF


AKAQYRRFAGKADEDRKAELKAAVDDAAAALKAETYNPGNGKTLGIDPGIKRQITAHDGEKTFHVKLSKRRHDKARRLV


NRIDRLKSKLSRIKTANNIRLNAGKDLRRAAGVITIDGVTTTLKNEAKLQHRIRRLQLLQANMRRAYQHRVAVRLFRGG


YSTIRFEATQVGNMSKRSKVKIKANGKYAKNNAAAKSGLNKSLANTAMAAQSTKIEARFKAAGRSFIAVPAHNTSQICH


CCQIKGDRASQELFLCLNNLCVMAGIRQNADDNAAKNMYRETLATEPKRSTGSGLELGEEGDIDD


(SEQ ID NO: 640)





>WP_015957291.1


[Cyanothece sp. PCC 8801]


MFAIKSMSELVQHHITIQLKAYLSTTQTALFENWTDSLRPLYNLALGLLYEEQQRRWRTNQKFLKNYLDKSSLQTYLNE


IENKPDIYPVEWHITKALPECDWLTKEENEVRKKDNTKSLACRTINRDGNFFTPIRPYWHLEEPQKLAKFKCFTNQWLI


SCNLLTNYHLQKLLNVNMKVRQSFISMNLMEAWKRYQKGDFRKLKFKSKRNPVISLCNKQTNRIKFDPEANNCQLLGKE


FGLIEFRGLHNRHQGQIQPRNGSLTKKADGYYLNLVFQVEHKPIPDSDLQVGIDPGLVTLLTLSDGKCISNQRFLKENE


RHLTVLQKKLSRQTPGSKNWEKTKKALAKIHKQTADHRKYYNHKVSTHLVNKYGAIAIEDTKLTNMNKRPKAEKREDGK


GYEHNGAKAKAGLNQSFHDAGLGQLRAFLESKANSYENRHIERVRANYTSQKCSRCGHTDSENRLTQASFHCLKCGLEM


PADLNAAINIEQTAFGLDKS 


(SEQ ID NO: 641)





>CP001287_4134|P


[Cyanothece sp. PCC 8801]


MKEKHGLVDQAMFAIKSMSELVQHHITIQLKAYLSTTQTALFENWTDSLRPLYNLALGLLYEEQQRRWRTNQKFLKNYL


DKSSLQTYLNEIENKPDIYPVEWHITKALPECDWLTKEENEVRKKDNTKSLACRTINRDGNFFTPIRPYWHLEEPQKLA


KFKCFTNQWLISCNLLTNYHLQKLLNVNMKVRQSFISMNLMEAWKRYQKGDFRKLKFKSKRNPVISLCNKQTNRIKFDP


EANNCQLLGKEFGLIEFRGLHNRHQGQIQPRNGSLTKKADGYYLNLVFQVEHKPIPDSDLQVGIDPGLVTLLTLSDGKC


ISNQRFLKENERHLTVLQKKLSRQTPGSKNWEKTKKALAKIHKQTADHRKYYNHKVSTHLVNKYGAIAIEDTKLTNMNK


RPKAEKREDGKGYEHNGAKAKAGLNQSFHDAGLGQLRAFLESKANSYENRHIERVRANYTSQKCSRCGHTDSENRLTQA


SFHCLKCGLEMPADLNAAINIEQTAFGLDKS 


(SEQ ID NO: 642)





>WP_015785111.1


[Cyanothece sp. PCC 8802]


MFAIKSMSELVQHHITIQLKAYLSTTQTALFENWTDSLRPLYNLALGLLYEEQQRRWRTNQKFLKNYLDKSSLQTYLNE


IENKPDIYPVEWHITKALPECDWLTKEENEVRKKDNTKSLACRTINRDGNFFTPIRPYWHLEEPAKLAKFKCFTNQWLI


SCNLLTNYHLQKLLNVTMKVRQSFISMNLMEAWKRYQKGDFRKLKFKSKRNPVISLCNKQTAIIKFDPEANNCQLLGKE


FGLIEFRGLHNRHQGQIQPRNGSLTKKADGYYLNLVFQVEHKPIPDSDLQVGIDPGLVTLLTLSDGKCISNPRFLKENE


RHLTVLQKKLSRQTPGSKNWEKTKKALAKIHKQTADHRKYYNHKVSTHLVNKYGAIAIEDTKLTNMNKRPKAEKREDGK


GYEHNGAKAKAGLNQSLHDAGLGQLRAFLESKANSYENRHIERVKANYTSQKCSRCGHTDKENRLTQASFYCLKCGLEM


PADLNAAINIEQAAFGLDKS 


(SEQ ID NO: 643)





>NC_013161_4122|P


[Cyanothece sp. PCC 8802]


MKEKHGLVDQAMFAIKSMSELVQHHITIQLKAYLSTTQTALFENWTDSLRPLYNLALGLLYEEQQRRWRTNQKFLKNYL


DKSSLQTYLNEIENKPDIYPVEWHITKALPECDWLTKEENEVRKKDNTKSLACRTINRDGNFFTPIRPYWHLEEPAKLA


KFKCFTNQWLISCNLLTNYHLQKLLNVTMKVRQSFISMNLMEAWKRYQKGDFRKLKFKSKRNPVISLCNKQTAIIKFDP


EANNCQLLGKEFGLIEFRGLHNRHQGQIQPRNGSLTKKADGYYLNLVFQVEHKPIPDSDLQVGIDPGLVTLLTLSDGKC


ISNPRFLKENERHLTVLQKKLSRQTPGSKNWEKTKKALAKIHKQTADHRKYYNHKVSTHLVNKYGAIAIEDTKLTNMNK


RPKAEKREDGKGYEHNGAKAKAGLNQSLHDAGLGQLRAFLESKANSYENRHIERVKANYTSQKCSRCGHTDKENRLTQA


SFYCLKCGLEMPADLNAAINIEQAAFGLDKS 


(SEQ ID NO: 644)





>OVJI010000022_17|P


[freshwater bacterium LH6-2 Bacteria.]


MKTICVKVRLTPEQEQEFKSAIDELEWIWNFSLKVHLYNHCIKWYDWAANTKQKIDKAIAEMDKLPPKQKEFVHNYFLG


DPQLRPTKLDQSQRKLVDKEVYKILERWSPFDLEGIEKVPLRISERSAYFNASCVIAENGPYWFSEVIEQTDDQGEVIG


KTKKWKLAQGRKPYTPLPKIPHKYILAPSGQYKDREIIDWTDLVVKAVLTSVRESEGLPPLNIHSNYINGLVSQNGSLQ


KAWVAFLDTSRQQSKRPKFKNEENRLNTLLNLYPPTILDEENSIEVRQLGKLEVVDRNWRKRLGQNISLRSHCITKKRS


GYYVHVTVEHALQSEKTILVKQLTKIKKEKGVESQEYVELSEKITEMENTIRDSKVRLNKKQLSVGVDPGIQAVIATDQ


GDLYTPNLSRERITMHLEKLQHKLKHMQEINNAAWRQENTHKIEAGEQIDIKEKRPKTKNELKLEHKIARLHERGASSA


RHFNHKLSSRIARTYTHVCWEDTKLENLLKQCKAKPDLSGIGYLPNGAAAKRGLNWLLKQRCLGDLKERTKQKVLEYGG


VWHNSAPKYSSQRCHCCGYEEPLQRDGSNFTCKNQDCELFGVSQNADVNAARNHKKSVFELGQVKYHNLSLQYNISARR


RHRNRNKPKLTVVKLPE 


(SEQ ID NO: 645)





>CAAAFE010002307_2|M


[freshwater metagenome]


MVTNRRIEFKVSLDQQQQQIFDHHIAKLQAVWNIGLACIEWREWWEKWQQVLESPDHPDYAPDAVPMGWGHNSIKGKKK


PVYGLCCDRVKFRLEKNDPILDVGEWVEGTKKGSGDSIAGYWVAYPAKPDPVKEHWVEDPRLPKHGQDPYMSLVSMFGK


KYWPSDHFIQGLSSAWIKGQCKNLATAWKAYKKGIRKRPQFKKRHEAGNSLLCVTRIPLKQNGMTLPGMGFVRIPKLAQ


RWDSIKDPCPISLLREGSRYYVQLTATLEQRPVRSNGVTVGIDPGSVHVATDDRGRMIDSPRYAKKQERRKRRLQRSMA


RKFRLNTTTVYDEDGRVLRHEPRKGWKRRNHAKVKQQLQSLEAHTKRARRAFNHFHSTRIVQSADVIVLENLQLQNIGA


KVKTGKTGISNGRKRKTGLNNKLRDNAIGQLFAMVEQKAAAAGKLTTRVNPFRTSMTCNRCGFSDKANRVSQAVFHCQS


CGHRANADQNAAANIRKMGLLGVTKLTFDNDWRITVPNWHD


(SEQ ID NO: 646)





>OGWG01000020_5|P


[freshwater metagenome]


MTIMKTICIKVKLSPEQEREFSNATQELEWIWNFSLKTYIHNHCVKWYEWATGIKVKIDKALAEIEKLPPEQKEFVYNY


FLNPSLRPSKMTQQQNKLVDKEVYKILTMWSPFDFDGITKVPLRLSERSAYIGASCAIAEGGPYWISEIIEEKDESGEV


IKHRKWKLVNGKPYMPINKKEHSYPLVPSGQYKDREIIDWTDLVVKAVLTSVRESEGLSPLTLHSNYINGLVSQNGSFQ


KSWSAFLDVKRMQSKRPKFKNEEYKLNTLLNLYPPTISEDEDWIEVRQLGKLEVIDRNWRKRMGGDSPRSHCITKKKSG


YYVNITTEHPLHSEKTVLLKQLAKIKKEQGKDSQEYLDLEATIASMTEKIRGSKVKPKNKELAVGIDPGINAIIATDQG


DLYMPNLSRERITFHIEKLQAKLKHMQDVNDKVWRQENQRQLEDGEKLEIKTKRPKTNNELKLEHKIARLHERGASSSR


HFNHKLSSRIARTYKHVCWEDTKIENLMKSPKAKPDLSGIGYLPNGAAAKRSLNWLFKQRCLGDLKERTKQKVLEYGGV


WHDSAPKYSSQKCHCCGYTEPLQRDGSNFTCKNEACKMYGISQSADVNAARNHKKSVFELGEVKYHNLSLEYNVSARWK


HRNRNKVKPVVSVTKLPTTSTPVPNKPK 


(SEQ ID NO: 647)





>OGWG01000020_4|M


[freshwater metagenome]


MKTICIKVKLSPEQEREFSNATQELEWIWNFSLKTYIHNHCVKWYEWATGIKVKIDKALAEIEKLPPEQKEFVYNYFLN


PSLRPSKMTQQQNKLVDKEVYKILTMWSPFDFDGITKVPLRLSERSAYIGASCAIAEGGPYWISEIIEEKDESGEVIKH


RKWKLVNGKPYMPINKKEHSYPLVPSGQYKDREIIDWTDLVVKAVLTSVRESEGLSPLTLHSNYINGLVSQNGSFQKSW


SAFLDVKRMQSKRPKFKNEEYKLNTLLNLYPPTISEDEDWIEVRQLGKLEVIDRNWRKRMGGDSPRSHCITKKKSGYYV


NITTEHPLHSEKTVLLKQLAKIKKEQGKDSQEYLDLEATIASMTEKIRGSKVKPKNKELAVGIDPGINAIIATDQGDLY


MPNLSRERITFHIEKLQAKLKHMQDVNDKVWRQENQRQLEDGEKLEIKTKRPKTNNELKLEHKIARLHERGASSSRHFN


HKLSSRIARTYKHVCWEDTKIENLMKSPKAKPDLSGIGYLPNGAAAKRSLNWLFKQRCLGDLKERTKQKVLEYGGVWHD


SAPKYSSQKCHCCGYTEPLQRDGSNFTCKNEACKMYGISQSADVNAARNHKKSVFELGEVKYHNLSLEYNVSARWKHRN


RNKVKPVVSVTKLPTTSTPVPNKPK 


(SEQ ID NO: 648)





>OGWL01001214_2|P


[freshwater metagenome]


MNTITKVRKVEFKVALDVQQQQVFEHHSRDLRFIWNTGLACIQWREWWEKWQQVLESPDRVGYAPEPVQMDWGYNLVGK


KKVYGLVCDRVRFRLEKSEPVLAAGEWVAGEKQGGGYWVAYPCKPEPVREHWTEEPRLPLLMKNPYMALRTMFAKKNWD


PETIGGKIIHGLNTAWVAGECKALGDAWSSYKSGVRKRPRFKKRHDRSNLINPSSKQTKFSGNSLTLPGMGRVAVKGLQ


QRWGDKPACPIALIREGDEFYLQLTGEVQVPAVRSNKITIGIDPGSVRMATTDNGAVIDAPKFGKRIKRRQEKLQASIN


RKLRLNSDRVYDESDSSKFYLKPRRNWKRKNLQKVRTKLQRLSAKAARQRRAYNHFHSTRIVQSADVIIMEGLELKNVT


RAVKKGKSGEHNKRKAKAGLNRSLLDNAIGQFYGMIEQKAKDAGKATTRVNPFRTSMTCNKCGFSDAKNRKTQAGFHCQ


KCGHSDNADRNAALNIKRMGVLGVTKLTFDNDWNITVPGWVEQKTVEPLQVRDFKPVGTVKKRSKKTEQKRSSQMALEI


GSP 


(SEQ ID NO: 649)





>OGW001000325_8|P


[freshwater metagenome]


MDNYIETTRTKEFKLILTPEQERTLENWMLVCKWVWNRSLGLIEEFNDWNPYDKLSKSYAPAMPLQRYDRKLKQWVRVE


IPEWKLNTKTKETSKGLVHPVSIDENSPQIDSLNSKKSVLYGFLKIFGHQYHKDRIITYMVRGEERKVKFTDCPAKFIQ


GVSHELSKAWDGFLAGRHSRPRFKTAKDKVMTLLHYNAKDIGIQGSKINIPKLGYVEVIGFDKRWYGVDFNPMKICKKS


SGWYIQFTAVVPVKKFKKTGLACGIDPGHQFVMALDNGHIIKAAQPLKQNLRRLRRMQKQLSRKYRMNNGKTKNWEKLN


QRIAKLHEKIARHRRSFNHWHSTNLVKWFDIIFVEDYKPANVYRKAKAKAKTDEQGNPVTAENGAVIYEKNNQKRKRGN


NRTGRDIAIGQAIELLETKAKEHGKLVIRVPAYGTTLCCAKCGHEERKSLSQRVHHCSSCGYIVARDVNSGQNVKLKGL


AQLALDHGVELSDNFWYQILKNATIDSCSGKKGKKTTKKKDAVSIPGDLFKNGIAAFLITETAKTRAIIERNHLENLNK


TAKSLMG 


(SEQ ID NO: 650)





>OGWP01000327_5|M


[freshwater metagenome]


MKTICIKVKLSPEQEREFSNATQELEWIWNFSLKTYIHNHCVKWYEWATGIKVKIDKALAEIEKLPPEQKEFVYNYFLN


PSLRPSKMTQQQNKLVDKEVYKILTMWSPFDFDGITKVPLRLSERSAYIGASCAIAEGGPYWISEIIEEKDESGEVIKH


WKLVNGKPYMPIRKNKKEHSYPLVPSGQYKDREIIDWTDLVVKAVLTSVRESEGLSPLTLHSNYINGLVSQNGSFQKSW


SAFLDVKRMQSKRPKFKNEEYKLNTLLNLYPPTISEDEDWIEVRQLGKLEVIDRNWRKRMGGDSPRSHCITKKKSGYYV


NITTEHPLHSEKTVLLKQLAKIKKEQGKDSQEYLDLEATIASMTEKIRGSKVKPKNKELAVGIDPGINAIIATDQGDLY


MPNLSRERITFHIEKLQAKLKHMQDVNDKVWRQENQRQLEDGEKLEIKTKRPKTNNELKLEHKIARLHERGASSSRHFN


HKLSSRIARTYKHVCWEDTKIENLMKSPKAKPDLSGIGYLPNGAAAKRSLNWLFKQRCLGDLKERTKQKVLEYGGVWHD


SAPKYSSQKCHCCGYTEPLQRDGSNFTCKNEACKMYGISQSADVNAARNHKKSVFELGEVKYHNLSLEYNVSARWKHRN


RNKVKPVVSVTKLPTTSTPVPNKPK 


(SEQ ID NO: 651)





>OGWP01001429_1|P


[freshwater metagenome]


MHTTKTRKIEFKVRLDLQQQQVFEHHSQALRFIWNTGLACIHWREWWEKWQQVLESPDRPGYCPDPVDMGWGHNLVGEK


KVYGLCCDRVRFRLEKEEPVLGVGEWIEGEKLGSGKRVAGYWVAYPAKPDIVREHWEQEPRLVLLMKNPYKALKTLFAK


KNWDPDSVEGKIIHSLNTSWVAGECKALGDAWSSYKSGVRKRPRFKKRHKRSNLINPSSKQTKFFKNSLTLPGMGRVTV


KGLDKRWGNKPACPIALIKEGSDFYLQLTGAVEVRTVRSNRSNGVAIGIDPGSVHVATDDHGKTIEPPRYGKKAMRRIQ


KLQASINRKLRINSEKVYDPENPEKFYLKPDKNWKRKNLKKVRAKIQRLSAKVVRSRRAFNHFHSTRLVQSADTIVLED


FKLKNVTRAVKEGESGVQNGRKAKAGLNKNLLDNAIGQLYGMIEQKAKDAGKMTARVNPFRTSQTCNRCGFSDGKNRPS


QAVFRCQKCNHCDNADRNAALNIKRMGMLGVTKLTFDNDWNITVPGWVAAAPAEPSKPHKPVKPADSSLSKDLKPKNDC


PSARSKPKTIEGSQMKLAL 


(SEQ ID NO: 652)





>OGWP01001429_1|M


[freshwater metagenome]


MKPFLSIPSMHTTKTRKIEFKVRLDLQQQQVFEHHSQALRFIWNTGLACIHWREWWEKWQQVLESPDRPGYCPDPVDMG


WGHNLVGEKKVYGLCCDRVRFRLEKEEPVLGVGEWIEGEKLGSGKRVAGYWVAYPAKPDIVREHWEQEPRLVLLMKNPY


KALKTLFAKKNWDPDSVEGKIIHSLNTSWVAGECKALGDAWSSYKSGVRKRPRFKKRHKRSNLINPSSKQTKFFKNSLT


LPGMGRVTVKGLDKRWGNKPACPIALIKEGSDFYLQLTGAVEVRTVRSNRSNGVAIGIDPGSVHVATDDHGKTIEPPRY


GKKAMRRIQKLQASINRKLRINSEKVYDPENPEKFYLKPDKNWKRKNLKKVRAKIQRLSAKVVRSRRAFNHFHSTRLVQ


SADTIVLEDFKLKNVTRAVKEGESGVQNGRKAKAGLNKNLLDNAIGQLYGMIEQKAKDAGKMTARVNPFRTSQTCNRCG


FSDGKNRPSQAVFRCQKCNHCDNADRNAALNIKRMGMLGVTKLTFDNDWNITVPGWVAAAPAEPSKPHKPVKPADSSLS


KDLKPKNDCPSARSKPKTIEGSQMKLAL 


(SEQ ID NO: 653)





>SRR3989431_2283179_3|M


[freshwater metagenome]


MSNFSDNVRTKEFKLILSSEQERTLEDWMLVCKWVWNRSLGLIEEFNEWNPYDRISKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGFIHPVAIDENSPVIDSLDSKKSVLYGFLKMFGHQHHKDRIVTYLIRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDGKINIPKLGYIEVIGLDKRWYGCDFNPMKICKKA


SGWYIQLTASVPIKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRGLKRLRKMQQQLSRKYRMNGGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGAPMVAANGTAIYEKNNQKRKRGS


NRTGNDVAIGQAIDLLETKGKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLIDKNSATPSGSKKATKKKPKKSDTVIIPDDLFKNGVHEFLIGETAKTRAIINEMSLGNF


DRNA 


(SEQ ID NO: 654)





>SRR3989431_168870_5|M


[freshwater metagenome]


MSSNFSENVRTKEFKLILSSEQERTLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKLSKSNVPATPLQRYDRKLKQWVRI


EIPDWKMGIERVEKKKGLIHPVAIDENSPIIDSLDSKKSVLYGFLKVFGHQHHKDRIVTYLVRGEERKVNFTDCPAKFI


QGVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDSKINIPKLGYIEVIGFDKRWYGCDFNPMKICKK


ASGWYIQLTASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRSLKRLRKMQQQLSRKYRMNEGKTKNWEKL


NNKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTEGNPVVAENGTVIYDKNSQKRKRG


SNRTGSDVAIGQAIDLLETKAKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKG


LAQMAINQGVELSDNFWYKFLINKNSATPSCSKKATKKKTKKSDTITIPDDLFKNGVHDFLVAETTKTHAIINQMSLGD


FDRNA


(SEQ ID NO: 655)





>SRR4754862_508403_7|P


[freshwater metagenome]


MSNFSDNVRTKEFKLILSSEQERVLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKISKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGFIHPVAIDENSPVIDSLDSKKSVLYGFLKMFGHQHHKDRIVTYLIRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDGKINIPKLGYIEVIGLDKRWYGCDFNPMKICKKA


SGWYMQLTASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRGLKRLRKMQQQLSRKYRMNGGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTDGAPMVAANGTAIYEKNNQKRKRGS


NRTGNDVAIGQAIDLLETKGKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLIDKNSATPSGSKKATKKKPKKLDTVIIPDDLFKNGVHEFLIGETAKTRAIINEMSLGNF


DRNA


(SEQ ID NO: 656)





>SRR5468113_274154_3|M


[freshwater metagenome]


MNTITKVRKIEFKVTLDAQQRQVFEHHSRDLRFIWNTGLACIQWREWWEKWQQVLESPDRVGYEPETVPINWACNIVKS


PKKKKKDEESEKKVYALACDRVQYRLEKTTNLELGTGEWTEPRKDRNGKIDEDHCWVAYPCKPEPVREHWTEEPRLLLL


MKNPYMALRTMFAKKNWDPETVEGKIIHGLNTAWVAGECKALGDAWSSYKSGVRKRPRFKKRHDRSNLINPSSKQAKFS


GNSLTLPGLGRVTVKGLQQRWGEKPACPIALIKEGDEFYLQLTGELEIPVVRSNKVTIGIDPGSVRLATTDNGAVIEAH


KFGKQMTRRQKKLQASINRKLRLNSDRVYDESDSSRFYLKPRKNWKRKNLQKVRTKLQKLSAKTARQRRAYNHFHSTRI


VQSADVIIMEGLELKNVTRAVKKGKSGEHNKRKAKAGLNRSLLDNAIGQFYGMIEQKAKDAGKVTARVNPFRTSMTCNK


CGFSDAKNRKTQAGFHCQKCGHSDNADRNAALNIKRMGVLGVTKLTFDNDWNITVPGWIEPGDLVALHSKGLKPVGTAK


KRSKRAGKEHPSQLALEIGSQ 


(SEQ ID NO: 657)





>SRR5468149_1084624_1|P


[freshwater metagenome]


MKTIKIKLSITPSQSQLIEGYFSELSWIWNKILASEVNNHATQWYKWAAKQSGKCWPAFSLDGANMTPLRFGKSAFIGA


ACQIAIGGAYWKRDDSINVAIKVKGKTEFRKGGKWMKGDRPYTPVPITDYQPRTFTDGTPLLKPADWDRVGKLNQLREA


DGLPPLSLPSDYIGGLVAHFDTAWKAWLDPKLKSRGKLKFKNPREGFVESLSNPQKPPSIDFENETIRIPGIGAIAVGD


RSWRDRIPSGGVPRTYTVNSKPSGWYINIVFANALQPSLKKMEKAAAAVKSQYGKESPEYLEARASVSAIASQISEAGF


VDRKPLSIGIDPGVNAIIGTDHGALFRPNLARERASVRVEYLSAKLATVKELNDKQWKDAGSKRPDTKNEIRLKYQIAR


THEKGANSSNAFNHKLSTRLVGTYTAIAWEDTQLTNLLKQATPKASEEGVGYEKNGAAAKRGLNWSLKQRCLGDLKAKT


KQKMGVLGGEFIDSPAPYSSRECSCCGAVGDRTEQHEFICKNELCEAYLIPKQADVNAARNHAKNAGFSISDVIHSADK


ILYSRPTRRRKKVILLADNRSLGGIDRKVLTRKAQVPGVKEKATTLIDAPELWGTIPKKA


(SEQ ID NO: 658)





>SRR5574091_1575611_4|M


[freshwater metagenome]


MENMTRVVKFRLTLTEEQQSLIDEKMRLLKYLWNLAVGLQEEVNQRRLRDKFEFKEFSPEFWETSYLSLYSSFPHIEKL


PKDKTKLLVGNPCCKIAYLKNKKEYVLLKLEERKKRPYLGNPDAKKHTTKPPDKEALKKYFYPDLADKIFEIGSEFRGC


FYRYVISKAFETAKKGIRGFPKYKGKLDSVQSLIVGHPTLIKIRDSGIFLNKQIGLLVIDDINRLSKESDVRMASIVRK


ASGYYLHLTINLPVPMHFPSDRQIGIDVGCVNLYTDSEGRHIETKAYYRNKERKIAHLQRKMARQEKGSANYLKSKEKL


ALLHEQIKDRRAGYLHQVSHKLTQKYSHIAMEDLKLKNMTKRAGVKENEDGTYAHNGASAKSGLNKSILDQGIGELKRQ


LIYKAEEKGGRVVLVNPKYTSQTCFNCGHKHKDNRKSQSEFICVSCGYSANADENAAKNILTLSLISSTIGVLRSSLLS


YPSLLGKAVSLLAYVCGSPKGTCEAERERSDPPINPPVKGGNCLDNFSTLTIKDPRHQSEKVSQPIDSVQLTIW


(SEQ ID NO: 659)





>SRR6475630_1852385_2|M


[freshwater metagenome]


MSNFSDNVRTKEFKLILSSEQERVLEDWMLVCKWVWNRSLGLIEEFNEWNPYDKISKSNVPATPLQRYDRKLKQWVRIE


IPDWKMGIERVEKKRGFIHPVAIDENSPVIDSLDSKKSVLYGFLKMFGHQHHKDRIVTYLIRGEERKVNFTDCPAKFIQ


GVAHELSKAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDGKINIPKLGYIEVIGLDKRWYGCDFNPMKICKKA


SGWYMQLTASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRGLKRLRKMQQQLSRKYRMNGGKTKNWEKLN


NKIAKLHEKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTDGAPMVAANGTAIYEKNNQKRKRGS


NRTGNDVAIGQAIDLLETKGKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGL


AQMAINQGVELSDNFWYKFLIDKNSATPSGSKKATKKKPKKSDTVIIPDDLFKNGVHEFLIGETAKTRAIINEMSLGNF


DRNA


(SEQ ID NO: 660)





>SRR6475633_3251865_1|M


[freshwater metagenome]


MERVEKKRGFIHPVAIDENSPVIDSLDSKKSVLYGFLKMFGHQHHKDRIVTYLIRGEERKVNFTDCPAKFIQGVAHELS


KAWEGFLAGRHSRPRFKTAKDKVMTLIHYNAKDLGVKDGKINIPKLGYIEVIGLDKRWYGCDFNPMKICKKASGWYMQL


TASVPVKQAKKTGLCCGIDPGHQFVMALDNGHTIEAAQPLKRLKRLRKMQQQLSGRKYRMNGGKTKNWEKLNNKIAKLH


EKIARHRRSFNHWHSTNLINWFDVIFVEDYKPANVYRKAKAKAKLDTDGAPMVAANGTAIYEKNNQKRKRGSNRTGNDV


AIGQAIDLLETKGKEHGKLVIRVDNWGTTLCCAKCGHQEKKKLSQRTHKCSNCGYTVARDVNSGQNIKLKGLAQMAINQ


GVELSDNFWYKFLIDKNSATPSGSKKATKKKPKKSDTVIIPDDLFKNGVHEFLIGETAKTRAIINEMSLGNFDRNA


(SEQ ID NO: 661)





>3300031784|Ga0315899_10084352_2|M


[fungi-freshwater]


MPKAKPTDKEKDKRPIKTLEFKLYPNQSQVLTLTDWLDRGRKVWNNGLAVLLEKDQQDWRKKVGFDPMDGNEAWQWFPN


QVGGKTVFGLCCAITFYNRRQNEHYPACFIRHPQNVDGAPRSLIYRATQLDNFCTRFKGGIGDDLLESWKAYKDKNRPT


AKLPKFKGKRFPLKSLSNGECTAKIVGKTAIKFPLLGNIRTKGLERVPQDSKICTARICRKASGWYLQLAIRWDWPVPN


VKMPDVAVAIDPGVRFATSTDYGRQVDAPQFMLKQTKKLRREQRKLSRRKLKGKNWQKQAAKIARLHEKVSRQRNAFWH


KESTYFVTSFGGVAIEDNNFNNMGRKAKAKPKEDGKGYERNNQAQKRGLNRSLKDVACSRLKVMVETKAKTINNEVHLV


RSHHNSQTCSECGHVAKDNRKSQSNFSCVNCGHSLNADINAAINIYNRADWSNRYNLHPRRLQVSDMERYPSFDGGIDA


SQKPATVHGKPSNGTRSQQEGESSPLSEITEKSRSHGLAKPVQLSLWDIVA


(SEQ ID NO: 662)





>3300031857|Ga0315909_10035026_2|M


[fungi-freshwater]


MENMTRVVKFRLTLTENQQSLIDEKMRLLKYLWNLAVGLQEEVNQRRLRDKFEFKEFSPEFWETSYLSLYSSFPHIEKL


PKDKIKLLAGNPCCKIAYLKNKKEYVLLKLEERKKRPYLGNPDAKKHTTKPPDKEDLKKYFYPDLADKIFEIGSEFRGC


FYRYVISKAFETAKKGIRGFPKYKGKLDSVQSLIVGHPTLIKVRDGGIFLNKQIGLLVIDDINRLPKESDVRMASIVRK


ASGYYLHLTINLPVPMHFPSDRQIGIDVGCVNLYTDSEGRHIETKAYYRNKERKIAHLQRKMARQEKGSANYLKSKEKL


ALLHEQIKDRRAGYLHQVSHKLTQKYSHIAMEDLKLKNMTKRAGVKENEDGTYAHNGASAKSGLNKSILDQGIGELKRQ


LIYKSQEKGGRVVLVNPKFTSQTCFNCGHKHKDNRADENAAKNILTLSLISSTIGVLRSSLLSYPSLLGKSQSEFICVS


CGYSANKAVSLLAYVCGSPKGTCEAERERSDPPINPPVKGGNCLDNFSTLTIKDPRHQSEKVSQPIDSVQLTIW


(SEQ ID NO: 663)





>3300032092|Ga0315905_10155087_1|P


[fungi-freshwater]


MSQENITRVVKFRLTLTENQQSLIDEKMRLLKYLWNLAVALQEEVNQRRLRDKFGFKEFSPEFWELSYLKLYSDFSHIE


KLPKDKTKLLVGNPCCKIAYLKNKKDYTPIKLEERKKRPYLGNPDAKKHTAKPPDKKDLKKYFYPDLADKIFEIGSEFR


GCFYRYVISKAFETAKKGIRGFPKYKGKLDSVESLIVGHPTLIKIRDGGIFLNKQIGLLVIDDINRLPKDSDVRMASIV


RKASGYYLHLTVNLPVPMHFPSDRQIGIDVGCVNLYTDSEGRHIETKAYYRNKERKIAHLQRKMARQEKGSANYLKSKE


KLALLHEQIKDRRAGYLHQVSHKLTQKYSHIAMEDLKLKNMTKRANVKENEDGTYAHNGASAKSGLNKSILDQGIGELK


RQLLYKSQEKGGQVVLVNPKFTSQTCFECGHKHKDNRKSQSEFICVSCGHSANADENAAKNILTLSLISSTIGVLRSSL


LSYPSLLGKAVSLLAYVCGSPKGTREAERERSDPPIDPPAKGGNCLDNFSTLTIKDPRHQSEKASQPIDSVQLTLF


(SEQ ID NO: 664)





>3300032092|Ga0315905_10155087_2|M


[fungi-freshwater]


MIQTNIEDKMSQENITRVVKFRLTLTENQQSLIDEKMRLLKYLWNLAVALQEEVNQRRLRDKFGFKEFSPEFWELSYLK


LYSDFSHIEKLPKDKTKLLVGNPCCKIAYLKNKKDYTPIKLEERKKRPYLGNPDAKKHTAKPPDKKDLKKYFYPDLADK


IFEIGSEFRGCFYRYVISKAFETAKKGIRGFPKYKGKLDSVESLIVGHPTLIKIRDGGIFLNKQIGLLVIDDINRLPKD


SDVRMASIVRKASGYYLHLTVNLPVPMHFPSDRQIGIDVGCVNLYTDSEGRHIETKAYYRNKERKIAHLQRKMARQEKG


SANYLKSKEKLALLHEQIKDRRAGYLHQVSHKLTQKYSHIAMEDLKLKNMTKRANVKENEDGTYAHNGASAKSGLNKSI


LDQGIGELKRQLLYKSQEKGGQVVLVNPKFTSQTCFECGHKHKDNRKSQSEFICVSCGHSANADENAAKNILTLSLISS


TIGVLRSSLLSYPSLLGKAVSLLAYVCGSPKGTREAERERSDPPIDPPAKGGNCLDNFSTLTIKDPRHQSEKASQPIDS


VQLTLF 


(SEQ ID NO: 665)





>SRR6476078_1283286_3|P


[lake water metagenome]


MIFEPNVKVLEFKIHPTEEQVSKIDQSLAACKLLWNLSIALKEESKQRYYRKKHKFDEFSPEIWELSYSGHYDEKEFKS


LKDKEKKLLIGNPCCKIAYFKKTSNGKEYTPLDAIPIRRFMNAENIDKDAVNYLNRKKLAFYFRENTAKFIGEIETEFK


KGFFKSVIKPAYDAAKKGIRGIPRFKGRRDKVETLVNGQPGTIKIKSNGVIVSSKIGLLKVRGLDRLQGKAPRMAKITR


KATGYYLQLTVETDDTIYKESDKCVGLDMGAVAIFTDDLGRQSEAKRYAKIQKKRLDRLQRQASRQKDGSNNQRKTYAK


LARVHEKIARQRKGRNAQLAHKITSEYQSVILEDLKLKNMTAAAKPKEREDGDGYKQNGKKRKSGLNKALLEMSV


(SEQ ID NO: 666)





>SRR6476078_1283286_3|M


[lake water metagenome]


MKVLEFKIHPTEEQVSKIDQSLAACKLLWNLSIALKEESKQRYYRKKHKFDEFSPEIWELSYSGHYDEKEFKSLKDKEK


KLLIGNPCCKIAYFKKTSNGKEYTPLDAIPIRRFMNAENIDKDAVNYLNRKKLAFYFRENTAKFIGEIETEFKKGFFKS


VIKPAYDAAKKGIRGIPRFKGRRDKVETLVNGQPGTIKIKSNGVIVSSKIGLLKVRGLDRLQGKAPRMAKITRKATGYY


LQLTVETDDTIYKESDKCVGLDMGAVAIFTDDLGRQSEAKRYAKIQKKRLDRLQRQASRQKDGSNNQRKTYAKLARVHE


KIARQRKGRNAQLAHKITSEYQSVILEDLKLKNMTAAAKPKEREDGDGYKQNGKKRKSGLNKALLEMSV


(SEQ ID NO: 667)





>SRR7812565_865334_1|P


[lake water metagenome]


MKTIKIKIKLTTDQVQLCDRYLEELTWLWNLTLSNQLHNHCVTWYAWAAKLSADLDKATEKLDKLKPEQQQLIKDYYRT


KDKPKLSKKEQELVAKFDIFARWNSFSLDGIIPVPLRLGNSGYEGLSCQIATGGNYWKRDENINIPINTKKGIVHVKGY


KLVKGDKPWQRIEIVPHKYRTFPGGKFEGRELTTLEKLDNVNGLNTLRAFQNLPDLQVSSHYIGGLLAFFKESWSAFLD


PKRMNSRKPKFKKDSDKITTLSNNQCAPNRIDVNKNIVTVTGFSPIAIIDKNWVKRLNLSEVLPRTYMLTQNPSGYYIN


IVIAHPLHEEKTALVKKLPKVKKEFGEDSQEYEDIKSKIKFLEQQIKEASIVKGKDLSVGIDPGVQAVVSTDHGALFLP


NLTRERVSIHIEELQSRLDNIELINDKKWKSLGNKTPRIKTKNETKLQEKISRLHERGANSSNAFNHKLSTRLSRTYEH


IAWEDTQINNLLKQVEPKALPEGIGYAHNGASAKRGLNWIMRQRCLSDLKAKTKQKTENRGGNFHEPPANYSSQTCHCC


KQKGERRSQHEFICKNSDCKLFDISQQADTNAARNHKQNGGFDLGDVKYHNVKLVYQKPKRFKKKRLTNQ


(SEQ ID NO: 668)





>SRR6448207_482583_3|P


[microbial mat metagenome]


MKTIKIKLSITPNQSQLIESYFSELSWIWNKILASELSNHATQWYKWAAKQSGKGWPVFSLDGANMTPLRFGKSAFIG


AACQIAIGGAYWKRDDSINVAIKVKGKIEFRKGGKWMKGDRPYTPVPITDYQPRTFTDGTPLLKPADWDRVGKLNQLR


ETDGLPPLSLPSAYIGGLVAHFDAAWKAWLDPKLKSRGKLKFKNPENGFVASLFDRYPPTCIDLENETIRIPGIGAIA


VGDRSWKDRIPSGGVPRTYTVNSKPSGWYINIVFANALQPSLKKMEKAAAAVKSQYGKESPEYLEARASVNAIAFQIS


EDGFVDRKPLSIGIDPGVNAIIGTDHGALFRPNLARERASVRVEYLSAKLDAIKELNDKQWKDAGSKRPDTKNEIKLK


YQIARTHEKGANSSNAFNHKLSTRLVGTYTAIAWEDTQLTNLLKQATPKASEEGVGYEKNGAASKRGLNWSLRQRCLG


DLKAKTKQKMGVLGGEFIDSPAPYSSRECSCCGAVGDRTEQHEFICKNELCTAYLIPKQADVNAARNHAKNAGFSISD


VIHSADKLIYSRPTRRRKKVVSLADNRSLGGIDRKVLTRKAQAPGVKEKATTLIDAPELWGTIPKKA


(SEQ ID NO: 669)





>SRR7244345_343276_44|P


[microbial mat metagenome]


MLTLEFKLSLTTCQEQRLEAWLRDMNWIHNSALACIESFNAHNAYNKEDKRSYACNPVVSYWRGQVYPSCPVGHQLTQF


DEESYAAALLERKNKKGTVYPLQAWAGEPRLENVSYFSLLNRFPKKLHPIKLADVPQKFVAGRVERVALSWQAFLKGNA


KPPKFKSRRNPVTSLIHNESKKIRIDGDRINMPRIGWLKAKGLAKRWPQGVPFCPMKVIKAADGWYLQLTGEVEERKSP


KLTGRHVGIDPGSVRHHTTDSGSFVEPPRYLMKAAVKLRTLQRQLSRQYRQNSTQIFGKDGRVIRSVARSDWDRKNFDK


TKAKIAKLHAKIARQRRAFNHFQSSKYVTMFDVITVEDFEPAKLTRAVKKGEAGVRNGRKAKSGLNRNLLDNAIGQFYG


MLEQKSKDRGRAFQRVKPAFSSRTCNCCGYRSKDNRKSQSSFVCLSCGHRDNADRNAARNIKRMAELGIDRLTFTDDFA


DGFREQVGVDGAKDVVSLPKKAKKRGSRKSTMEVSCQLTLDEGSSNSL


(SEQ ID NO: 670)





>WP_016456110.1


[Propionimicrobium lymphophilum ACS-093-V-SCH5]


MSYLCARGRFNLSGFSTGSMGVLPVRASLFALLFTTLHGARISAHWYGMSKENDHTVTCIKICLEPNKAQRAQFASFAG


SARWAYNFALAIKIGYQKRWFEARKQFIESGLDEKAAGKKASEQVGRMPNYMSIATNEWTQLRDEVCPWYPEVPRRVFV


GGFQRADAAFKNWFDSKSGRRSGAAMGWPKFKSKSKSRESFVIANDVQPAFVANLNRYIKTGELADMDYRHIKVPKCGE


VRLTPGSAGQLRQLGRTMLAEAKTGELITRITSGTISRLGDRWYVSLVISGPFVPDAISTKRQRRNGVVGVDLGSGRFY


ATTSEGLSIINPKFVSKYEQELARANRALAKTAKGSAARKKALARLRRVHARSALARDGFSHQVSAWLTSQFAGVAVEK


FDLASMLASAKGTVEKPGKNVDVKARFNAHLADVGIASTIDKLLYKGKRDGCRVQVVNTLDNSSTTCAKCGHTCVCGPE


QKTFTCPDCGYNAPRQLNSAQYIRQLATVGFDELGLDMTASLTPDTGKRPIAFMTSAH


(SEQ ID NO: 671)





>AGZR01000008_18|M


[Propionimicrobium lymphophilum ACS-093-V-SCH5]


MGVLPVRASLFALLFTTLHGARISAHWYGMSKENDHTVTCIKICLEPNKAQRAQFASFAGSARWAYNFALAIKIGYQKR


WFEARKQFIESGLDEKAAGKKASEQVGRMPNYMSIATNEWTQLRDEVCPWYPEVPRRVFVGGFQRADAAFKNWFDSKSG


RRSGAAMGWPKFKSKSKSRESFVIANDVQPAFVANLNRYIKTGELADMDYRHIKVPKCGEVRLTPGSAGQLRQLGRTML


AEAKTGELITRITSGTISRLGDRWYVSLVISGPFVPDAISTKRQRRNGVVGVDLGSGRFYATTSEGLSIINPKFVSKYE


QELARANRALAKTAKGSAARKKALARLRRVHARSALARDGFSHQVSAWLTSQFAGVAVEKFDLASMLASAKGTVEKPGK


NVDVKARFNAHLADVGIASTIDKLLYKGKRDGCRVQVVNTLDNSSTTCAKCGHTCVCGPEQKTFTCPDCGYNAPRQLNS


AQYIRQLATVGFDELGLDMTASLTPDTGKRPIAFMTSAH


(SEQ ID NO: 672)





>SRR8162779_1368970_53|P


[sediment metagenome]


MLTLEFKLSLTISQEQRLEAWLRDMSWVHNSALACIESFNAHNAYHKGDKRSYACNPVVSYWRGQVYPSCPVSHQLTQF


DEESYAAALRERKNKKGTVYPLQAWAGEPVFGQISPFSLQARFGINRHPLKLKAVGIPKVFVAGRTNIVAKSWDAFCNR


ASKPPKFKSRRNPVQSLISINSQATSIEGDRIRIPNLGFAKAKGLSKRWPTGAVVSTLKIIKAADGWYLQLTGEVGERK


PPKLTGRHVGIDPGAVRHHTTDSGSFVEPPRYLLKAAQKLRMLQRQLSRQYRQNSTQIFGKDGRVIRSVARSDWDRKNF


DKTKAKIAKLHAKIARQRRAFNHFQSSKYAAMFDVITVEDFEPAKLTRAVKKGEAGVRNGRKAKSGLNRNLLDNAIGQF


YGMLEQKSKDRGRLFQRVKPAFSSQTCNCCGYRSKDNRQSQSSFVCLCGHRDNADRNAARNIKRMAESLGIDRLTFTDD


FADGFRERVGVDGAKDVVSLPKKAKKRGSRKSTMEVPCQLTLDEGMFK


(SEQ ID NO: 673)





>SRR5855413_300079_4|M


[soil crust metagenome]


MKTLEFKLYLTRSQQETIDNWLSALKYPWNKGVELIHTFNDFNYYDKRFKTLAPCCPIASYNHKLRIVNAKNREKKQQL


RENEYLSCPIGWKLDDYTGFSTSLETRELMQVLVDEGKTLEKVGTRSPYGIYPIRPFASGKLVTNLSYFELLSVFAHKR


NVDRPWFIDADEPWFTDVDSKIIAGMVKTLADSWQAFLDGKRKPPKFKGKNKRIDTLINNNSKDIRVEGDRIKLPKIGF


VRAKGLAKRWNQGLVFCPMKICRKASGYYLQLTGEVPPEPLKKHPKLKAVGLDPGIAAVYTDDAGRTVKVPPYLEKDLG


KLKSLQRKVQRQWENNKDIPEWERKNWQKTQNKIAKLHEKIARRGRAFNHFESTKLVRQFEEIYLEDYRPSEMVGKVKP


IDSGKVVVNTKDELTTVYEKNGRGVNKLINRATLRNRVGQLWQMIETKGGKRVLRVERNGTSSECPKCGDIKEKLIQQR


IHRCGECGYITHRDRAAAQIIKQRGLEIRQAGGDEDNGKKQRQRRDRKKG


(SEQ ID NO: 674)





>SRR5855413_1311040_12|M


[soil crust metagenome]


MKTLEFKLYLTDSQQQIVDEWLAALKFVWNKGVELMEDFKAFNHYDKRFKATAPCCPIVSYERKLRQVLPTCPVGWRLD


DYSGLYHTKNEQGEWELVQVVMDEDKLLDKLVEKRSPNGIFPMRPWRNGKMLTGITHYGLEPIFAHKRNTDKPWLTAVD


SKFISGMVKSLADGWTAFLGGSRDRPPKFKNKSVRINTLIHNNTKPDKSGRAVAPISGDRIRIPKIGWVRVKGLSKRWP


KGLEFCPLKICRKASGYYLQLTGDVKNDILIKPPSVQAIGLDPGIEAVFTDDVGRRIKVPDYLERDLKKLKQLQRKASR


QWEANKECEEWHRKNWRKTQDKIAKLHEKIARRGRAFNHFQSTKLVRIFNEIYLEDYRPSEMVGKVEPVDSGKLVINKN


EDLTTVYEKNGREVNRAINRATLRNRVGQLWQMIETKGGKRVLRVERDGTSSECPRCGYVKQKRIQERTHRCEQCGYKA


HRDQAAAEVIKKKGQEARLKGCVEQENTKQRRKGRGKKVSGE


(SEQ ID NO: 675)





>SRR5855415_346708_l05|P


[soil crust metagenome]


MIDRQGRQQCRLKLMKTIEFKLSLTRSQEEILNQWMSALKFVWNLGVALIKEFNSFNHYDKRFKQSAPCCPIVAYNHKL


RVTNGATQEGWRECEFPIQPIGFQLLAFDEENPIDVGKRTPCGVYPVIVNGHAVKNLTYFGIQGAFAHKRNQDKPWLTC


IPSKFVHGTVQSLADSWQAFLSGNSKRPKFKGKNDQIKTLVTNNAKDITTIKGDRIRIPNLGYVRAKGLSKRWHEGVPI


CSLKICKKASGYYLQLTGDIEACSPKKTKIPKVQAVGLDPGIEHVYCDDAGRKVKVPQYLERDLQKLKQLQRKAQKQWD


MNKDTVDQNGEPWQKKNWRRTQDKIAKLHERIARRGRAFNHFQSTKLVRQFQQIYLEDYKPSEVIKKVAPVDSGKMVVN


KNDELTTIYEKNERFLNRSTNRAAQRNRVGQLWTMIKTKGGKKVVLVEAAGTSDECPSCGHVEEKTLRQRLHRCKNCGF


VAHRDVAAAKIIKKRGMAQSPQMDVSLR 


(SEQ ID NO: 676)





>SRR5855420_1331858_67|P


[soil crust metagenome]


MYLTDSQQQ1VDEWLAALKFVWNKGVELMEDFKAFNHYDKRFKATAPCCPIVSYERKLRQVLPTCPVGWRLDDYSGLYH


TKNEQGEWELVQVVMDEDKLLDKLVEKRSPNGIFPMRPWRNGKMLTGITHYGLEPIFAHKRNTDKPWLTAVDSKFISGM


VKSLADGWTAFLGGSRDRPPKFKNKSVRINTLIHNNTKPDKSGRAVAPISGDRIRIPKIGWVRVKGLSKRWPKGLEFCP


LKICRKASGYYLQLTGDVKNDILIKPPSVQAIGLDPGIEAVFTDDVGRRIKVPDYLERDLKKLKQLQRKASRQWEANKE


CEEWHRKNWRKTQDKIAKLHEKIARRGRAFNHFQSTKLVRIFNEIYLEDYRPSEMVGKVEPVDSGKLVINKNEDLTTVY


EKNGREVNRAINRATLRNRVGQLWQMIETKGGKRVLRVERDGTSSECPRCGYVKQKRIQERTHRCEQCGYKAHRDQAAA


EVIKKKGQEARLKGCVEQENTKQRRKGRGKKVSGE 


(SEQ ID NO: 677)





>SRR5855420_1331858_68|M


[soil crust metagenome]


MKTLEFKLYLTDSQQQIVDEWLAALKFVWNKGVELMEDFKAFNHYDKRFKATAPCCPIVSYERKLRQVLPTCPVGWRLD


DYSGLYHTKNEQGEWELVQVVMDEDKLLDKLVEKRSPNGIFPMRPWRNGKMLTGITHYGLEPIFAHKRNTDKPWLTAVD


SKFISGMVKSLADGWTAFLGGSRDRPPKFKNKSVRINTLIHNNTKPDKSGRAVAPISGDRIRIPKIGWVRVKGLSKRWP


KGLEFCPLKICRKASGYYLQLTGDVKNDILIKPPSVQAIGLDPGIEAVFTDDVGRRIKVPDYLERDLKKLKQLQRKASR


QWEANKECEEWHRKNWRKTQDKIAKLHEKIARRGRAFNHFQSTKLVRIFNEIYLEDYRPSEMVGKVEPVDSGKLVINKN


EDLTTVYEKNGREVNRAINRATLRNRVGQLWQMIETKGGKRVLRVERDGTSSECPRCGYVKQKRIQERTHRCEQCGYKA


HRDQAAAEVIKKKGQEARLKGCVEQENTKQRRKGRGKKVSGE


(SEQ ID NO: 678)





>SRR5855435_639752_6|P


[soil crust metagenome]


MKTLEFKLYLTRSQQETIDNWLSALKYPWNKGVELIHTFNDFNYYDKRFKTLAPCCPIASYNHKLRIVNAKNREKKQQL


RENEYLSCPIGWKLDDYTGFSTSLETRELMQVLVDEGKTLEKVGTRSPYGIYPIRPFASGKLVTNLSYFELLSVFAHKR


NVDRPWFIDADEPWFTDVDSKIIAGMVKTLADSWQAFLDGKRKPPKFKGKNKRIDTLINNNSKDIRVEGDRIKLPKIGF


VRAKGLAKRWNQGLVFCPMKICRKASGYYLQLTGEVPPEPLKKHPKLKAVGLDPGIAAVYTDDAGRTVKVPPYLEKDLG


KLKSLQRKVQRQWENNKDIPEWERKNWQKTQNKIAKLHEKIARRGRAFNHFESTKLVRQFEEIYLEDYRPSEMVGKVKP


IDSGKVVVNTKDELTTVYEKNGRGVNKLINRATLRNRVGQLWQMIETKGGKRVLRVERNGTSSECPKCGDIKEKLIQQR


IHRCGECGYITHRDRAAAQIIKQRGLEIRQAGGDEDNGKKQRQRRDRKKG


(SEQ ID NO: 679)





>SRR6201738_878635_2|M


[soil metagenome]


MDKSKRQGEVAEKQLRESLPQKRSIRGAFLFDKMKACQAEAQRIVKMLTLEFSVEFTPEQESIISQWMDLQKIQWNIGL


SALLEFDATRRWNKLTDSDGGKGAYYPVCAIAGGDWVPASAWGYEAIPRNDGQEPLKGWTARACPLYKVGVGDRWLSGG


CTIPEIGAMVPNVEPLLLSIKDAKSPGGLSIMARADNIPSDLAETPSLFRHGTLALLFASWDRHKSDPLNAGQPKRKRY


QDKWDVLYTGNAKELSKTSDAVRIPKIGWVGIPKLSDRWRDSEGNAPDICSFKIVRRDRKFRVQLTGDLKRSYKAQPSN


LSVGVDLGFVYAHIESNGNRSALLDLSLEKLEQRKQRLQAKLDSKLDQRIVLWLRNPETTHASLIVRRKTRRGIEEEKP


MIRISLENWEKLKQCRTAGEAAQIIGQKRDKRYQTLRHALPKSAKEQALRVQIASIDRKIAATRKTRDAKLATRLAKKY


GHIAIENGLQREVKRHRPDPKKQGDKYLKNGAERQSETNKQLKALAPGRKIAMLEAMSKRYGRDFSKQESPTTTTECPC


CGRHNEPSLKMDEHGDRRYSCACGWEIDQDVNAATNIELRSSALKPEVQLSQPAETARIRSYQLEADGKLFAEPQWRMP


PAPPKAKKESRGKRRKALRDSEPLKELKGQRLTAASRKSQVKALESGVSKMLP


(SEQ ID NO: 680)





>SRR6201739_286584_1|P


[soil metagenome]


MDKSKRQGEVAEKQLRESLPQKRSIRGAFLFDKMKACQAEAQRIVKMLTLEFSVEFTPEQESIISQWMDLQKIQWNIGL


SALLEFDATRRWNKLTDSDGGKGAYYPVCAIAGGDWVPASAWGYEAIPRNDGQEPLKGWTARACPLYKVGVGDRWLSGG


CTIPEIGAMVPNVEPLLLSIKDAKSPGGLSIMARADNIPSDLAETPSLFRHGTLALLFASWDRHKSDPLNAGQPKRKRY


QDKWDVLYTGNAKELSKTSDAVRIPKIGWVGIPKLSDRWRDSEGNAPDICSFKIVRRDRKFRVQLTGDLKRSYKAQPSN


LSVGVDLGFVYAHIESNGNRSALLDLSLEKLEQRKQRLQAKLDSKLDQRIVLWLRNPETTHASLIVRRKTRRGIEEEKP


MIRISLENWEKLKQCRTAGEAAQIIGQKRDKRYQTLRHALPKSAKEQALRVQIASIDRKIAATRKTRDAKLATRLAKKY


GHIAIENGLQREVKRHRPDPKKQGDKYLKNGAERQSETNKQLKALAPGRKIAMLEAMSKRYGRDFYKQESPTTTTECPC


CGRHNEPSLKMDEHGDRRYSCACGWEIDQDVNAATNIELRSSALKPEVQLSQPAETARIRSYQLEADGKLFAEPQWHMP


PAPPKAKKESRGKRRKALRDSEPLKELKGQRLTAASRKSQVKALESGVSKMLP


(SEQ ID NO: 681)





>GCL37732.1


[Sphaerospermopsis reniformis]


MKTIKIKVSLSTQQKEIFNQYIDQLEWFWNLALANQFHNHCIKWYEWAKKQQQLLDKTKENFDKLKPEQKQLVLDFYSH


KYGEKQPKLTEKQKDLINKFEIFSRWLPFDLDGIIPVPLLLGNSGYEGLSCRIAIGGPRWVRDENINIPLKNKKGEIIH


KKGSKLVPGKHPYQPIKPTPHSYKTFPGGKFAGRELVDVKKLDNLDGLNSIRSAENLPPLTVPTDYIGGTMKFFEVSWN


AFLDPKLPERRKVKFKDKERKLTTLSNNQKPPNRINPEKNTVSISGIGEVKVIDRNWLQRLNLENISPRTYTLSKKPSG


YYLNIVVAHPLQEEKSKLDKQLPKVKKEYGEESQEYQEILSKYNEVSEQIKSSYFDDVKDLSVGIDPGVNAVISTDHGA


LFMPNITRERISIHIEELQSKLNKIKDINDAQWKAAGNKGERPKTKNEIKLQAQISRLHEKGANSANCFNHKLSTRIAR


TYRYVCWEDTKIKNLLKQVEPQALPEGVGYAHNGASAKRGLNWIMRQRCLSDLEAKTKEKVEKKGGKFNEPSANYSSQL


CHCCQQKGERVSQHEFICKNPECSLFEKVQQADVNAARNHKQHGGFEVGEVKYNLTKLQYQKPKRFKKKKLTK


(SEQ ID NO: 682)
















TABLE 3010







Nucleotide Sequences of Representative CLUST.057059 Direct 


Repeats and Spacer Lengths









CLUST.057059 Effector 

Spacer


Protein Accession
Direct Repeat Nucleotide Sequence
Length(s)





3300023179|Ga0214923_10000634_6|0P
CTTGCAACTGGGCTTGGGGACTGAGGATAGTTGAAAC
32-


(SEQ ID NO: 601)
(SEQ ID NO: 683)
39



GTTTCAACTATCCTCAGTCCCCAAGCCCAGTTGCAAG




(SEQ ID NO: 751)






ATW59329.1 
GTTAGGATGCCCGCAGGATGTCATATAGTTGGCAAG
26-


(SEQ ID NO: 602)
(SEQ ID NO: 684)
45



CTTGCCAACTATATGACATCCTGCGGGCATCCTAAC




(SEQ ID NO: 752)






SRR3727507_43825_27|P 
ATTGCAATAAATTTTAATTCTTAGCAGGGATTGAAAG
34-


(SEQ ID NO: 603)
(SEQ ID NO: 685)
37



CTTTCAATCCCTGCTAAGAATTAAAATTTATTGCAAT




(SEQ ID NO: 753)






SRR3727511_164637_6|M 
ATTGCAATAAATTTTAATTCTTAGCAGGGATTGAAAG
34-


(SEQ ID NO: 604)
(SEQ ID NO: 685)
36



CTTTCAATCCCTGCTAAGAATTAAAATTTATTGCAAT




(SEQ ID NO: 753)






SRR3727516_4364_11|P 
ATTGCAATAAATTTTAATTCTTAGCAGGGATTGAAAG
34-


(SEQ ID NO: 605)
(SEQ ID NO: 685)
36



CTTTCAATCCCTGCTAAGAATTAAAATTTATTGCAAT




(SEQ ID NO: 753)






SRR3727519_259012_1|M 
TGCAATAAATTTTAATTCTTAGCAGGGATTGAAAG
36-


(SEQ ID NO: 606)
(SEQ ID NO: 686)
39



CTTTCAATCCCTGCTAAGAATTAAAATTTATTGCA




(SEQ ID NO: 754)






SRR3727519_13189_1|M 
ATTGCAATAAATTTTAATTCTTAGCAGGGATTGAAAG
34-


(SEQ ID NO: 607)
(SEQ ID NO: 685)
36



CTTTCAATCCCTGCTAAGAATTAAAATTTATTGCAAT




(SEQ ID NO: 753)






SRR5216639_261560_2|P 
CTTGAAATTCCTTTTAATGCCTATCAGGAATTGAAAC
30-


(SEQ ID NO: 608)
(SEQ ID NO: 687)
49



GTTTCAATTCCTGATAGGCATTAAAAGGAATTTCAAG




(SEQ ID NO: 755)






SRR5216639_20646|03_3|P 
GTTCCCAATAGGGGGACTTCTCGATCCAATAGAAAG
24-


(SEQ ID NO: 609)
(SEQ ID NO: 688)
38



CTTTCTATTGGATCGAGAAGTCCCCCTATTGGGAAC




(SEQ ID NO: 756)






SRR5216639_2018995_2|M 
GTTGCCAAGAGGGCGACTTCTAAGGTTGATGGGAAG
34-


(SEQ ID NO: 610)
(SEQ ID NO: 689)
44



CTTCCCATCAACCTTAGAAGTCGCCCTCTTGGCAAC




(SEQ ID NO: 757)






SRR5216639_409921_41|M 
CTTGCAAGAAGGGCGGAGGGATGAGAGGTGTTGAAAC
31-


(SEQ ID NO: 611)
(SEQ ID NO: 690)
45



GTTTCAACACCTCTCATCCCTCCGCCCTTCTTGCAAG




(SEQ ID NO: 758)






SRR5216639_409921_40|P 
CTTGCAAGAAGGGCGGAGGGATGAGAGGTGTTGAAAC
31-


(SEQ ID NO: 612)
(SEQ ID NO: 690)
45



GTTTCAACACCTCTCATCCCTCCGCCCTTCTTGCAAG




(SEQ ID NO: 758)






SRR8571171_1127661_43|P 
CTTGCAAGAAGGGCGGAGGGACAGGAGGGACTGAAAC
34-


(SEQ ID NO: 613)
(SEQ ID NO: 691)
44



GTTTCAGTCCCTCCTGTCCCTCCGCCCTTCTTGCAAG




(SEQ ID NO: 759)






3300002370|release|
CGCAATAGACGATTGCCTATTTTATGGATTGAAAC
38


scaffold29556_3|P
(SEQ ID NO: 692)



(SEQ ID NO: 614)
GTTTCAATCCATAAAATAGGCAATCGTCTATTGCG




(SEQ ID NO: 760)






33000023821017448|
CTTGCAACTAAGACTGGGGACTGAGGATAGTTGAAAC
32-


scaffold9922858_2|
T (SEQ ID NO: 693)
48


M (SEQ ID NO: 615)
AGTTTCAACTATCCTCAGTCCCCAGTCTTAGTTGCAA




G (SEQ ID NO: 761)






3300002396|B570J29629_1000007_3|P
CGCAATAGACGATTGCCTATTTTATGGATTGAAAC
38


(SEQ ID NO: 616)
(SEQ ID NO: 692)




GTTTCAATCCATAAAATAGGCAATCGTCTATTGCG




(SEQ ID NO: 760)






3300002396|B570J29629_1000558_1|M
CTTGCAACTAAGACTGGGGACTGAGGATAGTTGAAAC
34-


(SEQ ID NO: 617)
(SEQ ID NO: 694)
50



GTTTCAACTATCCTCAGTCCCCAGTCTTAGTTGCAAG




(SEQ ID NO: 762)






3300002408|1017274|
CGCAATAGACGATTGCCTATTTTATGGATTGAAAC
36-


scaffold00152_5|M
(SEQ ID NO: 692)
38


(SEQ ID NO: 618)
GTTTCAATCCATAAAATAGGCAATCGTCTATTGCG




(SEQ ID NO: 760)






3300013005|Ga0164292_10021448_2|P
GTTCCAATTAATCTTAAGTCCTATTAGGGATTGAAAC
34-


(SEQ ID NO: 619)
(SEQ ID NO: 695)
43



GTTTCAATCCCTAATAGGACTTAAGATTAATTGGAAC




(SEQ ID NO: 763)






3300027808|Ga0209354_10002575_5|M
CCAACAGATGGCTAGAGTTGTCTAGGCAGTTGAAGG
36-


(SEQ ID NO: 620)
(SEQ ID NO: 696)
43



CCTTCAACTGCCTAGACAACTCTAGCCATCTGTTGG




(SEQ ID NO: 764)






3300020048|Ga0207193_1000230_60|P
CCCGCAATAGACGATTGCCTATTTTATGGATTGAAAC
34-


(SEQ ID NO: 621)
(SEQ ID NO: 697)
41



GTTTCAATCCATAAAATAGGCAATCGTCTATTGCGGG




(SEQ ID NO: 765)






3300015360|Ga0163144_10269315_2|M
CTTGCAATAAACTTTAATCCTTAGTAGGGATTGAAAC
33-


(SEQ ID NO: 622)
(SEQ ID NO: 698)
38



GTTTCAATCCCTACTAAGGATTAAAGTTTATTGCAAG




(SEQ ID NO: 766)






3300022561|Ga0212090_10036221_2|M
TTTCAATCCCTACCAAGGGTT 
26-


(SEQ ID NO: 623)
(SEQ ID NO: 699)
43



AACCCTTGGTAGGGATTGAAA 




(SEQ ID NO: 767)






3300005805|Ga0079957_1000538_44|M
ATTGCAATATATTTTGATCCTTGGTAGGGATTGAAAG
23-


(SEQ ID NO: 624)
(SEQ ID NO: 700)
36



CTTTCAATCCCTACCAAGGATCAAAATATATTGCAAT




(SEQ ID NO: 768)






3300005805|Ga0079957_1019747_2|M 
CTTGCAACTGGGCTTAGGGACTGAGGATAGTTGAAAC
33-


(SEQ ID NO: 625)
(SEQ ID NO: 701)
42



GTTTCAACTATCCTCAGTCCCTAAGCCCAGTTGCAAG




(SEQ ID NO: 769)






3300001043|JGI12316J14372_10004500_
ATGACATCTGGGGGTTGGAAGGGGTTGCAAG 
18-


6|M 
(SEQ ID NO: 702)
44


(SEQ ID NO: 626)
CTTGCAACCCCTTCCAACCCCCAGATGTCAT 




(SEQ ID NO: 770)






3300001043JGI12316J15309_10000277_
ATGACATCTGGGGGTTGGAAGGGGTTGCAAG 
42-


14|M 
(SEQ ID NO: 702)
44


(SEQ ID NO: 627)
CTTGCAACCCCTTCCAACCCCCAGATGTCAT 




(SEQ ID NO: 770)






3300001341|1010336|scaffold_14_
ATGACATCTGGGGGTTGGAAGGGGTTGCAAG 
42-


1570|P
(SEQ ID NO: 702)
44


(SEQ ID NO: 628)
CTTGCAACCCCTTCCAACCCCCAGATGTCAT 




(SEQ ID NO: 770)






3300027607|Ga0207422_1002635_7|P 
ATGACATCTGGGGGTTGGAAGGGGTTGCAAG 
42-


(SEQ ID NO: 629)
(SEQ ID NO: 702)
44



CTTGCAACCCCTTCCAACCCCCAGATGTCAT 




(SEQ ID NO: 770)






3300007960|1Ga0099850_1030516_1|P 
GTTGCCAAGAGGGTGACTAATTGGGTTAAG 
26-


(SEQ ID NO: 630)
(SEQ ID NO: 703)
38



CTTAACCCAATTAGTCACCCTCTTGGCAAC 




(SEQ ID NO: 771)






3300028735|Ga0272446_1017865_2|M 
CTGATAAAGTTTTTGGGTACT 
49-


(SEQ ID NO: 631)
(SEQ ID NO: 704)
58



AGTACCCAAAAACTTTATCAG 




(SEQ ID NO: 772)






SRR6869054_1535443_5|P 
GTCACCATGACATCTGGAGGTTGGCAGGGGTTGCAAG
35-


(SEQ ID NO: 632)
(SEQ ID NO: 705)
38



CTTGCAACCCCTGCCAACCTCCAGATGTCATGGTGAC




(SEQ ID NO: 773)






SRR6869054_457352_2|P 
GCTGAAACCAAACTAATCCGCTCTTAGGGATTGAAAG
34-


(SEQ ID NO: 633)
(SEQ ID NO: 706)
37



CTTTCAATCCCTAAGAGCGGATTAGTTTGGTTTCAGC




(SEQ ID NO: 774)






SRR6869055_1317318_5|P 
GTCACCATGACATCTGGAGGTTGGCAGGGGTTGCAAG
35-


(SEQ ID NO: 634)
(SEQ ID NO: 705)
38



CTTGCAACCCCTGCCAACCTCCAGATGTCATGGTGAC




(SEQ ID NO: 773)






SRR3137750_862387_23|M 
CGATCAAAGGACTAATCCCGGCGATCGGGACTGAAAC
35-


(SEQ ID NO: 635)
T (SEQ ID NO: 707)
48



AGTTTCAGTCCCGATCGCCGGGATTAGTCCTTTGATC




G (SEQ ID NO: 775)






SRR3138838_558748_1|P 
CCGACAAACGACTAGAGTTGTCTAGGCAGTTGAAGG
37-


(SEQ ID NO: 636)
(SEQ ID NO: 708)
38



CCTTCAACTGCCTAGACAACTCTAGTCGTTTGTCGG




(SEQ ID NO: 776)






SRR3139299_296800_1|M 
CTCGCAATAGACGATTGCCTATTTTATGGATTGAAAC
34-


(SEQ ID NO: 637)
(SEQ ID NO: 709)
40



GTTTCAATCCATAAAATAGGCAATCGTCTATTGCGAG




(SEQ ID NO: 777)






SRR3139690_493772_1|M 
GTCGCAATCTGGCTGGAT (SEQ ID NO: 710)
53


(SEQ ID NO: 638)
ATCCAGCCAGATTGCGAC (SEQ ID NO: 778)






SRR3139690_185157_1|M 
CTTTCAAGTTAACTCTGTAGAGACGGTTTGAAAG
35-


(SEQ ID NO: 639)
(SEQ ID NO: 711)
43



CTTTCAAACCGTCTCTACAGAGTTAACTTGAAAG




(SEQ ID NO: 779)






SRR3139690_493772_1|P 
GTCGCAATCTGGCTGGAT (SEQ ID NO: 710)
53


(SEQ ID NO: 640)
ATCCAGCCAGATTGCGAC (SEQ ID NO: 778)






WP_015957291.1 
GTTTCTTATTAATGAATCCTAGCAATGGGATTGAAAC
33-


(SEQ ID NO: 641)
(SEQ ID NO: 712)
37



GTTTCAATCCCATTGCTAGGATTCATTAATAAGAAAC




(SEQ ID NO: 780)






CP001287_4134|P 
GTTTCTTATTAATGAATCCTAGCAATGGGATTGAAAC
33-


(SEQ ID NO: 642)
(SEQ ID NO: 712)
37



GTTTCAATCCCATTGCTAGGATTCATTAATAAGAAAC




(SEQ ID NO: 780)






WP_015785111.1 
GTTTCTTATTAATGAATCCTAGCAATGGGATTGAAAC
34-


(SEQ ID NO: 643)
(SEQ ID NO: 712)
37



GTTTCAATCCCATTGCTAGGATTCATTAATAAGAAAC




(SEQ ID NO: 780)






NC_013161_4122|P 
GTTTCTTATTAATGAATCCTAGCAATGGGATTGAAAC
34-


(SEQ ID NO: 644)
(SEQ ID NO: 712)
37



GTTTCAATCCCATTGCTAGGATTCATTAATAAGAAAC




(SEQ ID NO: 780)






OVJI010000022_17|P 
TGGCGGTACTGGTGGTACTGG 
16-


(SEQ ID NO: 645)
(SEQ ID NO: 713)
22



CCAGTACCACCAGTACCGCCA 




(SEQ ID NO: 781)






CAAAFE010002307_2|M 
GTAGAAACCAACAGGGTTTCTGGAAAGGGATTGAAAG
32-


(SEQ ID NO: 646)
(SEQ ID NO: 714)
36



CTTTCAATCCCTTTCCAGAAACCCTGTTGGTTTCTAC




(SEQ ID NO: 782)






OGWG01000020_5|P 
GTTCCCATCGTACTGACTTCTCTGGTCGTTCCCGAC
27-


(SEQ ID NO: 647)
(SEQ ID NO: 715)
40



GTCGGGAACGACCAGAGAAGTCAGTACGATGGGAAC




(SEQ ID NO: 783)






OGWG01000020_4|M 
GTTCCCATCGTACTGACTTCTCTGGTCGTTCCCGAC
27-


(SEQ ID NO: 648)
(SEQ ID NO: 715)
40



GTCGGGAACGACCAGAGAAGTCAGTACGATGGGAAC




(SEQ ID NO: 783)






OGWL01001214_2|P 
GTTGCCAACAGGGCGACTTCATTGGTTAATGGGAAG
19-


(SEQ ID NO: 649)
(SEQ ID NO: 716)
41



CTTCCCATTAACCAATGAAGTCGCCCTGTTGGCAAC




(SEQ ID NO: 784)






OGW001000325_8|P 
CTCGAAATTCCTATTAATGCCTATCAGGAATTGAAAC
32-


(SEQ ID NO: 650)
(SEQ ID NO: 717)
37



GTTTCAATTCCTGATAGGCATTAATAGGAATTTCGAG




(SEQ ID NO: 785)






OGWP01000327_5|M 
GTTCCCATCGTACTGACTTCTCTGGTCGTTCCCGAC
33-


(SEQ ID NO: 651)
(SEQ ID NO: 715)
42



GTCGGGAACGACCAGAGAAGTCAGTACGATGGGAAC




(SEQ ID NO: 783)






OGWP01001429_1|P 
CTTTCTATCAGAGTGAGAAGTCCCCCTGTTGGGAACT
32-


(SEQ ID NO: 652)
(SEQ ID NO: 718)
44



AGTTCCCAACAGGGGGACTTCTCACTCTGATAGAAAG




(SEQ ID NO: 786)






OGWP01001429_1|M 
CTTTCTATCAGAGTGAGAAGTCCCCCTGTTGGGAACT
32-


(SEQ ID NO: 653)
(SEQ ID NO: 718)
44



AGTTCCCAACAGGGGGACTTCTCACTCTGATAGAAAG




(SEQ ID NO: 786)






SRR3989431_2283179_3|M 
CTCGCAATAGGTGATTGCCTGTTTTAAGAATTGAAAC
37-


(SEQ ID NO: 654)
(SEQ ID NO: 719)
45



GTTTCAATTCTTAAAACAGGCAATCACCTATTGCGAG




(SEQ ID NO: 787)






SRR3989431_168870_5|M 
CCCGCAATAGACGATTGCCTATTTTATGGATTGAAAC
31-


(SEQ ID NO: 655)
(SEQ ID NO: 697)
43



GTTTCAATCCATAAAATAGGCAATCGTCTATTGCGGG




(SEQ ID NO: 765)






SRR4754862_508403_7|P 
CTCGCAATAGGTGATTACCTGTTTTAAGGATTGAAAC
35-


(SEQ ID NO: 656)
(SEQ ID NO: 720)
39



GTTTCAATCCTTAAAACAGGTAATCACCTATTGCGAG




(SEQ ID NO: 788)






SRR5468113_274154_3|M 
GTTGCCAAGAGGGTGACTAATTGGGTTAAG 
26-


(SEQ ID NO: 657)
(SEQ ID NO: 703)
38



CTTAACCCAATTAGTCACCCTCTTGGCAAC 




(SEQ ID NO: 771)






SRR5468149_1084624_1|P 
GTTGCAATGGCTGAAACCCGGTTTACGGGACTGAAAC
36-


(SEQ ID NO: 658)
(SEQ ID NO: 721)
48



GTTTCAGTCCCGTAAACCGGGTTTCAGCCATTGCAAC




(SEQ ID NO: 789)






SRR5574091_1575611_4|M 
CCGACAAACGACTAGAGTTGTCTAGGCAGTTGAAGG
36-


(SEQ ID NO: 659)
(SEQ ID NO: 708)
43



CCTTCAACTGCCTAGACAACTCTAGTCGTTTGTCGG




(SEQ ID NO: 776)






SRR6475630_1852385_2|M 
CTCGCAATAGGTGATTACCTGTTTTAAGGA 
43


(SEQ ID NO: 660)
(SEQ ID NO: 722)




TCCTTAAAACAGGTAATCACCTATTGCGAG 




(SEQ ID NO: 790)






SRR6475633_3251865_1|M 
CTCGCAATAGGTGATTACCTGTTTTAAGGATTGAAAC
36-


(SEQ ID NO: 661)
(SEQ ID NO: 720)
48



GTTTCAATCCTTAAAACAGGTAATCACCTATTGCGAG




(SEQ ID NO: 788)






3300031784|Ga0315899_10084352_2|M
GCGATCGGGACTGAAAC (SEQ ID NO: 723)
25-


(SEQ ID NO: 662)
GTTTCAGTCCCGATCGC (SEQ ID NO: 791)
26





3300031857|Ga0315909_10035026_2|M
CGACTAGAGTTGTCTAGGCAGTTGAAGG 
44-


(SEQ ID NO: 663)
(SEQ ID NO: 724)
52



CCTTCAACTGCCTAGACAACTCTAGTCG 




(SEQ ID NO: 792)






3300032092|Ga0315905_10155087_1|P
CTGACAGGTGACTAGAGTTGTCTAGGCAGTTGAAGG
33-


(SEQ ID NO: 664)
(SEQ ID NO: 725)
43



CCTTCAACTGCCTAGACAACTCTAGTCACCTGTCAG




(SEQ ID NO: 793)






3300032092|Ga0315905_10155087_2|M
CTGACAGGTGACTAGAGTTGTCTAGGCAGTTGAAGG
33-


(SEQ ID NO: 665)
(SEQ ID NO: 725)
43



CCTTCAACTGCCTAGACAACTCTAGTCACCTGTCAG




(SEQ ID NO: 793)






SRR6476078_1283286_3|P 
GTTCCAATTAATCTTAAGTCCTATTAGGGATTGAAAC
34-


(SEQ ID NO: 666)
(SEQ ID NO: 695)
43



GTTTCAATCCCTAATAGGACTTAAGATTAATTGGAAC




(SEQ ID NO: 763)






SRR6476078_1283286_3|M 
GTTCCAATTAATCTTAAGTCCTATTAGGGATTGAAAC
34-


(SEQ ID NO: 667)
(SEQ ID NO: 695)
43



GTTTCAATCCCTAATAGGACTTAAGATTAATTGGAAC




(SEQ ID NO: 763)






SRR7812565_865334_1|P 
CTTGCAACTGGGCTTGGGGACTGAGGATAGTTGAAAC
35-


(SEQ ID NO: 668)
(SEQ ID NO: 683)
39



GTTTCAACTATCCTCAGTCCCCAAGCCCAGTTGCAAG




(SEQ ID NO: 751)






SRR6448207_482583_3|P 
GGCGCAATCGACTTAAGCCCTTAGCAGGGATTGAAAC
34-


(SEQ ID NO: 669)
(SEQ ID NO: 726)
37



GTTTCAATCCCTGCTAAGGGCTTAAGTCGATTGCGCC




(SEQ ID NO: 794)






SRR7244345_343276_44|P 
GTTCAAATAGCCTTTAATCCTTCGTAGGGGTTGAAAG
33-


(SEQ ID NO: 670)
(SEQ ID NO: 727)
36



CTTTCAACCCCTACGAAGGATTAAAGGCTATTTGAAC




(SEQ ID NO: 795)






WP_016456110.1 
CGTCTTGCCCGTGCGCGTGTGGGGTGATC 
32-


(SEQ ID NO: 671)
(SEQ ID NO: 728)
33



GATCACCCCACACGCGCACGGGCAAGACG 




(SEQ ID NO: 796)



AGZR01000008_18|M 
CGTCTTGCCCGTGCGCGTGTGGGGTGATC 
32-


(SEQ ID NO: 672)
(SEQ ID NO: 728)
33



GATCACCCCACACGCGCACGGGCAAGACG 




(SEQ ID NO: 796)



SRR8162779_1368970_53|P 
GTTCAAATAGCCTTTAATCCTTCGTAGGGGTTGAAAG
34-


(SEQ ID NO: 673)
(SEQ ID NO: 727)
37



CTTTCAACCCCTACGAAGGATTAAAGGCTATTTGAAC




(SEQ ID NO: 795)



SRR5855413_300079_4|M 
AAAGCCTATCAGGTATTGAAAG 
49-


(SEQ ID NO: 674)
(SEQ ID NO: 729)
51



CTTTCAATACCTGATAGGCTTT 




(SEQ ID NO: 797)






SRR5855413_1311040_12|M 
GTTGAAATAAGCCTGAATGCCTATCAGGTATTGAAAG
34-


(SEQ ID NO: 675)
(SEQ ID NO: 730)
48



CTTTCAATACCTGATAGGCATTCAGGCTTATTTCAAC




(SEQ ID NO: 798)






SRR5855415_346708_105|P 
GGTTTCTTCAGTTGCCTCGGCTTCAGGTTCAGC
15


(SEQ ID NO: 676)
(SEQ ID NO: 731)




GCTGAACCTGAAGCCGAGGCAACTGAAGAAACC




(SEQ ID NO: 799)






SRR5855420_1331858_6|7P 
GTTGAAATAAGCCTGAATGCCTATCAGGTATTGAAAG
34-


(SEQ ID NO: 677)
(SEQ ID NO: 730)
44



CTTTCAATACCTGATAGGCATTCAGGCTTATTTCAAC




(SEQ ID NO: 798)






SRR5855420_1331858_68|M 
GTTGAAATAAGCCTGAATGCCTATCAGGTATTGAAAG
34-


(SEQ ID NO: 678)
(SEQ ID NO: 730)
44



CTTTCAATACCTGATAGGCATTCAGGCTTATTTCAAC




(SEQ ID NO: 798)






SRR5855435_639752_6|P 
AAAGCCTATCAGGTATTGAAAG 
49-


(SEQ ID NO: 679)
(SEQ ID NO: 729)
51



CTTTCAATACCTGATAGGCTTT 




(SEQ ID NO: 797)






SRR6201738_878635_2|M 
CTAGCAATAACATTCATCCCCTGGCAGGGATTGAAAG
34-


(SEQ ID NO: 680)
(SEQ ID NO: 732)
38



CTTTCAATCCCTGCCAGGGGATGAATGTTATTGCTAG




(SEQ ID NO: 800)






SRR6201739_286584_1|P 
TCTAGCAATAACATTCATCCCCTGGCAGGGATTGAAA
31-


(SEQ ID NO: 681)
GGGC (SEQ ID NO: 733)
34



GCCCTTTCAATCCCTGCCAGGGGATGAATGTTATTGC




TAGA (SEQ ID NO: 801)






GCL37732.1 (SEQ ID NO: 682)
GTTTCTAGAAGTTCTGAGGACTGATTGTTGTTTAAAC
35-



(SEQ ID NO: 734)
41



GTTTAAACAACAATCAGTCCTCAGAACTTCTAGAAAC




(SEQ ID NO: 802)
















TABLE 3111





Non-coding Sequences of Representative  


CLUST.057059 Systems















>3300002382|1017448|scaffold9922858_2|M


GCTGGGGAATAGCGGTTATGAAGGTTTATCCTGTCAGATAGCCACAGG


TGGGAACTACTGGAAGAGAGACGAAAATATCAACATCCCAATTAATAC


CAAGAAAGGTATTATTCACGTTAAAGGATACAAATTAGTTAAGGGTGA


TAAACTTTTATTTGACATTCCCCAGCAAGCTGATACTAACGCTGCTAG


AAATCATAAGCAAAATGGTGGTTTTGAACTGGGAGAGGTCAAATATCA


TAATGTTAAGCTAGTTTATCAAAAGCCTAAAAGATTTAAGAAAAAACG


CTTGACAAAGTAATAAGATTAGGCTAATATTAAATTACCGCAGTTTGG


GCGGGCAGCTAATAATATTAGCTTATGACTTCTAAGGCTTTTGCCTAA


AAAGTAAGGGGGAAGGCGACAACCCCCAAAGACCAGCCGGAACTATGG


CTGGCAACTATACCCTCTCTTTTGGCATATCAAAGCTAGGGCAAAAAC


CCCAGACATTCGCCAAAAGCCCAGAACCATGACATTGCAAGAGTTTCG


CCCAGTTTCTTTTAAAGATTCAAGCTGATTTAAGCGGCTGAAATGAGA


TTTTTTAATGTGTAATCGTCTAGCCTGGGAACATATATGCAACTTGCA


ATTAACTCAGTTCCTCAAGTCCGGTTTCACCTATTACCTAATAGATAG


GCACGCCACAGGAGACAATTCCCTTGCAATTAACTCAGTTCCCCAAGT


CCGGTTTCACCAATGACCAGGTGCGCGATCGCACCCCACAAGAGCAAA 


CTTGCAATTAA


(SEQ ID NO: 735)





>3300005805|Ga0079957_1019747_2|M


AATTATGTCTCCGTTTGCTACTTGCTTAAACAGTTTAGATATGTTGGG


CTTATCTCCCCAGTAACAGCCAAACTCCAAAGATAGCTTTTCAAGTTC


AGCTTTTTCTTCCTCGGATATAGAGAGCGTGATACTCTCTTGTTTTCT


AGTCATAATGTTATTTTAGCCTAGCCTCTCTTGTCTCTATATCCCTAT


AATATCCTTATAGTTTTCCAGTGCCAACCCTAAAGTATACGGAATTTT


GCAATTGTTTAATTGTTGTATAAATAACTTGCTATGATGCTATACTAA


TAACTCGGTTGTCACCTGTGCAATACCGTCTGCCTAATCAGCAGACAT


TTATTAATCTACTAATTGTCAATAAGTAATAAGAACCCAGTGGTTAAA


ATGACGGGTTCTGTGGCTGTTTTCAAACAAGATTATTTGTCTACATTG


TTTACATTGTCTGACATTATTGTCTTACAAAAGAAAGCAGGAATTGGT


TGAAACATGACTGGGGTAAAGATTTGGGGTGTATGCAACTATCAGTTA


ATGTCTAATTTTTAATATAAAAAATATTTTTAAATTACCAAATTTGTG


CTATCCTAAATAAATACCAAAAAACGCGGTTAGTACCAATAACCACGT


TTCTATTACCAGGTACTTAGCCGCTAGTTTGGGGGAACGGCAACTAAC


AATATAGCACAAAACAGCTATTTACATCAACACCAATTGACAAAAACA


ACAGGAAGACGACGGACATGAAGACAATTAAGATTAAAATCAAACTCT


CATCAGAACAGGCGGCTGTGTGCGATCGCTACTTAGATGAATTAACAT


GGCTGTGGAATTTAGCACTTTCTAACCAACTACACAATCACTGCGTAG


ATTGGTATGCTTGGGCTGCTAAATTATTTGACGTTGCCCAACAAGCTG


ATACCAATGCTGCTAGAAATCATAAACAGAATGGTGGTTTTGAATTGG


GAGAGGTCAAATACCATAATGTTAGGCTGGTTTATCAAAAGCCTAAAA


GATTTAAGAAAAAACGCTTGACAAAGTAATAGGACTAGGTTAATATTA


AATTACCGCAGTTTGGACGGGTAGCTAATGTAATGTTAGCTTATGACT


TGTAAGGGTTTTACCCTAAAAAGTAAGGGGGAAGGCGACGACCCCCAA


AGACCAGCCGGAACTATGGCTGGCAACTATCTCATCTTTTTGGCATAT


CAAAGCTAGGGTAAAAACCCTGGACATTCGCCAAAAGTCCAGAACCAT


GACATTGCAAGAGTTTCGCTCAGTTTTCTTGCGACTGGGCTTAGAGAC


TGAGGATAGTTGAAACTCGCTCAGTTTCTTTTAAAGACCTAAGCTGAT


TTAAGCGGCTGAAATGAGATTTTTTAGCAGGTCCGCCAGAATTGCCTT


TGAAACCCTTGACTTATAAAGCTCTTGAAAGCCGGGAAAACCGGACTT


GAGGAACTGGGTTAATTGCAAGGCAAAGAATCAAAGCAAGACAAAGAA


ACGCTGAAACAGAATTTAATACTTTAACTTACATAACTCCCATCCCAA


ATACATAGCATGGGAGTTTTGCAACCCTGGACAATCTCTCATTATTTC


(SEQ ID NO: 736)





>3300023179|Ga0214923_10000634_60|P


GGCATTTTCTACCTTGCAAGAAAGTTAAAAGCTGTCCCGGTGAAAGGG


ATTGGGTGTAAAGTTTCAGGAATTGATATTATTTTTGCCATTAAAGGG


ATTGATTGTAGTTGTGTGTGGAATCCATCGTTTTTATTAATCCAATAT


CTTTAATGGCTATTTTTATCCAGAGTCAGGTTTTCCAGCTATGGAAAA


TCCACAAGTGGAAAAACCACAAGTGGAAAATCTGCTATATAATAAATA


TCTATTCCAATAAGTATTTAATTAAATAAGTATTTAAGAAAAAAGAAG


TATTTACGCTTTCTCTCATTAAAGAGGATTTAAGAAAAGAACTAACAC


AACAGATATCTGTTATTCTTGACTTAAAGACAAATATTTCTCTCAAGC


AGATAAATCTCTCATAGGATCAGGTTATGCCCGCCCGTTGCGCTTAAA


CACTATTACACAAAAAGCGAATAGATTTTGTTTGAGAATTTATAAAGC


AATTTTAAAGCGTACTTATTGCATAAATAAAAAATACCCACTAACACG


CTTTAGTGGGTATCAGGTTGAAACCTACAATGCAATTGTAATAACTAT


GTTTCCTGGTTTATAAATATAGTCCATCTTATTTTTTGTTTACTGTCA


AGTGGTTTTAAAAAATATTTGTTTTGTTTGTTTGCCTGTATTAATTAA


ATTATTAATAAATCACTTAATATTTATCTACTTATGCTATCATTAATA


AGTACCCAAAAACGTGATTATTCAAAGTAATCACGTTTTTATTACCAG


GTACTTAGTCGCTAGTTTGGATAACGACCTTGACATAATAGCATGAAA


ACAATCAAAATCAAAATCAAACTCACCACTGATCAGGTGCAACTGTGC


GATCGCTATTTGGAAGAATTGACATGGCTGTGGAATTTAACACTTTCT


AATCAACTACATAATCACTGTGTGACGTGGTACGATTGGGCGGCTAAA


TTTGATATTCCCCAGCAAGCTGATACTAACGCTGCTAGAAATCATAAG


CAGAATGGTGGTTTTGAACTGGGAGAGGTCAAGTATCATAATGTTAAG


CTAGTTTATCAAAAGCCTAAAAGATTTAAGAAAAAACGCTTGACAAAC


CAATAGGATTAGGTTAATATTAAATTACCGCAGTTTGGGCGGGTTGCT


AATAATATTAGCTTATGACTTCTAAGGCTTTTGCCTAAAAAGTAAGGG


GGAAGGCGACAACCCCCAAAGACCAGCCGGAACTATGGCTGGCAACTA


TCTCATCTTTTTGGCATATCAAAGCTAGGGCAAAAACCCCAGACATTC


GCCAAAAGCCCAGAACCATGACATTGCAAGAGTTTCGCCCAGTTTCTT


TTAAAGACCCAAGCTGATTTAAGCGGCTGAAATGAGATTTTTTAACAG


GTCCGCCAAAATCGCTTCTGAAACCCTTGATTTATAAAGCCTTTAAAC


CCCGGGGAAACGAAGCGAAATGAAACTTTGAACTAAGGACGGAACATC


TGAATCAAACTCAGTTCCAATTTAAACACTTTCTCACTTGATGGTGTC


CACTTAAACGTTTCGCAACAATACAAAGTGGAATTAAAGTAGAAAGGC


TTACCTAAATTATTGGTTAAAAAAGTATCAATCTCTGA 


(SEQ ID NO: 737)





>OGWG01000020_4|M


CCCTGCCTTTGGAATCCTTACTGTGATTGGGTTCTGGAAGCAGTTTGC


GAGGTTCAATTCAAAAAGTCCATTTCAGCCGCTGAGATGTGCTTGTAA


TCTACCTCTAATCCTTACGTGGTAAGGCTGCGAGGTTCGTTTGATGGT


GTGCCATGTTTCCGGCACATCTATGTAGGTTGTCACCTTCCTACTTAC


TCCCGGTTAAGAGAGTCTTTGTACCTGGACACCAGATAATCCCGCCAG


AACTGCGGTACAAAACTATTATAACACAGATTTTGGAGTTGTGTGTAG


TTTGTCAAAAATAGTTAAAATTAATCTGTTATTGGATTAGACACTAGT


TTATTTTTATGTTTTATCCCCCTGCCTTTGGAATCCTTGCTGTGATTG


GGTTCTAAAACCAGTTTGCGAGGTTCAATTCAAAAAGTCCATTTCAGC


CGCTGAGATGTGCTTGTAATCTACCTCTAATCCTTACGTGGTAAGGCT


GCGAGGTTCGTTAGATGGTGTGCCATTATTCCGGCACATCTATGTAGG


TTGTCACCTTCCTACTTACTCCCAGTTAAGAGAGTCTTTGTACCTGGA


CACCAGGTAATTCCGCCAGAACTGCGGTACAAAACTAGTATAGCATAA


ATTTTGGAGTTGTGTTATAATTTTAAAAAATCAGTAGCAGGTGACCAT


AATGAAGACGATTTGTATCAAGGTAAAGTTATCGCCAGAACAGGAGAG


AGAGTTTAGTAATGCCACTCAAGAACTGGAGTGGATATGGAATTTCAG


TTTAAAGACGTATATACATAACCACTGTGTAAAGTGGTATGAATGGGC


TACGGGGGAGCTAGGAGAGGTCAAATACCATAATTTAAGCCTAGAATA


TAATGTTTCCGCACGTTGGAAACATAGAAATAGGAACAAGGTAAAACC


CGTTGTTTCCGTTACTAAGCTGCCTACCACAAGCACTCCCGTTCCTAA


TAAACCTAAATGAACTAAGTTATTGACAATATGAGTTATCAATTTAAA


TCATCTACCGCCAATCCCGTGTTTTTCCGGACTTATAGCCGTTTGACT


CCAGATGGTAGGGAATCATGGCAAGATGTGTGTAAACGCACCATATCT


GGTATGTCTGAACTAGGACGTTTTACACCAGAGGAA 


(SEQ ID NO: 738)









Example 14—Functional Validation of Engineered CLUST.057059 CRISPR-Cas System

Having identified components of CLUST.057059 CRISPR-Cas systems, a locus from the metagenomic source designated 3300023179 (SEQ ID NO: 601) was selected for functional validation.


DNA Synthesis and Effector Library Cloning

To test the activity of the exemplary CLUST.057059 CRISPR-Cas system, the system was designed and synthesized using a pET28a(+) vector. Briefly, an E. coli codon-optimized nucleic acid sequence encoding the CLUST.057059 3300023179 effector (SEQ ID NO: 601 shown in TABLE 29) was synthesized (Genscript) and cloned into a custom expression system derived from pET-28a(+) (EMD-Millipore). The vector included the nucleic acid encoding CLUST.057059 effectors under the control of a lac promoter and an E. coli ribosome binding sequence. The vector also included an acceptor site for a CRISPR array library driven by a J23119 promoter following the open reading frame for the CLUST.057059 effector. The non-coding sequence used for the CLUST.057059 3300023179 effector (SEQ ID NO: 601) is set forth in SEQ ID NO: 619, as shown in TABLE 31. A separate condition was tested, wherein the CLUST.057059 3300023179 effector (SEQ ID NO: 601) was individually cloned into pET28a(+) without the non-coding sequence. See FIG. 1A.


An oligonucleotide library synthesis (OLS) pool containing “repeat-spacer-repeat” sequences was computationally designed, where “repeat” represents the consensus direct repeat sequence found in the CRISPR array associated with the effector, and “spacer” represents sequences tiling the pACYC184 plasmid or E. coli essential genes. In particular, the repeat sequence used for the CLUST.057059 3300023179 effector (SEQ ID NO: 601) is set forth in SEQ ID NO: 611, as shown in TABLE 30. The spacer length was determined by the mode of the spacer lengths found in the endogenous CRISPR array. The repeat-spacer-repeat sequence was appended with restriction sites enabling the bi-directional cloning of the fragment into the aforementioned CRISPR array library acceptor site, as well as unique PCR priming sites to enable specific amplification of a specific repeat-spacer-repeat library from a larger pool.


Next, the repeat-spacer-repeat library was cloned into the plasmid using the Golden Gate assembly method. Briefly, each repeat-spacer-repeat was first amplified from the OLS pool (Agilent Genomics) using unique PCR primers and pre-linearized the plasmid backbone using BsaI to reduce potential background. Both DNA fragments were purified with Ampure XP (Beckman Coulter) prior to addition to Golden Gate Assembly Master Mix (New England Biolabs) and incubated per the manufacturer's instructions. The Golden Gate reaction was further purified and concentrated to enable maximum transformation efficiency in the subsequent steps of the bacterial screen.


The plasmid library containing the distinct repeat-spacer-repeat elements and CRISPR effectors was electroporated into E. Cloni electrocompetent E. coli (Lucigen) using a Gene Pulser Xcell® (Bio-rad) following the protocol recommended by Lucigen. The library was either co-transformed with purified pACYC184 plasmid or directly transformed into pACYC184-containing E. Cloni electrocompetent E. coli (Lucigen), plated onto agar containing chloramphenicol (Fisher), tetracycline (Alfa Aesar), and kanamycin (Alfa Aesar) in BioAssay® dishes (Thermo Fisher), and incubated for 10-12 hours at 37° C. After estimation of approximate colony count to ensure sufficient library representation on the bacterial plate, the bacteria were harvested, and plasmid DNA WAS extracted using a QIAprep Spin Miniprep® Kit (Qiagen) to create an “output library.” By performing a PCR using custom primers containing barcodes and sites compatible with Illumina sequencing chemistry, a barcoded next generation sequencing library was generated from both the pre-transformation “input library” and the post-harvest “output library,” which were then pooled and loaded onto a Nextseq 550 (Illumina) to evaluate the effectors. At least two independent biological replicates were performed for each screen to ensure consistency. See FIG. 1B.


Bacterial Screen Sequencing Analysis

Next generation sequencing data for screen input and output libraries were demultiplexed using Illumina bcl2fastq. Reads in resulting fastq files for each sample contained the CRISPR array elements for the screening plasmid library. The direct repeat sequence of the CRISPR array was used to determine the array orientation, and the spacer sequence was mapped to the source (pACYC184 or E. Cloni) or negative control sequence (GFP) to determine the corresponding target. For each sample, the total number of reads for each unique array element (ra) in a given plasmid library was counted and normalized as follows: (ra+1)/total reads for all library array elements. The depletion score was calculated by dividing normalized output reads for a given array element by normalized input reads.


To identify specific parameters resulting in enzymatic activity and bacterial cell death, next generation sequencing (NGS) was used to quantify and compare the representation of individual CRISPR arrays (i.e., repeat-spacer-repeat) in the PCR product of the input and output plasmid libraries. The array depletion ratio was defined as the normalized output read count divided by the normalized input read count. An array was considered to be “strongly depleted” if the depletion ratio was less than 0.3 (more than 3-fold depletion), depicted by the blue dashed line in FIG. 42. When calculating the array depletion ratio across biological replicates, the maximum depletion ratio value for a given CRISPR array was taken across all experiments (i.e. a strongly depleted array must be strongly depleted in all biological replicates). A matrix including array depletion ratios and the following features were generated for each spacer target: target strand, transcript targeting, ORI targeting, target sequence motifs, flanking sequence motifs, and target secondary structure. The degree to which different features in this matrix explained target depletion for CLUST.057059 systems was investigated.



FIG. 42 shows the degree of interference activity of the engineered compositions, with a non-coding sequence, by plotting for a given target the normalized ratio of sequencing reads in the screen output versus the screen input. The results are plotted for each DR transcriptional orientation. In the functional screen for each composition, an active effector complexed with an active RNA guide will interfere with the ability of the pACYC184 to confer E. coli resistance to chloramphenicol and tetracycline, resulting in cell death and depletion of the spacer element within the pool. Comparison of the results of deep sequencing the initial DNA library (screen input) versus the surviving transformed E. coli (screen output) suggests specific target sequences and DR transcriptional orientations that enable an active, programmable CRISPR system. The screen also indicates that the effector complex is only active with one orientation of the DR. As such, the screen indicated that the CLUST.057059 3300023179 effector was active in the “forward” orientation (5′-CTTG . . . AAAC-[spacer]-3′) of the DR (FIG. 42). The CLUST.057059 3300023179 effector did not retain activity in the absence of the non-coding sequence, indicating that CLUST.057059 effectors require a tracrRNA.



FIG. 43A and FIG. 43B depict the location of strongly depleted targets for the CLUST.057059 3300023179 effector (plus non-coding sequence) targeting pACYC184 and E. coli E. Cloni essential genes, respectively. Flanking sequences of depleted targets were analyzed to determine the PAM sequence for CLUST.057059 3300023179. A WebLogo representation (Crooks et al., Genome Research 14: 1188-90, 2004) of the PAM sequence for CLUST.057059 3300023179 is shown in FIG. 44, where the “20” position corresponds to the nucleotide adjacent to the 5′ end of the target.


Example 15—Targeting of Mammalian Genes

This Example describes an indel assessment on a mammalian target by the effector disclosed herein introduced into mammalian cells by transient transfection.


An effector described herein is cloned into a pcda3.1 backbone (Invitrogen). The plasmid is then maxi-prepped and diluted to 1 μg/L. For RNA guide preparation, a dsDNA fragment encoding an RNA guide is derived by ultramers containing the target sequence scaffold, and the U6 promoter. Ultramers are resuspended in 10 mM Tris-HCl at a pH of 7.5 to a final stock concentration of 100 μM. Working stocks are subsequently diluted to 10 μM, again using 10 mM Tris.HCl to serve as the template for the PCR reaction. The amplification of the RNA guide is done in 50 μL reactions with the following components: 0.02 μl of aforementioned template, 2.5 μl forward primer, 2.5 μl reverse primer, 25 μL NEB HiFi Polymerase, and 20 μl water. Cycling conditions are: 1×(30 s at 98° C.), 30×(10 s at 98° C., 15 s at 67° C.), 1×(2 min at 72° C.). PCR products are cleaned up with a 1.8×SPRI treatment and normalized to 25 ng/μL.


The sequence of a target locus is selected as described herein. For example, a target locus adjacent to a PAM sequence of TABLE 34 is selected.









TABLE 34







PAM sequence for target selection.










Effector Family
PAM Sequence







CLUST.133120
5′-TTN-3′




5′-TN-3′



CLUST.099129
5′-GTN-3′




5′-TG-3′




5′-TR-3′




5′-RATG-3′ (SEQ ID NO: 920)



CLUST.342201
5′-AAG-3′




5′-AAD-3′




5′-AAR-3′




5′-RAAG-3′ (SEQ ID NO: 921)




5′-RAAR-3′ (SEQ ID NO: 922)




5′-RAAD-3′ (SEQ ID NO: 923)



CLUST.195009
5′-TTN-3′



CLUST.057059
5′-GTN-3′










A crRNA sequence is selected as described herein. For example, a crRNA comprises a direct repeat sequence of the length and sequence described herein. Non-limiting examples of direct repeats are shown in TABLE 35.









TABLE 35







Direct Repeat for crRNA design.








Effector
Direct Repeat Sequence





CLUST.13312
CCAACCAATGCCAGCGCGACGGCTTATGAGTCG


0 3300027740 
CGAC (SEQ ID NO: 51)


(SEQ ID 
AATGCCAGCGCGACGGCTTATGAGTCGCGAC 


NO: 1)
(SEQ ID NO: 85)





CLUST.099129
AGTCGCGAATAACTGTTCAGCGGAGAAGCCGCT


SRR6837557 
GAAAC (SEQ ID NO: 146)


(SEQ ID 
ATAACTGTTCAGCGGAGAAGCCGCTG 


NO: 101)
(SEQ ID NO: 181)





CLUST.34220
GTTCACCCCACGGGTGCGTGGAGTGATGG 


1 3300006417 
(SEQ ID NO: 342)


(SEQ ID 



NO: 301)






CLUST.195009
CCAGCAACAGCCGCGTGGGGCTACTAGTACTGC 


SRR6201554
GAC (SEQ ID NO: 522)


(SEQ ID 
CAACAGCCGCGTGGGGCTACTAGTACTGCG 


NO: 501)
(SEQ ID NO: 535)





CLUST.05705
CTTGCAACTGGGCTTGGGGACTGAGGATAGTTG


9 3300023179AAA 
C (SEQ ID NO: 683)


(SEQ ID 



NO: 601)









Approximately 16 hours prior to transfection, 100 μl of 25,000 HEK293T cells in DMEM/10% FBS+Pen/Strep are plated into each well of a 96-well plate. On the day of transfection, the cells are 70-90% confluent. For each well to be transfected, a mixture of 0.5 μl of Lipofectamine 2000 and 9.5 μl of Opti-MEM is prepared and then incubated at room temperature for 5-20 minutes (Solution 1). After incubation, the lipofectamine:OptiMEM mixture is added to a separate mixture containing 182 ng of effector plasmid and 14 ng of crRNA and water up to 10 μL (Solution 2). In the case of negative controls, the crRNA is not included in Solution 2. The solution 1 and solution 2 mixtures are mixed by pipetting up and down and then incubated at room temperature for 25 minutes. Following incubation, 20 μL of the Solution 1 and Solution 2 mixture are added dropwise to each well of a 96 well plate containing the cells. 72 hours post transfection, cells are trypsinized by adding 10 μL of TrypLE to the center of each well and incubated for approximately 5 minutes. 100 μL of D10 media is then added to each well and mixed to resuspend cells. The cells are then spun down at 500 g for 10 minutes, and the supernatant is discarded. QuickExtract buffer is added to ⅕ the amount of the original cell suspension volume. Cells are incubated at 65° C. for 15 minutes, 68° C. for 15 minutes, and 98° C. for 10 minutes.


Samples for Next Generation Sequencing are prepared by two rounds of PCR. The first round (PCR1) is used to amplify specific genomic regions depending on the target. PCR1 products are purified by column purification. Round 2 PCR (PCR2) is done to add Illumina adapters and indexes. Reactions are then pooled and purified by column purification. Sequencing runs are done with a 150 cycle NextSeq v2.5 mid or high output kit.


Percentages of indels in the target locus in HEK293T cells following transfection are calculated. Indel percentages over background are indicative of nuclease activity in mammalian cells.


OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. An engineered, non-naturally occurring Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)—Cas system of CLUST.133120, CLUST.099129, CLUST.342201, CLUST.195009, or CLUST.057059 comprising: (a) a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50, 101-145, 301-341, 501-521, or 601-682; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide and of modifying the target nucleic acid sequence complementary to the spacer sequence.
  • 2. The system of claim 1, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 51-72, 85-87, 95-100, or 900-915.
  • 3. The system of claim 1 or 2, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2.
  • 4. The system of claim 3, wherein the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM) sequence, wherein the PAM sequence comprises a nucleic acid sequence set forth as 5′-TTN-3′ or 5′-TN-3′.
  • 5. The system of any of the preceding claims, wherein the spacer sequence of the RNA guide comprises between about 15 nucleotides to about 55 nucleotides.
  • 6. The system of any of the preceding claims, wherein the spacer sequence of the RNA guide comprises between 20 and 35 nucleotides.
  • 7. The system of claim 1 or 2, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 146-162.
  • 8. The system of any of claims 1, 2, or 7, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101, SEQ ID NO: 102, or SEQ ID NO: 103.
  • 9. The system of any of claims 1, 2, 7, or 8, wherein the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM) sequence, wherein the PAM sequence comprises a nucleic acid sequence set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′.
  • 10. The system of any of claims 1, 2, or 7-9, wherein the spacer sequence of the RNA guide comprises between about 15 nucleotides to about 55 nucleotides.
  • 11. The system of any of claims 1, 2, or 7-10, wherein the spacer sequence of the RNA guide comprises between 26 and 51 nucleotides.
  • 12. The system of claim 1 or 2, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 342-362.
  • 13. The system of any of claims 1, 2, or 12, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301.
  • 14. The system of any of claims 1, 2, 12, or 13, wherein the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM) sequence, wherein the PAM sequence comprises a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923).
  • 15. The system of any of claims 1, 2, or 12-14, wherein the spacer sequence of the RNA guide comprises between about 12 nucleotides to about 62 nucleotides.
  • 16. The system of claim 15, wherein the spacer sequence of the RNA guide comprises between 19 and 40 nucleotides.
  • 17. The system of claim 1 or 2, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 522-532.
  • 18. The system of claim 1 or 2, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501.
  • 19. The system of any one of claims 1, 2, or 18, wherein the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM) sequence, wherein the PAM sequence comprises a nucleic acid sequence set forth as 5′-TTN-3′.
  • 20. The system of any one of claims 1, 2, 18, or 19, wherein the spacer sequence of the RNA guide comprises between about 15 nucleotides to about 55 nucleotides.
  • 21. The system of claim 20, wherein the spacer sequence of the RNA guide comprises between 20 and 39 nucleotides.
  • 22. The system of claim 1 or 2, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 683-734.
  • 23. The system of any one of claims 1, 2, or 22, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601.
  • 24. The system of any one of claims 1, 2, 22, or 23, wherein the CRISPR-associated protein is capable of recognizing a protospacer adjacent motif (PAM) sequence, wherein the PAM sequence comprises a nucleic acid sequence set forth as 5′-GTN-3′.
  • 25. The system of any one of claims 1, 2, or 22-24, wherein the spacer sequence of the RNA guide comprises between about 15 nucleotides to about 50 nucleotides.
  • 26. The system of claim 25, wherein the spacer sequence of the RNA guide comprises between 20 and 44 nucleotides.
  • 27. The system of any of the preceding claims, wherein the CRISPR-associated protein comprises at least one RuvC domain or at least one split RuvC domain.
  • 28. The system of any of the preceding claims, wherein the CRISPR-associated protein comprises a catalytic residue (e.g., aspartic acid or glutamic acid).
  • 29. The system of any of the preceding claims, wherein the CRISPR-associated protein cleaves the target nucleic acid.
  • 30. The system of any of the preceding claims, wherein the CRISPR-associated protein further comprises a peptide tag, a fluorescent protein, a base-editing domain, a DNA methylation domain, a histone residue modification domain, a localization factor, a transcription modification factor, a light-gated control factor, a chemically inducible factor, or a chromatin visualization factor.
  • 31. The system of any of the preceding claims, wherein the nucleic acid encoding the CRISPR-associated protein is codon-optimized for expression in a cell.
  • 32. The system of any of the preceding claims, wherein the nucleic acid encoding the CRISPR-associated protein is operably linked to a promoter.
  • 33. The system of any of the preceding claims, wherein the nucleic acid encoding the CRISPR-associated protein is in a vector.
  • 34. The system of claim 33, wherein the vector comprises a retroviral vector, a lentiviral vector, a phage vector, an adenoviral vector, an adeno-associated vector, or a herpes simplex vector.
  • 35. The system of any of the preceding claims, wherein the target nucleic acid is a DNA molecule.
  • 36. The system of any of the preceding claims, wherein the target nucleic acid comprises a PAM sequence.
  • 37. The system of any of the preceding claims, wherein the CRISPR-associated protein comprises non-specific nuclease activity.
  • 38. The system of any of the preceding claims, wherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 39. The system of claim 38, wherein the modification of the target nucleic acid is a double-stranded cleavage event.
  • 40. The system of claim 38, wherein the modification of the target nucleic acid is a single-stranded cleavage event.
  • 41. The system of claim 38, wherein the modification of the target nucleic acid results in an insertion event.
  • 42. The system of claim 38, wherein the modification of the target nucleic acid results in a deletion event.
  • 43. The system of any one of claims 38-42, wherein the modification of the target nucleic acid results in cell toxicity or cell death.
  • 44. The system of any of the preceding claims, further comprising a donor template nucleic acid.
  • 45. The system of claim 44, wherein the donor template nucleic acid is a DNA molecule.
  • 46. The system of claim 44, wherein the donor template nucleic acid is an RNA molecule.
  • 47. The system of any of the preceding claims, wherein the system does not comprise a tracrRNA.
  • 48. The system of any of the preceding claims, wherein the CRISPR-associated protein is self-processing.
  • 49. The system of any of the preceding claims, wherein the system is present in a delivery composition comprising a nanoparticle, a liposome, an exosome, a microvesicle, or a gene-gun.
  • 50. The system of any of the preceding claims, within a cell.
  • 51. The system of claim 50, wherein the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.
  • 52. The system of claim 50, wherein the cell is a prokaryotic cell.
  • 53. A cell comprising: (a) a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid.
  • 54. The cell of claim 53, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2.
  • 55. The cell of claim 53 or 54, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-TTN-3′ or 5′-TN-3′.
  • 56. The cell of any of claims 53-55, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 51-72, 85-87, 95-100, or 900-915.
  • 57. The cell of any of claims 53-56, wherein the spacer sequence comprises between about 15 nucleotides to about 55 nucleotides.
  • 58. The cell of any of claims 53-57, wherein the spacer sequence comprises between 20 and 35 nucleotides.
  • 59. A cell comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid.
  • 60. The cell of claim 59, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101, SEQ ID NO: 102, or SEQ ID NO: 103.
  • 61. The cell of claim 59 or 60, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′.
  • 62. The cell of any of claims 59-61, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 146-162.
  • 63. The cell of any of claims 59-62, wherein the spacer sequence comprises between about 15 nucleotides to about 55 nucleotides.
  • 64. The cell of any of claims 59-63, wherein the spacer sequence comprises between 26 and 51 nucleotides.
  • 65. A cell comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid.
  • 66. The cell of claim 65, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301.
  • 67. The cell of claim 65 or 66, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923).
  • 68. The cell of any of claims 65-67, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 342-362.
  • 69. The cell of any of claims 65-68, wherein the spacer sequence comprises between about 12 nucleotides to about 62 nucleotides.
  • 70. The cell of any of claims 65-69, wherein the spacer sequence comprises between 19 and 40 nucleotides.
  • 71. A cell comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid.
  • 72. The cell of claim 71, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501.
  • 73. The cell of claim 71 or 72, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-TTN-3′.
  • 74. The cell of any of claims 71-73, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 522-532.
  • 75. The cell of any of claims 71-74, wherein the spacer sequence comprises between about 15 nucleotides to about 55 nucleotides.
  • 76. The cell of any of claims 71-75, wherein the spacer sequence comprises between 20 and 39 nucleotides.
  • 77. A cell comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to a target nucleic acid.
  • 78. The cell of claim 77, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601.
  • 79. The cell of claim 77 or 78, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-GTN-3′.
  • 80. The cell of any of claims 77-79, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 683-734.
  • 81. The cell of any of claims 77-80, wherein the spacer sequence comprises between about 15 nucleotides to about 50 nucleotides.
  • 82. The cell of any of claims 77-81, wherein the spacer sequence comprises between 20 and 44 nucleotides.
  • 83. The cell of any one of claims 53-82, wherein the cell does not comprise a tracrRNA.
  • 84. The cell of any one of claims 53-83, wherein the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.
  • 85. The cell of any one of claims 53-83, wherein the cell is a prokaryotic cell.
  • 86. A method of modifying a target nucleic acid, the method comprising delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system comprising: (a) a CRISPR-associated protein or a nucleic acid encoding the CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide; andwherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 87. The method of claim 86, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2.
  • 88. The method of claim 86 or 87, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-TTN-3′ or 5′-TN-3′.
  • 89. The method of any of claims 86-88, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 51-72, 85-87, 95-100, or 900-915.
  • 90. The method of any of claims 86-89, wherein the spacer sequence comprises between about 15 nucleotides to about 55 nucleotides.
  • 91. The method of any of claims 86-90, wherein the spacer sequence comprises between 20 and 35 nucleotides.
  • 92. A method of modifying a target nucleic acid, the method comprising delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 101-145; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide; andwherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 93. The method of claim 92, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 101, SEQ ID NO: 102, or SEQ ID NO: 103.
  • 94. The method of claim 92 or 93, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-GTN-3′, 5′-TG-3′, 5′-TR-3′, or 5′-RATG-3′.
  • 95. The method of any of claims 92-94, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 146-162.
  • 96. The method of any of claims 92-95, wherein the spacer sequence comprises between about 15 nucleotides to about 55 nucleotides.
  • 97. The method of any of claims 92-96, wherein the spacer sequence comprises between 26 and 51 nucleotides.
  • 98. A method of modifying a target nucleic acid, the method comprising delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 301-341; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide; andwherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 99. The method of claim 98, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 301.
  • 100. The method of claim 98 or 99, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-AAG-3′, 5′-AAD-3′, 5′-AAR-3′, 5′-RAAG-3′ (SEQ ID NO: 921), 5′-RAAR-3′ (SEQ ID NO: 922), 5′-RAAD-3′ (SEQ ID NO: 923).
  • 101. The method of any of claims 98-100, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 342-362.
  • 102. The method of any of claims 98-101, wherein the spacer sequence comprises between about 12 nucleotides to about 62 nucleotides.
  • 103. The method of any of claims 98-102, wherein the spacer sequence comprises between 19 and 40 nucleotides.
  • 104. A method of modifying a target nucleic acid, the method comprising delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 501-521; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide; andwherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 105. The method of claim 104, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 501.
  • 106. The method of claim 104 or 105, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-TTN-3′.
  • 107. The method of any of claims 104-106, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 522-532.
  • 108. The method of any of claims 104-107, wherein the spacer sequence comprises between about 15 nucleotides to about 55 nucleotides.
  • 109. The method of any of claims 104-108, wherein the spacer sequence comprises between 20 and 39 nucleotides.
  • 110. A method of modifying a target nucleic acid, the method comprising delivering to the target nucleic acid an engineered, non-naturally occurring CRISPR-Cas system comprising: (a) a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 601-682; and(b) an RNA guide comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide; andwherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 111. The method of claim 110, wherein the CRISPR-associated protein is a protein having at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identity to an amino acid sequence set forth in SEQ ID NO: 601.
  • 112. The method of claim 110 or 111, wherein the CRISPR-associated protein is capable of recognizing a PAM sequence comprising a nucleic acid sequence set forth as 5′-GTN-3′.
  • 113. The method of any of claims 110-112, wherein the direct repeat sequence comprises a nucleotide sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to a nucleotide sequence set forth in any one of SEQ ID NOs: 683-734.
  • 114. The method of any of claims 110-113, wherein the spacer sequence comprises between about 15 nucleotides to about 50 nucleotides.
  • 115. The method of any of claims 110-114, wherein the spacer sequence comprises between 20 and 44 nucleotides.
  • 116. A method of binding the system of any one of claims 1-49 to a target nucleic acid in a cell comprising: (a) providing the system; and(b) delivering the system to the cell,wherein the cell comprises the target nucleic acid, wherein the CRISPR-associated protein binds to the RNA guide, and wherein the spacer sequence binds to the target nucleic acid.
  • 117. The method of claim 116, wherein the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.
  • 118. The method of any one of claims 86-117, wherein the system does not comprise a tracrRNA.
  • 119. The method of any one of claims 86-118, wherein the target nucleic acid is a DNA molecule.
  • 120. The method of any one of claims 88-119, wherein the target nucleic acid comprises a PAM sequence.
  • 121. The method of any one of claims 88-120, wherein the CRISPR-associated protein comprises non-specific nuclease activity.
  • 122. The method of any one of claims 88-121, wherein the modification of the target nucleic acid is a double-stranded cleavage event.
  • 123. The method of any one of claims 88-121, wherein the modification of the target nucleic acid is a single-stranded cleavage event.
  • 124. The method of any one of claims 88-121, wherein the modification of the target nucleic acid results in an insertion event.
  • 125. The method of any one of claims 88-121, wherein the modification of the target nucleic acid results in a deletion event.
  • 126. The method of any one of claims 122-125, wherein the modification of the target nucleic acid results in cell toxicity or cell death.
  • 127. A method of editing a target nucleic acid, the method comprising contacting the target nucleic acid with the system of any one of claims 1-49.
  • 128. A method of modifying expression of a target nucleic acid, the method comprising contacting the target nucleic acid with a system of any one of claims 1-49.
  • 129. A method of targeting the insertion of a payload nucleic acid at a site of a target nucleic acid, the method comprising contacting the target nucleic acid with a system of any one of claims 1-49.
  • 130. A method of targeting the excision of a payload nucleic acid from a site at a target nucleic acid, the method comprising contacting the target nucleic acid with a system of any one of claims 1-49.
  • 131. A method of non-specifically degrading single-stranded DNA upon recognition of a DNA target nucleic acid, the method comprising contacting the target nucleic acid with a system of any one of claims 1-49.
  • 132. A method of detecting a target nucleic acid in a sample, the method comprising: (a) contacting the sample with the system of any one of claims 1-49 and a labeled reporter nucleic acid, wherein hybridization of the spacer sequence to the target nucleic acid causes cleavage of the labeled reporter nucleic acid; and(b) measuring a detectable signal produced by cleavage of the labeled reporter nucleic acid, thereby detecting the presence of the target nucleic acid in the sample.
  • 133. Use of the system of any one of claims 1-49 in an in vitro or ex vivo method of: (a) targeting and editing a target nucleic acid;(b) non-specifically degrading a single-stranded nucleic acid upon recognition of the nucleic acid;(c) targeting and nicking a non-spacer complementary strand of a double-stranded target upon recognition of a spacer complementary strand of the double-stranded target;(d) targeting and cleaving a double-stranded target nucleic acid;(e) detecting a target nucleic acid in a sample;(f) specifically editing a double-stranded nucleic acid;(g) base editing a double-stranded nucleic acid;(h) inducing genotype-specific or transcriptional-state-specific cell death or dormancy in a cell;(i) creating an indel in a double-stranded nucleic acid target;(j) inserting a sequence into a double-stranded nucleic acid target; or(k) deleting or inverting a sequence in a double-stranded nucleic acid target.
  • 134. A method of introducing an insertion or deletion into a target nucleic acid in a mammalian cell, comprising a transfection of: (a) a nucleic acid sequence encoding a CRISPR-associated protein, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1-50, 101-145, 301-341, 501-521, or 601-682; and(b) an RNA guide (or a nucleic acid encoding the RNA guide) comprising a direct repeat sequence and a spacer sequence capable of hybridizing to the target nucleic acid;wherein the CRISPR-associated protein is capable of binding to the RNA guide; andwherein recognition of the target nucleic acid by the CRISPR-associated protein and RNA guide results in a modification of the target nucleic acid.
  • 135. The method of claim 134, wherein the CRISPR-associated protein comprises an amino acid sequence that is at least 80% (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%) identical to an amino acid sequence set forth in any one of SEQ ID NOs: 1, 101, 301, 501, or 601.
  • 136. The method of claim 134, wherein the CRISPR-associated protein comprises an amino acid sequence of one of any one of SEQ ID NOs: 1, 101, 301, 501, or 601.
  • 137. The method of any of claims 134-136, wherein the transfection is a transient transfection.
  • 138. The method of any of claims 134-137, wherein the cell is a human cell.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application 62/892,358 filed on Aug. 27, 2019, U.S. Provisional Application 62/892,382 filed on Aug. 27, 2019, U.S. Provisional Application 62/892,390 filed on Aug. 27, 2019, U.S. Provisional Application filed on 62/892,446 filed on Aug. 27, 2019, U.S. Provisional Application 62/892,434 filed on Aug. 27, 2019, U.S. Provisional Application 62/893,064 filed on Aug. 28, 2019, U.S. Provisional Application 62/893,059 filed on Aug. 28, 2019, and U.S. Provisional Application 62/896,277 filed on Sep. 5, 2019, the entire contents of each of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/048037 8/26/2020 WO
Provisional Applications (8)
Number Date Country
62896277 Sep 2019 US
62893064 Aug 2019 US
62893059 Aug 2019 US
62892358 Aug 2019 US
62892382 Aug 2019 US
62892390 Aug 2019 US
62892446 Aug 2019 US
62892434 Aug 2019 US