Novel human proteins, polynucleotides encoding them and methods of using the same

Abstract
Disclosed are polypeptides and nucleic acids encoding same. Also disclosed are vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same.
Description


FIELD OF THE INVENTION

[0002] The present invention is based in part on nucleic acids encoding proteins that are new members of the following protein families: Troponin T-like Homo sapiens proteins, ACF7-interacting proteins, DEOXYURIDINE 5′-TRIPHOSPHATE NUCLEOTIDOHYDROLASE PRECURSOR-like Homo sapiens proteins, Mitosis-associated-like Homo sapiens proteins, Progesterone Receptor-associated p48-like Homo sapiens proteins, Rho GEF-like Homo sapiens proteins, DELTEX3-like Homo sapiens proteins, PALLIDIN proteins, CAM-KINASE II INHIBITOR ALPHA proteins, Intracellular Proteins, D9 Splice Variant 2 proteins, Ribosomal Protein L39-like Homo sapiens proteins, CLATHRIN COAT ASSEMBLY PROTEIN AP17-like Homo sapiens proteins, Nuclear Proteins, Intracellular Protein-like Homo sapiens proteins, Syncoilin proteins, Von Ebner's Gland protein precursor-like Homo sapiens proteins, Q9H5Z6 Hypothetical Cytoplasmic Proteins, Clathrin Coat Associated Protein-like Homo sapiens proteins, Leucine Zipper Motif Containing Proteins, HYDROXYPROLINE-RICH GLYCOPROTEIN-like Homo sapiens proteins, HIC1 proteins, METALLOTHIONEIN-IK-like Homo sapiens proteins, Benzodiazepine Receptor Related-like Proteins, Hypothetical-like Homo sapiens proteins, Cytoplasmic Proteins, 40S Ribosomal Proteins, FIP-2 proteins, Myosin Light Chain 2 TRAP proteins, Helix-loop-Helix-like Homo sapiens proteins, SNRNP-like Homo sapiens proteins, PEROXISOME ASSEMBLY PROTEIN PEX10 (PEROXIN-10)-like Homo sapiens proteins, and gene containing NUDIX hydrolase domain-like Homo sapiens proteins.


[0003] The invention relates to polynucleotides and the polypeptides encoded by such polynucleotides, as well as vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using the same.



BACKGROUND OF THE INVENTION

[0004] The invention generally relates to nucleic acids and polypeptides encoded therefrom. More specifically, the invention relates to nucleic acids encoding cytoplasmic, nuclear, membrane bound, and secreted polypeptides, as well as vectors, host cells, antibodies, and recombinant methods for producing these nucleic acids and polypeptides.



SUMMARY OF THE INVENTION

[0005] The present invention is based in part on nucleic acids encoding proteins that are members of the following protein families: Troponin T-like Homo sapiens proteins, ACF7-interacting proteins, DEOXYURIDINE 5′-TRIPHOSPHATE NUCLEOTIDOHYDROLASE PRECURSOR-like Homo sapiens proteins, Mitosis-associated-like Homo sapiens proteins, Progesterone Receptor-associated p48-like Homo sapiens proteins, Rho GEF-like Homo sapiens proteins, DELTEX3-like Homo sapiens proteins, PALLIDIN proteins, CAM-KINASE II INHIBITOR ALPHA proteins, Intracellular Proteins, D9 Splice Variant 2 proteins, Ribosomal Protein L39-like Homo sapiens proteins, CLATHRIN COAT ASSEMBLY PROTEIN AP17-like Homo sapiens proteins, Nuclear Proteins, Intracellular Protein-like Homo sapiens proteins, Syncoilin proteins, Von Ebner's Gland protein precursor-like Homo sapiens proteins, Q9H5Z6 Hypothetical Cytoplasmic Proteins, Cathrin Coat Associated Protein-like Homo sapiens proteins, Leucine Zipper Motif Containing Proteins, HYDROXYPROLINE-RICH GLYCOPROTEIN-like Homo sapiens proteins, HIC1 proteins, METALLOTHIONEIN-IK-like Homo sapiens proteins, Benzodiazepine Receptor Related-like Proteins, Hypothetical-like Homo sapiens proteins, Cytoplasmic Proteins, 40S Ribosomal Proteins, FIP-2 proteins, Myosin Light Chain 2 TRAP proteins, Helix-loop-Helix-like Homo sapiens proteins, SNRNP-like Homo sapiens proteins, PEROXISOME ASSEMBLY PROTEIN PEX10 (PEROXIN-10)-like Homo sapiens proteins, and gene containing NUDIX hydrolase domain-like Homo sapiens proteins. The novel polynucleotides and polypeptides are referred to herein as NOV1a, NOV1b, NOV2a, NOV3a, NOV3b, NOV4a, NOV5a, NOV6a, NOV7a, NOV8a, NOV9a, NOV10a, NOV11a, NOV12a, NOV13a, NOV 14a, NOV15a, NOV 16a, NOV16b, NOV17a, NOV17b, NOV18a, NOV19a, NOV20a, NOV21a, NOV22a, NOV23a, NOV24a, NOV25a, NOV26a, NOV27a, NOV28a, NOV29a, NOV29b, NOV30a, NOV30b, NOV31a, NOV32a, NOV33a, NOV34a, NOV35a, and NOV36a. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as “NOVX” nucleic acid or polypeptide sequences.


[0006] In one aspect, the invention provides an isolated NOVX nucleic acid molecule encoding a NOVX polypeptide that includes a nucleic acid sequence that has identity to the nucleic acids disclosed in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42. In some embodiments, the NOVX nucleic acid molecule will hybridize under stringent conditions to a nucleic acid sequence complementary to a nucleic acid molecule that includes a protein-coding sequence of a NOVX nucleic acid sequence. The invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof. For example, the nucleic acid can encode a polypeptide at least 80% identical to a polypeptide comprising the amino acid sequences of SEQ ID NO:2n, wherein n is an integer between 1 and 42. The nucleic acid can be, for example, a genomic DNA fragment or a cDNA molecule that includes the nucleic acid sequence of any of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42.


[0007] Also included in the invention is an oligonucleotide, e.g., an oligonucleotide which includes at least 6 contiguous nucleotides of a NOVX nucleic acid (e.g., SEQ ID NO:2n−1, wherein n is an integer between 1 and 42) or a complement of said oligonucleotide. Also included in the invention are substantially purified NOVX polypeptides (SEQ ID NO:2n, wherein n is an integer between 1 and 42). In certain embodiments, the NOVX polypeptides include an amino acid sequence that is substantially identical to the amino acid sequence of a human NOVX polypeptide.


[0008] The invention also features antibodies that immunoselectively bind to NOVX polypeptides, or fragments, homologs, analogs or derivatives thereof.


[0009] In another aspect, the invention includes pharmaceutical compositions that include therapeutically- or prophylactically-effective amounts of a therapeutic and a pharmaceutically-acceptable carrier. The therapeutic can be, e.g., a NOVX nucleic acid, a NOVX polypeptide, or an antibody specific for a NOVX polypeptide. In a further aspect, the invention includes, in one or more containers, a therapeutically- or prophylactically-effective amount of this pharmaceutical composition.


[0010] In a further aspect, the invention includes a method of producing a polypeptide by culturing a cell that includes a NOVX nucleic acid, under conditions allowing for expression of the NOVX polypeptide encoded by the DNA. If desired, the NOVX polypeptide can then be recovered.


[0011] In another aspect, the invention includes a method of detecting the presence of a NOVX polypeptide in a sample. In the method, a sample is contacted with a compound that selectively binds to the polypeptide under conditions allowing for formation of a complex between the polypeptide and the compound. The complex is detected, if present, thereby identifying the NOVX polypeptide within the sample.


[0012] The invention also includes methods to identify specific cell or tissue types based on their expression of a NOVX.


[0013] Also included in the invention is a method of detecting the presence of a NOVX nucleic acid molecule in a sample by contacting the sample with a NOVX nucleic acid probe or primer, and detecting whether the nucleic acid probe or primer bound to a NOVX nucleic acid molecule in the sample.


[0014] In a further aspect, the invention provides a method for modulating the activity of a NOVX polypeptide by contacting a cell sample that includes the NOVX polypeptide with a compound that binds to the NOVX polypeptide in an amount sufficient to modulate the activity of said polypeptide. The compound can be, e.g., a small molecule, such as a nucleic acid, peptide, polypeptide, peptidomimetic, carbohydrate, lipid or other organic (carbon containing) or inorganic molecule, as further described herein.


[0015] In another embodiment, the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.


[0016] Also within the scope of the invention is the use of a therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, e.g., adrenoleukodystrophy, congenital adrenal hyperplasia, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, autoimmune disease, allergies, immunodeficiencies, transplantation, Von Hippel-Lindau (VHL) syndrome, Alzheimer's disease, stroke, tuberous sclerosis, hypercalcemia, Parkinson's disease, Huntington's disease, cerebral palsy, epilepsy, Lesch-Nyhan syndrome, multiple sclerosis, ataxia-telangiectasia, leukodystrophies, behavioral disorders, addiction, anxiety, pain, neuroprotection, diabetes, renal artery stenosis, interstitial nephritis, glomerulonephritis, polycystic kidney disease, systemic lupus erythematosus, renal tubular acidosis, IgA nephropathy, hypercalcemia, cirrhosis, transplantation, systemic lupus erythematosus, autoimmune disease, asthma, emphysema, scleroderma, allergy, adult respiratory distress syndrome (ARDS), lymphedema, allergies, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, autoimmune disease, allergies, immunodeficiencies, transplantation, graft versus host disease (GVHD), lymphedema, fertility, diabetes, pancreatitis, obesity, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host, hypercalcemia, ulcers, anemia, ataxia-telangiectasia, cancer, trauma, regeneration (in vitro and in vivo), viral infections, bacterial infections, parasitic infections and/or other pathologies and disorders of the like.


[0017] The therapeutic can be, e.g., a NOVX nucleic acid, a NOVX polypeptide, or a NOVX-specific antibody, or biologically-active derivatives or fragments thereof.


[0018] For example, the compositions of the present invention will have efficacy for treatment of patients suffering from the diseases and disorders disclosed above and/or other pathologies and disorders of the like. The polypeptides can be used as immunogens to produce antibodies specific for the invention, and as vaccines. They can also be used to screen for potential agonist and antagonist compounds. For example, a cDNA encoding NOVX may be useful in gene therapy, and NOVX may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the present invention will have efficacy for treatment of patients suffering from the diseases and disorders disclosed above and/or other pathologies and disorders of the like.


[0019] The invention further includes a method for screening for a modulator of disorders or syndromes including, e.g., the diseases and disorders disclosed above and/or other pathologies and disorders of the like. The method includes contacting a test compound with a NOVX polypeptide and determining if the test compound binds to said NOVX polypeptide. Binding of the test compound to the NOVX polypeptide indicates the test compound is a modulator of activity, or of latency or predisposition to the aforementioned disorders or syndromes.


[0020] Also within the scope of the invention is a method for screening for a modulator of activity, or of latency or predisposition to disorders or syndromes including, e.g., the diseases and disorders disclosed above and/or other pathologies and disorders of the like by administering a test compound to a test animal at increased risk for the aforementioned disorders or syndromes. The test animal expresses a recombinant polypeptide encoded by a NOVX nucleic acid. Expression or activity of NOVX polypeptide is then measured in the test animal, as is expression or activity of the protein in a control animal which recombinantly-expresses NOVX polypeptide and is not at increased risk for the disorder or syndrome. Next, the expression of NOVX polypeptide in both the test animal and the control animal is compared. A change in the activity of NOVX polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of the disorder or syndrome.


[0021] In yet another aspect, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a NOVX polypeptide, a NOVX nucleic acid, or both, in a subject (e.g., a human subject). The method includes measuring the amount of the NOVX polypeptide in a test sample from the subject and comparing the amount of the polypeptide in the test sample to the amount of the NOVX polypeptide present in a control sample. An alteration in the level of the NOVX polypeptide in the test sample as compared to the control sample indicates the presence of or predisposition to a disease in the subject. Preferably, the predisposition includes, e.g., the diseases and disorders disclosed above and/or other pathologies and disorders of the like. Also, the expression levels of the new polypeptides of the invention can be used in a method to screen for various cancers as well as to determine the stage of cancers.


[0022] In a further aspect, the invention includes a method of treating or preventing a pathological condition associated with a disorder in a mammal by administering to the subject a NOVX polypeptide, a NOVX nucleic acid, or a NOVX-specific antibody to a subject (e.g., a human subject), in an amount sufficient to alleviate or prevent the pathological condition. In preferred embodiments, the disorder, includes, e.g., the diseases and disorders disclosed above and/or other pathologies and disorders of the like.


[0023] In yet another aspect, the invention can be used in a method to identity the cellular receptors and downstream effectors of the invention by any one of a number of techniques commonly employed in the art. These include but are not limited to the two-hybrid system, affinity purification, co-precipitation with antibodies or other specific-interacting molecules.


[0024] NOVX nucleic acids and polypeptides are further useful in the generation of antibodies that bind immuno-specifically to the novel NOVX substances for use in therapeutic or diagnostic methods. These NOVX antibodies may be generated according to methods known in the art, using prediction from hydrophobicity charts, as described in the “Anti-NOVX Antibodies” section below. The disclosed NOVX proteins have multiple hydrophilic regions, each of which can be used as an immunogen. These NOVX proteins can be used in assay systems for functional analysis of various human disorders, which will help in understanding of pathology of the disease and development of new drug targets for various disorders.


[0025] The NOVX nucleic acids and proteins identified here may be useful in potential therapeutic applications implicated in (but not limited to) various pathologies and disorders as indicated below. The potential therapeutic applications for this invention include, but are not limited to: protein therapeutic, small molecule drug target, antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), diagnostic and/or prognostic marker, gene therapy (gene delivery/gene ablation), research tools, tissue regeneration in vivo and in vitro of all tissues and cell types composing (but not limited to) those defined here.


[0026] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


[0027] Other features and advantages of the invention will be apparent from the following detailed description and claims.



DETAILED DESCRIPTION OF THE INVENTION

[0028] The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides are referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A. provides a summary of the NOVX nucleic acids and their encoded polypeptides.
1TABLE ASequences and Corresponding SEQ ID NumbersSEQ IDNONOVXInternal(nucleicSEQ ID NOAssignmentIdentificationacid)(polypeptide)Homology 1aCG127269-0212Troponin T-like Homo sapiens 1bCG127269-0434Troponin T-like Homo sapiens 2aCG134069-0156ACF7-interacting protein 3aCG134632-0178DEOXYURIDINE 5′-TRIPHOSPHATENUCLEOTIDOHYDROLASEPRECURSOR-like Homo sapiens  3bCG134632-02910DEOXYURIDINE 5′-TRIPHOSPHATENUCLEOTIDOHYDROLASEPRECURSOR-like Homo sapiens 4aCG139186-011112Mitosis-associated-like Homo sapiens 5aCG94620-011314Progesterone Receptor-associatedp48-like Homo sapiens 6aCG94882-011516Rho GEF-like Homo sapiens 7aCG94915-011718DELTEX3-like Homo sapiens 8aCG94966-011920PALLIDIN 9aCG95053-012122CAM-KINASE II INHIBITORALPHA10aCG95063-012324Intracellular Protein11aCG95072-012526D9 Splice Variant 212aCG95217-012728Ribosomal Protein L39-like Homo sapiens13aCG95261-012930CLATHRIN COAT ASSEMBLYPROTEIN AP17-like Homo sapiens14aCG95292-013132Nuclear Protein15aCG95452-013334Intracellular Protein-like Homo sapiens16aCG95504-013536Syncoilin16bCG95504-023738Syncoilin17aCG95589-013940Intracellular Protein-like Homo sapiens17bCG95589-024142Intracellular Protein-like Homo sapiens18aCG95598-014344Intracellular Protein19aCG95639-014546Von Ebner's Gland protein precursor-like Homo sapiens20aCG95649-014748Q9H5Z6 Hypothetical CytoplasmicProtein21aCG95775-014950Clathrin Coat Associated Protein-likeHomo sapiens22aCG95942-015152Leucine Zipper Motif ContainingProtein23aCG96211-015354Intracellular Protein24aCG96221-015556HYDROXYPROLINE-RICHGLYCOPROTEIN-like Homo sapiens25aCG96394-015758HIC126aCG96470-015960METALLOTHIONEIN-IK-likeHomo sapiens27aCG96650-016162Benzodiazepine Receptor RelatedProteins28aCG96682-016364Cytoplasmic Protein29aCG96704-01656640S Ribosomal Protein29bCG96704-02676840S Ribosomal Protein30aCG97090-016970FIP-230bCG97090-027172FIP-231aCG97134-017374Myosin Light Chain 232aCG97219-017576TRAP33aCG97358-017778Helix-loop-Helix-like Homo sapiens34aCG97378-017980SNRNP-like Homo sapiens35aCG97966-018182PEROXISOME ASSEMBLYPROTEIN PEX10 (PEROXIN-10)-like Homo sapiens36aCG99852-018384gene containing NUDIX hydrolasedomain-like Homo sapiens


[0029] Table A indicates homology of NOVX nucleic acids to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.


[0030] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0031] Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.


[0032] The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.


[0033] The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal versus diseased tissues, e.g., a variety of cancers.


[0034] Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.



NOVX Clones

[0035] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0036] The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.


[0037] The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) biological defense weapon.


[0038] In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).


[0039] In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 42; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42, wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42, or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.


[0040] In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.



NOVX Nucleic Acids and Polypeptides

[0041] One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.


[0042] An NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a “mature” form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product, encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product “mature” form arises, again by way of nonlimiting example, as a result of one or more naturally occurring processing steps as they may take place within the cell, or host cell, in which the gene product arises. Examples of such processing steps leading to a “mature” form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristoylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.


[0043] The term “probes”, as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.


[0044] The term “isolated” nucleic acid molecule, as utilized herein, is one, which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.


[0045] A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or a complement of this aforementioned nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993.) A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


[0046] As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.


[0047] In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of an NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence shown SEQ ID NO:2n−1, wherein n is an integer between 1 and 42 is one that is sufficiently complementary to the nucleotide sequence shown SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, that it can hydrogen bond with little or no mismatches to the nucleotide sequence shown SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, thereby forming a stable duplex.


[0048] As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term “binding” means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.


[0049] Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, respectively, and are at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice. Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution. Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin,and may have a similar or opposite metabolic activity compared to wild type. Homologs are nucleic acid sequences or amino acid sequences of a particular gene that are derived from different species.


[0050] A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5′ direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3′ direction of the disclosed sequence.


[0051] Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993, and below.


[0052] A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences encode those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for an NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.


[0053] An NOVX polypeptide is encoded by the open reading frame (“ORF”) of an NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG “start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bonafide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.


[0054] The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence SEQ ID NO:2n−1, wherein n is an integer between 1 and 42; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42; or of a naturally occurring mutant of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42.


[0055] Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express an NOVX protein, such as by measuring a level of an NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.


[0056] “A polypeptide having a biologically-active portion of an NOVX polypeptide” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a “biologically-active portion of NOVX” can be prepared by isolating a portion SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, that encodes a polypeptide having an NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.



NOVX Nucleic Acid and Polypeptide Variants

[0057] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO:2n, wherein n is an integer between 1 and 42.


[0058] In addition to the human NOVX nucleotide sequences shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding an NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.


[0059] Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from the human SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.


[0060] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other.


[0061] Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.


[0062] As used herein, the phrase “stringent hybridization conditions” refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60° C. for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.


[0063] Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65° C., followed by one or more washes in 0.2×SSC, 0.01% BSA at 50° C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequences SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0064] In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6×SSC, 5×Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55° C., followed by one or more washes in 1×SSC, 0.1% SDS at 37° C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y., and Kriegler, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, N.Y.


[0065] In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5×SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40° C., followed by one or more washes in 2×SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50° C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y., and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, N.Y.; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.



Conservative Mutations

[0066] In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, thereby leading to changes in the amino acid sequences of the encoded NOVX proteins, without altering the functional ability of said NOVX proteins. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence SEQ ID NO:2n, wherein n is an integer between 1 and 42. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an “essential” amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.


[0067] Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO:2n, wherein n is an integer between 1 and 42, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 45% homologous to the amino acid sequences SEQ ID NO:2n, wherein n is an integer between 1 and 42. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 42; more preferably at least about 70% homologous SEQ ID NO:2n, wherein n is an integer between 1 and 42; still more preferably at least about 80% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 42; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 42; and most preferably at least about 95% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 42.


[0068] An isolated nucleic acid molecule encoding an NOVX protein homologous to the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 42, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


[0069] Mutations can be introduced into SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.


[0070] The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved “strong” residues or fully conserved “weak” residues. The “strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the “weak” group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.


[0071] In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and an NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).


[0072] In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).



Antisense Nucleic Acids

[0073] Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or fragments, analogs or derivatives thereof. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of an NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 42, or antisense nucleic acids complementary to an NOVX nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, are additionally provided.


[0074] In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding an NOVX protein. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding the NOVX protein. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).


[0075] Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).


[0076] Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0077] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


[0078] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.



Ribozymes and PNA Moieties

[0079] Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.


[0080] In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for an NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of an NOVX cDNA disclosed herein (i.e., SEQ ID NO:2n−1, wherein n is an integer between 1 and 42). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an NOVX-encoding mRNA. See, e.g., U.S. Pat. No. 4,987,071 to Cech, et al. and U.S. Pat. No. 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.


[0081] Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660:27-36; Maher, 1992. Bioassays 14: 807-15.


[0082] In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.


[0083] PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).


[0084] In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5′ end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.


[0085] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.



NOVX Polypeptides

[0086] A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in SEQ ID NO:2n, wherein n is an integer between 1 and 42. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in SEQ ID NO:2n, wherein n is an integer between 1 and 42, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.


[0087] In general, an NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.


[0088] One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, an NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.


[0089] An “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language “substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.


[0090] The language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.


[0091] Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence shown in SEQ ID NO:2n, wherein n is an integer between 1 and 42) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of an NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of an NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.


[0092] Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.


[0093] In an embodiment, the NOVX protein has an amino acid sequence shown SEQ ID NO:2n, wherein n is an integer between 1 and 42. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 42, and retains the functional activity of the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 42, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence SEQ ID NO:2n, wherein n is an integer between 1 and 42, and retains the functional activity of the NOVX proteins of SEQ ID NO:2n, wherein n is an integer between 1 and 42.



Determining Homology Between Two or More Sequences

[0094] To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid “homology” is equivalent to amino acid or nucleic acid “identity”).


[0095] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42.


[0096] The term “sequence identity” refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.



Chimeric and Fusion Proteins

[0097] The invention also provides NOVX chimeric or fusion proteins. As used herein, an NOVX “chimeric protein” or “fusion protein” comprises an NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to an NOVX protein SEQ ID NO:2n, wherein n is an integer between 1 and 42), whereas a “non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within an NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of an NOVX protein. In one embodiment, an NOVX fusion protein comprises at least one biologically-active portion of an NOVX protein. In another embodiment, an NOVX fusion protein comprises at least two biologically-active portions of an NOVX protein. In yet another embodiment, an NOVX fusion protein comprises at least three biologically-active portions of an NOVX protein. Within the fusion protein, the term “operatively-linked” is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.


[0098] In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.


[0099] In another embodiment, the fusion protein is an NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.


[0100] In yet another embodiment, the fusion protein is an NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between an NOVX ligand and an NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of an NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with an NOVX ligand.


[0101] An NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.



NOVX Agonists and Antagonists

[0102] The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.


[0103] Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.



Polypeptide Libraries

[0104] In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of an NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.


[0105] Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.



Anti-NOVX Antibodies

[0106] Also included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab, and F(ab′)2 fragments, and an Fab expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


[0107] An isolated NOVX-related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.


[0108] In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX-related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX-related protein sequence will indicate which regions of a NOVX-related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. hat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0109] A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.


[0110] Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow and Lane, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference). Some of these antibodies are discussed below.



Polyclonal Antibodies

[0111] For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).


[0112] The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).



Monoclonal Antibodies

[0113] The term “monoclonal antibody” (MAb) or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.


[0114] Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.


[0115] The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, MONOCLONAL ANTIBODIES: PRINCIPLES AND PRACTICE, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


[0116] Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., MONOCLONAL ANTIBODY PRODUCTION TECHNIQUES AND APPLICATIONS, Marcel Dekker, Inc., New York, (1987) pp.51-63).


[0117] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.


[0118] After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.


[0119] The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.


[0120] The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.



Humanized Antibodies

[0121] The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Pat. No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).



Human Antibodies

[0122] Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed “human antibodies”, or “fully human antibodies” herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80:2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).


[0123] In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al,(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).


[0124] Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.


[0125] An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Pat. No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.


[0126] A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Pat. No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.


[0127] In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.



Fab Fragments and Single Chain Antibodies

[0128] According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Pat. No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(ab′)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab′)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.



Bispecific Antibodies

[0129] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.


[0130] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., 1991 EMBO J., 10:3655-3659.


[0131] Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).


[0132] According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.


[0133] Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.


[0134] Additionally, Fab′ fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.


[0135] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol 152:5368 (1994).


[0136] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).


[0137] Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).



Heteroconjugate Antibodies

[0138] Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.



Effector Function Engineering

[0139] It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53:2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3:219-230 (1989).



Immunoconjugates

[0140] The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


[0141] Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 90Y, and 186Re.


[0142] Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.


[0143] In another embodiment, the antibody can be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.


[0144] In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme-linked immunosorbent assay (ELISA) and other immunologically-mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0145] Anti-NOVX antibodies may be used in methods known within the art relating to the localization and/or quantitation of an NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies for NOVX proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antibody derived binding domain, are utilized as pharmacologically-active compounds (hereinafter “Therapeutics”).


[0146] An anti-NOVX antibody (e.g., monoclonal antibody) can be used to isolate an NOVX polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. An anti-NOVX antibody can facilitate the purification of natural NOVX polypeptide from cells and of recombinantly-produced NOVX polypeptide expressed in host cells. Moreover, an anti-NOVX antibody can be used to detect NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the NOVX protein. Anti-NOVX antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.



NOVX Recombinant Expression Vectors and Host Cells

[0147] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


[0148] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably-linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).


[0149] The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).


[0150] The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0151] Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0152] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11 d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).


[0153] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0154] In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec1 (Baldari, et al., 1987. EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


[0155] Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


[0156] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


[0157] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byme and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


[0158] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., “Antisense RNA as a molecular tool for genetic analysis,” Reviews-Trendy in Genetics, Vol. 1(1) 1986.


[0159] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0160] A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0161] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.


[0162] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


[0163] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.



Transgenic NOVX Animals

[0164] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0165] A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.


[0166] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of an NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).


[0167] Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5′- and 3′-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′- and 3′-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.


[0168] The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.


[0169] In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Nail. Acad Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.


[0170] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.



Pharmaceutical Compositions

[0171] The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as “active compounds”) of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


[0172] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0173] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0174] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., an NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0175] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic,acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0176] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0177] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0178] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0179] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0180] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


[0181] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.


[0182] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.



Screening and Detection Methods

[0183] The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in an NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.


[0184] The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.



Screening Assays

[0185] The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.


[0186] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of an NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.


[0187] A “small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.


[0188] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37:2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33:2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33:2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.


[0189] Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner, U.S. Pat. No. 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Pat. No. 5,233,409.).


[0190] In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to an NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an NOVX protein, wherein determining the ability of the test compound to interact with an NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.


[0191] In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with an NOVX target molecule. As used herein, a “target molecule” is a molecule with which an NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses an NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. An NOVX target molecule can be a non-NOVX molecule or an NOVX protein or polypeptide of the invention. In one embodiment, an NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.


[0192] Determining the ability of the NOVX protein to bind to or interact with an NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with an NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising an NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.


[0193] In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting an NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an NOVX protein, wherein determining the ability of the test compound to interact with an NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.


[0194] In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to an NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate an NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.


[0195] In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an NOVX protein, wherein determining the ability of the test compound to interact with an NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of an NOVX target molecule.


[0196] The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, Triton® X-114, Thesit®, decanoyl-N-methylglucamide, Triton® X-100, Isotridecypoly(ethylene glycol ether)n, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).


[0197] In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.


[0198] Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.


[0199] In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.


[0200] In yet another aspect of the invention, the NOVX proteins can be used as “bait proteins” in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos, et al., 1993. Cell 72:223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX (“NOVX-binding proteins” or “NOVX-bp”) and modulate NOVX activity. Such NOVX-binding proteins are also likely to be involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.


[0201] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming an NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.


[0202] The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.



Detection Assays

[0203] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.



Chromosome Mapping

[0204] Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences, SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.


[0205] Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.


[0206] Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.


[0207] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.


[0208] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988).


[0209] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0210] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.


[0211] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.



Tissue Typing

[0212] The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP (“restriction fragment length polymorphisms,” described in U.S. Pat. No. 5,272,057).


[0213] Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5′- and 3′-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.


[0214] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).


[0215] Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.



Predictive Medicine

[0216] The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in an NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.


[0217] Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as “pharmacogenomics”). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)


[0218] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.


[0219] These and other agents are described in further detail in the following sections.



Diagnostic Assays

[0220] An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.


[0221] An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0222] In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.


[0223] In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.


[0224] The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.



Prognostic Assays

[0225] The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.


[0226] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).


[0227] The methods of the invention can also be used to detect genetic lesions in an NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding an NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from an NOVX gene; (ii) an addition of one or more nucleotides to an NOVX gene; (iii) a substitution of one or more nucleotides of an NOVX gene, (iv) a chromosomal rearrangement of an NOVX gene; (v) an alteration in the level of a messenger RNA transcript of an NOVX gene, (vi) aberrant modification of an NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of an NOVX gene, (viii) a non-wild-type level of an NOVX protein, (ix) allelic loss of an NOVX gene, and (x) inappropriate post-translational modification of an NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in an NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0228] In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to an NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


[0229] Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


[0230] In an alternative embodiment, mutations in an NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Pat. No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0231] In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7:244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0232] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).


[0233] Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217:286-295. In an embodiment, the control DNA or RNA can be labeled for detection.


[0234] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on an NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Pat. No. 5,459,039.


[0235] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86:2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.


[0236] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.


[0237] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


[0238] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al., 1989. Nucl. Acids Res. 17:2437-2448) or at the extreme 3′-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0239] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving an NOVX gene.


[0240] Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.



Pharmacogenomics

[0241] Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.) In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.


[0242] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43:254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.


[0243] As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.


[0244] Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with an NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.



Monitoring of Effects During Clinical Trials

[0245] Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a “read out” or markers of the immune responsiveness of a particular cell.


[0246] By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.


[0247] In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of an NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.



Methods of Treatment

[0248] The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, and other diseases, disorders and conditions of the like.


[0249] These methods of treatment will be discussed more fully, below.



Disease and Disorders

[0250] Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are “dysfunctional” (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to “knockout” endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators (i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.


[0251] Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof, or an agonist that increases bioavailability.


[0252] Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).



Prophylactic Methods

[0253] In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, an NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.



Therapeutic Methods

[0254] Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of an NOVX protein, a peptide, an NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of an NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering an NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.


[0255] Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).



Determination of the Biological Effect of the Therapeutic

[0256] In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.


[0257] In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.



Prophylactic and Therapeutic Uses of the Compositions of the Invention

[0258] The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders including, but not limited to: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.


[0259] As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias.


[0260] Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.


[0261] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims. In the following examples, a putative untranslated region upstream from the initiation codon and downstream from the termination codon are underlined, and the start and stop codons are in bold letters.







EXAMPLES


Example A


NOVX Clone Information

[0262] The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
2TABLE 1ANOV1 Sequence AnalysisSEQ ID NO:1977 bpNOV1a,CCCACCTTCACCATGTCTGACGAGGAAGTTGAACAGGTGGAGAGCAGTACGAAGAAGCG127269-02 DNAAAGAGGAAGCCCAGGAGGAAGAGGAAGTTCAAGAAGAGCAGAAACCGACACCCAAACTSequenceCACTGCTCCTAAGATCCCAGAAGGGGAGAAAGTCCACTTCCATGACATCCAGAAGAAGCGTCACAACAAAGACCTAATGGAGCTCCAGGCCCTCATCGACAGCCACTTTGAAGCCCGGAAGAAGGAGGAGGAGGAGCTGGTCGCTCTCAAAGAGAGAATCGAGAAGCGCCGTGCAGAGAGAGCGGAGCAGCAGAGGATTCGTGCAGAGAAGGAGAGGGAGCGCCAGAACAGACTGGCGGAGGAAAAGGCCAGAAGGGAGGAGGAGGATGCCAAGAGGAGGGCAGAGGACGACCTGAAGAAGAAGAAAGCTCTGTCTTCCATGGGAGCCAACTACAGCAGCTACCTGGCCAAGGCTGACCAGAAGAGAGGCAAGAAGCAGACAGCCCGGCAAATGAAGAAGAAGATTCTGGCTGAGAGACGCAAGCCGCTCAACATCGATCACCTTGGTGAAGACAAACTGAGGGACAAGGCCAAGGAGCTCTGGGAGACCCTGCACCAGCTGGAGATTGACAAGTTCGAGTTTGGGGAGAAGCTGAAACGCCACAAATATGACATCACCACGCTCAGCACCCGCATTGACCAGGCCCAGAAGCACAGCAAGAAGGCTGGGACCCCAGCCAAGCGCAAAGTCGGCGGGCGCTCGAAGTAGAGAGGCCAGAAAGGCCCCTCGAGGCAGAGACCCTCCGCCCTCTTGCACACCAGGGCCGCTCGTGGGACTCCACATCCTCCAGCCCCCACAATCCTGTCAGCCGCTCCCTGACAGTCCTCCGCGTGGAGAGCCCATCCCGGGGCGTCCCCCGCGTCTGTGTCCTTGCTGCCTTCATCCCCTGGGGCCTGTGAATAAAGCTGCAGAACCCCCTTORF Start: ATG at 13ORF Stop: TAG at 763SEQ ID NO:2250 aa MW at 29735.2 kDNOV1a,MSDEEVEQVEEQYEEEEEAQEEEEVQEEEKPRPKLTAPKIPECEKVDFDDIQKKRQNKCG127269-02 ProteinDLMELQALIDSHFEARKKEEEELVALKERIEKRRAERAEQQRIRAEKERERQNRLAEEKARREEEDAKRRAEDDLKKKKALSSMGANYSSYLAKADQKRGKKQTAREMKKKILAERSequenceRKPLNIDHLGEDKLRDKAKELWETLHQLEIDKFEFGEKLKRQKYDITTLRSRIDQAQKHSKKAGTPAKGKVGGRWKSEQ ID NO:3975 bpNOV1b,CCCACCTTCACCATGTCTGACGAGGAAGTTGAACAGGTCGACGAGCAGTACGAAGAAGCG127269-04 DNAAAGAGGAAGCCCAGGAGGAAGAGGAAGTTCAAGAAGAGGAGAACCGAGACCCAAACTSequenceCACTGCTCCTAAGATCCCAGAAGGGGAGAAAGTGGACTTCGATGACATCCAGAAGAAGCGTCAGAACAAAGACCTAATGGAGCTCCAGGCCCTCATCCACAGCCACTTTGAAGCCCGGAAGAGGAGGACGACGAGCTGGTCGCTCTCAAAGAGAGAATCGACAAGCGCCGTGCAGAGAGAGCGGAGCAGCAGAGGATTCGTGCAGAGAAGGAGAGGGAGCGCCAGAACAGACTGGCGGAGGAAAAGGCCAGAAGGGAGGAGGAGGATGCCAAGAGGAGGGCAGAGGACGACCTGAAGAAGAAGAAAGCTCTGTCTTCCATGGGAGCCAACTACAGCAGCTACCTGGCCAAGGCTGACCAGAAGAGAGGCAAGAAGCAGACAGCCCGGGAAATGAAGAAGAAGATTCTGGCTGAGAGACGCAAGCCGCTCAACATCGATCACCTTGGTGAAGACAAACTGAGGGACAAGGCCAAGGAGCTCTGGGAGACCCTGCACCAGCTGGAGATTGACAAGTTCGAGTTTGGGGACAAGCTGAAACGCCAGAAATATGACATCACCACGCTCACGAGCCGCATTGACCAGCCCCAGAAGCACAGCAAGAAGGCTGGGACCCCAGCCAAGGGCAAAGTCGGCCCGCGCTGGAAGTAGAGAGGCCAGAAAGGCCCTCGAGGCAGAGACCCTCCGCCCTCTTGCACACCAGGGCCCCTCGTGGGACTCCACATCCTCCACCCCCCACAATCCTGTCACGGGTCTCCCTGACGTCCTGCGGCTGGAGAGGCCATCCCGGGCCGTCCCCCGCGTCTGTGTCCTTGCTGCCTTCATCCCCTGGGGCCTGTGAATAAAGCTGCAGAACCCCCTORF Start: ATG at 13ORF Stop: TAG at 763SEQ ID NO:4250 aa MW at 29735.2 kDNOV1b,MSDEEVEQVEEQYEEEEEAQEEEEVQEEEKPRPKLTAPKIPEGEKVDFDDIQKKRQNKCG127269-04 ProteinDLMELQALIDSHFEARKKEEEELVALKERIEKRRAERAEQQRIRAEKERERQNRLAEESequenceKARREEEDAKRRAEDDLKKKKALSSMGANYSSYLAKADQKRGKKQTAREMKKKILAERRKPLNIDHLGEDKLRDKAKELWETLHQLEIDKFEFGEKLKRQKYDITTLRSRIDQAQKHSKKAGTPAKGKVGGRWK


[0263] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.
3TABLE 1BComparison of NOV1a against NOV1b.NOV1aIdentities/Similarities forProtein SequenceResidues/Match Residuesthe Matched RegionNOV1b30 . . . 250163/221 (73%)30 . . . 250163/221 (73%)


[0264] Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.
4TABLE 1CProtein Sequence Properties NOV1aPSort0.9916 probability located in nucleus; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen); 0.0000 probability located inendoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0265] A search of the NOVI a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1D.
5TABLE 1DGeneseq Results for NOV1aNOV1aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB00136Human fast twitch skeletal muscle 1 . . . 250250/258 (96%)e−137Troponin subunit T - Homo sapiens, 258 1 . . . 258250/258 (96%)aa. [WO200054770-A1, 21-SEP-2000]AAW22599Human fast twitch skeletal muscle 1 . . . 250250/258 (96%)e−137troponin T - Homo sapiens, 258 aa. 1 . . . 258250/258 (96%)[WO9730085-A1, 21-AUG-1997]AAY91961Human cytoskeleton associated protein 1 . . . 250249/269 (92%)e−13416 (CYSKP-16) - Homo sapiens, 269 aa. 1 . . . 269249/269 (92%)[WO200017355-A2, 30-MAR-2000]AAW76636Human cardiac HcTnT protein - Homo  2 . . . 250157/257 (61%)2e−81 sapiens, 288 aa. [DE19815128-A1, 08-OCT-1998]36 . . . 288198/257 (76%)AAW76638Human cardiac HcTnT protein mutant 2 . . . 250156/257 (60%)1e−80 F1101 - Homo sapiens, 288 aa.36 . . . 288197/257 (75%)[DE19815128-A1, 08-OCT-1998]


[0266] In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1E.
6TABLE 1EPublic BLASTP Results for NOV1aNOV1aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueI53021troponin T - human, 258 aa.1 . . . 250250/258 (96%)e−1371 . . . 258250/258 (96%)P45378Troponin T, fast skeletal muscle isoform2 . . . 250249/257 (96%)e−136beta (Beta TnTF) - Homo sapiens1 . . . 257249/257 (96%)(Human), 257 aa.Q9TS31TROPONIN T BETA ISOFORM -2 . . . 250238/249 (95%)e−132Oryctolagus cuniculus (Rabbit), 249 aa.1 . . . 249243/249 (97%)P09739Troponin T, fast skeletal muscle2 . . . 250240/258 (93%)e−131isoforms beta/alpha (Beta/alpha TnTF) -1 . . . 258244/258 (94%)Rattus norvegicus (Rat), 258 aa.A24824troponin T, fast skeletal muscle - rat,1 . . . 250241/272 (88%)e−129272 aa.1 . . . 272245/272 (89%)


[0267] PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1F.
7TABLE 1FDomain Analysis of NOV1aPfamNOV1aIdentities/SimilaritiesDomainMatch Regionfor the Matched RegionExpect ValueTroponin54 . . . 196 56/190 (29%)4.7e−42133/190 (70%)



Example 2

[0268] The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
8TABLE 2ANOV2 Sequence AnalysisSEQ ID NO:51447 bpNOV2a,ATTTCTTATCTGTGTCAAGAGCTGCAATATTTGTTTTAACTATCTGCAAAATGGGGAACG134069-01 DNAGCCACTCAGCAGACCAGACTGTTTACGTCAGAATCCCCCATGTGTAGGGAAGGGTGAASequenceGAAGAGGAGGACCTAAATATCGAAGACTGTTACGTCCCACAGCGGTCAATCTATGATACTGTTAGACTAAATGAACAGATAGACTCTGGTTCAAAAGGTAGTCTATCTTCCAGGCATTTTACAGATCGAACTTTACCCTACAGTCACAGAACACTCGATGTTAGTTCTTTATGCTCTAATGGTGCCCTTACTTCTTCCAGTGTATTTGAGCTCACACCTCGGGAAGCTAACAAACTAGATGAAAAGATGATCTTTGATGCACTCAAACTAAATAGTGATATCATTCGAACCACAGGATTACCTAAAGCCAAATCTCATGCGCAAAAGAAAGAGCATAGACGGTCATGGCGAATGTTTGTCCCGGCCAATTTTATGGATTATGCAAACAAAAGTGAAAGCTCTTTTGTTGAACCTGCTGATATGTCAGATGCTGTTACCAAGGCCAGCAAGTGCAGATCCGGTACTAATTCTCTCACTTCGGAGGAGGATGACTCTGGTTTATGTAGCCCTCCAGCAGAGAGGGAAGAAAAACAGGGCATTTTAACTGGAGACCAGTCACGAATTAAAAGTTTGTCTTCTACTGAAGATATTCTTGTAACAGACCAATACAGACCATTTTTTTCTGTTAATTCCATTAGCGAACAGAAAATCCCACTGCTTTCATGTCAAAGTGCCCACCCTGATGAAAATTTCAAAATGATTTTACATGATGTTTCTCCACTAGAGGAAGCAAAACATGTAAATGGTCAAAGGGAAATCCACGATGAAAATTGTTGCCTGCAGAATAATTTGAAAGAGAGCCCTGTGAAGTGTGACCCATTAATTATGCCAAGAAATAGAGAAAATGAGCATATTTTTAACCTTGGAGAAGAGGACGAAACATACGGACCTGGAGAATCCCAAATCACAGCACAAAGTAGGGAACTCTTGAAGGATTCCCCTCAAGATTTAGATCTCTCTCACACAGATCTAGGGGAGAGTGATGTAGATTGTGGTAGCACCAGCTTAGTAGAAAATGTGACACTTTTGACACAATATGATTCAGGAGAATGCAACATTGCATCTAAAGAGGAAGTGGAGGCTCCTCTTTCTGCCCAGGAGAGCGAAATGCTCTATAAGAAGTTCTCCCTGAAATTCGTATCAGCAAGAAAGAAAGCAGCACCCAGAAAAACACGGGCCCAGGCAGGAATATTGGACACAGTCTGCAATGGCTTTCAGTTGGTTCAGGTAATTCATGGAAATATGAAACTCTGCAGTGTCAAAAGTTTGCGGTTCTGCTAAAAGTTTGTGGTTCTGTTTCAGAGTGGTCACTAGTGTTTCTAATAATAATGORF Start: ATG at 51ORF Stop: TAA at 1395SEQ ID NO:6448 aa MW at 50011.3 kDNOV2a,MGKPLSRPDCLRQNPPCVGKGEEEEDLNIEDCYVPQRSIYDTVRLNEQIDSGSKGSLSCG134069-01Protein SRHFTDRTLPYSHRTLDVSSLCSNGALTSSSVFELRGREANKLDEKMIFDALKLNSDISequenceIRTTGLPKAKSHAEKKEHRRSWRMFVPANFD4DYANKSESSFVEPADMSDAVTKASKCRWGTNSLTSEEDDSGLCSPPAEREEKQGILTGDQSRIKSLSSTEDILVTDQYRPFFSVNSISEQKIPLLSCQSAHPDENFKMVILHDVSPLEEAKHVNGQREIHDENCCLQNNLKESPVKCDPLIMPRNRENEHFNLGEEDETYGPGESQITAQSRELLKDSPQDLDLSHTDLGESDVDCGSTSLVENVTLLTQYDSGECNIASKEEVEAPLSAQESEMLYKKFSLKFVSARKKAAPRKTGAQAGILDTVCNGFQLVQVIHGNMKLCSVKSLRFC


[0269] Further analysis of the NOV2a protein yielded the following properties shown in Table 2B.
9TABLE 2BProtein Sequence Properties NOV2aPSort0.6500 probability located in cytoplasm; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen); 0.0000 probabilitylocated in endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0270] A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2C.
10TABLE 2CGeneseq Results for NOV2aNOV2aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB18278Plasmodium falciparum chromosome 2153 . . . 40753/259 (20%)0.054related protein SEQ ID NO: 135 - 84 . . . 325110/259 (42%) Plasmodium falciparum, 665 aa.[WO200025728-A2, 11-MAY-2000]AAB01674FIS2 protein sequence - Arabidopsis114 . . . 22433/118 (27%)0.36thaliana, 813 aa. [WO200016609-A1, 30-MAR-2000]262 . . . 37649/118 (40%)AAG06245Arabidopsis thaliana protein fragment SEQ303 . . . 43233/141 (23%)0.36ID NO: 2948 - Arabidopsis thaliana, 376 94 . . . 23455/141 (38%)aa. [EP1033405-A2, 06-SEP-2000]AAG06244Arabidopsis thaliana protein fragment SEQ303 . . . 43233/141 (23%)0.36ID NO: 2947 - Arabidopsis thaliana, 386104 . . . 24455/141 (38%)aa. [EP1033405-A2, 06-SEP-2000]AAM41000Human polypeptide SEQ ID NO: 5931 - 194 . . . 40246/218 (21%)0.47Homo sapiens, 1988 aa. [WO200153312- 927 . . . 112590/218 (41%)A1, 26-JUL-2001]


[0271] In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2D.
11TABLE 2DPublic BLASTP Results for NOV2aNOV2aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO96229HYPOTHETICAL 78.6 KDA153 . . . 40753/259 (20%)0.14PROTEIN - Plasmodium falciparum, 84 . . . 325110/259 (42%) 665 aa.Q9FGX0GB|AAC55944.1 - Arabidopsis236 . . . 39640/169 (23%)0.24thaliana (Mouse-ear cress), 569 aa.327 . . . 48867/169 (38%)Q93ZJ6AT2G32240/F22D22.1 - Arabidopsis150 . . . 39052/256 (20%)0.41thaliana (Mouse-ear cress), 568 aa.278 . . . 528108/256 (41%) P08799Myosin II heavy chain, non muscle -292 . . . 41234/121 (28%)0.54Dictyostelium discoideum (Slime816 . . . 92755/121 (45%)mold), 2116 aa.AAL99108HYPOTHETICAL 35.2 KDA 77 . . . 26140/188 (21%)0.71PROTEIN - Dictyostelium discoideum 47 . . . 21676/188 (40%)(Slime mold), 315 aa.


[0272] PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2E.
12TABLE 2EDomain Analysis of NOV2aDomainNOV2aIdentities/Expect ValuePfamMatch RegionSimilaritiesfor the Matched Region



Example 3

[0273] The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
13TABLE 3ANOV3 Sequence AnalysisSEQ ID NO:711520 bpNOV3a,TCACCGGCGCCGAGATGCGGTTCCGGCGCTTAGGGCGCCGCTAAACTCAGAGCCCGGGCG134632-01 DNAAGTCATGGCTGCGGGCGGTGCCGCCCCAGGTAAATCAGTCCAGGAGCAGGGCCCGGGCSequenceCTGGCGTACACTCTCGGAAAAATGGGGGCCAGAGCAAACAAGAAGAGCGAAAGCAAGAGGGCTAGGCAGCCAGAGGCGGCAGCAAGACTCAAGACGCCAACGGCGCCGTCTTCCTGGGGCCCCAGGGCCTGCGCCATCCCTGGCCTGCCGGGGCACCGCCTCTCCACGCCCCTCGTCCGGCGGCGGCTGCGACTGCTTCCGAGGTCATGTTCCCAGGACGGGCGCGTCTTCAGGGTGGAAGCCTGGCGCACGTCCGGAGGTGCCGAGGACCCAACCAGCCCAAACTCTGGGGGAAATGACTCCCCTCTCCCCTCGCCCCCCGCTCTGCTACCATTTCCTTACGTCTCTGCTTCGCTCACCGATGCAAAACGCGCGAGGCGCACGGCAGAGGGCCGAAGCCGCGGTACTCTCCGGGCCAGGCCCGCCCCTCGGCCCCCCCGCGCAGCACGGGATTCCCCGGCCGCTGTCCACCGCTGGCCGCCTCAGCCAAGGCTCCCGCGGAGCCAGTACAGTCGGGGCCGCTGGCTGGAAGGGCGAGCTTCCTAAGGCGGGGGGAAGCCCGGCGCCGGGGCCGGAGACACCCGCCATTTCACCCAGTAAGCGGGCCCGGCCTGCGGAGGTGGGCGGCATGCAGCTCCGCTTTCCCCCGCTCTCCGAGCACGCCACGGCCCCCACCCGGGGCTCCCCGCGCGCCGCGGGCTACGACCTGTACAGTGCCTATGATTACACAATACCACCTATGGAGAAAGCTGTTGTGAAAACGGACATTCAGATAGCGCTCCCTTCTCGGTGTTATGGAAGAGTCGCTCCACGGTCAGGCTTGGCTGCAAAACACTTTATTGATGTAGGAGCTGGTGTCATAGATGAAGATTATAGAGGAAATGTTGGTGTTGTACTGTTTAATTTTGGCAAAGAAAAGTTTGAAGTCAAAAAAGGTGATCGAATTGCACAGCTCATTTGCGAACGGATTTTTTATCCAGAAATAGAAGAAGTTCAAGCCTTGGATGACACCGAAAGGGGTTCAGGAGGTTTTGGTTCCACTGGAAAGAATTAAAATTTATGCCAAGAACAGAAAACAAGAAGTCATACCTTTTTCTTAAAAAAAAAAAAAAAGTTTTTGCTTCAAGTGTTTTGGTGTTTTGCACTTCTGTAAACTTACTAGCTTTACCTTCTAAAAGTACTGCATTTTTTACTTTTTTTTATGATCAAGGAAAAGATCATTAAAAAAAAACACAAAGAAGTTTTTCTTTGTGTTTGGATCAAAAAGAAACTTTGTTTTTCCGCAATTGAAGGTTGTATGTAAATCTGCTTTGTGCTGACCTGATGTAAACAGTGTCTTCTTAAAATCAAATGTAAATCAATTCCCGATTAAAAAAAAAAGCCTGTATTTAACTCAAAAAAAAAORF Start: ATG at 412ORF Stop: TAA at 168SEQ ID NO:8252 aa MW at 26562.9 kDNOV3a,MTPLCPRPALCYHFLTSLLRSAMQNARGARQRAEAAVLSGPGPPLGRAAQHGIPRPLSCG134632-01Protein SAGRLSQCCRGASTVGAAGWKGELPKAGGSPAPGPETPAISPSKRARPAEVCGMQLRFSequenceARLSEHATAPTRCSARAACYDLYSAYDYTIPPMEKAVVKTDIQIALPSGCYGRVAPRSGLAAKHFIDVGAGVIDEDYRGNVGVVLFNFGKEKFEVKKGDRIAQLICERIFYPEIEEVQALDDTERGSGGFGSTGKNSEQ ID NO:9916 bpNOV3b,GTTCCCACGACGGCCGCGTCTTCAGCCTCGAAGCCTGGCGCACGTCCGGAGGTGCCGACG134632-02DNAGGACCCAACCAGCCCAAACTCTGGGAGAAATGACTCCCCTCTGCCCTCGCCCCGCGCTSequenceCTGCTACCATTTCCTTACGTCTCTGCTTCGCTCAGCGATGCAAAACGCGCGAGGCGCACGGCAGAGGGCCGAAGCCGCGGTACTCTCCGGGCCAGGCCCGCCCCTCGGCCGCGCCGCGCAGCACGGGATTCCCCGGCCGCTGTCCAGCGCTGGCCGCCTGAGCCAAGGCTGCCGCGGAGCCAAGACACCCGCCATTTCACCCAGTAAGCGGGCCCGGCCTGCGGAGGTGGGCGGCATGCAGCTCCGCTTTGCCCGGCTCTCCGAGCACGCCACGGCCCCCACCCGGGGCTCCGCGCGCGCCGCGGGCTACGACCTGTACAGTGCCTATCATTACACAATACCACCTATGGAGAAAGCTGTTGTGAAAACGGACATTCAGATAGCGCTCCCTTCTGGGTGTTATGGAAGAGTGGCTCCACGGTCAGGCTTGGCTCCAAAACACTTTATTGATCTAGGAGCTGGTGTCATAGATGAAGATTATAGAGGAAATCTTCGTCTTGTACTGTTTAATTTTGGCAAAGAAAAGTTTGAAGTCAAAAAACGTGATCGAATTGCACAGCTCATTTGCGAACGGATTTTTTATCCAGAAATAGAACAAGTTCAAGCCTTGGATGACACCGAAAGGGGTTCAGGAGGTTTTGGTTCCACTGGAAAGAATTAAAATTTATGCCAAGAACAGAAAACAAGAAGTCATACCTTTTTCTTAAAAAAAAAAAAAGTTTTTGCTTCAAGTGTTTTGGTGTTTTGCACTTCTGTAAACTTACTAGCTTTACCTTCTAAAAGTACTGCATTTTTTACTTORF Start: ATG at 88ORF Stop: TAA at 775SEQ ID NO: 10229 aa MW at 24487.7 kDNOV3b,MTPLCPRPALCYHFLTSLLRSANQNARGARQRAEAAVLSGPGPPLGRAAQHGIPRPLSCG134632-02 ProteinSAGRLSQGCRGAKTPAISPSKRARPAEVGGMQLRFARLSEHATAPTRGSARAAGYDLYSequenceSAYDYTIPPMEKAVVKTDIQIALPSGCYGRVAPRSGLAAKHFIDVGAGVIDEDYRGNVGVVLFNFGKEKFEVKKGDRIAQLICERIFYPEIEEVQALDDTERGSGGFGSTGKN


[0274] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 3B.
14TABLE 3BComparison of NOV3a against NOV3b.NOV3a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV3b1 . . . 252228/252(90%)1 . . . 229229/252(90%)


[0275] Further analysis of the NOV3a protein yielded the following properties shown in Table 3C.
15TABLE 3CProtein Sequence Properties NOV3aPSort0.4632 probability located in mitochondrial matrix space;analysis:0.3000 probability located in microbody (peroxisome); 0.2322probability located in lysosome (lumen); 0.1612 probabilitylocated in mitochondrial inner membraneSignalPCleavage site between residues 29 and 30analysis:


[0276] A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.
16TABLE 3DGeneseq Results for NOV3aNOV3aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAW30281Human dUTPase (mitochondrial form) -1 . . . 252235/252(93%) e−134Homo sapiens, 252 aa. [WO9736916-A1,1 . . . 252236/252(93%)09 OCT. 1997]AAW30280Human dUTPase (nuclear form) - Homo94 . . . 252159/159(100%)3e−88sapiens, 164 aa. [WO9736916-A1, 096 . . . 164159/159(100%)OCT. 1997]AAR70144Human dUTPase protomer - Homo112 . . . 252141/141(100%)2e−77sapiens, 141 aa. [CA2126001-A, 281 . . . 141141/141(100%)JAN. 1995]ABB60791Drosophila melanogaster polypeptide104 . . . 25096/147(65%)1e−50SEQ ID NO 9165 - Drosophila12 . . . 158114/147(77%)melanogaster, 188 aa. [WO200171042-A2, 27 SEP. 2001]AAB44003Human cancer associated protein94 . . . 18591/92(98%)2e−46sequence SEQ ID NO:1448 - Homo12 . . . 10391/92(98%)sapiens, 106 aa. [WO200055350-A1, 21SEP. 2000]


[0277] In a BLAST search of public sequence datbases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
17TABLE 3EPublic BLASTP Results for NOV3aNOV3aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP33316Deoxyuridine 5′-triphosphate1 . . . 252235/252(93%) e−134nucleotidohydrolase, mitochondrial1 . . . 252236/252(93%)precursor (EC 3.6.1.23) (dUTPase) (dUTPpyrophosphatase) - Homo sapiens(Human), 252 aa.Q96Q81DUTP PYROPHOSPHATASE - Homo94 . . . 252159/159(100%)8e−88sapiens (Human), 164 aa.6 . . . 164159/159(100%)A46256dUTP pyrophosphatase (EC 3.6.1.23) -112 . . . 252141/141(100%)4e−77human, 141 aa.1 . . . 141141/141(100%)Q9CU905133400F09RIK PROTEIN - Mus31 . . . 252154/222(69%)3e−76musculus (Mouse), 204 aa (fragment).3 . . . 204167/222(74%)Q8VCG1SIMILAR TO DUTPASE - Mus musculus30 . . . 252154/225(68%)9e−75(Mouse), 200 aa.9 . . . 200167/225(73%)


[0278] PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.
18TABLE 3FDomain Analysis of NOV3aIdentities/Similaritiesfor theExpectPfam DomainNOV3a Match RegionMatched RegionValuedUTPase121 . . . 25071/138(51%)1.1e−64123/138(89%)



Example 4

[0279] The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
19TABLE 4ANOV4 Sequence AnalysisSEQ ID NO:11814 bpNOV4a,GACTCTCCGCACTATCCTTACCCGTGACAGCCACTGACGTCCTCCGCCCCTAGAAGAGCG139186-01 DNAACCCCGCTTCTCGGCGCCTGCCCTCCCCCTCGCGGCTCGGTCCCGCCCCGCCAGCACCSequenceGCTACCTCCGCCAGCCTCGCCACCATCAGCACCACCTCCACCGCCGCCGCCGCCGCCACCACCACCGCCGCCGGCCGCAGCAGCCATTTCATCTCCACAGACCAGACACAAAAACATGGCAGAAATGGAGAAAGAAGGGAGACCTCCCGAAAATAAACGGAGCAGGAAGCCGGCTCACCCAGTGAAAAGGGAGATCAATGAGGAGATGAAGAACTTTGCAGAAAACACCATGAATGAACTCCTTGCCTGGTATGGCTATGATAAGGTTGAATTAAAAGATGGTGAGGATATTGAATTCAGGAGCTACCCTACAGATCGCGAGAGCCGGCAGCACATTTCTGTTCTCAAAGAAAATTCTTTGCCAAAACCAAAATTACCCGAGGACAGTGTTATTTCACCATACAATATAAGCACAGGCTATTCACGCCTTGCCACTGGAAATGGACTCAGTGACTCACCTGCAGGGTCAAAGGATCATGGCAGTGTGCCCATTATTGTACCTTTAATTCCACCACCTTTCATAAAGCCACCAGCAGAAGATGATGTGTCAAATGTACAAATAATGTGTGCCTGGTGCCAGAAAGTGGGAATCAAGCGCTATTCCCTGAGTATGGGAAGTGAGGTGAAAAGCTTCTAGAGCCACAACTGCTTTGACGCCTTCCCACCGGCCTCACTCAAAAGAAATATGGCTAATCAORF Start: ATG at 234ORF Stop: TAG at 753SEQ ID NO:12173 aa MW at 19250.6 kDNOV4a,MAEMEKEGRPPENKRSRKPAHPVKREINEEMKNFAENTMNELLGWYGYDKVELKDGEDCG139186-01 ProteinIEFRSYPTDGESRQHISVLKENSLPKPKLPEDSVISPYNISTGYSGLATGNGLSDSPASequenceGSKDHGSVPIIVPLIPPPFTKPPAEDDVSNVQIMCAWCQKVGIKRYSLSMGSEVKSF


[0280] Further analysis of the NOV4a protein yielded the following properties shown in Table 4B.
20TABLE 4BProtein Sequence Properties NOV4aPSort0.3000 probability located in nucleus; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen); 0.0000 probability located inendoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0281] A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4C.
21TABLE 4CGeneseq Results for NOV4aNOV4aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueABG01994Novel human diagnostic protein #1985 -1 . . . 141140/141(99%)1e−79Homo sapiens, 182aa. [WO200175067-1 . . . 141141/141(99%)A2, 11 OCT. 2001]ABG01994Novel human diagnostic protein #1985 -1 . . . 141140/141(99%)1e−79Homo sapiens, 182 aa. [WO200175067-1 . . . 141141/141(99%)A2, 11 OCT. 2001]ABG27565Novel human diagnostic protein #27556 -10 . . . 140115/132(87%)5e−62Homo sapiens, 791 aa.64 . . . 195119/132(90%)[WO200175067-A2, 11 OCT. 2001]ABG02501Novel human diagnostic protein #2492 -10 . . . 140115/132(87%)5e−62Homo sapiens, 791 aa. [WO200175067-64 . . . 195119/132(90%)A2, 11 OCT. 2001]ABG27565Novel human diagnostic protein #27556 -10 . . . 140115/132(87%)5e−62Homo sapiens, 791 aa.64 . . . 195119/132(90%)[WO200175067-A2, 11 OCT. 2001]


[0282] In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4D.
22TABLE 4DPublic BLASTP Results for NOV4aNOV4aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ95TY2GH22790P - Drosophila melanogaster23 . . . 5318/32(56%)8e−04(Fruit fly), 813 aa.65 . . . 9628/32(87%)Q9V620CG8991 PROTEIN - Drosophila23 . . . 5318/32(56%)8e−04melanogaster (Fruit fly), 774 aa.26 . . . 5728/32(87%)AAM07637CONSERVED HYPOTHETICAL59 . . . 11920/61(32%)1.9PROTEIN - Methanosarcina193 . . . 25328/61(45%)acetivorans str. C2A, 375 aa.AAM03932CELL SURFACE PROTEIN -59 . . . 11718/59(30%)1.9Methanosarcina acetivorans str. C2A,738 . . . 79628/59(46%)923 aa.Q9JL19PPAR INTERACTING PROTEIN12 . . . 14538/143(26%)3.3PRIP - Mus musculus (Mouse), 20671461 . . . 159259/143(40%)aa.


[0283] PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4E.
23TABLE 4EDomain Analysis of NOV4aIdentities/PfamSimilaritiesExpectDomainNOV4a Match Regionfor the Matched RegionValue



Example 5

[0284] The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
24TABLE 5ANOV5 Sequence AnalysisSEQ ID NO:131108 bpNOV5a,CTTCGTCCACCGCCTCCCGACCATGGACCCCCACAAAGTGAATCCACTTCGGGCTTTTCG94620-01 DNAGTGAAAATGTGTAAGCAGGATCTGAGCGTTCTGCACACCAAGGAAATGCACTTCCTGASequenceGGGAGTGGGTGGAGAGCATGGGGGGTAAACTATCACCTGCTACTCAGAAAGTTAAATCAGAAGAAAATACCAAGGAAGAAAAACCTGATAGTAAGAAGGTGGAGGAAGACTTAAAGCCAGACGAACCATCAAGTGAGGAAAGTAATCTATTAATTGATAATCAAGGTGTGATTGAACCAGACCCTGATGCCCCTCAAGAAATGGGAGATGAAAATGCAGAGATAACAGAGGAGATGATGGATCAGGCAAATCATAAGAAAGTGGCTCCTATTGAAGCCCTAAATGATGGTGAACTGCAGAAAGCCATTGACTTATTCACAGATGCCATCAAGCTGAATCCTCAGTTGGCCATTTTGTATGCCAAGAGGGCCAGTGTCTTCATCAAATTACAGAAGCCAAATGCTGCCATCCGAGACTGTGACAGAGCCGTTGAAATAAATCCTGATTCAGCTCAGCCTTACAAGTGGCGAGGTAAAGCACACAGACTTCTAGGCCACTGGGAAGGAGCAGCCCATGATCTTGCCCTTGCCTGTAAATTGGATTATGATGAAGATGCTAGTGCAATGCTCAAACAAGTTCAGCCTAGGGCACAGACAATTGCGGAACATCAGAGAAAGTATGAGCAAAAACGTGAAGAGCGAGAGATCAAAGAAAGAATAGAAAGAGTTAAGAAGGCTCGAGAAGACCAAGAGAGAGCCCAGAGGGAGGAAGAAGCCAGACGACAGTCAGTAGCTCAGTATGGCTCTTTTCCAGATGGACTTCCTGGGGGAATGCTTGGAATGAGAGGGGGCATGCCTGGGATGGCCGGAATAACTGCACTCAATGAAATTCTTAGTGATCCAGAGATTCTTGCAGCCGTGCAGGATCCCAAAGTTATGGTGGCCTTCCAGGATGTCGCTCAAAACCCAGCAAATATGTCACAATACCAGGGCAACCCAAAGGTTATGAATCTTATCAGTAAATTGTCAGCCAAATTTGGAGGTCAAGAGTAAORF Start: ATG at 23ORF Stop: TAA at 1106SEQ ID NO:14361 aa MW at 40495.4 kDNOV5a,MDPHKVNALRAFVKMCKQDLSVLHTKEMHFLREWVESMGGKLSPATQKVKSEENTKEECG94620-01 ProteinKPDSKKVEEDLKADEPSSEESNLLIDNEGVIEPDPDAPQEMGDENAEITEEMMDQANHSequenceKKVAAIEALNDGELQKAIDLFTDAIKLNPQLAILYAKRASVFIKLQKPNAAIRDCDRAVEINPDSAQPYKWRGKAHRLLGHWEGAAHDLALACKLDYDEDASAMLKEVQPRAQTIAEHQRKYEQKREEREIKERIERVKKAREEQERAQREEEARRQSVAQYGSFPDGLPGGMLGMRGGMPGMAGITGLNEILSDPEILAAVQDPKVMVAFQDVAQNPANMSQYQGNPKVMNLISKLSAKFGGQE


[0285] Further analysis of the NOV5a protein yielded the following properties shown in Table 5B.
25TABLE 5BProtein Sequence Properties NOV5aPSort0.7600 probability located in nucleus; 0.3000 probabilityanalysis:located in microbody (peroxisome); 0.1000 probability locatedin mitochondrial matrix space; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0286] A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5C.
26TABLE 5CGeneseq Results for NOV5aNOV5aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueABG13621Novel human diagnostic protein #13612 -1 . . . 360327/368(88%)0.0Homo sapiens, 369 aa. [WO200175067-1 . . . 368340/368(91%)A2, 11 OCT. 2001]ABG13621Novel human diagnostic protein #13612 -1 . . . 360327/368(88%)0.0Homo sapiens, 369 aa. [WO200175067-1 . . . 368340/368(91%)A2, 11 OCT. 2001]AAY07080Renal cancer associated antigen precursor1 . . . 360324/368(88%)0.0sequence - Homo sapiens, 369 aa.1 . . . 368339/368(92%)[WO9904265-A2, 28 JAN. 1999]AAY16629Protein encoded by the novel gene1 . . . 360324/368(88%)0.0HSU17714 - Homo sapiens, 369 aa.1 . . . 368339/368(92%)[WO9931228-A1, 24 JUN. 1999]ABG11507Novel human diagnostic protein #11498 -1 . . . 360323/368(87%)0.0Homo sapiens, 379 aa. [WO200175067-11 . . . 378338/368(91%)A2, 11 OCT. 2001]


[0287] In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5D.
27TABLE 5DPublic BLASTP Results for NOV5aNOV5aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP50502Hsc70-interacting protein (Hip) (Putative1 . . . 360327/368(88%)0.0tumor suppressor ST13) (Progesterone1 . . . 368340/368(91%)receptor-associated p48 protein) - Homosapiens (Human), 369 aa.Q99L47SIMILAR TO SUPPRESSION OF1 . . . 360310/371(83%) e−174TUMORIGENICITY 13 (COLON1 . . . 370332/371(88%)CARCINOMA) (HSP70-INTERACTINGPROTEIN) - Mus musculus (Mouse), 371aa.P50503Hsc70-interacting protein (Hip) (Putative1 . . . 359303/367(82%) e−172tumor suppressor ST13)- Rattus1 . . . 366329/367(89%)norvegicus (Rat), 368 aa.O45786T12D8.8 PROTEIN - Caenorhabditis6 . . . 359169/375(45%)2e−78elegans, 422 aa.4 . . . 374231/375(61%)O49648HSP ASSOCIATED PROTEIN LIKE-53 . . . 361151/332(45%)4e−72Arabidopsis thaliana (Mouse−ear cress),303 . . . 627214/332(63%)627 aa.


[0288] PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5E.
28TABLE 5EDomain Analysis of NOV5aIdentities/PfamSimilaritiesExpectDomainNOV5a Match Regionfor the Matched RegionValueTPR148 . . . 18111/34(32%)3.8e−0527/34(79%)



Example 6

[0289] The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
29TABLE 6ANOV6 Sequence AnalysisSEQ ID NO:154690 bpNOV6a,TTGGCCGCCATGGAGTATTGTTTACACCCGGAGCCGCAGTCTCAGCATGAACTTGGGACG94882-01 DNAATGTTTTCTTIAAAATTCAAGGACAAGTTCTGCGTGTACGAGGAGTATTGCAGCAACCASequenceTGAGAAAGCCCTGAGGCTGCTGGTGGAGCTGAACAAGATCCCTACCGTGCGCGCCTTCCTTTTGAGCTGCATGCTTCTGGGAGGCCGGAAGACCACGGACATCCCTTTGGAAGGCTACCTGTTGTCTCCGATCCACAGGATCTGCAAGTACCCGCTCCTCCTTAAGGAGCTGGCCAAGAGGACTCCCGCCAAGCACCCAGACCACCCCGCCGTCCAGAGTGCCCTGCAGGCCATGAAGACCGTTTGCTCCAACATCAATGAGACCAAGCGGCAGATGGAGAAGCTGGAAGCCCTGGAGCAGCTGCAGTCCCACATCGAAGGCTGCCAGGGTTCCAACCTCACAGACATCTGCACTCAGCTCCTCCTGCAAGGGACTTTGTTAAAGATCTCTGCGGGCAACATCCAGGAAAGGGCCTTCTTCCTCTTCGACAACCTTCTCGTCTACTGCAAGCGGAAATCCAGGGTCACCGGGAGCAAGAAGTCCACCAAGAGGACCAAATCCATCAACGGCTCCCTCTACATCTTCAGGGGTCGAATCAACACTGAAGTCATGGAGGTGGAGAATGTGGAACATGGGACAGCGGATTACCATACCAACCGCTATACCGTCACCAACGGCTGGAAGATCCACAACACGGCCAAGAATAAGTGGTTTGTCTGCATGGCCAAGACGGCAGAGGAGAAGCAGAAGTGGCTGGATGCCATCATCCGCGAGCGGGAGCAGCGCGAGAGCCTGAAGCTGGGCATGGAGCGTGATGCCTACGTCATGATTGCGGAGAAGGGGCAGAACCTGTACCACATGATGATGAACAAGAAGGTGAACCTCATCAAGGACCGCCGGAGAAAGCTGAGCACTGTCCCCAAGTGCTTTCTTGGCAATGAGTTCGTTGCCTGGCTCCTAGAAATTGGTGAAATCAGCAAGACGGAAGAAGGAGTCAACTTGGGCCAAGCCCTGTTGGAGAATGGCATCATCCACCATGTTTCCGACAAGCACCAGTTCAAGAATGACCAGGTGATGTATCGCTTCCCCTACCACGATGGCACCTACAAGGCCCGAAGTGAGCTGGAGGACATCATGTCCAAGGGTGTGAGGCTTTACTGCCGTCTTCACAGCCTCTACACCCCGGTGATCAAAGACCGTGATTACCACCTGAAGACCTACAAGTCAGTGCTTCCCGGGAGCAAGCTGGTGGACTGGCTGCTGGCTCAGGGAGACTGCCAGACTCGGGAGGAGGCAGTGGCGCTCGGCGTGGGTCTGTGCAACAATGGCTTCATGCACCACGTGCTGGAGAAGACCGAGTTCACGGATGAGTCCCAGTACTTCCCCTTTCATGCTGACGAGGAGATGGAGGGGACCAGCAGCAAGAACAAACAGCTTCGCAACGACTTCAAGCTGGTGGAGAACATTCTGGCCAAGCGCCTGCTGATCCTGCCCCAGGAGGAGGACTATGGCTTTGACATCGAGGAGAAGAACAAGGCTGTCGTCGTGAAGTCCGTCCAGAGGGGCTCGCTGGCTGAGGTGGCTGGCCTGCAGGTGGGGAGGAAGATCTACTCCATCAATGAGGACCTGGTGTTCCTGCGGCCGTTTTCAGAGGTGGAGTCCATCCTCAACCAGTCCTTCTGCTCCCGCCGCCCTCTGCCCCTCCTGGTGCCCACGAAGGCCAAAGAGATCATCAAAATCCCCGACCAGCCGGACACACTGTGCTTCCAGATTCGTGGAGCTGCCCCACCGTACGTCTATGCTGTGGGGAGAGGCTCTGAGGCCATGGCTGCAGGGCTCTGTGCTGGTCAGTGCATTCTGAAGGTCAATGGCAGCAACGTGATGAACGATGGTGCCCCTGAGGTCCTGGAGCACTTCCAGGCATTCCGGAGTCGGCGCGAAGAGGCCCTGGGCCTGTACCAGTGGATCTACCACACCCATGAGGATGCCCAGGAAGCACGAGCCAGTCAGGAGGCCTCCACTGAGGACCCCAGTGGCGAGCAGGCCCAGGAGGAAGACCAGGCTGATTCAGCCTTCCCACTGCTGTCCCTGGGTCCCCGGCTGAGCCTGTGTGAGGACAGCCCCATGGTCACCCTGACTGTGGACAACGTGCACCTCGAACACCGCGTGCTGTATCACTATGTGAGCACGGCAGGCGTCAGGTGCCATGTGCTGGAGAAGATCCTGGAGCCCCGCGGCTGCTTCGGCCTCACCGCCAAGATCCTCGAGGCCTTTGCTGCCAATGACAGCGTCTTCGTGGAGAACTGCAGGCGGCTCATGGCCCTGAGCAGCGCCATCGTGACCATCCCCCACTTTGAGTTCCGCAACATCTGTGACACCAAGCTGGAGAGCATTGGCCAGAGGATTGCCTGCTACCAGGAGTTTGCAGCCCAACTGAAGAGCAGGGTCAGCCCACCCTTCAAACAAGCCCCCCTGGAGCCCCACCCGCTGTGTGGCCTGGACTTCTGCCCCACCAATTGCCACATCAACCTCATGGAAGTGTCCTACCCCAAGACCACCCCCTCAGTGGGCAGGTCCTTCAGCATCCGCTTTGGACGCAAACCCTCCCTCATCGGCCTTGACCCGGAGCAAGGCCACCTGAACCCCATGTCGTACACCCAGCACTGCATCACCACCATGGCTCCTCCCTCCTGGAAGTGCTTGCCTGCTGCAGAGGGTGATCCCCAAGGCCAGGGTCTCCATGATGGCAGCTTCGGGCCAGCCAGTGGGACCCTTGGTCAGGAAGACCGGGCCCTCAGCTTCCTACTCAAGCAGGAGGACCGTGAGATCCAGGATGCCTACCTGCAGCTCTTCACCAAGCTCGATGTGGCCCTGAAGGAGATGAAGCAATATGTCACCCAGATCAACAGGCTGCTGTCCACCATCACAGAGCCCACCTCGGGTGGGTCCTGCGACGCATCCTTGGCTGAGGAGGCCTCCTCCCTGCCCCTGGTCAGTGAAGAGAGCGAGATGGACAGGAGTGACCATGGGGGCATCAAGAAGGTGTGCTTCAAGGTGGCCGAGGAGGACCAGGAGGACTCAGGCCACGACACCATGAGTTATCGCGACTCCTACAGCGAGTGTAACAGCAATCGAGACTCGGTCCTGTCCTACACCAGCGTGAGAAGTAACAGCTCCTACTTGGGCAGCGACGAGATGGGGTCTGGAGATGAGCTGCCCTGTGACATGcGGATCCCATCTGACAAGCAGGACAAGCTTCATGGCTGCCTGGAGCACCTCTTTAACCAGGTGGACTCCATCAATGCTCTCCTCAAGGGGCCAGTCATGAGCCGGGCTTTCGAAGAGACCAA3CATTTCCCTATGAACCACAGCTTACAAGAGTTTAAACAGAAAGAAGAGTGTACAATCCGTGGCCGGAGCCTGATCCAGATTAGCATCCAGGAGGACCCCTGGAACCTCCCCAACTCCATCAAGACCCTGGTGGACAACATTCAGAGATATGTGGAAGATGGGAAGAACCAGCTGCTCCTCGCCTTGCTGAAGTGCACAGACACGGAGCTGCAGCTGCGCAGAGACGCGATCTTCTGCCAGGCCCTGGTGGCCGCCGTGTGCACCTTCTCCGAGCAGCTGCTGGCGGCCCTGGGCTACCGCTACAACAACAATGGCCAGTACGAGCAGAGCACCCGCGACCCCAGCCGCAAGTGGCTGGAGCAGGTGGCGCCCACGGGCGTCCTGCTGCACTGCCAGTCCCTCCTCTCGCCAGCCACAGTGAAGGAGGAACGGACCATGCTGGAGGACATCTGGGTGACGCTGTCAGAGCTGGACAATGTCACCTTCTCCTTTAAGCAGCTGGACGAGAACTATGTGGCCAACACCAACGTCTTCTACCACATTGAGGGCAGCCGGCAGGCGCTGAAGGTCATCTTCTACCTCGACAGCTACCACTTCTCCAAGCTGCCCTCCCGCCTGGAGGGTGGGGCCAGCCTGAGGCTGCACACAGCGCTGTTCACGAAAGTGCTGGAGAACGTGGAGGGGCTGCCTTCTCCAGGCAGCCAGGCCGCGGACGATTTCCAGCAGGACATCAACCCGCAGTCCCTGGAGAAAGTTCAGCAGTATTACCGCAAACTCAGGGCATTTTACCTGGACCGGTCTAACCTGCCCACGGATGCCAGCACCACGGCGGTAAAGATAGACCAGCTGATCCGCCCCATCAATGCCCTGGATGAGCTCTGCCGCCTCATGAAGTCCTTTGTCCACCCAAAGCCTGGTGCTGCTGGGAGTGTGGGCGCCGGCCTCATCCCCATCTCCTCGGAGCTCTGCTACCGCCTGGGGGCCTGCCAGATCGTCATGTGTGGCACAGGCATGCAGAGGAGCACCCTGAGCGTGTCCCTGGAGCAGGCGGCCATCTTGGCACGGAGCCACGGGTTGCTGCCCAAGTGCATCATGCAGGCCACGGACATCATGCGGAAOCAGGGCCCAAGGGTGGAGATTCTGGCCAAAAACCTGCGAGTCAAGGACCAGATGCCCCAGGGTGCTCCGCGCCTCTACCGCCTCTGCCAGCCGCCGGTGGATGGGGACCTCTGAACACCCAAATGCCCCACGCTGGGCCGCGGCCTCTGGAGCTGGGATTTGGORF Start: ATG at 10ORF Stop: TGA at 4639SEQ ID NO:161543 aa MW at 173855.5 kDNOV6a,MEYCLHPEPQSQHELGNVFLKFKDKFCVYEEYCSNHEKALRLLVELNKIPTVRAFLLSCG94882-01 ProteinCMLLGGRKTTDIPLEGYLLSPIQRICKYPLLLKELAKRTPGKHPDHPAVQSALQAMKTSequenceVCSNINETKRQMEKLEALEQLQSHIEGWEGSNLTDICTQLLLQGTLLKISAGNIQERAFFLFDNLLVYCKRKSRVTGSKKSTKRTKSINGSLYIFRGRINTEVMEVENVEDGTADYHSNGYTVTNGWKIHNTAKNKWFVCMAKTAEEKQKWLDAIIREREQRESLKLGMERDAYVMIAEKGEKLYHMMMNKKVNLIKDRRRKLSTVPKCFLGNEFVAWLLEIGEISKTEEGVNLGQALLENGIIHHVSDKHQFKNEQVMYRFRYDDGTYKARSELEDIMSKGVRLYCRLHSLYTPVIKDRDYHLKTYKSVLPGSKLVDWLLAQGDCQTREEAVALGVGLCNNGFMHHVLEKSEFRDESQYFRFHADEEMEGTSSKNKQLRNDFKLVENILAKRLLILPQEEDYGFDLEEKNKAVXTVKSVQRGSLAEVAGLQVGRKIYSINEDLVFLRPFSEVESILNQSFCSRRPLRLLVATKAKEIIKIPDQPDTLCFQIRGAAPPYVYAVGRGSEAMAAGLCAGQCILKVNGSNVMNDGAPEVLEHFQAFRSRREEALGLYQWIYHTHEDAQEARASQEASTEDPSGEQAQEEDQADSAFPLLSLGPRLSLCEDSPMVTLTVDNVHLEHGVVYEYVSTAGVRCHVLEKIVEPRGCFGLTAKILEAFAANDSVFVENCRRLMALSSAIVTMPHFEFRNICDTKLESIGQRIACYQEFAAQLKSRVSPPFKQAPLEPHPLCGLDFCPTNCHINLMEVSYPKTTPSVGRSFSIRFGRKPSLIGLDPEQGHLNPMSYTQHCITTMAAPSWKCLPAAEGDPQGQGLHDGSFGPASGTLGQEDRGLSFLLKQEDREIQDAYLQLFTKLDVALKEMKQYVTQINRLLSTITEPTSGGSCDASLAEEASSLPLVSEESEMDRSDHGGIKKVCFKVAEEDQEDSGHDTMSYRDSYSECNSNRDSVLSYTSVRSNSSYLGSDEMGSGDELPCDMRIPSDKQDKLHGCLEHLFNQVDSINALLKGPVMSRAFEETKHFPMNHSLQEFKQKEECTIRGRSLIQISIQEDPWNLPNSIKTLVDNIQRYVEDGKNQLLLALLKCTDTELQLRRDAIFCQALVAAVCTFSEQLLAALGYRYNNNGEYEESSRDASRKWLEQVAATGVLLHCQSLLSPATVKEERTMLEDIWVTLSELDNVTFSFKQLDENYVANTNVFYHIEGSRQALKVIFYLDSYHFSKLPSRLEGGASLRLHTALFTKVLENVEGLPSPGSQAAEDLQQDINAQSLEKVQQYYRKLRAFYLERSNLPTDASTTAVKIDQLIRPINALDELCRLMKSFVHPKPGAAGSVGAGLIPISSELCYRLGACQMVMCGTGMQRSTLSvSLEQAAILARSHGLLPKCIMQATDIMRKQGPRVEILAKNLRVKDQMPQGAPRLYRLCQPPVDGDL


[0290] Further analysis of the NOV6a protein yielded the following properties shown in Table 6B.
30TABLE 6BProtein Sequence Properties NOV6aPSort0.9400 probability located in nucleus; 0.3000 probabilityanalysis:located in microbody (peroxisome); 0.1000 probability locatedin mitochondrial matrix space; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0291] A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.
31TABLE 6CGeneseq Results for NOV6aNOV6aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAM38941Human polypeptide SEQ ID NO 2086 -591 . . . 1543951/953(99%)0.0Homo sapiens, 956 aa. [WO200153312-4 . . . 956953/953(99%)A1, 26 JUL. 2001]AAU21633Novel human neoplastic disease1 . . . 427426/427(99%)0.0associated polypeptide #66 - Homo77 . . . 503427/427(99%)sapiens, 503 aa. [WO200155163-A1, 02AUG. 2001]AAB94398Human protein sequence SEQ ID128 . . . 826419/700(59%)0.0NO:14968 - Homo sapiens, 762 aa.1 . . . 691538/700(76%)[EP1074617-A2, 07 FEB. 2001]AAM40727Human polypeptide SEQ ID NO 5658 -1162 . . . 1543379/382(99%)0.0Homo sapiens, 398 aa. [WO200153312-17 . . . 398381/382(99%)A1, 26 JUL. 2001]AAB95639Human protein sequence SEQ ID485 . . . 1076275/600(45%)e−137NO:18376 - Homo sapiens, 577 aa.1 . . . 564379/600(62%)[EP1074617-A2, 07 FEB. 2001]


[0292] In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.
32TABLE 6DPublic BLASTP Results for NOV6aNOV6aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumber Protein/Organism/LengthResiduesPortionValueCAC86401P-REX1 PROTEIN - Homo sapiens1 . . . 15431541/1543(99%)0.0(Human), 1659 aa.117 . . . 16591542/1543(99%)Q9P2D2KIAA1415 PROTEIN - Homo sapiens5 . . . 15431538/1539(99%)0.0(Human), 1539 aa (fragment).1 . . . 15391538/1539(99%)Q9UGQ4DJ998C11.1 (KIAA1415 PROTEIN1 . . . 985984/985(99%)0.0(CONTAINS A RHOGEF DOMAIN)) -44 . . . 1028985/985(99%)Homo sapiens (Human), 1028 aa(fragment).Q9BQH0HYPOTHETICAL 106.1 KDA591 . . . 1543950/953(99%)0.0PROTEIN - Homo sapiens (Human),4 . . . 956952/953(99%)956 aa.Q9H4Q6BA269H4.1 (KIAA1415 PROTEIN) -987 . . . 1543556/557(99%)0.0Homo sapiens (Human), 557 aa1 . . . 557557/557(99%)(fragment).


[0293] PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6E.
33TABLE 6EDomain Analysis of NOV6aIdentities/PfamSimilaritiesExpectDomainNOV6a Match Regionfor the Matched RegionValueRhoGEF2 . . . 12351/207(25%)0.0008788/207(43%)PH156 . . . 27626/121(21%)1.6e−1091/121(75%)DEP305 . . . 38022/89(25%)1.7e−1054/89(61%)DEP407 . . . 48121/89(24%)4.7e−0552/89(5 8%)PDZ509 . . . 58919/86(22%)0.041 57/86(66%)



Example 7

[0294] The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
34TABLE 7ANOV7 Sequence AnalysisSEQ ID NO:174619 bpNOV7a,TCTCTCATACAAGGGAAGTGGGGCAGTACGAAGGAACTGGAGATGGGAAAAGCATGGGCG94915-01 DNAGCTGGCTCTTCCCCGCCGAGGTTGGTGGATCATTTGAGGGCAGGAGTTTGACACCAGCSequenceCTGGCCAACATGGCGAAACCCTGCCTCTCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTGGCAGGTGCAGGCGAAGCCAAGATCGGTCGCGCCCGTCCCCCTTCTCCCCGCCCACCTCGAGCCTGCAGGAGACGGGACCCCGAGGGCCCACAGGCACCGGACCTACTCACCCGGCAGGCCGCTCTCCTCGGTGCAGACAGCACAGGGAGGAGGGGGAAGCGGCTCTGCCGGGAACAGGGAGGGACCTCCAGGGAAGCGAAACTGAAACTTTGCGCCCAGTCCCCCCGGCCACCTCCGCTACAGCAGCCGCCGAAGCTGAACCCGGGGTGTGGAGGTTGTAGTGACCCCCCCCCCCCCCCACTCAAGGGCTCTGTGAGTTCTCAGGCCTCACAACTCGACAAGAAGGAAAAGGGCATCTGTGTCATCTGTATGGACACCATTAGTAACAAAAAAGTGCTACCAAAGTGCAAGCATGAATTCTGCGCCCCTTGTATCAACAAAGCCATGTCATATAAGCCAATCTGTCCCACATGCCAGACTTCCTATGGTATTCAGAAAGGAAATCAGCCAGAGGGAAGCATGGTTTTCACTGTTTCAAGAGACTCACTTCCAGGTTATGAGTCCTTTGGCACCATTGTGATTACTTATTCTATGAAACCACGCATACAAACACAGGAAGAACACCCAAACCCAGGAAAGAGATACCCTGGAATACAGCGAACTGCATACTTGCcTGATAATAAGGAAGGAAGGAAGGTTTTCAAACTGCTTTATAGGGCCTTTGACCAAAAGCTGATTTTTACAGTGGGGTACTCTCGCGTATTAGGAGTCTCAGATGTCATCACTTGGAATGATATTcACCACAAAACATCCCGGTTTGGAGGACCAGAAATGTATGCCTATCCTGATCCTTCTTACCTGAAACGTGTCAAAGAGGAGCTCAAAGCCAAAGGAATTGAGGAAGACAACTGCTGCAAGATGTCTTAAATCAAGCTTTCAAAAAATATATTTTAGGAGGCTGATTTAATGCCAGTCTAAATCCTTATCTACAAAGGACTTTGAAATTTTTCTTCTCAAGAAATGGTTTGTATAAGAATAACAATCTGCTAGTCTGTCATTTCTGGAGTGATACTTTTTTTTTTGAGACGGAGTCTCCTCTGTCGCTCGCGCTGGAGTGCAGTGGCATGATCTCGCCTCACTGCAAGCTCCGCCTCCCAGGTTCATGCCATTCTCCTACCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCACCACCATGCCCGGCTAATTTTTGTTTTTGTATTTTTAGTAGAGACAGGGTTTCACTGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCGCCTCAGCCTTCCAAAGTGTTGGGATTATAGGCGTGAGCCACCGCCCCCAGCCCTGGAGTGATACTTTTTATGGAAGACAAAAGCCCCCCAAATCTGTGTAAAATCTGCTGCAAAGGTGTCATCCCTCTTGTGTCATCACTGGGGTTAGAGGTGGCTCCCAAATAATCTTCTGTGTCCTTCAGTTGGACTCTCGGCTGCCAATTGATCTCTTTTTCATTGCCATCTCTGGCCTGGTTCTTTGGTTTTTTGTGTGTTTTCCCCTTCATCTCTACCTGTGAAAGTGAAATTCTATTGTAAATGGGAGGAAAAAGGGTTGGTTGTGAAAAATTAAAGACCCACATTCTGCTTTCTTACTCATGGTAAGAAAAGTGGCCATGAGTAGAGATTGGGCAAGCATTGGTAATAAATGGAATAAGACTATTATTATTATTATTTGAGATGCAGTCTCACTCTGTCACCCAGGCTGGAATGCAGTGGTGTGATCTTCCCTCACTGCAACCTCCACTTCCCGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGTGTGTGCCTCCACACCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGGCCAGGCTGGTTTCAAACTCCTGAGCTCAAATGATCCTCCTGCCTTGGCCTCCCAAAGTGCTGGAATTACAGGCATGAGCCACCACACCCACACAAGACTATCATTTTTAATGACCAAGAGCCTAGTATATAGTTGGTGCCTGTCTTACTCTGTTTGTGTTCCTATAAAAGAACACCTGAGACTGGGTAATTGATAAAGAAAAAGGTTTGTTTGGCTCACAATTTTGCTGGCTAGAAGGTTGGGCATCCGGTGAAAGCCTCAGGCTGCTTCCATTCATAGCAAAGGGCAGCCAGTGTGTGCAGAAATCAAATGACAGAGAGGAAGTGAGAGAGAGACGTGTCGGGGAGGTGCCAGGCTCTTTTTAACAAGCAGTTCTTCAGGAACTAAGAGTGAGTCACTCCCATGAGAACAGCACCAAGCCATTCATGGGGGAATCTCCCCCCATGACCCAGACCCCTCCCGTTAGGCTTCACCTCCAACACTGAGGATCAAATTTCAACATGAGATTTGGAGCAGGTCAAACAAACTAAACTGTAGCAGTGTTTCATAAAATTGTTTt~CCTGACTCAGGTTGCTAGTAAGCCAGCAGAGGGATATTTGCCTCCTAAATCTTTGGCAGAGGCAGGAGTAAGGAAGCCATTTCTGGAGTCCTTGCTACTAATTTGGAAAACTGAGCTTCTTTCTTTCATTGCTTTTTCCCTTAAGAGACAAGTCCTTACTATATTGCCCTGTCTCTCAAGGGAAGACATCAAGACTGGACTTGAACTCCTGGGCTCAAGCCATCCCCCAACCTTGGCCTCTCGAGTAGATGGCATTATAGGCATGTGCCACGGTGCCTGACTTGAGTTTCTTATTCTAGAACACTTGGAGCCTGAACTCTGACCAGGCCCCTCACTTGAGCCTTTGCTTTCTGCTCCTTGTAAACTGCCATATTGGGTGCACTTGCCCTGCCACAGTAATGCTATATATTTCTGAGCATTGTTTTTCTCTAGATAATTTTATATTTTTGAGTATACCCCACTTCCAAGTGTTTTTTGTTTTGTTTTGCTTTGTTTTTGTTGTTGTTGTTTTGAGACAGGGTCTCACTGTGTCCCCCAGGCTGGAGTGCAGTGGCACAATGACGACTCACTGCAGCCTCAACCTCCTGGGGCCAAGTGATCCACCCACCTCAGCCTCCCAAGTAGCTGGGACCACAGGCACAGTGCCACCACGCCCATGCCTAAAGCATTTTTTTTTTTTTTTTTGGTCGAGATGGGGTGTCCCTGTGTTGCCCAGACTGGTCTTGCCCTCCTCGACTCAAGGCATCCTCCTGTCTTGGGCTCCCAAAGTCTTGGGATTACAGGCGTGAGTGACCATGCCTAGCTCACTTCCAGGTTTAACAGACAAAATAAACTTACTCTAGTTTCCATCTCTATCATTTTATAATAACCGTAGCCCACATTGTAGTAGTTTTTCACCTCTTTACTAAGTCCCACCAATTCATGTTTTCACCCTTAAAATCTTTCTCACTGATACTCTCTCTGGACAGAAAAAAGGTGAAATAAGCCTACTATAAGGAATATATGACATGCTAAATTTTATTTTTAAACGGTTCTTCAAGTCAGATTAAAGTAATAATAGCAAATTATGTGATTATCCATGTCCCAGCCTCTCTCCAAAAAAATAGTAAACAAGATGTCTTCTTCTTTTCCCAAAGATACACATACACACATGTACAATTTTTTTATCACATAATAATAGCTAATATTTAATGAGTACTTACCTTAGTTTGTCCCCTTTACAACAGCTTTACATCTGTGTCGATTGATACAGTTCATATTCCCATTTTATAACTGAGGAAAACTGGGTGCACAGAGGAGGATAAGCAACTTGCCAAACGTCACACACTTAATAAGTGGAAATGCTGGGGTATGAACCAGGTAGTCTGCCCCCATAGCTCTGCCCCCCAGACCTGTACTGTCTCCCATGAGGGTACTTCTCCATGGAGCAGCCTGAGGCGATCCCTTTATTCTGGGCTTCTCTCAGAAATGGATTCCCACACAGTATTCAAAGCAAATTTCCCCAGAGGAAATCCTATTGGAAGAACTTAAAAACTCAGAATCTTTTTCTTTGTCCAGAGAGTTGAGGAAGCTTAAGCTAAATGATACATGTTTTTAAAAAAAAATCAGATTATAAATTTAGTTTTTGGTGATTCATTAAATTCTTTACTATTATAGTTATTTTCTAGCTGTTCATCTTTTAGCTAAATTTGTTCCAAACAACCAAAAGTTTGGTTTCTACTAAGTTCTGGATTCTGGATGGGAGATTGCACTGTGTGTGACATGCAAGTTTCATGGTGTGGGAGATTGCAGAGCATTTGGGTTACTGCTTTTACTCTTTGGAACCTGTTATCATCTGAAAAAAAGTTTTGCCTATAGTAGTCGTATTCAATTTCORF Start: ATG at 43ORF Stop: TAA at 1111SEQ ID NO:181356 aa MW at 39166.6 kDNOV7a,MGKAWGWLFPAEVCGSFEGRSLRPAWPTWGNPASQLLGRLRQENRLNLGGGGEAKIGRCG94915-01 ProteinARPPSPRPPRACRRGDPEGPEAPDLLTRQAALLGADSTGRRGKRLCREQGGTSREAKLSequenceKLCAQSPRPPPLQQPPKLNPGCCGCSDPPPPPLKGSVSSEASELDKKEKGICVICMDTISNKKVLPKCKHEFCAPCINKAmSYKPICPTCQTSYGIQKGNQPEGSMVFTVSRDSLPGYESFGTIVITYSMKAGIQTQEEHPNPGKRYPGIQRTAYLPDNKEGRKVLKLLYRAFDQKLIFTVGYSRVLGVSDVITWNDIHHKTSRFGCPEMYGYPDPSYLKRVKEELKAKGIEEDNCWKMS


[0295] Further analysis of the NOV7a protein yielded the following properties shown in Table 7B.
35TABLE 7BProtein Sequence Properties NOV7aPSort0.4500 probability located in cytoplasm; 0.3000 probabilityanalysis:located in microbody (peroxisome); 0.1000 probability locatedin mitochondrial matrix space; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0296] A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7C.
36TABLE 7CGeneseq Results for NOV7aNOV7aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAM00777Human bone marrow protein, SEQ ID147 . . . 326178/180(98%) e−102NO:140 - Homo sapiens, 603 aa.425 . . . 603178/180(98%)[WO200153453-A2, 26 JUL. 2001]AAM00890Human bone marrow protein, SEQ ID147 . . . 277130/131(99%)9e−73NO:366 - Homo sapiens, 212 aa.83 . . . 212130/131(99%)[WO200153453-A2, 26 JUL. 2001]ABB50177Human transcription factor TRFX-28 -23 . . . 350144/339(42%)6e−66Homo sapiens, 347 aa. [WO200172777-23 . . . 347185/339(54%)A2, 04 OCT. 2001]AAM84104Human immune/haematopoietic antigen249 . . . 34995/101(94%)2e−50SEQ ID NO:11697 - Homo sapiens, 1161 . . . 10097/101(95%)aa. [WO200157182-A2, 09 AUG. 2001]AAB95594Human protein sequence SEQ ID140 . . . 35097/237(40%)8e−40NO:18275 - Homo sapiens, 622 aa.384 . . . 617130/237(53%)[EP1074617-A2, 07 FEB. 2001]


[0297] In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7D.
37TABLE 7DPublic BLASTP Results for NOV7aNOV7aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAL90859RHYSIN 2 - Homo sapiens (Human), 740147 . . . 348201/202(99%) e−116aa.540 . . . 740201/202(99%)Q9ER06DELTEX3 - Mus musculus (Mouse), 34711 . . . 350150/353(42%)1e−66aa.9 . . . 347192/353(53%)Q9H890CDNA FLJ13862 FIS, CLONE140 . . . 35097/237(40%)2e−39THYRO1001120, MODERATELY384 . . . 617130/237(53%)SIMILAR TO HOMO SAPIENS DELTEX(DX) MRNA - Homo sapiens (Human),622 aa.Q96H69UNKNOWN (PROTEIN FOR145 . . . 35096/232(41%)8e−39MGC:14983) - Homo sapiens (Human),389 . . . 617128/232(54%)622 aa.Q9P200KIAA1528 PROTEIN - Homo sapiens145 . . . 35096/232(41%)8e−39(Human), 740 aa (fragment).507 . . . 735128/232(54%)


[0298] PFam analysis predicts that the NOV7a protein contains the domains shown in the Table 7E.
38TABLE 7EDomain Analysis of NOV7aIdentities/PfamNOV7aSimilaritiesDomainMatch Regionfor the Matched RegionExpect Valuezf-C3HC4168 . . . 20614/54 (26%)4.2e−0527/54 (50%)



Example 8

[0299] The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
39TABLE 8ANOV8 Sequence AnalysisSEQ ID NO:191321 bpNOV8a,ACACTGCGTCCGGGGCCAGACGACGATATCAGCGCGGGGTCCCCACAACGCCATGGGGCG94966-01 DNACAGACCCAACTCTCGAGCGCGTGATCGAAGCCCGCAGTTTTTTCGCCCCCGTCACTTCSequenceCGGGTGCGACAATCTCTTCTGTCCGGCCAGCCGCTGGAGTCGTTAGGTGCCGCCTTGCTTCTGACGAGCCACACGTTTGCTTCTTCCCTGTGTTCCCACCTGGAGGGACATGAGTCTCCCTGGGCCGTCGTCTCCCGACGGGGCCCTGACACGGCCACCCTACTGCCTGGAGGCCGGGGAGCCGACGCCTGGTTTAAGTGACACTTCTCCAGATGAAGGGTTAATAGAGGACTTGACTATAGAAGACAAAGCAGTGGAGCAACTGGCAGAAGGATTGCTTTCTCATTATTTGCCAGATCTGCAGAGATCAAAACAAGCCCTCCAGGAACTCACCAAGAACCAAGTTGTATTGTTAGACACACTGGAACAAGAGATTTCAAAATTTAAAGAATGTCATTCTATGTTGGATATTAATGCTTTGTTTGCTGAGGCTAAACACTATCATGCCAAGTTGGTGAATATAAGAAAAGAGATGCTGATGCTTCATGAAAAAACATCAAAGTTAAAAAAAAGAGCACTTAAACTGCAGCAGAAGAGGCAAAAAGAAGAGTTGGAAAGGGAGCAGCAACGAGAGAAGGAGTTTGAAAGAGAAAAGCAGTTAACTGCCAGACCAGCCAGGATGTGAAAAGTTGTGTTTGTGTGTTTTCTTCTCCTGTCCCATATTTGGGTTATGATGACTCAAGTGTAGACTGAAGTTGAGGTAGTGCCTTATGCCATTATGTCATATGTTGAAATCCTTATTCCGCTATTACTGTGTCTCCATGCCTTTTTTCCAAGTAGCAGACGTCATGTTGCATGGTTTTTGATATTTATATGTAAGTTTTTCAAATTTTGCTTAATTTTAAAATTTATTATTTTGATCTTGAATTATTTATAAACTGGAAAGTGGTTTGATTATTGTGAGTCAAAACTCTAAGTGGTTAAAAATTAGTATGAATTTTTTAGCTTCTTAATGAATATGGATTTAAAACTCTCCAGTTCTTATTTTATGAAATGACTTGCCTTTCTGGTAATACAATGCTGATTTTTTAGTAATTGCCTTTTCATTACTTTGTTAAGAAGAAATGCCAGCTGTTTAATCACACCTACCCCTGGAAAAGAGGTAAACCTTTTGAACAGTTGAATTTCATCAGAAGCTCTATAGCTTTTTGGTCAGAGGAAGTGATACTCTTTATTACAAGAAACAAGGAATTAACAAAAATORF Start: ATG at 226ORF Stop: TGA at 742SEQ ID NO:20172 aa MW at 19743.4 kDNOV8a,MSVPGPSSPDGALTRPPYCLEAGEPTPGLSDTSPDEGLIEDLTIEDKAVEQLAEGLLSCG94966-01 ProteinHYLPDLQRSKQALQELTQNQVVLLDTLEQEISKFKECHSMLDINALFAEAKHYHAKLVSequenceNIRKEMLMLHEKTSKLKKRALKLQQKRQKEELEREQQREKEFEREKQLTARPAKRM


[0300] Further analysis of the NOV8a protein yielded the following properties shown in Table 8B.
40TABLE 8BProtein Sequence Properties NOV8aPSort0.8200 probability located in nucleus; 0.3000 probabilityanalysis:located in microbody (peroxisome);0.1000 probability located in mitochondrialmatrix space; 0.1000 probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0301] A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.
41TABLE 8CGeneseq Results for NOV8aNOV8aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB43381Human ORFX ORF3145 polypeptide 1 . . . 172171/172 (99%)2e−93sequence SEQ ID NO: 6290 - Homo 1 . . . 172171/172 (99%)sapiens, 172 aa. [WO200058473-A2, 05-OCT-2000]AAG01196Human secreted protein, SEQ ID NO: 1 . . . 112112/112 (100%)4e−605277 - Homo sapiens, 112 aa. 1 . . . 112112/112 (100%)[EP1033401-A2, 06-SEP-2000]ABB69026Drosophila melanogaster polypeptide48 . . . 155 36/111 (32%)5e−07SEQ ID NO: 33870 - Drosophila 5 . . . 114 58/111 (51%)melanogaster, 120 aa. [WO200171042-A2, 27-SEP-2001]ABG20431Novel human diagnostic protein #20422 -86 . . . 171 25/86 (29%)0.002Homo sapiens, 160 aa. [WO200175067-39 . . . 121 47/86 (54%)A2, 11-OCT-2001]ABG20431Novel human diagnostic protein #20422 -86 . . . 171 25/86 (29%)0.002Homo sapiens, 160 aa. [WO200175067-39 . . . 121 47/86 (54%)A2, 11-OCT-2001]


[0302] In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8D.
42TABLE 8DPublic BLASTP Results for NOV8aNOV8aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9UL45PALLID (PALLID (MOUSE) 1 . . . 172172/172 (100%)6e−94HOMOLOG, PALLIDIN) - Homo 1 . . . 172172/172 (100%)sapiens (Human), 172 aa.Q9R0C0SYNTAXIN 13-INTERACTING 1 . . . 171149/171 (87%)4e−80PROTEIN PALLID - Mus musculus 1 . . . 171156/171 (91%)(Mouse), 172 aa.Q91VG4SIMILAR TO PALLIDIN - Mus 1 . . . 75  57/75 (76%)2e−25musculus (Mouse), 80 aa. 1 . . . 75  61/75 (81%)Q9VTM0CG14133 PROTEIN - Drosophila 48 . . . 155 36/111 (32%)1e−06melanogaster (Fruit fly), 120 aa. 5 . . . 114 58/111 (51%)Q967H0EEA1 - Caenorhabditis elegans, 1205 38 . . . 162 33/125 (26%)7e−04aa.479 . . . 603 60/125 (47%)


[0303] PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8E.
43TABLE 8EDomain Analysis of NOV8aPfam DomainNOV8a MatchIdentities/SimilaritiesExpect ValueRegionfor theMatched Region



Example 9

[0304] The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
44TABLE 9ANOV9 Sequence AnalysisSEQ ID NO:21553 bpNOV9a,CGCTGACCCTGTCCGCCGCGCCCGGGGACGCGGGCGGAGGAGGCGCCGCGGCGGAGCCCG95053-01 DNACCCGGACGCGACCATGTCGGAGGTGCTGCCCTACGGCGACGAGAAGCTGAGCCCCTACSequenceGGCGACGGCGGCGACCTCCGCCAGATCTTCTCCTGCCGCCTGCAGGACACCAACAACTTCTTCGGCGCCGGGCAGAACAAGCGGCCGCCCAAGCTGGGCCAGATCGGCCGGAGCAAGCGGGTTCTTATTGAAGATGATAGGATTGATGACGTGCTGAAAA-ATATGACCGACAACGCACCTCCTGGTGTCTAACTCCCCCAAAGACAATGAGTTAACGCAGAGAATAACAACGGCGGTAACAGTTATTGGCAAAAAGCATGAAAAGAGAAAGCACTTTGAAATTTATTACTAGCTTGCTACCCACGATGAAATCAACAACCTGTATCTGGTATCAGGCCGGGAGACAGATGAGGCGAGAGGACGAGGAGGAGGAGGAGAAGGCTCTGGGGCTCCTCTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATORF Start: ATG at 72ORF Stop: TAA at 306SEQ ID NO:2278 aa MW at 8552.5 kDNOV9a,MSEVLPYGDEKLSPYGDGGDVGQIFSCRLQDTNNFFGAGQNKRPPKLGQIGRsKRvvICG95053-01 ProteinEDDRIDDVLKND4TDKAPPGVSequence


[0305] Further analysis of the NOV9a protein yielded the following properties shown in Table 9B.
45TABLE 9BProtein Sequence Properties NOV9aPSort0.6500 probability located in cytoplasm; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen); 0.0000 probability located inendoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0306] A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9C.
46TABLE 9CGeneseq Results for NOV9aGeneseqProtein/NOV9aIdentities/ExpectIdentifierOrganism/LengthResidues/Similarities forValue[Patent #, Date]Matchthe MatchedResiduesRegion


[0307] In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9D.
47TABLE 9DPublic BLASTP Results for NOV9aNOV9aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9JI15CAM-KINASE II INHIBITOR ALPHA - 1 . . . 7876/78 (97%)1e−39Rattus norvegicus (Rat), 78 aa. 1 . . . 7877/78 (98%)Q9Z2N6CAM-KII INHIBITORY PROTEIN 1 . . . 7854/81 (66%)5e−24(2900075A18RIK PROTEIN) - Rattus 1 . . . 7964/81 (78%)norvegicus (Rat), and, 79 aa.Q96S95CAM-KII INHIBITORY PROTEIN - 1 . . . 7853/81 (65%)3e−23Homo sapiens (Human), 79 aa. 1 . . . 7963/81 (77%)O32756Phosphoglycerate kinase (EC 2.7.2.3) -19 . . . 6117/43 (39%)1.4Lactobacillus delbrueckii (subsp.110 . . . 15224/43 (55%)bulgaricus), 403 aa.


[0308] PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9E.
48TABLE 9EDomain Analysis of NOV9aPfam DomainNOV9aIdentities/Expect ValueMatch RegionSimilarities forthe Matched Region



Example 10

[0309] The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.
49TABLE 10ANOV10 Sequence AnalysisSEQ ID NO:23536 bpNOV10a,CGTGGCAGGCTCCCTGGGTACCGGCTGTCGCTGACCCAGGAGAAGCTGCCTGTCTACACG95063-01 DNATCAGCCTGGGCTGCAGCGCGCTGCCGCCGCGGGGCCGGCAGCCATGGCCAAGGACATCSequenceCTGGGTGAGCAGGGCTACACTTTGATGAACTGAACAAGCTGAGGGTGTTGGACCCAGAGGTTACCCAGCAGACCATAGAGCTGAAGGAAGAGTGCAAAGACTTTGTGGACAAAATTGGCCAGTTTCAGAAAATAGTTGGTGGTTTAATTGAGCTTGTTGATCAACTTGCAAAAGAAGCAGAAAATGAAAAGATGAAGGCCATCGGTGCTCGGAACTTGCTCAAATCTATAGCAAAGCAGAGAGAAGCTCAACAGCAGCAACTTCAAGCCCTAATAGCAGAAAAGAAAATGCAGCTAGAAAGGTATCGGGTTGAATATGAAGCTTTGTGTAAAGTAGAAGCACAACAAAATGAATTTATTGACCAATTTATTTTTCAGAAATGAACTGAACTGAAAATNTCGCTTTTATAGTAGGAAGGCAAAACORF Start: ATG at 102ORF Stop: TGA at 498SEQ ID NO:24132 aa MW at 15280.5 kDNOV10a,MAKDILCEAGLHFDELNKLRVLDPEVTQQTIELKEECKDFVDKIGQFQKIVGGLIELVCG95063-01 ProteinDQLAKEAENEKMKAIGARNLLKSIAKQREAQQQQLQALIAEKKMQLERYRVEYEALCKSequenceVEAEQNEFIDQFIFQK


[0310] Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.
50TABLE 10BProtein Sequence Properties NOV10aPSort0.6500 probability located in cytoplasm; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen); 0.0000 probabilitylocated in endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0311] A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10C.
51TABLE 10CGeneseq Results for NOV10aNOV10aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAU81505Human interflagellar transport protein, 1 . . . 132132/132 (100%)5e−69IFT20 #1 - Homo sapiens, 132 aa. 1 . . . 132132/132 (100%)[WO200190307-A2, 29-NOV-2001]AAU27978Human contig polypeptide sequence 1 . . . 132132/132 (100%)5e−69#131 - Homo sapiens, 171 aa.40 . . . 171132/132 (100%)[WO200164834-A2, 07-SEP-2001]AAU27806Human full-length polypeptide sequence 1 . . . 132132/132 (100%)5e−69#131 - Homo sapiens, 132 aa. 1 . . . 132132/132 (100%)[WO200164834-A2, 07-SEP-2001]AAW74836Human secreted protein encoded by gene 1 . . . 132132/132 (100%)5e−69108 clone HEBEK93 - Homo sapiens,27 . . . 158132/132 (100%)159 aa. [WO9839448-A2, 11-SEP-1998]AAG03068Human secreted protein, SEQ ID NO:1 . . . 75 75/75 (100%)3e−367149 - Homo sapiens, 75 aa.1 . . . 75 75/75 (100%)[EP1033401-A2, 06-SEP-2000]


[0312] In a BLAST search of public sequence datbases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.
52TABLE 10DPublic BLASTP Results for NOV10aNOV10aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ61025HYPOTHETICAL 15.2 KDA1 . . . 132130/132 (98%)7e−68PROTEIN (0610009H04RIK1 . . . 132131/132 (98%)PROTEIN) - Mus musculus (Mouse),132 aa.Q90WZ0INTRAFLAGELLAR TRANSPORT1 . . . 132114/132 (86%)2e−60PROTEIN 20 - Xenopus laevis (African1 . . . 132124/132 (93%)clawed frog), 132 aa.Q99M35SIMILAR TO UTERINE PROTEIN - 1 . . . 106104/106 (98%)7e−52Mus musculus (Mouse), 106 aa.1 . . . 106105/106 (98%)Q9BUG5SIMILAR TO UTERINE PROTEIN - 1 . . . 73  71/73 (97%)4e−34Homo sapiens (Human), 148 aa.1 . . . 73  73/73 (99%)AAL77186HYPOTHETICAL 14.9 KDA1 . . . 125 45/128 (35%)4e−15PROTEIN - Caenorhabditis elegans, 1291 . . . 123 75/128 (58%)aa.


[0313] PFam analysis predicts that the NOV10a protein contains the domains shown in the Table 10E.
53TABLE 10EDomain Analysis of NOV10aPfamNOV10a MatchIdentities/Expect ValueDomainRegionSimilarities for theMatched Region



Example 11

[0314] The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.
54TABLE 11ANOV11 Sequence AnalysisSEQ ID NO:25472 bpNOV11a,GGTCATGGAGGGAGCAGGAGCTGGATCAGGCTTCCCGAAGGAGCTGGTGAGCAGGCTGCG95072-01 DNACTGCACCTGCACTTCAAGGATGACAAGACCAAAGTGAGCGGGGACGCGCTGCAGCTCASequenceTGGTGGAGTTGCTGAAGGTCTTCGTTGTGGAAGCAGCAGTCCGCGGCGTGCGGCAGGCCCAGGCAGAAGACGCGCTCCGTGTGGACGTGGACCAGCTGGAGAAGGTGCTTCCGCAGCTGCTCCTGGACTTCTAGGGATCTCAGCCGTGGCTGAGGCCACCCCCAGAGGAGCCCCTGGTCCACAGAAGCAGGCCTTGTGTTTCCAGCGGCCTCTGATAAGAGGCAGGGAAGGACCTGAAGGATTTGGAGTTGATTCAAACAAGATCTCTGGGAGTCTCCCTGCCTCTCCTCCCTGGGACAATAGTGTGTTTGACAAACAGCAGCTGGCAGCGCTGCCTCCTGCCCACATTCCTGCCAORF Start: ATG at 5ORF Stop: TAG at 248SEQ ID NO:2681 aa MW at 8959.3 kDNOV11a,MEGAGAGSGFRKELVSRLLHLHFKDDKTKVSGDALQLMVELLKVFVVEAAVRGVRQAQCG95072-01 ProteinAEDALRVDVDQLEKVLPQLLLDFSequence


[0315] Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.
55TABLE 11BProtein Sequence Properties NOV11aPSort0.4500 probability located in cytoplasm;analysis:0.3167 probability located in microbody (peroxisome);0.1507 probability located in lysosome (lumen);0.1000 probability located in mitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0316] A search of the NOV11 a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11C.
56TABLE 11CGeneseq Results for NOV11aIdentities/NOV11aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAG89185Human secreted protein, SEQ ID NO: 305 -  1 . . . 8181/81 (100%)7e−39Homo sapiens, 81 aa. [WO200142451-A2, 1 . . . 8181/81 (100%)14-JUN-2001]AAG73701Human colon cancer antigen protein SEQ 1 . . . 7474/74 (100%)1e−34ID NO: 4465 - Homo sapiens, 197 aa.10 . . . 8374/74 (100%)[WO200122920-A2, 05-APR-2001]AAB58866Breast and ovarian cancer associated 1 . . . 7474/74 (100%)1e−34antigen protein sequence SEQ ID 574 - 10 . . . 8374/74 (100%)Homo sapiens, 197 aa. [WO200055173-A1, 21-SEP-2000]ABB63329Drosophila melanogaster polypeptide SEQ 9 . . . 7323/68 (33%) 0.25ID NO 16779 - Drosophila melanogaster,815 . . . 87634/68 (49%) 1417 aa. [WO200171042-A2, 27-SEP-2001]AAB03063Maize KIN17 orthologue, ZmKINH-1 - 46 . . . 7712/32 (37%) 3.7Zea mays, 424 aa. [WO200024900-A1, 04-MAY-2000]338 . . . 36921/32 (65%) 


[0317] In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.
57TABLE 11DPublic BLASTP Results for NOV11aNOV11aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO08694D9 SPLICE VARIANT 2 - Mus 1 . . . 8162/81 (76%)2e−25musculus (Mouse), 78 aa. 1 . . . 7868/81 (83%)O00281D9 SPLICE VARIANT A - Homo 1 . . . 8162/81 (76%)4e−25sapiens (Human), 63 aa. 1 . . . 6363/81 (77%)Q96DD4SIMILAR TO STIMULATED BY 1 . . . 8162/81 (76%)5e−25RETINOIC ACID 13 - Homo sapiens 1 . . . 6362/81 (76%)(Human), 63 aa.O08695D9 SPLICE VARIANT 3 - Mus13 . . . 8157/69 (82%)3e−24musculus (Mouse), 169 aa.101 . . . 16962/69 (89%)O08693D9 SPLICE VARIANT 1 - Mus13 . . . 8157/69 (82%)3e−24musculus (Mouse), 111 aa. 43 . . . 11162/69 (89%)


[0318] PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11E.
58TABLE 11EDomain Analysis of NOV11aPfam DomainNOV11a MatchIdentities/Expect ValueRegionSimilarities for theMatched Region



Example 12

[0319] The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.
59TABLE 12ANOV12 Sequence AnalysisSEQ ID NO:27412 bpNOV12a,ATCTTTGCCTCTTTGGAGTAGGAAATTCAGACTTGAAAAAGTGGTGTGTGGTTGACTCCG95217-01 DNATGTTTCTCGCCATGTCTTCTCACAAGACTTTCACCATTAAGCGATTCCTGGCCAAGAASequenceACAAAAGCAAAATCGTCCCATCCCCCAGTGGATTCAGATGAAACCTGGTAGTAAAATCAGGTACAACTCCAAAAGGAGGCATTGGAGAAGAACCAAGCTCCGTCTATAAGGAATTGCACATGAGATGGCACACATATTTATGCTGTATCAAGTTCACGATCATCTTACGATATCAAGCTGAAAATGTCACCACTACCTGGACAGTTGCACATGTTTTACTGGGAATATTTTTTTTCTGTTTTTCTGTATGCTCTGTGCTAGTAGGGTGGATTCAGTAATAAATATGTGAAAGCTTTORF Start: ATG at 70ORF Stop: TAA at 223SEQ ID NO:2851 aa MW at 6292.5 kDNOV12a,MSSHKTFTIKRFLAKKQKQNRPIPQWIQMKPGSKIRYNSKRRHWRRTKLGLCG95217-01 ProteinSequence


[0320] Further analysis of the NOV12a protein yielded the following properties shown in Table 12B.
60TABLE 12BProtein Sequence Properties NOV12aPSort0.8400 probability located in nucleus; 0.7500 probabilityanalysis:located in mitochondrial intermembrane space;0.6400 probability located in microbody (peroxisome);0.3600 probability located in mitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0321] A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12C.
61TABLE 12CGeneseq Results for NOV12aIdentities/NOV12aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAE13838Human lung tumor-specific protein L39 -  1 . . . 5147/51 (92%)2e−22Homo sapiens, 51 aa. [WO200172295-A2, 1 . . . 5149/51 (95%)04-OCT-2001]AAE13838Human lung tumor-specific protein L39 -  1 . . . 5147/51 (92%)2e−22Homo sapiens, 51 aa. [WO200172295-A2, 1 . . . 5149/51 (95%)04-OCT-2001]AAB43896Human cancer associated protein sequence 1 . . . 5147/51 (92%)2e−22SEQ ID NO: 1341 - Homo sapiens, 72 aa.22 . . . 7249/51 (95%)[WO200055350-A1, 21-SEP-2000]AAB53693Human colon cancer antigen protein 1 . . . 5147/51 (92%)2e−22sequence SEQ ID NO: 1233 - Homo30 . . . 8049/51 (95%)sapiens, 80 aa. [WO200055351-A1, 21-SEP-2000]AAG35356Zea mays protein fragment SEQ ID NO: 1 . . . 5036/50 (72%)4e−1643178 - Zea mays subsp. mays, 51 aa. 1 . . . 5042/50 (84%)[EP1033405-A2, 06-SEP-2000]


[0322] In a BLAST search of public sequence datbases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12D.
62TABLE 12DPublic BLASTP Results for NOV12aNOV12aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96EH5SIMILAR TO RIBOSOMAL PROTEIN1 . . . 5151/51 (100%)1e−24L39 - Homo sapiens (Human), 51 aa.1 . . . 5151/51 (100%)CAC44158PUTATIVE RIBOSOMAL PROTEIN1 . . . 5147/51 (92%) 4e−22L39 PROTEIN - Oncorhynchus mykiss1 . . . 5149/51 (95%) (Rainbow trout) (Salmo gairdneri), 51 aa.Q98TF5RIBOSOMAL PROTEIN L39 - Gallus1 . . . 5147/51 (92%) 4e−22gallus (Chicken), 51 aa.1 . . . 5149/51 (95%) Q90YS9RIBOSOMAL PROTEIN L39 - Ictalurus1 . . . 5146/51 (90%) 9e−22punctatus (Channel catfish), 51 aa.1 . . . 5149/51 (95%) Q9CQD04930517K11RIK PROTEIN - Mus1 . . . 5146/51 (90%) 1e−21musculus (Mouse), 51 aa.1 . . . 5148/51 (93%) 


[0323] PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12E.
63TABLE 12EDomain Analysis of NOV12aNOV12a Identities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValueRibosomal_L399 . . . 5125/43 (58%)4.5e−2340/43 (93%)



Example 13

[0324] The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.
64TABLE 13ANOV13 Sequence AnalysisSEQ ID NO:29509 bpNOV13a,ATGGCCTTGGCCGGGGCCGCTGGGGTCTGGACGGGGGTCGCCATGATCCGCTTTATCCCG95261-01 DNATCATCCAGAACCGGGCAGGCAAGACGCGCCTGGCCCACCGGTTCATGCAGTTTGATGASequenceTGATGAGAAACAGAAGCTGATCGAGGAGGTGCATGCCGTGGTCACCGTCCGAGACGCCAAACACACCAACTTTGTGGAGTTCCGGAACTTTAAGATCATTTACCGCCGCTATGCTGGCCTCTACTTCTGCATCTGTGTGGATGTCAATGACAACAACCTGGCTTACCTGGAGGCCATTCACAACTTCGTGGAGGTCTTAAACGAATATTTCCACAATGTCTGTGAACTGGACCTGGTGTTCAACTTCTACAAGGTTTACACGGTCGTGGACGACATGTTCCTGGCTGGCGAAATCCGAGAGACCAGCCAGACGAAGGTGCTGAAACAGCTGCTGATGCTACAGTCCCTGGAGTGAGGGCAGGCGAGCCCCACCCCGGCCCCGGCCAAGGCCATORF Start: ATG at 1ORF Stop: TGA at 469SEQ ID NO:30156 aa MW at 18228.0 kDNOV13a,MALAGAAGVWTGVAMIRFILIQNRAGKTRLAQRFMQFDDDEKQKLIEEVHAVVTVRDACG95261-01 ProteinKHTNFVEFRNFKIIYRRYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDSequenceLVFNFYKVYTVVDEMFLAGEIRETSQTKVLKQLLMLQSLE


[0325] Further analysis of the NOV13a protein yielded the following properties shown in Table 13B.
65TABLE 13BProtein Sequence Properties NOV13aPSort0.8264 probability located in mitochondrialanalysis:intermembrane space;0.5992 probability located in mitochondrialmatrix space;0.3721 probability located in microbody (peroxisome);0.3057 probability located in mitochondrialinner membraneSignalPCleavage site between residues 27 and 28analysis:


[0326] A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13C.
66TABLE 13CGeneseq Results for NOV13aGeneseqProtein/Organism/LengthNOV13a Residues/Identities/SimilaritiesIdentifier[Patent #, Date]Match Residuesfor the Matched RegionExpect ValueAAO13498Human polypeptide SEQ ID NO 27390 -5 . . . 156149/152 (98%)2e−82Homo sapiens, 170 aa. [WO200164835-19 . . . 170151/152 (99%)A2, 07-SEP-2001]ABG25383Novel human diagnostic protein #25374 -5 . . . 148141/158 (89%)2e−75Homo sapiens, 174 aa.17 . . . 174143/158 (90%)[WO200175067-A2, 11-OCT-2001]ABG24012Novel human diagnostic protein #24003 -5 . . . 148141/158 (89%)2e−75Homo sapiens, 174 aa.17 . . . 174143/158 (90%)[WO200175067-A2, 11-OCT-2001]ABG25383Novel human diagnostic protein #25374 -5 . . . 148141/158 (89%)2e−75Homo sapiens, 174 aa.17 . . . 174143/158 (90%)[WO200175067-A2, 11-OCT-2001]ABG24012Novel human diagnostic protein #24003 -5 . . . 148141/158 (89%)2e−75Homo sapiens, 174 aa.17 . . . 174143/158 (90%)[WO200175067-A2, 11-OCT-2001]


[0327] In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13D.
67TABLE 13DPublic BLASTP Results for NOV13aProteinAccessionNOV13a Residues/Identities/SimilaritiesNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionExpect ValueQ00380Clathrin coat assembly protein AP1715 . . . 156139/142 (97%)9e−76(Clathrin coat associated protein AP17)1 . . . 142141/142 (98%)(Plasma membrane adaptor AP-2 17 kDaprotein) (HA2 17 kDa subunit) (Clathrinassembly protein 2 small chain) - Musmusculus (Mouse), and, 142 aa.P53680Clathrin coat assembly protein AP1715 . . . 156137/142 (96%)1e−74(Clathrin coat associated protein AP17)1 . . . 142139/142 (97%)(Plasma membrane adaptor AP-2 17 kDaprotein) (HA2 17 kDa subunit) (Clathrinassembly protein 2 small chain) - Homosapiens (Human), 142 aa.Q9VDC3CG6056 PROTEIN - Drosophila15 . . . 156133/142 (93%)8e−73melanogaster (Fruit fly), 142 aa.1 . . . 142137/142 (95%)Q19123HYPOTHETICAL 17.1 KDA PROTEIN -15 . . . 156132/142 (92%)3e−72Caenorhabditis elegans, 142 aa.1 . . . 142136/142 (94%)Q9GQM7ADAPTOR PROTEIN COMPLEX AP-215 . . . 156129/142 (90%)6e−70SMALL CHAIN SIGMA2 - Drosophila1 . . . 142135/142 (94%)melanogaster (Fruit fly), 142 aa.


[0328] PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13E.
68TABLE 13EDomain Analysis of NOV13aNOV13aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValueClat_adaptor_s15 . . . 15689/164 (54%)2.5e−89138/164 (84%)



Example 14

[0329] The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
69TABLE 14ANOV14 Sequence AnalysisSEQ ID NO:31467 bp NOV14a,CGGCAGGCCCTCTTCGGCAGTCTCTCCGGCCCGGTTTCCCTCGGCGTGCTACTGTGCGCG95292-01 DNACTCGATCCAGCACCATGGGGAAGCGGGACAATCGGGTGGCCTATATGAACCCAATAGCSequenceAATGGCGAGATCAAGGGGTCCAATCCAGTCTTCAGGGCCAACAATACAGGATTATCTGAATCGACCAAGGCCTACCTGGGAAGAAGTAAAAGAGCAACTAGAAAAGAAAAAGAAAGGCTCCAAGGCTTTGGCTGAATTTGAAGAAAAAATGAATGAGAACTGGAAGAAAGAACTGGAAAAACACAGGGAGAAATTGTTAAGTGGAAGTGAGAGCTCATCCAAAAAAAGACAGAGAAAGAAAAAAGAAAAGAAGAAATCTGGTAGGTATTCATCTTCTTCTTCATCAAGCTCTGATTCTCCAGCAGTCTTCTGATCTGAAGATAGGATAGAAACAAGAAAACGGAAAGAAAAORF Start: ATG at 73ORF Stop: TGA at 427SEQ ID NO:32118 aa MW at 13592.3 kDNOV14a,MGKRDNRVAYMNPIAMARSRGPIQSSGPTIQDYLNRPRPTWEEVKEQLEKKKKGSKALCG95292-01 ProteinAEFEEKMNENWKKELEKHREKLLSGSESSSKKRQRKKKEKKKSGRYSSSSSSSSDSPASequenceVF


[0330] Further analysis of the NOV14a protein yielded the following properties shown in Table 14B.
70TABLE 14BProtein Sequence Properties NOV14aPSort0.9571 probability located in nucleus;analysis:0.4977 probability located in mitochondrialmatrix space;0.2152 probability located in mitochondrialinner membrane;0.2152 probability located in mitochondrialintermembrane spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0331] A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14C.
71TABLE 14CGeneseq Results for NOV14aGeneseqProtein/Organism/LengthNOV14a Residues/Identities/SimilaritiesIdentifier[Patent #, Date]Match Residuesfor the Matched RegionExpect ValueAAU74347Human cytoskeleton-associated protein1 . . . 114114/114 (100%)2e−60(CYSKP) #18 - Homo sapiens, 247 aa.1 . . . 114114/114 (100%)[WO200185942-A2, 15-NOV-2001]AAM39103Human polypeptide SEQ ID NO 2248 -1 . . . 114114/114 (100%)2e−60Homo sapiens, 269 aa. [WO200153312-47 . . . 160114/114 (100%)A1, 26-JUL-2001]AAG04044Human secreted protein, SEQ ID NO:1 . . . 10093/100 (93%)2e−498125 - Homo sapiens, 102 aa.1 . . . 10097/100 (97%)[EP1033401-A2, 06-SEP-2000]AAU33045Novel human secreted protein #3536 -1 . . . 8383/83 (100%)2e−43Homo sapiens, 85 aa. [WO200179449-1 . . . 8383/83 (100%)A2, 25-OCT-2001]AAM40889Human polypeptide SEQ ID NO 5820 -1 . . . 11491/114 (79%)8e−43Homo sapiens, 319 aa. [WO200153312-21 . . . 23496/114 (83%)A1, 26-JUL-2001]


[0332] In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14D.
72TABLE 14DPublic BLASTP Results for NOV14aProteinAccessionNOV14a Residues/Identities/SimilaritiesNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionExpect ValueQ9CV125830415L20RIK PROTEIN - Mus1 . . . 114111/114 (97%)3e−59musculus (Mouse), 127 aa (fragment).1 . . . 114114/114 (99%)Q9D2925830415L20RIK PROTEIN - Mus1 . . . 107103/107 (96%)2e−54musculus (Mouse), 115 aa.1 . . . 107105/107 (97%)Q19670F21C3.6 PROTEIN - Caenorhabditis16 . . . 10126/96 (27%)0.025elegans, 186 aa.17 . . . 11244/96 (45%)CAD25369HYPOTHETICAL 71.2 KDA32 . . . 11025/81 (30%)0.032PROTEIN - Encephalitozoon298 . . . 37541/81 (49%)cuniculi, 606 aa.O67287MutS2 protein - Aquifex aeolicus,42 . . . 9922/62 (35%)0.032762 aa.535 . . . 59638/62 (60%)


[0333] PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14E.
73TABLE 14EDomain Analysis of NOV14aPfamNOV14aIdentities/SimilaritiesDomainMatch Regionfor the Matched RegionExpect Value



Example 15

[0334] The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
74TABLE 15ANOV15 Sequence AnalysisSEQ ID NO:33483 bpNOV15a,AGCGAAACTCCGCGGAGCGCGCGCGGCACGATGGACGGTCGGGTGCAGCTGATGAAGGCG95452-01 DNACCCTCCTGGCCGGGCCCCTCCGGCCCGCGGCGCGTCGCTGGAGGAACCCGATTCCCTTSequenceTCCCGAGACGTTTGACGGAGATACCGACCGACTCCCGGAGTTCATCGTGCAGACGAGCTCCTACATGTTCGTGGACGAGAACACGTTCTCCAACGACGCCCTGAAGGTGACGTTCCTCATCACCCGCCTCACGGGGCCAGCCCTGCAGTGGGTGATCCCCTACATCAGGAAGGAGAGCCCCCTGCTCAATGATTACCGGGGCTTCCTGGCCGAGATGAAGCGGGTCTTTGGATGGGAGGAGGACGAGGACTTCTAGGCCGGGAGACCCTTGGGCCTGGGGGCGGGTGCTCTGGGAAGAGTTCGCTGTGCCAGTGGCCACCGCTAGGGTCTCCACAGGCGCCCTCCCTCCGCGCCTCCCTCCCCCTCNORF Start: ATG at 31ORF Stop: TAG at 370SEQ ID NO:34113 aa MW at 13187.9 kDNOV15a,MDGRVQLMKALLAGPLRPAARRWRNPIPFPETFDGDTDRLPEFIVQTSSYMFVDENTFCG95452-01 ProteinSNDALKVTFLITRLTGPALQWVIPYIRKESPLLNDYRGFLAEMKRVFGWEEDEDFSequence


[0335] Further analysis of the NOV15a protein yielded the following properties shown in Table 15B.
75TABLE 15BProtein Sequence Properties NOV15aPSort0.6400 probability located in microbody (peroxisome);analysis:0.4500 probability located in cytoplasm;0.2620 probability located in lysosome (lumen);0.1000 probability located in mitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0336] A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15C.
76TABLE 15CGeneseq Results for NOV15aNOV15aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAY59927Human myometrium tumor EST encoded 1 . . . 113112/113 (99%)4e−62protein 7 - Homo sapiens, 144 aa. 32 . . . 144112/113 (99%)[DE19817947-A1, 28-0CT-1999]AAB60475Human cell cycle and proliferation protein 1 . . . 113106/113 (93%)5e−59CCYPR-23, SEQ ID NO: 23 - Homo 1 . . . 113110/113 (96%)sapiens, 113 aa. [WO200107471-A2, 01-FEB-2001]ABG12205Novel human diagnostic protein #12196 -  6 . . . 113 98/108 (90%)3e−54Homo sapiens, 142 aa. [WO200175067- 35 . . . 142104/108 (95%)A2, 11-OCT-2001]ABG12205Novel human diagnostic protein #12196 -  6 . . . 113 98/108 (90%)3e−54Homo sapiens, 142 aa. [WO200175067- 35 . . . 142104/108 (95%)A2, 11-OCT-2001]AAG04029Human secreted protein, SEQ ID NO: 1 . . . 75 67/75 (89%)1e−338110 - Homo sapiens, 106 aa. 1 . . . 75 70/75 (93%)[EP1033401-A2, 06-SEP-2000]


[0337] In a BLAST search of public sequence datbases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15D.
77TABLE 15DPublic BLASTP Results for NOV15aNOV15aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH19300HYPOTHETICAL 13.2 KDA 1 . . . 113112/113 (99%)9e−62PROTEIN - Homo sapiens (Human), 1 . . . 113112/113 (99%)113 aa.Q9D1F01110012O05RIK PROTEIN (RIKEN 3 . . . 113 79/111 (71%)1e−38CDNA 1110012O05 GENE) - Mus 5 . . . 113 87/111 (78%)musculus (Mouse), 113 aa.Q9DCZ31110012O05RIK PROTEIN - Mus 21 . . . 113 73/93 (78%)2e−37musculus (Mouse), 100 aa. 8 . . . 100 78/93 (83%)Q9D6I02900027G03RIK PROTEIN - Mus 1 . . . 113 73/114 (64%)9e−36musculus (Mouse), 112 aa. 1 . . . 112 87/114 (76%)O95751LDOC1 protein (Leucine zipper protein 26 . . . 112 58/87 (66%)5e−31down-regulated in cancer cells) - Homo 50 . . . 136 73/87 (83%)sapiens (Human), 146 aa.


[0338] PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15E.
78TABLE 15EDomain Analysis of NOV15aPfam DomainNOV15a MatchIdentities/Expect ValueRegionSimilarities for theMatched Region



Example 16

[0339] The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.
79TABLE 16ANOV16 Sequence AnalysisSEQ ID NO:351691 bpNOV16a,GTGCGGCGGGCGCGGGCGCCGGAGCGAGGGGCCCGCGGGCCCGGCTATTAATAACGCGCG95504-01 DNAGCCGCCAGCCCGGGGTCGCGCAGCCATGGCCAGCCCGGAGCCCCGGCGCGGCGGGGACSequenceGCGCCGCCCAGGCCGCGAGGAAAACAAGAGTAGAGGCCAATTCTCCTCTTCCAAAGAACTCTGGATCCCTAAATGAGGCAGAAGCCTTGAACCCAGAAGTTACTCTATCTTCAGAGGGGTCCTTAAACCTCGAAGACATTCTCTACCTGGAGGACACAGGTGACCTTOATGACACACTCTATGTGCAAGAGACTGAGAAGGCAGAGGAGGCCCTGTATATTGAGGAGGCCATGCAGCCAGATGAGGCTCTGCATGTGGAGGAGCCTGCGAATCCAGAGGAGACAGTGTGTGTGGAGGAAACCACGGAGCCAGATCGGATACAGTTTGTGGAGGGGCCCGTGGAGCCAGGAAAGCCCACAAGCCCAGAGCACGTTGTTTATGAGGGAGAGACAGTCACAAGGGCGGAGAAATCTAACCCTGAGGAGAGCCTCAGAGCCGAGCAGAGCCCCACCGTGGAGGAGAACCTGAGCATAGAGGACCTGGAATTGCTAGAGGGGCGTTTCCAGCAGTGTGTCCAAGCTGTGGCCCAGCTGGAAGACCAGACGGATCAGCTCATCCATGAGCTTGTATTGCTCCGGGAACCAGCCCTCCAGGACCTACAGCAAGTCCATCAAGACATCCTGGCTGCCTACAAGCTCCATGCCCAAGCAGAGCTGGAGAGAGATGGCCTAAGGGAGGAGATCCGGCTGGTCAAGCAGAAGCTTTTCAAAGTGACAAAGGAATGTGTGGCCTACCAATACCAGCTGGAGTGCCGCCAGCAGGACGTGGCTCAGTTTGCCGATTTCCAGGAAGTGCTGACTACAAGCGCAACCCAGCTCTCAGAGGAACTGGCCCAGCTCCGGGATGCCTATCAGAAGCACAAGGACCAGCTGCGGCAACAACTAGAAGCCCCTCCAAGCCAGAGGGATGGGCACTTTCTCCAGGAAAGCCGGCGACTCTCTGCCCAGTTTGAAAATCTCATGGCAGACAGCCGCCAGGACCTGGAGGAGGAGTATAAGCCTCAGTTCCTGCGGCTCCTAGAGAGGAAAGAAGCTGGGACCAAAGCTCTGCAGAGAACCCAGGCTGAGATCCAGGAAATGAAGGAGGCTCTGAGACCCCTGCAAGCAGAGGCCCGGCAGCTCCGCCTGCAAAACAGGAACCTGGAGGACCAGATCGCACTTGTCAGGCAAAAACGAGATGAAGAGGTGCAGCAGTACAGGGAACAGCTGGAGGAAATGGAAGAACGCCAGAGGCAGTTAAGAAATGGGGTGCAACTCCAGCAACAGAAGAACAAAGAGATGGAACAGCTAAGGCTCAGTCTTGCTGAAGAGCTCTCTACTTATAAGCCTATGCTACTACCCAAGAGCCTGGAACAGGCTGATGCTCCCACTTCTCAGCCAGGTGGAATGGAGACACAGTCTCAAGCCGCTGTTTAGAAATATATGGCCAAATCTGTAACCCGGAAACAGCAAAAAACTTCTTAGCAAAGGATCACTAAGTACCCTTTGGATGTACTCTTCCAACCAGACAAGAGTGCCAGAAACTTGGCAAGCAATTCATCCTGTGGAAGTTGCAATACTGGCTGCCTGCTTAAAORF Start: ATG at 84ORF Stop: TAG at 1530SEQ ID NO:36482 aa MW at 55237.8 kDNOV16a,MASPEPRRGGDGAAQAARKTRVEANSPLPKNSGSLNEAEALNPEVTLSSEGSLNLEDICG95504-01 ProteinLYLEDTGDLDETLYVQETEKAEEALYIEEAMQPDEALHVEEPGNPEETVCVEETTEPDSequenceRIQFVEGPVEPGKPTSPEHVVYEGETVTRAEKSNPEESLRAEQSPSVEENLSIEDLELLEGRFQQCVQAVAQLEEERDQLIHELVLLREPALQEVQQVHQDILAAYKLHAQAELERDGLREEIRLVKQKLFKVTKECVAYQYQLECRQQDVAQFADFQEVLTTRATQLSEELAQLRDAYQKQKEQLRQQLEAPPSQRDGHFLQESRRLSAQFENLMAESRQDLEEEYKPQFLRLLERKEAGTKALQRTQAEIQEMKEALRPLQAEARQLRLQNRNLEDQIALVRQKRDEEVQQYREQLEEMEERQRQLRNGVQLQQQKNKEMEQLRLSLAEELSTYKAMLLPKSLEQADAPTSQAGGMETQSQGAVSEQ ID NO:371611 bpNOV16b,GTGCGGCGGGCGCGGGCGCCGGAGCGAGGGGCCCGCGGGCCCGGCTATTAATAACGCGCG95504-02 DNAGCCGCCAGCCCGGGGTCGCGCAGCCATGGCCAGCCCGGAGCCCCGGCGCGGCGGGGACSequenceGGCGCCGCCCAGGCCGCGAGCAAAACAACAGTAGAGGCCAATTCTCCTCTTCCAAAGAACTCTGGATCCCTAAATGAGGCAGAAGCCTTGAACCCACAAGTTACTCTATCTTCAGAGGGGTCCTTAAACCTCGAAGACATTCTCTACCTGGAGGACACAGGTGACCTTGATGAGACACTCTATGTGCAAGAGACTGAGAAGGCAGAGGAGGCCCTGTATATTGACGAGGCCATCCAGCCACATGAGGCTCTGCATGTGGAGGAGCCTGGGAATCCAGACGAGACAGTGTGTGTGGAGGAAACCACGGAGCCAGATCGGATACAGTTTGTGGAGGCGCCCGTGGAGCCAGGAAAGCCCACAAGCCCAGAGCACGTTGTTTATGAGGGACAGACAGTCACAAGGGCGGAGAAATCTAACCCTGAGGAGAGCCTCAGAGCCGAGCAGAGCCCCAGCGTGGAGGAGAACCTGAGCATAGAGGACCTGGAATTGCTAGACGGGCGTTTCCAGCAGTGTGTCCAAGCTGTGGCCCAGCTGGAAGAGGAGAGGGATCAGCTCATCCATGAGCTTGTATTGCTCCGGGAACCAGCCCTGCAGGAGGTACAGCAAGTCCATCAAGACATCCTGGCTGCCTACAAGCTCCATGCCCAAGCAGAGCTGGAGAGAGATGGCCTAAGOGAGGAGATCCGGCTGGTCAAGCAGAAGCTTTTCAAAGTGACAAAGGAATGTGTGCCCTACCAATACCAGCTGGAGTGCCGCCAGCAGGACGTGGCTCAGTTTGCCGATTTCCAGGAAGTGCTGACTACAAGGGCAACCCAGCTCTCAGAGGAACTGGCCCAGCTCCCGGATGCCTATCAGAAGCAGAAGGAGCAGCTGCGGCAACAACTAGAAGCCCCTCCAAGCCAGAGGGATGGGCACTTTCTCCAGGAAAGCCGGCGACTCTCTGCCCAGTTTGAAAATCTCATGGCAGAGAGCCGCCAGGACCTGGAGGAGGAGTATGAGCCTCAGTTCCTGCGGCTCCTAGAGAGGAAAGAAGCTGGGACCAAAGCTCTGCACAGAACCCAGGCTGAGATCCAGGAAATGAAGGAGGCTCTGAGACCCCTGCAAGCAGAGGCCCGGCAGCTCCGCCTGCAAAACAGGAACCTGCAGGACCAGATCGCACTTGTGAGGCAAAAACGAGATGAAGAGGTGCAGCAGTACAGGGAACAGCTGGAGGAAATGGAAGAACGCCAGAGGCAGTTAAGAAATGGGGTGCAACTCCAGCAACAGAAGAACAAAGAGATGGAACAGCTAAGGCTCAGTCTTGCTGAAGAGCTCTCTACTTATAAGGGCTGTTTAGAAATATATGGCCAAATCTGTAACCCGGAAACAGCAAAAAACTTCTTAGCAAAGGATCACTAAGTACCCTTTGGATGTACTCTTCCAACCAGACAAGAGTGCCAGAAACTTGGCAAGCAATTCATCCTGTGGAAGTTGCAATACTGGCTGCCTGCTTAAAORF Start: ATG at 84ORF Stop: TAA at 1512SEQ ID NO:38476 aa MW at 54886.4 kDNOV16b,MASPEPRRGGDGAAQAARKTRVEANSPLPKNSGSLNEAEALNPEVTLSSEGSLNLEDICG95504-02 ProteinLYLEDTGDLDETLYVQETEKAEEALYIEEAMQPDEALHVEEPGNPEETVCVEETTEPDSequenceRIQFVEGPVEPGKPTSPEHVVYECETVTRAEKSNPEESLRAEQSPSVEENLSIEDLELLEGRFQQCVQAVAQLEEERDQLIHELVLLREPALQEVQQVHQDILAAYKLHAQAELERDGLREEIRLVKQKLFKVTKECVAYQYQLECRQQDVAQFADFQEVLTTRATQLSEELAQLRDAYQKQKEQLRQQLEAPPSQRDGHFLQESRRLSAQFENLMAESRQDLEEEYEPQFLRLLERKEAGTKALQRTQAEIQEMKEALRPLQAEARQLRLQNRNLEDQIALVRQKRDEEVQQYREQLEEMEERQRQLRNGVQLQQQKNKEMEQLRLSLAEELSTYKGCLEIYGQICNPETAKNFLAKDH


[0340] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 16B.
80TABLE 16BComparison of NOV16a against NOV16b.NOV16a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV16b1 . . . 456400/456 (87%)1 . . . 456401/456 (87%)


[0341] Further analysis of the NOV16a protein yielded the following properties shown in Table 16C.
81TABLE 16CProtein Sequence Properties NOV16aPSort0.6500 probability located in cytoplasm;analysis:0.1000 probability located in mitochondrial matrix space;0.1000 probability located in lysosome (lumen);0.0000 probability located in endoplasmicreticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0342] A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16D.
82TABLE 16DGeneseq Results for NOV16aNOV16aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueABB57243Mouse ischaemic condition related protein154 . . . 456 77/322 (23%)6e−20sequence SEQ ID NO: 650 - Mus 23 . . . 340148/322 (45%)musculus, 403 aa. [WO200188188-A2,22-NOV-2001]AAY20975Human glial fibrillary acidic protein119 . . . 456 81/358 (22%)3e−19GFAP wild type fragment 1 - Homo 20 . . . 371160/358 (44%)sapiens, 433 aa. [WO9845322-A2, 15-OCT-1998]AAB66348Human vimentin - Homo sapiens, 466 aa.171 . . . 456 66/299 (22%)1e−17[EP1067142-A1, 10-JAN-2001]106 . . . 404148/299 (49%)AAY92335Human vimentin - Homo sapiens, 466 aa.171 . . . 456 66/299 (22%)1e−17[WO200020448-A2, 13-APR-2000]106 . . . 404148/299 (49%)AAB29635Human pollinosis-associated gene 795-171 . . . 456 66/299 (22%)1e−17encoded protein, SEQ ID NO: 26 - Homo106 . . . 404148/299 (49%)sapiens, 466 aa. [WO200065050-A1, 02-NOV-2000]


[0343] In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.
83TABLE 16EPublic BLASTP Results for NOV16aNOV16aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9EPM5SYNCOILIN - Mus musculus (Mouse), 1 . . . 482369/483 (76%)0.0470 aa. 1 . . . 470405/483 (83%)Q9CT881110057H03RIK PROTEIN - Mus242 . . . 463191/222 (86%) e−102musculus (Mouse), 223 aa (fragment). 1 . . . 222205/222 (92%)Q9H7C4CDNA: FLJ21054 FIS, CLONE332 . . . 482150/151 (99%)6e−77 CAS00538 - Homo sapiens (Human), 151 1 . . . 151151/151 (99%)aa.Q8VCW5SIMILAR TO ALPHA INTERNEXIN170 . . . 456 79/305 (25%)8e−22 NEURONAL INTERMEDIATE 96 . . . 400150/305 (48%)FILAMENT PROTEIN - Mus musculus(Mouse), 501 aa.P23565Alpha-internexin (Alpha-Inx) - Rattus170 . . . 456 79/305 (25%)8e−22 norvegicus (Rat), 505 aa. 96 . . . 400150/305 (48%)


[0344] PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16F.
84TABLE 16FDomain Analysis of NOV16aPfam DomainNOV16a MatchIdentities/Expect ValueRegionSimilarities for theMatched Region



Example 17

[0345] The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.
85TABLE 17ANOV17 Sequence AnalysisSEQ ID NO:39897 bpNOV17a,GCAGGACGGAACCCGCCCTGCGCTCCACACCTGAGGCCGCTCCCTTCGCCTCTTCTCCCG95589-01 DNATCAGGTGCTGTCCTTATTCCCAGCCCAGTCAAGAGCTACCGGGGCTGGCTAGTCATGGSequenceGGGAGCCCAGTAGAGAGGAGTATAAAATCCAGTCCTTTGATGCAGAGACCCAGCAGCTGCTGAAGACAGCACTCAAAGATCCGGGTGCTGTGGACTTCGAGAAAGTGGCCAATGTGATTGTGGACCATTCTCTGCAGGACTGTGTGTTCAGCAAGGAAGCAGGACGCATGTGCTACGCCATCATTCAGGCAGAGAGTAAACAAGCAGGCCAGAGTGTCTTCCGACGTGGACTCCTCAACCGGCTGCAGCAGGAGTACCAGGCTCGGGAGCAGCTGCGAGCACGCTCCCTGCAGGGCTGGGTCTGCTATGTCACCTTTATCTGCAACATCTTTGACTACCTGAGGGTGAACAACATGCCCATGATGGCCCTGGTGAACCCTGTCTATGACTGCCTCTTCCGGCTGGCCCAGCCAGACAGTTTGAGCAAGGAGGAGGAGGTGGACTGTTTGGTGCTGCAGCTGCACCGGGTTGGGGAGCAGCTGGAGAAAATGAATGGGCAGCGCATGGATGAGCTCTTTGTGCTGATCCGGGATGGCTTCCTGCTCCCAACTGGCCTCAGCTCCCTGGCCCAGCTGCTGCTGCTGGAGATCATTGAGTTCCGGGCGGCCGGCTGGAAGACAACGCCAGCTCCCCACAAGTATTACTACAGCGAAGTCTCCGACTAGGCCTCCAGATCAGGGCTTCCTCACCAGCACTGGCCTTTCTTCTACCCACCTCTAAAGCTGGCAGTGGAGTCTCTGCCTCACCCAAAGACTTTTCCCTTCCAGACTTTGAGTGTCTTORF Start: ATG at 113ORF Stop: TAG at 779SEQ ID NO:40222 aa MW at 25422.9 kDNOV17a,MGEPSREEYKIQSFDAETQQLLKTALKDPGAVDLEKVANVIVDHSLQDCVFSKEAGRMCG95589-01 ProteinCYAIIQAESKQAGQSVFRRGLLNRLQQEYQAREQLRARSLQGWVCYVTFICNIFDYLRSequence VNNMPMMALVNPVYDCLFRLAQPDSLSKEEEVDCLVLQLHRVGEQLEKMNGQRMDELFVLIRDGFLLPTGLSSLAQLLLLEIIEFRAAGWKTTPAAHKYYYSEVSDSEQ ID NO:41826 bpNOV17b,CTCTTCTCCTCAGGTGCTGTCCTTATTCCCAGCCCATACAAGAGCTACCGGGGCTGGCCG95589-02 DNATAGTCATGGGGGAGCCCAGTACAGAGGAGTATAAAATCCAGTCCTTTGATGCAGAGACSequenceCCAGCAGCTGCTGAAGACAGCACTCAAAGATCCGGGTCCTCTGGACTTGGAGAAACTGGCCAATGTGATTGTGGACCATTCTCTGCAGGACTGTGTGTTCAGCAAGGAAGCAGGACGCATGTCCTACGCCATCATTCAGGCAGAGAGTAAACAAGCAGGCCAGAGTGTCTTCCGACGTGGACTCCTCAACCGGCTGCAGCAGGAGTACCAGGCTCGGGAGCAGCTGCGAGCACGCTCCCTGCAGGGCTGGGTCTGCTATGTCACCTTTATCTGCAACATCTTTGACTACCTGAGGGTGAACAACATGCCCATGATGGCCCTGGTCAACCCTGTCTATGACTCCCTCTTCCGGCTGGCCCAGCCAGACAGTTTGAGCAAGGAGGAGGAGGTGGACTGTTTGGTGCTGCAGCTGCACCGGGTTCGGGAGCAGCTGGAGAAAATGAATGGGCAGCGCATGGATGAGCTCTTTGTGCTGATCCGGGATGGCTTCCTGCTCCCAACTGGCCTCAGCTCCCTGGCCCAGCTGCTGCTGCTGGAGATCATTGAGTTCCGGGCGGCCGGCTCGAAGACAACCCCAGCTGCCCACAAGTATTACTACAGCGAAGTCTCCGACTAGGCCTCCAGATCAGGGCTTCCTCACCAGCACTCGCCTTTCTTCTACCCACCTCTAAAGCTGGCAGTGGAGTCTCTGCCTCACCCAAAGACTTTTCORF Start: ATG at 64ORF Stop: TAG at 730SEQ ID NO:42222 aa MW at 25367.9 kDNOV17b,MGEPSTEEYKIQSFDAETQQLLKTALKDPGAVDLEKVANVIVDHISLQDCVFSKEAGRMCG95589-02 ProteinCYAIIQAESKQAGQSVFRRGLLNRLQQEYQAREQLRARSLQGWVCYVTFICNIFDYLRSequence VNNMPMMALVNPVYDCLFRLAQPDSLKEEEVDCLVLQLHRVGEQLEKMNGQRMDELFVLTRDGFLLPTGLSSLAQLLLLEIIEFRAAGWKTTPAAHKYYYSEVSD


[0346] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 17B.
86TABLE 17BComparison of NOV17a against NOV17b.NOV17a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV17b1 . . . 222206/222 (92%)1 . . . 222206/222 (92%)


[0347] Further analysis of the NOV17a protein yielded the following properties shown in Table 17C.
87TABLE 17CProtein Sequence Properties NOV17aPSort0.6500 probability located in cytoplasm;analysis:0.1000 probability located in mitochondrial matrix space;0.1000 probability located in lysosome (lumen);0.0000 probability located in endoplasmicreticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0348] A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17D.
88TABLE 17DGeneseq Results for NOV17aNOV17aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB42861Human ORFX ORF2625 polypeptide 1 . . . 191191/191(100%) e−107sequence SEQ ID NO: 5250 - Homo27 . . . 217191/191(100%)sapiens, 217 aa. [WO200058473-A2, 05Oct. 2000]AAY00354Fragment of human secreted protein 1 . . . 164162/164(98%)4e−89encoded by gene 26 - Homo sapiens, 19633 . . . 196162/164(98%)aa. [WO9906423-A1, 11 Feb. 1999]AAM38210Peptide #12247 encoded by probe for148 . . . 222 75/75(100%)8e−37measuring placental gene expression -1 . . . 7575/75(100%)Homo sapiens, 75 aa. [WO200157272-A2, 09 Aug. 2001]AAM21883Peptide #8317 encoded by probe for148 . . . 222 75/75(100%)8e−37measuring cervical gene expression -1 . . . 7575/75(100%)Homo sapiens, 75 aa. [WO200157278-A2, 09 Aug. 2001]AAM77990Human bone marrow expressed probe148 . . . 222 75/75(100%)8e−37encoded protein SEQ ID NO: 38296 -1 . . . 7575/75(100%)Homo sapiens, 75 aa. [WO200157276-A2, 09 Aug. 2001]


[0349] In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17E.
89TABLE 17EPublic BLASTP Results for NOV17aNOV17aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9D6M82310075G12RIK PROTEIN - Mus1 . . . 222207/222(93%) e−117musculus (Mouse), 222 aa.1 . . . 222217/222(97%)Q9HBL5AD023 - Homo sapiens (Human),1 . . . 191162/191(84%)1e−84305 aa.1 . . . 191165/191(85%)O43310Hypothetical protein KIAA0427 -34 . . . 216 62/187(33%)2e−19Homo sapiens (Human), 598 aa.410 . . . 589 97/187(51%)Q9VL73CG13124 PROTEIN - Drosophila11 . . . 222 59/232(25%)1e−12melanogaster (Fruit fly), 510 aa.285 . . . 510 110/232(46%)T29786hypothetical protein F44A2.5 -75 . . . 222 43/150(28%)2e−10Caenorhabditis elegans, 345 aa.200 . . . 345 81/150(53%)


[0350] PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17F.
90TABLE 17FDomain Analysis of NOV17aIdentities/NOV17a MatchSimilaritiesExpectPfam DomainRegionfor the Matched RegionValueMIF4G3 . . . 205 45/233 (19%)0.0041127/233 (55%)



Example 18

[0351] The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.
91TABLE 18ANOV18 Sequence AnalysisSEQ ID NO:43541 bpNOV18a,GAGGACAGACTGCCGTGTTGCCACCACAGGCTGGACCATGGACCCCCAAGGAATGGTCCG95598-01 DNAGTCAAGAACCCATATGCCCACATCAGCATCCCCCGGGCTCACCTGCGGCCTGACCTGGSequenceGGCAGCAGTTAGAGGTGGCTTCCACCTGTTCCTCATCCTCGGAGATGCAGCCCCTGCCAGTGGGGCCCTGTGCCCCAGAGCCAACCCACCTCTTGCAGCCGACCGAGGTCCCAGGGCCCAAGGGCGCCAAGGGTAACCAGGGGGCTGCCCCCATCCAGAACCACCAGGCCTGGCAGCAGCCTGGCAACCCCTACAGCAGCAGTCAGCGCCAGGCCGGACTGACCTACGCTGGCCCTCCGCCCGTGGGGCGCGGGGATGACATCGCCCACCACTGCTGCTGCTGCCCCTGCTGCCACTGCTGCCACTGCCCCCCCTTCTGCCGCTGCCACAGCTGCTGCTGCTGTGTCATCTCCTAGCCCAGCCCACCCTGCCAGGACCAGGACCCAGACTTCAACAAATGTGGCTCACACAGTGCCGGGACATGCORF Start: ATG at 38ORF Stop: TAG at 470SEQ ID NO:44144 aa MW at 15269.3 kDNOV18a,MDPQGMVVKNPYAHISIPRAHLRPDLGQQLEVASTCSSSSEMQPLPVGPCAPEPTHLLCG95598-01 ProteinQPTEVPGPKGAKGNQGAAPIQNQQAWQQPGNPYSSSQRQAGLTYAGPPPVGRGDDIAHSequenceHCCCCPCCHCCHCPPFCRCHSCCCCVIS


[0352] Further analysis of the NOV18a protein yielded the following properties shown in Table 18B.
92TABLE 18BProtein Sequence Properties NOV18aPSort0.6500 probability located in plasma membrane; 0.4500analysis:probability located in cytoplasm; 0.3000 probability locatedin microbody (peroxisome); 0.1000 probability located inmitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0353] A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18C.
93TABLE 18CGeneseq Results for NOV18aIdentities/NOV18aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueABG08718Novel human diagnostic protein #8709 -46 . . . 12231/83 (37%)0.004Homo sapiens, 375 aa. [WO200175067-92 . . . 16737/83 (44%)A2, 11 Oct. 2001]ABG08718Novel human diagnostic protein #8709 -46 . . . 12231/83 (37%)0.004Homo sapiens, 375 aa. [WO200175067-92 . . . 16737/83 (44%)A2, 11 Oct. 2001]AAB51183Human sulfatase protein A SEQ ID NO: 1294 . . . 13019/41 (46%)0.017- Homo sapiens, 507 aa. [US6153188-A,464 . . . 503 23/41 (55%)28 Nov. 2000]AAE09804Consensus human phorbol activated37 . . . 11324/79 (30%)0.049nuclear factor-like protein (PNF1) - Homo445 . . . 519 32/79 (40%)sapiens, 584 aa. [WO200162790-A2, 30Aug. 2001]AAM50386Wheat glutenin variant 1A × 2asteriskB -23 . . . 11129/95 (30%)0.084Triticum aestivum, 434 aa.196 . . . 290 38/95 (39%)[WO200179477-A2, 25 Oct. 2001]


[0354] In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18D.
94TABLE 18DPublic BLASTP Results for NOV18aNOV18aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9D1E42310002J15RIK PROTEIN - Mus1 . . . 139107/139(76%)5e−64musculus (Mouse), 142 aa.1 . . . 139110/139(78%)Q9D7M72310002J15RIK PROTEIN - Mus1 . . . 139106/139(76%)1e−63musculus (Mouse), 142 aa.1 . . . 139110/139(78%)Q8WZL5SIN3 PROTEIN - Yarrowia lipolytica16 . . . 137 41/130(31%)0.023(Candida lipolytica), 1527 aa.149 . . . 248 49/130(37%)Q96CJ0SIMILAR TO ARYLSULFATASE A -94 . . . 130 19/41(46%)0.039Homo sapiens (Human), 509 aa.466 . . . 505 23/41(55%)P15289Arylsulfatase A precursor (EC 3.1.6.8)94 . . . 130 19/41(46%)0.039(ASA) (Cerebroside-sulfatase) - Homo464 . . . 503 23/41(55%)sapiens (Human), 507 aa.


[0355] PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18E.
95TABLE 18EDomain Analysis of NOV18aIdentities/Similarities forExpectPfam DomainNOV18a Match Regionthe Matched RegionValue



Example 19

[0356] The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.
96TABLE 19ANOV19 Sequence AnalysisSEQ ID NO:45531 bpNOV19a,ATGAAGCCCCTGCTCCTGGCCATCAGCCTCAGCCTCATTGCTGCCCTGCAGGCCCACCCG95639-01 DNAACCTCCTGGCCTCAGACGAGGAGATTCAGGATGTGTCAGGGACGTGGTATCTGAAGGCSequenceCATCACGGTGGACAGGGAGCTCCCTGAGATGAATCTGGAATCGGTGACACCCATGACCCTCACAATCCTGGAAGGGGGCAACCTGGAAGCTAAGGCCACCATGCTGATAAGTGGCCAGTGCCAGGAGGTGAAGGTCGTCCTGGAGAAAACTGACGAGCCGGGAAAATACACGGCCGACAGGGGCAAGCACGTGGCATACATCATCAGGTCGCACGTGAAGGACCACTACATCTTTTACTGTGAGGGTGAGCTGCACGGGAAGCCGATCCGAGGGGCGAAGCTCGTGGGTAGAGACCCCGAGAACAACCTGGAAGCCTTGGAGGACTTTGAGAAAGCTGCAGGAGCCCGTGGACTCAGCACGGAGAGCATCCTCATCCCCAGGCAGAGCGAAACCTGCTCTCCAGGGAGCGATTAGORF Start: ATG at 1ORF Stop: TAG at 529SEQ ID NO:46176 aa MW at 19329.8 kDNOV19a,MKPLLLAISLSLIAALQAHHLLASDEEIQDVSGTWYLKAMTVDRELPEMNLESVTPMTCG95639-01 ProteinLTILEGGNLEAKATMLISGQCQEVKVVLEKTDEPGKYTADRGKHVAYIIRSHVKDHYISequenceFYCEGELHGKPIRGAKLVGRDPENNLEALEDFEKAAGARGLSTESILIPRQSETCSPGSD


[0357] Further analysis of the NOV19a protein yielded the following properties shown in Table 19B.
97TABLE 19BProtein Sequence Properties NOV19aPSort0.4753 probability located in outside; 0.1000 probabilityanalysis:located in endoplasmic reticulum (membrane); 0.1000 prob-ability located in endoplasmic reticulum (lumen); 0.1000probability located in microbody (peroxisome)SignalPCleavage site between residues 19 and 20analysis:


[0358] A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.
98TABLE 19CGeneseq Results for NOV19aNOV19aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAG66536Human interferon-alpha induced1 . . . 176165/176 (93%)9e−93polypeptide, Lipocalin 1 - Homo sapiens,1 . . . 176169/176 (95%)176 aa. [WO200159155-A2, 16 Aug.2001]ABG29411Novel human diagnostic protein #29402 -1 . . . 170168/170 (98%)5e−92Homo sapiens, 865 aa. [WO200175067-1 . . . 170169/170 (98%)A2, 11 Oct. 2001]ABG29411Novel human diagnostic protein #29402 -1 . . . 170168/170 (98%)5e−92Homo sapiens, 865 aa. [WO200175067-1 . . . 170169/170 (98%)A2, 11 Oct. 2001]AAY25670Dog allergen Can f 1 protein fragment -1 . . . 174107/174 (61%)1e−50Canis sp, 174 aa. [WO9934826-A1, 151 . . . 172125/174 (71%)Jul. 1999]AAR59987Can fI protein allergen - Canis familiaris,1 . . . 174107/174 (61%)1e−50174 aa. [WO9416068-A, 21 Jul. 1994]1 . . . 172125/174 (71%)


[0359] In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.
99TABLE 19DPublic BLASTP Results for NOV19aNOV19aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP31025Von Ebner's gland protein precursor1 . . . 176165/176 (93%)2e−92(VEG protein) (Tear prealbumin) (TP)1 . . . 176169/176 (95%)(Tear lipocalin) (Lipocalin 1) - Homosapiens (Human), 176 aa.P53715Von Ebner's gland protein precursor1 . . . 176105/176 (59%)1e−52(VEG protein) (Tear prealbumin) (TP)2 . . . 176132/176 (74%)(Tear lipocalin) (Lipocalin-1) - Sus scrofa(Pig), 176 aa.P41244Von Ebner's gland protein 2 precursor1 . . . 176108/178 (60%)2e−51(VEG protein 2) - Rattus norvegicus1 . . . 177129/178 (71%)(Rat), 177 aa.O18873Major allergen Can f 1 precursor1 . . . 174107/174 (61%)3e−50(Allergen Dog 1) - Canis familiaris (Dog),1 . . . 172125/174 (71%)174 aa.P20289Von Ebner's gland protein 1 precursor1 . . . 176105/178 (58%)4e−50(VEG protein 1) - Rattus norvegicus1 . . . 177127/178 (70%)(Rat), 177 aa.


[0360] PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.
100TABLE 19EDomain Analysis of NOV19aIdentities/PfamSimilaritiesExpectDomainNOV19a Match Regionfor the Matched RegionValuelipocalin30 . . . 17148/157(31%)7.2e−37116/157(74%)



Example 20

[0361] The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.
101TABLE 20ANOV20 Sequence AnalysisSEQ ID NO:471218 bpNOV20a,TCCTCTGTCACGGGCTGCTGAACCCGAGCTGGTGTGAGCTTCTCTTGCCGTAAGTCCACG95649-01 DNACGGGTGGCCAGGAGCACGTGTTAGTCTGGTTAAGAGCTCTGCTCAGAAGTAGCCGCTGSequenceCAGCTGAAGGTTTTCAGGCGGGCTGAAGGCTGGGCCGCTTCTTCATTCATTTCAGAAACTTGAACAGTGGGCCTTCTACACACGCTGTCTTTGTCAGCCTCAGGCAGTTCCTCCATGGATGAGACACAGGGGCCTCTGGCCATGACTGTCCATCTTCTTGCCAACTCTGGGCACGGCTCCCTTCTGCAGAGGACTCTGGACCAGCTCCTGGATTGCATTTGCCCAGAGGTCCGGCTCTTTCAGGTGTCTGAACGGGCCAGTCCTGTGAAATACTGTGAAAAGTCCCATTCCAAGCGGTCCCGGTTTCCAGGGATGTCCGTGTTGCTCTTCCTGCACGAAAGCCCGGGAGAGGATAGGCTATTTCGCGTCCTGGACTCTCTCCAGCATTCGCCATGGCAGTGCTACCCCACCCACGACACTCGGGGAAGGCTGTGTCCCTACTTTTTTGCCAATCAGGAGTTCTACAGCCTGGACAGTCACCTGCCCATCTGCGGGGTGAGGCACGTGCACTGTGGCTCCGAGATCCTGAGCGTGACGCTGTACTGCAGTTTTCATAACTATGAAGACGCCATCAGACTCTACGAGATGATCCTGCAGAGAGAAGCGACCTTGCAAAAGAGCAATTTTTGTTTCTTCGTGCTCTATGCCTCCAAGAGCTTTGCTCTGCAGCTCTCCCTGAAGCAGCTGCCCCCGGGAATGTCAGTGGACCCCAAAGAGTCTTCGGTGCTGCAGTTTAAGGTTCAAGAGATCCGCCAGTTAGTGCCTCTGCTACCCAATCCATGCATGCCTATCAGCAGCACCAGGTGGCAGACTCAGGACTACGATGCCAACAAGATTCTGCTTCAGGTCCAGCTGAATCCAGAACTTCGTGTTAAGAATGGCACCTTGGGAGCTGGCATGCTTCCCCTGGGCTCCAGGCTGACTTCTGTCTCTGCAAAGAGGACCTCAGAACCCAGGAGCCAGAGGAACCAGGGCAAGAGGTCCCAGGGGCATTCTCTGGACCTTCCTGAGCCCAGTGGGAGCCCCACATCAGACACGTGTGCTGGCACTTCGTGGAAAAGCCCTGGCCGGTCATTCCAGGTCAGCAGCCCGTGACAGAGGAORF Start: ATG at 234ORF Stop: TGA at 1209SEQ ID NO:48326 aa MW at 36633.4 kDNOV20a,MDETQGPLAMTVHLLANSGHGSLLQRTLDQLLDCICPEVRLFQVSERASPVKYCEKSHCG95649-01 ProteinSKRSRFPGMSVLLFLHESPGEDRLFRVLDSLQNSPWQCYPTQDTRCRLCPYFFANQEFSequenceYSLDSQLPIWGVRQVHCGSEILRVTLYCSFDNYEDAIRLYEMILQREATLQKSNFCFFVLYASKSFALQLSLKQLPPGMSVDPKESSVLQFKVQEIGQLVPLLPNPCMPISSTRWQTQDYDGNKILLQVQLNPELGVKNGTLGAGMLPLGSRLTSVSAKRTSEPRSQRNQGKRSQGHSLELPEPSGSPTSDRCAGTSWKSPGRSFQVSSP


[0362] Further analysis of the NOV20a protein yielded the following properties shown in Table 20B.
102TABLE 20BProtein Sequence Properties NOV20aPSort0.4500 probability located in cytoplasm; 0.3000 probabilityanalysis:located in microbody (peroxisome); 0.1000 probability locatedin mitochondrial matrix space; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0363] A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20C.
103TABLE 20CGeneseq Results for NOV20aNOV20aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueABG01087Novel human diagnostic protein #1078 -1 . . . 244227/244(93%) e−131Homo sapiens, 414 aa. [WO200175067-132 . . . 366231/244(94%)A2, 11 OCT. 2001]ABG01087Novel human diagnostic protein #1078 -1 . . . 244227/244(93%) e−131Homo sapiens, 414 aa. [WO200175067-132 . . . 366231/244(94%)A2, 11 OCT. 2001]AAM93553Human polypeptide, SEQ ID NO:3317 -262 . . . 32665/65(100%)3e−31Homo sapiens, 194 aa. [EP1130094-A2,1 . . . 6565/65(100%)05 SEP. 2001]AAM02888Peptide #1570 encoded by probe for253 . . . 30754/55(98%)1e−23measuring breast gene expression - Homo1 . . . 5554/55 (98%)sapiens, 55 aa. [WO200157270-A2, 09AUG. 2001]AAM27604Peptide #1641 encoded by probe for253 . . . 30754/55(98%)1e−23measuring placental gene expression -1 . . . 5554/55(98%)Homo sapiens, 55 aa. [WO200157272-A2,09 AUG. 2001]


[0364] In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.
104TABLE 20DPublic BLASTP Results for NOV20aNOV20aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9H5Z6CDNA: FLJ22746 FIS, CLONE1 . . . 264261/264(98%) e−153HUV01174 - Homo sapiens (Human),1 . . . 264261/264(98%)268 aa.AAH25754SIMILAR TO HYPOTHETICAL1 . . . 244244/244(100%) e−143PROTEIN FLJ22746 - Homo sapiens1 . . . 244244/244(100%)(Human), 272 aa.Q96NJ9CDNA FLJ30707 FIS, CLONE1 . . . 246103/246(41%)9e−58FCBBF2001211 - Homo sapiens38 . . . 280164/246(65%)(Human), 546 aa.Q9Z103ACTIVITY-DEPENDENT251 . . . 31520/67(29%)7.6NEUROPROTECTIVE PROTEIN -100 . . . 16628/67(40%)Mus musculus (Mouse), 828 aa.O84671(FHA DOMAIN, HOMOLOGY TO226 . . . 30628/99(28%)7.6ADENYLATE CYCLASE) -186 . . . 28437/99(37%)Chlamydia trachomatis, 829 aa.


[0365] PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20E.
105TABLE 20EDomain Analysis of NOV20aIdentities/PfamSimilaritiesExpectDomainNOV20a Match Regionfor the Matched RegionValue



Example 21

[0366] The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
106TABLE 21ANOV21 Sequence AnalysisSEQ ID NO:492730 bpNOV21a,CGTTTCGTCCGGGGCCGCGGCGGCCATGGGGAATCGGCTGCAGCGAATCGGTGGCGCGCG95775-01 DNACGGGGCCTGAGCGCGCTGCAGTCACCCGGGAGCCGGGTCCAGGTCGTCTTCCCGGGACSequenceGCCCGGATCTGTCCTGCAGGATGGAGCCAGCACCCTCAGAGGTTCGACTCGCCGTCCGGGAAGCCATTCATGCCCTCTCGTCTTCGGAGGATGGCGGCCACATCTTCTGCACCCTGGACTCCCTGAAGCGGTATCTCGGTGAGATGGAGCCTCCAGCCCTCCCGAGCGAGAAGGAGGAGTTTGCCTCGGCCCACTTCTCGCCTGTCCTCAAATGTCTTGCCAGCAGGCTGAGCCCAGCCTGGCTGGAGCTGCTGCCCCATGGCCGCCTGGAGGAGCTGTGGGCCAGCTTCTTCCTGGAGGGCCCGGCGGACCAAGCCTTCCTGGTGTTGATGGAGACCATCGAGGGTGCTGCGGGCCCCAGCTTCCGGCTGATGAAGATGGCGCGGCTGCTGGCCAGATTCCTGCGCGAGGGCCGJCTCGCAGTGCTGATGGAGGCGCAGTGTCGGCAGCAGACGCAGCCCGGCTTCATCCTGCTCCGGGAGACGCTCCTGGGCAAGGTGGTGGCCCTGCCCGATCACCTGGGCAACCGCCTGCAGCACGAGAACTTGGCCGAGTTCTTCCCCCAGAACTACTTCCGCCTGCTCGGCGAGGAGCTCGTCCGGGTGCTGCAGGCGGTTGTGGACTCTCTCCAAGGTCCCCTGGATTCCTCCGTCTCCTTCGTGTCTCAGGTCCTTGGGAAAGCCTGTGTCCACGGCAGGCAGCAGGAGATCCTGGGCGTGCTGGTACCCCGGCTCACAGCGCTCACCCAGGGCAGCTACCTGCACCAGCGCGTCTGCTGGCGCCTGGTGGAGCAAGTGCCGGACCGGGCCATGGAGGCTGTGCTGACCGGGCTGGTGGAGCCCGCACTGGGGCCTGAGGTCCTTTCGAGACTGCTGGGGAACCTGGTGGTGAAGAACAAGAAGGCCCAGTTTGTGATGACCCAGAAGCTTCTGTTCTTACACTCCCGGCTCACGACGCCCATGCTGCAGAGCCTGCTGGGCCATCTGCCCATGGACAGCCAGCCGCGCCCGCTCCTGCTGCAGGTGCTGAAGGAGCTGTTGCAGACGTGGGGCAGCAGCAGTGCCATCCGCCACACTCCCCTGCCGCAGCAGCGCCACGTCAGCAAGGCTGTCCTCATCTGCCTGGCGCAACTCGGGGAGCCGGAACTGCGGGACAGCCGGGATGAACTGCTGGCCAGCATGATGGCGGGCGTGAAGTGCCGCCTGGACAGTAGCCTGCCCCCCGTGCGACGCCTCGCCATGATCGTGGCAGAGGTCGTTAGTGCCCGGATCCACCCCGAGGGGCCTCCCCTGAAATTCCAGTACGAAGAGGATGAACTGAGCCTCGAGCTGCTGGCCTTGGCCTCCCCCCAGCCTGCGGGTGACGGCGCCTCGGAGGCGGGCACGTCCCTCGTTCCAGCCACGCCAGAGCCCCCTGCAGAGACCCCCGCAGAGATCGTGGATGGCGGCGTCCCCCAAGCACAGCTGGCGGGCTCTGACTCGGACCTGGACAGCGATGATGAGTTTGTCCCCTACGACATGTCGGGGGACAGAGAGCTGAAGAGCAGCAAGGCTCCTGCCTACGTCCGGGACTGCGTGGAAGCCCTGACCACGTCTGAGGACATAGAGCGCTGTCAGGCAGCCCTGCGGGCCCTTGAGGGCCTGGTCTACAGGAGCCCCACAGCCACTCGGGAGGTGAGCGTGGAGCTGGCCAAGGTGCTTCTGCATCTGGAGGAGAAGACCTGTCTGGTGGGATTTGCAGGGCTGCGCCAGAGAGCCCTGGTGGCCGTCACGGTCACAGACCCGGCCCCCGTGGCCGACTATCTGACCTCACAGTTCTATGCCCTCAACTACAGCCTCCGGCAGCGCATGCACATCCTGGATGTGCTGACTCTGGCTGCCCAGGAGCTGTCTAGGCCTGGGTGCCTCGGGAGGACTCCCCAACCTGGCTCCCCAAGTCCCAACACCCCGTCCCTCCCAGAGGCAGCCGTCTCTCAGCCTGGCAGTGCCGTGGCGTCTGACTGGCGCCTGGTGCTGGAGGAGCCGATCAGAAGCAAGACCCAGCGGCTCTCCAAGGGTGCCCCGAGGCAGGGCCCGGCAGGCAGCCCCAGCAGATTCAACTCCGTGGCCGGCCACTTCTTCTTCCCCCTCCTTCAGCGCTTTGACAGCCCTCTGGTGACCTTCGACCTCTTGGGAGAAGACCAGCTGGTTCTCGGAAGGCTGGCGCACACCTTAGGGGCCCTGATGTGCCTGGCTGTTAACACCACGGTGGCTGTGGCCATGGGCAAGGCCCTGCTGGAATTCGTGTGGGCCCTTCGCTTCCACATCGATGCCTACGTGCGCCAGGGGCTGTTGTCGGCCGTCTCCTCCGTCCTGCTCAGCCTGCCTGCTGCGCGCCTGCTGGAGGACCTGATGGACGAGCTGCTGCAAGCCCGGTCCTGGCTGGCGGACGTGGCTGAGAAAGACCCGGACGAGGACTGCAGGACGCTGGCACTGAGGGCCCTGCTGCTTCTGCAGAGACTCAAGAACAGGCTCCTCCCACCCGCGTCTCCCTAGTCCCTGGACCCCTCCCCAGGACCACCCTCGCCGACAGCAAGGCAGGCGGCTGAGCAGCGGCCTCCAGCAGCAGAGCCAGGORF Start: ATG at 26ORE Stop: TAG at 2648SEQ ID NO:50874 aa MW at 95583.2 kDNOV21a,MGNRLQRIGGARGLSALQSPGSRVQVVFPGRPDLSCRMEPAPSEVRLAVREAIHALSSCG95775-01 ProteinSEDGGHIFCTLESLKRYLGEMEPPALPREKEEFASAHFSPVLKCLASRLSPAWLELLPSequenceHGRLEELWASFFLEGPADQAFLVLMETIEGAAGPSFRLMKMARLLARFLREGRLAVLMEAQCRQQTQPGFILLRETLLGKVVALPDHLGNRLQQENLAEFFPQNYFRLLCEEVVRVLQAVVDSLQGGLDSSVSFVSQVLGKACVHGRQQEILGVLVPRLTALTQGSYLHQRVCWRLVEQVPDRAMEAVLTGLVEAALGPEVLSRLLGNLVVKNKKAQFVMTQKLLFLQSRLTTPMLQSLLGHLAMDSQRRPLLLQVLKELLETWGSSSAIRHTPLPQQRHVSKAVLICLAQLGEPELRDSRDELLASMMAGVKCRLDSSLPPVRRLGMIVAEVVSARIHPEGPPLKFQYEEDELSLELLALASPQPAGDGASEAGTSLVPATAEPPAETPAEIVDGGVPQAQLAGSDSDLDSDDEFVPYDMSGDRELKSSKAPAYVRDCVEALTTSEDIERCQAALRALEGLVYRSPTATREVSVELAKVLLHLEEKTCVVGFAGLRQRALVAVTVTDPAPVADYLTSQFYALNYSLRQRMDILDVLTLAAQELSRPCCLGRTPQPGSPSPNTPCLPEAAVSQPGSAVASDWRVVVEERIRSKTQRLSKGGPRQGPAGSPSRFNSVAGHFFFPLLQRFDRPLVTFDLLGEDQLVLGRLAHTLGALMCLAVNTTVAVAMGKALLEFVWALRFHIDAYVRQGLLSAVSSVLLSLPAARLLEDLMDELLEARSWLADVAEKDPDEDCRTLALRALLLLQRLKNRLLPPASP


[0367] Further analysis of the NOV21a protein yielded the following properties shown in Table 21B.
107TABLE 21BProtein Sequence Properties NOV21aPSort0.7000 probability located in plasma membrane; 0.3000analysis:probability located in microbody (peroxisome); 0.2000probability located in endoplasmic reticulum (membrane);0.1000 probability located in mitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0368] A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21C.
108TABLE 21CGeneseq Results for NOV21aNOV21aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAU81754Human clk-2 protein - Homo sapiens,38 . . . 874832/837(99%)0.0836 aa. [WO200198478-A2, 27 DEC.1 . . . 836834/837(99%)2001]AAB93337Human protein sequence SEQ ID643 . . . 874226/232(97%) e−125NO:12445 - Homo sapiens, 360 aa.129 . . . 360229/232(98%)[EP1074617-A2, 07 FEB. 2001]AAU81758Mouse clk-2 protein - Mus musculus,620 . . . 860147/241(60%)1e−71350 aa. [WO200198478-A2, 27 DEC.140 . . . 350166/241(67%)2001]AAU81755Partial mouse clk-2 protein #1 - Mus336 . . . 488122/153(79%)4e−65musculus, 153 aa. [WO200198478-A2,1 . . . 153142/153(92%)27 DEC. 2001]AAU81759Partial pig clk-2 protein - Sus scrofa, 122547 . . . 668107/122(87%)6e−52aa. [WO200198478-A2, 27 DEC. 2001]1 . . . 122111/122(90%)


[0369] In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21D.
109TABLE 21DPublic BLASTP Results for NOV21aNOV21aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO75168KIAA0683 PROTEIN - Homo sapiens31 . . . 874840/844(99%)0.0(Human), 844 aa (fragment).1 . . . 844842/844(99%)Q9BR21C305C8.3.1 (DFKZP434A073)38 . . . 874833/837(99%)0.0(KIAA0683) - Homo sapiens (Human),1 . . . 837835/837(99%)837 aa.Q9Y4R8HYPOTHETICAL 91.8 KDA38 . . . 874832/837(99%)0.0PROTEIN (KIAA0683 GENE1 . . . 837835/837(99%)PRODUCT) - Homo sapiens (Human),837 aa.Q91VQ3SIMILAR TO RIKEN CDNA38 . . . 874627/838(74%)0.01200003M09 GENE - Mus musculus1 . . . 838703/838(83%)(Mouse), 840 aa.Q9DC401200003M09RIK PROTEIN - Mus38 . . . 874626/838(74%)0.0musculus (Mouse), 840 aa.1 . . . 838701/838(82%)


[0370] PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21E.
110TABLE 21EDomain Analysis of NOV21aIdentities/PfamSimilaritiesExpectDomainNOV21a Match Regionfor the Matched RegionValue



Example 22

[0371] The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
111TABLE 22ANOV22 Sequence AnalysisSEQ ID NO:511199 bpNOV22a,ATTGATGGGCAGTGCATCTGCGTAACATGGCTACCTCTGAACTCCTTTGGGGAACACGCG95942-01 DNATATATCTTTGAGAATCCGATGAAAACCAGAGATTCCGCCCTTGTTTTCTTACAATTAASequenceAAATATTATCCAGCAATGCAAATGAACAAACTATAACTACACACAGCTGCATGGATAAATGTCAGAAACATGACGTTGAGTGTGAGAAGCCAGATGCAAACGAGGACTCACTGTGCAATTCTGTGCATGTACAGTGGCCAGGAGAAGGCAGCACTGGCTTTTCTTTCATCAGCCCAAAGATGCCTTTCTTTGCGAATACGTTCAGTCCGAAGAAGACACCTCCTCGGAAGTCGGCATCTCTCTCCAACCTGCATTCTTTGGATCGATCAACCCGGGAGGTGGAGCTGGGCTTGGAATACGGATCCCCGACTATGAACCTGGCAGGGCAAAGCCTGAAGTTTGAAAATGGCCAGTGGATAGCAGACACAGGGGTTAGTGGCGGTGTGGACCGGAGGGAGGTTCAGCGCCTTCGCAGGCGGAACCAGCAGTTGGAGGAAGAGAACAATCTCTTGCGGCTGAAAGTGGACATCTTATTAGACATGCTTTCAGAGTCCACTGCCGAATCCCACTTAATGGAGAAGGAACTGGATGAACTCAGGATCAGCCCCAACAGAATGAAGACCCCAGAGACATTTATTGGGGAGTAGGATGTGGCTGAGTGCTTTTTTTTTGGCCAGACTAGCGGATTCAGTCCTGGAAGAGAGTATCATATAATGAGACCCACACGCACTGGCACCCTTGGGTTGCAATAGAAGGTGACATGGAATGGAGAAAACCAAGATTCCAGATGGGGATAGTAACTAGAAGGTGCTTCAGATCCACTGCCTGCGGGTGCCAGTCTGAAAACCAGACCCCACACAGGCCTGGGGCTGCTGATGAGCTTTTCGGTGCTCTCCACACAACGCTCGCAAACACACATGTCCCAGAATAGCTCTGTTGGGTTGTGTTGGGAGAAGCGGCTGGAGTTCATTCTCTCACCCCCTTATGTTGGTGTTTGGCGTGTGACAGCAGTTCTACAGAGCTCTGTGTTCGCGTCTTGGATGAGCGGCTCTCTTGGCTCTTAAAGGCAGGCCTCTCTCTTCTTGCCTCTAAAGAATCCTCCTTCCTCACACCTGCCCTCCTCAGTACCTAGACTTACORF Start: ATG at 77ORF Stop: TGA at 674SEQ ID NO:52199 aa MW at 22636.3 kDNOV22a,MKTRDSALVFLELKILSSNANEQTITTHSCMDKCQKHDVECEKPDANEDSLCNSVHVQProteinWPGEGSTCFSFIRPKMPFFGNTFSPKKTPPRKSASLSNLHSLDRSTREVELGLEYGSPSequenceTMNLAGQSLKFENGQWIAETGVSGGVDRREVQRLRRRNQQLEEENNLLRLKVDILLDMLSESTAESHLMEKELDELRISRKRK


[0372] Further analysis of the NOV22a protein yielded the following properties shown in Table 22B.
112TABLE 22BProtein Sequence Properties NOV22aPSort0.5423 probability located in mitochondrial matrix space;analysis:0.3000 probability located in microbody (peroxisome); 0.2652probability located in mitochondrial inner membrane; 0.2652probability located in mitochondrial intermembrane spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0373] A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22C.
113TABLE 22CGeneseq Results for NOV22aNOV22aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAM00955Human bone marrow protein, SEQ ID 61 . . . 199138/139 (99%)3e−74NO: 431 - Homo sapiens, 175 aa. 37 . . . 175139/139 (99%)[WO200153453-A2, 26-JUL-2001]AAY86201Nuclear transport protein clone hfb2025133 . . . 199 67/67 (100%)7e−30protein sequence - Homo sapiens,  1 . . . 67 67/67 (100%)67 aa. [WO9964455-A1, 16-DEC-1999]ABB23535Protein #5534 encoded by probe for 74 . . . 99 26/26 (100%)3e−08measuring heart cell gene expression -  1 . . . 26 26/26 (100%)Homo sapiens, 26 aa. [WO200157274-A2,09-AUG-2001]AAB69070Human male enhanced antigen-2  92 . . . 193 25/102 (24%)1.5(MEA-2) protein sequence SEQ ID 768 . . . 868 45/102 (43%)NO: 2 - Homo sapiens,1374 aa. [JP2000316580-A,21-NOV-2000]AAU36216Pseudomonas aeruginosa cellular134 . . . 193 22/67 (32%)2.6proliferation protein #206 - 683 . . . 749 35/67 (51%)Pseudomonas aeruginosa,874 aa. [WO200170955-A2,27-SEP-2001]


[0374] In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.
114TABLE 22DPublic BLASTP Results for NOV22aNOV22aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9Y3M2HYPOTHETICAL 14.5 KDA  74 . . . 199126/126 (100%)5e−66PROTEIN (CHROMOSOME 22 1 . . . 126126/126 (100%)OPENREADING FRAME 2) - Homo sapiens (Human),126 aa.AAL56062CYTOSOLIC LEUCINE- 74 . . . 199125/126 (99%)1e−65RICH PROTEIN - Homo sapiens 1 . . . 126126/126 (99%)(Human), 126aa.Q9D1C21110014P06RIK PROTEIN (RIKEN 74 . . . 199104/126 (82%)2e−56CDNA 1110014P06 GENE) 1 . . . 126120/126 (94%)(CYTOSOLIC LEUCINE-RICHPROTEIN) - Mus musculus(Mouse), 127aa.Q9UIK9HRIHFB2025 PROTEIN - Homo133 . . . 199 67/67 (100%)2e−29sapiens (Human), 67 aa  1 . . . 67 67/67 (100%)(fragment).Q9CVN61700121K02RIK PROTEIN - Mus 77 . . . 190 45/122 (36%)3e−15musculus (Mouse), 226 aa (fragment). 70 . . . 191 69/122 (55%)


[0375] PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22E.
115TABLE 22EDomain Analysis of NOV22aPfam DomainNOV22aIdentities/Expect ValueMatch RegionSimilaritiesfor theMatched Region



Example 23

[0376] The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
116TABLE 23ANOV23 Sequence AnalysisSEQ ID NO:53717 bpNOV23a,CTGTCGGCGGAGTGGGCGGAGCTGCCGGGGTCAGTTGGTCCAACTGTCCCGCCCTGAGCG96211-01 DNAGTGTCGCCCGGATCCCTCCTTCTCCCGGCGCCTCAAGCGGAAGACCATTCCTCAAGAASequenceTTTTGTATCCAAGGCCCAAAAGTTTGTTACCCAAGATGATGAATGCTGACATGGATGCAGTTGATGCTGAAAATCAAGTGGAACTGGAGGAAAAAACAAGACTTATTAATCAAGTGTTGGAACTCCAACACACACTTGAAGATCTCTCTGCAAGAGTACATCCAGTTAAGGAAGAAAATCTGAAGCTAAAATCAGAAAACCAAGTTCTTGGACAATATATAGAAAATCTCATGTCAGCTTCTAGTGTTTTTCAAACAACTGACACAAAAAGCAAAAGAAAGTAAGGGATTGACACCCTTCTGTTTTATGGAATTCCTGCTGATCATTTTTTCTTTAAAACTTGCATAGATTCCAAAACTTACAGTACCTTTGTGGCTTCATTGAATATTTATGAAGATAATGTCAGATGTAGACAAAAATAACACAATAACAGGAGACTTCCATAAGTTTGTGTATTATGTTAGTCTATGAAAACGTGCAAATGTATTGTAGAGACTTTATGATTAGAATTGCATATATTTATGAAACTTAAAGATGAATGTTTTATTGAATCTGTAGGTTTAGCACTGTCTTTTATTATAGGATTAGTAAGATATACAAGORF Start: ATG at 152ORF Stop: TAA at 398SEQ ID NO:5482 aa MW at 9354.4 kDNOV23a,MMNADMDAVDAENQVELEEKTRLINQVLELQHTLEDLSARVDAVKEENLKLKSENQVLCG96211-01 ProteinGQYINLMSASSVFQTTDTKSKRKSequence


[0377] Further analysis of the NOV23a protein yielded the following properties shown in Table 23B.
117TABLE 23BProtein Sequence Properties NOV23aPSort0.6500 probability located in cytoplasm;analysis:0.1000 probability located in mitochondrialmatrix space; 0.1000 probability locatedin lysosome (lumen); 0.0000 probabilitylocated in endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0378] A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23C.
118TABLE 23CGeneseq Results for NOV23aNOV23aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB94677Human protein sequence SEQ ID 1 . . . 8282/82 (100%)2e−39NO: 15626 - Homo sapiens, 122 aa.41 . . . 12282/82 (100%)[EP1074617-A2, 07-FEB-2001]AAY86189Nuclear transport protein clone hfb2072 1 . . . 8282/82 (100%)2e−39protein sequence - Homo sapiens, 125 aa.44 . . . 12582/82 (100%)[WO9964455-A1, 16-DEC-1999]AAB56943Human prostate cancer antigen protein 1 . . . 8282/82 (100%)2e−39sequence SEQ ID NO: 1521 - Homo48 . . . 12982/82 (100%)sapiens, 129 aa. [WO200055174-A1,21-SEP-2000]AAG00691Human secreted protein, SEQ ID NO: 1 . . . 8180/81 (98%)2e−384772 - Homo sapiens, 139 aa.41 . . . 12180/81 (98%)[EP1033401-A2, 06-SEP-2000]ABB61942Drosophila melanogaster polypeptide14 . . . 8252/69 (75%)3e−22SEQ ID NO 12618 - 66 . . . 13460/69 (86%)Drosophila melanogaster,135 aa. [WO200171042-A2,27-SEP-2001]


[0379] In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23D.
119TABLE 23DPublic BLASTP Results for NOV23aIdentities/NOV23aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BZB2SHORT COILED-COIL PROTEIN  1 . . . 8282/82 (100%)4e−39SCOCO (SHORT COILED COIL  1 . . . 8282/82 (100%)PROTEIN) - Homo sapiens (Human), 82 aa.Q96JY9CDNA FLJ14891 FIS,  1 . . . 8282/82 (100%)4e−39CLONE PLACE1004256,41 . . . 12282/82 (100%)WEAKLY SIMILAR TOMUS MUSCULUSSHORT COILED COILPROTEIN SCOCO (SCOC) MRNA -Homo sapiens (Human),122 aa.Q9UIL1HRIHFB2072 PROTEIN - Homo sapiens 1 . . . 8282/82 (100%)4e−39(Human), 125 aa (fragment).44 . . . 12582/82 (100%)Q9VB51CG5934 PROTEIN - Drosophila14 . . . 8252/69 (75%)8e−22melanogaster (Fruit fly), 135 aa.66 . . . 13460/69 (86%)Q9U377T07C4.10B PROTEIN - Caenorhabditis18 . . . 7544/58 (75%)2e−18elegans, 108 aa.44 . . . 10155/58 (93%)


[0380] PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23E.
120TABLE 23EDomain Analysis of NOV23aIdentities/SimilaritiesNOV23a for the Expect ValuePfam DomainMatch RegionMatched RegionbZIP31 . . . 7112/41 (29%)0.3728/41 (68%)



Example 24

[0381] The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
121TABLE 24ANOV24 Sequence AnalysisSEQ ID NO:551158 bpNOV24a,ATGCCAGACTTCTGTGAACTTGAGTGTGACTGGAAAATCCTTCTGAGGAAAGCACAAGCG96221-01 DNAGACTCCTAGAAACCTCTGAGCAAGCAGAGATAGCAGCAGCAGCTCTAACTGTCCTCTTSequenceTGCATCTTCTCTTGTTGCCCATCAATCTTCCAGACAGCTGTTTCCAATATGCAAATCGAATCATGTCACTCCTTGTTTTGAAAACCATTCAACACTTCCAACTGTGTCGACATGCCTAACTAGGCCTTCAGGATCTATGTCACACACCGTCTTCCTGCCCCTTCTTCTCCAGCCTTGCCTCTCACCATTCCCCAGTGCCCTTCACCATTTCCCAGTGCCTCTCACCATTCCCCAGTGCCCTTCACCATTCCCCAGTGCCCCTCACCATTTCCCAGTGTCCCTCACCATTTCCCAGTGCCCCTCACCATTTCCCAGTGCCCTTCACCATTCCCCAGTGCCCTTCACCATTTCCCAGTGCCCTTCACCATTTCCCAGTGCCCTTCACCATTTCCCACTGCCCTTCACCATTTCCCAGTGCCCTTCACCATTTCCCAGTGCCCTTCACCATTTCCCAGTGCCCTTCACCATTCCCCAGTGTCCCTCACCATTTCCCAGTGCCTCTCACCATTCCCCAGTGCCCTTCACCATTCCCCAGTGCCTCTCACCATTCCCCACTGCCCTTCACCATTTCCCAGTGCCCCTCACCATTCCCCAGTACCCTTCACCATTCCCCAGTGTCCCTCACCATTTCCCAGTGCCTCTCACCATTTCCCAGTGCCCTTCACCATTTCCCACTGcccTTcACcATTTCCCAGTGCCCTTCACCATTCCCCAGTGTCCCTCACCATTTCCCAGTGCCCTTCACCATTCCCCAGTGCCCTTCACCATTTCCCAGTGCCCTTCACCATTCCCCAGTGTCCCTcAcCATTTCCCAGTGCCTCTCACCATTCCCCAGTGCCCTTCACCATTCCCCAGTGCCTcTcAcCATTTCCCAGTGCCTCTCACCATTTCCCAGTGCCCTTCACCATTTCCCAGTGCTCCTCACCATTTCCCAGTGCCCCTCACCATTTCCCAGTGCCCTTCACCATTCCCCAGTGCCCTTCACCATTCCCCAGTGCCCCTCACCATTTCCCAGTGCCTCTCACCATTCCTCAGTGCCTGAORF Start: ATG at 1ORF Stop: TGA at 1156SEQ ID NO:56385 aa MW at 41809.8 kDNOV24a,MPDFCELECDWKILLRKAQGLLETSEEAEIAAAALTVLFASSLvAHQSSRELFPICKSCG96221-01 ProteinNHVTPCFENHSTLPTVSTWLTRPSCSMSHTVFLPLLLQPCLSPFPSALHHFPVPLTIPSequenceQCPSPFPSAPHHFPVSLTISQCPSPFPSALHHSPVPFTISQCPSPFPSALHHFPVPFTISQCPSPFPSALHHFPVPFTIPQCPSPFPSASHHSPVPFTIPQCLSPFPSALHHFPVPLTIPQYPSPFPSVPHHFPVPLTISQCPSPFPSALHHFPVPFTIPQCPSPFPSALHHSPVPFTISQCPSPFPSVPHHFPVPLTIPQCPSPFPSASHHFPVPLTISQCPSPFPSAPHHFPVPLTISQCPSPFPSALHHSPVPLTISQCLSPFLSA


[0382] Further analysis of the NOV24a protein yielded the following properties shown in Table 24B.
122TABLE 24BProtein Sequence Properties NOV24aPSort0.6389 probability located in microbody (peroxisome); analysis:0.6000 probability located in endoplasmicreticulum (membrane); 0.1000 probabilitylocated in mitochondrial innermembrane; 0.1000 probability located in plasma membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0383] A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24C.
123TABLE 24CGeneseq Results for NOV24aNOV24aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueABG27597Novel human diagnostic protein101 . . . 374 89/274 (32%)1e−30#27588 - Homo sapiens,  38 . . . 311 94/274 (33%)331 aa. [WO200175067-A2,11-OCT-2001]ABG27597Novel human diagnostic protein101 . . . 374 89/274 (32%)1e−30#27588 - Homo sapiens, 38 . . . 311 94/274 (33%)331 aa. [WO200175067-A2,11-OCT-2001]ABG27250Novel human diagnostic protein 94 . . . 348 95/259 (36%)2e−15#27241 - Homo sapiens, 13 . . . 206104/259 (39%)406 aa. [WO200175067-A2,11-OCT-2001]AAM00875Human bone marrow protein, SEQ ID119 . . . 367 79/256 (30%)2e−15NO: 351 - Homo sapiens, 5 . . . 223109/256 (41%)243 aa. [WO200153453-A2,26-JUL-2001]ABG27250Novel human diagnostic protein 94 . . . 348 95/259 (36%)2e−15#27241 - Homo sapiens, 13 . . . 206104/259 (39%)406 aa. [WO200175067-A2,11-OCT-2001]


[0384] In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24D.
124TABLE 24DPublic BLASTP Results for NOV24aNOV24aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ40692HYDROXYPROLINE-RICH 60 . . . 362 87/324 (26%)2e−20GLYCOPROTEIN - Oryza sativa  68 . . . 369117/324 (35%)(Rice), 369 aa.Q9STN0EXTENSIN-LIKE PROTEIN -  92 . . . 383 95/327 (29%)1e−19Arabidopsis thaliana (Mouse-ear cress), 8 . . . 318133/327 (40%)437 aa.Q41707EXTENSIN CLASS 1 PROTEIN101 . . . 372 87/272 (31%)3e−19PRECURSOR (EXTENSIN-LIKE 65 . . . 291113/272 (40%)PROTEIN) - Vigna unguiculata(Cowpea), 489 aa.Q9T0K5EXTENSIN-LIKE PROTEIN - 110 . . . 381 88/275 (32%)1e−18Arabidopsis thaliana (Mouse-ear cress),476 . . . 734104/275 (37%)760 aa.AAL89866RE20756P - Drosophila melanogaster 90 . . . 332 62/249 (24%)8e−18(Fruit fly), 285 aa. 46 . . . 279107/249 (42%)


[0385] PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24E.
125TABLE 24EDomain Analysis of NOV24aPfam DomainNOV24aIdentities/Expect ValueMatch RegionSimilaritiesfor theMatched Region



Example 25

[0386] The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.
126TABLE 25ANOV25 Sequence AnalysisSEQ ID NO:5711947 bpNOV25a,ATGTGCGGTCAGTTCTGAGGCCCTTTGCCTCGTCGAGCCCCACCCTGCCCCAGAGCCCCG96394-01 DNATGGTCCGAGTGTGCCAGTCATCTGACGCATGCGTGCCTGTTCTTGCCCACAGGTCGTGSequenceCGCGTGGCCAGGGCGCGGGGACATGGGGCCCGACATGGAGCTGCCCAGCCACTCGAAGCAGCTCCTGCTCCAGCTGAACCAGCAGAGGACCAAGGGCTTCCTGTGTGACGTCATCATCATGGTGGACAACTCCATCTTCCGGGCCCACAAGAACGTCCTACCCGCCAGCAGCATCTATTTCAAGTCCCTCGTCCTGCACCACAACCTCATCAACCTCGACACACACATGGTCAGCTCCACAGTGTTCCAGCAGATCTTGGACTTCATCTACACAGGCAAGCTGCTGCCCAGCGACCAGCCAGCCGAGCCCAACTTCAGCACCCTCCTCACTGCCGCCAGCTACCTCCAGCTGCCCCAGTTGGCAGCCCTCTGCCGCCGCAAACTCAAGCGAGCCGGCAAGCCCTTTGGCTCTGGGAGGGCGGGGTCCACTGGCATAGGGCGGCCCCCCCGCAGCCAGCGGCTGTCCACGGCCTCTGTCATCCAAGCTCGGTATCAGGGGCTCGTGGATGGGCGCAAGGGGGCCCACGCCCCCCAGGAGCTCCCCCAAGCCAAAGGCTCAGACGATGAACTCTTTCTTGGTGGCTCTAACCAGGATAGCGTGCAAGGTCTGGGCCGGGCTGTCTGCCCAGCTGGCGGGGAGGCGGGTCTGGGGGGCTGCAGCAGCAGCACCAACGGGAGCAGCGGGGGCTGCGAGCAGGAGCTGGCCTTGGACCTGTCCAAGAAAAGCCCACCCTTGCCCCCTGCCACCCCAGGTCCCCACCTCACTCCCGATGACGCAGCCCAGCTGAGCGACAGCCAACATGGCTCGCCCCCTGCGGCCTCTGCCCCTCCCGTTGCCAACAGTGCCTCTTATTCTGAGCTGGGGGGCACCCCTGATGAGCCCATGGATCTGGACGGCCCCGAGGACAACCACCTGAGCCTGCTGGAGGCGCCTGGTGGGCAGCCTCGGAAGAGCCTCCGGCACTCCACTCGGAAGAAGGAGTGGGGCAAGAAGGAGCCTGTGGCTGGCTCCCCCTTTGAGCGGAGAGAAGCAGGGCCCAAGGGTCCCTGCCCGGGAGAGGAGGGTGAGGGGGTCGGGGACAGGGTTCCCAATGGCATCCTGGCTAGTGGGGCTGGCCCTAGCGGGCCCTATGGGGAGCCCCCCTACCCCTGCAAGGAGGAGGAGGAGAACGGCAAGGATGCAAGTGAAGACAGTGCGCAGAGCGGGAGCGAGGGGGCCAGCGGCCACGCCAGCGCCCACTACATGTACCGGCAGGAGGGCTACGAGACGGTGTCCTACGGGGACAACTTGTATGTGTGCATTCCCTGCGCCAAGGGCTTCCCCAGCTCTGAGCAGCTCAATCCCCACGTGGAGACTCACACGGAGGAAGAGCTGTTCATCAAGGAAGAGGGGGCCTACGAGACAGGCAGTGGGGGTGCCGAGGAGGAGGCCGAGGACCTGTCAGCACCCAGTGCGGCCTACACGGCTGAGCCCCGGCCCTTCAAGTGTTCGGTCTGCGAGAAGACCTACAACGACCCAGCCACGCTGCGGCAGCACGAGAAGACGCACTGGCTGACACGGCCCTTCCCCTGCAACATCTGTGGCAAAATGTTCACCCACCGCGGCACCATGACGCGTCACATGCGGAGCCACCTGGGCCTGAAGCCCTTCGCCTGCGATGAGTGTGGCATGCGCTTCACCCGTCAGTACCGCCTCACCCACCACATGCGTGTCCACTCGCGCGAGAAACCTTACCAGTGCCAGCTGTCCCCGGGCAAGTTCACCCAGCAGCGCAACCTCATCAGCCACCTGCGCATGCACACCTCCCCCTCCTAGAAGCCAAAGACCCCCORF Start: ATG at 139ORF Stop: TAG at 1930SEQ ID NO: 58597 aa MW at 64227.0 kDNOV25a,MGPDMELPSHSKQLLLQLNQQRTKGFLCDVILMVENSIFRAHKNVLAASSIYFKSLVLCG96394-01 ProteinHDNLINLDTDMVSSTVFQQILDFIYTGKLLPSDQPAEPNFSTLLTAASYLQLPELAALSequenceCRRKLKRAGKPFGSGRAGSTGMGRPPRSQRLSTASVIQARYQGLVDGRKGAHAPQELPQAKGSDDELFLGGSNQDSVQGLGRAVCPAGCEAGLGGCSSSTNGSSGGCEQELGLDLSKKSPPLPPATPGPHLTPDDAAQLSDSQHGSPPAASAPPVANSASYSELGGTPDEPMDLEGAEDNHLSLLEAPGGQPRKSLRHSTRKKEWGKKEPVAGSPFERREAGPKGPCPGEEGEGVGDRVPNGILASGAGPSGPYGEPPYPCKEEEENGKDASEDSAQSGSEGGSGHASAHYMYRQEGYETVSYGDNLYVCIPCAKGPPSSEQLNAHVETHTEEELFIKEEGAYETGSGGAEEEAEDLSAPSAAYTAEPRPFKCSVCEKTYKDPATLRQHEKTHWLTRPFPCNICGKMFTQRGTMTRHMRSHLGLKPFACDECGMRFTRQYRLTEHMRVHSGEKPYECQLCGGKFTQQRNLISULRMHTSPS


[0387] Further analysis of the NOV25a protein yielded the following properties shown in Table 25B.
127TABLE 25BProtein Sequence Properties NOV25aPSort0.4500 probability located in cytoplasm;analysis:0.3000 probability located in microbody(peroxisome); 0.1000 probability locatedin mitochondrial matrix space; 0.1000probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0388] A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25C.
128TABLE 25CGeneseq Results for NOV25aNOV25aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAR95242HIC-1 polypeptide - Homo sapiens, 547 401 . . . 593131/203 (64%)3e−70aa. [WO9614877-A1, 23-MAY-1996] 231 . . . 428148/203 (72%)AAG66311Human zinc finger protein 46 - Homo 371 . . . 594 78/224 (34%)3e−34sapiens, 419 aa. [WO200155188-A1, 140 . . . 335113/224 (49%)02-AUG-2001]ABG01726Novel human diagnostic protein #1717 -  371 . . . 594 81/225 (36%)1e−33Homo sapiens, 1342 aa.1034 . . . 1229113/225 (50%)[WO200175067-A2, 11-OCT-2001]ABG01726Novel human diagnostic protein #1717 -  371 . . . 594 81/225 (36%)1e−33Homo sapiens, 1342 aa.1034 . . . 1229113/225 (50%)[WO200175067-A2, 11-OCT-2001]ABG07279Novel human diagnostic protein #7270 -  373 . . . 594 74/222 (33%)1e−33Homo sapiens, 792 aa. [WO200175067- 246 . . . 456111/222 (49%)A2, 11-OCT-2001]


[0389] In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25D.
129TABLE 25DPublic BLASTP Results for NOV25aNOV25aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96JB3HIC-3 - Homo sapiens (Human), 597 1 . . . 597595/597 (99%)0.0aa. 1 . . . 597595/597 (99%)Q9UPX9KIAA1020 PROTEIN - Homo sapiens 43 . . . 597554/555 (99%)0.0(Human), 555 aa (fragment). 1 . . . 555555/555 (99%)Q9NSM9HYPOTHETICAL 34.7 KDA283 . . . 597315/315 (100%)0.0PROTEIN - Homo sapiens (Human), 1 . . . 315315/315 (100%)315 aa (fragment).Q90W33HRG22 PROTEIN - Brachydanio rerio 5 . . . 597348/602 (57%)e−172(Zebrafish) (Zebra danio), 560 aa. 1 . . . 560412/602 (67%)Q9JLZ6HYPERMETHYLATED IN CANCER338 . . . 597241/263 (91%)e−1472 PROTEIN - Mus musculus (Mouse), 4 . . . 266246/263 (92%)266 aa (fragment).


[0390] PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25E.
130TABLE 25EDomain Analysis of NOV25aIdentities/SimilaritiesNOV25afor the MatchedPfam DomainMatch RegionRegionExpect ValueK_tetra 37 . . . 12220/115 (17%)0.5852/115 (45%)BTB 12 . . . 12544/143 (31%)1.6e−2286/143 (60%)zf-C2H2487 . . . 509 8/24 (33%)1.5e−0521/24 (88%)zf-C2H2515 . . . 537 9/24 (38%)3.9e−0722/24 (92%)zf-C2H2543 . . . 565 9/24 (38%)1.3e−0519/24 (79%)zf-C2H2571 . . . 59311/24 (46%)0.0001419/24 (79%)



Example 26

[0391] The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.
131TABLE 26ANOV26 Sequence AnalysisSEQ ID NO:59365 bpNOV26a,CACGTGCACCCACTGCCTCTTCCCTTCTCGCTTGGGAACTCTAGTCTCGCCTCGGGTTCG96470-01 DNAGCAATGGACCCCAACTGCTCCTGTGCCGCTGCAGGTGTCTCCTGCACCTGCGCCAGCTSequenceCCTGCAAGTGCAAAGAGTGCAAATGCACCTCCTGCATCTGCAAAGGGGCATCGGAGAAGTGCAGCTGCTCCGCCTGATGTCGCGACAGCCCTGCTCCCAAGTACAAATAGAGTGACCCGTAAAATCCAGGATTTTTTGTTTTTTCCTACAATCTTGACCCCTTTGCTACATTCCTTTTTTTCTGTGAAATATGTGAATAATAATTAAACACTTAGACTTGAAAAAAAAAAAAAAAAAAAAACCAAAAAAORF Start: ATG at 62ORF Stop: TGA at 191SEQ ID NO:6043 aa MW at 4279.9 kDNOV26a,MDPNCSCAAAGVSCTCASSCKCKECKCTSCICKGASEKCSCCACG96470-01 ProteinSequence


[0392] Further analysis of the NOV26a protein yielded the following properties shown in Table 26B.
132TABLE 26BProtein Sequence Properties NOV26aPSort0.7963 probability located in mitochondrialanalysis:intermembrane space; 0.4785 probabilitylocated in mitochondrial matrix space;0.4500 probability located in cytoplasm; 0.1852probability located in mitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0393] A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26C.
133TABLE 26CGeneseq Results for NOV26aIdentities/NOV26aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAU14784Novel bone marrow polypeptide #183 -  1 . . . 4343/62 (69%)2e−19Homo sapiens, 98 aa. [WO200157187-A2,37 . . . 9843/62 (69%)09-AUG-2001]AAO13869Human polypeptide SEQ ID NO 27761 -  1 . . . 4239/61 (63%)2e−16Homo sapiens, 89 aa. [WO200164835-A2,29 . . . 8840/61 (64%)07-SEP-2001]AAB56852Human prostate cancer antigen protein 1 . . . 4239/61 (63%)2e−16sequence SEQ ID NO: 1430 - Homo35 . . . 9440/61 (64%)sapiens, 95 aa. [WO200055174-A1,21-SEP-2000]AAM78488Human protein SEQ ID NO 1150 - Homo 1 . . . 4338/62 (61%)5e−16sapiens, 117 aa. [WO200157190-A2,57 . . . 11739/62 (62%)09-AUG-2001]AAB57183Human prostate cancer antigen protein 1 . . . 4338/62 (61%)5e−16sequence SEQ ID NO: 1761 - Homo 9 . . . 6939/62 (62%)sapiens, 69 aa. [WO200055174-A1,21-SEP-2000]


[0394] In a BLAST search of public sequence datbases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26D.
134TABLE 26DPublic BLASTP Results for NOV26aNOV26aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP80296Metallothionein-IK (MT-1K) - Homo1 . . . 4343/62 (69%)4e−19sapiens (Human), 62 aa.1 . . . 6243/62 (69%)P13640Metallothionein-IG (MT-1G) - Homo1 . . . 4342/62 (67%)3e−17sapiens (Human), 61 aa.1 . . . 6142/62 (67%)P80295Metallothionein-II (MT-1I) - Homo1 . . . 4341/62 (66%)1e−16sapiens (Human), 61 aa.1 . . . 6141/62 (66%)P04733Metallothionein-IF (MT-1F)1 . . . 4239/61 (63%)4e−16(HQP0376) - Homo sapiens (Human),1 . . . 6040/61 (64%)61 aa.P18055Metallothionein-IIA (MT-2A) - 1 . . . 4338/62 (61%)4e−16Oryctolagus cuniculus (Rabbit), 62 aa.1 . . . 6240/62 (64%)


[0395] PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26E.
135TABLE 26EDomain Analysis of NOV26aIdentities/SimilaritiesNOV26afor the Pfam DomainMatch RegionMatched RegionExpect Valuemetalthio1 . . . 4336/68 (53%)0.01141/68 (60%)



Example 27

[0396] The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.
136TABLE 27ANOV27 Sequence AnalysisSEQ ID NO:61258 bpNOV27a,TTTTAGGAAATGTGTTCTAGCTGCAGTGCAGACAGTGTGGAGATACAGCAGCCCAAGGCG96650-01 DNAGAATGACCCACAGGAGGCTAGTGCAATTGTCTAGTGGCTGTGGGGTGGGGGGCATGTTSequenceGAGGGGGATGGGGCTGGCCACATGGGGTGAAGGAAGAAGGAGCTGGTCCTGGGTTCCTGGCCCGTGTGACTGTGTCAGCTGGTGGCTCTGCTAATGGCACAGAGAACACAGGAGTAGGCAAGCTGCTGGATGAGCAGAGCTTORF Start: ATG at 10ORF Stop: TAA at 208SEQ ID NO: 6266 aa MW at 7176.2 kDNOV27a,MCSSCSADSVEIQQPKGMTHRRLVQLSSGCGVGGMLRGMGLATWGEGRRSWSWVPGPCCG96650-01 ProteinDCVSWWLCSequence


[0397] Further analysis of the NOV27a protein yielded the following properties shown in Table 27B.
137TABLE 27BProtein Sequence Properties NOV27aPSort0.6400 probability located in microbodyanalysis:(peroxisome); 0.4500 probabilitylocated in cytoplasm; 0.1000 probabilitylocated in mitochondrial matrix space; 0.1000 probability locatedin lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0398] A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27C.
138TABLE 27CGeneseq Results for NOV27aIdentities/NOV27aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAY04948Mycobacterium species protein sequence22 . . . 5815/37 (40%)2.441B - Mycobacterium sp, 92 aa.48 . . . 8219/37 (50%)[WO9909186-A2, 25 Feb. 1999]AAY32375Mouse CNREB-2 transcription factor -31 . . . 5713/27 (48%)6.9Mus musculus, 763 aa. [WO9955343-A1,70 . . . 9215/27 (55%)04 Nov. 1999]ABB12321Human carcinogenesis inhibitor11 . . . 6318/55 (32%)9.1homologue, SEQ ID NO: 2691 - Homo126 . . . 17826/55 (46%)sapiens, 1685 aa. [WO200157188-A2, 09Aug. 2001]


[0399] In a BLAST search of public sequence datbases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27D.
139TABLE 27DPublic BLASTP Results for NOV27aNOV27aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9ZVQ8PUTATIVE PHLOEM-SPECIFIC35 . . . 5711/24 (45%)9.1LECTIN - Arabidopsis thaliana (Mouse-132 . . . 15514/24 (57%)ear cress), 305 aa.


[0400] PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27E.
140TABLE 27EDomain Analysis of NOV27aIdentities/Similaritiesfor theExpectPfam DomainNOV27a Match RegionMatched RegionValue



Example 28

[0401] The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.
141TABLE 28ANOV28 Sequence AnalysisSEQ ID NO:63544 bpNOV28a,GAGGGGAAAGCCCAGGGGTACAGGAGGCCTCTGGGTGAAGGCAGAGGCTAACATGGGGCG96682-01 DNATTCGGAGCGACCTTGGCCGTTGGCCTGACCATCTTTGTGCTGTCTGTCGTCACTATCASequenceTCATCTGCTTCACCTGCTCCTGCTGCTGCCTTTACAAGACGTGCCGCCGACCACGTCCGGTTGTCACCACCACCACATCCACCACTGTGGTGCATGCCCCTTATCCTCAGCCTCCAAGTGTGCCGCCCAGCTACCCTGGACCAAGCTACCAGGGCTACCACACCATGCCGCCTCAGCCACGGATGCCAGCAGCACCCTACCCAATGCAGTACCCACCACCTTACCCAGCCCAGCCCATGGGCCCACCGGCCTACCACGAGACCCTGGCTGTTGATATGAGACTGAAACCCCTGGGTTGTGGAGGGAAATTGGCTCAGAGATGGACAACCTGGCAACTGTGAGTCCCTGCTTCCCGACACCAGCCTCATGGAATATGCAACAACTCCTGTACCCCAGTCCACGGTGTTCTGGCAGCAGGGACCCTGGGCORF Start: ATG at 53ORF Stop: TGA at 455SEQ ID NO:64134 aa MW at 14570.0 kDNOV28a,MGFGATLAVGLTIFVLSVVTIIICFTCSCCCLYKTCRRPRPVVTTTTSTTVVHAPYPQCG96682-01 ProteinPPSVPPSYPGPSYQGYHTMPPQPGMPAAPYPMQYPPPYPAQPMGPPAYHETLAVDMRLSequenceKPLGCGGKLAQRWTTWQL


[0402] Further analysis of the NOV28a protein yielded the following properties shown in Table 28B.
142TABLE 28BProtein Sequence Properties NOV28aPSort0.8200 probability located in endoplasmic reticulum (mem-analysis:brane); 0.1900 probability located in plasma membrane;0.1000 probability located in endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 32 and 33analysis:


[0403] A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28C.
143TABLE 28CGeneseq Results for NOV28aNOV28aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAB31675Amino acid sequence of a human protein1 . . . 111111/111 (100%)5e−66having a hydrophobic domain - Homo1 . . . 111111/111 (100%)sapiens, 137 aa. [WO200104297-A2, 18Jan. 2001]AAM39215Human polypeptide SEQ ID NO 2360 -1 . . . 111111/111 (100%)5e−66Homo sapiens, 137 aa. [WO200153312-1 . . . 111111/111 (100%)A1, 26 Jul. 2001]AAY84606A human small proline-rich molecule1 . . . 111111/111 (100%)5e−66(HSPRM) polypeptide - Homo sapiens,1 . . . 111111/111 (100%)137 aa. [WO200018924-A1, 06 Apr.2000]AAY59678Secreted protein 108-008-5-0-E6-FL -1 . . . 111111/111 (100%)5e−66Homo sapiens, 137 aa. [WO9940189-A2,1 . . . 111111/111 (100%)12 Aug. 1999]AAW75087Human secreted protein encoded by gene1 . . . 111111/111 (100%)5e−6631 clone HTHBA79 - Homo sapiens, 1551 . . . 111111/111 (100%)aa. [WO9839446-A2, 11 Sep. 1998]


[0404] In a BLAST search of public sequence datbases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28D.
144TABLE 28DPublic BLASTP Results for NOV28aNOV28aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueCAC28408SEQUENCE 28 FROM PATENT1 . . . 111111/111(100%)1e−65WO0104297 - Homo sapiens (Human),1 . . . 111111/111(100%)137 aa.CAC39754SEQUENCE 145 FROM PATENT2 . . . 111110/110(100%)5e−65EP1067182 - Homo sapiens (Human),105 . . . 214 110/110(100%)240 aa.Q96MW8CDNA FLJ31766 FIS, CLONE2 . . . 111110/110(100%)5e−65NT2RI2007879, WEAKLY SIMILAR74 . . . 183 110/110(100%)TO HOMEOBOX PROTEIN HOX-A4 -Homo sapiens (Human), 209 aa.Q9CQP56430628I05RIK PROTEIN (RIKEN1 . . . 11188/113(77%)2e−50CDNA 6430628I05 GENE) - Mus1 . . . 11396/113(84%)musculus (Mouse), 132 aa.Q91Z37RIKEN CDNA 2310008D10 GENE -2 . . . 11187/112(77%)9e−50Mus musculus (Mouse), 236 aa.106 . . . 217 95/112(84%)


[0405] PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28E.
145TABLE 28EDomain Analysis of NOV28aIdentities/Similaritiesfor the ExpectPfam DomainNOV28a Match RegionMatched RegionValue



Example 29

[0406] The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29A.
146TABLE 29ANOV29 Sequence AnalysisSEQ ID NO:65718 bpNOV29a,GGCGCGTGGTCTACGCCGAGTGACAGAGACGCTCAGGCTGTGTTCTCAGGATGACCGACG96704-01 DNAGTGGGAGACAGCAGCACCAGCGGTGGCAGAGACCCCAGACATCAAGCTCTTTGGGAAGSequenceTGGAGCACCGATCATGTGCAGATCAATGACATTTCCCTGCAGGATTACATTGCAGTGAAGGAGAAGTATGCCAAGTACCTGCCTCACAGTGCAGGGCGGTATGCCGCCAAACGCTTCCGCAAAGCTCAGTGTCCCATTGTGGAGCGCCTCACTAACTCCATGATGATGCACGGCCGCAACAACGGCAAGAAGCTCATGACTGTGCGCATCGTCAAGCATGCCTTCGAGATCATACACCTGCTCACAGGCGAGAACCCTCTGCAGGTCCTGGTGAACGCCATCATCAACAGTGGTCCCCGGGAGGACTCCACACGCATTGGGCGCGCCGGGACTGTGAGACGACAGGCTGTGGATGTGTCCCCCCTGCGCCGTGTGAACCAGGCCATCTGGCTGCTGTGCACAGGCGCTCGTGAGGCTGCCTTCCGGAACATTAAGACCATTGCTGAGTGCCTGGCAGATGAGCTCATCAATGCTGCCAAGGGCTCCTCGAACTCCTATGCCATTAAGAAGAAGGACGAGCTGGAGCGTGTGGCCAAGTCCAACCGCTGATTTTCCAGCTGCTGCCCAATAAACCTGTCTGCCCTTTGCGATCCCAGCCAAAAORF Start: ATG at 51ORF Stop: TGA at 663SEQ ID NO:66204 aa MW at 22876.1 kDNOV29a,MTEWETAAPAVAETPDIKLFGKWSTDDVQINDISLQDYIAVKEKYAKYLPHSAGRYAACG96704-01 ProteinKRFRKAQCPIVERLTNSMMMHGRNNGKKLMTVRIVKHAFEIIHLLTGENPLQVLVNAISequenceINSGPREDSTRIGRAGTVRRQAVDVSPLRRVNQAIWLLCTGAREAAFRNIKTIAECLADELINAAKGSSNSYAIKKKDELERVAKSNRSEQ ID NO:67702 bpNOV29b,GGTCTACGCCGAGTGACAGAGACGCTCAGGCTGTGTTCTCAGGATGACCGAGTGGGAGCG96704-02 DNAACAGCAGCACCAGCGGTGGCAGAGACCCCAGACATCAAGCTCTTTGGGAAGTGGAGCASequenceCCGATGATGTGCAGATCAATGACATTTCCCTGCAGGATTACATTGCAGTGAAGGAGAAGTATGCCAAGTACCTGCCTCACAGTGCAGGGCGGTATGCCGCCAAACGCTTCCGCAAAGCTCAGTGTCCCATTGTGGAGCGCCTCACTAACTCCATGATGATGCACGGCCGCAACAACGGCAAGAAGCTCATGACTGTGCGCATCGTCAAGCATGCCTTCGAGATCATACACCTGCTCACAGGCGAGAACCCTCTGCAGGTCCTGGTGAACGCCATCATCAACAGTGGTCCCCGCGAGGACTCCACACGCATTGGGCGCGCCGGCACTGTGAGACGACAGGCTGTGGATGTGTCCCCCCTGCGCCGTGTGAACCAGGCCATCTGGCTGCTGTGCACAGGCCCTCGTGAGGCTGCCTTCCGGAACATTAAGACCATTGCTGAGTGCCTGGCAGATGAGCTCATCAATGCTGCCAAGGGCTCCTCGAACTCCTATGCCATTAAGAAGAAGGACGAGCTGGAGCGTGTGGCCAAGTCCAACCGCTGATTTTCCCAGCTGCTGCCCAATAAACCTGTCTCCCCTTTGGGATCORF Start: ATG at 44ORF Stop: TGA at 656SEQ ID NO:68204 aa MW at 22876.1 kDNOV29b,MTEWETAAPAVAETPDIKLFGKWSTDDVQINDISLQDYIAVKEKYAKYLPHSAGRYAACG96704-02 ProteinKRFRKAQCPIVERLTNSMMMHGRNNGKKLMTVRIVKHAFEIIHLLTCENPLQVLVNAISequenceINSGPREDSTRIGRAGTVRRQAVDVSPLRRVNQAIWLLCTGAREAAFRNIKTIAECLADELINAAKGSSNSYAIKKKDELERVAKSNR


[0407] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 29B.
147TABLE 29BComparison of NOV29a against NOV29b.ProteinNOV29a Residues/Identities/SequenceMatch ResiduesSimilarities for the Matched RegionNOV29b1 . . . 204204/204 (100%)1 . . . 204204/204 (100%)


[0408] Further analysis of the NOV29a protein yielded the following properties shown in Table 29C.
148TABLE 29CProtein Sequence Properties NOV29aPSort0.6500 probability located in cytoplasm; 0.1642 probabilityanalysis:located in lysosome (lumen); 0.1000 probability located inmitochondrial matrix space; 0.0000 probability located inendoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0409] A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.
149TABLE 29DGeneseq Results for NOV29aNOV29aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueABB64077Drosophila melanogaster polypeptide 5 . . . 204177/200 (88%)1e−98SEQ ID NO 19023 - Drosophila29 . . . 228188/200 (93%)melanogaster, 228 aa. [WO200171042-A2, 27 Sep. 2001]ABG15625Novel human diagnostic protein #15616 -27 . . . 204178/178 (100%)2e−97Homo sapiens, 178 aa. [WO200175067- 1 . . . 178178/178 (100%)A2, 11 Oct. 2001]ABG15625Novel human diagnostic protein #15616 -27 . . . 204178/178 (100%)2e−97Homo sapiens, 178 aa. [WO200175067- 1 . . . 178178/178 (100%)A2, 11 Oct. 2001]ABB62878Drosophila melanogaster polypeptide 8 . . . 204171/197 (86%)3e−96SEQ ID NO 15426 - Drosophila34 . . . 230185/197 (93%)melanogaster, 230 aa. [WO200171042-A2, 27 Sep. 2001]AAG43178Arabidopsis thaliana protein fragment14 . . . 204152/192 (79%)2e−84SEQ ID NO: 53937 - Arabidopsis16 . . . 207174/192 (90%)thaliana, 207 aa. [EP1033405-A2, 06Sep. 2000]


[0410] In a BLAST search of public sequence datbases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.
150TABLE 29EPublic BLASTP Results for NOV29aNOV29aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96BN0RIBOSOMAL PROTEIN S5 - Homo sapiens1 . . . 204 204/204 (100%)e−113(Human), 204 aa.1 . . . 204 204/204 (100%)Q91V550 DAY NEONATE THYMUS CDNA,1 . . . 204202/204 (99%)e−112RIKEN FULL-LENGTH ENRICHED1 . . . 204202/204 (99%)LIBRARY, CLONE:A430101M19, FULLINSERT SEQUENCE (ADULT MALEKIDNEY CDNA, RIKEN FULL-LENGTHENRICHED LIBRARY,CLONE:0610006D06, FULL INSERTSEQUENCE) (ADULT MALE TONGUECDNA, RIKEN FULL-LENGTHENRICHED LIBRARY,CLONE:2310037J07, FULL INSERTSEQUENCE) (ES CELLS CDNA, RIKENFULL-LENGTH ENRICHED LIBRARY,CLONE:2410046E20, FULL INSERTSEQUENCE) (11 DAYS EMBRYO CDNA,RIKEN FULL-LENGTH ENRICHEDLIBRARY, CLONE:2700054J16, FULLINSERT SEQUENCE) (11 DAYSEMBRYO CDNA, RIKEN FULL-LENGTHENRICHED LIBRARY,CLONE:2700063O13, FULL INSERTSEQUENCE) (12 DAYS EMBRYOEMBRYONIC BODY BETWEENDIAPHRAGM REGION AND NECKCDNA, RIKEN FULL-LENGTHENRICHED LIBRARY,CLONE:9430066A13, FULL INSERTSEQUENCE) - Mus musculus (Mouse), 204aa.P4678240S ribosomal protein S5 - Homo sapiens1 . . . 204202/204 (99%)e−112(Human), 204 aa.1 . . . 204202/204 (99%)P9746140S ribosomal protein S5 - Mus musculus1 . . . 204201/204 (98%)e−112(Mouse), 204 aa.1 . . . 204201/204 (98%)P2405040S ribosomal protein S5 - Rattus norvegicus1 . . . 204200/204 (98%)e−111(Rat), 204 aa.1 . . . 204200/204 (98%)


[0411] PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29F.
151TABLE 29FDomain Analysis of NOV29aIdentities/NOV29a MatchSimilaritiesExpectPfam DomainRegionfor the Matched RegionValueRibosomal_S751 . . . 20466/165 (40%)9.3e−71140/165 (85%) 



Example 30

[0412] The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30A.
152TABLE 30ANOV30 Sequence AnalysisSEQ ID NO:691908 bpNOV30a,ACAGGTGACTTTTCCACAGGAACTTCTGCAATGTCCCATCAACCTCTCAGCTGCTGGACG97090-01 DNAATTCGCCCTTATCCTCCCACCTGGATCTCCCAAACCTGGACACATTTACCCCGGAGGASequenceGCTGCTGCAGCAGATGAAAGAGCTCCTGACCGAGAACCACCAGCTGAAAGAAGCCATGAAGCTAAATAATCAAGCCATGAAAGGGAGATTTGAGGAGCTTTCGGCCTGGACAGAGAAACAGAAGGAAGAACGCCAGTTTTTTGAGATACAGAGCAAAGAAGCAAAAGAGCGTCTAATGGCCTTGAGTCATGAGAATGAGAAATTGAAGGAAGAGCTTGGAAAACTAAAAGGGAAATCAGAAAGGTCATCTGAGGACCCCACTGATGACTCCAGGCTTCCCAGGGCCGAAGCGGAGCAGGAAAAGGACCAGCTCAGGACCCAGGTGGTGAGGCTACAACCACAGAAGGCAGACCTGTTGGGCATCGTGTCTGAACTGCAGCTCAAGCTGAACTCCAGCGGCTCCTCAGAAGATTCCTTTGTTGAAATTAGGATGGCTGAAGGAGAAGCAGAAGGGTCAGTAAAAGAAATCAAGCATAGTCCTGGGCCCACGAGAACAGTCTCCACTGGCACGAGCAGATCTGCAGATGGGGCCAAGAATTACTTCGAACATGAGGAGTTAACTGTGAGCCAGCTCCTGCTGTGCCTAAGGGAAGGGAATCAGAAGGTGGAGAGACTTGAAGTTGCACTCAAGGAGGCCAAAGAAAGAGTTTCAGATTTTGAAAAGAAAACAAGTAATCGTTCTGAGATTGAAACCCAGACACAGGGGAGCACAGAGAAAGAGAATGATGAAGAGAAAGGCCCGGAGACTGTTGGAAGCGAAGTGGAAGCACTGAACCTCCAGGTGACATCTCTGTTTAAGGAGCTTCAAGAGGCTCATACAAAACTCAGCGAAGCTGAGCTAATGAAGAAGAGACTTCAAGAAAAGTGTCAGGCCCTTGAAAGGAAAAATTCTGCAATTCCATCAGAGTTGAATGAAAAGCAAGAGCTTGTTTATACTAACAAAAAGTTAGAGCTACAAGTGGAAAGCATGCTATCAGAAATCAAAATGGAACAGCCTAAAACAGAGGATGAAAAGTCCAAATTAACTGTGCTACAGATGACACACAACAAGCTTCTTCAACAACATAATAATGCATTGAAAACAATTGAGGAACTAACAAGAAAAGAGTCAGAAAAAGTGGACAGGGCAGTGCTGAAGGAACTGAGTGAAAAACTGGAACTGGCAGAGAAGGCTCTGGCTTCCAAACAGCTGCAAATGGATGAAATGAAGCAAACCATTGCCAAGCAGGAAGAGGACCTGGAAACCATGACCATCCTCAGGGCTCAGATGGAAGTTTACTGTTCTGATTTTCATGCTGAAAGAGCAGCGAGAGAGAAAATTCATGAGGAAAAGGAGCAACTGGCATTGCAGCTGGCAGTTCTGCTGAAAGAGAATGATGCTTTCGAAGACGGAGGCAGGCAGTCCTTGATGGAGATGCAGAGTCCTCATGGGGCGAGAACAAGTGACTCTGACCAGCAGGCTTACCTTGTTCAAAGAGGAGCTGAGGACAGGGACTGGCGGCAACAGCGGAATATTCCGATTCATTCCTGCCCCAAGTGTGGAGAGGTTCTGCCTGACATAGACACGTTACAGATTCACGTGATGGATTGCATCATTTAAGTGTTGATGTATCACCTCCCCAAAACTGTTGGTAAATGTCAGATTTTTTCCTCCAAGAGTTGTGCTTTTGTGTTATTTGTTTTCACTCAAATATTTTGCCTCATTATTCTTGTTTTAAAAGAAAGAAAACAGGCCGGGCACAGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGATCCAGGTGGGAGGATORF Start: ATG at 31ORF Stop: TAA at 1714SEQ ID NO:70561 aa MW at 64267.6 kDNOV30a,MSHQPLSCWNSPLSSHLDLPNLDTFTPEELLQQMKELLTENHQLKEAMKLNNQANKGRCG97090-01 ProteinFEELSAWTEKQKEERQFFEIQSKEAKERLMALSHENEKLKEELGKLKGKSERSSEDPTSequenceDDSRLPRAEAEQEKDQLRTQVVRLQAEKADLLGIVSELQLKLNSSGSSEDSFVEIRMAEGEAEGSVKEIKHSPGPTRTVSTGTSRSADGAKNYFEHEELTVSQLLLCLREGNQKVERLEVALKEAKERVSDFEKKTSNRSEIETQTEGSTEKENDEEKGPETVGSEVEALNLQVTSLFKELQEAHTKLSEAELMKKRLQEKCQALERKNSAIPSELNEKQELVYTNKKLELQVESMLSEIKMEQAKTEDEKSKLTVLQMTHNKLLQEHNNALKTIEELTRKESEKVDRAVLKELSEKLELAEKALASKQLQMDEMKQTIAKQEEDLETMTILRAQMEVYCSDFHAERAAREKIHEEKEQLALQLAVLLKENDAFEDGCRQSLMEMQSRHGARTSDSDQQAYLVQRGAEDRDWRQQRNIPIHSCPKCGEVLPDIDTLQINVMDCIISEQ ID NO:711908 bpNOV30b,ACAGGTGACTTTTCCACAGGAACTTCTGCAATGTCCCATCAACCTCTCAGATCCTCCCCG97090-02 DNAACCTGGATCTCCCAAACCTGGACACGTTTACCCCGGAGGAGCTGCTGCAGCAGATGAASequenceAGAGCTCCTGACCGACAACCACCAGCTGAAAGAAGCCATGAAGCTAAATAATCAAGCCATGAAAGGGAGATTTGAGGAGCTTTCGGCCTGGACAGAGAAACAGAACGAAGAACGCCAGTTTTTTGAGATACAGAGCAAAGAAGCAAAAGAGCGTCTAATGGCCTTGAGTCATGAGAATGAGAAATTGAAGGAAGAGCTTGGAAAACTAAAAGGGAAATCAGAAAGGTCATCTGAGGACCCCACTGATGACTCCAGGCTTCCCACGGCCGAAGCGGAGCAGGAAAAGGACCAGCTCAGGACCCAGGTGGTGAGGCTACAAGCAGAGAAGGCAGACCTGTTGGGCATCGTGTCTGAACTGCAGCTCAAGCTGAACTCCAGCGGCTCCTCAGAAGATTCCTTTGTTGAAATTAGGATGGCTGAAGGAGAAGCAGAAGGGTCAGTAAAAGAAATCAAGCATAGTCCTGGGCCCACGAGAACAGTCTCCACTGGCACGGCATTGTCTAAATATAGGACCAGATCTGCAGATGGGGCCAAGAATTACTTCGAACATGAGGAGTTAACTGTGAGCCAGCTCCTGCTGTGCCTAAGGGAAGGGAATCAGAAGGTGGAGAGACTTGAAGTTGCACTCAAGGAGGCCAAAGAAAGAGTTTCAGATTTTGAAAAGAAAACAAGTAATCGTTCTGAGATTGAAACCCAGACAGAGGGGAGCACAGAGAAAGAGAATGATGAAGAGAAAGGCCCGGAGACTGTTGGAAGCGAAGTGGAAGCACTGAACCTCCAGGTGACATCTCTGTTTAAGGAGCTTCAAGAGGCTCATACAAAACTCAGCGAAGCTGAGCTAATGAAGAAGAGACTTCAAGAAAAGTGTCAGGCCCTTGAAAGGAAAAATTCTGCAATTCCATCAGAGTTGAATGAAAAGCAAGAGCTTGTTTATACTAACAAAAAGTTAGAGCTACAAGTGGAAAGCATGCTATCACAAATCAAAATGGAACAGGCTAAAACAGAGGATGAAAAGTCCAAATTAACTGTGCTACAGATGACACACAACAAGCTTCTTCAAGAACATAATAATGCATTGAAAACAATTGAGGAACTAACAAGAAAAGAGTCACAAAAAGTGGACAGGGCAGTGCTGAAGGAACTGAGTGAAAAACTGGAACTCGCAGAGAAGGCTCTGGCTTCCAAACAGCTGCAAATGOATGAAATGAAGCAAACCATTGCCAAGCAGGAAGAGGACCTGGAAACCATGACCATCCTCAGGGCTCAGATGGAAGTTTACTGTTCTGATTTTCATGCTGAAACAGCAGCGAGAGAGAAAATTCATGAGGAAAAGGAGCAACTGGCATTGCAGCTGGCAGTTCTGCTGAAAGAGAATGATGCTTTCGAAGACGGAGGCAGGCAGTCCTTGATGGAGATGCAGAGTCGTCATGGGGCGAGAACAAOTGACTCTGACCAGCAGGCTTACCTTGTTCAAAGAGGAGCTGAGGACAGGGACTGGCGGCAACAGCGGAATATTCCGATTCATTCCTGCCCCAAGTGTGCACAGCTTCTGCCTGACATAGACACGTTACAGATTCACGTGATGGATTGCATCATTTAAGTGTTAATGTATCACCTCCCCAAAACTGTTGGTAAATGTCAGATTTTTTCCTCCAAGAGTTGTGCTTTTGTGTTATTTGTTTTCACTCAAATATTTTGCCTCATTATTCTTGTTTTAAAAGAAAGAAAACAGGCCGGGCACAGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGATCCAGGTGGGAGGATORF Start: ATG at 31ORF Stop: TAA at 1714SEQ ID NO:72561 aa MW at 64354.8 kDNOV30b,MSHQPLRSSHLDLPNLDTFTPEELLQQMKELLTENHQLKEAMKLNNQAMKGRFEELSACG97090-02 ProteinWTEKQKEERQFFEIQSKEAKERLMALSHENEKLKEELGKLKGKSERSSEDPTDDSRLPSequenceRAEAEQEKDQLRTQVVRLQAEKADLLGIVSELQLKLMSSGSSEDSPIEIRMAEGEAEGSVKEIKHSPGPTRTVSTGTALSKYRSRSADGAKNYFEHEELTVSQLLLCLREGNQKVERLEVALKEAKERVSDFEKKTSNRSEIETQTEGSTEKENDEEKGPETVGSEVEALNLQVTSLFKELQEAHTKLSEAELMKKRLQEKCQALERKNSAIPSELNEKQELVYTNKKLELQVESMLSEIKMEQAKTEDEKSKLTVLQMTHNKLLQEHNNALKTIEELTRKESEKVDRAVLKELSEKLELAEKALLASKQLQMDEMKQTIAKQEEDLETMTILRAQMEVYCSDFHAERAAREKIHEEKEQLALQLAVLLKENDAFEDGGRQSLMEMQSRHGARTSDSDQQAYLVQRGAEDRDWRQQRNIPIHSCPKCGEVLPDIDTLQIHVMDCII


[0413] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 30B.
153TABLE 30BComparison of NOV30a against NOV30b.Identities/NOV30a Residues/Similarities forProtein SequenceMatch Residuesthe Matched RegionNOV30b1 . . . 561520/567 (91%)1 . . . 561520/567 (91%)


[0414] Further analysis of the NOV30a protein yielded the following properties shown in Table 30C.
154TABLE 30CProtein Sequence Properties NOV30aPSort0.4500 probability located in cytoplasm; 0.3000 probability located in microbodyanalysis:(peroxisome); 0.1000 probability located in mitochondrial matrix space; 0.1000probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0415] A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30D.
155TABLE 30DGeneseq Results for NOV30aNOV30aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAY27431Murine RIP-associated protein (RAP-2)232 . . . 560100/341 (29%)3e−33splice variant (NEMO full) - Mus sp, 412 90 . . . 412184/341 (53%)aa. [WO9947672-A1, 23 Sep. 1999]AAY27430Human RIP-associated protein (RAP-2) -229 . . . 558101/337 (29%)6e−32Homo sapiens, 416 aa. [WO9947672-A1, 88 . . . 416184/337 (53%)23 Sep. 1999]ABG06505Novel human diagnostic protein #6496 - 29 . . . 487117/511 (22%)2e−15Homo sapiens, 2633 aa. [WO200175067-1054 . . . 1546230/511 (44%)A2, 11 Oct. 2001]ABG06505Novel human diagnostic protein #6496 - 29 . . . 487117/511 (22%)2e−15Homo sapiens, 2633 aa. [WO200175067-1054 . . . 1546230/511 (44%)A2, 11 Oct. 2001]AAM41000Human polypeptide SEQ ID NO 5931- 22 . . . 502126/563 (22%)2e−15Homo sapiens, 1988 aa. [WO200153312- 983 . . . 1526236/563 (41%)A1, 26 Jul. 2001]


[0416] In a BLAST search of public sequence datbases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30E.
156TABLE 30EPublic BLASTP Results for NOV30aIdentities/NOV30aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96CV9TUMOR NECROSIS FACTOR ALPHA-1 . . . 561555/577 (96%)0.0INDUCIBLE CELLULAR PROTEIN1 . . . 577556/577 (96%)CONTAINING LEUCINE ZIPPERDOMAINS, HUNTINGTIN INTERACTINGPROTEIN L, TRANSCRPTION FACTORIIIA-INTERACTING PROTEIN - Homosapiens (Human), 577 aa.Q9Y218FIP2 - Homo sapiens (Human), 577 aa.1 . . . 561552/577 (95%)0.01 . . . 577554/577 (95%)Q9BGR3HYPOTHETICAL 65.1 KDA PROTEIN -1 . . . 561538/571 (94%)0.0Macaca fascicularis (Crab eating macaque)1 . . . 571547/571 (95%)(Cynomolgus monkey), 571 aa.Q95KA2HYPOTHETICAL 62.9 KDA PROTEIN -16 . . . 561 526/546 (96%)0.0Macaca fascicularis (Crab eating macaque)5 . . . 550534/546 (97%)(Cynomolgus monkey), 550 aa.Q9UET9FIP2 - Homo sapiens (Human), 520 aa.48 . . . 561 511/520 (98%)0.01 . . . 520512/520 (98%)


[0417] PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30F.
157TABLE 30FDomain Analysis of NOV30aIdentities/NOV30aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValuezf-C2H2537 . . . 5596/24 (25%)0.5117/24 (71%) 



Example 31

[0418] The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 31A.
158TABLE 31ANOV31 Sequence AnalysisSEQ ID NO:73589 bpNOV31a,CTCCTTGCTTCTTTCCAGCCGGAGCCGCTGCCTTGCCCCCCGGAGACTGAAGACATGGCG97134-01 DNACACCCAAGAGGGCCAAGAGAAGGACAGTAGAGGGCGGAAGCTCCAGCGTCTTCTCCATSequenceGTTCGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTGATCGACCAGAACCGTGATGGTATTATAGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAAGAATGAGGAGTTGGATGCCATGATGAAGGAAGCCAGCGGTCCCATCAACTTCACCGTCTTCCTGACCATGTTCGGGGAGAAGCTCAAGGGTGCCGACCCTGAGGATGTGATCACCGGAGCCTTCAAGGTCTTGGACCCTGAGGGAAAGGGCACCATCAAGAAGAAGTTCCTGGAGGAGCTGCTGACCACGCAGTGTGACCGCTTCTCCCAGGAGGAGATCAAGAACATGTGGGCGGCCTTCCCCCCCGACGTGGGCGGCAACGTCGACTACAAAAACATCTGCTACGTCATCACGCACGGCGACGCCAAGGACCAGGAGTAGGGGCACCCGCGGGCCTCCGCTGCCGORF Start: ATG at 55OPT Stop: TAG at 562SEQ ID NO:74169 aa MW at 19014.4 kDNOV31a,MAPKRAKRRTVEGGSSSVFSMFDQTQIQEFKEAFTVIDQNRDGIIDKEDLRDTFAAMGCG97134-01 ProteinRLNVKNEELDAMMKEASGPINFTVFLTMFGEKLKGADPEDVITGAFKVLDPEGKGTIKSequenceKKFLEELLTTQCDRFSQEEIKNMWAAFPPDVGGNVDYKNICYVITHGDAKDQE


[0419] Further analysis of the NOV31a protein yielded the following properties shown in Table 31B.
159TABLE 31BProtein Sequence Properties NOV31aPSort0.4820 probability located in mitochondrial matrix space; 0.2723 probability located inanalysis:microbody (peroxisome); 0.1907 probability located in mitochondrial inner membrane;0.1907 probability located in mitochondrial intermembrane spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0420] A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31C.
160TABLE 31CGeneseq Results for NOV31aNOV31aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAB08483Fast skeletal muscle isoform of the1 . . . 168137/169 (81%)1e−77myosin light chain 2 - Danio rerio, 1691 . . . 169156/169 (92%)aa. [WO200049150-A1, 24 Aug. 2000]AAR05422Human ventricular myosin light chain 21 . . . 167119/167 (71%)5e−66protein - Homo sapiens, 165 aa.1 . . . 165144/167 (85%)[EP357856-A, 14 Mar. 1990]AAU14245Human novel protein #116 - Homo1 . . . 168101/175 (57%)4e−54sapiens, 173 aa. [WO200155437-A2, 021 . . . 173136/175 (77%)Aug. 2001]AAM78885Human protein SEQ ID NO 1547 - Homo1 . . . 169 96/172 (55%)3e−46sapiens, 171 aa. [WO200157190-A2, 091 . . . 170121/172 (69%)Aug. 2001]AAO13875Human polypeptide SEQ ID NO 27767 -1 . . . 169 95/173 (54%)6e−45Homo sapiens, 204 aa. [WO200164835-33 . . . 203 118/173 (67%)A2, 07 Sep. 2001]


[0421] In a BLAST search of public sequence datbases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.
161TABLE 31DPublic BLASTP Results for NOV31aNOV31aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96A32MYOSIN REGULATORY LIGHT1 . . . 169 169/169 (100%)1e−94CHAIN 2 (UNKNOWN) (PROTEIN1 . . . 169 169/169 (100%)FOR MGC:13450) - Homo sapiens(Human), 169aa.Q14843MYOSIN LIGHT CHAIN 2 - Homo1 . . . 169169/170 (99%)3e−93sapiens(Human), 170 aa.1 . . . 170169/170 (99%)MORBLDmyosin L2 (DTNB) regulatory light1 . . . 169164/170 (96%)5e−91chain, skeletal muscle - rabbit, 170 aa.1 . . . 170167/170 (97%)MORTL2myosin L2 (DTNB) regulatory light1 . . . 169162/169 (95%)9e−91chain precursor, skeletal muscle - rat,1 . . . 169165/169 (96%)169aa.Q28710MYOSIN LIGHT CHAIN 2 -1 . . . 169163/170 (95%)2e−90Oryctolagus cuniculus (Rabbit), 170 aa.1 . . . 170167/170 (97%)


[0422] PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.
162TABLE 31EDomain Analysis of NOV31aNOV31a Identities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValueefhand29 . . . 5710/29 (34%)8.7e−0526/29 (90%)



Example 32

[0423] The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.
163TABLE 32ANOV32 Sequence AnalysisSEQ ID NO:75384 bpNOV32a,GGGAAAATGGCTGCGTCTTCGAGTGGTGAGAAGGAGAAGGAGCGGCTGGGAGGCGGTTCG97219-01 DNATGGGAGTGGCGGGTGGTAACAGCACACGAGAGCGGCTGCTGTCTGCGCTTGAGGACTTSequenceGGAGGTCCTGTCTAGGGAACTTATAGAAATGCTGGCAATTTCAAGAAACCAAAAGTTGTTACAGGCTGGAGAGGAAAACCAGGTCCTGGAGTTGTTAATTCACCGAGATGGGGAATTTTCAAGAACTAATGAAATTGGCACTTAATCAGGGAAAAATTCATCATGAAATGCAAGTTTTAGAAAAAGAAGTAGAGAAGAGAGACAGTGATATTCAGTATTTGTTCTGCTTCCTTTAGCTGTTTTTGTAGCTGCTGAATATCACTGTCTCTORF Start: ATG at 7ORF Stop: TAG at 349SEQ ID NO:76114 aa MW at 12851.5 kDNOV32a,MAASSSGEKEKERLGGGLGVAGGNSTRERLLSALEDLEVLSRELIEMLAISRNQKLLQCG97219-01 ProteinAGEENQVLELLTHRDGEFQELMKLALNQGKIHHEMQVLEKEVEKRDSDIQYLFCFLSequence


[0424] Further analysis of the NOV32a protein yielded the following properties shown in Table 32B.
164TABLE 32BProtein Sequence Properties NOV32aPSort0.6500 probability located in cytoplasm; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000probability located in lysosome (lumen);0.0000 probability located in endoplasmicreticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0425] A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32C.
165TABLE 32CGeneseq Results for NOV32aNOV32aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB93477Human protein sequence SEQ ID1 . . . 110109/110 (99%)3e−54NO: 12759 - Homo sapiens, 270 aa.1 . . . 110109/110 (99%)[EP1074617-A2, 07-FEB-2001]AAM40946Human polypeptide SEQ ID NO 5877 -1 . . . 110109/110 (99%)3e−54Homo sapiens, 249 aa. [WO200153312-6 . . . 115109/110 (99%)A1, 26-JUL-2001]AAM39160Human polypeptide SEQ ID NO 2305 -1 . . . 110109/110 (99%)3e−54Homo sapiens, 270 aa. [WO200153312-1 . . . 110109/110 (99%)A1, 26-JUL-2001]AAG01268Human secreted protein, SEQ ID NO: 1 . . . 87   87/87 (100%)2e−415349 - Homo sapiens, 87 aa. [EP1033401-1 . . . 87   87/87 (100%)A2, 06-SEP-2000]ABB60687Drosophila melanogaster polypeptide25 . . . 110  33/86 (38%)1e−08SEQ ID NO 8853 - Drosophila6 . . . 86  56/86 (64%)melanogaster, 258 aa. [WO200171042-A2, 27-SEP-2001]


[0426] In a BLAST search of public sequence datbases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32D.
166TABLE 32DPublic BLASTP Results for NOV32aNOV32aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9NYR5P36 TRAP/SMCC/PC2 SUBUNIT -1 . . . 110109/110 (99%)7e−54Homo sapiens (Human), 270 aa.1 . . . 110109/110 (99%)Q9NPJ6VITAMIN D RECEPTOR-1 . . . 110109/110 (99%)7e−54INTERACTING PROTEIN COMPLEX1 . . . 110109/110 (99%)COMPONENT DRIP36 - Homo sapiens(Human), 270 aa.Q9BS95HSPC126 PROTEIN - Homo sapiens1 . . . 110108/110 (98%)2e−53(Human), 270 aa.1 . . . 110108/110 (98%)Q9CQA52410046H15RIK PROTEIN - Mus1 . . . 110 98/110 (89%)3e−47musculus (Mouse), 270 aa.1 . . . 110102/110 (92%)Q9VS38CG8609 PROTEIN (LD46084P) -25 . . . 110  33/86 (38%)3e−08Drosophila melanogaster (Fruit fly), 2586 . . . 86  56/86 (64%)aa.


[0427] PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32E.
167TABLE 32EDomain Analysis of NOV32aNOV32aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValue



Example 33

[0428] The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33A.
168TABLE 33ANOV33 Sequence AnalysisSEQ ID NO:772315 bpNOV33a,TCCGCGCGGCCCCGGCACAAGCAGCCAATGAACACGCGGCTGCGCCCGGCCTCGCGCCCG97358-01 DNATCCATTGGCTGCGCCCCGCCACCCGCTGCCCCGCAGGTTCCCAAGCCGGGTTTAAAGGSequenceGTCCCAGGCGCGCGTGAACGCGGTCCCCGGGACCATGCTGCGGCCACAGCGGCCCGGAGACTTGCAGCTCGGGGCCTCCCTCTACGAGCTGGTGGGCTACAGGCAGCCGCCCTCCTCCTCCTCCTCCTCCACCTCCTCCACCTCCTCCACTTCCTCCTCCTCCACGACGGCCCCCCTCCTCCCCAAGGCTGCGCGCGAGAAGCCGGAGGCGCCGGCCGAGCCTCCAGGCCCCGGGCCCGGGTCAGGCGCGCACCCGGGCGGCAGCGCCCGGCCGGACGCCAAGGAGGAGCAGCAGCAGCAGCTGCGGCGCAAGATCAACAGCCGCGAGCGGAAGCGCATGCAGGACCTGAACCTGGCCATGGACGCCCTGCGCGAGGTCATCCTGCCCTACTCAGCGGCGCACTGCCAGGGCGCGCCCGGCCGCAAGCTCTCCAAGATAGCCACGCTGCTGCTCGCCCGCAACTACATCCTACTGCTGGGCAGCTCGCTGCAGGAGCTGCGCCGCGCGCTGGGCGAGGGCGCCGGGCCCGCCGCGCCGCGCCTGCTGCTGGCCGGGCTGCCCCTGCTCGCCGCCGCGCCCGGCTCCGTGCTGCTGGCGCCCGGCGCCGTAGGACCCCCCGACGCGCTGCGCCCCGCCAAGTACCTGTCGCTGGCGCTGGACGAGCCGCCGTGCGGCCAGTTCGCTCTCCCCGGCGGCGGCGCAGGCGGCCCCGGCCTCTGCACCTGCGCCGTGTGCAAGTTCCCGCACCTGGTCCCGGCCAGCCTGGGCCTGGCCGCCGTGCAGGCGCAATTCTCCAAGTGAGGGCGGGCCTGGGCCTGGGGCGCGACCTCGGCCCGGCCTCCCTTCGCTCAGCTTCTCCGCGCCCCTGCTCCCTGCGTCTGGGAGAGCGAGGCCGAGCAAGGAAAGCATTTCGAACCTTCCAGTCCAGAGGAAGGGACTGTCGGGCACCCCCTTCCCCGCCCCCACCCCTGGGACGTTAAAGTGACCAGAGCGGATGTTCGATGGCGCCTCGGGGCAGTTTGGGGTTCTGGGTCGGTTCCAGCGGCTTTAGGCAGAAAGTGCTCGCTCTCACCCAGCACATCTCTCTCCTTGTCCCTGGAGTTGCGCGCTTCGCGGGGCCGATGTAGAACTTAGGGCGCCTTGCCGTGGTTGGCGCGCCCCGGGTGCAGCGAGAGGCCATCCCCGAGCGCTACCTCCCCGGAGCGGAGCACGCCGGCTCCCAGTACTAGGGGCTGCGCTCGAGCAGTGGCGGGGGCGGAGGGGTGGTTCTTTTCCTTCTCCTCCGCCAGAGGCCACGGGCGCCCTTGTTCCCGCCGGCCAGGTCCTATCAAAGGAGGCTGCCGGAACTCAAGAGGCAGAAAAAGACCAGTTAGGCGGTGCAGACGGTCTGGGACGTGGCAGACGGACGGACCCTCGGCGGACAGGTGGTCGGCGTCGGGGTGCGGTGGGTAGGGGCGAGGACAACGCAGGGTGCGCTGGGTTGGGACGTGGGTCCACTTTTGTAGACCAGCTGTTTGGAGAGCTGTATTTAAGACTCGCGTATCCAGTGTTTTGTCGCAGAGAGTTTTCGCTCTTAAATCCTGGGGGTTTCTTAGAAAGCAACTTAGAACTCGAGATTCACCTTTCGTTTCCCTTTCCCCAAAAGTAGCGTAACCAACATTTAAGCTTGCTTAAAAACGAAAACCAACCGCCTTGCATCCAGTGTTCCCGATTTACTAAAATAGGTAACCAGGCGTCTCACAGTCGCCGTCCTGTCAAGAGCGCTAATGAACGTTCTCATTAACACGCAGGAGTACCGGGAGCCCTGAACCGCCCGCTGCTCGGCGGATCCCAGCTGCGGTGGCGACGGCGGGAAGGCGCTTTCCGCTGTTCCTCAGCGGGCCGGGCCCTTGACCAGCGCGGCCCGCAGGTCTTCCTTCTCGCCGTCTTGCAGTTGAAGAGCTACATACGTAGTCAGTTTCGATTTGTTACAGACGTTAACAAATTCCTTTACCCAAGGTTATGCTATGACCTTTCCGCAGTTTACTTTGATTTTCTATGTTTAAGGTTTTGGTTGTTGGTAGTAGCCGAATTTAACTGGCACTTTATTTTACTTCTAACCTTGTTTCCTGACGGTGTACAGAATCAACAAAATAAAACATTTAAAGTCTGATTTTTTACATTTTTTGTCTGATTTGTTTGGTAATAAAAAAGTCCTTORF Start: ATG at 28ORF Stop: TGA at 916SEQ ID NO:78296 aa MW at 30595.7 kDNOV33a,MNTRLRPASRLHWLRPATRCPAGSQAGFKGSQARVNAVPGTMLRPQRPGDLQLGASLYCG97358-01 ProteinELVGYRQPPSSSSSSTSSTSSTSSSSTTAPLLPKAAREKPEAPAEPPGPGPGSGAHPGSequenceGSARPDAKEEQQQQLRRKINSRERKRMQDLNLANDALREVILPYSAAHCQGAPGRKLSKIATLLLARNYILLLGSSLQELRRALGEGAGPAAPRLLLAGLPLLAAAPGSVLLAPGAVGPPDALRPAKYLSLALDEPPCGQFALPGGGAGGPGLCTCAVCKFPHLVPASLGLAAVQAQFSK


[0429] Further analysis of the NOV33a protein yielded the following properties shown in Table 33B.
169TABLE 33BProtein Sequence Properties NOV33aPSort0.7163 probability located in mitochondrial inner membrane;analysis:0.4732 probability located in mitochondrial matrix space;0.4732 probability located in mitochondrialintermembrane space; 0.4732 probabilitylocated in mitochondrial outer membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0430] A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33C.
170TABLE 33CGeneseq Results for NOV33aNOV33aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueABB61621Drosophila melanogaster polypeptide37 . . . 23680/203 (39%)1e−16SEQ ID NO 11655 - Drosophila42 . . . 228101/203 (49%) melanogaster, 232 aa. [WO200171042-A2, 27-SEP-2001]AAB60357Chicken atonal homologue ngn2/ath4a82 . . . 26063/192 (32%)5e−10protein, SEQ ID NO: 21 - Gallus gallus,22 . . . 20684/192 (42%)213 aa. [WO200073764-A2, 07-DEC-2000]AAY70566Murine neurogenin-1 (NGN1) protein -68 . . . 26766/221 (29%)2e−09Mus sp, 244 aa. [WO200009676-A2, 24-FEB-2000]15 . . . 20985/221 (37%)AAW54944Mouse neurogenin 1 protein - Mus sp,68 . . . 26766/221 (29%)2e−09244 aa. [WO9813491-A2, 02-APR-1998]15 . . . 20985/221 (37%)AAW71019Murine neuroD3 protein, which is a68 . . . 26766/221 (29%)2e−09bHLH protein - Mus musculus, 244 aa.15 . . . 20985/221 (37%)[US5795723-A, 18-AUG-1998]


[0431] In a BLAST search of public sequence datbases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33D.
171TABLE 33DPublic BLASTP Results for NOV33aNOV33aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9WUQ3OLG-1 BHLH PROTEIN - Rattus42 . . . 296225/257 (87%) e−118norvegicus (Rat), 245 aa. 1 . . . 245230/257 (88%)Q9JKN5OLIGODENDROCYTE-SPECIFIC42 . . . 296222/257 (86%) e−116BHLH TRANSCRIPTION FACTOR 1 . . . 244228/257 (88%)OLIG1 (OLIG1 BHLH PROTEIN) - Musmusculus (Mouse), 244 aa.Q9NZ14BASIC HELIX-LOOP-HELIX PROTEIN68 . . . 278102/297 (34%)2e−23 CLASS B 1 - Homo sapiens (Human), 35760 . . . 335124/297 (41%)aa (fragment).Q13516Protein kinase C-binding protein RACK1768 . . . 278102/297 (34%)2e−23 (Protein kinase C binding protein 2) -37 . . . 312124/297 (41%)Homo sapiens (Human), 334 aa(fragment).Q90XB3BHLH TRANSCRIPTION FACTOR74 . . . 290 96/256 (37%)4e−23 OLIG2 - Gallus gallus (Chicken), 298 aa.40 . . . 290124/256 (47%)


[0432] PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33E.
172TABLE 33EDomain Analysis of NOV33aNOV33aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValueHLH131 . . . 19023/62 (37%)2.6e−0939/62 (63%)



Example 34

[0433] The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.
173TABLE 34ANOV34 Sequence AnalysisSEQ ID NO:793390 bpNOV34a,ATTCAAATAGAAATGCAAAGGGTGACACTCCTATTTGGCAGCCATTTCTCTTAAAGCTCG97378-01 DNACAGTGGTTCTGGACCTGCAGTATCTGCTGAGTTAGGAGGGACAGGAGAGTAGCAGCTASequenceGGTCGGTGGCAAATAGCCCGCAACATTCCCTTTAGTTACAATGAGTTTACCCCTCAATCTCAAATATTTCCTCAGTGGATTAACAGGAGAGCCAGTGATGGTGAAGCTTAAGTGGGGAATGGAGTATAACGGCTACCTGGTATCTGTAGATGGCTATATGAACATGCAGCTTGCAGATACAGAATTCATAAATGAGGCATTGCCTGGACATCTAGGTGAAGTTTTAATAAGGTGTAATAATGTCCTTTATATCACAGATGTGCAAGAAGAGGAAATGGGGAAATGAGTGAATAGCATCTTTTGAAGAGGATTTTTTAAATATGTATTTCTAGACAATAAAGATTTGTTTTTCAAAAAAAAAAAAAAGCAAAGGGCCTGGAGTAACAAAAACCATTTTGAAAAAGAACAAAGTAATTTCAAGACTCACTATAAAGTTACAGTAATCAAGGCAGTGTGGTATTTATGTAAGCACAGAGATACAGATCAATGAAACAGAATACAGGGTCCAGAAATAGATCCATCTACATGGTCAACTGAAATTTGAAAAATATGTCAAAATTACTCAATGGAGAAAGGATAGTCTTTTCAACAATTGAATATCCATGTGCAAAAATATGAAGCTTAACCCTTGCCCTCATAACACATACAAAGGTTAACTCAGAGTCAATGACAAGACTTAAATGTCAGAGCTAAAACTACAAAACTTCTAGAAGTAAACATAAACAAAAATATTCATGACTTTGTTAGGGAAAAACTTCTAAGACCTTTGGAAAAGCATGGACCATAGAAGAAAAAATTGATAAACTGAACTTCTGCAAAATTAAAAAAATTCTGCTCCCCAAATTACATAATTTAAAAAATAAAAAGGCAAGCCACAGACTGGGAGAAATATTTGCAAAATATAAAGGACTTATATCTAGAATATGTTTTTAAAGACACACACACATACACAAATCCATATAAATACTAACAATTTGGCTTAAAAAAAAGGACAAAAGATTTGAACAGACACTTGACTGAACAAGGTATTTATCAATGCAAATAAACATGTGGAAAGATGCTCCATATCATTAAACACCAAGGAAATGCAAATTTACACCAAAATAAGATGCCACTAGAATAGCTAAACTTAAAAAGACTTACAATATCAAGTGTTGGCAAGGATGTGGAGCAACTGGAGCTCATACGCTGCTGCCAAGTAGTATAGCCACTTTGGAAAACTGTTTGGGAGTTTCTTATATAATTAGATATATACTTACCATATGATCCAGCAGTCTCACTCCTGGATTTATCAAAAAGCAATGAAATCATATGTCCACTCAAACGCTTGTACTCAACAGTTCATACAACCTTTATTCATAATAGACACAAATTTATATGTGCTTATATATGTATATGTTTATATGTTTATATATGTAGTCATGTTTATATAACTACACATATTTATCAAAACTCATTGAATTCATACTTAAACAAGCCAACTGTTTATTATCTAGTAAATGAACAAATAGTGGTATAATTATACAATGAAATACTACTCAGCCATGAAAAGGAATGGACTACTGATACACTCAACAGAAGGAATGGACTGCAGAGACACTCAACAGCACAGATGAATCTCAAAAGCATTACAGTAAACAAGCCCACCACAGAAGGGTCCATGCTOTACATCCGATACCATTTTTCTCAAATTCTAGAAGAGCTAAAAGTGTTGAAAGCAGATCAAAGGCCAGACGTGGTGGCTCACACCTGCAATCCCAGCATGTTGGGAGGCCAAAACAGCCAGATCTCTTGAGCCCAGAAGTTCAAGACTAGCCTGGGCAACATGCCAAAACCTTATCTCTACTAAAAATACAAAAAAAAAAAAAAAAGCAAAAACAAAAACAAAAACAAAAAACAAAAAACCAGCTGGGTGTGGTCGCACACAGCTGTAGTCCCAGCTACTCAGGAGGCTGAGGTGGGACCATCACCTGAACCCAGGGAGATAAGGCTGCAGTGAGCCGTGATCACACCACTACACTCCAGCCTGGGTGACAGTAAGACCCTGTCTGTCAAAAAAAAAAAAAAAAGACAAAGAAAAGAAAAGCAATGGCTGCCAAAAGCTGGAGGTTCGGAAGGGGACCGAATACAAAAGAACATAAGGGAACTTTCTGGGTGATGGAAATGATCCATATTTTGATAGTGGTGGTGTTTATATGACTACACGTGTTTATCAAAACTCATTGAATTCATACTTAAAATGAGTGAAACTTATTCTAAATTATACTTTAATAAGTTAATAAAAAACAAGAAGTGGGTTGGGGAGACGTTGCTCAAAGGATACAAACTTTCAGTGAGGAGGAATAAGTTCAAGAGATCTACTGTACAACACGGTGACCATAGTCAATAACAATGTATTATATTCTTGCAAATTGGCCAGGTGAGGTGGCTCACACCTGTAATCTCAACACTTTGGGAGGCAGGAGGAACACTCAAGCCTAGGACTTCAAGACCAGCCTGGGCAATATAGGGAGATCTCGCCCCTACAGATAACTTAAAAATTAGCCTGTTGTCGTGGTGTGAGCCTGTGGTCCCAGCTACTCGGGAAACTGAGGCAAGAGGATTGCCTGAGCCCACGAGGTTGACGCTGAAGAAAGCCATGATCATGCCACTGCACTCCAGCTTGGCAACAGAGCAAGGTTCTGTCTCAAAATAAATAAATACATAAATAAATAATAAAATAAAATAAAATAAATAAATAAAAAGCCCAGGCGTGATGGCTCACCCCTGTAATCCCAGCACTTTGGAAGGCCAAGGCACGCAGATCACCTCAGCTCAGGAGTACGAGACCACCCTGGGCAACATGGGGTGAAACCTGTCTCTACTAAAATACAAAAAATTAGCCGGGTGTGGTGGCACGCGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGACATGAGAATTGCTTGAGCCCAGGACGCGGAGGTTACAGTGAGGCGAAATTGCACCACTGCACTCCAGCTTGTCTCAAATAAATAAATAAATAGAAAAAGGAAATTGCTAAGAGTAGATTTTAAGGGTTCTTACCACAAAAAAAATGCTAAGTATGTGAGGTAATACATGTTAATTAGCTTGACTTACCATTCCACAATGTACACATATTTCAAAACATCATGTTGTAGACAGTAAACATATACAATTTTTGTCAATTTAAAAAACAGAAAAGTTTAAAAAACAATGTCCTCAACCATCTTAGAAAACTGGATATGAATGGTATCCTGCATAATGAAGTGCCTTORF Start: ATG at 157ORF Stop: TGA at 400SEQ ID NO:8081 aa MW at 9245.7 kDNOV34a,MSLPLNLKYFLSGLTGEPVMVKLKWGMEYKGYLVSVDGYMNMQLADTEFINEALPGHLCG97378-01 ProteinGEVLIRCNNVLYIRDVEEEEMGKSequence


[0434] Further analysis of the NOV34a protein yielded the following properties shown in Table 34B.
174TABLE 34BProtein Sequence Properties NOV34aPSort0.6500 probability located in cytoplasm; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000probability located in lysosome (lumen); 0.0000probability located in endoplasmicreticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0435] A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34C.
175TABLE 34CGeneseq Results for NOV34aIdentities/NOV34aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAU31044Novel human secreted protein #1535 -1 . . . 7868/79 (86%)3e−32Homo sapiens, 124 aa. [WO200179449-39 . . . 11773/79 (92%)A2, 25-OCT-2001]ABB64039Drosophila melanogaster polypeptide SEQ3 . . . 7853/77 (68%)2e−25ID NO 18909 - Drosophila melanogaster,1 . . . 7769/77 (88%)84 aa. [WO200171042-A2, 27-SEP-2001]AAG33259Zea mays protein fragment SEQ ID NO:2 . . . 7750/77 (64%)9e−2440271 - Zea mays subsp. mays, 86 aa.3 . . . 7965/77 (83%)[EP1033405-A2, 06-SEP-2000]AAG12585Zea mays protein fragment SEQ ID NO:2 . . . 7750/77 (64%)9e−2411756 - Zea mays subsp. mays, 86 aa.3 . . . 7965/77 (83%)[EP1033405-A2, 06-SEP-2000]AAG33239Zea mays protein fragment SEQ ID NO:2 . . . 7749/77 (63%)1e−2340244 - Zea mays subsp. mays, 86 aa.3 . . . 7965/77 (83%)[EP1033405-A2, 06-SEP-2000]


[0436] In a BLAST search of public sequence datbases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34D.
176TABLE 34DPublic BLASTP Results for NOV34aIdentities/NOV34aSimilaritiesProteinResidues/for theAccessionMatchMatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ15356Small nuclear ribonucleoprotein F (snRNP-1 . . . 7868/79 (86%)8e−32F) (Sm protein F) (Sm-F) (SmF) - Homo1 . . . 7973/79 (92%)sapiens (Human), 86 aa.Q9V672DEBB PROTEIN - Drosophila3 . . . 7853/77 (68%)4e−25melanogaster (Fruit fly), 84 aa.1 . . . 7769/77 (88%)Q24297Small nuclear ribonucleoprotein F (snRNP-3 . . . 7853/77 (68%)4e−25F) (Sm protein F) (Sm-F) (SmF)5 . . . 8169/77 (88%)(Membrane-associated protein Deb-B) -Drosophila melanogaster (Fruit fly), 101 aa.Q9SUM2Probable small nuclear ribonucleoprotein F2 . . . 7850/78 (64%)5e−23(snRNP-F) (Sm protein F) (Sm-F) (SmF) -3 . . . 8065/78 (83%)Arabidopsis thaliana (Mouse-ear cress), 88aa.P34659Probable small nuclear ribonucleoprotein F4 . . . 7746/75 (61%)1e−18(snRNP-F) (Sm protein F) (Sm-F) (SmF) -6 . . . 8058/75 (77%)Caenorhabditis elegans, 85 aa.


[0437] PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34E.
177TABLE 34EDomain Analysis of NOV34aNOV34aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValueSm9 . . . 7328/65 (43%)1.1e−2154/65 (83%)



Example 35

[0438] The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.
178TABLE 35ANOV35 Sequence AnalysisSEQ ID NO:81750 bpNOV35a,GTGGCTGCTCGGGACCACCCGAACCCGCGGCCATGGCCCCGGCCGCCGCCAGCCCCCCCG97966-01 DNAGGAGGTGATCCGCGCGGCGCAGAAGGACGAGTACTACCGCGGTGGGCTGCGGAGCGCGSequenceGCGGGCGGCGCCCTGCACAGCCTGGCGGGTGCGGGGAAGTGGCTGGAGTGGAGGAAGGAGGTTGAGCTGCTCTCAGATGTGGCCTACTTTGGCCTCACCACACTTGCAGGCTACCAGACCCTGGGGGAGGAGTACGTCAGCATCATCCAGGTGGACCCATCGCGGATACATGTGCCCTCCTCGCTGCGCCGTGGCGTGCTGGTGACGCTGCATGCCGTCCTGCCCTACCTGCTGGACAAGGCCCTGCTCCCCCTGGAGCAGGACCTGCAGGCTGACCCCGACAGTGGGCGACCCTTGCAGGGGAGCCTGGGGCCAGGTGGGCGTGGCTGCTCAGGGGCGCGGCGCTGGATGCGTCACCACACGGCCACCCTGACTGAGCAGCAGAGGAGGGCGCTGCTGCGGGCGGTCTTCGTCCTCAGACAGGGCCTCGCCTGCCTCCAGCGCCTACATGTTGCCTGGTTTTACATCCACCTGTTCTGCTGGGAGTGCATCACCGCCTGGTGCAGCAGCAAGGCGGAGTGTCCCCTCTGCCGGGAGAACTTCCCTCCCCAGAAGCTCATCTACCTTCGGCACTACCGCTGAGCCGGCGCCCGGGTGGGCCTGGACACAGATGACCTCTACGGGAGTCTGAACGORF Start: ATG at 33ORF Stop: ATG at 696SEQ ID NO:82221 aa MW at 24759.4 kDNOV35a,MAPAAASPPEVIRAAQKDEYYRGGLRSAAGGALHSLAGAGKWLEWRKEVELLSDVAYFCG97966-01 ProteinGLTTLAGYQTLGEEYVSIIQVDPSRIHVPSSLRRGVLVTLHAVLPYLLDKALLPLEQESequenceLQADPDSGRPLQGSLGPGGRGCSGARRWMRHHTATLTEQQRRALLRAVFVLRQGLACLQRLHVAWFYIHLFCWECITAWCSSKAECPLCREKFPPQKLIYLRHYR


[0439] Further analysis of the NOV35a protein yielded the following properties shown in Table 35B.
179TABLE 35BProtein Sequence Properties NOV35aPSort0.4500 probability located in cytoplasm; 0.3774 probabilityanalysis:located in microbody (peroxisome); 0.2542probability located in lysosome (lumen);0.1000 probability located in mitochondrialmatrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0440] A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35C.
180TABLE 35CGeneseq Results for NOV35aNOV35aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [Patent #,Matchthe MatchedExpectIdentifierDate]ResiduesRegionValueAAB51471Human secreted protein BLAST search185 . . . 22137/37 (100%)3e−18protein SEQ ID NO: 148 - Homo sapiens,19 . . . 5537/37 (100%)55 aa. [WO200058495-A1, 05-OCT-2000]AAB51470Human secreted protein BLAST search185 . . . 22137/37 (100%)3e−18protein SEQ ID NO: 147 - Homo sapiens,19 . . . 5537/37 (100%)55 aa. [WO200058495-A1, 05-OCT-2000]AAB51469Human secreted protein BLAST search185 . . . 22137/37 (100%)3e−18protein SEQ ID NO: 146 - Homo sapiens,19 . . . 5537/37 (100%)55 aa. [WO200058495-A1, 05-OCT-2000]AAB51468Human secreted protein BLAST search185 . . . 22137/37 (100%)3e−18protein SEQ ID NO: 145 - Homo sapiens,19 . . . 5537/37 (100%)55 aa. [WO200058495-A1, 05-OCT-2000]AAG43363Arabidopsis thaliana protein fragment SEQ 6 . . . 10839/103 (37%) 6e−13ID NO: 54191 - Arabidopsis thaliana, 381 29 . . . 13159/103 (56%) aa. [EP1033405-A2, 06-SEP-2000]


[0441] In a BLAST search of public sequence datbases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35D.
181TABLE 35DPublic BLASTP Results for NOV35aNOV35aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9BW90SIMILAR TO PEROXISOME 1 . . . 185184/185 (99%) e−103BIOGENESIS FACTOR 10 - Homo 1 . . . 185184/185 (99%)sapiens (Human), 346 aa.O60683Peroxisome assembly protein 10 1 . . . 185184/185 (99%) e−103(Peroxin-10) - Homo sapiens (Human), 1 . . . 185184/185 (99%)326 aa.Q9M400PEX10P - Arabidopsis thaliana (Mouse- 6 . . . 108 39/103 (37%)1e−12ear cress), 381 aa.29 . . . 131 59/103 (56%)Q9SYU4ZINC-BINDING PEROXISOMAL 6 . . . 108 39/103 (37%)1e−12INTEGRAL MEMBRANE PROTEIN -29 . . . 131 59/103 (56%)Arabidopsis thaliana (Mouse-ear cress),381 aa.Q94LL6PUTATIVE ZINC-BINDING 6 . . . 108 38/103 (36%)4e−11PEROXISOMAL INTEGRAL31 . . . 133 57/103 (54%)MEMBRANE PROTEIN - Oryza sativa(Rice), 382 aa.


[0442] PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35E.
182TABLE 35EDomain Analysis of NOV35aNOV35aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValuezf-C3HC4185 . . . 205 9/29 (31%)0.01116/29 (55%)



Example 36

[0443] The NOV36 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 36A.
183TABLE 36ANOV36 Sequence AnalysisSEQ ID NO:831929 bpNOV36a,CCTGTGTCCCCGGGTATGGGCTGGGGTCTGGCATGGGCCTCTGCAGCTGGCCACAGACCG99852-01 DNATGAGGGGCTCCAAACAGCACTGGGAACAGCCTCAGGGTATCTGTGGTTGGGGGCTGCASequenceGACAGGGGTGGGGTCTTCTGCTTGGCCTTGACAGGTTGCAGCCACGTTGTCAGCCGCATCTGCAATCTCATGGGGGCTTGGGGTCTTCCCGGCTCACGAGGTTATGGCAGAATTCAGCTCCTGGTGGCTGGGGACTGGGTCCCACCTCCCTGCTGGCTGTTGGCCCTTCCCAGCATGGCGGTTGCTTCCCCTTCAGGGCCAGCAGGACTGGCCCGAATTTCTCCCTTTCTGGCGTTGAAACACCCTCTGGAGGGCTTCGTGATCGGGCCATGCCCGCCTAGGATGCTCTCCCTTCTGATGAGCTCAAGTCACCGGTTAGGGTCCTTAATCACATCGACAACACCCACCCCACCTGGCGAGTACAACGTGATCAGGGAAGGGATGCCCTGCTGCGGGAGGGGCCACGGGCGTGCACACCAGGTGGGAATCCGGTGGGAGAGGGCATCCCAGAGTCCTGCCTACTGGAGGGCTGGAGGGAGCAGAGTGGAGAGGGTGGGTTGGAGGGTGGTAGAAGGGCCAGGGGGCCAGCGGGGCGACTCAGCAGACCCTGTCTCAACCCGTAGGTCTGGAGTGGGACTGACTGGCTCCAGACAGACCATGTTCTACACAGAGGTGACAGATGCCCAGCGTAGCGGTCCAGGTGGGGGCCTGGTGGAGGAGGGTGAGCTCATTGAGGTGGTGCACCTGCCCCTGGAAGGCGCCCAGGCCTTTGCAGACGACCCGGACATCCCCAAGACCCTCGGCGTCATCTTTGGTGTCTCATGGTTCCTCAGCCAGGTGGCCCCCAACCTGGATCTCCAGTGAGACTCCAGGORF Start: ATG at 33ORF Stop: TGA at 918SEQ ID NO:84295 aa MW at 31210.5 kDNOV36a,MGLCSWPQTEGLQTALGTASGYLWLGAADRGGVFCLALTGCRQVVSRICNLMGAWGLPCG99852-01 ProteinGSRGYGRIQLLVAGDWVPPPCWLLALPSMAVASPSGPACLARISPFLALKHPLEGFVISequenceGPCPPRMLSLLMSSSHRLGSLITSTTPTPPGEYNVIREGNPCCGRGHGRAHQVGIRWERASQSPAYWRAGGSRVERVGWRVVEGPGGQRGDSADPVSTRRSGVGLTGSRQTMFYTEVTDAQRSGPGGGLVEEGELIEVVHLPLEGAQAFADDPDIPKTLGVIFGVSWFLSQVAPNLDLQ


[0444] Further analysis of the NOV36a protein yielded the following properties shown in Table 36B.
184TABLE 36BProtein Sequence Properties NOV36aPSort0.5105 probability located in microbody (peroxisome); 0.5050analysis:probability located in cytoplasm; 0.3026probability located in lysosome (lumen); 0.1000probability located in mitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0445] A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36C.
185TABLE 36CGeneseq Results for NOV36aIdentities/NOV36aSimilaritiesResidues/for theGeneseqProtein/Organism/Length [Patent #,MatchMatchedExpectIdentifierDate]ResiduesRegionValueAAU22384Human cardiovascular system antigen216 . . . 29580/80 (100%)5e−40polypeptide SEQ ID No: 1158 - Homo 53 . . . 13280/80 (100%)sapiens, 132 aa. [WO200155321-A2, 02-AUG-2001]ABB61994Drosophila melanogaster polypeptide SEQ210 . . . 29033/82 (40%) 2e−08ID NO: 12774 - Drosophila melanogaster,1268 . . . 134749/82 (59%) 1351 aa. [WO200171042-A2, 27-SEP-2001]AAW98872H. pylori GHPO 1732 protein -217 . . . 28726/71 (36%) 0.002Helicobacter pylori, 212 aa. [WO9843478-140 . . . 20836/71 (50%) A1, 08-OCT-1998]ABG18063Novel human diagnostic protein #18054 - 25 . . . 10331/82 (37%) 1.7 Homo sapiens, 717 aa. [WO200175067-182 . . . 25941/82 (49%) A2, 11-OCT-2001]ABG18063Novel human diagnostic protein #18054 - 25 . . . 10331/82 (37%) 1.7 Homo sapiens, 717 aa. [WO200175067-182 . . . 25941/82 (49%) A2, 11-OCT-2001]


[0446] In a BLAST search of public sequence datbases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36D.
186TABLE 36DPublic BLASTP Results for NOV36aNOV36aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9N034UNNAMED PROTEIN PRODUCT - 1 . . . 295258/295 (87%) e−147Macaca fascicularis (Crab eating 1 . . . 295265/295 (89%)macaque) (Cynomolgus monkey), 295aa.O95848HYPOTHETICAL 31.5 KDA PROTEIN -212 . . . 295 81/84 (96%)1e−39Homo sapiens (Human), 290 aa.207 . . . 290 82/84 (97%)Q9D1421110030M18RIK PROTEIN - Mus164 . . . 295 77/132 (58%)2e−31musculus (Mouse), 222 aa.106 . . . 222 89/132 (67%)Q9CSD21110030M18RIK PROTEIN - Mus164 . . . 295 76/132 (57%)1e−30musculus (Mouse), 223 aa (fragment).107 . . . 223 88/132 (66%)Q9VB64CG6001 PROTEIN - Drosophila210 . . . 290 33/82 (40%)6e−08melanogaster (Fruit fly), 1351 aa.1268 . . . 1347 49/82 (59%)


[0447] PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36E.
187TABLE 36EDomain Analysis of NOV36aIdentities/PfamSimilaritiesExpectDomainNOV36a Match Regionfor the Matched RegionValue



Example B


Identification of NOVX Clones

[0448] The novel NOVX target sequences identified in the present invention may have been subjected to the exon linking process to confirm the sequence. PCR primers are designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence is examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective is encountered, or, in the case of the reverse primer, until the stop codon is reached. Such primers are designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers are then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain—amygdala, brain—cerebellum, brain—hippocampus, brain—substantia nigra, brain—thalamus, brain—whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma—Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus.


[0449] Usually the resulting amplicons are gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking is cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones are assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs are included as components for an assembly when the extent of their identity with another component of the assembly is at least 95% over 50 bp. In addition, sequence traces are evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.



Example C


Quantitative Expression Analysis of Clones in Various Cells and Tissues

[0450] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[0451] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0452] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.


[0453] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No.4324020), following the manufacturer's instructions.


[0454] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range=58°-60° C., primer optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′ G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[0455] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[0456] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1×TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.



Panels 1, 1.1, 1.2, and 1.3D

[0457] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[0458] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[0459] ca.=carcinoma,


[0460] *=established from metastasis,


[0461] met=metastasis,


[0462] s cell var=small cell variant,


[0463] non-s=non-sm=non-small,


[0464] squam=squamous,


[0465] pl. eff=pl effusion=pleural effusion,


[0466] glio=glioma,


[0467] astro=astrocytoma, and


[0468] neuro=neuroblastoma.



General_screening_panel_v1.4 and General_screening_panel_v1.5

[0469] The plates for Panels 1.4 and 1.5 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4 and 1.5 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4 and 1.5 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4 and 1.5 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.



Panels 2D, 2.2, 2.3 and 2.4

[0470] The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen.



HASS Panel v 1.0

[0471] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls.


[0472] Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.



Panel 3D

[0473] The plates of Panel 3D are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D and 1.3D are of the most common cell lines used in the scientific literature.



Panels 4D, 4R, and 4.1D

[0474] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[0475] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[0476] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-2 μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10−5M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.


[0477] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah.), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[0478] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and plated at 106cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[0479] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24,48 and 72 hours.


[0480] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th1, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[0481] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×10−5cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×10−5cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[0482] For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, {fraction (1/10)} volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at −80° C.



AI_comprehensive panel_v1.0

[0483] The plates for Al_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0484] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0485] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0486] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0487] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-1anti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0488] In the labels employed to identify tissues in the Al_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0489] AI=Autoimmunity


[0490] Syn=Synovial


[0491] Normal=No apparent disease


[0492] Rep22/Rep20=individual patients


[0493] RA=Rheumatoid arthritis


[0494] Backus=From Backus Hospital


[0495] OA=Osteoarthritis


[0496] (SS) (BA) (MF)=Individual patients


[0497] Adj=Adjacent tissue


[0498] Match control=adjacent tissues


[0499] -M=Male


[0500] -F=Female


[0501] COPD=Chronic obstructive pulmonary disease



Panels 5D and 5I

[0502] The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[0503] In the Gestational Diabetes study subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:


[0504] Patient 2: Diabetic Hispanic, overweight, not on insulin


[0505] Patient 7-9: Nondiabetic Caucasian and obese (BMI>30)


[0506] Patient 10: Diabetic Hispanic, overweight, on insulin


[0507] Patient 11: Nondiabetic African American and overweight


[0508] Patient 12: Diabetic Hispanic on insulin


[0509] Adiocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[0510] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[0511] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[0512] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[0513] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.


[0514] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[0515] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[0516] GO Adipose=Greater Omentum Adipose


[0517] SK=Skeletal Muscle


[0518] UT=Uterus


[0519] PL=Placenta


[0520] AD=Adipose Differentiated


[0521] AM=Adipose Midway Differentiated


[0522] U=Undifferentiated Stem Cells



Panel CNSD.01

[0523] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0524] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[0525] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[0526] PSP=Progressive supranuclear palsy


[0527] Sub Nigra=Substantia nigra


[0528] Glob Palladus=Globus palladus


[0529] Temp Pole=Temporal pole


[0530] Cing Gyr=Cingulate gyrus


[0531] BA 4=Brodman Area 4



Panel CNS_Neurodegeneration_V1.0

[0532] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0533] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3=severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[0534] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[0535] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[0536] Control=Control brains; patient not demented, showing no neuropathology


[0537] Control (Path)=Control brains; patient not demented but showing sever AD-like pathology


[0538] SupTemporal Ctx=Superior Temporal Cortex


[0539] Inf Temporal Ctx=Inferior Temporal Cortex



A. NOV5a (CG94620-01): Progesterone Receptor-associated P48 Protein

[0540] Expression of gene CG94620-01 was assessed using the primer-probe set Ag3930, described in Table AA. Results of the RTQ-PCR runs are shown in Tables AB, and AC.
188TABLE AAProbe Name Ag3930StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gtgcaggatcccaaagttagt-3′2197485ProbeTET-5′-tggctcaaaacccagcaaatatgtca-3′-TAMRA26101186Reverse5′-ctttgggttgccctggtat-3′19103987


[0541]

189





TABLE AB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag3930,

(%) Ag3930,



Run

Run


Tissue Name
219478617
Tissue Name
219478617













Adipose
6.1
Renal ca. TK-10
9.3


Melanoma*
24.5
Bladder
37.1


Hs688(A).T


Melanoma*
19.9
Gastric ca. (liver met.)
43.8


Hs688(B).T

NCI-N87


Melanoma* M14
10.6
Gastric ca. KATO III
8.1


Melanoma*
0.5
Colon ca. SW-948
6.3


LOXIMVI


Melanoma* SK-
8.9
Colon ca. SW480
29.3


MEL-5


Squamous cell
0.0
Colon ca.* (SW480
12.3


carcinoma SCC-4

met) SW620


Testis Pool
20.3
Colon ca. HT29
12.0


Prostate ca.* (bone
33.2
Colon ca. HCT-116
48.6


met) PC-3


Prostate Pool
6.2
Colon ca. CaCo-2
43.2


Placenta
5.3
Colon cancer tissue
20.0


Uterus Pool
24.5
Colon ca. SW1116
0.5


Ovarian ca.
6.7
Colon ca. Colo-205
0.7


OVCAR-3


Ovarian ca. SK-
100.0
Colon ca. SW-48
0.4


OV-3


Ovarian ca.
3.0
Colon Pool
42.6


OVCAR-4


Ovarian ca.
1.3
Small Intestine
64.2


OVCAR-5

Pool


Ovarian ca.
16.3
Stomach Pool
30.6


IGROV-1


Ovarian ca.
6.6
Bone Marrow Pool
21.3


OVCAR-8


Ovary
11.3
Fetal Heart
14.0


Breast ca. MCF-7
4.6
Heart Pool
15.3


Breast ca. MDA-
50.3
Lymph Node Pool
58.6


MB-231


Breast ca. BT 549
4.5
Fetal Skeletal Muscle
8.2


Breast ca. T47D
9.8
Skeletal Muscle Pool
2.4


Breast ca. MDA-N
0.5
Spleen Pool
29.3


Breast Pool
55.1
Thymus Pool
39.5


Trachea
37.4
CNS cancer (glio/
1.0




astro) U87-MG


Lung
18.2
CNS cancer (glio/
2.0




astro) U-118-MG


Fetal Lung
40.6
CNS cancer
15.1




(neuro;met) SK-N-AS


Lung ca. NCI-N417
1.5
CNS cancer (astro)
3.0




SF-539


Lung ca. LX-1
23.0
CNS cancer (astro)
17.3




SNB-75


Lung ca. NCI-H146
0.9
CNS cancer (glio)
3.3




SNB-19


Lung ca. SHP-77
10.0
CNS cancer (glio) SF-
61.6




295


Lung ca. A549
6.7
Brain (Amygdala)
8.7




Pool


Lung ca. NCI-H526
3.2
Brain (cerebellum)
12.1


Lung ca. NCI-H23
25.0
Brain (fetal)
25.5


Lung ca. NCI-H460
40.1
Brain (Hippocampus)
12.1




Pool


Lung ca. HOP-62
18.3
Cerebral Cortex Pool
14.7


Lung ca. NCI-H522
14.3
Brain (Substantia
9.7




nigra) Pool


Liver
1.2
Brain (Thalamus) Pool
17.2


Fetal Liver
4.6
Brain (whole)
4.9


Liver ca. HepG2
12.1
Spinal Cord Pool
20.6


Kidney Pool
76.3
Adrenal Gland
31.2


Fetal Kidney
18.2
Pituitary gland Pool
8.5


Renal ca. 786-0
8.1
Salivary Gland
3.2


Renal ca. A498
0.0
Thyroid (female)
1.8


Renal ca. ACHN
6.5
Pancreatic ca.
7.0




CAPAN2


Renal ca. UO-31
4.5
Pancreas Pool
43.8










[0542]

190





TABLE AC










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag3930,

(%) Ag3930,



Run

Run


Tissue Name
170701768
Tissue Name
170701768













Secondary Th1 act
12.2
HUVEC IL-1beta
3.7


Secondary Th2 act
4.5
HUVEC IFN gamma
4.3


Secondary Tr1 act
10.9
HUVEC TNF alpha +
1.1




IFN gamma


Secondary Th1 rest
4.6
HUVEC TNF alpha +
1.1




IL4


Secondary Th2 rest
7.3
HUVEC IL-11
4.5


Secondary Tr1 rest
7.7
Lung Microvascular
9.8




EC none


Primary Th1 act
8.5
Lung Microvascular
4.3




EC TNFalpha +




IL-1beta


Primary Th2 act
19.1
Microvasucular
3.7




Dermal EC none


Primary Tr1 act
6.4
Microsvasular
1.5




Dermal EC




TNFalpha + IL-1beta


Primary Th1 rest
7.9
Bronchial epithelium
9.4




TNFalpha + IL1beta


Primary Th2 rest
7.0
Small airway
1.2




epithelium none


Primary Tr1 rest
10.8
Small airway
6.8




epithelium




TNFalpha + IL-1beta


CD45RA CD4
9.6
Coronery artery SMC
4.5


lymphocyte act

rest


CD45RO CD4
14.7
Coronery artery SMC
1.3


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
14.4
Astrocytes rest
3.2


Secondary CD8
8.9
Astrocytes INFalpha +
5.1


lymphocyte rest

IL-1beta


Secondary CD8
4.2
KU-812 (Basophil)
15.3


lymphocyte act

rest


CD4 lymphocyte
7.8
KU-812 (Basophil)
11.6


none

PMA/ionomycin


2ry Th1/Th2/
13.6
CCD1106 (Keratino-
0.5


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
10.8
CCD1106 (Keratino-
4.1




cytes) TNFalpha +




IL-1beta


LAK cells IL-2
13.2
Liver cirrhosis
3.7


LAK cells IL-2 +
6.7
NCI-H292 none
4.7


IL-12


LAK cells IL-2 +
7.9
NCI-H292 IL-4
9.7


IFN gamma


LAK cells IL-2 +
19.5
NCI-H292 IL-9
3.1


IL-18


LAK cells
8.4
NCI-H292 IL-13
4.8


PMA/ionomycin


NK Cells IL-2 rest
21.0
NCI-H292 IFN gamma
4.9


Two Way MLR 3
17.4
HPAEC none
2.2


day


Two Way MLR 5
8.8
HPAEC TNF alpha +
7.2


day

IL-1 beta


Two Way MLR 7
9.7
Lung fibroblast none
3.7


day


PBMC rest
2.4
Lung fibroblast TNF
2.0




alpha + IL-1 beta


PBMC PWM
7.1
Lung fibroblast IL-4
0.6


PBMC PHA-L
7.5
Lung fibroblast IL-9
2.4


Ramos (B cell) none
2.2
Lung fibroblast IL-13
1.5


Ramos (B cell)
1.2
Lung fibroblast IFN
7.3


ionomycin

gamma


B lymphocytes
7.4
Dermal fibroblast
8.4


PWM

CCD1070 rest


B lymphocytes
20.2
Dermal fibroblast
20.3


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
10.9
Dermal fibroblast
2.7




CCD1070 IL-1 beta


EOL-1 dbcAMP
16.4
Dermal fibroblast IFN
0.7


PMA/ionomycin

gamma


Dendritic cells none
12.8
Dermal fibroblast IL-4
7.2


Dendritic cells LPS
7.3
Dermal Fibroblasts
1.3




rest


Dendritic cells anti-
3.8
Neutrophils TNFa +
0.8


CD40

LPS


Monocytes rest
12.6
Neutrophils rest
12.6


Monocytes LPS
10.6
Colon
1.7


Macrophages rest
11.0
Lung
9.3


Macrophages LPS
2.0
Thymus
33.7


HUVEC none
1.6
Kidney
100.0


HUVEC starved
4.7










[0543] General_screening_panel_v1.4 Summary: Ag3930 Highest expression of the CG94620-01 gene is seen in an ovarian cancer cell line (CT=30.8), with prominent levels of expression also seen in a brain cancer cell lines when compared to expression in the normal tissue. Thus, expression of this gene could be used as a marker for these types of cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of brain and ovarian cancers.


[0544] Among tissues with metabolic function, this gene is expressed at low but significant levels in pituitary, adipose, adrenal gland, pancreas, fetal skeletal muscle and adult and fetal heart. This expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0545] This gene is also expressed at low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0546] Panel 4.1D Summary: Ag3930 Highest expression of the CG94620-01 gene is seen in the kidney (CT=30.7), with low but significant levels of expression seen in many of the samples on this panel. The higher levels of expression of this gene suggest that expression of this gene could be used to differentiate this sample from other samples on this panel and as a marker of kidney tissue. Furthermore, antibody or small molecule therapies designed with the protein encoded by this gene could modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.



B. NOV6a (CG94882-01): Rho GAP

[0547] Expression of gene CG94882-01 was assessed using the primer-probe set Ag3958, described in Table BA. Results of the RTQ-PCR runs are shown in Tables BB, BC and BD.
191TABLE BAProbe Name Ag3958StartSEQ IDPrimersSequencesLengthPostionNoForward5′-cttcttcctcttcgacaacctt-3′2253188ProbeTET-5′-ctcgtctactgcaagcggaaatccag-3′-TAMRA2655389Reverse5′-gtcctcttggtggacttcttg-3′2159190


[0548]

192





TABLE BB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag3958,

(%) Ag3958,



Run

Run


Tissue Name
249265943
Tissue Name
249265943













AD 1 Hippo
35.8
Control (Path) 3
11.5




Temporal Ctx


AD 2 Hippo
37.6
Control (Path) 4
25.5




Temporal Ctx


AD 3 Hippo
21.8
AD 1 Occipital Ctx
32.3


AD 4 Hippo
21.2
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 hippo
55.5
AD 3 Occipital Ctx
24.0


AD 6 Hippo
99.3
AD 4 Occipital Ctx
37.9


Control 2 Hippo
37.1
AD 5 Occipital Ctx
38.7


Control 4 Hippo
34.6
AD 6 Occipital Ctx
36.9


Control (Path) 3
15.2
Control 1 Occipital
11.2


Hippo

Ctx


AD 1 Temporal Ctx
49.0
Control 2 Occipital
46.7




Ctx


AD 2 Temporal Ctx
35.8
Control 3 Occipital
23.0




Ctx


AD 3 Temporal Ctx
25.0
Control 4 Occipital
23.0




Ctx


AD 4 Temporal Ctx
40.1
Control (Path) 1
71.2




Occipital Ctx


AD 5 Inf Temporal
90.8
Control (Path) 2
13.4


Ctx

Occipital Ctx


AD 5 SupTemporal
45.1
Control (Path) 3
15.4


Ctx

Occipital Ctx


AD 6 Inf Temporal
100.0
Control (Path) 4
16.6


Ctx

Occipital Ctx


AD 6 Sup Temporal
84.7
Control 1 Parietal
22.5


Ctx

Ctx


Control 1 Temporal
15.2
Control 2 Parietal
61.6


Ctx

Ctx


Control 2 Temporal
43.2
Control 3 Parietal
21.5


Ctx

Ctx


Control 3 Temporal
21.5
Control (Path) 1
64.2


Ctx

Parietal Ctx


Control 4 Temporal
22.2
Control (Path) 2
27.5


Ctx

Parietal Ctx


Control (Path) 1
39.0
Control (Path) 3
10.9


Temporal Ctx

Parietal Ctx


Control (Path) 2
37.9
Control (Path) 4
31.2


Temporal Ctx

Parietal Ctx










[0549]

193





TABLE BC










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag3958,

(%) Ag3958,



Run

Run


Tissue Name
219922886
Tissue Name
219922886













Adipose
9.2
Renal ca.TK-10
0.6


Melanoma*
2.1
Bladder
12.5


Hs688(A).T


Melanoma*
1.2
Gastric ca. (liver met.)
0.0


Hs688(B).T

NCI-N87


Melanoma* M14
6.5
Gastric ca. KATO III
0.1


Melanoma*
7.6
Colon ca. SW-948
0.0


LOXIMVI


Melanoma* SK-
11.5
Colon ca. SW480
3.2


MEL-5


Squamous cell
0.8
Colon ca.* (SW480
3.8


carcinoma SCC-4

met) SW620


Testis Pool
3.7
Colon ca. HT29
0.0


Prostate ca.* (bone
10.7
Colon ca. HCT-116
3.8


met) PC-3


Prostate Pool
2.5
Colon ca. CaCo-2
1.4


Placenta
6.0
Colon cancer tissue
8.0


Uterus Pool
1.3
Colon ca. SW1116
0.0


Ovarian ca.
3.8
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca. SK-
18.6
Colon ca. SW-48
0.0


OV-3


Ovarian ca.
5.6
Colon Pool
5.2


OVCAR-4


Ovarian ca.
30.8
Small Intestine Pool
2.8


OVCAR-5


Ovarian ca.
2.5
Stomach Pool
3.6


IGROV-1


Ovarian ca.
2.4
Bone Marrow Pool
2.0


OVCAR-8


Ovary
2.3
Fetal Heart
6.3


Breast ca. MCF-7
84.1
Heart Pool
2.0


Breast ca. MDA-
0.0
Lymph Node Pool
4.0


MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
3.5


Breast ca. T47D
100.0
Skeletal Muscle Pool
3.6


Breast ca. MDA-N
8.7
Spleen Pool
20.6


Breast Pool
4.6
Thymus Pool
8.5


Trachea
6.5
CNS cancer (glio/
69.7




astro) U87-MG


Lung
0.5
CNS cancer (glio/
22.8




astro) U-118-MG


Fetal Lung
31.6
CNS cancer
2.3




(neuro;met) SK-N-AS


Lung ca. NCI-N417
6.4
CNS cancer (astro)
1.3




SF-539


Lung ca. LX-1
1.5
CNS cancer (astro)
4.4




SNB-75


Lung ca. NCI-H146
14.6
CNS cancer (glio)
2.5




SNB-19


Lung ca. SHP-77
3.8
CNS cancer (glio) SF-
5.7




295


Lung ca. A549
6.8
Brain (Amygdala)
18.9




Pool


Lung ca. NCI-H526
7.4
Brain (cerebellum)
43.8


Lung ca. NCI-H23
2.1
Brain (fetal)
17.6


Lung ca. NCI-
0.1
Brain (Hippocampus)
21.9


H460

Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
25.7


Lung ca. NCI-H522
1.9
Brain (Substantia
19.1




nigra) Pool


Liver
1.7
Brain (Thalamus) Pool
29.9


Fetal Liver
9.5
Brain (whole)
25.5


Liver ca. HepG2
0.0
Spinal Cord Pool
30.1


Kidney Pool
5.6
Adrenal Gland
11.3


Fetal Kidney
4.2
Pituitary gland Pool
2.7


Renal ca. 786-0
0.0
Salivary Gland
1.8


Renal ca. A498
2.0
Thyroid (female)
2.6


Renal ca. ACHN
6.4
Pancreatic ca.
0.1




CAPAN2


Renal ca. UO-31
2.6
Pancreas Pool
5.3










[0550]

194





TABLE BD










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag3958,

(%) Ag3958,



Run

Run


Tissue Name
268143866
Tissue Name
268143866













Colon cancer 1
17.2
Bladder cancer NAT 2
0.5


Colon NAT 1
18.0
Bladder cancer NAT 3
0.7


Colon cancer 2
12.3
Bladder cancer NAT 4
1.3


Colon cancer
5.3
Adenocarcinoma of the
29.9


NAT 2

prostate 1


Colon cancer 3
15.5
Adenocarcinoma of the
4.3




prostate 2


Colon cancer
6.8
Adenocarcinoma of the
6.6


NAT 3

prostate 3


Colon malignant
34.2
Adenocarcinoma of the
10.0


cancer 4

prostate 4


Colon normal
3.5
Prostate cancer NAT 5
5.8


adjacent tissue 4


Lung cancer 1
33.0
Adenocarcinoma of the
1.8




prostate 6


Lung NAT 1
7.3
Adenocarcinoma of the
3.4




prostate 7


Lung cancer 2
67.4
Adenocarcinoma of the
1.0




prostate 8


Lung NAT 2
14.0
Adenocarcinoma of the
14.6




prostate 9


Squamous cell
31.6
Prostate cancer NAT 10
0.8


carcinoma 3


Lung NAT 3
6.3
Kidney cancer 1
72.7


metastatic
6.0
KidneyNAT 1
25.0


melanoma 1


Melanoma 2
2.4
Kidney cancer 2
100.0


Melanoma 3
2.7
Kidney NAT 2
15.9


metastatic
20.0
Kidney cancer 3
32.3


melanoma 4


metastatic
33.0
Kidney NAT 3
7.2


melanoma 5


Bladder cancer 1
1.8
Kidney cancer 4
27.5


Bladder cancer
0.0
Kidney NAT 4
7.2


NAT 1


Bladder cancer 2
5.4










[0551] CNS_neurodegeneration_v1.0 Summary: Ag3958 This panel confirms the expression of the CG94882-01 gene in the brain in an independent group of individuals. This gene is found to be upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene or gene product may decrease neuronal death and be of use in the treatment of this disease.


[0552] General_screening_panel_v1.4 Summary: Ag3958 Highest expression of the CG94882-01 gene is seen in a breast cancer cell line (CT=24.6). Significant levels of expression are also seen in a second breast cancer cell line. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker for breast cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of breast cancer.


[0553] Among tissues with metabolic function, this gene is expressed at high to moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0554] This gene is also expressed at high levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0555] general oncology screening panel_v2.4 Summary: Ag3958 Highest expression of the CG94882-01 gene is seen in kidney cancer (CT=26.5). Significant levels of expression are also seen in kidney cancer, lung cancer and prostate cancer when compared to expression in corresponding normal adjacent tissue. Thus, expression of this gene could be used as a marker of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene could be effective in the treatment of lung, kidney and prostate cancers.



C. NOV7a (CG94915-01): DELTEX3

[0556] Expression of gene CG94915-01 was assessed using the primer-probe sets Ag1983 and Ag3962, described in Tables CA and CB. Results of the RTQ-PCR runs are shown in Tables CC, CD, CE, CF, CG, CH and CI.
195TABLE CAProbe Name Ag1983StartSEQPrimersSequencesLengthPositionID NoForward5′-cagcttccaaagagtaaaagca-3′22449391ProbeTET-5′-tctgcaatctcccacaccatgaact-3′-TAMRA26445492Reverse5′-gagattgcactgtgtgtgacat-3′22442992


[0557]

196





TABLE CB










Probe Name Ag3962














Start
SEQ ID


Primers
Sequences
Length
Position
No














Forward
5′-caggaaagagataccctggaat-3′
22
818
94





Probe
TET-5′-cagcgaactgcatacttgcctgataa-3′-TAMRA
26
841
95





Reverse
5′-cagtttcaaaaccttccttcct-3′
22
873
96










[0558]

197





TABLE CC










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag3962,

(%) Ag3962,



Run

Run


Tissue Name
212343354
Tissue Name
212343354













AD 1 Hippo
23.8
Control (Path) 3
14.5




Temporal Ctx


AD 2 Hippo
30.1
Control (Path) 4
29.3




Temporal Ctx


AD 3 Hippo
13.1
AD 1 Occipital Ctx
15.6


AD 4 Hippo
10.0
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 hippo
52.1
AD 3 Occipital Ctx
14.6


AD 6 Hippo
100.0
AD 4 Occipital Ctx
12.9


Control 2 Hippo
25.5
AD 5 Occipital Ctx
29.3


Control 4 Hippo
25.2
AD 6 Occipital Ctx
22.1


Control (Path) 3
19.3
Control 1 Occipital
21.2


Hippo

Ctx


AD 1 Temporal Ctx
26.1
Control 2 Occipital
28.1




Ctx


AD 2 Temporal Ctx
24.5
Control 3 Occipital
15.7




Ctx


AD 3 Temporal Ctx
8.1
Control 4 Occipital
15.5




Ctx


AD 4 Temporal Ctx
17.9
Control (Path) 1
39.5




Occipital Ctx


AD 5 Inf Temporal
54.7
Control (Path) 2
7.6


Ctx

Occipital Ctx


AD 5 SupTemporal
90.8
Control (Path) 3
14.0


Ctx

Occipital Ctx


AD 6 Inf Temporal
97.9
Control (Path) 4
26.6


Ctx

Occipital Ctx


AD 6 Sup Temporal
96.6
Control 1 Parietal
20.0


Ctx

Ctx


Control 1 Temporal
13.7
Control 2 Parietal
55.9


Ctx

Ctx


Control 2 Temporal
26.6
Control 3 Parietal
9.7


Ctx

Ctx


Control 3 Temporal
14.2
Control (Path) 1
29.5


Ctx

Parietal Ctx


Control 4 Temporal
11.0
Control (Path) 2
27.2


Ctx

Parietal Ctx


Control (Path) 1
33.9
Control (Path) 3
17.1


Temporal Ctx

Parietal Ctx


Control (Path) 2
35.8
Control (Path) 4
31.0


Temporal Ctx

Parietal Ctx










[0559]

198





TABLE CD










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag3962,

(%) Ag3962,



Run

Run


Tissue Name
217333830
Tissue Name
217333830













Adipose
6.0
Renal ca. TK-10
11.3


Melanoma*
5.4
Bladder
26.8


Hs688(A).T


Melanoma*
3.8
Gastric ca. (liver met.)
100.0


Hs688(B).T

NCI-N87


Melanoma* M14
15.1
Gastric ca. KATO III
36.3


Melanoma*
3.6
Colon ca. SW-948
2.8


LOXIMVI


Melanoma* SK-
11.8
Colon ca. SW480
9.9


MEL-5


Squamous cell
13.4
Colon ca.* (SW480
5.4


carcinoma SCC-4

met) SW620


Testis Pool
1.4
Colon ca. HT29
6.5


Prostate ca.* (bone
7.1
Colon ca. HCT-116
3.8


met) PC-3


Prostate Pool
3.0
Colon ca. CaCo-2
5.0


Placenta
1.6
Colon cancer tissue
9.2


Uterus Pool
1.7
Colon ca. SW1116
1.1


Ovarian ca.
37.4
Colon ca Colo-205
5.6


OVCAR-3


Ovarian ca. SK-
12.0
Colon ca. SW-48
7.1


OV-3


Ovarian ca.
8.4
Colon Pool
5.6


OVCAR-4


Ovarian ca.
15.1
Small Intestine Pool
7.2


OVCAR-5


Ovarian ca.
6.2
Stomach Pool
4.3


IGROV-1


Ovarian ca.
6.5
Bone Marrow Pool
3.6


OVCAR-8


Ovary
6.4
Fetal Heart
1.7


Breast ca. MCF-7
6.0
Heart Pool
2.8


Breast ca. MDA-
9.3
Lymph Node Pool
6.3


MB-231


Breast ca. BT 549
54.0
Fetal Skeletal Muscle
2.1


Breast ca. T47D
24.8
Skeletal Muscle Pool
5.5


Breast ca. MDA-N
22.7
Spleen Pool
10.2


Breast Pool
5.9
Thymus Pool
6.4


Trachea
6.4
CNS cancer (glio/
7.2




astro) U87-MG


Lung
2.9
CNS cancer (glio/
18.3




astro) U-118-MG


Fetal Lung
12.7
CNS cancer
11.7




(neuro;met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
12.2




SF-539


Lung ca. LX-1
6.5
CNS cancer (astro)
24.1




SNB-75


Lung ca. NCI-H146
1.2
CNS cancer (glio)
5.0




SNB-19


Lung ca. SHP-77
3.4
CNS cancer (glio) SF-
21.6




295


Lung ca. A549
4.7
Brain (Amygdala)
0.8




Pool


Lung ca. NCI-H526
1.3
Brain (cerebellum)
0.7


Lung ca. NCI-H23
5.3
Brain (fetal)
0.7


Lung ca. NCI-H460
3.1
Brain (Hippocampus)
1.1




Pool


Lung ca. HOP-62
5.0
Cerebral Cortex Pool
0.7


Lung ca. NCI-H522
0.6
Brain (Substantia
0.6




nigra) Pool


Liver
1.3
Brain (Thalamus) Pool
1.2


Fetal Liver
11.7
Brain (whole)
1.5


Liver ca. HepG2
1.8
Spinal Cord Pool
1.7


Kidney Pool
10.8
Adrenal Gland
3.6


Fetal Kidney
3.3
Pituitary gland Pool
0.8


Renal ca. 786-0
13.5
Salivary Gland
1.4


Renal ca. A498
4.8
Thyroid (female)
3.0


Renal ca. ACHN
6.0
Pancreatic ca.
13.0




CAPAN2


Renal ca. UO-31
14.0
Pancreas Pool
8.9










[0560]

199





TABLE CE










Panel 1.3D











Rel. Exp.

Rel. Exp.



(%) Ag1983,

(%) Ag1983,



Run

Run


Tissue Name
147734681
Tissue Name
147734681













Liver
5.4
Kidney (fetal)
3.8


adenocarcinoma


Pancreas
2.1
Renal ca. 786-0
2.8


Pancreatic ca.
0.8
Renal ca. A498
16.4


CAPAN 2


Adrenal gland
5.5
Renal ca. RXF 393
2.0


Thyroid
5.8
Renal ca. ACHN
2.1


Salivary gland
4.9
Renal ca. UO-31
2.6


Pituitary gland
5.1
Renal ca. TK-10
2.4


Brain (fetal)
0.3
Liver
10.4


Brain (whole)
0.9
Liver (fetal)
12.9


Brain (amygdala)
2.3
Liver ca.
2.1




(hepatoblast) HepG2


Brain (cerebellum)
0.2
Lung
12.2


Brain
3.0
Lung (fetal)
15.5


(hippocampus)


Brain (substantia
3.6
Lung ca. (small cell)
1.2


nigra)

LX-7


Brain (thalamus)
2.6
Lung ca. (small cell)
0.7




NCI-H69


Cerebral Cortex
0.9
Lung ca. (s.cell var.)
1.7




SHP-77


Spinal cord
4.1
Lung ca. (large
1.2




cell)NCI-H460


glio/astro U87-MG
3.7
Lung ca. (non-sm.
1.2




cell) A549


glio/astro
9.8
Lung ca. (non-s.cell)
0.0


U-118-MG

NCI-H23


astrocytoma
0.6
Lung ca. (non-s.cell)
2.4


SW1783

HOP-62


neuro*; met
10.0
Lung ca. (non-s.cl)
0.2


SK-N-AS

NCI-H522


astrocytoma SF-539
13.8
Lung ca. (squam.)
2.3




SW 900


astrocytoma
21.2
Lung ca. (squam.)
0.0


SNB-75

NCI-H596


glioma SNB-19
4.5
Mammary gland
0.1


glioma U251
3.4
Breast ca.* (pl.ef)
1.2




MCF-7


glioma SF-295
5.3
Breast ca.* (pl.ef)
11.5




MDA-MB-231


Heart (fetal)
1.9
Breast ca.* (pl.ef)
6.3




T47D


Heart
2.0
Breast ca. BT-549
16.7


Skeletal muscle
3.8
Breast ca. MDA-N
16.2


(fetal)


Skeletal muscle
1.4
Ovary
0.6


Bone marrow
8.5
Ovarian ca.
18.6




OVCAR-3


Thymus
5.6
Ovarian ca.
0.5




OVCAR-4


Spleen
19.5
Ovarian ca.
5.0




OVCAR-5


Lymph node
12.9
Ovarian ca.
2.8




OVCAR-8


Colorectal
1.2
Ovarian ca. IGROV-
0.9




1


Stomach
15.6
Ovarian ca.*
2.9




(ascites) SK-OV-3


Small intestine
14.5
Uterus
6.8


Colon ca. SW480
4.0
Placenta
15.1


Colon ca.*
1.1
Prostate
9.6


SW620(SW480


met)


Colon ca. HT29
2.7
Prostate ca.* (bone
1.3




met)PC-3


Colon ca. HCT-116
0.9
Testis
1.5


Colon ca. CaCo-2
4.5
Melanoma
3.3




Hs688(A).T


Colon ca.
11.2
Melanoma* (met)
8.2


tissue (ODO3866)

Hs688(B).T


Colon ca. HCC-
19.9
Melanoma UACC-
0.3


2998

62


Gastric ca.* (liver
100.0
Melanoma M14
1.7


met) NCI-N87


Bladder
3.8
Melanoma LOX
0.2




IMVI


Trachea
17.8
Melanoma* (met)
0.0




SK-MEL-5


Kidney
1.9
Adipose
3.5










[0561]

200





TABLE CF










Panel 2D











Rel. Exp.

Rel. Exp.



(%) Ag1983,

(%) Ag1983,



Run

Run


Tissue Name
147734710
Tissue Name
1147734710













Normal Colon
25.7
Kidney Margin
1.7




8120608


CC Well to Mod Diff
9.4
Kidney Cancer
3.8


(ODO3866)

8120613


CC Margin
11.3
Kidney Margin
1.1


(ODO3866)

8120614


CC Gr.2 rectosigmoid
4.1
Kidney Cancer
9.8


(ODO3868)

9010320


CC Margin
4.0
Kidney Margin
5.4


(ODO3868)

9010321


CC Mod Duff
14.6
Normal Uterus
4.3


(ODO3920)


CC Margin
11.3
Uterus Cancer
14.4


(ODO3920)

064011


CC Gr.2 ascend colon
28.3
Normal Thyroid
7.4


(ODO3921)


CC Margin
8.7
Thyroid Cancer
19.2


(ODO3921)

064010


CC from Partial
32.8
Thyroid Cancer
12.8


Hepatectomy

A302152


(ODO4309) Mets


Liver Margin
27.0
Thyroid Margin
20.0


(ODO4309)

A302153


Colon mets to lung
9.0
Normal Breast
15.0


(OD04451-01)


Lung Margin
14.8
Breast Cancer
36.1


(OD04451-02)

(OD04566)


Normal Prostate
16.8
Breast Cancer
25.0


6546-1

(OD04590-01)


Prostate Cancer
21.8
Breast Cancer Mets
26.4


(OD04410)

(OD04590-03)


Prostate Margin
26.8
Breast Cancer
40.9


(OD04410)

Metastasis




(OD04655-05)


Prostate Cancer
16.3
Breast Cancer
27.0


(OD04720-01)

064006


Prostate Margin
34.4
Breast Cancer 1024
19.8


(OD04720-02)


Normal Lung 061010
30.8
Breast Cancer
22.2




9100266


Lung Met to Muscle
18.9
Breast Margin
4.9


(ODO4286)

9100265


Muscle Margin
10.5
Breast Cancer
18.8


(ODO4286)

A209073


Lung Malignant
20.2
Breast Margin
10.8


Cancer (OD03126)

A209073


Lung Margin
43.2
Normal Liver
13.9~


(OD03126)


Lung Cancer
43.2
Liver Cancer
7.2


(OD04404)

064003


Lung Margin
18.7
Liver Cancer 1025
7.5


(OD04404)


Lung Cancer
18.0
Liver Cancer 1026
4.4


(OD04565)


Lung Margin
15.1
Liver Cancer
7.5


(OD04565)

6004-T


Lung Cancer
59.9
Liver Tissue
4.8


(OD04237-01)

6004-N


Lung Margin
29.1
Liver Cancer
4.3


(OD04237-02)

6005-T


Ocular Mel Met to
3.3
Liver Tissue 6005-N
1.4


Liver (ODO4310)


Liver Margin
13.6
Normal Bladder
68.8


(ODO4310)


Melanoma Mets to
24.0
Bladder Cancer
1.8


Lung (OD04321)

1023


Lung Margin
32.1
Bladder Cancer
4.1


(OD04321)

A302173


Normal Kidney
11.4
Bladder Cancer
100.0




(OD04718-01)


Kidney Ca, Nuclear
48.0
Bladder Normal
20.9


grade 2 (OD04338)

Adjacent




(OD04718-03)


Kidney Margin
15.6
Normal Ovary
2.6


(OD04338)


Kidney Ca Nuclear
10.1
Ovarian Cancer
32.5


grade 1/2 (OD04339)

064008


Kidney Margin
13.3
Ovarian Cancer
80.1


(OD04339)

(OD04768-07)


Kidney Ca, Clear cell
52.1
Ovary Margin
6.0


type (OD04340)

(OD04768-08)


Kidney Margin
14.1
Normal Stomach
4.5


(OD04340)


Kidney Ca, Nuclear
18.6
Gastric Cancer
0.8


grade 3 (OD04348)

9060358


Kidney Margin
51.4
Stomach Margin
9.3


(OD04348)

9060359


Kidney Cancer
15.8
Gastric Cancer
15.4


(OD04622-01)

9060395


Kidney Margin
2.0
Stomach Margin
9.7


(OD04622-03)

9060394


Kidney Cancer
26.1
Gastric Cancer
23.8


(OD04450-01)

9060397


Kidney Margin
7.7
Stomach Margin
4.0


(OD04450-03)

9060396


Kidney Cancer
3.6
Gastric Cancer
31.6


8120607

064005










[0562]

201





TABLE CG










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag3962,

(%) Ag3962,



Run

Run


Tissue Name
170739798
Tissue Name
170739798













Secondary Th1 act
26.1
HUVEC IL-1beta
12.2


Secondary Th2 act
100.0
HUVEC IFN gamma
68.3


Secondary Tr1 act
27.7
HUVEC TNF alpha +
50.3




IFN gamma


Secondary Th1 rest
19.3
HUVEC TNF alpha +
22.4




IL4


Secondary Th2 rest
22.1
HUVEC IL-11
5.4


Secondary Tr1 rest
41.5
Lung Microvascular
11.8




EC none


Primary Th1 act
24.8
Lung Microvascular
32.5




EC TNFalpha +




IL-1beta


Primary Th2 act
24.7
Microvascular Dermal
11.8




EC none


Primary Tr1 act
20.4
Microsvasular Dermal
16.8




EC TNFalpha +




IL-1beta


Primary Th1 rest
16.2
Bronchial epithelium
11.8




TNFalpha + IL1beta


Primary Th2 rest
6.1
Small airway
4.4




epithelium none


Primary Tr1 rest
14.8
Small airway
11.7




epithelium




TNFalpha + IL-1beta


CD45RA CD4
39.0
Coronery artery SMC
3.0


lymphocyte act

rest


CD45RO CD4
52.5
Coronery artery SMC
5.8


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
19.3
Astrocytes rest
2.3


Secondary CD8
36.1
Astrocytes
8.3


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
9.7
KU-812 (Basophil)
8.9


lymphocyte act

rest


CD4 lymphocyte
11.1
KU-812 (Basophil)
27.0


none

PMA/ionomycin


2ry Th1/Th2/
17.7
CCD1106 (Keratino-
13.3


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
43.2
CCD1106 (Keratino-
53.6




cytes) TNFalpha +




IL-1beta


LAK cells IL-2
47.3
Liver cirrhosis
4.5


LAK cells IL-2 +
42.0
NCI-H292 none
12.9


IL-12


LAK cells IL-2 +
29.9
NCI-H292 IL-4
25.0


IFN gamma


LAK cells IL-2 +
37.6
NCI-H292 IL-9
26.4


IL-18


LAK cells
51.1
NCI-H292 IL-13
25.5


PMA/ionomycin


NK Cells IL-2 rest
59.9
NCI-H292 IFN
69.3




gamma


Two Way MLR 3
78.5
HPAEC none
9.5


day


Two Way MLR 5
37.1
HPAEC TNF alpha +
37.9


day

IL-1 beta


Two Way MLR 7
16.3
Lung fibroblast none
14.3


day


PBMC rest
12.2
Lung fibroblast TNF
23.0




alpha + IL-1 beta


PBMC PWM
32.3
Lung fibroblast IL-4
11.4


PBMC PHA-L
14.7
Lung fibroblast IL-9
11.9


Ramos (B cell) none
1.5
Lung fibroblast IL-13
13.8


Ramos (B cell)
1.7
Lung fibroblast IFN
84.1


ionomycin

gamma


B lymphocytes
23.3
Dermal fibroblast
11.6


PWM

CCD1070 rest


B lymphocytes
31.2
Dermal fibroblast
25.7


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
13.4
Dermal fibroblast
8.7




CCD1070 IL-1 beta


EOL-1 dbcAMP
6.8
Dermal fibroblast IFN
49.3


PMA/ionomycin

gamma


Dendritic cells none
18.0
Dermal fibroblast IL-4
29.3


Dendritic cells LPS
34.4
Dermal Fibroblasts
11.7




rest


Dendritic cells anti-
14.1
Neutrophils TNFa +
4.9


CD40

LPS


Monocytes rest
26.1
Neutrophils rest
18.6


Monocytes LPS
79.0
Colon
3.8


Macrophages rest
21.3
Lung
10.9


Macrophages LPS
40.3
Thymus
13.9


HUVEC none
3.9
Kidney
6.8


HUVEC starved
5.4










[0563]

202





TABLE CH










Panel 4D











Rel. Exp.

Rel. Exp.



(%) Ag1983,

(%) Ag1983,



Run

Run


Tissue Name
162350741
Tissue Name
1162350741













Secondary Th1 act
23.7
HUVEC IL-1beta
1.7


Secondary Th2 act
78.5
HUVEC IFN gamma
76.3


Secondary Tr1 act
37.6
HUVEC TNF alpha +
56.6




IFN gamma


Secondary Th1 rest
25.9
HUVEC TNF alpha +
20.4




IL4


Secondary Th2 rest
20.7
HUVEC IL-11
4.9


Secondary Tr1 rest
20.9
Lung Microvascular
7.9




EC none


Primary Th1 act
13.7
Lung Microvascular
28.7




EC TNFalpha +




IL-1beta


Primary Th2 act
15.1
Microvascular Dermal
10.3




EC none


Primary Tr1 act
16.2
Microsvasular Dermal
27.9




EC TNFalpha +




IL-1beta


Primary Th1 rest
60.3
Bronchial epithelium
20.7




TNFalpha + IL1beta


Primary Th2 rest
19.6
Small airway
2.9




epithelium none


Primary Tr1 rest
20.0
Small airway
13.6




epithelium




TNFalpha + IL-1beta


CD45RA CD4
22.5
Coronery artery SMC
1.9


lymphocyte act

rest


CD45RO CD4
18.0
Coronery artery SMC
2.3


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
15.0
Astrocytes rest
1.8


Secondary CD8
19.9
Astrocytes
6.9


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
9.2
KU-812 (Basophil)
7.9


lymphocyte act

rest


CD4 lymphocyte
6.0
KU-812 (Basophil)
18.7


none

PMA/ionomycin


2ry Th1/Th2/
10.7
CCD1106 (Keratino-
10.2


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
35.1
CCD1106 (Keratino-
60.7




cytes) TNFalpha




+ IL-1beta


LAK cells IL-2
37.9
Liver cirrhosis
4.9


LAK cells IL-2 +
41.8
Lupus kidney
2.4


IL-12


LAK cells IL-2 +
63.3
NCI-H292 none
16.2


IFN gamma


LAK cells IL-2 +
46.3
NCI-H292 IL-4
28.5


IL-18


LAK cells
35.1
NCI-H292 IL-9
23.2


PMA/ionomycin


NK Cells IL-2 rest
36.3
NCI-H292 IL-13
26.6


Two Way MLR 3
84.7
NCI-H292 IFN gamma
100.0


day


Two Way MLR 5
37.4
HPAEC none
8.2


day


Two Way MLR 7
17.3
HPAEC TNF alpha +
24.1


day

IL-1 beta


PBMC rest
9.9
Lung fibroblast none
9.6


PBMC PWM
61.1
Lung fibroblast TNF
20.0




alpha + IL-1 beta


PBMC PHA-L
19.9
Lung fibroblast IL-4
17.0


Ramos (B cell) none
1.0
Lung fibroblast IL-9
13.2


Ramos (B cell)
1.4
Lung fibroblast IL-13
17.1


ionomycin


B lymphocytes
78.5
Lung fibroblast IFN
95.3


PWM

gamma


B lymphocytes
73.7
Dermal fibroblast
6.4


CD40L and IL-4

CCD1070 rest


EOL-1 dbcAMP
9.7
Dermal fibroblast
31.6




CCD1070 TNF alpha


EOL-1 dbcAMP
6.2
Dermal fibroblast
11.3


PMA/ionomycin

CCD107O IL-1 beta


Dendritic cells
18.2
Dermal fibroblast IFN
70.2


none

gamma


Dendritic cells LPS
43.5
Dermal fibroblast IL-4
18.4


Dendritic cells anti-
9.8
IBD Colitis 2
3.3


CD40


Monocytes rest
20.9
IBD Crohn's
2.3


Monocytes LPS
40.3
Colon
17.9


Macrophages rest
18.6
Lung
15.5


Macrophages LPS
33.9
Thymus
7.4


HUVEC none
7.2
Kidney
17.3


HUVEC starved
4.9










[0564]

203





TABLE CI










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag3962,

(%) Ag3962,



Run

Run


Tissue Name
268143875
Tissue Name
268143875













Colon cancer 1
18.2
Bladder cancer NAT 2
1.1


Colon NAT 1
10.7
Bladder cancer NAT 3
1.8


Colon cancer 2
42.3
Bladder cancer NAT 4
1.7


Colon cancer
11.0
Adenocarcinoma of the
41.2


NAT 2

prostate 1


Colon cancer 3
50.0
Adenocarcinoma of the
3.3




prostate 2


Colon cancer
15.6
Adenocarcinoma of the
6.9


NAT 3

prostate 3


Colon malignant
44.1
Adenocarcinoma of the
14.4


cancer 4

prostate 4


Colon normal
8.5
Prostate cancer NAT 5
4.3


adjacent tissue 4


Lung cancer 1
12.6
Adenocarcinoma of the
7.6




prostate 6


Lung NAT 1
2.1
Adenocarcinoma of the
6.5




prostate 7


Lung cancer 2
29.9
Adenocarcinoma of the
2.0




prostate 8


Lung NAT 2
3.3
Adenocarcinoma of the
29.5




prostate 9


Squamous cell
30.6
Prostate cancer NAT 10
1.6


carcinoma 3


Lung NAT 3
2.3
Kidney cancer 1
17.6


metastatic
15.3
KidneyNAT 1
5.4


melanoma 1


Melanoma 2
2.9
Kidney cancer 2
100.0


Melanoma 3
4.0
Kidney NAT 2
6.2


metastatic
41.5
Kidney cancer 3
20.6


melanoma 4


metastatic
49.3
Kidney NAT 3
2.3


melanoma 5


Bladder cancer 1
10.0
Kidney cancer 4
8.5


Bladder cancer
0.0
Kidney NAT 4
2.9


NAT 1


Bladder cancer 2
4.6










[0565] CNS_neurodegeneration_v1.0 Summary: Ag3692 This panel confirms the expression of the CG94915-01 gene at low levels in the brain in an independent group of individuals. This gene is found to be upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[0566] General_screening_panel_v1.4 Summary: Ag3962 Expression of the CG94915-01 gene is highest in a gastric cancer cell line (CT=25). This gene is ubiquitously expressed in this panel, with significant levels of expression also detectable in a cluster of samples derived from ovarian, breast and brain cancer cell lines. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of ovarian, breast, brain, and gastric cancers.


[0567] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0568] This gene is also expressed at moderate to low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0569] In addition, this gene is expressed at much higher levels in fetal liver (CT=28.2) when compared to expression in the adult counterpart (CT=31.4). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.


[0570] Panel 1.3D Summary: Ag3962 Expression of the CG94915-01 gene is highest in a gastric cancer cell line (CT=28.8). Overall, expression in this panel is in agreement with expression in Panel 1.4.


[0571] Panel 2D Summary: Ag3962 Expression of the CG94915-01 gene is highest in a bladder cancer (CT=28.8). In addition, expression of this gene is higher in bladder cancer than in normal adjacent tissue. Overall, expression of this gene is widespread in this panel. Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of bladder cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of bladder cancer.


[0572] Panel 4.1D Summary: Ag3962 Expression of the CG94915-01 gene is highest in chroncically activated Th2 cells (CT=26.2). In addition, this gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0573] Panel 4D Summary: Ag1983 Expression of the CG94915-01 gene is highest in IFN-gamma activated NCI-H292 cells (CT=28.8). In addition, this gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0574] general oncology screening panel_v2.4 Summary: Ag3962/Ag1983 Expression of the CG94915-01 gene is highest in kidney cancer (CT=26.4). In addition, significant levels of expression are seen in kidney and colon cancers when compared to normal adjacent tissue. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of kidney and colon cancers.



D. NOV16a (CG95504-01) and NOV16b (CG95504-02): Syncoilin

[0575] Expression of the CG95504-01 and variant CG95504-02 genes were assessed using the primer-probe set Ag4016, described in Table DA. Results of the RTQ-PCR runs are shown in Tables DB, DC and DD.
204TABLE DAProbe Name Ag4016StartSEQ IDPrimersSequencesLength PositionNoForward5′-aagccttgaacccagaagttac-3′2219997ProbeTET-5′-tcttcagaggggtccttaaacctcga-3′-TAMRA2622598Reverse5′-tgtcctccaggtagagaatgtc-3′2225299


[0576]

205





TABLE DB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag4016,

(%) Ag4016,



Run

Run


Tissue Name
212392779
Tissue Name
212392779













AD 1 Hippo
20.3
Control (Path) 3
14.5




Temporal Ctx


AD 2 Hippo
55.1
Control (Path) 4
25.7




Temporal Ctx


AD 3 Hippo
11.8
AD 1 Occipital Ctx
17.6


AD 4 Hippo
22.4
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 hippo
42.9
AD 3 Occipital Ctx
7.7


AD 6 Hippo
100.0
AD 4 Occipital Ctx
26.2


Control 2 Hippo
33.2
AD 5 Occipital ctx
22.4


Control 4 Hippo
57.8
AD 6 Occipital ctx
33.4


Control (Path) 3
17.1
Control 1 Occipital
5.5


Hippo

Ctx


AD 1 Temporal Ctx
44.4
Control 2 Occipital
31.6




Ctx


AD 2 Temporal Ctx
44.4
Control 3 Occipital
22.7




Ctx


AD 3 Temporal Ctx
15.0
Control 4 Occipital
16.6




Ctx


Ad 4 Temporal Ctx
38.4
Control (Path) 1
31.6




Occipital Ctx


AD 5 Inf Temporal
61.1
Control (Path) 2
8.5


Ctx

Occipital Ctx


AD 5 SupTemporal
70.2
Control (Path) 3
8.0


Ctx

Occipital Ctx


AD 6 Inf Temporal
55.1
Control (Path) 4
12.1


Ctx

Occipital Ctx


AD 6 Sup Temporal
64.2
Control 1 Parietal
18.6


Ctx

Ctx


Control 1 Temporal
15.0
Control 2 Parietal
67.4


Ctx

Ctx


Control 2 Temporal
39.8
Control 3 Parietal
15.6


Ctx

Ctx


Control 3 Temporal
21.3
Control (Path) 1
47.6


Ctx

Parietal Ctx


Control 4 Temporal
23.0
Control (Path) 2
27.5


Ctx

Parietal Ctx


Control (Path) 1
56.6
Control (Path) 3
8.3


Temporal Ctx

Parietal Ctx


Control (Path) 2
40.6
Control (Path) 4
33.2


Temporal Ctx

Parietal Ctx










[0577]

206





TABLE DC










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4016,

(%) Ag4016,



Run

Run


Tissue Name
218425352
Tissue Name
218425352













Adipose
1.9
Renal ca. TK-10
1.0


Melanoma*
50.3
Bladder
0.8


Hs688(A).T


Melanoma*
54.0
Gastric ca. (liver met.)
0.2


Hs688(B).T

NCI-N87


Melanoma* M14
3.0
Gastric ca. KATO III
0.3


Melanoma*
1.0
Colon ca. SW-948
0.0


LOXIMVI


Melanoma* SK-
1.1
Colon ca. SW480
0.5


MEL-5


Squamous cell
0.3
Colon ca.* (SW480
0.1


carcinoma SCC-4

met) SW620


Testis Pool
2.1
Colon ca. HT29
0.0


Prostate ca.* (bone
3.3
Colon ca. HCT-116
0.8


met) PC-3


Prostate Pool
2.3
Colon ca. CaCo-2
0.1


Placenta
0.9
Colon cancer tissue
2.2


Uterus Pool
1.3
Colon ca. SW1116
0.1


Ovarian ca.
1.5
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca. SK-OV-
3.5
Colon ca. SW-48
0.0


3


Ovarian ca.
4.7
Colon Pool
4.5


OVCAR-4


Ovarian ca.
0.5
Small Intestine Pool
2.0


OVCAR-5


Ovarian ca.
0.8
Stomach Pool
1.2


IGROV-1


Ovarian ca.
0.7
Bone Marrow Pool
2.6


OVCAR-8


Ovary
1.6
Fetal Heart
1.0


Breast ca. MCF-7
0.1
Heart Pool
2.4


Breast ca. MDA-
2.0
Lymph Node Pool
8.2


MB-231


Breast ca. BT 549
39.0
Fetal Skeletal Muscle
6.5


Breast ca. T47D
1.7
Skeletal Muscle Pool
8.4


Breast ca. MDA-N
0.0
Spleen Pool
0.7


Breast Pool
3.5
Thymus Pool
1.2


Trachea
3.2
CNS cancer (glio/
33.0




astro) U87-MG


Lung
0.8
CNS cancer (glio/
97.3




astro) U-118-MG


Fetal Lung
3.3
CNS cancer
0.4




(neuro;met) SK-N-AS


Lung ca. NCI-N417
0.2
CNS cancer (astro)
8.4




SF-539


Lung ca. LX-1
0.3
CNS cancer (astro)
100.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.8




SNB-19


Lung ca. SHP-77
0.1
CNS cancer (glio)
18.6




SF-295


Lung ca. A549
1.9
Brain (Amygdala)
0.5




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.8


Lung ca. NCI-H23
0.5
Brain (fetal)
1.3


Lung ca. NCI-H460
0.1
Brain (Hippocampus)
0.8




Pool


Lung ca. HOP-62
1.0
Cerebral Cortex Pool
0.6


Lung ca. NCI-H522
0.1
Brain (Substantia
0.7




nigra) Pool


Liver
0.0
Brain (Thalamus) Pool
1.1


Fetal Liver
0.1
Brain (whole)
0.8


Liver ca. HepG2
0.2
Spinal Cord Pool
1.6


Kidney Pool
8.8
Adrenal Gland
1.1


Fetal Kidney
0.9
Pituitary gland Pool
0.2


Renal ca. 786-0
1.3
Salivary Gland
0.6


Renal ca. A498
2.9
Thyroid (female)
0.8


Renal ca. ACHN
4.2
Pancreatic ca.
0.2




CAPAN2


Renal ca. UO-31
4.4
Pancreas Pool
3.5










[0578]

207





TABLE DD










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag4016,

(%) Ag4016,



Run

Run


Tissue Name
171613750
Tissue Name
171613750













Secondary Th1 act
0.4
HUVEC IL-1beta
5.3


Secondary Th2 act
0.6
HUVEC IFN gamma
9.7


Secondary Tr1 act
0.7
HUVEC TNF alpha +
4.7




IFN gamma


Secondary Th1
0.3
HUVEC TNF alpha +
1.9




IL4


Secondary Th2 rest
0.3
HUVEC IL-11
5.2


Secondary Tr1 rest
0.3
Lung Microvascular
23.0




EC none


Primary Th1 act
0.1
Lung Microvascular
8.7




EC TNFalpha +




IL-1beta


Primary Th2 act
0.1
Microvascular Dermal
9.0




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
4.5




EC TNFalpha +




IL-1beta


Primary Th1 rest
0.2
Bronchial epithelium
10.9




TNFalpha + IL1beta


Primary Th2 rest
0.0
Small airway
8.0




epithelium none


Primary Tr1 rest
0.3
Small airway
12.2




epithelium




TNFalpha + IL-1beta


CD45RA CD4
24.1
Coronery artery SMC
18.2


lymphocyte act

rest


CD45RO CD4
0.9
Coronery artery SMC
17.8


lymphocyte act

TNFalpha +




IL-1beta


CD8 lymphocyte act
0.7
Astrocytes rest
45.4


Secondary CD8
0.7
Astrocytes
42.6


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
0.4
KU-812 (Basophil)
3.7


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
6.0


none

PMA/ionomycin


2ry Th1/Th2/
0.5
CCD1106 (Keratino-
7.9


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
1.1
CCD1106 (Keratino-
13.5




cytes) TNFalpha +




IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
3.1


LAK cells IL-2 +
0.2
NCI-H292 none
3.0


IL-12


LAK cells IL-2 +
0.3
NCI-H292 IL-4
6.2


IFN gamma


LAK cells IL-2 +
0.2
NCI-H292 IL-9
5.7


IL-18


LAK cells
1.5
NCI-H292 IL-13
4.2


PMA/ionomycin


NK Cells IL-2 rest
0.2
NCI-H292 IFN gamma
4.5


Two Way MLR 3
1.9
HPAEC none
7.7


day


Two Way MLR 5
1.8
HPAEC TNF alpha +
6.9


day

IL-1 beta


Two Way MLR 7
1.9
Lung fibroblast none
32.5


day


PBMC rest
0.3
Lung fibroblast TNF
4.1




alpha + IL-1 beta


PBMC PWM
0.5
Lung fibroblast IL-4
12.1


PBMC PHA-L
0.0
Lung fibroblast IL-9
19.1


Ramos (B cell) none
0.0
Lung fibroblast IL-13
13.3


Ramos (B cell)
0.0
Lung fibroblast IFN
58.6


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
78.5


PWM

CCD1070 rest


B lymphocytes
1.7
Dermal fibroblast
51.1


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.4
Dermal fibroblast
36.3




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.4
Dermal fibroblast IFN
53.2


PMA/ionomycin

gamma


Dendritic cells none
6.0
Dermal fibroblast IL-4
100.0


Dendritic cells LPS
0.4
Dermal Fibroblasts
67.8




rest


Dendritic cells anti-
4.3
Neutrophils TNFa +
2.6


CD40

LPS


Monocytes rest
0.4
Neutrophils rest
7.6


Monocytes LPS
0.7
Colon
4.9


Macrophages rest
2.6
Lung
5.8


Macrophages LPS
2.6
Thymus
3.6


HUVEC none
4.2
Kidney
12.8


HUVEC starved
7.8










[0579] CNS_neurodegeneration_v1.0 Summary: Ag4016 This panel does not show differential expression of the CG95504-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of utility of this gene in the central nervous system.


[0580] General_screening_panel_v1.4 Summary: Ag4016 Highest expression of the CG95504-01 gene is seen in a brain cancer cell line (CT=23.6). In addition, significant levels of expression are seen in a cluster of samples derived from brain, breast and melanoma cancer cell lines. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of brain, breast and melanoma cancers.


[0581] Among tissues with metabolic function, this gene is expressed at significant levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0582] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. The CG95504-01 gene codes for a homolog of mouse syncoilin. Syncoilin is a member of intermediate filament superfamily that plays a role in the maintenance of the neuromuscular junction and for maturation of the synapses (Newey et al., 2001, J Biol Chem 2001 Mar 2;276(9):6645-55, PMID: 11053421). Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0583] Panel 4.1D Summary: Ag4016 Highest expression of the CG95504-01 gene is seen in IL-4 treated dermal fibroblasts (CT=27.8). Significant levels of expression are also seen in a cluster of treated and untreated dermal fibroblasts. Thus, expression of this gene could be used as a marker of this cell. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of inflammatory lung conditions such as psoriasis.



E. NOV17a (CG95589-01) and NOV17b (CG95589-02): Intracellular Protein

[0584] Expression of gene CG95589-01 and variant CG95589-02 was assessed using the primer-probe set Ag4349, described in Table EA. Results of the RTQ-PCR runs are shown in Tables EB and EC. Please note that CG95589-02 represents a full-length physical clone of the CG95589-01 gene, validating the prediction of the gene sequence.
208TABLE EAProbe Name Ag4349StartSEQ IDPrimersSequencesLengthPositionNoForward5′-caggactgtgtgttcagcaa-3′20251100ProbeTET-5′-atgtgctacgccatcattcaggcag-3′-TAMRA25284101Reverse5′-tctggcctgcttgtttactc-3′20310102


[0585]

209





TABLE EB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4349,

(%) Ag4349,



Run

Run


Tissue Name
222523513
Tissue Name
222523513













Adipose
2.5
Renal ca. TK-10
16.6


Melanoma*
5.0
Bladder
8.3


Hs688(A).T


Melanoma*
4.5
Gastric ca. (liver met.)
18.3


Hs688(B).T

NCI-N87


Melanoma* M14
5.7
Gastric ca. KATO III
42.6


Melanoma*
2.3
Colon ca. SW-948
6.8


LOXIMVI


Melanoma* SK-
30.4
Colon ca. SW4 80
42.0


MEL-5


Squamous cell
2.8
Colon ca.* (SW480
33.0


carcinoma SCC-4

met) SW620


Testis Pool
4.4
Colon ca. HT29
10.3


Prostate ca.* (bone
38.2
Colon ca. HCT-116
19.1


met) PC-3


Prostate Pool
1.9
Colon ca. CaCo-2
11.3


Placenta
5.1
Colon cancer tissue
9.3


Uterus Pool
2.1
Colon ca. SW1116
9.6


Ovarian ca.
14.6
Colon ca. Colo-205
14.9


OVCAR-3


Ovarian ca. SK-
30.8
Colon ca. SW-48
13.8


OV-3


Ovarian ca.
8.0
Colon Pool
7.5


OVCAR-4


Ovarian ca.
50.0
Small Intestine Pool
4.5


OVCAR-5


Ovarian ca.
15.3
Stomach Pool
2.9


IGROV-1


Ovarian ca.
15.2
Bone Marrow Pool
2.9


OVCAR-8


Ovary
2.8
Fetal Heart
2.8


Breast ca. MCF-7
15.2
Heart Pool
3.5


Breast ca. MDA-
16.4
Lymph Node Pool
8.2


MB-231


Breast ca. BT 549
8.2
Fetal Skeletal Muscle
2.9


Breast ca. T47D
100.0
Skeletal Muscle Pool
4.9


Breast ca. MDA-N
4.5
Spleen Pool
3.4


Breast Pool
7.6
Thymus Pool
4.5


Trachea
6.3
CNS cancer (glio/
11.8




astro) U87-MG


Lung
0.7
CNS cancer (glio/
18.0




astro) U-118-MG


Fetal Lung
7.7
CNS cancer
20.7




(neuro;met) SK-N-AS


Lung ca. NCI-N417
1.7
CNS cancer (astro)
1.0




SF-539


Lung ca. LX-1
36.1
CNS cancer (astro)
4.5




SNB-75


Lung ca. NCI-H146
3.7
CNS cancer (glio)
14.4




SNB-19


Lung ca. SHP-77
18.7
CNS cancer (glio) SF-
51.8




295


Lung ca. A549
33.4
Brain (Amygdala)
2.9




Pool


Lung ca. NCI-H526
7.1
Brain (cerebellum)
4.1


Lung ca. NCI-H23
14.0
Brain (fetal)
3.7


Lung ca. NCI-H460
17.9
Brain (Hippocampus)
3.5




Pool


Lung ca. HOP-62
11.8
Cerebral Cortex Pool
4.0


Lung ca. NCI-H522
77.9
Brain (Substantia
4.4




nigra) Pool


Liver
1.6
Brain (Thalamus) Pool
4.6


Fetal Liver
5.4
Brain (whole)
4.7


Liver ca. HepG2
8.2
Spinal Cord Pool
4.2


Kidney Pool
9.9
Adrenal Gland
8.6


Fetal Kidney
4.1
Pituitary gland Pool
1.1


Renal ca. 786-0
11.5
Salivary Gland
3.2


Renal ca. A498
3.7
Thyroid (female)
3.8


Renal ca. ACHN
27.2
Pancreatic ca.
16.3




CAPAN2


Renal ca. UO-31
9.0
Pancreas Pool
6.5










[0586]

210





TABLE EC










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag4349,

(%) Ag4349,



Run

Run


Tissue Name
186362675
Tissue Name
186362675













Secondary Th1 act
57.0
HUVEC IL-1beta
15.7


Secondary Th2 act
79.6
HUVEC IFN gamma
19.9


Secondary Tr1 act
54.3
HUVEC TNF alpha +
9.4




IFN gamma


Secondary Th1 rest
32.8
HUVEC TNF alpha +
13.6




IL4


Secondary Th2 rest
29.7
HUVEC IL-11
12.9


Secondary Tr1 rest
38.2
Lung Microvascular
28.3




EC none


Primary Th1 act
57.4
Lung Microvascular
18.0




EC TNFalpha +




IL-1beta


Primary Th2 act
94.6
Microvascular Dermal
22.7




EC none


Primary Tr1 act
77.9
Microsvasular Dermal
8.1




EC TNFalpha +




IL-1beta


Primary Th1 rest
50.0
Bronchial epithelium
24.8




TNFalpha + IL1beta


Primary Th2 rest
28.1
Small airway
6.4




epithelium none


Primary Tr1 rest
41.5
Small airway
14.6




epithelium




TNFalpha + IL-1beta


CD45RA CD4
51.4
Coronery artery SMC
6.0


lymphocyte act

rest


CD45RO CD4
87.1
Coronery artery SMC
9.7


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
79.6
Astrocytes rest
5.3


Secondary CD8
57.8
Astrocytes
7.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
56.3
KU-812 (Basophil)
19.8


lymphocyte act

rest


CD4 lymphocyte
14.4
KU-812 (Basophil)
31.4


none

PMA/ionomycin


2ry Th1/Th2/
54.7
CCD1106 (Keratino-
11.9


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
71.7
CCD1106 (Keratino-
9.5




cytes) TNFalpha +




IL-1beta


LAK cells IL-2
78.5
Liver cirrhosis
5.1


LAK cells IL-2 +
28.5
NCI-H292 none
49.3


IL-12


LAK cells IL-2 +
33.2
NCI-H292 IL-4
55.1


IFN gamma


LAK cells IL-2 +
42.3
NCI-H292 IL-9
100.0


IL-18


LAK cells
33.0
NCI-H292 IL-13
40.6


PMA/ionomycin


NK Cells IL-2 rest
99.3
NCI-H292 IFN gamma
67.8


Two Way MLR 3
49.7
HPAEC none
17.3


day


Two Way MLR 5
46.0
HPAEC TNF alpha +
14.5


day

IL-1 beta


Two Way MLR 7
55.5
Lung fibroblast none
12.8


day


PBMC rest
29.3
Lung fibroblast TNF
7.2




alpha + IL-1 beta


PBMC PWM
45.1
Lung fibroblast IL-4
7.3


PBMC PHA-L
73.2
Lung fibroblast IL-9
11.9


Ramos (B cell) none
70.7
Lung fibroblast IL-13
7.3


Ramos (B cell)
92.7
Lung fibroblast IFN
9.0


ionomycin

gamma


B lymphocytes
52.5
Dermal fibroblast
18.7


PWM

CCD1070 rest


B lymphocytes
97.3
Dermal fibroblast
69.7


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
31.0
Dermal fibroblast
5.1




CCD1070 IL-1 beta


EOL-1 dbcAMP
5.4
Dermal fibroblast IFN
6.9


PMA/ionomycin

gamma


Dendritic cells none
57.4
Dermal fibroblast IL-4
18.3


Dendritic cells LPS
38.4
Dermal Fibroblasts
10.7




rest


Dendritic cells anti-
66.0
Neutrophils TNFa +
3.5


CD40

LPS


Monocytes rest
74.7
Neutrophils rest
5.2


Monocytes LPS
13.3
Colon
14.9


Macrophages rest
38.7
Lung
25.2


Macrophages LPS
23.2
Thymus
29.3


HUVEC none
11.3
Kidney
24.5


HUVEC starved
20.3










[0587] General_screening_panel_v1.4 Summary: Ag4349 Expression of the CG95589-01 gene is most prominent in cancer cell lines, with highest expression in a breast cancer cell line (CT=26.7). In addition significant levels of expression are seen in all the cancer cell lines on this panel. Higher levels of expression are also seen in fetal lung (CT=30.4) when compared to expression in adult lung (CT=33.8). Since cell lines and tissues are generally more proliferative than tissues, this expression profile suggests that this gene might be involved in cell proliferation. Therefore, inhibition of expression or function of this gene may be a therapeutic avenue for the treatment of cancer or other disease that involve cell proliferation. Furthermore, therapeutic targeting of this gene product with a monoclonal antibody is anticipated to limit or block the extent of tumor cell migration and invasion and tumor metastasis, particularly in melanomas, prostate cancers, pancreatic cancers, ovarian cancers, renal cell carcinomas and CNS cancers. This gene might also be an effective marker for the diagnosis and detection of a variety of cancers.


[0588] In addition, expression of this gene could be used to differentiate fetal and adult lung tissue.


[0589] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0590] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0591] Panel 4.1D Summary: Ag4349 Expression of the CG95589-01 gene is ubiquitous in this panel. Highest expression is seen in IL-9 treated NCI-H292 cells (CT=29.3). Significant levels of expression are also seen in a cluster of treated and untreated NCI-H292 cells, and in lymphocytes, which is consistent with the expression profile in panel 1.3 where the transcript is expressed in the thymus and lymph node. The transcript is expressed in resting T cells and T cells, both acutely and chronically stimulated. Likewise, stimulated B cells and RAMOS cells express the transcript. Therefore, therapeutics designed with this sequence or the protein it encodes could be important in regulating T cell activation and be important for immune modulation and in treating T cell and B cell mediated diseases such as asthma, allergy, COPD, arthritis, psoriasis. lupus and IBD.



F. NOV18a (CG95598-01): Intracellular Protein

[0592] Expression of full length clone CG95598-01 was assessed using the primer-probe set Ag4050, described in Table FA. Results of the RTQ-PCR runs are shown in Tables FB, FC and FD.
211TABLE FAProbe Name Ag4050StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ctgctgctgtgtcatctccta-3′21451103ProbeTET-5′-ccaggaccaggacccagacttca-3′-TAMRA23487104Reverse5′-cactgtgtgagccacatttgt-3′21510105


[0593]

212





TABLE FB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4050,

(%) Ag4050,



Run

Run


Tissue Name
218712972
Tissue Name
218712972













Adipose
0.0
Renal ca. TK-10
5.9


Melanoma*
0.5
Bladder
0.3


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
100.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.6
Gastric ca. KATO III
9.8


Melanoma*
0.9
Colon ca. SW-948
7.7


LOXIMVI


Melanoma* SK-
0.6
Colon ca. SW480
12.4


MEL-5


Squamous cell
3.9
Colon ca.* (SW480
0.8


carcinoma SCC-4

met) SW620


Testis Pool
0.0
Colon ca. HT29
1.3


Prostate ca.* (bone
2.4
Colon ca. HCT-116
5.9


met) PC-3


Prostate Pool
0.5
Colon ca. CaCo-2
1.9


Placenta
0.6
Colon cancer tissue
14.8


Uterus Pool
0.3
Colon ca. SW1116
4.2


Ovarian ca.
4.3
Colon ca. Colo-205
0.2


OVCAR-3


Ovarian ca. SK-
0.9
Colon ca. SW-48
0.3


OV-3


Ovarian ca.
0.5
Colon Pool
0.5


OVCAR 4


Ovarian ca.
8.4
Small Intestine Pool
0.5


OVCAR-5


Ovarian ca.
0.9
Stomach Pool
0.0


IGROV-1


Ovarian ca.
3.7
Bone Marrow Pool
1.4


OVCAR-8


Ovary
0.0
Fetal Heart
0.0


Breast ca. MCF-7
4.6
Heart Pool
0.2


Breast ca. MDA-
6.2
Lymph Node Pool
0.2


MB-231


Breast ca. BT 549
0.9
Fetal Skeletal Muscle
0.4


Breast ca. T47D
28.3
Skeletal Muscle Pool
0.0


Breast ca. MDA-N
0.6
Spleen Pool
0.2


Breast Pool
0.2
Thymus Pool
0.6


Trachea
0.9
CNS cancer (glio/
3.8




astro) U87-MG


Lung
0.0
CNS cancer (glio/
4.1




astro) U-118-MG


Fetal Lung
0.6
CNS cancer
1.0




(neuro;met) SK-N-AS


Lung ca. NCI-
0.6
CNS cancer (astro)
0.5


N417

SF-539


Lung ca. LX-1
8.8
CNS cancer (astro
4.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
1.0




SNB-19


Lung ca. SHP-77
1.4
CNS cancer (glio)
6.0




SF-295


Lung ca. A549
0.9
Brain (Amygdala)
0.3




Pool


Lung ca. NCI-H526
0.2
Brain (cerebellum)
0.4


Lung ca. NCI-H23
1.2
Brain (fetal)
0.8


Lung ca. NCI-H460
1.5
Brain (Hippocampus)
0.5




Pool


Lung ca. HOP-62
0.5
Cerebral Cortex Pool
0.8


Lung ca. NCI-H522
2.6
Brain (Substantia
0.5




nigra) Pool


Liver
0.0
Brain (Thalamus) Pool
0.5


Fetal Liver
0.3
Brain (whole)
0.4


Liver ca. HepG2
3.0
Spinal Cord Pool
0.9


Kidney Pool
0.7
Adrenal Gland
0.2


Fetal Kidney
2.2
Pituitary gland Pool
0.4


Renal ca. 786-0
2.4
Salivary Gland
0.4


Renal ca. A498
2.2
Thyroid (female)
0.5


Renal ca. ACHN
0.4
Pancreatic ca.
21.6




CAPAN2


Renal ca. UO-31
0.0
Pancreas Pool
0.4










[0594]

213





TABLE FC










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag4050,

(%) Ag4059,



Run

Run


Tissue Name
171619887
Tissue Name
171619887













Secondary Th1 act
0.5
HUVEC IL-1 beta
1.1


Secondary Th2 act
3.5
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.7
HUVEC TNF alpha +
0.0




IFN gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha +
0.0




IL4


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
2.6
Lung Microvascular
0.0




EC none


Primary Th1 act
0.0
Lung Microvascular
1.7




EC TNFalpha +




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal
0.9




EC none


Primary Tr1 act
0.0
Microsvasular Dermal
0.0




EC TNFalpha +




IL-1beta


Primary Th1 rest
1.7
Bronchial epithelium
5.0




TNFalpha + IL1beta


Primary Th2 rest
1.1
Small airway
17.2




epithelium none


Primary Tr1 rest
0.0
Small airway
4.9




epithelium




TNFalpha + IL-1beta


CD45RA CD4
2.0
Coronery artery SMC
0.0


lymphocyte act

rest


CD45RO CD4
1.7
Coronery artery SMC
2.6


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
1.7
Astrocytes rest
1.3


Secondary CD8
0.0
Astrocytes
0.0


lymphocyte rest

TNFalpha + IL-1beta


Secondary CD8
1.7
KU-812 (Basophil)
1.0


lymphocyte act

rest


CD4 lymphocyte
0.0
KU-812 (Basophil)
2.9


none

PMA/ionomycin


2ry Th1/Th2/
0.0
CCD1106 (Keratino-
5.6


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
0.5
CCD1106 (Keratino-
5.4




cytes) TNFalpha +




IL-1beta


LAK cells IL-2
3.1
Liver cirrhosis
1.4


LAK cells IL-2 +
0.0
NCI-H292 none
86.5


IL-12


LAK cells IL-2 +
0.0
NCI-H292 IL-4
97.9


IFN gamma


LAK cells IL-2 +
0.0
NCI-H292 IL-9
88.3


IL-18


LAK cells
0.0
NCI-H292 IL-13
43.2


PMA/ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IFN gamma
100.0


Two Way MLR 3
0.0
HPAEC none
0.6


day


Two Way MLR 5
0.0
HPAEC TNF alpha +
2.5


day

IL-1 beta


Two Way MLR 7
0.0
Lung fibroblast none
5.1


day


PBMC rest
0.0
Lung fibroblast
0.0




TNF alpha + IL-1 beta


PBMC PWM
0.0
Lung fibroblast IL-4
3.5


PBMC PHA-L
2.9
Lung fibroblast IL-9
1.5


Ramos (B cell)
1.8
Lung fibroblast IL-13
2.0


none


Ramos (B cell)
5.1
Lung fibroblast IFN
4.0


ionomycin

gamma


B lymphocytes
0.0
Dermal fibroblast
3.7


PWM

CCD1070 rest


B lymphocytes
0.0
Dermal fibroblast
0.5


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast
1.3




CCD1070 IL-1 beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
1.8


PMA/ionomycin

gamma


Dendritic cells none
1.4
Dermal fibroblast IL-4
3.3


Dendritic cells LPS
1.6
Dermal Fibroblasts
6.2




rest


Dendritic cells anti-
5.9
Neutrophils TNFa +
0.0


CD40

LPS


Monocytes rest
1.7
Neutrophils rest
0.0


Monocytes LPS
2.7
Colon
1.2


Macrophages rest
2.7
Lung
0.0


Macrophages LPS
0.0
Thymus
5.6


HUVEC none
0.0
Kidney
51.4


HUVEC starved
2.0










[0595]

214





TABLE FD










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag4050,

(%) Ag4050,



Run

Run


Tissue Name
268362946
Tissue Name
268362946













Colon cancer 1
0.8
Bladder cancer NAT 2
0.0


Colon cancer
0.0
Bladder cancer NAT 3
0.0


NAT 1


Colon cancer 2
75.3
Bladder cancer NAT 4
0.0


Colon cancer
0.0
Adenocarcinoma of the
1.4


NAT 2

prostate 1


Colon cancer 3
1.3
Adenocarcinoma of the
0.0




prostate 2


Colon cancer
0.9
Adenocarcinoma of the
1.2


NAT 3

prostate 3


Colon malignant
14.5
Adenocarcinoma of the
4.7


cancer 4

prostate 4


Colon normal
0.0
Prostate cancer NAT 5
1.4


adjacent tissue 4


Lung cancer 1
6.5
Adenocarcinoma of the
2.3




prostate 6


Lung NAT 1
0.0
Adenocarcinoma of the
2.2




prostate 7


Lung cancer 2
10.2
Adenocarcinoma of the
0.0




prostate 8


Lung NAT 2
0.5
Adenocarcinoma of the
1.8




prostate 9


Squamous cell
1.0
Prostate cancer NAT 10
0.8


carcinoma 3


Lung NAT 3
0.0
Kidney cancer 1
0.0


metastatic
0.0
Kidney NAT 1
8.8


melanoma 1


Melanoma 2
100.0
Kidney cancer 2
10.4


Melanoma 3
28.1
Kidney NAT 2
8.8


metastatic
2.4
Kidney cancer 3
3.9


melanoma 4


metastatic
1.4
Kidney NAT 3
4.9


melanoma 5


Bladder cancer 1
1.1
Kidney cancer 4
1.1


Bladder cancer
0.0
Kidney NAT 4
3.3


NAT 1


Bladder cancer 2
3.2










[0596] General_screening_panel_v1.4 Summary: Ag4050 Highest expression of the CG95598-01 gene is seen in a gastric cancer cell line (CT=29.5). Significant expression in this panel is limited to cancer cell lines including sampels derived from pancreatic, brain, colon, breast and ovarian cancers. Thus, expression of this gene could be used as a marker of cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of cancer.


[0597] Panel 4.1D Summary: Ag4050 Highest expression of the CG95598-01 gene is seen in IFN-gamma treated NCI-H292 cells (CT=31.9). Significant levels of expression are limited to a cluster of both treated and untreated NCI-H292 cells and small airway epithelium. Treatment of these cells does not seem to significantly alter expression of this transcript in this muco-epidermoid cell line. Thus, the protein could be used to identify certain lung tumors similar to NCI-H292. The encoded protein may also contribute to the normal function of the goblet cells within the lung. Therefore, designing therapeutics to this protein may be important for the treatment of emphysema and asthma as well as other lung diseases in which goblet cells or the mucus they produce have pathological consequences.


[0598] Moderate expression of this gene is also observed in normal kidney. Therefore, therapeutic modulation of this gene product may also be useful in the treatment of autoimmune and inflammatory diseases that affect kidney including lupus and glomerulonephritis.


[0599] general oncology screening panel_v2.4 Summary: Ag4050 Expression of the CG95598-01 gene is restricted to a samples derived from colon cancer and melanoma (CTs=31.8-32.4). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of colon cancer and melanoma. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of colon cancer and melanoma.



G. NOV19a (CG95639-01): Von Ebner's Gland Protein Precursor

[0600] Expression of gene CG95639-01 was assessed using the primer-probe set Ag4025, described in Table GA. Results of the RTQ-PCR runs are shown in Tables GB and GC.
215TABLE GAProbe Name Ag4025StartSEQ IDPrimersSequencesLengthPositionNoForward5′-cacccatgaccctcacaat-3′19164106ProbeTET-5′-caacctggaagctaaggccaccatg-3′-TAMRA25195107Reverse5′-ggcactggccacttatcag-3′19220108


[0601]

216





TABLE GB










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4025,

(%) Ag4025,



Run

Run


Tissue Name
218425730
Tissue Name
218425730













Adipose
7.6
Renal ca. TK-10
0.0


Melanoma*
0.0
Bladder
10.1


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
100.0


Hs688(B).T

NCI-N87


Melanoma* M14
0.0
Gastric ca. KATO III
11.0


Melanoma*
0.0
Colon ca. SW-948
2.9


LOXIMVI


Melanoma* SK-
0.0
Colon ca. SW480
0.0


MEL-5


Squamous cell
1.6
Colon ca.* (SW480
0.0


carcinoma SCC-4

met) SW620


Testis Pool
10.4
Colon ca. HT29
0.0


Prostate ca.* (bone
0.0
Colon ca. HCT-116
2.7


met) PC-3


Prostate Pool
0.0
Colon ca. CaCo-2
0.0


Placenta
2.8
Colon cancer tissue
2.6


Uterus Pool
4.1
Colon ca. SW1116
2.3


Ovarian ca.
0.0
Colon ca. Colo-205
0.0


OVCAR-3


Ovarian ca. SK-
0.0
Colon ca. SW-48
0.0


OV-3


Ovarian ca.
0.0
Colon Pool
6.6


OVCAR-4


Ovarian ca.
0.0
Small Intestine Pool
0.0


OVCAR-5


Ovarian ca.
0.0
Stomach Pool
6.3


IGROV-1


Ovarian ca.
2.2
Bone Marrow Pool
6.7


OVCAR-8


Ovary
3.1
Fetal Heart
1.7


Breast ca. MCF-7
0.0
Heart Pool
0.0


Breast ca. MDA-
0.0
Lymph Node Pool
12.7


MB-231


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
3.0


Breast ca. T47D
6.7
Skeletal Muscle Pool
2.5


Breast ca. MDA-N
0.0
Spleen Pool
0.0


Breast Pool
3.5
Thymus Pool
1.5


Trachea
0.0
CNS cancer (glio/
0.0




astro) U87-MG


Lung
30.1
CNS cancer (glio/
0.0




astro) U-118-MG


Fetal Lung
6.6
CNS cancer
0.0




(neuro;met) SK-N-AS


Lung ca. NCI-N417
0.0
CNS cancer (astro)
0.0




SF-539


Lung ca. LX-1
58.6
CNS cancer (astro)
0.0




SNB-75


Lung ca. NCI-H146
0.0
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
0.0
CNS cancer (glio) SF-
0.0




295


Lung ca. A549
0.0
Brain (Amygdala)
2.7




Pool


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.0
Brain (fetal)
0.0


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
6.6




Pool


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
2.5


Lung ca. NCI-H522
0.0
Brain (Substantia
12.0




nigra) Pool


Liver
0.0
Brain (Thalamus) Pool
1.5


Fetal Liver
0.0
Brain (whole)
9.5


Liver ca. HepG2
0.0
Spinal Cord Pool
0.0


Kidney Pool
13.8
Adrenal Gland
0.0


Fetal Kidney
11.3
Pituitary gland Pool
3.0


Renal ca. 786-0
0.0
Salivary Gland
0.0


Renal ca. A498
0.0
Thyroid (female)
0.0


Renal ca. ACHN
6.0
Pancreatic ca.
15.3




CAPAN2


Renal ca. UO-31
0.0
Pancreas Pool
8.3










[0602]

217





TABLE GC










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag4025,

(%) Ag4025,



Run

Run


Tissue Name
268362900
Tissue Name
268362900













Colon cancer 1
2.8
Bladder cancer NAT 2
0.0


Colon cancer
0.0
Bladder cancer NAT 3
2.0


NAT 1


Colon cancer 2
0.0
Bladder cancer NAT 4
0.0


Colon cancer
0.0
Adenocarcinoma of the
6.3


NAT 2

prostate 1


Colon cancer 3
0.0
Adenocarcinoma of the
0.0




prostate 2


Colon cancer
3.2
Adenocarcinoma of the
2.4


NAT 3

prostate 3


Colon malignant
2.9
Adenocarcinoma of the
2.5


cancer 4

prostate 4


Colon normal
0.0
Prostate cancer NAT 5
0.0


adjacent tissue 4


Lung cancer 1
0.0
Adenocarcinoma of the
0.0




prostate 6


Lung NAT 1
2.4
Adenocarcinoma of the
6.0




prostate 7


Lung cancer 2
7.5
Adenocarcinoma of the
0.0




prostate 8


Lung NAT 2
2.0
Adenocarcinoma of the
0.0




prostate 9


Squamous cell
10.2
Prostate cancer NAT
0.0


carcinoma 3

10


Lung NAT 3
0.0
Kidney cancer 1
5.1


metastatic
14.7
KidneyNAT 1
0.0


melanoma 1


Melanoma 2
0.0
Kidney cancer 2
2.5


Melanoma 3
0.0
Kidney NAT 2
0.0


metastatic
59.0
Kidney cancer 3
7.3


melanoma 4


metastatic
100.0
Kidney NAT 3
6.0


melanoma 5


Bladder cancer 1
0.0
Kidney cancer 4
0.0


Bladder cancer
0.0
Kidney NAT 4
3.2


NAT 1


Bladder cancer 2
3.2










[0603] General_screening_panel_v1.4 Summary: Ag4025 Expression of the CG95639-01 gene is highest in a gastric cancer cell line (CT=31.3). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of gastric cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric cancer.


[0604] In addition, low but significant levels of expression in the pancreas suggest that this gene product may be involved in the pathogenesis and/or diagnosis of diabetes.


[0605] Low levels of expression in the whole brain and substantia nigra show that this gene is also present in the brain and may be involved in neurological disorders including Parkinson's.


[0606] general oncology screening panel_v2.4 Summary: Ag4025 Expression of the CG95639-01 gene is restricted to samples derived from melanoma (CTs=33.5-34.3). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of melanoma cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of melanoma cancer.



H. NOV21a (CG95775-01): Clathrin Coat Associated Protein

[0607] Expression of gene CG95775-01 was assessed using the primer-probe set Ag4100, described in Table HA. Results of the RTQ-PCR runs are shown in Tables HB, HC, HD, HE and HF.
218TABLE HAProbe Name Ag4100StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ccgactatctgacctcacagtt-3′221911109ProbeTET-5′-ctatgccctcaactacagcctccgg-3′-TAMRA251933110Reverse5′-gtcagcacatccaggatgtc-3′201967111


[0608]

219





TABLE HB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag4100,

(%) Ag4100,



Run

Run


Tissue Name
214296166
Tissue Name
214296166













AD 1 Hippo
7.9
Control (Path) 3
11.7




Temporal Ctx


AD 2 Hippo
25.2
Control (Path) 4
18.3




Temporal Ctx


AD 3 Hippo
11.5
AD 1 Occipital Ctx
9.5


AD 4 Hippo
11.5
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 hippo
87.7
AD 3 Occipital Ctx
12.6


AD 6 Hippo
23.3
AD 4 Occipital Ctx
9.0


Control 2 Hippo
18.2
AD 5 Occipital Ctx
4.8


Control 4 Hippo
31.6
AD 6 Occipital Ctx
20.6


Control (Path) 3
8.0
Control 1 Occipital
4.5


Hippo

Ctx


AD 1 Temporal Ctx
20.2
Control 2 Occipital
45.7




Ctx


AD 2 Temporal Ctx
11.2
Control 3 Occipital
7.3




Ctx


AD 3 Temporal Ctx
7.4
Control 4 Occipital
6.1




Ctx


AD 4 Temporal Ctx
3.7
Control (Path) 1
45.1




Occipital Ctx


AD 5 Inf Temporal
33.7
Control (Path) 2
8.7


Ctx

Occipital Ctx


AD 5 SupTemporal
24.3
Control (Path) 3
1.9


Ctx

Occipital Ctx


AD 6 Inf Temporal
24.1
Control (Path) 4
14.4


Ctx

Occipital Ctx


AD 6 Sup Temporal
19.2
Control 1 Parietal
11.6


Ctx

Ctx


Control 1 Temporal
8.2
Control 2 Parietal
30.8


Ctx

Ctx


Control 2 Temporal
21.8
Control 3 Parietal
12.7


Ctx

Ctx


Control 3 Temporal
11.2
Control (Path) 1
100.0


Ctx

Parietal Ctx


Control 4 Temporal
12.3
Control (Path) 2
8.2


Ctx

Parietal Ctx


Control (Path) 1
29.1
Control (Path) 3
12.6


Temporal Ctx

Parietal Ctx


Control (Path) 2
15.1
Control (Path) 4
32.3


Temporal Ctx

Parietal Ctx










[0609]

220





TABLE HC










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4100,

(%) Ag4100,



Run

Run


Tissue Name
219922656
Tissue Name
219922656













Adipose
0.7
Renal ca. TK-10
7.4


Melanoma*
2.1
Bladder
5.6


Hs688(A).T


Melanoma*
3.2
Gastric ca. (liver met.)
6.2


Hs688(B).T

NCI-N87


Melanoma* M14
11.2
Gastric ca. KATO III
21.2


Melanoma*
4.5
Colon ca. SW-948
13.6


LOXIMVI


Melanoma* SK-
4.5
Colon ca. SW480
16.7


MEL-5


Squamous Cell
5.7
Colon ca.* (SW480
6.7


carcinoma SCC-4

met) SW620


Testis Pool
1.3
Colon ca. HT29
7.3


Prostate ca.* (bone
2.3
Colon ca. HCT-116
23.3


met) PC-3


Prostate Pool
2.4
Colon ca. CaCo-2
8.0


Placenta
1.7
Colon cancer tissue
8.2


Uterus Pool
0.2
Colon ca. SW1116
10.7


Ovarian ca.
5.3
Colon ca. Colo-205
6.4


OVCAR-3


Ovarian ca. SK-OV-
25.2
Colon ca. SW-48
14.4


3


Ovarian ca.
8.2
Colon Pool
1.9


OVCAR-4


Ovarian ca.
26.4
Small Intestine Pool
2.8


OVCAR-5


Ovarian ca.
19.6
Stomach Pool
1.1


IGROV-1


Ovarian ca.
19.9
Bone Marrow Pool
0.8


OVCAR-8


Ovary
2.9
Fetal Heart
1.8


Breast ca. MCF-7
15.5
Heart Pool
1.5


Breast ca. MDA-
13.4
Lymph Node Pool
2.2


MB-231


Breast ca. BT 549
7.3
Fetal Skeletal Muscle
0.8


Breast ca. T47D
100.0
Skeletal Muscle Pool
3.8


Breast ca. MDA-N
12.9
Spleen Pool
4.0


Breast Pool
2.0
Thymus Pool
4.2


Trachea
1.3
CNS cancer (glio/
6.4




astro) U87-MG


Lung
0.5
CNS cancer (glio/
31.6




astro) U-118-MG


Fetal Lung
2.4
CNS cancer
6.8




(neuro;met) SK-N-AS


Lung ca. NCI-
11.7
CNS cancer (astro)
6.2


N417

SF-539


Lung ca. LX-1
7.6
CNS cancer (astro)
16.5




SNB-75


Lung ca. NCI-H146
8.5
CNS cancer (glio)
18.9




SNB-19


Lung ca. SHP-77
5.6
CNS cancer (glio) SF-
10.0




295


Lung ca. A549
9.0
Brain (Amygdala)
2.8




Pool


Lung ca. NCI-H526
8.6
Brain (cerebellum)
5.8


Lung ca. NCI-H23
4.4
Brain (fetal)
2.8


Lung ca. NCI-H460
3.4
Pool (Hippocampus)
1.8




Pool


Lung ca. HOP-62
2.6
Cerebral Cortex Pool
2.7


Lung ca. NCI-H522
3.6
Brain (Substantia
5.6




nigra) Pool


Liver
0.2
Brain (Thalamus) Pool
2.9


Fetal Liver
1.7
Brain (whole)
1.3


Liver ca. HepG2
5.0
Spinal Cord Pool
4.1


Kidney Pool
2.7
Adrenal Gland
2.4


Fetal Kidney
1.7
Pituitary gland Pool
1.0


Renal ca. 786-0
5.2
Salivary Gland
0.7


Renal ca. A498
2.8
Thyroid (female)
2.3


Renal ca. ACHN
4.3
Pancreatic ca.
6.8




CAPAN2


Renal ca. UO-31
6.4
Pancreas Pool
2.9










[0610]

221





TABLE HD










Panel 4.1D











Rel. Exp.

Rel. Exp.



(%) Ag4100,

(%) Ag4100,



Run

Run


Tissue Name
172775146
Tissue Name
172775146













Secondary Th1 act
39.8
HUVEC IL-1beta
40.6


Secondary Th2 act
59.5
HUVEC IFN gamma
33.2


Secondary Tr1 act
64.2
HUVEC TNF alpha +
38.2




IFN gamma


Secondary Th1 rest
15.7
HUVEC TNF alpha +
49.7



IL4


Secondary Th2 rest
22.7
HUVEC IL-11
29.7


Secondary Tr1 rest
21.8
Lung Microvascular
87.7




EC none


Primary Th1 act
90.1
Lung Microvascular
46.3




EC




TNFalpha + IL-1beta


Primary Th2 act
64.6
Microvascular Dermal
71.2




EC none


Primary Tr1 act
97.3
Microsvasular Dermal
45.7




EC TNFalpha +




IL-1beta


Primary Th1 rest
25.0
Bronchial epithelium
21.9




TNFalpha + IL1beta


Primary Th2 rest
11.2
Small airway
7.2




epithelium none


Primary Tr1 rest
49.3
Small airway
16.2




epithelium




TNFalpha + IL-1beta


CD45RA CD4
70.7
Coronery artery SMC
12.3


lymphocyte act

rest


CD45RO CD4
93.3
Coronery artery SMC
14.5


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
79.0
Astrocytes rest
19.8


Secondary CD8
63.7
Astrocytes
18.4


lymphocyte rest

TNFalpha +




IL-1beta


Secondary CD8
17.4
KU-812 (Basophil)
43.2


lymphocyte act

rest


CD4 lymphocyte
5.3
KU-812 (Basophil)
19.6


none

PMA/ionomycin


2ry Th1/Th2/
28.1
CCD1106 (Keratino-
92.7


Tr1_anti-CD95

cytes) none


CH11


LAK cells rest
34.6
CCD1106 (Keratino-
47.0




cytes) TNFalpha +




IL-1beta


LAK cells IL-2
24.8
Liver cirrhosis
10.2


LAK cells IL-2 +
36.9
NCI-H292 none
50.0


IL-12


LAK cells IL-2 +
32.8
NCI-H292 IL-4
44.4


IFN gamma


LAK cells IL-2 +
27.9
NCI-H292 IL-9
72.7


IL-18


LAK cells
23.8
NCI-H292 IL-13
57.0


PMA/ionomycin


NK Cells IL-2
40.3
NCI-H292 IFN gamma
66.9


rest


Two Way MLR 3
62.9
HPAEC none
37.6


day


Two Way MLR 5
44.8
HPAEC TNF alpha +
43.5


day

IL-1 beta


Two Way MLR 7
37.4
Lung fibroblast none
22.8


day


PBMC rest
18.0
Lung fibroblast TNF
23.7




alpha + IL-1 beta


PBMC PWM
81.8
Lung fibroblast IL-4
42.0


PBMC PHA-L
51.4
Lung fibroblast IL-9
87.1


Ramos (B cell) none
100.0
Lung fibroblast IL-13
45.4


Ramos (B cell)
98.6
Lung fibroblast IFN
37.4


ionomycin

gamma


B lymphocytes
32.3
Dermal fibroblast
62.4


PWM

CCD1070 rest


B lymphocytes
67.4
Dermal fibroblast
61.6


CD40L and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
51.1
Dermal fibroblast
52.5




CCD1070 IL-1 beta


EOL-1 dbcAMP
27.0
Dermal fibroblast IFN
33.2


PMA/ionomycin

gamma


Dendritic cells none
33.9
Dermal fibroblast IL-4
34.4


Dendritic cells LPS
17.0
Dermal Fibroblasts
20.2




rest


Dendritic cells anti-
17.8
Neutrophils TNFa +
5.0


CD40

LPS


Monocytes rest
15.0
Neutrophils rest
1.3


Monocytes LPS
42.6
Colon
16.7


Macrophages rest
42.9
Lung
13.8


Macrophages LPS
17.7
Thymus
23.8


HUVEC none
55.5
Kidney
36.9


HUVEC starved
71.2










[0611]

222





TABLE HE










Panel CNS_1











Rel. Exp.

Rel. Exp.



(%) Ag4100,

(%) Ag4100,



Run

Run


Tissue Name
180912027
Tissue Name
180912027













BA4 Control
9.1
BA17 PSP
4.7


BA4 Control2
62.0
BA17 PSP2
0.0


BA4
3.1
Sub Nigra Control
26.8


Alzheimer's2


BA4 Parkinson's
87.7
Sub Nigra Control2
41.8


BA4
47.0
Sub Nigra
3.0


Parkinson's2

Alzheimer's2


BA4
34.4
Sub Nigra
68.3


Huntington's

Parkinson's2


BA4
16.2
Sub Nigra
88.3


Huntington's2

Huntington's


BA4 PSP
0.0
Sub Nigra
28.9




Huntington's2


BA4 PSP2
55.1
Sub Nigra PSP2
2.3


BA4 Depression
24.1
Sub Nigra
0.0




Depression


BA4
8.9
Sub Nigra
8.8


Depression2

Depression2


BA7 Control
45.7
Glob Palladus
32.5




Control


BA7 Control2
52.9
Glob Palladus
6.2




Control2


BA7
12.5
Glob Palladus
29.3


Alzheimer's2

Alzheimer's


BA7 Parkinson's
31.9
Glob Palladus
11.4




Alzheimer's2


BA7
92.0
Glob Palladus
73.7


Parkinson's2

Parkinson's


BA7
41.2
Glob Palladus
60.7


Huntington's

Parkinson's2


BA7
68.3
Glob Palladus PSP
13.5


Huntington's2


BA7 PSP
36.9
Glob Palladus PSP2
22.2


BA7 PSP2
17.7
Glob Palladus
1.2




Depression


BA7 Depression
0.0
Temp Pole Control
35.4


BA9 Control
15.3
Temp Pole Control2
18.0


BA9 Control2
16.4
Temp Pole
0.0




Alzheimer's


BA9 Alzheimer's
19.2
Temp Pole
0.0




Alzheimer's2


BA9
9.5
Temp Pole
42.0


Alzheimer's2

Parkinson's


BA9 Parkinson's
46.7
Temp Pole
62.4




Parkinson's2


BA9
78.5
Temp Pole
65.5


Parkinson's2

Huntington's


BA9
65.5
Temp Pole PSP
0.0


Huntington's


BA9
13.4
Temp Pole PSP2
4.1


Huntington's2


BA9 PSP
17.1
Temp Pole
0.0




Depression2


BA9 PSP2
8.8
Cing Gyr Control
92.0


BA9 Depression
5.4
Cing Gyr Control2
44.4


BA9
37.4
Cing Gyr
11.3


Depression2

Alzheimer's


BA17 Control
31.4
Cing Gyr
10.5




Alzheimer's2


BA17 Control2
59.9
Cing Gyr
62.9




Parkinson's


BA17
19.9
Cing Gyr
40.6


Alzheimer's2

Parkinson's2


BA17
95.9
Cing Gyr
90.8


Parkinson's

Huntington's


BA17
100.0
Cing Gyr
40.3


Parkinson's2

Huntington's2


BA17
55.1
Cing Gyr PSP
12.0


Huntington's


BA17
43.8
Cing Gyr PSP2
0.0


Huntington's2


BA17
4.6
Cing Gyr Depression
17.6


Depression


BA17
12.0
Cing Gyr
42.6


Depression2

Depression2










[0612]

223





TABLE HF










general oncology screening panel_v_2.4











Rel. Exp.

Rel. Exp.



(%) Ag4100,

(%) Ag4100,



Run

Run


Tissue Name
268623631
Tissue Name
268623631













Colon cancer 1
42.3
Bladder cancer NAT 2
0.3


Colon NAT 1
11.1
Bladder cancer NAT 3
0.8


Colon cancer 2
10.2
Bladder cancer NAT 4
7.0


Colon cancer
7.1
Adenocarcinoma of the
12.4


NAT 2

prostate 1


Colon cancer 3
17.3
Adenocarcinoma of the
2.4




prostate 2


Colon cancer
9.7
Adenocarcinoma of the
13.0


NAT 3

prostate 3


Colon malignant
28.1
Adenocarcinoma of the
21.0


cancer 4

prostate 4


Colon normal
3.1
Prostate cancer NAT 5
6.1


adjacent tissue 4


Lung cancer 1
12.9
Adenocarcinoma of the
2.3




prostate 6


Lung NAT 1
0.2
Adenocarcinoma of the
3.4




prostate 7


Lung cancer 2
100.0
Adenocarcinoma of the
0.0




prostate 8


Lung NAT 2
3.0
Adenocarcinoma of the
17.3




prostate 9


Squamous cell
15.4
Prostate cancer NAT 10
0.9


carcinoma 3


Lung NAT 3
0.0
Kidney cancer 1
11.2


metastatic
12.3
KidneyNAT 1
1.9


melanoma 1


Melanoma 2
2.4
Kidney cancer 2
56.3


Melanoma 3
2.0
Kidney NAT 2
20.0


metastatic
26.4
Kidney cancer 3
24.7


melanoma 4


metastatic
18.9
Kidney NAT 3
13.1


melanoma 5


Bladder cancer 1
0.0
Kidney cancer 4
11.0


Bladder cancer
0.0
Kidney NAT 4
5.7


NAT 1


Bladder cancer 2
5.6










[0613] CNS_neurodegeneration_v1.0 Summary: Ag4100 This panel does not show differential expression of the CG95775-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of this gene in the central nervous system.


[0614] General_screening_panel_v1.4 Summary: Ag4100 Highest expression of the CG95775-01 gene is seen in a breast cancer cell line (CT=26.9). This gene is widely expressed in this panel, with prominent levels of expression also seen in clusters of cell lines derived from breast cancer, ovarian cancer, melanoma, lung cancer, gastric cancer and brain cancer. Overall, this expression profile suggest that this gene product may be involved in cell proliferation and growth.


[0615] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal liver and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0616] This gene is also expressed at moderate to low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0617] Panel 4.1D Summary: Ag4100 Highest expression of the CG95775-01 gene is seen in an untreated sample derived from the B cell line Ramos (CT=33). This gene is widely expressed at low but significant levels in many cells involved in the immune response including activated Th1, Th2 and Tr1 cells, CD8 and CD4 lymphocytes, activated PMBCs and B lymphocytes, LAK cells, eosinophils, and endothelial cells from lung and skin. This widespread pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0618] Panel CNS1 Summary: Ag4100 This panel confirms expression of the CG95775-01 gene in in the brain. Please see Panel 1.4 for discussion of this gene in the central nervous system.


[0619] general oncology screening panel_v2.4 Summary: Ag4100 Highest expression of the CG95775-01 gene is seen in lung cancer (OD06850-03C) sample (CT=29.2). Expression of this gene is higher in the cancer (OD06850-03C) sample as compared to control normal lung sample (CT=38). Thus, expression of this gene may be used to distinguish between these two samples. In addition, higher expression of this gene is also seen in other cancers such as lung, kidney, metastatic melanoma, bladder, and prostate cancer. Therefore, expression of this gene can be used as diagnostic marker for these cancers and also, therapeutic modulation of this gene product may be useful in the treatment of these cancers.



I. NOV23a (CG96221-01): Hydroxyproline-rich Glycoprotein

[0620] Expression of gene CG96221-01 was assessed using the primer-probe set Ag4042, described in Table IA. Results of the RTQ-PCR runs are shown in Tables IB, IC, ID and IE.
224TABLE IAProbe Name Ag4042StartSEQ IDPrimersSequencesLengthPositionNoForward5′-agagagctgtttccaatatgca-3′22148112ProbeTET-5′-accattcaacacttccaactgtgtcg-3′-TAMRA26200113Reverse5′-ctgaaggcctagttagccatgt-3′22226114


[0621]

225





TABLE IB










CNS_neurodegeneration_v1.0











Rel. Exp.

Rel. Exp.



(%) Ag4042,

(%) Ag4042,



Run

Run


Tissue Name
214151951
Tissue Name
214151951













AD 1 Hippo
10.5
Control (Path) 3
3.7




Temporal Ctx


AD 2 Hippo
24.0
Control (Path) 4
32.3




Temporal Ctx


AD 3 Hippo
7.6
AD 1 Occipital Ctx
18.9


AD 4 Hippo
7.0
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
95.3
AD 3 Occipital Ctx
11.3


AD 6 Hippo
44.1
AD 4 Occipital Ctx
31.0


Control 2 Hippo
18.3
AD 5 Occipital Ctx
20.9


Control 4 Hippo
18.0
AD 6 Occipital Ctx
12.6


Control (Path) 3
8.0
Control 1 Occipital
5.0


Hippo

Ctx


AD 1 Temporal Ctx
27.9
Control 2 Occipital
19.9




Ctx


AD 2 Temporal Ctx
32.1
Control 3 Occipital
21.9




Ctx


AD 3 Temporal Ctx
11.5
Control 4 Occipital
13.7




Ctx


AD 4 Temporal Ctx
26.4
Control (Path) 1
100.0




Occipital Ctx


AD 5 Inf Temporal
69.3
Control (Path) 2


Ctx

Occipital Ctx


AD 5 Sup
57.8
Control (Path) 3
0.1


Temporal Ctx

Occipital Ctx


AD 6 Inf Temporal
40.6
Control (Path) 4
28.3


Ctx

Occipital Ctx


AD 6 Sup
43.2
Control 1 Parietal
16.7


Temporal Ctx

Ctx


Control 1 Temporal
4.2
Control 2 Parietal
51.4


Ctx

Ctx


Control 2 Temporal
22.8
Control 3 Parietal
23.7


Ctx

Ctx


Control 3 Temporal
13.8
Control (Path) 1
47.0


Ctx

Parietal Ctx


Control 3 Temporal
14.4
Control (Path) 2
26.8


Ctx

Parietal Ctx


Control (Path) 1
51.4
Control (Path) 3
5.1


Temporal Ctx

Parietal Ctx


Control (Path) 2
35.6
Control (Path) 4
40.6


Temporal Ctx

Parietal Ctx










[0622]

226





TABLE IC










General_screening_panel_v1.4











Rel. Exp.

Rel. Exp.



(%) Ag4042,

(%) Ag4042,



Run

Run


Tissue Name
218426120
Tissue Name
218426120













Adipose
0.3
Renal ca. TK-10
3.2


Melanoma*
0.1
Bladder
1.4


Hs688(A).T


Melanoma*
0.4
Gastric ca. (liver met.)
6.6


Hs688(B).T

NCI-N87


Melanoma* M14
0.6
Gastric ca. KATO III
5.0


Melanoma*
0.5
Colon ca. SW-948
0.9


LOXIMVI


Melanoma* SK-
2.5
Colon ca. SW480
13.4


MEL-5


Squamous cell
0.7
Colon ca.* (SW480
5.4


carcinoma SCC-4

met) SW620


Testis Pool
1.4
Colon ca. HT29
2.1


Prostate ca.* (bone
1.2
Colon ca. HCT-116
2.0


met) PC-3


Prostate Pool
1.1
Colon ca. CaCo-2
7.0


Placenta
0.3
Colon cancer tissue
1.8


Uterus Pool
0.4
Colon ca. SW1116
0.8


Ovarian ca.
1.0
Colon ca. Colo-205
1.2


OVCAR-3


Ovarian ca. SK-OV-
3.6
Colon ca. SW-48
0.6


3


Ovarian ca.
0.4
Colon Pool
3.8


OVCAR-4


Ovarian ca.
3.2
Small Intestine Pool
3.3


OVCAR-5


Ovarian ca.
3.2
Stomach Pool
1.1


IGROV-1


Ovarian ca.
0.4
Bone Marrow Pool
1.5


OVCAR-8


Ovary
1.4
Fetal Heart
4.8


Breast ca. MCF-7
100.0
Heart Pool
0.6


Breast ca. MDA-
0.5
Lymph Node Pool
4.3


MB-231


Breast ca. BT 549
3.3
Fetal Skeletal Muscle
2.3


Breast ca. T47D
6.7
Skeletal Muscle Pool
0.8


Breast ca.
1.5
Spleen Pool
1.2


MDA-N


Breast Pool
5.3
Thymus Pool
94.0


Trachea
0.7
CNS cancer (glio/
0.7




astro) U87-MG


Lung
0.7
CNS cancer (glio/
3.5




astro) U-118-MG


Fetal Lung
1.4
CNS cancer
1.7




(neuro;met) SK-N-AS


Lung ca. NCI-N417
0.2
CNS cancer (astro)
2.3




SF-539


Lung ca. LX-1
6.3
CNS cancer (astro)
8.0




SNB-75


Lung ca. NCI-H146
1.2
CNS cancer (glio)
2.2




SNB-19


Lung ca. SHP-77
0.6
CNS cancer (glio)
17.0




SF-295


Lung ca. A549
0.8
Brain (Amygdala)
0.3




Pool


Lung ca. NCI-H526
0.2
Brain (cerebellum)
1.7


Lung ca. NCI-H23
17.8
Brain (fetal)
2.0


Lung ca. NCI-H460
1.0
Brain (Hippocampus)
1.0




Pool


Lung ca. HOP-62
0.7
Cerebral Cortex Pool
1.7


Lung ca. NCI-H522
1.2
Brain (Substantia
1.1




nigra) Pool


Liver
0.1
Brain (Thalamus) Pool
1.8


Fetal Liver
2.4
Brain (whole)
0.5


Liver ca. HepG2
3.9
Spinal Cord Pool
1.8


Kidney Pool
3.8
Adrenal Gland
0.9


Fetal Kidney
5.0
Pituitary gland Pool
0.6


Renal ca. 786-0
2.2
Salivary Gland
0.2


Renal ca. A498
1.4
Thyroid (female)
96.6


Renal ca. ACHN
1.4
Pancreatic ca.
2.6




CAPAN2


Renal ca. UO-31
1.0
Pancreas Pool
3.2










[0623]

227





TABLE ID










Panel 4.1D











Rel. Exp. (%)

Rel. Exp. (%)



Ag4042, Run

Ag4042, Run


Tissue Name
171616938
Tissue Name
171616938













Secondary Th1 act
9.3
HUVEC IL-1beta
4.3


Secondary Th2 act
6.5
HUVEC IFN gamma
8.5


Secondary Tr1 act
9.9
HUVEC TNF alpha + IFN
4.9




gamma


Secondary Th1 rest
6.6
HUVEC TNF alpha + IL4
3.8


Secondary Th2 rest
3.1
HUVEC IL-11
1.6


Secondary Tr1 rest
2.8
Lung Microvascular EC
7.4




none


Primary Th1 act
0.6
Lung Microvascular EC
7.5




TNF alpha + IL-1beta


Primary Th2 act
12.4
Microvascular Dermal EC
3.3




none


Primary Tr1 act
8.8
Microsvasular Dermal EC
1.6




TNF alpha + IL-1beta


Primary Th1 rest
1.1
Bronchial epithelium
2.7




TNF alpha + IL1beta


Primary Th2 rest
0.8
Small airway epithelium
5.7




none


Primary Tr1 rest
3.4
Small airway epithelium
8.4




TNF alpha + IL-1beta


CD45RA CD4
7.0
Coronery artery SMC rest
1.5


lymphocyte act


CD45RO CD4
7.6
Coronery artery SMC
0.7


lymphocyte act

TNF alpha + IL-1beta


CD8 lymphocyte act
10.4
Astrocytes rest
3.5


Secondary CD8
2.8
Astrocytes TNF alpha +
2.2


lymphocyte rest

IL-1beta


Secondary CD8
3.6
KU-812 (Basophil) rest
65.1


lymphocyte act


CD4 lymphocyte none
4.4
KU-812 (Basophil)
94.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-
11.9
CCD1106 (Keratinocytes)
13.3


CD95 CH11

none


LAK cells rest
9.5
CCD1106 (Keratinocytes)
6.6




TNF alpha + IL-1beta


LAK cells IL-2
8.7
Liver cirrhosis
0.2


LAK cells IL-2 + IL-12
2.5
NCI-H292 none
22.4


LAK cells IL-2 + IFN
9.2
NCI-H292 IL-4
8.5


gamma


LAK cells IL-2 + IL-18
14.8
NCI-H292 IL-9
27.2


LAK cells
0.9
NCI-H292 IL-13
10.9


PMA/ionomycin


NK Cells IL-2 rest
7.4
NCI-H292 IFN gamma
23.8


Two Way MLR 3 day
8.8
HPAEC none
2.8


Two Way MLR 5 day
5.8
HPAEC TNF alpha + IL-
3.5




1beta


Two Way MLR 7 day
8.3
Lung fibroblast none
9.2


PBMC rest
3.6
Lung fibroblast TNF alpha +
3.9




IL-1beta


PBMC PWM
10.2
Lung fibroblast IL-4
4.4


PBMC PHA-L
6.2
Lung fibroblast IL-9
3.0


Ramos (B cell) none
29.9
Lung fibroblast IL-13
4.5


Ramos (B cell)
33.7
Lung fibroblast IFN
3.5


ionomycin

gamma


B lymphocytes PWM
3.4
Dermal fibroblast
9.0




CCD1070 rest


B lymphocytes CD40L
11.4
Dermal fibroblast
20.4


and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast
3.6




CCD1070 IL-1beta


EOL-1 dbcAMP
0.0
Dermal fibroblast IFN
1.6


PMA/ionomycin

gamma


Dendritic cells none
3.2
Dermal fibroblast IL-4
8.5


Dendritic cells LPS
6.7
Dermal Fibroblasts rest
6.3


Dendritic cells anti-
9.7
Neutrophils TNFa + LPS
1.5


CD40


Monocytes rest
2.3
Neutrophils rest
2.5


Monocytes LPS
3.5
Colon
8.3


Macrophages rest
8.8
Lung
3.5


Macrophages LPS
0.8
Thymus
21.2


HUVEC none
0.0
Kidney
100.0


HUVEC starved
1.8










[0624]

228





TABLE IE










general oncology screening panel_v_2.4











Rel. Exp. (%) Ag4042,

Rel. Exp. (%) Ag4042,


Tissue Name
Run 268362930
Tissue Name
Run 268362930













Colon cancer 1
10.7
Bladder cancer NAT 2
0.0


Colon cancer NAT 1
1.7
Bladder cancer NAT 3
0.4


Colon cancer 2
2.0
Bladder cancer NAT 4
1.5


Colon cancer NAT 2
0.4
Adenocarcinoma of the
34.6




prostate 1


Colon cancer 3
100.0
Adenocarcinoma of the
4.0




prostate 2


Colon cancer NAT 3
4.5
Adenocarcinoma of the
5.2




prostate 3


Colon malignant
17.1
Adenocarcinoma of the
41.8


cancer 4

prostate 4


Colon normal
4.1
Prostate cancer NAT 5
4.5


adjacent tissue 4


Lung cancer 1
20.7
Adenocarcinoma of the
4.0




prostate 6


Lung NAT 1
0.7
Adenocarcinoma of the
4.2




prostate 7


Lung cancer 2
30.1
Adenocarcinoma of the
2.7




prostate 8


Lung NAT 2
3.2
Adenocarcinoma of the
12.1




prostate 9


Squamous cell
8.4
Prostate cancer NAT 10
0.9


carcinoma 3


Lung NAT 3
1.1
Kidney cancer 1
18.3


metastatic
5.7
KidneyNAT 1
5.7


melanoma 1


Melanoma 2
3.3
Kidney cancer 2
80.7


Melanoma 3
0.6
Kidney NAT 2
21.3


metastatic
36.6
Kidney cancer 3
15.5


melanoma 4


metastatic
21.3
Kidney NAT 3
2.1


melanoma 5


Bladder cancer 1
0.7
Kidney cancer 4
1.5


Bladder cancer
0.0
Kidney NAT 4
0.9


NAT 1


Bladder cancer 2
1.7










[0625] CNS_neurodegeneration_v1.0 Summary: Ag4042 This panel does not show differential expression of the CG96221-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of this gene in the central nervous system.


[0626] General_screening_panel v1.4 Summary: Ag4042 Highest expression of the CG96221-01 gene is seen in a breast cancer cell line (CT=25.9), with high levels of expression also seen in the thyroid and thymus. Thus, expression of this gene could be used to distinguish these samples from other samples on this panel and as a marker of breast cancer and thyroid and thymic tissue. Furthermore, therapeutic modulation of the expression or function of this gene may be of use in the treatment of breast cancer and the thyroidopathies.


[0627] Overall, this gene is ubiquitously expressed with moderate to low levels of expression seen in other metabolic tissues including in pituitary, adipose, adrenal gland, pancreas, fetal liver and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0628] In addition, this gene is expressed at much higher levels in fetal liver (CT=31.3) when compared to expression in the adult counterpart (CT=36.3). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.


[0629] This gene is also expressed at moderate to low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy


[0630] Panel 4.1D Summary: Ag4042 Highest expression of the CG96221-01 gene is seen in the kidney (CT=30.2), with low but significant expression in the thymus. The expression of this gene is widespread throughout this panel with prominent expression also detected in both treated and untreated basophils. Basophils release histamines and other biological modifiers in reponse to allergens and play an important role in the pathology of asthma and hypersensitivity reactions. Therefore, therapeutics designed against the putative protein encoded by this gene may reduce or inhibit inflammation by blocking basophil function in these diseases. In addition, these cells are a reasonable model for the inflammatory cells that take part in various inflammatory lung and bowel diseases, such as asthma, Crohn's disease, and ulcerative colitis. Therefore, therapeutics that modulate the function of this gene product may reduce or eliminate the symptoms of patients suffering from asthma, Crohn's disease, and ulcerative colitis.


[0631] general oncology screening panel_v2.4 Summary: Ag4042 Highest expression of the CG96221-01 gene is seen in colon cancer (CT=29), with significant expression also seen in prostate and kidney cancer. In addition, expression of this gene is higher in the cancers than in the normal adjacent tissue. Therefore, expression of this gene could be as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of colon, kidney and prostate cancer.



J. NOV25a (CG96394-01): HIC1

[0632] Expression of gene CG96394-01 was assessed using the primer-probe set Ag4054, described in Table JA. Results of the RTQ-PCR runs are shown in Tables JB, JC, JD and JE.
229TABLE JAProbe Name Ag4054StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gtcatcatcatggtggagaact-3′22226115ProbeTET-5′-cacaagaacgtcctagccgccag-3′-TAMRA23262116Reverse5′-aggaccagggacttgaaataga-3′22290117


[0633]

230





TABLE JB










General_screening_panel_v1.4











Rel. Exp. (%) Ag4054,

Rel. Exp. (%) Ag4054,


Tissue Name
Run 218713208
Tissue Name
Run 218713208













Adipose
4.1
Renal ca. TK-10
18.0


Melanoma*
3.2
Bladder
6.7


Hs688(A).T


Melanoma*
1.6
Gastric ca. (liver met.)
17.3


Hs688(B).T

NCI-N87


Melanoma* M14
13.1
Gastric ca. KATO III
18.3


Melanoma*
4.1
Colon ca. SW-948
2.7


LOXIMVI


Melanoma* SK-
8.4
Colon ca. SW480
8.0


MEL-5


Squamous cell
10.3
Colon ca.* (SW480
9.0


carcinoma SCC-4

met) SW620


Testis Pool
7.6
Colon ca. HT29
3.7


Prostate ca.* (bone
4.4
Colon ca. HCT-116
20.7


met) PC-3


Prostate Pool
2.0
Colon ca. CaCo-2
100.0


Placenta
28.9
Colon cancer tissue
6.0


Uterus Pool
1.2
Colon ca. SW1116
3.3


Ovarian ca.
17.9
Colon ca. Colo-205
3.1


OVCAR-3


Ovarian ca. SK-OV-3
15.2
Colon ca. SW-48
2.2


Ovarian ca.
5.0
Colon Pool
5.2


OVCAR-4


Ovarian ca.
10.7
Small Intestine Pool
8.4


OVCAR-5


Ovarian ca. IGROV-1
7.4
Stomach Pool
3.1


Ovarian ca.
3.8
Bone Marrow Pool
1.9


OVCAR-8


Ovary
6.6
Fetal Heart
4.9


Breast ca. MCF-7
4.9
Heart Pool
1.9


Breast ca. MDA-
4.5
Lymph Node Pool
5.5


MB-231


Breast ca. BT 549
13.1
Fetal Skeletal Muscle
2.3


Breast ca. T47D
21.5
Skeletal Muscle Pool
3.5


Breast ca. MDA-N
3.0
Spleen Pool
4.2


Breast Pool
5.4
Thymus Pool
11.3


Trachea
3.3
CNS cancer (glio/astro)
8.1




U87-MG


Lung
1.2
CNS cancer (glio/astro)
17.3




U-118-MG


Fetal Lung
13.5
CNS cancer
21.6




(neuro;met) SK-N-AS


Lung ca. NCI-N417
2.3
CNS cancer (astro) SF-
3.7




539


Lung ca. LX-1
8.0
CNS cancer (astro)
10.7




SNB-75


Lung ca. NCI-H146
7.2
CNS cancer (glio)
9.4




SNB-19


Lung ca. SHP-77
9.1
CNS cancer (glio) SF-
13.2




295


Lung ca. A549
7.0
Brain (Amygdala) Pool
3.1


Lung ca. NCI-H526
5.6
Brain (cerebellum)
7.7


Lung ca. NCI-H23
10.8
Brain (fetal)
30.4


Lung ca. NCI-H460
3.6
Brain (Hippocampus)
2.6




Pool


Lung ca. HOP-62
5.9
Cerebral Cortex Pool
4.5


Lung ca. NCI-H522
11.0
Brain (Substantia nigra)
3.3




Pool


Liver
0.5
Brain (Thalamus) Pool
4.4


Fetal Liver
31.9
Brain (whole)
8.0


Liver ca. HepG2
23.8
Spinal Cord Pool
3.8


Kidney Pool
10.7
Adrenal Gland
3.8


Fetal Kidney
10.4
Pituitary gland Pool
1.6


Renal ca. 786-0
8.4
Salivary Gland
1.4


Renal ca. A498
1.8
Thyroid (female)
3.7


Renal ca. ACHN
4.7
Pancreatic ca.
4.6




CAPAN2


Renal ca. UO-31
4.5
Pancreas Pool
6.9










[0634]

231





TABLE JC










Panel 4.1D











Rel. Exp. (%)

Rel. Exp. (%)



Ag4054, Run

Ag4054, Run


Tissue Name
171619967
Tissue Name
171619967













Secondary Th1 act
44.8
HUVEC IL-1beta
23.2


Secondary Th2 act
51.8
HUVEC IFN gamma
17.9


Secondary Tr1 act
37.1
HUVEC TNF alpha + IFN
17.3




gamma


Secondary Th1 rest
12.4
HUVEC TNF alpha + IL4
22.1


Secondary Th2 rest
11.7
HUVEC IL-11
17.8


Secondary Tr1 rest
12.6
Lung Microvascular EC
27.4




none


Primary Th1 act
58.2
Lung Microvascular EC
29.9




TNF alpha + IL-1beta


Primary Th2 act
49.0
Microvascular Dermal EC
21.8




none


Primary Tr1 act
52.5
Microsvasular Dermal EC
15.5




TNF alpha + IL-1beta


Primary Th1 rest
12.7
Bronchial epithelium
5.7




TNF alpha + IL1beta


Primary Th2 rest
7.8
Small airway epithelium
10.7




none


Primary Tr1 rest
19.9
Small airway epithelium
24.7




TNF alpha + IL-1beta


CD45RA CD4
22.4
Coronery artery SMC rest
16.8


lymphocyte act


CD45RO CD4
33.4
Coronery artery SMC
11.6


lymphocyte act

TNF alpha + IL-1beta


CD8 lymphocyte act
24.5
Astrocytes rest
11.4


Secondary CD8
18.9
Astrocytes TNF alpha +
4.2


lymphocyte rest

IL-1beta


Secondary CD8
15.4
KU-812 (Basophil) rest
44.4


lymphocyte act


CD4 lymphocyte none
16.7
KU-812 (Basophil)
42.3




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-
14.6
CCD1106 (Keratinocytes)
81.2


CD95 CH11

none


LAK cells rest
30.8
CCD1106 (Keratinocytes)
53.2




TNF alpha + IL-1beta


LAK cells IL-2
12.2
Liver cirrhosis
9.5


LAK cells IL-2 + IL-12
11.3
NCI-H292 none
10.0


LAK cells IL-2 + IFN
11.1
NCI-H292 IL-4
14.5


gamma


LAK cells IL-2 + IL-18
5.8
NCI-H292 IL-9
11.0


LAK cells
81.8
NCI-H292 IL-13
14.9


PMA/ionomycin


NK Cells IL-2 rest
35.6
NCI-H292 IFN gamma
12.3


Two way MLR 3 day
36.6
HPAEC none
11.3


Two Way MLR 5 day
41.8
HPAEC TNF alpha + IL-
21.6




1beta


Two Way MLR 7 day
32.8
Lung fibroblast none
23.0


PBMC rest
24.1
Lung fibroblast TNF alpha +
19.1




IL-1beta


PBMC PWM
47.6
Lung fibroblast IL-4
15.1


PBMC PHA-L
36.6
Lung fibroblast IL-9
34.6


Ramos (B cell) none
68.8
Lung fibroblast IL-13
21.9


Ramos (B cell)
92.7
Lung fibroblast IFN
24.8


ionomycin

gamma


B lymphocytes PWM
27.9
Dermal fibroblast
23.3




CCD1070 rest


B lymphocytes CD40L
34.9
Dermal fibroblast
35.4


and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
57.4
Dermal fibroblast
22.5




CCD1070 IL-1beta


EOL-1 dbcAMP
32.8
Dermal fibroblast IFN
18.6


PMA/ionomycin

gamma


Dendritic cells none
46.3
Dermal fibroblast IL-4
25.9


Dendritic cells LPS
45.7
Dermal Fibroblasts rest
11.7


Dendritic cells anti-
42.9
Neutrophils TNFa + LPS
7.3


CD40


Monocytes rest
55.9
Neutrophils rest
13.9


Monocytes LPS
54.3
Colon
11.0


Macrophages rest
100.0
Lung
12.2


Macrophages LPS
30.6
Thymus
66.4


HUVEC none
21.0
Kidney
66.4


HUVEC starved
27.0










[0635]

232





TABLE JD










Panel 5 Islet











Rel. Exp. (%)

Rel. Exp. (%)



Ag4054, Run

Ag4054, Run


Tissue Name
263594788
Tissue Name
263594788













97457_Patient-
10.4
94709_Donor 2 AM - A_adipose
16.2


02go_adipose


97476_Patient-
2.7
94710_Donor 2 AM - B_adipose
3.0


07sk_skeletal muscle


97477_Patient-
2.7
94711_Donor 2 AM - C_adipose
4.2


07ut_uterus


97478_Patient-
61.6
94712_Donor 2 AD - A_adipose
4.8


07pl_placenta


99167_Bayer Patient 1
47.6
94713_Donor 2 AD - B_adipose
11.9


97482_Patient-
7.3
94714_Donor 2 AD - C_adipose
7.1


08ut_uterus


97483_Patient-
16.8
94742_Donor 3 U -
4.5


08pl_placenta

A_Mesenchymal Stem Cells


97486_Patient-
1.9
94743_Donor 3 U -
3.1


09sk_skeletal muscle

B_Mesenchymal Stem Cells


97487_Patient-
4.0
94730_Donor 3 AM - A_adipose
7.4


09ut_uterus


97488_Patient-
31.0
94731_Donor 3 AM - B_adipose
1.3


09pl_placenta


97492_Patient-
5.3
94732_Donor 3 AM - C_adipose
8.2


10ut_uterus


97493_Patient-
100.0
94733_Donor AD - A_Aadiose
10.0


10pl_placenta


97495_Patient-
6.5
94734_Donor 3 AD - B_adipose
3.2


11go_adipose


97496_Patient-
9.2
94735_Donor 3 AD - C_adipose
4.0


11sk_skeletal muscle


97497_Patient-
6.1
77138_Liver_HepG2untreated
74.2


11ut_uterus


97498_Patient-
39.8
73556_Heart_Cardiac stromal
9.3


11pl_placenta

cells (primary)


97500_Patient-
18.6
81735_Small Intestine
5.8


12go_adipose


97501_Patient-
26.6
72409_Kidney_Proximal
2.3


12sk_skeletal muscle

Convoluted Tubule


97502_Patient-
0.8
82685_Small intestine_Duodenum
4.0


12ut_uterus


97503_Patient-
19.8
90650_Adrenal_Adrenocortical
1.8


12pl_placenta

adenoma


94721_Donor 2 U -
3.1
72410_Kidney_HRCE
11.6


A_Mesenchymal Stem


Cells


94722_Donor 2 U -
5.5
72411_Kidney_HRE
5.5


B_Mesenchymal Stem


Cells


94723_Donor 2 U -
4.6
73139_Uterus_Uterine smooth
5.8


C_Mesenchymal Stem

muscle cells


Cells










[0636]

233





TABLE JE










general oncology screening panel_v_2.4











Rel. Exp. (%) Ag4054,

Rel. Exp. (%) Ag4054,


Tissue Name
Run 268362958
Tissue Name
Run 268362958













Colon cancer 1
15.4
Bladder cancer NAT 2
0.2


Colon cancer NAT 1
2.8
Bladder cancer NAT 3
0.2


Colon cancer 2
6.1
Bladder cancer NAT 4
2.7


Colon cancer NAT 2
3.1
Adenocarcinoma of the
8.8




prostate 1


Colon cancer 3
10.8
Adenocarcinoma of the
1.3




prostate 2


Colon cancer NAT 3
8.3
Adenocarcinoma of the
3.3




prostate 3


Colon malignant
26.1
Adenocarcinoma of the
11.9


cancer 4

prostate 4


Colon normal
2.3
Prostate cancer NAT 5
1.8


adjacent tissue 4


Lung cancer 1
12.8
Adenocarcinoma of the
2.9




prostate 6


Lung NAT 1
1.9
Adenocarcinoma of the
3.5




prostate 7


Lung cancer 2
100.0
Adenocarcinoma of the
1.3




prostate 8


Lung NAT 2
5.2
Adenocarcinoma of the
5.0




prostate 9


Squamous cell
16.8
Prostate cancer NAT 10
0.9


carcinoma 3


Lung NAT 3
1.3
Kidney cancer 1
17.3


metastatic
14.1
KidneyNAT 1
9.4


melanoma 1


Melanoma 2
5.2
Kidney cancer 2
26.2


Melanoma 3
1.7
Kidney NAT 2
13.0


metastatic
29.7
Kidney cancer 3
31.2


melanoma 4


metastatic
29.9
Kidney NAT 3
6.6


melanoma 5


Bladder cancer 1
1.2
Kidney cancer 4
14.3


Bladder cancer
0.0
Kidney NAT 4
5.1


NAT 1


Bladder cancer 2
3.3










[0637] General_screening_panel_v1.4 Summary: Ag4054 Highest expression of the CG96394-01 gene is seen in a colon cancer cell line (CT=26.5). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of breast cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of breast cancer.


[0638] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0639] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0640] Panel 4.1D Summary: Ag4054 Highest expression of the CG96394-01 gene is seen in resting macrophages (CT=30.). In addition, moderate to low levels of expression of this gene are seen in many samples on this panel including members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0641] Panel 5 Islet Summary: Ag4054 Highest expression of the CG96394-01 gene is seen in placenta (CT=29.4). In addition, expression in this panel confirms expression of this gene in tissues with metabolic function. Please see Panel 1.4 for discussion of this gene in metabolic disease.


[0642] general oncology screening_panel_v2.4 Summary: Ag4054 Highest expression of the CG96394-01 gene is seen in a colon cancer (CT=28.3), consistent with expression in Panel 1.4. In addition, expression is higher in colon, kidney and lung cancers when compred to expression in normal adjacent tissue. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of colon, kidney and lung cancer.



K. NOV27a (CG96650-01): Hypothetical Benzodiazepine Receptor Related Protein

[0643] Expression of gene C696650-01 was assessed using the primer-probe set Ag4341, described in Table KA. Results of the RTQ-PCR runs are shown in Tables KB and KC.
234TABLE KAProbe Name Ag4341StartSEQ IDPrimersSequencesLengthPositionNoForward5′-aatgacccacaggaggctag-3′2060118ProbeTET-5′-caattgtctagtggctgtggggtgg-3′-TAMRA2582119Reverse5′-cttcttccttcaccccatgt-3′20136120


[0644]

235





TABLE KB










General_screening_panel_v1.4











Rel. Exp. (%) Ag4341,

Rel. Exp. (%) Ag4341,


Tissue Name
Run 220361706
Tissue Name
Run 220361706













Adipose
0.0
Renal ca. TK-10
6.7


Melanoma*
1.7
Bladder
3.1


Hs688(A).T


Melanoma*
0.0
Gastric ca. (liver met.)
9.7


Hs688(B).T

NCI-N87


Melanoma* M14
15.0
Gastric ca. KATO III
92.0


Melanoma*
13.8
Colon ca. SW-948
8.5


LOXIMVI


Melanoma* SK-
5.3
Colon ca. SW480
100.0


MEL-5


Squamous cell
30.6
Colon ca.* (SW480
33.7


carcinoma SCC-4

met) SW620


Testis Pool
3.8
Colon ca. HT29
6.0


Prostate ca.* (bone
3.9
Colon ca. HCT-116
36.9


met) PC-3


Prostate Pool
0.0
Colon ca. CaCo-2
16.4


Placenta
3.1
Colon cancer tissue
0.0


Uterus Pool
0.0
Colon ca. SW1116
9.5


Ovarian ca.
17.0
Colon ca. Colo-205
3.0


OVCAR-3


Ovarian ca. SK-OV-3
18.2
Colon ca. SW-48
0.9


Ovarian ca.
4.1
Colon Pool
0.4


OVCAR-4


Ovarian ca.
7.1
Small Intestine Pool
1.3


OVCAR-5


Ovarian ca. IGROV-1
1.7
Stomach Pool
0.0


Ovarian ca.
1.6
Bone Marrow Pool
0.6


OVCAR-8


Ovary
0.0
Fetal Heart
7.6


Breast ca. MCF-7
2.6
Heart Pool
0.0


Breast ca. MDA-
35.1
Lymph Node Pool
1.2


MB-231


Breast ca. BT 549
40.9
Fetal Skeletal Muscle
4.9


Breast ca. T47D
3.1
Skeletal Muscle Pool
0.0


Breast ca. MDA-N
6.1
Spleen Pool
0.0


Breast Pool
0.0
Thymus Pool
0.9


Trachea
0.0
CNS cancer (glio/astro)
11.3




U87-MG


Lung
0.0
CNS cancer (glio/astro)
57.4




U-118-MG


Fetal Lung
5.0
CNS cancer
39.0




(neuro;met) SK-N-AS


Lung ca. NCI-N417
7.3
CNS cancer (astro) SF-
4.8




539


Lung ca. LX-1
30.6
CNS cancer (astro)
10.2




SNB-75


Lung ca. NCI-H146
7.9
CNS cancer (glio)
0.0




SNB-19


Lung ca. SHP-77
6.6
CNS cancer (glio) SF-
0.0




295


Lung ca. A549
24.3
Brain (Amygdala) Pool
0.0


Lung ca. NCI-H526
6.6
Brain (cerebellum)
6.0


Lung ca. NCI-H23
19.8
Brain (fetal)
4.6


Lung ca. NCI-H460
0.0
Brain (Hippocampus)
0.0




Pool


Lung ca. HOP-62
2.1
Cerebral Cortex Pool
2.1


Lung ca. NCI-H522
19.1
Brain (Substantia nigra)
0.0




Pool


Liver
0.0
Brain (Thalamus) Pool
0.0


Fetal Liver
17.0
Brain (whole)
1.2


Liver ca. HepG2
1.2
Spinal Cord Pool
0.0


Kidney Pool
0.0
Adrenal Gland
0.0


Fetal Kidney
2.4
Pituitary gland Pool
0.0


Renal ca. 786-0
10.1
Salivary Gland
0.0


Renal ca. A498
1.6
Thyroid (female)
0.0


Renal ca. ACHN
1.3
Pancreatic ca.
25.9




CAPAN2


Renal ca. UO-31
2.1
Pancreas Pool
3.2










[0645]

236





TABLE KC










Panel 4.1D











Rel. Exp. (%)

Rel. Exp. (%)



Ag4341, Run

Ag4341, Run


Tissue Name
183719667
Tissue Name
183719667













Secondary Th1 act
47.0
HUVEC IL-1beta
8.9


Secondary Th2 act
82.4
HUVEC IFN gamma
14.5


Secondary Tr1 act
94.0
HUVEC TNF alpha + IFN
4.3




gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha + IL4
16.7


Secondary Th2 rest
9.1
HUVEC IL-11
4.0


Secondary Tr1 rest
0.0
Lung Microvascular EC
8.0




none


Primary Th1 act
23.7
Lung Microvascular EC
3.6




TNF alpha + IL-1beta


Primary Th2 act
70.7
Microvascular Dermal EC
18.2




none


Primary Tr1 act
40.1
Microvascular Dermal EC
4.8




TNF alpha + IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
0.0




TNF alpha + IL1beta


Primary Th2 rest
11.7
Small airway epithelium
6.7




none


Primary Tr1 rest
24.0
Small airway epithelium
3.7




TNF alpha + IL-1beta


CD45RA CD4
10.4
Coronery artery SMC rest
9.9


lymphocyte act


CD45RO CD4
57.8
Coronery artery SMC
0.0


lymphocyte act

TNF alpha + IL-1beta


CD8 lymphocyte act
43.8
Astrocytes rest
0.0


Secondary CD8
5.6
Astrocytes TNF alpha +
0.0


lymphocyte rest

IL-1beta


Secondary CD8
21.5
KU-812 (Basophil) rest
38.7


lymphocyte act


CD4 lymphocyte none
0.0
KU-812 (Basophil)
45.4




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-
16.7
CCD1106 (Keratinocytes)
42.9


CD95 CH11

none


LAK cells rest
3.2
CCD1106 (Keratinocytes)
13.6




TNF alpha + IL-1beta


LAK cells IL-2
8.0
Liver cirrhosis
0.0


LAK cells IL-2 + IL-12
10.9
NCI-H292 none
3.9


LAK cells IL-2 + IFN
22.5
NCI-H292 IL-4
70.2


gamma


LAK cells IL-2 + IL-18
8.6
NCI-H292 IL-9
49.0


LAK cells
13.5
NCI-H292 IL-13
100.0


PMA/ionomycin


NK Cells IL-2 rest
38.2
NCI-H292 IFN gamma
21.5


Two Way MLR 3 day
0.0
HPAEC none
19.3


Two Way MLR 5 day
18.8
HPAEC TNF alpha + IL-
17.4




1beta


Two Way MLR 7 day
3.9
Lung fibroblast none
5.6


PBMC rest
0.0
Lung fibroblast TNF alpha +
20.6




IL-1beta


PBMC PWM
22.1
Lung fibroblast IL-4
0.0


PBMC PHA-L
35.1
Lung fibroblast IL-9
21.9


Ramos (B cell) none
37.9
Lung fibroblast IL-13
0.0


Ramos (B cell)
67.4
Lung fibroblast IFN
0.0


ionomycin

gamma


B lymphocytes PWM
33.0
Dermal fibroblast
43.2




CCD1070 rest


B lymphocytes CD40L
15.5
Dermal fibroblast
50.7


and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
30.1
Dermal fibroblast
51.4




CCD1070 IL-1beta


EOL-1 dbcAMP
18.2
Dermal fibroblast IFN
0.0


PMA/ionomycin

gamma


Dendritic cells none
0.0
Dermal fibroblast IL-4
19.6


Dendritic cells LPS
0.0
Dermal Fibroblasts rest
4.7


Dendritic cells anti-
0.0
Neutrophils TNFa + LPS
11.0


CD40


Monocytes rest
0.0
Neutrophils rest
0.0


Monocytes LPS
0.0
Colon
0.0


Macrophages rest
0.0
Lung
15.4


Macrophages LPS
0.0
Thymus
10.4


HUVEC none
18.2
Kidney
18.8


HUVEC starved
11.0










[0646] General_screening_panel_v1.4 Summary: Ag4341 Expression of the CG96650-01 gene is highest in a colon cancer cell line, SW480 (CT=31.7). Expression is downregulated in the colon cancer cell line SW690 which is derived from a metastasis of the SW480 derived sample. Thus, expression of this gene may be able to differentiate between these two cell lines and between primary and metastatic colon tumors. Overall, expression of this gene is limited to samples derived from cancer cell lines, with expression in cell lines derived from pancreatic, brain, colon, lung, breast, ovarian and melanoma cancers. Thus, expression of this gene could also be used as a diagnostic marker for the presence of cancer. Modulation of the expression or function of this gene or gene product may also be useful in the treatment of cancer.


[0647] Panel 4.1D Summary: Ag4341 Expression of the CG96650-01 gene is highest in IL-13 treated NCI-H292 cells (CT=32.9). Low but significant levels of expression are also evident in other sampels on this panel including dermal fibroblasts, NCI-H292 cells, basophils, B cells, and chronically activated T cells. Thus, this gene may be involved in autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.



L. NOV30a (CG97090-01) and NOV30b (CG97090-02): FIP-2

[0648] Expression of gene CG97090-01 and variant CG97090-02 was assessed using the primer-probe set Ag6162, described in Table LA.
237TABLE LAProbe Name Ag6162StartSEQ IDPrimersSequencesLengthPositionNoForward5′-ttgtgtgtcatctgtagcacagtta-3′251139121ProbeTET-5′-tggacttttcatcctctgttttagcc-3′-TAMRA261110122Reverse5′-gctatcagaaatcaaaatggaaca-3′241086123


[0649]

238





TABLE MA










Probe Name Ag1970














Start
SEQ ID


Primers
Sequences
Length
Position
No














Forward
5′-tgcagttgaagagctacatacg-3′
22
2046
124





Probe
TET-5′-cagacgttaacaaattcctttacccaagg-3′-TAMRA
29
2088
125





Reverse
5′-aagtaaactgcggaaaggtcat-3′
22
2124
126










[0650]

239





TABLE MB










CNS_neurodegeneration_v1.0











Rel. Exp. (%) Ag1970,

Rel. Exp. (%) Ag1970,


Tissue Name
Run 207794532
Tissue Name
Run 207794532













AD 1 Hippo
25.3
Control (Path) 3
17.8




Temporal Ctx


AD 2 Hippo
26.2
Control (Path) 4
40.1




Temporal Ctx


AD 3 Hippo
10.4
AD 1 Occipital Ctx
14.8


AD 4 Hippo
5.4
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 Hippo
92.7
AD 3 Occipital Ctx
28.3


AD 6 Hippo
29.1
AD 4 Occipital Ctx
33.4


Control 2 Hippo
49.0
AD 5 Occipital Ctx
61.1


Control 4 Hippo
1.8
AD 6 Occipital Ctx
24.3


Control (Path) 3
17.9
Control 1 Occipital
11.7


Hippo

Ctx


AD 1 Temporal Ctx
22.2
Control 2 Occipital
73.2




Ctx


AD 2 Temporal Ctx
47.0
Control 3 Occipital
25.9




Ctx


AD 3 Temporal Ctx
6.2
Control 4 Occipital
19.8




Ctx


AD 4 Temporal Ctx
34.9
Control (Path) 1
49.7




Occipital Ctx


AD 5 Inf Temporal
100.0
Control (Path) 2
23.7


Ctx

Occipital Ctx


AD 5 Sup
81.2
Control (Path) 3
14.9


Temporal Ctx

Occipital Ctx


AD 6 Inf Temporal
37.6
Control (Path) 4
24.5


Ctx

Occipital Ctx


AD 6 Sup
11.6
Control 1 Parietal
17.6


Temporal Ctx

Ctx


Control 1 Temporal
19.1
Control 2 Parietal
73.7


Ctx

Ctx


Control 2 Temporal
47.0
Control 3 Parietal
38.7


Ctx

Ctx


Control 3 Temporal
33.9
Control (Path) 1
67.4


Ctx

Parietal Ctx


Control 3 Temporal
28.9
Control (Path) 2
38.2


Ctx

Parietal Ctx


Control (Path) 1
50.7
Control (Path) 3
13.9


Temporal Ctx

Parietal Ctx


Control (Path) 2
29.7
Control (Path) 4
46.3


Temporal Ctx

Parietal Ctx










[0651]

240





TABLE MC










Panel 1.3D











Rel. Exp. (%)

Rel. Exp. (%)



Ag1970, Run

Ag1970, Run


Tissue Name
165544918
Tissue Name
165544918













Liver adenocarcinoma
0.1
Kidney (fetal)
0.0


Pancreas
0.1
Renal ca. 786-0
0.0


Pancreatic ca. CAPAN 2
0.0
Renal ca. A498
0.0


Adrenal gland
0.1
Renal ca. RXF 393
0.0


Thyroid
0.0
Renal ca. ACHN
0.0


Salivary gland
0.1
Renal ca. UO-31
0.0


Pituitary gland
0.0
Renal ca. TK-10
0.0


Brain (fetal)
10.1
Liver
0.0


Brain (whole)
47.0
Liver (fetal)
0.0


Brain (amygdala)
57.0
Liver ca.
0.0




(hepatoblast) HepG2


Brain (cerebellum)
12.7
Lung
0.1


Brain (hippocampus)
100.0
Lung (fetal)
0.3


Brain (substantia nigra)
100.0
Lung ca. (small cell)
0.0




LX-1


Brain (thalamus)
93.3
Lung ca. (small cell)
0.0




NCI-H69


Cerebral Cortex
17.0
Lung ca. (s.cell var.)
0.0




SHP-77


Spinal cord
37.4
Lung ca. (large
0.1




cell)NCI-H460


glio/astro U87-MG
0.0
Lung ca. (non-sm.
0.0




cell) A549


glio/astro U-118-MG
0.0
Lung ca. (non-s.cell)
0.0




NCI-H23


astrocytoma SW1783
0.0
Lung ca. (non-s.cell)
0.0




HOP-62


neuro*; met SK-N-AS
0.0
Lung ca. (non-s.cl)
0.1




NCI-H522


astrocytoma SF-539
0.0
Lung ca. (squam.)
0.0




SW 900


astrocytoma SNB-75
0.0
Lung ca. (squam.)
0.0




NCI-H596


glioma SNB-19
3.6
Mammary gland
0.6


glioma U251
0.0
Breast ca.* (pl.ef)
0.0




MCF-7


glioma SF-295
0.0
Breast ca.* (pl.ef) MDA-MB-
0.0




231


Heart (fetal)
0.0
Breast ca.* (pl.ef) T47D
0.0


Heart
0.0
Breast ca. BT-549
0.0


Skeletal muscle (fetal)
0.0
Breast ca. MDA-N
0.1


Skeletal muscle
0.2
Ovary
0.0


Bone marrow
0.1
Ovarian ca.
0.1




OVCAR-3


Thymus
0.1
Ovarian ca.
0.0




OVCAR-4


Spleen
0.5
Ovarian ca.
0.0




OVCAR-5


Lymph node
0.1
Ovarian ca.
0.0




OVCAR-8


Colorectal
0.0
Ovarian ca. IGROV-1
0.0


Stomach
0.0
Ovarian ca.*
0.0




(ascites) SK-OV-3


Small intestine
0.1
Uterus
0.0


Colon ca. SW480
0.1
Placenta
0.1


Colon ca.*
0.0
Prostate
0.0


SW620(SW480 met)


Colon ca. HT29
0.0
Prostate ca.* (bone
0.0




met)PC-3


Colon ca. HCT-116
0.0
Testis
0.7


Colon ca. CaCo-2
0.0
Melanoma
0.0




Hs688(A).T


Colon ca.
0.0
Melanoma* (met)
0.0


tissue(ODO3866)

Hs688(B).T


Colon ca. HCC-2998
0.0
Melanoma UACC-
0.0




62


Gastric ca.* (liver met)
0.0
Melanoma M14
0.6


NCI-N87


Bladder
0.0
Melanoma LOX
0.0




IMVI


Trachea
0.0
Melanoma* (met)
0.1




SK-MEL-5


Kidney
0.3
Adipose
0.1










[0652]

241





TABLE MD










Panel 4D











Rel. Exp. (%)

Rel. Exp. (%)



Ag1970, Run

Ag1970, Run


Tissue Name
159624930
Tissue Name
159624930













Secondary Th1 act
0.0
HUVEC IL-1beta
0.0


Secondary Th2 act
0.0
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.0
HUVEC TNF alpha + IFN
0.0




gamma


Secondary Th1 rest
0.0
HUVEC TNF alpha + IL4
0.0


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular EC
0.0




none


Primary Th1 act

Lung Microvascular EC




TNFalpha + IL-1beta


Primary Th2 act
0.0
Microvascular Dermal EC




none


Primary Tr1 act
0.0
Microsvasular Dermal EC
0.0




TNFalpha + IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium
0.0




TNFalpha + IL1beta


Primary Th2 rest
0.0
Small airway epithelium
0.0




none


Primary Tr1 rest
0.0
Small airway epithelium
0.7




TNFalpha + IL-1beta


CD45RA CD4
0.0
Coronery artery SMC rest
0.0


lymphocyte act


CD45RO CD4
0.0
Coronery artery SMC
0.0


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
2.2


Secondary CD8
0.0
Astrocytes TNFalpha +
0.0


lymphocyte rest

IL-1beta


Secondary CD8
0.0
KU-812 (Basophil) rest
0.0


lymphocyte act


CD4 lymphocyte none
0.7
KU-812 (Basophil)
0.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-
0.0
CCD1106 (Keratinocytes
0.0


CD95 CH11

none


LAK cells rest
0.6
CCD1106 (Keratinocytes)
0.0




TNFalpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
5.4


LAK cells IL-2 + IL-12
0.0
Lupus kidney
1.2


LAK cells IL-2 + IFN
0.0
NCI-H292 none
0.4


gamma


LAK cells IL-2 + IL-18
0.0
NCI-H292 IL-4
0.0


LAK cells
0.0
NCI-H292 IL-9
0.0


PMA/ionomycin


NK Cells IL-2 rest
0.0
NCI-H292 IL-13
0.0


Two Way MLR 3 day
2.6
NCI-H292 IFN gamma
0.0


Two Way MLR 5 day
1.9
HPAEC none
0.0


Two Way MLR 7 day
0.0
HPAEC TNF alpha + IL-1
0.0




beta


PBMC rest
10.6
Lung fibroblast none
0.0


PBMC PWM
2.8
Lung fibroblast TNF alpha +
0.0




IL-1 beta


PBMC PHA-L
0.0
Lung fibroblast IL-4
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-9
0.0


Ramos (B cell)
0.0
Lung fibroblast IL-13
0.0


ionomycin


B lymphocytes PWM
0.0
Lung fibroblast IFN
0.0




gamma


B lymphocytes CD40L
0.0
Dermal fibroblast
0.0


and IL-4

CCD1070 rest


EOL-1 dbcAMP
33.0
Dermal fibroblast
0.4




CCD1070 TNF alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast
0.0


PMA/ionomycin

CCD1070 IL-1 beta


Dendritic cells none
0.0
Dermal fibroblast IFN
0.0




gamma


Dendritic cells LPS
0.0
Dermal fibroblast IL-4
0.0


Dendritic cells anti-
0.0
IBD Colitis 2
0.0


CD40


Monocytes rest
100.0
IBD Crohn's
0.0


Monocytes LPS
23.5
Colon
7.9


Macrophages rest
7.9
Lung
1.8


Macrophages LPS
20.6
Thymus
10.7


HUVEC none
0.0
Kidney
0.0


HUVEC starved
0.0










[0653]

242





TABLE ME










Panel CNS_1











Rel. Exp. (%) Ag1970,

Rel. Exp. (%) Ag1970,


Tissue Name
Run 186412668
Tissue Name
Run 186412668













BA4 Control
9.7
BA17 PSP
0.5


BA4 Control2
16.5
BA17 PSP2
3.3


BA4
3.3
Sub Nigra Control
100.0


Alzheimer's2


BA4 Parkinson's
30.4
Sub Nigra Control2
63.3


BA4
21.2
SubNigra
14.6


Parkinson's2

Alzheimer's2


BA4
17.7
SubNigra
51.1


Huntington's

Parkinson's2


BA4
4.5
Sub Nigra
56.3


Huntington's2

Huntington's


BA4 PSP
2.8
Sub Nigra
57.8




Huntington's2


BA4 PSP2
9.1
Sub Nigra PSP2
13.1


BA4 Depression
10.9
SubNigra
18.4




Depression


BA4
1.2
Sub Nigra
4.7


Depression2

Depression2


BA7 Control
14.3
Glob Palladus
17.2




Control


BA7 Control2
15.7
Glob Palladus
16.2




Control2


BA7
4.9
Glob Palladus
9.7


Alzheimer's2

Alzheimer's


BA7 Parkinson's
15.1
Glob Palladus
6.2




Alzheimer's2


BA7
13.3
Glob Palladus
58.2


Parkinson's2

Parkinson's


BA7
19.5
Glob Palladus
10.7


Huntington's

Parkinson's2


BA7
62.9
Glob Palladus PSP
4.7


Huntington's2


BA7 PSP
7.6
Glob Palladus PSP2
2.6


BA7 PSP2
8.8
Glob Palladus
7.7




Depression


BA7 Depression
8.4
Temp Pole Control
7.3


BA9 Control
4.4
Temp Pole Control2
30.1


BA9 Control2
39.5
Temp Pole
1.7




Alzheimer's


BA9 Alzheimer's
1.2
Temp Pole
1.6




Alzheimer's2


BA9
3.0
Temp Pole
13.4


Alzheimer's2

Parkinson's


BA9 Parkinson's
16.8
Temp Pole
9.4




Parkinson's2


BA9
19.5
Temp Pole
11.3


Parkinson's2

Huntington's


BA9
15.4
Temp Pole PSP
1.2


Huntington's


BA9
9.4
Temp Pole PSP2
0.3


Huntington's2


BA9 PSP
3.1
Temp Pole
4.9




Depression2


BA9 PSP2
3.5
Cing Gyr Control
36.3


BA9 Depression
2.5
Cing Gyr Control2
9.7


BA9
3.1
Cing Gyr
13.2


Depression2

Alzheimer's


BA17 Control
35.1
Cing Gyr
4.8




Alzheimer's2


BA17 Control2
17.4
Cing Gyr
31.6




Parkinson's


BA17
3.8
Cing Gyr
23.2


Alzheimer's2

Parkinson's2


BA17
39.5
Cing Gyr
30.4


Parkinson's

Huntington's


BA17
29.9
Cing Gyr
48.3


Parkinson's2

Huntington's2


BA17
11.5
Cing Gyr PSP
13.7


Huntington's


BA17
28.5
Cing Gyr PSP2
3.7


Huntington's2


BA17
7.8
Cing Gyr Depression
6.0


Depression


BA17
21.0
Cing Gyr
14.8


Depression2

Depression2










[0654] CNS_neurodegeneration_v1.0 Summary: Ag1970 This panel does not show differential expression of the CG97358-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.3D for discussion of this gene in the central nervous system.


[0655] Panel 1.3D Summary: Ag1970 Significant expression of the CG97358-01 gene appears to be restricted to the brain, with highest expression in the hippocampus and substantia nigra (CTs=26.9). Thus, this gene would be useful for distinguishing brain tissue from non-neural tissue. The CG97358-01 gene encodes a homolog of rat Olg-1 bHLH protein. Olg-1 gene, a member of oligodendrocyte lineage gene family, is associated with development of oligodendrocytes in the vertebrate central nervous system (CNS) (Lu et al., 2000, Neuron 25(2):317-29, PMID: 10719888). Therefore, therapeutic modulation of this gene product may be beneficial in the treatment of neurodegenerative diseases.


[0656] Panel 4D Summary: Ag1970 Significant expression of the CG97358-01 gene is seen in resting monocytes (CT=30.8), with expression downregulated upon treatment with LPS. The expression of this gene in resting cells of this lineage suggests that the protein encoded by this transcript may be involved in normal immunological processes associated with immune homeostasis.


[0657] Panel CNS1 Summary: Ag1970 This panel confirms expression of the CG97358-01 gene in the brain. Please see Panel 1.3D for discussion of this gene in the central nervous system.



N. NOV34a (CG97378-01): SNRNP-isoform1, submitted to study DDNPAT on 05/11/01 by bzerhuse; clone status=FIS; novelty=Novel; ORF start=157, ORF stop=400, frame=1; 3390 bp.

[0658] Expression of gene CG97378-01 was assessed using the primer-probe set Ag1986, described in Table NA. Results of the RTQ-PCR runs are shown in Tables NB, NC, ND and NE.
243TABLE NAProbe Name Ag1986StartSEQ IDPrimersSequencesLengthPositionNoForward5′-caggctggtcttgaagtccta-3′212594127ProbeTET-5′-agtgttcctcctgcctcccaaagtgt-3′-TAMRA262562128Reverse5′-gaggtggctcacacctgtaat-3′212537129


[0659]

244





TABLE NB










Panel 1.3D











Rel. Exp. (%)

Rel. Exp. (%)



Ag1986, Run

Ag1986, Run


Tissue Name
165618029
Tissue Name
165618029













Liver
0.0
Kidney (fetal)
0.0


adenocarcinoma


Pancreas
0.0
Renal ca. 786-0
0.0


Pancreatic ca.
0.0
Renal ca. A498
1.0


CAPAN 2


Adrenal gland
0.0
Renal ca. RXF 393
0.0


Thyroid
0.0
Renal ca. ACHN
0.0


Salivary gland
0.0
Renal ca. UO-31
0.0


Pituitary gland
0.0
Renal ca. TK-10
0.0


Brain (fetal)
0.0
Liver
0.0


Brain (whole)
0.0
Liver (fetal)
0.0


Brain (amygdala)
0.0
Liver ca.
0.0




(hepatoblast) HepG2


Brain
0.0
Lung
0.0


(cerebellum)


Brain
0.0
Lung (fetal)
0.0


(hippocampus)


Brain (substantia
0.0
Lung ca. (small cell)
0.0


nigra)

LX-1


Brain (thalamus)
0.0
Lung ca. (small cell)
1.1




NCI-H69


Cerebral Cortex
0.0
Lung ca. (s.cell
0.0




var.) SHP-77


Spinal cord
0.0
Lung ca. (large
0.0




cell) NCI-H460


glio/astro
0.0
Lung ca. (non-sm.
0.0


U87-MG

cell) A549


glio/astro
0.0
Lung ca. (non-
0.0


U-118-MG

s.cell) NCI-H23


astrocytoma
0.0
Lung ca. (non-
0.0


SW1783

s.cell) HOP-62


neuro*; met
0.0
Lung ca. (non-s.cl)
0.0


SK-N-AS

NCI-H522


astrocytoma
0.0
Lung ca. (squam.)
0.0


SF-539

SW 900


astrocytoma
0.0
Lung ca. (squam.)
0.0


SNB-75

NCI-H596


glioma SNB-19
0.0
Mammary gland
0.0


glioma U251
4.4
Breast ca.* (pl.ef)
23.2




MCF-7


glioma SF-295
0.0
Breast ca.* (pl.ef)
0.0




MDA-MB-231


Heart (fetal)
0.0
Breast ca.* (pl.ef)
0.0




T47D


Heart
0.0
Breast ca. BT-549
5.1


Skeletal muscle
0.0
Breast ca. MDA-N
0.0


(fetal)


Skeletal muscle
0.0
Ovary
0.0


Bone marrow
0.0
Ovarian Ca.
0.0




OVCAR-3


Thymus
0.0
Ovarian ca.
0.0




OVCAR-4


Spleen
0.0
Ovarian ca.
0.0




OVCAR-5


Lymph node
0.0
Ovarian ca.
0.0




OVCAR-8


Colorectal
0.0
Ovarian ca.
0.0




IGROV-1


Stomach
0.0
Ovarian ca.*
0.0




(ascites) SK-OV-3


Small intestine
0.0
Uterus
0.0


Colon ca. SW480
0.0
Placenta
10.6


Colon ca.*
0.7
Prostate
0.0


SW620(SW480


met)


Colon ca. HT29
0.0
Prostate ca.* (bone
2.5




met)PC-3


Colon ca.
0.0
Testis
0.0


HCT-116


Colon ca. CaCo-2
0.0
Melanoma
0.0




Hs688(A).T


Colon ca.
0.0
Melanoma* (met)
0.7


tissue(ODO3866)

Hs688(B).T


Colon ca.
8.1
Melanoma UACC-
0.0


HCC-2998

62


Gastric ca.* (liver
3.7
Melanoma M14
0.0


met) NCI-N87


Bladder
0.0
Melanoma LOX
0.0




IMVI


Trachea
0.0
Melanoma* (met)
0.0




SK-MEL-5


Kidney
0.0
Adipose
100.0










[0660]

245





TABLE NC










Panel 2.2











Rel. Exp. (%)

Rel. Exp. (%)



Ag1986, Run

Ag1986, Run


Tissue Name
174229404
Tissue Name
174229404













Normal Colon
0.0
Kidney Margin
0.0




(OD04348)


Colon cancer
17.8
Kidney malignant
0.0


(OD06064)

cancer (OD06204B)


Colon Margin
19.6
Kidney normal adjacent
0.0


(OD06064)

tissue (OD06204E)


Colon cancer
0.0
Kidney Cancer
0.0


(OD06159)

(OD04450-01)


Colon Margin
0.0
Kidney Margin
0.0


(OD06159)

(OD04450-03)


Colon cancer
0.0
Kidney Cancer
0.0


(OD06297-04)

8120613


Colon Margin
0.0
Kidney Margin
0.0


(OD06297-05)

8120614


CC Gr.2 ascend colon
0.0
Kidney Cancer
0.0


(ODO3921)

9010320


CC Margin (ODO3921)
0.0
Kidney Margin
0.0




9010321


Colon cancer metastasis
0.0
Kidney Cancer
0.0


(OD06104)

8120607


Lung Margin
0.0
Kidney Margin
0.0


(OD06104)

8120608


Colon mets to lung
0.0
Normal Uterus
8.8


(O`D04451-01)


Lung Margin
4.9
Uterine Cancer 064011
0.0


(OD04451-02)


Normal Prostate
1.2
Normal Thyroid
0.0


Prostate Cancer
0.0
Thyroid Cancer 064010
0.0


(OD04410)


Prostate Margin
0.0
Thyroid Cancer
0.0


(OD04410)

A302152


Normal Ovary
0.0
Thyroid Margin
0.0




A302153


Ovarian cancer
0.0
Normal Breast
3.1


(OD06283-03)


Ovarian Margin
100.0
Breast Cancer
0.0


(OD06283-07)

(OD04566)


Ovarian Cancer 064008
0.0
Breast Cancer 1024
2.2


Ovarian cancer
7.4
Breast Cancer
0.0


(OD06145)

(OD04590-01)


Ovarian Margin
13.3
Breast Cancer Mets
0.0


(OD06145)

(OD04590-03)


Ovarian cancer
0.0
Breast Cancer
0.0


(OD06455-03)

Metastasis (OD04655-




05)


Ovarian Margin
91.4
Breast Cancer 064006
0.0


(OD06455-07)


Normal Lung
0.0
Breast Cancer 9100266
13.6


Invasive poor diff. lung
0.0
Breast Margin 9100265
1.6


adeno (ODO4945-01


Lung Margin
2.1
Breast Cancer A209073
1.3


(ODO4945-03)


Lung Malignant Cancer
0.0
Breast Margin
0.0


(OD03126)

A2090734


Lung Margin
3.6
Breast cancer
0.0


(OD03126)

(OD06083)


Lung Cancer
0.0
Breast cancer node
0.0


(OD05014A)

metastasis (OD06083)


Lung Margin
6.8
Normal Liver
0.0


(OD05014B)


Lung cancer (OD06081)
0.0
Liver Cancer 1026
0.0


Lung Margin
0.0
Liver Cancer 1025
1.9


(OD06081)


Lung Cancer
0.0
Liver Cancer 6004-T
2.6


(OD04237-01)


Lung Margin
2.6
Liver Tissue 6004-N
0.0


(OD04237-02)


Ocular Melanoma
0.0
Liver Cancer 6005-T
0.0


Metastasis


Ocular Melanoma
0.0
Liver Tissue 6005-N
0.0


Margin (Liver)


Melanoma Metastasis
0.0
Liver Cancer 064003
0.0


Melanoma Margin
2.0
Normal Bladder
0.0


(Lung)


Normal Kidney
0.0
Bladder Cancer 1023
0.0


Kidney Ca, Nuclear
0.0
Bladder Cancer
0.0


grade 2 (OD04338)

A302173


Kidney Margin
0.0
Normal Stomach
0.0


(OD04338)


Kidney Ca Nuclear
0.0
Gastric Cancer
0.0


grade 1/2 (OD04339)

9060397


Kidney Margin
0.0
Stomach Margin
0.0


(OD04339)

9060396


Kidney Ca, Clear cell
0.0
Gastric Cancer
0.0


type (OD04340)

9060395


Kidney Margin
0.0
Stomach Margin
8.9


(OD04340)

9060394


Kidney Ca, Nuclear
4.3
Gastric Cancer 064005
0.0


grade 3 (OD04348)










[0661]

246





TABLE ND










Panel 4D











Rel. Exp. (%)

Rel. Exp. (%)



Ag1986, Run

Ag1986, Run


Tissue Name
162308224
Tissue Name
162308224













Secondary Th1 act
6.5
HUVEC IL-1beta
4.2


Secondary Th2 act
1.8
HUVEC IFN gamma
5.1


Secondary Tr1 act
8.0
HUVEC TNF alpha + IFN
5.6




gamma


Secondary Th1 rest
0.2
HUVEC TNF alpha + IL4
7.6


Secondary Th2 rest
0.5
HUVEC IL-11
2.9


Secondary Tr1 rest
1.7
Lung Microvascular EC
1.3




none


Primary Th1 act
6.3
Lung Microvascular EC
7.8




TNFalpha + IL-1beta


Primary Th2 act
3.0
Microvascular Dermal EC
0.2




none


Primary Tr1 act
8.3
Microsvasular Dermal EC
17.1




TNFalpha + IL-1beta


Primary Th1 rest
2.7
Bronchial epithelium
22.1




TNFalpha + IL1beta


Primary Th2 rest
2.1
Small airway epithelium
2.3




none


Primary Tr1 rest
2.2
Small airway epithelium
19.2




TNFalpha + IL-1beta



CD45RA CD4
8.5
Coronery artery SMC rest
1.2


lymphocyte act


CD45RO CD4
10.1
Coronery artery SMC
0.5


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
3.9
Astrocytes rest
3.4


Secondary CD8
7.5
Astrocytes TNFalpha +
10.6


lymphocyte rest

IL-1beta


Secondary CD8
5.4
KU-812 (Basophil) rest
0.4


lymphocyte act


CD4 lymphocyte none
2.5
KU-812 (Basophil)
3.5




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-
0.4
CCD1106 (Keratinocytes)
4.1


CD95 CH11

none


LAK cells rest
22.1
CCD1106 (Keratinocytes)
2.8




TNFalpha + IL-1beta


LAK cells IL-2
4.6
Liver cirrhosis
0.0


LAK cells IL-2 + IL-12
34.9
Lupus kidney
0.0


LAK cells IL-2 + IFN
13.8
NCI-H292 none
0.4


gamma


LAK cells IL-2 + IL-18
9.0
NCI-H292 IL-4
100.0


LAK cells
97.9
NCI-H292 IL-9
4.8


PMA/ionomycin


NK Cells IL-2 rest
2.6
NCI-H292 IL-13
31.2


Two Way MLR 3 day
21.0
NCI-H292 IFN gamma
4.4


Two Way MLR 5 day
22.4
HPAEC none
0.4


Two Way MLR 7 day
3.4
HPAEC TNF alpha + IL-1
8.4




beta


PBMC rest
7.2
Lung fibroblast none
0.3


PBMC PWM
62.0
Lung fibroblast TNF
3.6




alpha + IL-1 beta


PBMC PHA-L
6.1
Lung fibroblast IL-4
4.2


Ramos (B cell) none
1.5
Lung fibroblast IL-9
0.4


Ramos (B cell)
40.1
Lung fibroblast IL-13
1.2


ionomycin


B lymphocytes PWM
47.3
Lung fibroblast IFN
0.7




gamma


B lymphocytes CD40L
5.3
Dermal fibroblast
1.5


and IL-4

CCD1070 rest


EOL-1 dbcAMP
0.2
Dermal fibroblast
5.7




CCD1070 TNF alpha


EOL-1 dbcAMP
7.2
Dermal fibroblast
0.8


PMA/ionomycin

CCD1070 IL-1 beta


Dendritic cells none
11.8
Dermal fibroblast IFN
0.2




gamma


Dendritic cells LPS
93.3
Dermal fibroblast IL-4
0.0


Dendritic cells anti-
6.7
IBD Colitis 2
0.8


CD40


Monocytes rest
5.3
IBD Crohn's
0.1


Monocytes LPS
56.3
Colon
0.4


Macrophages rest
4.5
Lung
0.3


Macrophages LPS
23.8
Thymus
0.4


HUVEC none
1.6
Kidney
9.7


HUVEC starved
2.2










[0662]

247





TABLE NE










Panel 5D











Rel. Exp. (%)

Rel. Exp. (%)



Ag1986, Run

Ag1986, Run


Tissue Name
169269866
Tissue Name
169269866













97457_Patient-
1.8
94709_Donor 2 AM-A_adipose
0.0


02go_adipose


97476_Patient-
93.3
94710_Donor 2 AM-B_adipose
1.4


07sk_skeletal muscle


97477_Patient-
0.0
94711_Donor 2 AM-C_adipose
0.0


07ut_uterus


97478_Patient-
62.4
94712_Donor 2 AD-A_adipose
0.0


07pl_placenta


97481_Patient-
39.5
94713_Donor 2 AD-B_adipose
0.0


08sk_skeletal muscle


97482_Patient-
1.0
94714_Donor 2 AD-C_adipose
0.0


08ut_uterus


97483_Patient-
72.7
94742_Donor 3 U-
0.0


08pl_placenta

A_Mesenchymal Stem Cells


97486_Patient-
0.0
94743_Donor 3 U-


09sk_skeletal muscle

B_Mesenchymal Stem Cells
0.0


97487_Patient-
4.2
94730_Donor 3 AM-A_adipose
0.0


09ut_uterus


97488_Patient-
13.3
94731_Donor 3 AM-B_adipose
0.0


09pl_placenta


97492_Patient-
0.0
94732_Donor 3 AM-C_adipose
0.0


10ut_uterus


97493_Patient-
100.0
94733_Donor 3 AD-A_adipose
0.0


10pl_placenta


97495_Patient-
39.8
94734_Donor 3 AD-B_adipose
0 0


11go_adipose


97496_Patient-
1.8
94735_Donor 3 AD-C_adipose
0.0


11sk_skeletal muscle


97497_Patient-
0.0
77138_Liver_HepG2untreated
3.2


11ut_uterus


97498_Patient-
24.0
73556_Heart_Cardiac stromal
0.0


11pl_placenta

cells (primary)


97500_Patient-
22.7
81735_Small Intestine
00


12go_adipose


97501_Patient-
0.0
72409_Kidney_Proximal
1.7


12sk_skeletal muscle

Convoluted Tubule


97502_Patient-
0.9
82685_Small intestine_Duodenum
0.0


12ut_uterus


97503_Patient-
3.1
90650_Adrenal_Adrenocortical
0.0


12pl_placenta

adenoma


94721_Donor 2 U-
0.0
72410_Kidney_HRCE
0.0


A_Mesenchymal


Stem Cells


94722_Donor 2 U-
0.0
72411_Kidney_HRE
0.0


B_Mesenchymal Stem


Cells


94723_Donor 2 U-
0.0
73139_Uterus_Uterine smooth
3.2


C_Mesenchymal Stem

muscle cells


Cells










[0663] Panel 1.3D Summary: Ag1986 Significant expression of the CG97378-01 gene is restricted to adipose and a breast cancer cell line (CTs=32.8-34.9). Thus, expression of this gene may be used to differentiate these samples from other samples on this panel and as a marker of adipose. This expression also suggests that this gene product may be involved in the pathogenesis and/or diagnosis of obesity.


[0664] Panel 2.2 Summary: Ag1986 Significant expression of the CG97378-01 gene is restricted to ovarian tissue (CT=33). Thus, expression of this gene could be used to differentiate ovarian derived tissues from other samples on this panel and as a marker of ovarian tissue. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of ovarian cancer.


[0665] Panel 4D Summary: Ag1986 Significant expression of the CG97378-01 gene is highest in IL-4 treated NCI-H292 cells (CT=28.04). In addition, prominent levels of expression are seen in LPS treated dendrocytes, macrophages and monocytes, TNF-alpha and IL-1 beta treated bronchial epithelium, small airway epithelium and microvascular dermal ECs, PMA/ionomycin stimulated LAK cells, ionomycin stimulated B cells, and PWM activated PBMCs and B lymphocytes. This pattern of expression suggests that the protein encoded by this transcript may be important in monocytic and dendritic cell differentiation and activation. Therefore, regulating the expression of this transcript or the function of the protein it encodes may alter the types and levels of monocytic cells regulated by cytokine and chemokine production and T cell activation. Therapeutics designed with the protein encoded by this transcript could therefore be important for the treatment of asthma, emphysema, inflammatory bowel disease, arthritis, psoriasis and any other disease where the activated immune cells listed above play a role.


[0666] Moderate levels of expression of this gene is also seen in kidney sample. Therefore, therapeutic modulation of this gene may be beneficial in the treatment of autoimmune and inflammatory diseases that affect kidney including lupus and glomerulonephritis.


[0667] Panel 5D Summary: Ag1986 Expression of the CG97378-01 gene is seen exclusively in placent, skeletal muscle and adipose. Thus, expression of this gene could be used to differentiate these samples from other samples on this panel and as a marker of these tissues. In addition, therapeutic modulation of this gene may be useful in treatment of endocrine/metabolically related diseases, such as obesity and diabetes.



O. NOV36a (CG99852-01): Novel Gene Containing NUDIX Hydrolase Domain

[0668] Expression of gene CG99852-01 was assessed using the primer-probe set Ag4159, described in Table OA. Results of the RTQ-PCR runs are shown in Tables OB, OC, OD and OE.
248TABLE OAProbe Name Ag4159StartSEQ IDPrimersSequencesLengthPositionNoForward5′-gatgctctcccttctgatgag-3′21398130ProbeTET-5′-ccggttagggtccttaatcacatcga-3′-TAMRA26428131Reverse5′-cttccctgatcacgttgtactc-3′22474132


[0669]

249





TABLE OB










CNS_neurodegeneration_v1.0











Rel. Ex. (%)

Rel. Ex. (%)



Ag4159,

Ag4159,



Run

Run


Tissue Name
215337525
Tissue Name
215337525













AD 1 Hippo
47.6
Control (Path) 3
2.1




Temporal Ctx


AD 2 Hippo
29.3
Control (Path) 4
45.1




Temporal Ctx


AD 3 Hippo
16.6
AD 1 Occipital Ctx
16.0


AD 4 Hippo
22.4
AD 2 Occipital Ctx
0.0




(Missing)


AD 5 hippo
100.0
AD 3 Occipital Ctx
9.7


AD 6 Hippo
69.7
AD 4 Occipital Ctx
22.7


Control 2 Hippo
42.9
AD 5 Occipital Ctx
19.3


Control 4 Hippo
4.4
AD 6 Occipital Ctx
26.1


Control (Path) 3
0.0
Control 1 Occipital
8.3


Hippo

Ctx


AD 1 Temporal Ctx
43.5
Control 2 Occipital
61.1




Ctx


AD 2 Temporal Ctx
46.0
Control 3 Occipital
17.7




Ctx


AD 3 Temporal Ctx
18.4
Control 4 Occipital
14.6




Ctx


AD 4 Temporal Ctx
26.6
Control (Path) 1
98.6




Occipital Ctx


AD 5 Inf Temporal
95.9
Control (Path) 2
32.8


Ctx

Occipital Ctx


AD 5 SupTemporal
59.5
Control (Path) 3
7.3


Ctx

Occipital Ctx


AD 6 Inf Temporal
27.2
Control (Path)
44.4


Ctx

Occipital Ctx


AD 6 Sup Temporal
35.1
Control 1 Parietal
33.0


Ctx

Ctx


Control 1 Temporal
15.7
Control 2 Parietal
77.4


Ctx

Ctx


Control 2 Temporal
23.5
Control 3 Parietal
23.7


Ctx

Ctx


Control 3 Temporal
0.0
Control (Path) 1
62.4


Ctx

Parietal Ctx


Control 4 Temporal
32.8
Control (Path) 2
48.6


Ctx

Parietal Ctx


Control (Path) 1
56.3
Control (Path) 3
11.7


Temporal Ctx

Parietal Ctx


Control (Path) 2
92.0
Control (Path) 4
66.0


Temporal Ctx

Parietal Ctx










[0670]

250





TABLE OC










General_screening_panel_v1.4











Rel. Exp. (%) Ag4159,

Rel. Exp. (%) Ag4159,


Tissue Name
Run 221297228
Tissue Name
Run 221297228













Adipose
0.2
Renal ca. TK-10
4.0


Melanoma*
0.2
Bladder
8.2


Hs688(A).T


Melanoma*
0.9
Gastric ca. (liver met.)
3.9


Hs688(B).T

NCI-N87


Melanoma* M14
2.0
Gastric ca. KATO III
11.9


Melanoma*
0.9
Colon ca. SW-948
4.5


LOXIMVI


Melanoma* SK-
6.9
Colon ca. SW480
22.5


MEL-5


Squamous cell
6.2
Colon ca.* (SW480
6.3


carcinoma SCC-4

met) SW620


Testis Pool
1.9
Colon ca. HT29
2.3


Prostate ca.* (bone
4.4
Colon ca. HCT-116
13.8


met) PC-3


Prostate Pool
4.0
Colon ca. CaCo-2
14.2


Placenta
1.6
Colon cancer tissue
6.8


Uterus Pool
0.8
Colon ca. SW1116
5.3


Ovarian ca.
4.0
Colon ca. Colo-205
1.1


OVCAR-3


Ovarian ca. SK-OV-
8.5
Colon ca. SW-48
2.1


3


Ovarian ca.
7.7
Colon Pool
4.3


OVCAR-4


Ovarian ca.
71.2
Small Intestine Pool
1.2


OVCAR-5


Ovarian ca. IGROV-
3.6
Stomach Pool
1.4


1


Ovarian ca.
8.7
Bone Marrow Pool
0.7


OVCAR-8


Ovary
1.8
Fetal Heart
1.4


Breast ca. MCF-7
2.7
Heart Pool
1.9


Breast ca. MDA-
3.3
Lymph Node Pool
0.8


MB-231


Breast ca. BT 549
5.3
Fetal Skeletal Muscle
1.8


Breast ca. T47D
100.0
Skeletal Muscle Pool
0.7


Breast ca. MDA-N
1.8
Spleen Pool
1.0


Breast Pool
1.8
Thymus Pool
5.3


Trachea
2.0
CNS cancer (glio/astro)
9.3




U87-MG


Lung
0.8
CNS cancer (glio/astro)
0.7




U-118-MG


Fetal Lung
4.8
CNS cancer
0.4




(neuro; met) SK-N-AS


Lung ca. NCI-N417
1.9
CNS cancer (astro) SF-
1.5




539


Lung ca. LX-1
12.0
CNS cancer (astro)
3.8




SNB-75


Lung ca. NCI-H146
8.2
CNS cancer (glio)
2.5




SNB-19


Lung ca. SHP-77
21.3
CNS cancer (glio) SF-
5.0




295


Lung ca. A549
2.8
Brain (Amygdala) Pool
2.1


Lung ca. NCI-H526
6.6
Brain (cerebellum)
3.8


Lung ca. NCI-H23
5.4
Brain (fetal)
5.3


Lung ca. NCI-H460
3.1
Brain (Hippocampus)
3.0




Pool


Lung ca. HOP-62
1.0
Cerebral Cortex Pool
2.0


Lung ca. NCI-H522
24.8
Brain (Substantia nigra)
2.5




Pool


Liver
0.4
Brain (Thalamus) Pool
1.8


Fetal Liver
0.3
Brain (whole)
0.7


Liver ca. HepG2
1.5
Spinal Cord Pool
0.6


Kidney Pool
4.6
Adrenal Gland
4.4


Fetal Kidney
5.7
Pituitary gland Pool
3.1


Renal ca. 786-0
2.1
Salivary Gland
0.4


Renal ca. A498
1.7
Thyroid (female)
2.5


Renal ca. ACHN
3.7
Pancreatic ca.
10.2




CAPAN2


Renal ca. UO-31
4.4
Pancreas Pool
10.2










[0671]

251





TABLE OD










Panel 4.1D











Rel. Exp. (%)

Rel. Exp. (%)



Ag4159, Run

Ag4159, Run


Tissue Name
173123947
Tissue Name
173123947













Secondary Th1 act
3.1
HUVEC IL-1beta
4.7


Secondary Th2 act
5.2
HUVEC IFN gamma
10.6


Secondary Tr1 act
2.4
HUVEC TNF alpha + IFN
3.9




gamma


Secondary Th1 rest
3.2
HUVEC TNF alpha + IL4
3.3


Secondary Th2 rest
3.0
HUVEC IL-11
4.5


Secondary Tr1 rest
4.5
Lung Microvascular EC
9.5




none


Primary Th1 act
0.0
Lung Microvascular EC
7.1




TNFalpha + IL-1 beta


Primary Th2 act
1.7
Microvascular Dermal EC
8.2




none


Primary Tr1 act
1.6
Microsvasular Dermal EC
3.2




TNFalpha + IL-1beta


Primary Th1 rest
2.9
Bronchial epithelium
1.7




TNFalpha + IL1beta


Primary Th2 rest
0.3
Small airway epithelium
2.4




none


Primary Tr1 rest
5.7
Small airway epithelium
2.7




TNFalpha + IL-1beta


CD45RA CD4
1.0
Coronery artery SMC rest
0.4


lymphocyte act


CD45RO CD4
1.8
Coronery artery SMC
0.7


lymphocyte act

TNFalpha + IL-1beta


CD8 lymphocyte act
0.5
Astrocytes rest
0.7


Secondary CD8
0.6
Astrocytes TNFalpha +
1.8


lymphocyte rest

IL-1beta


Secondary CD8
0.3
KU-812 (Basophil) rest
4.5


lymphocyte act


CD4 lymphocyte none
2.3
KU-812 (Basophil)
2.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-
4.1
CCD1106 (Keratinocytes)
6.7


CD95 CH11

none


LAK cells rest
2.2
CCD1106 (Keratinocytes)
3.0




TNFalpha + IL-1beta


LAK cells IL-2
2.6
Liver cirrhosis
1.6


LAK cells IL-2 + IL-12
2.1
NCI-H292 none
4.7


LAK cells IL-2 + IFN
4.0
NCI-H292 IL-4
5.1


gamma


LAK cells IL-2 + IL-18
4.8
NCI-H292 IL-9
8.3


LAK cells
1.1
NCI-H292 IL-13
11.7


PMA/ionomycin


NK Cells IL-2 rest
13.8
NCI-H292 IFN gamma
8.2


Two Way MLR 3 day
3.9
HPAEC none
2.2


Two Way MLR 5 day
2.5
HPAEC TNF alpha + IL-1
1.7




beta


Two Way MLR 7 day
1.1
Lung fibroblast none
1.1


PBMC rest
0.3
Lung fibroblast TNF alpha +
0.6




IL-1 beta


PBMC PWM
1.8
Lung fibroblast IL-4
0.0


PBMC PHA-L
2.1
Lung fibroblast IL-9
1.2


Ramos (B cell) none
0.6
Lung fibroblast IL-13
3.5


Ramos (B cell)
0.8
Lung fibroblast IFN
2.1


ionomycin

gamma


B lymphocytes PWM
0.8
Dermal fibroblast
0.5




CCD1070 rest


B lymphocytes CD40L
3.2
Dermal fibroblast
1.7


and IL-4

CCD1070 TNF alpha


EOL-1 dbcAMP
3.5
Dermal fibroblast
0.5




CCD1070 IL-1 beta


EOL-1 dbcAMP
7.6
Dermal fibroblast IFN
2.0


PMA/ionomycin

gamma


Dendritic cells none
3.4
Dermal fibroblast IL-4
2.5


Dendritic cells LPS
0.9
Dermal Fibroblasts rest
4.0


Dendritic cells anti-
1.1
Neutrophils TNFa + LPS
0.8


CD40


Monocytes rest
2.5
Neutrophils rest
3.4


Monocytes LPS
3.5
Colon
4.9


Macrophages rest
0.5
Lung
5.0


Macrophages LPS
1.1
Thymus
13.0


HUVEC none
2.0
Kidney
100.0


HUVEC starved
7.9










[0672]

252





TABLE OE










general oncology screening panel_v_2.4











Rel. Exp. (%) Ag4159,

Rel. Exp. (%) Ag4159,


Tissue Name
Run 268624151
Tissue Name
Run 268624151













Colon cancer 1
19.1
Bladder cancer NAT 2
0.0


Colon NAT 1
9.5
Bladder cancer NAT 3
0.8


Colon cancer 2
4.1
Bladder cancer NAT 4
4.6


Colon cancer NAT
3.2
Adenocarcinoma of the
6.8


2

prostate 1


Colon cancer 3
12.0
Adenocarcinoma of the
1.7




prostate 2


Colon cancer NAT
7.0
Adenocarcinoma of the
3.7


3

prostate 3


Colon malignant
6.3
Adenocarcinoma of the
24.1


cancer 4

prostate 4


Colon normal
2.9
Prostate cancer NAT 5
6.3


adjacent tissue 4


Lung cancer 1
7.0
Adenocarcinoma of the
2.7




prostate 6


Lung NAT 1
0.8
Adenocarcinoma of the
3.8




prostate 7


Lung cancer 2
11.2
Adenocarcinoma of the
1.0




prostate 8


Lung NAT 2
0.3
Adenocarcinoma of the
12.1




prostate 9


Squamous cell
13.6
Prostate cancer NAT 10
1.0


carcinoma 3


Lung NAT 3
0.0
Kidney cancer 1
12.2


metastatic
6.3
KidneyNAT 1
16.5


melanoma 1


Melanoma 2
1.3
Kidney cancer 2
100.0


Melanoma 3
0.0
Kidney NAT 2
24.1


metastatic
12.0
Kidney cancer 3
57.0


melanoma 4


metastic
11.0
Kidney NAT 3
12.2


melanoma 5


Bladder cancer 1
0.0
Kidney cancer 4
6.8


Bladder cancer
0.0
Kidney NAT 4
5.9


NAT 1


Bladder cancer 2
0.7










[0673] CNS_neurodegeneration_v1.0 Summary: Ag4159 This panel does not show differential expression of the CG99852-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of this gene in the central nervous system.


[0674] General_screening_panel_v1.4 Summary: Ag4159 Highest expression of the CG99852-01 gene is seen in a breast cancer cell line (CT=29.4). In addition, significant levels of expression are seen in a breast cancer cell line. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of ovarian and breast cancers.


[0675] Among tissues with metabolic function, this gene is expressed at low but significant levels in pituitary, adrenal gland, pancreas, and thyroid. This expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0676] This gene is also expressed at low levels in the CNS, including the hippocampus, substantia nigra, amygdala, and cerebellum. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0677] Panel 4.1D Summary: Ag4159 Highest expression of the CG99852-01 gene is seen in kidney (CT=29.6). Therefore, antibody or small molecule therapies designed with the protein encoded for by this gene could modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0678] general oncology screening panel_v2.4 Summary: Ag4159 Highest expression of the CG99852-01 gene is seen in kidney cancer sample (CT=31). Moderate to low levels of expression of this gene is also seen in number of cancer samples including kidney, colon, lung, prostate cancers and metastatic melanoma. In addition, expression of this gene is higher in the cancers than in the normal adjacent tissue. Therefore, expression of this gene could be as a marker to detect the presence of these cancers.



Example D


Identification of Single Nucleotide Polymorphisms in NOVX Nucleic Acid Sequences

[0679] Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.


[0680] SeqCalling assemblies produced by the exon linking process are selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted are selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences are analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.


[0681] Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified is manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.


[0682] The regions defined by the procedures described above are then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones is reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).


[0683] Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.



Other Embodiments

[0684] Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims.


[0685] The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.


Claims
  • 1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42
  • 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42.
  • 3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42.
  • 4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42.
  • 5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
  • 6. A composition comprising the polypeptide of claim 1 and a carrier.
  • 7. A kit comprising, in one or more containers, the composition of claim 6.
  • 8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
  • 9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and (c) determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
  • 10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
  • 11. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: (a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
  • 12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
  • 13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; (b) contacting the cell with a composition comprising a candidate substance; and (c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
  • 14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising: (a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and (c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
  • 15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
  • 16. A method for modulating the activity of the polypeptide of claim 1, the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • 17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • 18. The method of claim 17, wherein the subject is a human.
  • 19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42 or a biologically active fragment thereof.
  • 20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42.
  • 21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
  • 22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 42.
  • 23. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 42.
  • 24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consisting of 2n−1, wherein n is an integer between 1 and 42.
  • 25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 42, or a complement of said nucleotide sequence.
  • 26. A vector comprising the nucleic acid molecule of claim 20.
  • 27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
  • 28. A cell comprising the vector of claim 26.
  • 29. An antibody that immunospecifically binds to the polypeptide of claim 1.
  • 30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
  • 31. The antibody of claim 29, wherein the antibody is a humanized antibody.
  • 32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and (c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
  • 33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • 34. The method of claim 33 wherein the cell or tissue type is cancerous.
  • 35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • 36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42.
  • 37. The method of claim 36 wherein the cell is a bacterial cell.
  • 38. The method of claim 36 wherein the cell is an insect cell.
  • 39. The method of claim 36 wherein the cell is a yeast cell.
  • 40. The method of claim 36 wherein the cell is a mammalian cell.
  • 41. A method of producing the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 42.
  • 42. The method of claim 41 wherein the cell is a bacterial cell.
  • 43. The method of claim 41 wherein the cell is an insect cell.
  • 44. The method of claim 41 wherein the cell is a yeast cell.
  • 45. The method of claim 41 wherein the cell is a mammalian cell.
RELATED APPLICATIONS

[0001] This application claims priority to U.S. Ser. No. 60/288,395, filed May 3, 2001, U.S. Ser. No. 60/289,087, filed May 7, 2001, U.S. Ser. No. 60/289,619, filed May 8, 2001, U.S. Ser. No. 60/289,818, filed May 9, 2001, U.S. Ser. No. 60/289,817, filed May 9, 2001, U.S. Ser. No. 60/322,646, filed Sep. 17, 2001, U.S. Ser. No. 60/290,194, filed May 11, 2001, U.S. Ser. No. 60/318,346, filed Sep. 10, 2001, U.S. Ser. No. 60/290,753, filed May 14, 2001, U.S. Ser. No. 60/291,189, May 15, 2001, U.S. Ser. No. 60/292,374, filed May 21, 2001, U.S. Ser. No. 60/293,107, filed May 23, 2001, U.S. Ser. No. 60/294,110, filed May 29, 2001, U.S. Ser. No. 60/293,747, filed May 25, 2001, and U.S. Ser. No. 60/294,434, filed May 30, 2001, each of which is incorporated by reference in its entirety.

Provisional Applications (15)
Number Date Country
60288395 May 2001 US
60289087 May 2001 US
60289619 May 2001 US
60289818 May 2001 US
60289817 May 2001 US
60290194 May 2001 US
60290753 May 2001 US
60291189 May 2001 US
60292374 May 2001 US
60293107 May 2001 US
60294110 May 2001 US
60293747 May 2001 US
60294434 May 2001 US
60318346 Sep 2001 US
60322646 Sep 2001 US