NOVEL METHODS OF CONSTRUCTING LIBRARIES COMPRISING DISPLAYED AND/OR EXPRESSED MEMBERS OF A DIVERSE FAMILY OF PEPTIDES, POLYPEPTIDES OR PROTEINS AND THE NOVEL LIBRARIES

Abstract
Methods useful in constructing libraries that collectively display and/or express members of diverse families of peptides, polypeptides or proteins and the libraries produced using those methods are disclose. Methods of screening those libraries and the peptides, polypeptides or proteins identified by such screens are also disclosed.
Description

The present invention relates to libraries of genetic packages that display and/or express a member of a diverse family of peptides, polypeptides or proteins and collectively display and/or express at least a portion of the diversity of the family. In an alternative embodiment, the invention relates to libraries that include a member of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family. In a preferred embodiment, the displayed and/or expressed polypeptides are human Fabs.


More specifically, the invention is directed to the methods of cleaving single-stranded nucleic acids at chosen locations, the cleaved nucleic acids encoding, at least in part, the peptides, polypeptides or proteins displayed on the genetic packages of, and/or expressed in, the libraries of the invention. In a preferred embodiment, the genetic packages are filamentous phage or phagemids or yeast.


The present invention further relates to vectors for displaying and/or expressing a diverse family of peptides, polypeptides or proteins.


The present invention further relates to methods of screening the libraries of the invention and to the peptides, polypeptides and proteins identified by such screening.


BACKGROUND OF THE INVENTION

It is now common practice in the art to prepare libraries of genetic packages that display, express or comprise a member of a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least a portion of the diversity of the family. In many common libraries, the peptides, polypeptides or proteins are related to antibodies. Often, they are Fabs or single chain antibodies.


In general, the DNAs that encode members of the families to be displayed and/or expressed must be amplified before they are cloned and used to display and/or express the desired member. Such amplification typically makes use of forward and backward primers.


Such primers can be complementary to sequences native to the DNA to be amplified or complementary to oligonucleotides attached at the 5′ or 3′ ends of that DNA. Primers that are complementary to sequences native to the DNA to be amplified are disadvantaged in that they bias the members of the families to be displayed. Only those members that contain a sequence in the native DNA that is substantially complementary to the primer will be amplified. Those that do not will be absent from the family. For those members that are amplified, any diversity within the primer region will be suppressed.


For example, in European patent 368,684 B1, the primer that is used is at the 5′ end of the VH region of an antibody gene. It anneals to a sequence region in the native DNA that is said to be “sufficiently well conserved” within a single species. Such primer will bias the members amplified to those having this “conserved” region. Any diversity within this region is extinguished.


It is generally accepted that human antibody genes arise through a process that involves a combinatorial selection of V and J or V, D, and J followed by somatic mutations. Although most diversity occurs in the Complementary Determining Regions (CDRs), diversity also occurs in the more conserved Framework Regions (FRs) and at least some of this diversity confers or enhances specific binding to antigens (Ag). As a consequence, libraries should contain as much of the CDR and FR diversity as possible.


To clone the amplified DNAs of the peptides, polypeptides or proteins that they encode for display on a genetic package and/or for expression, the DNAs must be cleaved to produce appropriate ends for ligation to a vector. Such cleavage is generally effected using restriction endonuclease recognition sites carried on the primers. When the primers are at the 5′ end of DNA produced from reverse transcription of RNA, such restriction leaves deleterious 5′ untranslated regions in the amplified DNA. These regions interfere with expression of the cloned genes and thus the display of the peptides, polypeptides and proteins coded for by them.


SUMMARY OF THE INVENTION

It is an object of this invention to provide novel methods for constructing libraries that display, express or comprise a member of a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least a portion of the diversity of the family. These methods are not biased toward DNAs that contain-native sequences that are complementary to the primers used for amplification. They also enable any sequences that may be deleterious to expression to be removed from the amplified DNA before cloning and displaying and/or expressing.


It is another object of this invention to provide a method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:

    • (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
    • (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;


      the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.


It is a further object of this invention to provide an alternative method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:

    • (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
    • (ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;


      the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.


In an alternative embodiment of this object of the invention, the restriction endonuclease recognition site is not initially located in the double-stranded part of the oligonucleotide. Instead, it is part of an amplification primer, which primer is complementary to the double-stranded region of the oligonucleotide. On amplification of the DNA-partially double-stranded combination, the restriction endonuclease recognition site carried on the primer becomes part of the DNA. It can then be used to cleave the DNA.


Preferably, the restriction endonuclease recognition site is that of a Type II-S restriction endonuclease whose cleavage site is located at a known distance from its recognition site.


It is another object of the present invention to provide a method of capturing DNA molecules that comprise a member of a diverse family of DNAs and collectively comprise at least a portion of the diversity of the family. These DNA molecules in single-stranded form have been cleaved by one of the methods of this invention. This method involves ligating the individual single-stranded DNA members of the family to a partially duplex DNA complex. The method comprises the steps of:

    • (i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences; and
    • (ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide.


As before, in this object of the invention, the restriction endonuclease recognition site need not be located in the double-stranded portion of the oligonucleotide. Instead, it can be introduced on amplification with an amplification primer that is used to amplify the DNA-partially double-stranded oligonucleotide combination.


It is another object of this invention to prepare libraries, that display, express or comprise a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least part of the diversity of the family, using the methods and DNAs described above.


It is an object of this invention to screen those libraries to identify useful peptides, polypeptides and proteins and to use those substances in human therapy.


Additional objects of the invention are reflected in claims 1-116. Each of these claims is specifically incorporated by reference in this specification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of various methods that may be employed to amplify VH genes without using primers specific for VH sequences.



FIG. 2 is a schematic of various methods that may be employed to amplify VL genes without using primers specific for VL sequences.



FIG. 3 is a schematic of RACE amplification of antibody heavy and light chains.



FIG. 4 depicts gel analysis of amplification products obtained after the primary PCR reaction from 4 different patient samples.



FIG. 5 depicts gel analysis of cleaved kappa DNA from Example 2.



FIG. 6 depicts gel analysis of extender-cleaved kappa DNA from Example 2.



FIG. 7 depicts gel analysis of the PCR product from the extender-kappa amplification from Example 2.



FIG. 8 depicts gel analysis of purified PCR product from the extender-kappa amplification from Example 2.



FIG. 9 depicts gel analysis of cleaved and ligated kappa light chains from Example 2.



FIG. 10 is a schematic of the design for CDR1 and CDR2 synthetic diversity.



FIG. 11 is a schematic of the cloning schedule for construction of the heavy chain repertoire.



FIG. 12 is a schematic of the cleavage and ligation of the antibody light chain.



FIG. 13 depicts gel analysis of cleaved and ligated lambda light chains from Example 4.



FIG. 14 is a schematic of the cleavage and ligation of the antibody heavy chain.



FIG. 15 depicts gel analysis of cleaved and ligated lambda light chains from Example 5.



FIG. 16 is a schematic of a phage display vector.



FIG. 17 is a schematic of a Fab cassette.



FIG. 18 is a schematic of a process for incorporating fixed FR1 residues in an antibody lambda sequence.



FIG. 19 is a schematic of a process for incorporating fixed FR1 residues in an antibody kappa sequence.



FIG. 20 is a schematic of a process for incorporating fixed FR1 residues in an antibody heavy chain sequence.





TERMS

In this application, the following terms and abbreviations are used:

  • Sense strand The upper strand of ds DNA as usually written. In the sense strand, 5′-ATG-3′ codes for Met.
  • Antisense strand The lower strand of ds DNA as usually written. In the antisense strand, 3′-TAC-5′ would correspond to a Met codon in the sense strand.
  • Forward primer A forward primer is complementary to a part of the sense strand and primes for synthesis of a new antisense-strand molecule. “Forward primer” and “lower-strand primer” are equivalent.
  • Backward primer A “backward” primer is complementary to a part of the antisense strand and primes for synthesis of a new sense-strand molecule. “Backward primer” and “top-strand primer” are equivalent.
  • Bases Bases are specified either by their position in a vector or gene as their position within a gene by codon and base. For example, “89.1” is the first base of codon 89, 89.2 is the second base of codon 89.
  • Sv Streptavidin
  • Ap Ampicillin
  • apR A gene conferring ampicillin resistance.
  • RERS Restriction endonuclease recognition site
  • RE Restriction endonuclease—cleaves preferentially at RERS
  • URE Universal restriction endonuclease
  • Functionally complementary Two sequences are sufficiently complementary so as to anneal under the chosen conditions.
  • AA Amino acid
  • PCR Polymerization chain reaction
  • GLGs Germline genes
  • Ab Antibody: an immunoglobin. The term also covers any protein having a binding domain which is homologous to an immunoglobin binding domain. A few examples of antibodies within this definition are, inter alia, immunoglobin isotypes and the Fab, F(ab1)2, scfv, Fv, dAb and Fd fragments.
  • Fab Two chain molecule comprising an Ab light chain and part of a heavy chain.
  • scFv A single-chain Ab comprising either VH::linker::VL or VL::linker::VH
  • w.t. Wild type
  • HC Heavy chain
  • LC Light chain
  • VK A variable domain of a Kappa light chain.
  • VH A variable domain of a heavy chain.
  • VL A variable domain of a lambda light chain.


In this application when it is said that nucleic acids are cleaved solely at the cleavage site of a restriction endonuclease, it should be understood that minor cleavage may occur at random, e.g., at non-specific sites other than the specific cleavage site that is characteristic of the restriction endonuclease. The skilled worker will recognize that such non-specific, random cleavage is the usual occurrence. Accordingly, “solely at the cleavage site” of a restriction endonuclease means that cleavage occurs preferentially at the site characteristic of that endonuclease.


As used in this application and claims, the term “cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide” includes cleavage sites formed by the single-stranded portion of the partially double-stranded ologonucleotide duplexing with the single-stranded DNA, cleavage sites in the double-stranded portion of the partially double-stranded oligonucleotide, and cleavage sites introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination.


In the two methods of this invention for preparing single-stranded nucleic acid sequences, the first of those cleavage sites is preferred. In the methods of this invention for capturing diversity and cloning a family of diverse nucleic acid sequences, the latter two cleavage sites are preferred.


In this application, all references referred to are specifically incorporated by reference.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The nucleic acid sequences that are useful in the methods of this invention, i.e., those that encode at least in part the individual peptides, polypeptides and proteins displayed, or expressed in or comprising the libraries of this invention, may be native, synthetic or a combination thereof. They may be mRNA, DNA or cDNA. In the preferred embodiment, the nucleic acids encode antibodies. Most preferably, they encode Fabs.


The nucleic acids useful in this invention may be naturally diverse, synthetic diversity may be introduced into those naturally diverse members, or the diversity may be entirely synthetic. For example, synthetic diversity can be introduced into one or more CDRs of antibody genes. Preferably, it is introduced into CDR1 and CDR2 of immunoglobulins. Preferably, natural diversity is captured in the CDR3 regions of the immunoglogin genes of this invention from B cells. Most preferably, the nucleic acids of this invention comprise a population of immunoglobin genes that comprise synthetic diversity in at least one, and more preferably both of the CDR1 and CDR2 and diversity in CDR3 captured from B cells.


Synthetic diversity may be created, for example, through the use of TRIM technology (U.S. Pat. No. 5,869,644). TRIM technology allows control over exactly which amino-acid types are allowed at variegated positions and in what proportions. In TRIM technology, codons to be diversified are synthesized using mixtures of trinucleotides. This allows any set of amino acid types to be included in any proportion.


Another alternative that may be used to generate diversified DNA is mixed oligonucleotide synthesis. With TRIM technology, one could allow Ala and Trp. With mixed oligonucleotide synthesis, a mixture that included Ala and Trp would also necessarily include Ser and Gly. The amino-acid types allowed at the variegated positions are picked with reference to the structure of antibodies, or other peptides, polypeptides or proteins of the family, the observed diversity in germline genes, the observed somatic mutations frequently observed, and the desired areas and types of variegation.


In a preferred embodiment of this invention, the nucleic acid sequences for at least one CDR or other region of the peptides, polypeptides or proteins of the family are cDNAs produced by reverse transcription from mRNA. More preferably, the mRNAs are obtained from peripheral blood cells, bone marrow cells, spleen cells or lymph node cells (such as B-lymphocytes or plasma cells) that express members of naturally diverse sets of related genes. More preferable, the mRNAs encode a diverse family of antibodies. Most preferably, the mRNAs are obtained from patients suffering from at least one autoimmune disorder or cancer. Preferably, mRNAs containing a high diversity of autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, antiphospholipid syndrome and vasculitis are used.


In a preferred embodiment of this invention, the cDNAs are produced from the mRNAs using reverse transcription. In this preferred embodiment, the mRNAs are separated from the cell and degraded using standard methods, such that only the full length (i.e., capped) mRNAs remain. The cap is then removed and reverse transcription used to produce the cDNAs.


The reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., H J de Haard et al., Journal of Biological Chemistry, 274(26):18218-30 (1999). In the preferred embodiment of this invention where the mRNAs encode antibodies, primers that are complementary to the constant regions of antibody genes may be used. Those primers are useful because they do not generate bias toward subclasses of antibodies. In another embodiment, poly-dT primers may be used (and may be preferred for the heavy-chain genes). Alternatively, sequences complementary to the primer may be attached to the termini of the antisense strand.


In one preferred embodiment of this invention, the reverse transcriptase primer may be biotinylated, thus allowing the cDNA product to be immobilized on streptavidin (Sv) beads. Immobilization can also be effected using a primer labeled at the 5′ end with one of a) free amine group, b) thiol, c) carboxylic acid, or d) another group not found in DNA that can react to form a strong bond to a known partner on an insoluble medium. If, for example, a free amine (preferably primary amine) is provided at the 5′ end of a DNA primer, this amine can be reacted with carboxylic acid groups on a polymer bead using standard amide-forming chemistry. If such preferred immobilization is used during reverse transcription, the top strand RNA is degraded using well-known enzymes, such as a combination of RNAseH and RNAseA, either before or after immobilization.


The nucleic acid sequences useful in the methods of this invention are generally amplified before being used to display and/or express the peptides, polypeptides or proteins that they encode. Prior to amplification, the single-stranded DNAs may be cleaved using either of the methods described before. Alternatively, the single-stranded DNAs may be amplified and then cleaved using one of those methods.


Any of the well known methods for amplifying nucleic acid sequences may be used for such amplification. Methods that maximize, and do not bias, diversity are preferred. In a preferred embodiment of this invention where the nucleic acid sequences are derived from antibody genes, the present invention preferably utilizes primers in the constant regions of the heavy and light chain genes and primers to a synthetic sequence that are attached at the 5′ end of the sense strand. Priming at such synthetic sequence avoids the use of sequences within the variable regions of the antibody genes. Those variable region priming sites generate bias against V genes that are either of rare subclasses or that have been mutated at the priming sites. This bias is partly due to suppression of diversity within the primer region and partly due to lack of priming when many mutations are present in the region complementary to the primer. The methods disclosed in this invention have the advantage of not biasing the population of amplified antibody genes for particular V gene types.


The synthetic sequences may be attached to the 5′ end of the DNA strand by various methods well known for ligating DNA sequences together. RT CapExtention is one preferred method.


In RT CapExtention (derived from Smart PCR(™)), a short overlap (5′- . . . GGG-3′ in the upper-strand primer (USP-GGG) complements 3′-CCC . . . 5′ in the lower strand) and reverse transcriptases are used so that the reverse complement of the upper-strand primer is attached to the lower strand.



FIGS. 1 and 2 show schematics to amplify VH and VL genes using RT CapExtention. FIG. 1 shows a schematic of the amplification of VH genes. FIG. 1, Panel A shows a primer specific to the poly-dT region of the 3′ UTR priming synthesis of the first, lower strand. Primers that bind in the constant region are also suitable. Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. Panel E shows immobilized double-stranded (ds) cDNA obtained by using a 5′-biotinylated top-strand primer.



FIG. 2 shows a similar schematic for amplification of VL genes. FIG. 2, Panel A shows a primer specific to the constant region at or near the 3′ end priming synthesis of the first, lower strand. Primers that bind in the poly-dT region are also suitable. Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. The bottom-strand primer also contains a useful restriction endonuclease site, such as AscI. Panel E shows immobilized ds cDNA obtained by using a 5′-biotinylated top-strand primer.


In FIGS. 1 and 2, each V gene consists of a 5′ untranslated region (UTR) and a secretion signal, followed by the variable region, followed by a constant region, followed by a 3′ untranslated region (which typically ends in poly-A). An initial primer for reverse transcription may be complementary to the constant region or to the poly A segment of the 3′-UTR. For human heavy-chain genes, a primer of 15 T is preferred. Reverse transcriptases attach several C residues to the 3′ end of the newly synthesized DNA. RT CapExtention exploits this feature. The reverse transcription reaction is first run with only a lower-strand primer. After about 1 hour, a primer ending in GGG (USP-GGG) and more RTase are added. This causes the lower-strand cDNA to be extended by the reverse complement of the USP-GGG up to the final GGG. Using one primer identical to part of the attached synthetic sequence and a second primer complementary to a region of known sequence at the 3′ end of the sense strand, all the V genes are amplified irrespective of their V gene subclass.


In another preferred embodiment, synthetic sequences may be added by Rapid Amplification of cDNA Ends (RACE) (see Frohman, M. A., Dush, M. K., & Martin, G. R. (1988) Proc. Natl. Acad. Sci. USA (85): 8998-9002).



FIG. 1 shows a schematic of RACE amplification of antibody heavy and light chains. First, mRNA is selected by treating total or poly(A+) RNA with calf intestinal phosphatase (CIP) to remove the 5′-phosphate from all molecules that have them such as ribosomal RNA, fragmented mRNA, tRNA and genomic DNA. Full length mRNA (containing a protective 7-methyl cap structure) is uneffected. The RNA is then treated with tobacco acid pyrophosphatase (TAP) to remove the cap structure from full length mRNAs leaving a 5′-monophosphate group. Next, a synthetic RNA adaptor is ligated to the RNA population, only molecules which have a 5-phosphate (uncapped, full length mRNAs) will accept the adaptor. Reverse trascriptase reactions using an oligodT primer, and nested PCR (using one adaptor primer (located in the 5′ synthetic adaptor) and one primer for the gene) are then used to amplify the desired transcript.


In a preferred embodiment of this invention, the upper strand or lower strand primer may be also biotinylated or labeled at the 5′ end with one of a) free amino group, b) thiol, c) carboxylic acid and d) another group not found in DNA that can react to form a strong bond to a known partner as an insoluble medium. These can then be used to immobilize the labeled strand after amplification. The immobilized DNA can be either single or double-stranded.


After amplification (using e.g., RT CapExtension or RACE), the DNAs of this invention are rendered single-stranded. For example, the strands can be separated by using a biotinylated primer, capturing the biotinylated product on streptavidin beads, denaturing the DNA, and washing away the complementary strand. Depending on which end of the captured DNA is wanted, one will choose to immobilize either the upper (sense) strand or the lower (antisense) strand.


To prepare the single-stranded amplified DNAs for cloning into genetic packages so as to effect display of, or for expression of, the peptides, polypeptides or proteins encoded, at least in part, by those DNAs, they must be manipulated to provide ends suitable for cloning and display and/or expression. In particular, any 5′ untranslated regions and mammalian signal sequences must be removed and replaced, in frame, by a suitable signal sequence that functions in the display or expression host. Additionally, parts of the variable domains (in antibody genes) may be removed and replaced by synthetic segments containing synthetic diversity. The diversity of other gene families may likewise be expanded with synthetic diversity.


According to the methods of this invention, there are two ways to manipulate the single-stranded DNAs for display and/or expression. The first method comprises the steps of:

    • (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
    • (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;


      the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.


In this first method, short oligonucleotides are annealed to the single-stranded DNA so that restriction endonuclease recognition sites formed within the now locally double-stranded regions of the DNA can be cleaved. In particular, a recognition site that occurs at the same position in a substantial fraction of the single-stranded DNAs is identical.


For antibody genes, this can be done using a catalog of germline sequences. See, e.g., “http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html.” Updates can be obtained from this site under the heading “Amino acid and nucleotide sequence alignments.” For other families, similar comparisons exist and may be used to select appropriate regions for cleavage and to maintain diversity.


For example, Table 1 depicts the DNA sequences of the FR3 regions of the 51 known human VH germline genes. In this region, the genes contain restriction endonuclease recognition sites shown in Table 2. Restriction endonucleases that cleave a large fraction of germline genes at the same site are preferred over endonucleases that cut at a variety of sites. Furthermore, it is preferred that there be only one site for the restriction endonucleases within the region to which the short oligonucleotide binds on the single-stranded DNA, e.g., about 10 bases on either side of the restriction endonuclease recognition site.


An enzyme that cleaves downstream in FR3 is also more preferable because it captures fewer mutations in the framework. This may be advantageous is some cases. However, it is well known that framework mutations exist and confer and enhance antibody binding. The present invention, by choice of appropriate restriction site, allows all or part of FR3 diversity to be captured. Hence, the method also allows extensive diversity to be captured.


Finally, in the methods of this invention restriction endonucleases that are active between about 37° C. and about 75° C. are used. Preferably, restriction endonucleases that are active between about 45° C. and about 75° C. may be used. More preferably, enzymes that are active above 50° C., and most preferably active about 55° C., are used. Such temperatures maintain the nucleic acid sequence to be cleaved in substantially single-stranded form.


Enzymes shown in Table 2 that cut many of the heavy chain FR3 germline genes at a single position include: MaeIII(24@4), Tsp45I(21@4), HphI(44@5), BsaJI(23@65), AluI(23@47), BlpI(21@48), DdeI(29@58), BglII(10@61), MslI(44@72), BsiEI(23@74), EaeI(23@74), EagI(23@74), HaeIII(25@75), Bst4CI(51@86), HpyCH4III(51@B6), HinfI(38@2), MlyI(18@2), PleI(18@2), MnlI(31@67), HpyCH4V(21@44), BsmAI(16 @11), BpmI(19@12), XmnI(12@30), and SacI(11@51). (The notation used means, for example, that BsmAI cuts 16 of the FR3 germline genes with a restriction endonuclease recognition site beginning at base 11 of FR3.)


For cleavage of human heavy chains in FR3, the preferred restriction endonucleases are: Bst4CI (or TaaI or HpyCH4III), BlpI, HpyCH4V, and MslI. Because ACNGT (the restriction endonuclease recognition site for Bst4CI, TaaI, and HpyCH4III) is found at a consistent site in all the human FR3 germline genes, one of those enzymes is the most preferred for capture of heavy chain CDR3 diversity. BlpI and HpyCH4V are complementary. BlpI cuts most members of the VH1 and VH4 families while HpyCH4V cuts most members of the VH3, VH5, VH6, and VH7 families. Neither enzyme cuts VH2s, but this is a very small family, containing only three members. Thus, these enzymes may also be used in preferred embodiments of the methods of this invention.


The restriction endonucleases HpyCH4III, Bst4CI, and TaaI all recognize 5′-ACnGT-3′ and cut upper strand DNA after n and lower strand DNA before the base complementary to n. This is the most preferred restriction endonuclease recognition site for this method on human heavy chains because it is found in all germline genes. Furthermore, the restriction endonuclease recognition region (ACnGT) matches the second and third bases of a tyrosine codon (tay) and the following cysteine codon (tgy) as shown in Table 3. These codons are highly conserved, especially the cysteine in mature antibody genes.


Table 4 E shows the distinct oligonucleotides of length 22 (except the last one which is of length 20) bases. Table 5 C shows the analysis of 1617 actual heavy chain antibody genes. Of these, 1511 have the site and match one of the candidate oligonucleotides to within 4 mismatches. Eight oligonucleotides account for most of the matches and are given in Table 4 F.1. The 8 oligonucleotides are very similar so that it is likely that satisfactory cleavage will be achieved with only one oligonucleotide (such as H43.77.97.1-02#1) by adjusting temperature, pH, salinity, and the like. One or two oligonucleotides may likewise suffice whenever the germline gene sequences differ very little and especially if they differ very little close to the restriction endonuclease recognition region to be cleaved. Table 5 D shows a repeat analysis of 1617 actual heavy chain antibody genes using only the 8 chosen oligonucleotides. This shows that 1463 of the sequences match at least one of the oligonucleotides to within 4 mismatches and have the site as expected. Only 7 sequences have a second HpyCH4III restriction endonuclease recognition region in this region.


Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human heavy chains. Cleavage in FR1 allows capture of the entire CDR diversity of the heavy chain.


The germline genes for human heavy chain FR1 are shown in Table 6. Table 7 shows the restriction endonuclease recognition sites found in human germline genes FR1s. The preferred sites are BsgI(GTGCAG;39@4), BsoFI(GCngc;43@6, 11@9, 2@3, 1@12), TseI(Gcwgc;43@6, 11@9, 2@3, 1@12), MspAlI (CMGckg;46@7, 2@1), PvuII(CAGctg;46@7, 2@1), AluI(AGct;48@82@2), DdeI(Ctnag;22@52, 9@48), HphI(tcacc;22@80), BssKI(Nccngg;35@39, 2@40), BsaJI(Ccnngg;32@40, 2@41), BstNI(CCwgg;33@40), ScrFI(CCngg;35@40, 2@41), EcoO109I(RGgnccy;22@46, 11@43), Sau96I(Ggncc;23@47, 11@44), AvaII(Ggwcc;23@47, 4@44), PpuMI(RGgwccy;22@46, 4@43), BsmFI(gtccc;20@48), HinfI(Gantc;34@16, 21@56, 21@77), TfiI(21@77), MIyI(GAGTC;34@16), MlyI(gactc;21@56), and AlwNI(CAGnnnctg;22@68). The more preferred sites are MspAI and PvuII. MspAI and PvuII have 46 sites at 7-12 and 2 at 1-6. To avoid cleavage at both sites, oligonucleotides are used that do not fully cover the site at 1-6. Thus, the DNA will not be cleaved at that site. We have shown that DNA that extends 3, 4, or 5 bases beyond a PvuII-site can be cleaved efficiently.


Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human kappa light chains. Table 8 shows the human kappa FR1 germline genes and Table 9 shows restriction endonuclease recognition sites that are found in a substantial number of human kappa FR1 germline genes at consistent locations. Of the restriction endonuclease recognition sites listed, BsmAI and PflFI are the most preferred enzymes. BsmAI sites are found at base 18 in 35 of 40 germline genes. PflFI sites are found in 35 of 40 germline genes at base 12.


Another example of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of the human lambda light chain. Table shows the 31 known human lambda FR1 germline gene sequences. Table 11 shows restriction endonuclease recognition sites found in human lambda FR1 germline genes. HinfI and DdeI are the most preferred restriction endonucleases for cutting human lambda chains in FR1.


After the appropriate site or sites for cleavage are chosen, one or more short oligonucleotides are prepared so as to functionally complement, alone or in combination, the chosen recognition site. The oligonucleotides also include sequences that flank the recognition site in the majority of the amplified genes. This flanking region allows the sequence to anneal to the single-stranded DNA sufficiently to allow cleavage by the restriction endonuclease specific for the site chosen.


The actual length and sequence of the oligonucleotide depends on the recognition site and the conditions to be used for contacting and cleavage. The length must be sufficient so that the oligonucleotide is functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location.


Typically, the oligonucleotides of this preferred method of the invention are about 17 to about nucleotides in length. Below about 17 bases, annealing is too weak and above 30 bases there can be a loss of specificity. A preferred length is 18 to 24 bases.


Oligonucleotides of this length need not be identical complements of the germline genes. Rather, a few mismatches taken may be tolerated. Preferably, however, no more than 1-3 mismatches are allowed. Such mismatches do not adversely affect annealing of the oligonucleotide to the single-stranded DNA. Hence, the two DNAs are said to be functionally complementary.


The second method to manipulate the single-stranded DNAs of this invention for display and/or expression comprises the steps of:

    • (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
    • (ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;


      the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.


As explained above, the cleavage site may be formed by the single-stranded portion of the partially double-stranded oligonucleotide duplexing with the single-stranded DNA, the cleavage site may be carried in the double-stranded portion of the partially double-stranded oligonucleotide, or the cleavage site may be introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination. In this embodiment, the first is preferred. And, the restriction endonuclease recognition site may be located in either the double-stranded portion of the oligonucleotide or introduced by the amplification primer, which is complementary to that double-stranded region, as used to amplify the combination.


Preferably, the restriction endonuclease site is that of a Type II-S restriction endonuclease, whose cleavage site is located at a known distance from its recognition site.


This second method, preferably, employs Universal Restriction Endonucleases (“URE”). UREs are partially double-stranded oligonucleotides. The single-stranded portion or overlap of the URE consists of a DNA adapter that is functionally complementary to the sequence to be cleaved in the single-stranded DNA. The double-stranded portion consists of a restriction endonuclease recognition site, preferably type II-S.


The URE method of this invention is specific and precise and can tolerate some (e.g., 1-3) mismatches in the complementary regions, i.e., it is functionally complementary to that region. Further, conditions under which the URE is used can be adjusted so that most of the genes that are amplified can be cut, reducing bias in the library produced from those genes.


The sequence of the single-stranded DNA adapter or overlap portion of the URE typically consists of about 14-22 bases. However, longer or shorter adapters may be used. The size depends on the ability of the adapter to associate with its functional complement in the single-stranded DNA and the temperature used for contacting the URE and the single-stranded DNA at the temperature used for cleaving the DNA with the restriction enzyme. The adapter must be functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that the cleavage may occur at the chosen temperature and at the desired location. We prefer singe-stranded or overlap portions of 14-17 bases in length, and more preferably 18-20 bases in length.


The site chosen for cleavage using the URE is preferably one that is substantially conserved in the family of amplified DNAs. As compared to the first cleavage method of this invention, these sites do not need to be endonuclease recognition sites. However, like the first method, the sites chosen can be synthetic rather than existing in the native DNA. Such sites may be chosen by references to the sequences of known antibodies or other families of genes. For example, the sequences of many germline genes are reported at http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html. For example, one preferred site occurs near the end of FR3—codon 89 through the second base of codon 93. CDR3 begins at codon 95.


The sequences of 79 human heavy-chain genes are also available at http://www.ncbi.nlm.nih.gov/entre2/nucleotide.html. This site can be used to identify appropriate sequences for URE cleavage according to the methods of this invention. See, e.g., Table 12B.


Most preferably, one or more sequences are identified using these sites or other available sequence information. These sequences together are present in a substantial fraction of the amplified DNAs. For example, multiple sequences could be used to allow for known diversity in germline genes or for frequent somatic mutations. Synthetic degenerate sequences could also be used. Preferably, a sequence(s) that occurs in at least 65% of genes examined with no more than 2-3 mismatches is chosen


URE single-stranded adapters or overlaps are then made to be complementary to the chosen regions. Conditions for using the UREs are determined empirically. These conditions should allow cleavage of DNA that contains the functionally complementary sequences with no more than 2 or 3 mismatches but that do not allow cleavage of DNA lacking such sequences.


As described above, the double-stranded portion of the URE includes an endonuclease recognition site, preferably a Type II-S recognition site. Any enzyme that is active at a temperature necessary to maintain the single-stranded DNA substantially in that form and to allow the single-stranded DNA adapter portion of the URE to anneal long enough to the single-stranded DNA to permit cleavage at the desired site may be used.


The preferred Type II-S enzymes for use in the URE methods of this invention provide asymmetrical cleavage of the single-stranded DNA. Among these are the enzymes listed in Table 13. The most preferred Type II-S enzyme is FokI.


When the preferred FokI containing URE is used, several conditions are preferably used to effect cleavage:

    • 1). Excess of the URE over target. DNA should be present to activate the enzyme. URE present only in equimolar amounts to the target DNA would yield poor cleavage of ssDNA because the amount of active enzyme available would be limiting.
    • 2) An activator may be used to activate part of the FokI enzyme to dimerize without causing cleavage. Examples of appropriate activators are shown in Table 14.
    • 3) The cleavage reaction is performed at a temperature between 45°-75° C., preferably above 50° C. and most preferably above 55° C.


The UREs used in the prior art contained a 14-base single-stranded segment, a 10-base stem (containing a FokI site), followed by the palindrome of the 10-base stem. While such UREs may be used in the methods of this invention, the preferred UREs of this invention also include a segment of three to eight bases (a loop) between the FokI restriction endonuclease recognition site containing segments. In the preferred embodiment, the stem (containing the FokI site) and its palindrome are also longer than 10 bases. Preferably, they are 10-14 bases in length. Examples of these “lollipop” URE adapters are shown in Table 15.


One example of using a URE to cleave an single-stranded DNA involves the FR3 region of human heavy chain. Table 16 shows an analysis of 840 full-length mature human heavy chains with the URE recognition sequences shown. The vast majority (718/840=0.85) will be recognized with 2 or fewer mismatches using five UREs (VHS881-1.1, VHS881-1.2, VHS881-2.1, VHS881-4.1, and VHS881-9.1). Each has a 20-base adaptor sequence to complement the germline gene, a ten-base stem segment containing a FokI site, a five base loop, and the reverse complement of the first stem segment. Annealing those adapters, alone or in combination, to single-stranded antisense heavy chain DNA and treating with FokI in the presence of, e.g., the activator FOKIact, will lead to cleavage of the antisense strand at the position indicated.


Another example of using a URE(s) to cleave a single-stranded DNA involves the FR1 region of the human Kappa light chains. Table 17 shows an analysis of 182 full-length human kappa chains for matching by the four 19-base probe sequences shown. Ninety-six percent of the sequences match one of the probes with 2 or fewer mismatches. The URE adapters shown in Table 17 are for cleavage of the sense strand of kappa chains. Thus, the adaptor sequences are the reverse complement of the germline gene sequences. The URE consists of a ten-base stem, a five base loop, the reverse complement of the stem and the complementation sequence. The loop shown here is TTGTT, but other sequences could be used. Its function is to interrupt the palindrome of the stems so that formation of a lollypop monomer is favored over dimerization. Table 17 also shows where the sense strand is cleaved.


Another example of using a URE to cleave a single-stranded DNA involves the human lambda light chain. Table 18 shows analysis of 128 human lambda light chains for matching the four 19-base probes shown. With three or fewer mismatches, 88 of 128 (69%) of the chains match one of the probes. Table 18 also shows URE adapters corresponding to these probes. Annealing these adapters to upper-strand ssDNA of lambda chains and treatment with FokI in the presence of FOKIact at a temperature at or above 45° C. will lead to specific and precise cleavage of the chains.


The conditions under which the short oligonucleotide sequences of the first method and the UREs of the second method are contacted with the single-stranded DNAs may be empirically determined. The conditions must be such that the single-stranded DNA remains in substantially single-stranded form. More particularly, the conditions must be such that the single-stranded DNA does not form loops that may interfere with its association with the oligonucleotide sequence or the URE or that may themselves provide sites for cleavage by the chosen restriction endonuclease.


The effectiveness and specificity of short oligonucleotides (first method) and UREs (second method) can be adjusted by controlling the concentrations of the URE adapters/oligonucleotides and substrate DNA, the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and formamide), the concentration of the restriction endonuclease (e.g., FokI), and the time of the digestion. These conditions can be optimized with synthetic oligonucleotides having: 1) target germline gene sequences, 2) mutated target gene sequences, or 3) somewhat related non-target sequences. The goal is to cleave most of the target sequences and minimal amounts of non-targets.


In accordance with this invention, the single-stranded DNA is maintained in substantially that form using a temperature between about 37° C. and about 75° C. Preferably, a temperature between about 45° C. and about 75° C. is used. More preferably, a temperature between 50° C. and 60° C., most preferably between 55° C. and 60° C., is used. These temperatures are employed both when contacting the DNA with the oligonucleotide or URE and when cleaving the DNA using the methods of this invention.


The two cleavage methods of this invention have several advantages. The first method allows the individual members of the family of single-stranded DNAs to be cleaved preferentially at one substantially conserved endonuclease recognition site. The method also does not require an endonuclease recognition site to be built into the reverse transcription or amplification primers. Any native or synthetic site in the family can be used.


The second method has both of these advantages. In addition, the preferred URE method allows the single-stranded DNAs to be cleaved at positions where no endonuclease recognition site naturally occurs or has been synthetically constructed.


Most importantly, both cleavage methods permit the use of 5′ and 3′ primers so as to maximize diversity and then cleavage to remove unwanted or deleterious sequences before cloning, display and/or expression.


After cleavage of the amplified DNAs using one of the methods of this invention, the DNA is prepared for cloning, display and/or expression. This is done by using a partially duplexed synthetic DNA adapter, whose terminal sequence is based on the specific cleavage site at which the amplified DNA has been cleaved.


The synthetic DNA is designed such that when it is ligated to the cleaved single-stranded DNA in proper reading frame so that the desired peptide, polypeptide or protein can be displayed on the surface of the genetic package and/or expressed. Preferably, the double-stranded portion of the adapter comprises the sequence of several codons that encode the amino acid sequence characteristic of the family of peptides, polypeptides or proteins up to the cleavage site. For human heavy chains, the amino acids of the 3-23 framework are preferably used to provide the sequences required for expression of the cleaved DNA.


Preferably, the double-stranded portion of the adapter is about 12 to 100 bases in length. More preferably, about 20 to 100 bases are used. The double-standard region of the adapter also preferably contains at least one endonuclease recognition site useful for cloning the DNA into a suitable display and/or expression vector (or a recipient vector used to archive the diversity). This endonuclease restriction site may be native to the germline gene sequences used to extend the DNA sequence. It may be also constructed using degenerate sequences to the native germline gene sequences. Or, it may be wholly synthetic.


The single-stranded portion of the adapter is complementary to the region of the cleavage in the single-stranded DNA. The overlap can be from about 2 bases up to about 15 bases. The longer the overlap, the more efficient the ligation is likely to be. A preferred length for the overlap is 7 to 10. This allows some mismatches in the region so that diversity in this region may be captured.


The single-stranded region or overlap of the partially duplexed adapter is advantageous because it allows DNA cleaved at the chosen site, but not other fragments to be captured. Such fragments would contaminate the library with genes encoding sequences that will not fold into proper antibodies and are likely to be non-specifically sticky.


One illustration of the use of a partially duplexed adaptor in the methods of this invention involves ligating such adaptor to a human FR3 region that has been cleaved, as described above, at 5′-ACnGT-3′ using HpyCH4III, Bst4CI or TaaI.


Table 4 F.2 shows the bottom strand of the double-stranded portion of the adaptor for ligation to the cleaved bottom-strand DNA. Since the HpyCH4III-Site is so far to the right (as shown in Table 3), a sequence that includes the AflII-site as well as the XbaI site can be added. This bottom strand portion of the partially-duplexed adaptor, H43.XAExt, incorporates both XbaI and AflII-sites. The top strand of the double-stranded portion of the adaptor has neither site (due to planned mismatches in the segments opposite the XbaI and AflII-Sites of H43.XAExt), but will anneal very tightly to H43.XAExt. H43AExt contains only the AflII-site and is to be used with the top strands H43.ABr1 and H43.ABr2 (which have intentional alterations to destroy the AflII-site).


After ligation, the desired, captured DNA can be PCR amplified again, if desired, using in the preferred embodiment a primer to the downstream constant region of the antibody gene and a primer to part of the double-standard region of the adapter. The primers may also carry restriction endonuclease sites for use in cloning the amplified DNA.


After ligation, and perhaps amplification, of the partially double-stranded adapter to the single-stranded amplified DNA, the composite DNA is cleaved at chosen 5′ and 3′ endonuclease recognition sites.


The cleavage sites useful for cloning depend on the phage or phagemid or other vectors into which the cassette will be inserted and the available sites in the antibody genes. Table 19 provides restriction endonuclease data for 75 human light chains. Table 20 shows corresponding data for 79 human heavy chains. In each Table, the endonucleases are ordered by increasing frequency of cutting. In these Tables, Nch is the number of chains cut by the enzyme and Ns is the number of sites (some chains have more than one site).


From this analysis, SfiI, NotI, AflII, ApaLI, and AscI are very suitable. SfiI and NotI are preferably used in pCES1 to insert the heavy-chain display segment. ApaLI and AscI are preferably used in pCES1 to insert the light-chain display segment.


BstEII-sites occur in 97% of germ-line JH genes. In rearranged V genes, only 54/79 (68%) of heavy-chain genes contain a BstEII-Site and 7/61 of these contain two sites. Thus, 47/79 (59%) contain a single BstEII-Site. An alternative to using BstEII is to cleave via UREs at the end of JH and ligate to a synthetic oligonucleotide that encodes part of CH1.


One example of preparing a family of DNA sequences using the methods of this invention involves capturing human CDR 3 diversity. As described above, mRNAs from various autoimmune patients are reverse transcribed into lower strand cDNA. After the top strand RNA is degraded, the lower strand is immobilized and a short oligonucleotide used to cleave the cDNA upstream of CDR3. A partially duplexed synthetic DNA adapter is then annealed to the DNA and the DNA is amplified using a primer to the adapter and a primer to the constant region (after FR4). The DNA is then cleaved using BstEII (in FR4) and a restriction endonuclease appropriate to the partially double-stranded adapter (e.g., XbaI and AflII (in FR3)). The DNA is then ligated into a synthetic VH skeleton such as 3-23.


One example of preparing a single-stranded DNA that was cleaved using the URE method involves the human Kappa chain. The cleavage site in the sense strand of this chain is depicted in Table 17. The oligonucleotide kapextURE is annealed to the oligonucleotides (kaBR01UR, kaBR02UR, kaBR03UR, and kaBR04UR) to form a partially duplex DNA. This DNA is then ligated to the cleaved soluble kappa chains. The ligation product is then amplified using primers kapextUREPCR and CKForeAsc (which inserts a AscI site after the end of C kappa). This product is then cleaved with ApaLI and AscI and ligated to similarly cut recipient vector.


Another example involves the cleavage of lambda light chains, illustrated in Table 18. After cleavage, an extender (ON_LamEx133) and four bridge oligonucleotides (ON_LamB1-133, ON_LamB2-133, ON_LamB3-133, and ON_LamB4-133) are annealed to form a partially duplex. DNA. That DNA is ligated to the cleaved lambda-chain sense strands. After ligation, the DNA is amplified with ON_Lam133PCR and a forward primer specific to the lambda constant domain, such as CL2ForeAsc or CL7ForeAsc (Table 130).


In human heavy chains, one can cleave almost all genes in FR4 (downstream, i.e., toward the 3′ end of the sense strand, of CDR3) at a BstEII-Site that occurs at a constant position in a very large fraction of human heavy-chain V genes. One then needs a site in FR3, if only CDR3 diversity is to be captured, in FR2, if CDR2 and CDR3 diversity is wanted, or in FR1, if all the CDR diversity is wanted. These sites are preferably inserted as part of the partially double-stranded adaptor.


The preferred process of this invention is to provide recipient vectors (e.g., for display and/or expression) having sites that allow cloning of either light or heavy chains. Such vectors are well known and widely used in the art. A preferred phage display vector in accordance with this invention is phage MALIA3. This displays in gene III. The sequence of the phage MALIA3 is shown in Table 21A (annotated) and Table 21B (condensed).


The DNA encoding the selected regions of the light or heavy chains can be transferred to the vectors using endonucleases that cut either light or heavy chains only very rarely. For example, light chains may be captured with ApaLI and AscI. Heavy-chain genes are preferably cloned into a recipient vector having SfiI, NcoI, XbaI, AflII, BstEII, ApaI, and NotI sites. The light chains are preferably moved into the library as ApaLI-AscI fragments. The heavy chains are preferably moved into the library as SfiI-NotI fragments.


Most preferably, the display is had on the surface of a derivative of M13 phage. The most preferred vector contains all the genes of M13, an antibiotic resistance gene, and the display cassette. The preferred vector is provided with restriction sites that allow introduction and excision of members of the diverse family of genes, as cassettes. The preferred vector is stable against rearrangement under the growth conditions used to amplify phage.


In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed and/or expressed in a phagemid vector (e.g., pCES1) that displays and/or expresses the peptide, polypeptide or protein. Such vectors may also be used to store the diversity for subsequent display and/or expression using other vectors or phage.


In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed and/or expressed in a yeast vector.


In another embodiment, the mode of display may be through a short linker to anchor domains—one possible anchor comprising the final portion of M13 III (“IIIstump”) and a second possible anchor being the full length III mature protein.


The IIIstump fragment contains enough of M13 III to assemble into phage but not the domains involved in mediating infectivity. Because the w.t. III proteins are present the phage is unlikely to delete the antibody genes and phage that do delete these segments receive only a very small growth advantage. For each of the anchor domains, the DNA encodes the w.t. AA sequence, but differs from the w.t. DNA sequence to a very high extent. This will greatly reduce the potential for homologous recombination between the anchor and the w.t. gene that is also present (see Example 6).


Most preferably, the present invention uses a complete phage carrying an antibiotic-resistance gene (such as an ampicillin-resistance gene) and the display cassette. Because the w.t. iii and possibly viii genes are present, the w.t. proteins are also present. The display cassette is transcribed from a regulatable promoter (e.g., PLacZ). Use of a regulatable promoter allows control of the ratio of the fusion display gene to the corresponding w.t. coat protein. This ratio determines the average number of copies of the display fusion per phage (or phagemid) particle.


Another aspect of the invention is a method of displaying peptides, polypeptides or proteins (and particularly Fabs) on filamentous phage. In the most preferred embodiment this method displays FABs and comprises:

    • a) obtaining a cassette capturing a diversity of segments of DNA encoding the elements:


      Preg::RBS1::SS1::VL::CL::stop::RBS2::SS2::VH::CH1::linker::anchor::stop::,


      where Preg is a regulatable promoter, RBS1 is a first ribosome binding site, SS1 is a signal sequence operable in the host strain, VL is a member of a diverse set of light-chain variable regions, CL is a light-chain constant region, stop is one or more stop codons, RBS2 is a second ribosome binding site, SS2 is a second signal sequence operable in the host strain, VH is a member of a diverse set of heavy-chain variable regions, CH1 is an antibody heavy-chain first constant domain, linker is a sequence of amino acids of one to about 50 residues, anchor is a protein that will assemble into the filamentous phage particle and stop is a second example of one or more stop codons; and
    • b) positioning that cassette within the phage genome to maximize the viability of the phage and to minimize the potential for deletion of the cassette or parts thereof.


The DNA encoding the anchor protein in the above preferred cassette should be designed to encode the same (or a closely related) amino acid sequence as is found in one of the coat proteins of the phage, but with a distinct DNA sequence. This is to prevent unwanted homologous recombination with the w.t. gene.


In addition, the cassette should be placed in the intergenic region. The positioning and orientation of the display cassette can influence the behavior of the phage.


In one embodiment of the invention, a transcription terminator may be placed after the second stop of the display cassette above (e.g., Trp). This will reduce interaction between the display cassette and other genes in the phage antibody display vector.


In another embodiment of the methods of this invention, the phage or phagemid can display and/or express proteins other than Fab, by replacing the Fab portions indicated above, with other protein genes.


Various hosts can be used the display and/or expression aspect of this invention. Such hosts are well known in the art. In the preferred embodiment, where Fabs are being displayed and/or expressed, the preferred host should grow at 30° C. and be RecA (to reduce unwanted genetic recombination) and EndA (to make recovery of RF DNA easier). It is also preferred that the host strain be easily transformed by electroporation.


XL1-Blue MRF′ satisfies most of these preferences, but does not grow well at 30° C. XL1-Blue MRF′ does grow slowly at 38° C. and thus is an acceptable host. TG-1 is also an acceptable host although it is RecA+ and EndA+. XL1-Blue MRF′ is more preferred for the intermediate host used to accumulate diversity prior to final construction of the library.


After display and/or expression, the libraries of this invention may be screened using well known and conventionally used techniques. The selected peptides, polypeptides or proteins may then be used to treat disease. Generally, the peptides, polypeptides or proteins for use in therapy or in pharmaceutical compositions are produced by isolating the DNA encoding the desired peptide, polypeptide or protein from the member of the library selected. That DNA is then used in conventional methods to produce the peptide, polypeptides or protein it encodes in appropriate host cells, preferably mammalian host cells, e.g., CHO cells. After isolation, the peptide, polypeptide or protein is used alone or with pharmaceutically acceptable compositions in therapy to treat disease.


EXAMPLES
Example 1
RACE Amplification of Heavy and Light Chain Antibody Repertoires from Autoimmune Patients

Total RNA was isolated from individual blood samples (50 ml) of 11 patients using a RNAzol™ kit (CINNA/Biotecx), as described by the manufacturer. The patients were diagnosed as follows:


1. SLE and phospholipid syndrome


2. limited systemic sclerosis


3. SLE and Sjogren syndrome


4. Limited Systemic sclerosis


5. Reumatoid Arthritis with active vasculitis


6. Limited systemic sclerosis and Sjogren Syndrome


7. Reumatoid Artritis and (not active) vasculitis


8. SLE and Sjogren syndrome


9. SLE

10. SLE and (active) glomerulonephritis


11. Polyarthritis/Raynauds Phenomen

From these 11 samples of total RNA, Poly-A+ RNA was isolated using Promega PolyATtract® mRNA Isolation kit (Promega).


250 ng of each poly-A+ RNA sample was used to amplify antibody heavy and light chains with the GeneRAacer™ kit (Invitrogen cat no. L1500-01). A schematic overview of the RACE procedure is shown in FIG. 3.


Using the general protocol of the GeneRAacer™ kit, an RNA adaptor was ligated to the 5′ end of all mRNAs. Next, a reverse transcriptase reaction was performed in the presence of oligo(dT15) specific primer under conditions described by the manufacturer in the GeneRAacer™ kit.


⅕ of the cDNA from the reverse transcriptase reaction was used in a 20 ul PCR reaction. For amplification of the heavy chain IgM repertoire, a forward primer based on the CH1 chain of IgM (HuCmFOR) and a backward primer based on the ligated synthetic adaptor sequence [5′A] were used. (See Table 22)


For amplification of the kappa and lambda light chains, a forward primer that contains the 3′ coding-end of the cDNA [HuCkFor and HuCLFor2+HuCLfor7] and a backward primer based on the ligated synthetic adapter sequence [5′A] was used (See Table 22). Specific amplification products after 30 cycles of primary PCR were obtained.



FIG. 4 shows the amplification products obtained after the primary PCR reaction from 4 different patient samples. 8 ul primary PCR product from 4 different patients was analyzed on a agarose gel [labeled 1, 2, 3 and 4]. For the heavy chain, a product of approximately 950 nt is obtained while for the kappa and lambda light chains the product is approximately 850 nt. M1-2 are molecular weight markers.


PCR products were also analyzed by DNA sequencing [10 clones from the lambda, kappa or heavy chain repertoires]. All sequenced antibody genes recovered contained the full coding sequence as well as the 5′ leader sequence and the V gene diversity was the expected diversity (compared to literature data).


50 ng of all samples from all 11 individual amplified samples were mixed for heavy, lambda light or kappa light chains and used in secondary PCR reactions.


In all secondary PCRs approximately 1 ng template DNA from the primary PCR mixture was used in multiple 50 ul PCR reactions (25 cycles).


For the heavy chain, a nested biotinylated forward primer [HuCm-Nested] was used, and a nested 5′ end backward primer located in the synthetic adapter-sequence [5′NA] was used. The 5′ end lower-strand of the heavy chain was biotinylated.


For the light chains, a 5′ end biotinylated nested primer in the synthetic adapter was used [5′NA] in combination with a 3′ end primer in the constant region of Ckappa and Clambda, extended with a sequence coding for the AscI restriction site [kappa: HuCkForAscI, Lambda: HuCL2-FOR-ASC+HuCL7-FOR-ASC]. [5′ end Top strand DNA was biotinylated]. After gel-analysis the secondary PCR products were pooled and purified with Promega Wizzard PCR cleanup. Approximately 25 ug biotinylated heavy chain, lambda and kappa light chain DNA was isolated from the 11 patients.


Example 2
Capturing Kappa Chains with BsmAI

A repertoire of human-kappa chain mRNAs was prepared using the RACE method of Example 1 from a collection of patients haying various autoimmune diseases.


This Example followed the protocol of Example 1. Approximately 2 micrograms (ug) of human kappa-chain (Igkappa) gene RACE material with biotin attached to 5′-end of upper strand was immobilized as in Example 1 on 200 microliters (μL) of Seradyn magnetic beads. The lower strand was removed by washing the DNA with 2 aliquots 200 μL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 200 μL of 10 mM Tris (pH 7.5) 100 mM NaCl. The short oligonucleotides shown in Table 23 were added in 40 fold molar excess in 100 μL of NEB buffer 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol pH 7.9) to the dry beads. The mixture was incubated at 95° C. for 5 minutes then cooled down to 55° C. over 30 minutes. Excess oligonucleotide was washed away with 2 washes of NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol pH 7.9). Ten units of BsmAI (NEB) were added in NEB: buffer 3 and incubated for 1 h at 55° C. The cleaved downstream DNA was collected and purified over a Qiagen PCR purification column (FIGS. 5 and 6).



FIG. 5 shows an analysis of digested kappa single-stranded DNA. Approximately 151.5 pmol of adapter was annealed to 3.79 pmol of immobilized kappa single-stranded DNA followed by digestion with 15 U of BsmAI. The supernatant containing the desired DNA was removed and analyzed by 5% polyacrylamide gel along with the remaining beads which contained uncleaved full length kappa DNA. 189 pmol of cleaved single-stranded DNA was purified for further analysis. Five percent of the original full length ssDNA remained on the beads.



FIG. 6 shows an analysis of the extender-cleaved kappa ligation. 180 pmol of pre-annealed bridge/extender was ligated to 1.8 pmol of BsmAI digested single-stranded DNA. The ligated DNA was purified by Qiagen PCR purification column and analyzed on a 5% polyacrylamide gel. Results indicated that the ligation of extender to single-stranded DNA was 95% efficient.


A partially double-stranded adaptor was prepared using the oligonucleotide shown in Table 23. The adaptor was added to the single-stranded DNA in 100 fold molar excess along with 1000 units of T4 DNA ligase and incubated overnight at 16° C. The excess oligonucleotide was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using the primers kapPCRt1 and kapfor shown in Table 23 for 10 cycles with the program shown in Table 24.


The soluble PCR product was run on a gel and showed a band of approximately 700 n, as expected (FIGS. 7 and 8). The DNA was cleaved with enzymes ApaLI and AscI, gel purified, and ligated to similarly cleaved vector pCES1.



FIG. 7 shows an analysis of the PCR product from the extender-kappa amplification. Ligated extender-kappa single-stranded DNA was amplified with primers specific to the extender and to the constant region of the light chain. Two different template concentrations, 10 ng versus 50 ng, were used as template and 13 cycles were used to generate approximately 1.5 ug of dsDNA as shown by 0.8% agarose gel analysis.



FIG. 8 shows an analysis of the purified PCR product from the extender-kappa amplification. Approximately 5 ug of PCR amplified extender-kappa double-stranded DNA was run out on a 0.8% agarose gel, cut out, and extracted with a GFX gel purification column. By gel analysis, 3.5 ug of double-stranded DNA was prepared.


The assay for capturing kappa chains with BsmAI was repeated and produced similar results. FIG. 9A shows the DNA after it was cleaved and collected and purified over a Qiagen PCR purification column. FIG. 9B shows the partially double-stranded adaptor ligated to the single-stranded DNA. This ligated material was then amplified (FIG. 9C). The gel showed a band of approximately 700 n.


Table 25 shows the DNA sequence of a kappa light chain captured by this procedure. Table 26 shows a second sequence captured by this procedure. The closest bridge sequence was complementary to the sequence 5′-agccacc-3′, but the sequence captured reads 5′-Tgccacc-3′, showing that some mismatch in the overlapped region is tolerated.


Example 3
Construction of Synthetic CDR1 and CDR2 Diversity in V-3-23 VH Framework

Synthetic diversity in Complementary Determinant Region (CDR) 1 and 2 was created in the 3-23 VH framework in a two step process: first, a vector containing the 3-23 VH framework was constructed; and then, a synthetic CDR 1 and 2 was assembled and cloned into this vector.


For construction of the 3-23 VH framework, 8 oligonucleotides and two PCR primers (long oligonucleotides—TOPFR1A, BOTFR1B, BOTFR2, BOTFR3, F06, BOTFR4, ON-vgC1, and ON-vgC2 and primers —SFPRMET and BOTPCRFRIM, shown in Table 27) that overlap were designed based on the Genebank sequence of 3-23 VH framework region. The design incorporated at least one useful restriction site in each framework region, as shown in Table 27. In Table 27, the segments that were synthesized are shown as bold, the overlapping regions are underscored, and the PCR priming regions at each end are underscored.


A mixture of these 8 oligos was combined at a final concentration of 2.5 uM in a 20 ul PCR reaction. The PCR mixture contained 200 uM dNTPs, 2.5 mM MgCl2, 0.02U Pfu Turbo™ DNA Polymerase, 1U Qiagen HotStart Taq DNA Polymerase, and 1X Qiagen PCR buffer. The PCR program consisted of 10 cycles of 94° C. for 30 s, 55° C. for 30 s, and 72° C. for 30 s.


The assembled 3-23 VH DNA sequence was then amplified, using 2.5 ul of a 10-fold dilution from the initial PCR in 100 ul PCR reaction. The PCR reaction contained 200 uM dNTPs, 2.5 mM MgCl2, 0.02U Pfu Turbo™ DNA Polymerase, 1U Qiagen HotStart Taq DNA Polymerase, 1X Qiagen PCR Buffer and 2 outside primers (SFPRMET and BOTPCRPRIM) at a concentration of 1 uM. The PCR program consisted of 23 cycles at 94° C. for 30 s, 55° C. for 30 s, and 72° C. for 60 s. The 3-23 VH DNA sequence was digested and cloned into pCES1 (phagemid vector) using the SfiI and BstEII restriction endonuclease sites. All restriction enzymes mentioned herein were supplied by New England BioLabs, Beverly, Mass. and used as per the manufacturer's instructions.


Stuffer sequences (shown in Table 28 and Table 29) were introduced into pCES1 to replace CDR1/CDR2 sequences (900 bases between BspEI and XbaI RE sites) and CDR3 sequences (358 bases between AflII and BstEII) prior to cloning the CDR1/CDR2 diversity. This new vector was termed pCES5 and its sequence is given in Table 29.


Having stuffers in place of the CDRs avoids the risk that a parental sequence would be over-represented in the library. The stuffer sequences are fragments from the penicillase gene of E. coli. The CDR1-2 stuffer contains restriction sites for BglII, Bsu36I, BclI, XcmI, MluI, PvuII, HpaI, and HincII, the underscored sites being unique within the vector pCES5. The stuffer that replaces CDR3 contains the unique restriction endonuclease site RsrII.


A schematic representation of the design for CDR1 and CDR2 synthetic diversity is shown FIG. 10. The design was based on the presence of mutations in DP47/3-23 and related germline genes. Diversity was designed to be introduced at the positions within CDR1 and CDR2 indicated by the numbers in FIG. 10. The diversity at each position was chosen to be one of the three following schemes: 1=ADEFGHIKLMNPQRSTVWY; 232 YRWVGS; 3=PS, in which letters encode equimolar mixes of the indicated amino acids.


For the construction of the CDR1 and CDR2 diversity, 4 overlapping oligonucleotides (oN-vgC1, ON_Br12, ON_CD2Xba, and ON-vgC2, shown in Table 27 and Table 30) encoding CDR1/2, plus flanking regions, were designed. A mixture of these 4 oligos was combined at a final concentration of 2.5 uM in a 40 ul PCR reaction. Two of the 4 oligos contained variegated sequences positioned at the CDR1 and the CDR2. The PCR mixture contained 200 uM dNTPs, 2.5U Pwo DNA Polymerase (Roche), and 1X Pwo PCR buffer with 2 mM MgSO4. The PCR program consisted of 10 cycles at 94° C. for 30 s, 60° C. for 30 s, and 72° C. for 60 s. This assembled CDR1/2 DNA sequence was amplified, using 2.5 ul of the mixture in 100 ul PCR reaction. The PCR reaction contained 200 uM dNTPs, 2.5U Pwo DNA Polymerase, 1X Pwo PCR Buffer with 2 mM MgSO4 and 2 outside primers at a concentration of 1 uM. The PCR program consisted of 10 cycles at 94° C. for 30 s, 60° C. for 30 s, and 72° C. for 60 s. These variegated sequences were digested and cloned into the 3-23 VH framework in place of the CDR1/2 stuffer.


We obtained approximately 7×107 independent transformants. CDR3 diversity either from donor populations or from synthetic DNA can be cloned into the vector containing synthetic CDR1 and CDR 2 diversity.


A schematic representation of this procedure is shown in FIG. 11. A sequence encoding the FR-regions of the human V3-23 gene segment and CDR regions with synthetic diversity was made by oligonucleotide assembly and cloning via BspE1 and Xbal sites into a vector that complements the FR1 and FR3 regions. Into this library of synthetic VH segments, the complementary VH-CDR3 sequence (top right) was cloned via Xbal an BstEll sites. The resulting cloned CH genes contain a combination of designed synthetic diversity and natural diversity (see FIG. 11).


Example 4
Cleavage and Ligation of the Lambda Light Chains with HinfI

A schematic of the cleavage and ligation of antibody light chains is shown in FIGS. 12A and 12B. Approximately 2 ug of biotinylated human Lambda DNA prepared as described in Example 1 was immobilized on 200 ul Seradyn magnetic beads. The lower strand was removed by incubation of the DNA with 200 ul of 0.1 M NaOH (pH=13) for 3 minutes, the supernatant was removed and an additional washing of 30 seconds with 200 ul of 0.1 M NaOH was performed. Supernatant was removed and the beads were neutralized with 200 ul of 10 mM Tris (pH=7.5), 100 mM NaCl. 2 additional washes with 200 ul NEB2 buffer 2, containing 10 mM Tris (pH=7.9), 50 mM NaCl, 10 mM MgCl2 and 1 mM dithiothreitol, were performed. After immobilization, the amount of ssDNA was estimated on a 5% PAGE-UREA gel.


About 0.8 ug ssDNA was recovered and incubated in 100 ul NEB2 buffer 2 containing 80 molar fold excess of an equimolar mix of ON_Lam1aB7, ON_Lam2aB7, ON_Lam31B7 and ON_Lam3rB7 [each oligo in 20 fold molar excess] (see Table 31).


The mixture was incubated at 95° C. for 5 minutes and then slowly cooled down to 50° C. over a period of 30 minutes. Excess of oligonucleotide was washed away with 2 washes of 200 ul of NEB buffer 2. 4 U/ug of Hinf I was added and incubated for 1 hour at 50° C. Beads were mixed every 10 minutes.


After incubation the sample was purified over a Qiagen PCR purification column and was subsequently analysed on a 5% PAGE-urea gel (see FIG. 13A, cleavage was more than 70% efficient).


A schematic of the ligation of the cleaved light chains is shown in FIG. 12B. A mix of bridge/extender pairs was prepared from the Brg/Ext oligo's listed in Table 31 (total molar excess 100 fold) in 1000 U of T4 DNA Ligase (NEB) and incubated overnight at 16° C. After ligation of the DNA, the excess oligonucleotide was removed with a Qiagen PCR purification column and ligation was checked on a Urea-PAGE gel (see FIG. 13B; ligation was more than 95% efficient).


Multiple PCRs were performed containing 10 ng of the ligated material in an 50 ul PCR reaction using 25 pMol ON lamPlePCR and 25 pmol of an equimolar mix of Hu-CL2AscI/HuCL7AscI primer (see Example 1).


PCR was performed at 60° C. for 15 cycles using Pfu polymerase. About 1 ug of dsDNA was recovered per PCR (see FIG. 13C) and cleaved with ApaL1 and AscI for cloning the lambda light chains in pCES2.


Example 5
Capture of Human Heavy-Chain CDR3 Population

A schematic of the cleavage and ligation of antibody light chains is shown in FIGS. 14A and 14B.


Approximately 3 ug of human heavy-chain (IgM) gene RACE material with biotin attached to 5′-end of lower strand was immobilized on 300 uL of Seradyn magnetic beads. The upper strand was removed by washing the DNA with 2 aliquots 300 uL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 300 uL of 10 mM Tris (pH 7.5) 100 mM NaCl. The REdaptors (oligonucleotides used to make single-stranded DNA locally double-stranded) shown in Table 32 were added in 30 fold molar excess in 200 uL of NEB buffer 4 (50 mM Potasium Acetate, 20 mM Tris-Acetate, 10 mM Magnesuim Acetate, 1 mM dithiothreitol pH 7.9) to the dry beads. The REadaptors were incubated with the single-stranded DNA at 80° C. for 5 minutes then cooled down to 55° C. over 30 minutes. Excess REdaptors were washed away with 2 washes of NEB buffer 4. Fifteen units of HpyCH4III (NEB) were added in NEB buffer 4 and incubated for 1 hour at 55° C. The cleaved downstream DNA remaining on the beads was removed from the beads using a Qiagen Nucleotide removal column (see FIG. 15).


The Bridge/Extender pairs shown in Table 33 were added in 25 molar excess along with 1200 units of T4 DNA ligase and incubated overnight at 16° C. Excess Bridge/Extender was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using primers H43.XAExtPCR2 and Hucumnest shown in Table 34 for 10 cycles with the program shown in Table 35.


The soluble PCR product was run on a gel and showed a band of approximately 500 n, as expected (see FIG. 15B). The DNA was cleaved with enzymes SfiI and NotI, gel purified, and ligated to similarly cleaved vector PCES1.


Example 6
Description of Phage Display Vector CJRA05, a Member of the Library Built in Vector DY3F7

Table 36 contains an annotated DNA sequence of a member of the library, CJRA05, see FIG. 16. Table 36 is to be read as follows: on each line everything that follows an exclamation mark “!” is a comment. All Occurrences of A, C, G, and T before “!” are the DNA sequence. Case is used only to show that certain bases constitute special features, such as restriction sites, ribosome binding sites, and the like, which are labeled below the DNA. CJRA05 is a derivative of phage DY3F7, obtained by cloning an ApaLI to NotI fragment into these sites in DY3F31. DY3F31 is like DY3F7 except that the light chain and heavy chain genes have been replaced by “stuffer” DNA that does not code for any antibody. DY3F7 contains an antibody that binds streptavidin, but did not come from the present library.


The phage genes start with gene ii and continue with genes x, v, vii, ix, viii, iii, vi, and iv. Gene iii has been slightly modified in that eight codons have been inserted between the signal sequence and the mature protein and the final amino acids of the signal sequence have been altered. This allows restriction enzyme recognition sites EagI and XbaI to be present. Following gene iv is the phage origin of replication (ori). After on is bla which confers resistance to ampicillin (ApR). The phage genes and bla are transcribed in the same sense.


After bla, is the Fab cassette (illustrated in FIG. 17) comprising:

    • a) PlacZ promoter,
    • b) A first Ribosome Binding Site (RBS1),
    • c) The signal sequence form M13 iii,
    • d) An ApaLI RERS,
    • e) A light chain (a kappa L20::JK1 shortened by one codon at the V-J boundary in this case),
    • f) An AscI RERS,
    • g) A second Ribosome Binding Site (RBS2),
    • h) A signal sequence, preferably PelB, which contains,
    • i) An SfiI RERS,
    • j) A synthetic 3-23 V region with diversity in CDR1 and CDR2,
    • k) A captured CDR3,
    • l) A partially synthetic J region (FR4 after BstEII),
    • m) CH1,
    • n) A NotI RERS,
    • o) A His6 tag,
    • p) A cMyc tag,
    • q) An amber codon,
    • r) An anchor DNA that encodes the same amino-acid sequence as codons 273 to 424 of M13 iii (as shown in Table 37).
    • s) Two stop codons,
    • t) An AvrII RERS, and
    • u) A trp terminator.


The anchor (item r) encodes the same amino-acid sequence as do codons 273 to 424 of M13 iii but the DNA is approximately as different as possible from the wild-type DNA sequence. In Table 36, the III′ stump runs from base 8997 to base 9455. Below the DNA, as comments, are the differences with wild-type iii for the comparable codons with “!W.T” at the ends of these lines. Note that Met and Trp have only a single codon and must be left as is. These AA types are rare. Ser codons can be changed at all three base, while Leu and Arg codons can be changed at two'.


In most cases, one base change can be introduced per codon. This has three advantages: 1) recombination with the wild-type gene carried elsewhere on the phage is less likely, 2) new restriction sites can be introduced, facilitating construction; and 3) sequencing primers that bind in only one of the two regions can be designed.


The fragment of M13 III shown in CJRA05 is the preferred length for the anchor segment. Alternative longer or shorter anchor segments defined by reference to whole mature III protein may also be utilized.


The sequence of M13 III consists of the following elements: Signal Sequence:Domain 1 (D1)::Linker 1 (L1)::Domain 2 (D2)::Linker 2 (L2)::Domain 3 (D1)::Transmembrane Segment (TM):: Intracellular anchor (IC) (see Table 38).


The pIII anchor (also known as trpIII) preferably consists of D2::L2::D3::TM::IC. Another embodiment for the pIII anchor consists of D2′::L2::D3::TM::IC (where D2′ comprises the last 21 residues of D2 with the first 109 residues deleted). A further embodiment of the pIII anchor consists of D2′(C>S)::L2::D3::TM::IC (where D2′ (C>S) is D2′ with the single C converted to S), and d) D3::TM::IC.


Table 38 shows a gene fragment comprising the NotI site, His6 tag, cMyc tag, an amber codon, a recombinant enterokinase cleavage site, and the whole of mature M13 III protein. The DNA used to encode this sequence is intentionally very different from the DNA of wild-type gene iii as shown by the lines denoted “W.T.” containing the w.t. bases where these differ from this gene. III is divided into domains denoted “domain 1”, “linker 1”, “domain 2”, “linker 2”, “domain 3”, “transmembrane segment”, and “intracellular anchor”.


Alternative preferred anchor segments (defined by reference to the sequence of Table 38) include:


codons 1-29 joined to codons 104-435, deleting domain 1 and retaining linker 1 to the end;


codons 1-38 joined to codons 104-435, deleting domain 1 and retaining the rEK cleavage site plus linker 1 to the end from III;


codons 1-29 joined to codons 236-435, deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end;


codons 1-38 joined to codons 236-435, deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end and the rEK cleavage site;


codons 1-29 joined to codons 236-935 and changing codon 240 to Ser (e.g., agc), deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end; and


codons 1-38 joined to codons 236-435 and changing codon 240 to Ser (e.g., agc), deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end and the rEK cleavage site.


The constructs would most readily be made by methods similar to those of Wang and Wilkinson (Biotechniques 2001: 31(4)722-724) in which PCR is used to copy the vector except the part to be deleted and matching restriction sites are introduced or retained at either end of the part to be kept. Table 39 shows the oligonucleotides to be used in deleting parts of the III anchor segment. The DNA shown in Table 38 has an NheI site before the DINDDRmA recombinant enterokinase cleavage site (rEKCS). If NheI is used in the deletion process with this DNA, the rEKCS site would be lost. This site could be quite useful in cleaving Fabs from the phage, and might facilitate capture of very high-afffinity antibodies. One could mutagenize this sequence so that the NheI site would follow the rEKCS site, an Ala Ser amino-acid sequence is already present. Alternatively, one could use SphI for the deletions. This would involve a slight change in amino acid sequence but would be of no consequence.


Example 7
Selection of Antigen Binders from an Enriched Library of Human Antibodies Using Phage Vector DY3F31

In this example the human antibody library used is described in de Haard et al., (Journal of Biological Chemistry, 274 (26): 18218-30 (1999). This library, consisting of a large non-immune human Fab phagemid library, was first enriched on antigen, either on streptavidin or on phenyl-oxazolone (phOx). The methods for this are well known in the art. Two preselected Fab libraries, the first one selected once on immobilized phOx-BSA (R1-ox) and the second one selected twice on streptavidin (R2-strep), were chosen for recloning.


These enriched repertoires of phage antibodies, in which only a very low percentage have binding activity to the antigen used in selection, were confirmed by screening clones in an ELISA for antigen binding. The selected Fab genes were transferred from the phagemid vector of this library to the DY3F31 vector via ApaL1-Not1 restriction sites.


DNA from the DY3F31 phage vector was pretreated with ATP dependent DNAse to remove chromosomal DNA and then digested with ApaL1 and Not1. An extra digestion with AscI was performed in between to prevent self-ligation of the vector. The ApaL1/NotI Fab fragment from the preselected libraries was subsequently ligated to the vector DNA and transformed into competent XL1-blue MRF′ cells.


Libraries were made using vector:insert ratios of 1:2 for phOx-library and 1:3 for STREP library, and using 100 ng ligated DNA per 50 μl of electroporation-competent cells (electroporation conditions:one shock of 1700 V, 1 hour recovery of cells in rich SOC medium, plating on amplicillin-containing agar plates).


This transformation resulted in a library size of 1.6×106 for R1-ox in DY3F31 and 2.1×106 for R2-strep in DY3F31. Sixteen colonies from each library were screened for insert, and all showed the correct size insert (±1400 bp) (for both libraries).


Phage was prepared from these Fab libraries as follows. A representative sample of the library was inoculated in medium with ampicillin and glucose, and at OD 0.5, the medium exchanged for ampicillin and 1 mM IPTG. After overnight growth at 37° C., phage was harvested from the supernatant by PEG-NaCl precipitation. Phage was used for selection on antigen. R1-ox was selected on phOx-BSA coated by passive adsorption onto immunotubes and R2-strep on streptavidin coated paramagnetic beads (Dynal, Norway), in procedures described in de Haard et. al. and Marks et. al., Journal of Molecular Biology, 222(3): 581-97 (1991). Phage titers and enrichments are given in Table 40.


Clones from these selected libraries, dubbed R2-ox and R3-strep respectively, were screened for binding to their antigens in ELISA. 44 clones from each selection were picked randomly and screened as phage or soluble Fab for binding in ELISA. For the libraries in DY3F31, clones were first grown in 2TY-2% glucose-50 μg/ml AMP to an OD600 of approximately 0.5, and then grown overnight in 2TY-50 μg/ml AMP +/−1 mM IPTG. Induction with IPTG may result in the production of both phage-Fab and soluble Fab. Therefore the (same) clones were also grown without IPTG. Table 41 shows the results of an ELISA screening of the resulting supernatant, either for the detection of phage particles with antigen binding (Anti-M13 HRP=anti-phage antibody), or for the detection of human Fabs, be it on phage or as soluble fragments, either with using the anti-myc antibody 9E10 which detects the myc-tag that every Fab carries at the C-terminal end of the heavy chain followed by a HRP-labeled rabbit-anti-Mouse serum (column 9E10/RAM-HRP), or with anti-light chain reagent followed by a HRP-labeled goat-anti-rabbit antiserum(anti-CK/CL Gar-HRP).


The results shows that in both cases antigen-binders are identified in the library, with as Fabs on phage or with the anti-Fab reagents (Table 41). IPTG induction yields an increase in the number of positives. Also it can be seen that for the phOx-clones, the phage ELISA yields more positives than the soluble Fab ELISA, most likely due to the avid binding of phage. Twenty four of the ELISA-positive clones were screened using PCR of the Fab-insert from the vector, followed by digestion with BstNI. This yielded 17 different patterns for the phOx-binding Fab's in 23 samples that were correctly analyzed, and 6 out of 24 for the streptavidin binding clones. Thus, the data from the selection and screening from this pre-enriched non-immune Fab library show that the DY3F31 vector is suitable for display and selection of Fab fragments, and provides both soluble Fab and Fab on phage for screening experiments after selection.


Example 8
Selection of Phage-Antibody Libraries on Streptavidin Magnetic-Beads

The following example describes a selection in which one first depletes a sample of the library of binders to streptavidin and optionally of binders to a non-target (i.e., a molecule other than the target that one does not want the selected Fab to bind). It is hypothesized that one has a molecule, termed a “competitive ligand”, which binds the target and that an antibody which binds at the same site would be especially useful.


For this procedure Streptavidin Magnetic Beads (Dynal) were blocked once with blocking solution (2% Marvel Milk, PBS (pH 7.4), 0.01% Tween-20 (“2% MPBST”)) for 60 minutes at room temperature and then washed five times with 2% MPBST. 450 μL of beads were blocked for each depletion and subsequent selection set.


Per selection, 6.25 μL of biotinylated depletion target (1 mg/mL stock in PEST) was added to 0:250 mL of washed, blocked beads (from step 1). The target was allowed to bind overnight, with tumbling, at 4° C. The next day, the beads are washed 5 times with PBST.


Per selection, 0.010 mL of biotinylated target antigen (1 mg/mL stock in PBST) was added to 0.100 mL of blocked and washed beads (from step 1). The antigen was allowed to bind overnight, with tumbling, at 4° C. The next day, the beads were washed 5 times with PBST.


In round 1, 2×1012 up to 1013 plaque forming units (pfu) per selection were blocked against non-specific binding by adding to 0.500 mL of 2% MPBS (=2% MPBST without Tween) for 1 hr at RT (tumble). In later rounds, 1011 pfu per selection were blocked as done in round 1.


Each phage pool was incubated with 50 μL of depletion target beads (final wash supernatant removed just before use) on a Labquake rotator for 10 min at room temperature. After incubation, the phage supernatant was removed and incubated with another 50 μL of depletion target beads. This was repeated 3 more times using depletion target beads and twice using blocked streptavidin beads for a total of 7 rounds of depletion, so each phage pool required 350 μL of depletion beads.


A small sample of each depleted library pool was taken for titering. Each library pool was added to 0.100 mL of target beads (final wash supernatant was removed just before use) and allowed to incubate for 2 hours at room temperature (tumble).


Beads were then washed as rapidly as possible (e.g., 3 minutes total) with 5×0.500 mL PBST and then 2X with PBS. Phage still bound to beads after the washing were eluted once with 0.250 mL of competitive ligand (˜1 μμM) in PBST for 1 hour at room temperature on a Labquake rotator. The eluate was removed, mixed with 0.500 mL Minimal A salts solution and saved. For a second selection, 0.500 mL 100 mM TEA was used for elution for 10 min at RT, then neutralized in a mix of 0.250 mL of 1 M Tris, pH 7.4+0.500 mL Min A salts.


After the first selection elution, the beads can be eluted again with 0.300 mL of non-biotinylated target. (1 mg/mL) for 1 hr at RT on a Labquake rotator. Eluted phage are added to 0.450 mL Minimal A salts.


Three eluates (competitor from 1st selection, target from 1st selection and neutralized TEA elution from 2nd selection) were kept separate and a small aliquot taken from each for titering. 0.500 mL Minimal A salts were added to the remaining bead aliquots after competitor and target elution and after. TEA elution. Take a small aliquot from each was taken for tittering.


Each elution and each set of eluted beads was mixed with 2X YT and an aliquot (e.g., 1 mL with 1. E 10/mL) of XL1-Blue MRF′ E. coli cells (or other F′ cell line) which had been chilled on ice after having been grown to mid-logarithmic phase, starved and concentrated (see procedure below—“Mid-Log prep of XL-1 blue MRF′ cells for infection”).


After approximately 30 minutes at room temperature, the phage/cell mixtures were spread onto Bio-Assay Dishes (243×243×18 mm, Nalge Nunc) containing 2XYT, 1 mM IPTG agar. The plates were incubated overnight at 30° C. The next day, each amplified phage culture was harvested from its respective plate. The plate was flooded with 35 mL TBS or LB, and cells were scraped from the plate. The resuspended cells were transferred to a centrifuge bottle. An additional 20 mL TBS or LB was used to remove any cells from the plate and pooled with the cells in the centrifuge bottle. The cells were centrifuged out, and phage in the supernatant was recovered by PEG precipitation. Over the next day, the amplified phage preps were titered.


In the first round, two selections yielded five amplified eluates. These amplified eluates were panned for 2-3 more additional rounds of selection using ˜1. E 12 input phage/round. For each additional round, the depletion and target beads were prepared the night before the round was initiated.


For the elution steps in subsequent rounds, all elutions up to the elution step from which the amplified elution came from were done, and the previous elutions were treated as washes. For the bead infection amplified phage, for example, the competitive ligand and target elutions were done and then tossed as washes (see below). Then the beads were used to infect E. coli. Two pools, therefore, yielded a total of 5 final elutions at the end of the selection.


1st Selection Set

    • A. Ligand amplified elution: elute w/ ligand for 1 hr, keep as elution
    • B. Target amplified elution: elute w/ ligand for 1 hr, toss as wash elute w/ target for 1 hr, keep as elution
    • C. Bead infect, amp. elution: elute w/ligand for 1 hr, toss as wash elute w/ target for 1 hr, toss as wash elute w/ cell infection, keep as elution


2nd Selection Set

    • A. TEA amplified elution; elute w/ TEA 10 min, keep as elution
    • B. Bead infect. amp. elution; elute w/TEA 10 mm, toss as wash elute w/ cell infection, keep as elution


Mid-Log Prep of XL1 Blue MRF′ Cells for Infection (Based on Barbas et al. Phage Display Manual Procedure)


Culture XL1 blue MRF′ in NZCYM (12.5 mg/mL tet) at 37° C. and 250 rpm overnight. Started at 500 mL culture in 2 liter flask by diluting cells 1/50 in NZCYM/tet (10 mL overnight culture added) and incubated at 37° C. at rpm until OD606 of 0.45 (1.5-2 hrs) was reached. Shaking was reduced to 100 rpm for 10 min. When OD600 reached between 0.55-0.65, cells were transferred to 2×250 mL centrifuge bottles, centrifuged at 600 g for 15 min at 4° C. Supernatant was poured off. Residual liquid was removed with a pipette.


The pellets were gently resuspended (not pipetting up and down) in the original volume of 1X Minimal A salts at room temp. The resuspended cells were transferred back into 2-liter flask, shaken at 100 rpm for 45 min at 37° C. This process was performed in order to starve the cells and restore pili. The cells were transferred to 2×250 mL centrifuge bottles, and centrifuged as earlier.


The cells were gently resuspended in ice cold Minimal A salts (5 mL per 500 mL original culture). The cells were put on ice for use in infections as soon as possible.


The phage eluates were brought up to 7.5 mL with 2XYT medium and 2.5 mL of cells were added. Beads were brought up to 3 mL with 2XYT and 1 mL of cells were added. Incubated at 37° C. for 30 min. The cells were plated on 2XYT, 1 mM IPTG agar large NUNC plates and incubated for 18 hr at 30° C.


Example 9
Incorporation of Synthetic Region in FR1/3 Region

Described below are examples for incorporating of fixed residues in antibody sequences for light chain kappa and lambda genes, and for heavy chains. The experimental conditions and oligonucleotides used for the examples below have been described in previous examples (e.g., Examples 3 & 4).


The process for incorporating fixed FR1 residues in an antibody lambda sequence consists of 3 steps (see FIG. 18): (1) annealing of single-stranded DNA material encoding VL genes to a partially complementary oligonucleotide mix (indicated with Ext and Bridge), to anneal in this example to the region encoding residues 5-7 of the FR1 of the lambda genes (indicated with X..X; within the lambda genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VL gene. In this process the first few residues of all lambda genes will be encoded by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr). After the PCR, the lambda genes can be cloned using the indicated restriction site for ApaLI.


The process for incorporating fixed FR1 residues in an antibody kappa-sequence (FIG. 19) consists of 3 steps: (1) annealing of single-stranded DNA material encoding VK genes to a partially complementary oligonucleotide mix (indicated with Ext and Bri), to anneal in this example to the region encoding residues 8-10 of the FR1 of the kappa genes (indicated with X..X; within the kappa genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VK gene. In this process the first few (8) residues of all kappa genes will be encode by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr.). After the PCR, the kappa genes can be cloned using the indicated restriction site for ApaLI.


The process of incorporating fixed FR3 residues in a antibody heavy chain sequence (FIG. 20) consists of 3 steps: (1) annealing of single-stranded DNA material encoding part of the VH genes (for example encoding FR3, CDR3 and FR4 regions) to a partially complementary oligonucleotide mix (indicated with Ext and Bridge), to anneal in this example to the region encoding residues 92-94 (within the FR3 region) of VH genes (indicated with X..X; within the VH genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VH gene (such as in the FR4 region). In this process certain residues of all VH genes will be encoded by the sequences present in the oligonucleotides used here, in particular from PCRpr (for residues 70-73), or from Ext/Bridge oligonucleotides (residues 74-91). After the PCR, the partial VH genes can be cloned using the indicated restriction site for XbaI.


It will be understood that the foregoing is only illustrative Of the principles of this invention and that various modifications can be made by those skilled in the art without departing from the scope of and sprit of the invention.









TABLE 1





Human GLG FR3 sequences















VH1


66  67  68  69  70  71  72  73  74  75  76  77  78  79  80


agg gtc acc atg acc agg gac acg tcc atc agc aca gcc tac atg


81  82  82a 82b 82c 83  84  85  86  87  88  89  90  91  92


gag ctg agc agg ctg aga tct gac gac acg gcc gtg tat tac tgt


93  94  95


gcg aga ga ! 1-02# 1


aga gtc acc att acc agg gac aca tcc gcg agc aca gcc tac atg


gag ctg agc agc ctg aga tct gaa gac acg gct gtg tat tac tgt


gcg aga ga ! 1-03# 2


aga gtc acc atg acc agg aac acc tcc ata agc aca gcc tac atg


gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt


gcg aga gg ! 1-08# 3


aga gtc acc atg acc aca gac aca tcc acg agc aca gcc tac atg


gag ctg agg agc ctg aga tct gac gac acg gcc gtg tat tac tgt


gcg aga ga ! 1-18# 4


aga gtc acc atg acc gag gac aca tct aca gac aca gcc tac atg


gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt


gca aca ga ! 1-24# 5


aga gtc acc att acc agg gac agg tct atg agc aca gcc tac atg


gag ctg agc agc ctg aga tct gag gac aca gcc atg tat tac tgt


gca aga ta ! 1-45# 6


aga gtc acc atg acc agg gac acg tcc acg agc aca gtc tac atg


gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt


gcg aga ga ! 1-46# 7


aga gtc acc att acc agg gac atg tcc aca agc aca gcc tac atg


gag ctg agc agc ctg aga tcc gag gac acg gcc gtg tat tac tgt


gcg gca ga ! 1-58# 8


aga gtc acg att acc gcg gac gaa tcc acg agc aca gcc tac atg


gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt


gcg aga ga ! 1-69# 9


aga gtc acg att acc gcg gac aaa tcc acg agc aca gcc tac atg


gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt


gcg aga ga ! 1-e# 10


aga gtc acc ata acc gcg gac acg tct aca gac aca gcc tac atg


gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt


gca aca ga ! 1-f# 11





VH2


agg ctc acc atc acc aag gac acc tcc aaa aac cag gtg gtc ctt


aca atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt


gca cac aga c! 2-05# 12


agg ctc acc atc tcc aag gac acc tcc aaa agc cag gtg gtc ctt


acc atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt


gca cgg ata c! 2-26# 13


agg ctc acc atc tcc aag gac acc tcc aaa aac cag gtg gtc ctt


aca atg acc aac atg gac cct gtg gac aca gcc acg tat tac tgt


gca cgg ata c! 2-70# 14





VH3


cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg


caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt


gcg aga ga ! 3-07# 15


cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg


caa atg aac agt ctg aga gct gag gac acg gcc ttg tat tac tgt


gca aaa gat a! 3-09# 16


cga ttc acc atc tcc agg gac aac gcc aag aac tca ctg tat ctg


caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt


gcg aga ga ! 3-11# 17


cga ttc acc atc tcc aga gaa aat gcc aag aac tcc ttg tat ctt


caa atg aac agc ctg aga gcc ggg gac acg gct gtg tat tac tgt


gca aga ga ! 3-13# 18


aga ttc acc atc tca aga gat gat tca aaa aac acg ctg tat ctg


caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt


acc aca ga ! 3-15# 19


cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg


caa atg aac agt ctg aga gcc gag gac acg gcc ttg tat cac tgt


gcg aga ga ! 3-20# 20


cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg


caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt


gcg aga ga ! 3-21# 21


cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg


caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt


gcg aaa ga ! 3-23# 22


cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg


caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt


gcg aaa ga ! 3-30# 23


cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg


caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt


gcg aga ga ! 3303# 24


cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg


caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt


gcg aaa ga ! 3305# 25


cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg


caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt


gca aga ga ! 3-33# 26


cga ttc acc atc tcc aga gac aac agc aaa aac tcc ctg tat ctg


caa atg aac agt ctg aga act gag gac acc gcc ttg tat tac tgt


gca aaa gat a! 3-43#27


cga ttc acc atc tcc aga gac aat gcc aag aac tca ctg tat ctg


caa atg aac agc ctg aga gac gag gac acg gct gtg tat tac tgt


gcg aga ga ! 3-48# 28


aga ttc acc atc tca aga gat ggt tcc aaa agc atc gcc tat ctg


caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt


act aga ga ! 3-49# 29


cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt


caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt


gcg aga ga ! 3-53# 30


aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt


caa atg ggc agc ctg aga gct gag gac atg gct gtg tat tac tgt


gcg aga ga ! 3-64# 31


aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt


caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt


gcg aga ga ! 3-66# 32


aga ttc acc atc tca aga gat gat tca aag aac tca ctg tat ctg


caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt


gct aga ga ! 3-72# 33


agg ttc acc atc tcc aga gat gat tca aag aac acg gcg tat ctg


caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt


act aga ca ! 3-73# 34


cga ttc acc atc tcc aga gac aac gcc aag aac acg ctg tat ctg


caa atg aac agt ctg aga gcc gag gac acg gct gtg tat tac tgt


gca aga ga ! 3-74# 35


aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg cat ctt


caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt


aag aaa ga ! 3-d# 36





VH4


cga gtc acc ata tca gta gac aag tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tat tac tgt


gcg aga ga ! 4-04# 37


cga gtc acc atg tca gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gcc gtg gac acg gcc gtg tat tac tgt


gcg aga aa ! 4-28# 38


cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg


aag ctg agc tct gtg act gcc gcg gac acg gcc gtg tat tac tgt


gcg aga ga ! 4301# 39


cga gtc acc ata tca gta gac agg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tat tac tgt


gcc aga ga ! 4302# 40


cga gtt acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg act gcc gca gac acg gcc gtg tat tac tgt


gcc aga ga ! 4304# 41


cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg


aag ctg agc tct gtg act gcc gcg gac acg gcc gtg tat tac tgt


gcg aga ga ! 4-31# 42


cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gcc gcg gac acg gct gtg tat tac tgt


gcg aga ga ! 4-34# 43


cga gtc acc ata tcc gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gcc gca gac acg gct gtg tat tac tgt


gcg aga ca ! 4-39# 44


cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt


gcg aga ga ! 4-59# 45


cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt


gcg aga ga ! 4-61# 46


cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg


aag ctg agc tct gtg acc gcc gca gac acg gcc gtg tat tac tgt


gcg aga ga ! 4-b# 47





VH5


cag gtc acc atc tca gcc gac aag tcc atc agc acc gcc tac ctg


cag tgg agc agc ctg aag gcc tcg gac acc gcc atg tat tac tgt


gcg aga ca ! 5-51# 48


cac gtc acc atc tca gct gac aag tcc atc agc act gcc tac ctg


cag tgg agc agc ctg aag gcc tcg gac acc gcc atg tat tac tgt


gcg aga ! 5-a# 49





VH6


cga ata acc atc aac cca gac aca tcc aag aac cag ttc tcc ctg


cag ctg aac tct gtg act ccc gag gac acg gct gtg tat tac tgt


gca aga ga ! 6-1# 50





VH7


cgg ttt gtc ttc tcc ttg gac acc tct gtc agc acg gca tat ctg


cag atc tgc agc cta aag gct gag gac act gcc gtg tat tac tgt


gcg aga ga ! 74.1# 51
















TABLE 2







Enzymes that either cut 15 or more human GLGs or have 5+-base


recognition in FR3







Typical entry:









REname
Recognition
#sites







GLGid#: base# GLGid#: base# GLGid#: base# . . .












BstEII
Ggtnacc
 2








 1: 3
48: 3







There are 2 hits at base# 3









MaeIII
gtnac
36












 1: 4
 2: 4
 3: 4
 4: 4
 5: 4
 6: 4


 7: 4
 8: 4
 9: 4
10: 4
11: 4
37: 4


37: 58
38: 4
38: 58
39: 4
39: 58
40: 4


40: 58
41: 4
41: 58
42: 4
42: 58
43: 4


43: 58
44: 4
44: 58
45: 4
45: 58
46: 4


46: 58
47: 4
47: 58
48: 4
49: 4
50: 58







There are 24 hits at base# 4









Tsp45I
gtsac
33












 1: 4
 2: 4
 3: 4
 4: 4
 5: 4
 6: 4


 7: 4
 8: 4
 9: 4
10: 4
11: 4
37: 4


37: 58
38: 4
38: 58
39: 58
40: 4
40: 58


41: 58
42: 58
43: 4
43: 58
44: 4
44: 58


45: 4
45: 58
46: 4
46: 58
47: 4
47: 58


48: 4
49: 4
50: 58







There are 21 hits at base# 4









HphI
tcacc
45












 1: 5
 2: 5
 3: 5
 4: 5
 5: 5
 6: 5


 7: 5
 8: 5
11: 5
12: 5
12: 11
13: 5


14: 5
15: 5
16: 5
17: 5
18: 5
19: 5


20: 5
21: 5
22: 5
23: 5
24: 5
25: 5


26: 5
27: 5
28: 5
29: 5
30: 5
31: 5


32: 5
33: 5
34: 5
35: 5
36: 5
37: 5


38: 5
40: 5
43: 5
44: 5
45: 5
46: 5


47: 5
48: 5
49: 5







There are 44 hits at base# 5









NlaIII
CATG
26












 1: 9
 1: 42
 2: 42
 3: 9
 3: 42
 4: 9


 4: 42
 5: 9
 5: 42
 6: 42
 6: 78
 7: 9


 7: 42
 8: 21
 8: 42
 9: 42
10: 42
11: 42


12: 57
13: 48
13: 57
14: 57
31: 72
38: 9


48: 78
49: 78







There are 11 hits at base# 42


There are 1 hits at base# 48 Could cause raggedness.









BsaJI
Ccnngg
37












 1: 14
 2: 14
 5: 14
 6: 14
 7: 14
 8: 14


 8: 65
 9: 14
10: 14
11: 14
12: 14
13: 14


14: 14
15: 65
17: 14
17: 65
18: 65
19: 65


20: 65
21: 65
22: 65
26: 65
29: 65
30: 65


33: 65
34: 65
35: 65
37: 65
38: 65
39: 65


40: 65
42: 65
43: 65
48: 65
49: 65
50: 65


51: 14







There are 23 hits at base# 65


There are 14 hits at base# 14









AluI
AGct
42












 1: 47
 2: 47
 3: 47
 4: 47
 5: 47
 6: 47


 7: 47
 8: 47
 9: 47
10: 47
11: 47
16: 63


23: 63
24: 63
25: 63
31: 63
32: 63
36: 63



37: 47


37: 52


38: 47


38: 52


39: 47


39: 52




40: 47


40: 52


41: 47


41: 52


42: 47


42: 52




43: 47


43: 52


44: 47


44: 52


45: 47


45: 52




46: 47


46: 52


47: 47


47: 52

49: 15
50: 47







There are 23 hits at base# 47


There are 11 hits at base# 52 Only 5 bases from 47









BlpI
GCtnagc
21












 1: 48
 2: 48
 3: 48
 5: 48
 6: 48
 7: 48


 8: 48
 9: 48
10: 48
11: 48
37: 48
38: 48


39: 48
40: 48
41: 48
42: 48
43: 48
44: 48


45: 48
46: 48
47: 48







There are 21 hits at base# 48









MwoI
GCNNNNNnngc
19












 1: 48
 2: 28
19: 36
22: 36
23: 36
24: 36


25: 36
26: 36
35: 36
37: 67
39: 67
40: 67


41: 67
42: 67
43: 67
44: 67
45: 67
46: 67


47: 67







There are 10 hits at base# 67


There are 7 hits at base# 36









DdeI
Ctnag
71












 1: 49
 1: 58
 2: 49
 2: 58
 3: 49
 3: 58


 3: 65
 4: 49
 4: 58
 5: 49
 5: 58
 5: 65


 6: 49
6: 58
6: 65
 7: 49
7: 58
7: 65


 8: 49
 8: 58
 9: 49
9: 58
9: 65
10: 49



10: 58


10: 65

11: 49

11: 58


11: 65

15: 58



16: 58


16: 65

17: 58
18: 58
20: 58
21: 58


22: 58

23: 58


23: 65


24: 58


24: 65


25: 58




25: 65

26: 58

27: 58


27: 65

28: 58
30: 58



31: 58


31: 65


32: 58


32: 65

35: 58

36: 58




36: 65

37: 49
38: 49
39: 26
39: 49
40: 49


41: 49
42: 26
42: 49
43: 49
44: 49
45: 49


46: 49
47: 49
48: 12
49: 12
51: 65







There are 29 hits at base# 58


There are 22 hits at base# 49 Only nine base from 58


There are 16 hits at base# 65 Only seven bases from 58









BglII
Agatct
11












 1: 61
 2: 61
 3: 61
 4: 61
 5: 61
 6: 61


 7: 61
 9: 61
10: 61
11: 61
51: 47







There are 10 hits at base# 61









BstYI
Rgatcy
12












 1: 61
 2: 61
 3: 61
 4: 61
 5: 61
 6: 61


 7: 61
 8: 61
 9: 61
10: 61
11: 61
51: 47







There are 11 hits at base# 61









Hpy188I
TCNga
17












 1: 64
 2: 64
 3: 64
 4: 64
 5: 64
 6: 64


 7: 64
 8: 64
 9: 64
10: 64
11: 64
16: 57


20: 57
27: 57
35: 57
48: 67
49: 67







There are 11 hits at base# 64


There are 4 hits at base# 57


There are 2 hits at base# 67 Could be ragged.









MslI
CAYNNnnRTG
44












 1: 72
 2: 72
 3: 72
 4: 72
 5: 72
 6: 72


 7: 72
 8: 72
 9: 72
10: 72
11: 72
15: 72


17: 72
18: 72
19: 72
21: 72
23: 72
24: 72


25: 72
26: 72
28: 72
29: 72
30: 72
31: 72


32: 72
33: 72
34: 72
35: 72
36: 72
37: 72


38: 72
39: 72
40: 72
41: 72
42: 72
43: 72


44: 72
45: 72
46: 72
47: 72
48: 72
49: 72


50: 72
51: 72







There are 44 hits at base# 72









BsiEI
CGRYcg
23












 1: 74
 3: 74
 4: 74
 5: 74
 7: 74
 8: 74


 9: 74
10: 74
11: 74
17: 74
22: 74
30: 74


33: 74
34: 74
37: 74
38: 74
39: 74
40: 74


41: 74
42: 74
45: 74
46: 74
47: 74







There are 23 hits at base# 74









EaeI
Yggccr
23












 1: 74
 3: 74
 4: 74
 5: 74
 7: 74
 8: 74


 9: 74
10: 74
11: 74
17: 74
22: 74
30: 74


33: 74
34: 74
37: 74
38: 74
39: 74
40: 74


41: 74
42: 74
45: 74
46: 74
47: 74







There are 23 hits at base# 74









EagI
Cggccg
23












 1: 74
 3: 74
 4: 74
 5: 74
 7: 74
 8: 74


 9: 74
10: 74
11: 74
17: 74
22: 74
30: 74


33: 74
34: 74
37: 74
38: 74
39: 74
40: 74


41: 74
42: 74
45: 74
46: 74
47: 74







There are 23 hits at base# 74









HaeIII
GGcc
27












 1: 75
 3: 75
 4: 75
 5: 75
 7: 75
 8: 75


 9: 75
10: 75
11: 75
16: 75
17: 75
20: 75


22: 75
30: 75
33: 75
34: 75
37: 75
38: 75


39: 75
40: 75
41: 75
42: 75
45: 75
46: 75


47: 75
48: 63
49: 63







There are 25 hits at base# 75









Bst4CI
ACNgt 65° C.
63 Sites There is a third isoschismer












 1: 86
 2: 86
 3: 86
 4: 86
 5: 86
 6: 86


 7: 34
 7: 86
 8: 86
 9: 86
10: 86
11: 86


12: 86
13: 86
14: 86
15: 36
15: 86
16: 53


16: 86
17: 36
17: 86
18: 86
19: 86
20: 53


20: 86
21: 36
21: 86
22: 0
22: 86
23: 86


24: 86
25: 86
26: 86
27: 53
27: 86
28: 36


28: 86
29: 86
30: 86
31: 86
32: 86
33: 36


33: 86
34: 86
35: 53
35: 86
36: 86
37: 86


38: 86
39: 86
40: 86
41: 86
42: 86
43: 86


44: 86
45: 86
46: 86
47: 86
48: 86
49: 86


50: 86
51: 0
51: 86







There are 51 hits at base# 86 All the other sites are well away









HpyCH4III
ACNgt
63












 1: 86
 2: 86
 3: 86
 4: 86
 5: 86
 6: 86


 7: 34
 7: 86
 8: 86
 9: 86
10: 86
11: 86


12: 86
13: 86
14: 86
15: 36
15: 86
16: 53


16: 86
17: 36
17: 86
18: 86
19: 86
20: 53


20: 86
21: 36
21: 86
22: 0
22: 86
23: 86


24: 86
25: 86
26: 86
27: 53
27: 86
28: 36


28: 86
29: 86
30: 86
31: 86
32: 86
33: 36


33: 86
34: 86
35: 53
35: 86
36: 86
37: 86


38: 86
39: 86
40: 86
41: 86
42: 86
43: 86


44: 86
45: 86
46: 86
47: 86
48: 86
49: 86


50: 86
51: 0
51: 86







There are 51 hits at base# 86









HinfI
Gantc
43












 2: 2
 3: 2
 4: 2
 5: 2
 6: 2
 7: 2


 8: 2
 9: 2
 9: 22
10: 2
11: 2
15: 2


16: 2
17: 2
18: 2
19: 2
19: 22
20: 2


21: 2
23: 2
24: 2
25: 2
26: 2
27: 2


28: 2
29: 2
30: 2
31: 2
32: 2
33: 2


33: 22
34: 22
35: 2
36: 2
37: 2
38: 2


40: 2
43: 2
44: 2
45: 2
46: 2
47: 2


50: 60







There are 38 hits at base# 2









MlyI
GAGTCNNNNNn
18












 2: 2
 3: 2
 4: 2
 5: 2
 6: 2
 7: 2


 8: 2
 9: 2
10: 2
11: 2
37: 2
38: 2


40: 2
43: 2
44: 2
45: 2
46: 2
47: 2







There are 18 hits at base# 2









PleI
gagtc
18












 2: 2
 3: 2
 4: 2
 5: 2
 6: 2
 7: 2


 8: 2
 9: 2
10: 2
11: 2
37: 2
38: 2


40: 2
43: 2
44: 2
45: 2
46: 2
47: 2







There are 18 hits at base# 2









AciI
Ccgc
24












 2: 26
 9: 14
10: 14
11: 14
27: 74

37: 62




37: 65

38: 62
39: 65

40: 62


40: 65

41: 65


42: 65

43: 62


43: 65


44: 62


44: 65

45: 62


46: 62

47: 62


47: 65

48: 35
48: 74
49: 74







There are 8 hits at base# 62


There are 8 hits at base# 65


There are 3 hits at base# 14


There are 3 hits at base# 74


There are 1 hits at base# 26


There are 1 hits at base# 35









-″-
Gcgg
11












 8: 91
 9: 16
10: 16
11: 16
37: 67
39: 67


40: 67
42: 67
43: 67
45: 67
46: 67







There are 7 hits at base# 67


There are 3 hits at base# 16


There are 1 hits at base# 91









BsiHKAI
GWGCWc
20












 2: 30
 4: 30
 6: 30
 7: 30
 9: 30
10: 30


12: 89
13: 89
14: 89
37: 51
38: 51
39: 51


40: 51
41: 51
42: 51
43: 51
44: 51
45: 51


46: 51
47: 51







There are 11 hits at base# 51









Bsp1286I
GDGCHc
20












 2: 30
 4: 30
 6: 30
 7: 30
 9: 30
10: 30


12: 89
13: 89
14: 89
37: 51
38: 51
39: 51


40: 51
41: 51
42: 51
43: 51
44: 51
45: 51


46: 51
47: 51







There are 11 hits at base# 51









HgiAI
GWGCWc
20












 2: 30
 4: 30
 6: 30
 7: 30
 9: 30
10: 30


12: 89
13: 89
14: 89
37: 51
38: 51
39: 51


40: 51
41: 51
42: 51
43: 51
44: 51
45: 51


46: 51
47: 51







There are 11 hits at base# 51









BsoFI
GCngc
26












 2: 53
 3: 53
 5: 53
 6: 53
 7: 53
 8: 53


 8: 91
 9: 53
10: 53
11: 53
31: 53
36: 36


37: 64
39: 64
40: 64
41: 64
42: 64
43: 64


44: 64
45: 64
46: 64
47: 64
48: 53
49: 53


50: 45
51: 53







There are 13 hits at base# 53


There are 10 hits at base# 64









TseI
Gcwgc
17












 2: 53
 3: 53
 5: 53
 6: 53
 7: 53
 8: 53


 9: 53
10: 53
11: 53
31: 53
36: 36
45: 64


46: 64
48: 53
49: 53
50: 45
51: 53







There are 13 hits at base# 53









MnlI
gagg
34












 3: 67
 3: 95
 4: 51
 5: 16
 5: 67
 6: 67


 7: 67
 8: 67
 9: 67
10: 67
11: 67
15: 67


16: 67
17: 67
19: 67
20: 67
21: 67
22: 67


23: 67
24: 67
25: 67
26: 67
27: 67
28: 67


29: 67
30: 67
31: 67
32: 67
33: 67
34: 67


35: 67
36: 67
50: 67
51: 67







There are 31 hits at base# 67









HpyCH4V
TGca
34












 5: 90
 6: 90
11: 90
12: 90
13: 90
14: 90


15: 44
16: 44
16: 90
17: 44
18: 90
19: 44


20: 44
21: 44
22: 44
23: 44
24: 44
25: 44


26: 44
27: 44
27: 90
28: 44
29: 44
33: 44


34: 44
35: 44
35: 90
36: 38
48: 44
49: 44


50: 44
50: 90
51: 44
51: 52







There are 21 hits at base# 44


There are 1 hits at base# 52









AccI
GTmkac
13 5-base recognition












 7: 37
11: 24
37: 16
38: 16
39: 16
40: 16


41: 16
42: 16
43: 16
44: 16
45: 16
46: 16


47: 16







There are 11 hits at base# 16









SacII
CCGCgg
 8 6-base recognition












 9: 14
10: 14
11: 14
37: 65
39: 65
40: 65


42: 65
43: 65







There are 5 hits at base# 65


There are 3 hits at base# 14









TfiI
Gawtc
24












 9: 22
15: 2
16: 2
17: 2
18: 2
19: 2


19: 22
20: 2
21: 2
23: 2
24: 2
28: 2


26: 2
27: 2
28: 2
29: 2
30: 2
31: 2


32: 2
33: 2
33: 22
34: 22
35: 2
36: 2







There are 20 hits at base# 2









BsmAI
Nnnnnngagac
19












15: 11
16: 11
20: 11
21: 11
22: 11
23: 11


24: 11
25: 11
26: 11
27: 11
26: 11
28: 56


30: 11
31: 11
32: 11
35: 11
36: 11
44: 87


48: 87







There are 16 hits at base# 11









BpmI
ctccag
19












15: 12
16: 12
17: 12
18: 12
20: 12
21: 12


22: 12
23: 12
24: 12
25: 12
26: 12
27: 12


28: 12
30: 12
31: 12
32: 12
34: 12
35: 12


36: 12







There are 19 hits at base# 12









XmnI
GAANNnnttc
12












37: 30
38: 30
39: 30
40: 30
41: 30
42: 30


43: 30
44: 30
45: 30
46: 30
47: 30
50: 30







There are 12 hits at base# 30









BsrI
NCcagt
12












37: 32
38: 32
39: 32
40: 32
41: 32
42: 32


43: 32
44: 32
45: 32
46: 32
47: 32
50: 32







There are 12 hits at base# 32









BanII
GRGCYc
11












37: 51
38: 51
39: 51
40: 51
41: 51
42: 51


43: 51
44: 51
45: 51
46: 51
47: 51







There are 11 hits at base# 51









Ec1136I
GAGctc
11












37: 51
38: 51
39: 51
40: 51
41: 51
42: 51


43: 51
44: 51
45: 51
46: 51
47: 51







There are 11 hits at base# 51









SacI
GAGCTc
11












37: 51
38: 51
39: 51
40: 51
41: 51
42: 51


43: 51
44: 51
45: 51
46: 51
47: 51







There are 11 hits at base# 51
















TABLE 3





Synthetic 3-23 FR3 of human heavy chains showning positions of possible


cleavage sites















Sites engineered into the synthetic gene are shown in upper case


DNA


with the RE name between vertical bars (as in | XbaI |).


RERSs frequently found in GLGs are shown below the synthetic


sequence


with the name to the right (as in gtn ac=MaeIII(24), indicating


that


24 of the 51 GLGs contain the site).


(---FR3---


89 90 (codon


# in


R F


synthetic 3-23)


|cgc|ttc| 6


Allowed DNA |cgn|tty|


|agr|


ga ntc =


HinfI(38)


ga gtc =


PleI(16)


ga wtc =


TfiI(20)


gtn ac =


MaeIII(24)


gts ac =


Tsp451(21)


tc acc =


HphI(44)


       --------FR3--------------------------------------------------


         91  92  93  94  95  96  97  98  99  100  101  102  103  104  105


         T   I   S   R   D   N   S   K   N   T   L   Y   L   Q   M


       |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|


51


allowed|acn|ath|tcn|cgn|gay|aay|tcn|aar|aay|acn|ttr|tay|ttr|car|atg|


              |agy|agr|       |agy|           |ctn|   |ctn|


              |     ga|gac =BsmAI(16)                       ag ct =


AluI(23)


             c|ttc ag = BpmI(19)                              g ctn agc =


BlpI(21)


              |       |            g aan nnn ttc = XmnI(12)


              | XbaI  |                               tg ca =


HpyCH4V(21)


       ---FR3----------------------------------------------------------->|


        106 107 108 109 110 111 112 113 114 115 116 117 118 119 120


         N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   K


       |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa| 96


allowed|aay|tcn|tcr|cgn|gcn|gar|gay|acn|gcn|gtn|tay|tgy|gcn|aar|


           |agy|ctn|agr|             |      |


              |      |   cc nng g = BsaJI(23)        ac ngt = Bst4CI(51)


              |     aga tct = BglII(10)    |        ac ngt =


HpyCH4III(S1)


              |     Rga tcY = BstYI(11)    |        ac ngt = TaaI(51)


              |      |           c ayn nnn rtc = MslI(44)


              |      |             cg ryc g = BsiEI(23)


              |      |             yg gcc r = EaeI(23)


              |      |             cg gcc g = EagI(23)


              |      |             lg gcc = HaeIII(25)


              |      |    gag g = MnlI(32)|


              |AflII |             | FstI |
















TABLE 4





REdaptors, Extenders, and Bridges used for Cleavage


and Capture of Human Heavy Chains in FR3.







A: HpyCH4V Probes of actual human HC genes


!HpyCH4V in FR3 of human HC, bases 35-56; only those with TGca site 


TGca; 10,


RE recognition: tgca of length 4 is expected at 10









1
6-1

agttctccctgcagatgaactc



2
3-11, 3-07, 3-21, 3-72, 3-48

cactgtatctgcaaatgaacag



3
3-09, 3-43, 3-20
ccctgtatctgcaaatgaacag


4
5-51

ccgcctacctgcagtggagcag



5
3-15, 3-30, 3-30.5, 3-30.3, 3-74, 3-23, 3-33

cgctgtatctgcaaatgaacag



6
7-4.1
cggcatatctgcagatctgcag


7
3-73
cggcgtatctgcaaatgaacag


8
5-a
ctgcctacctgcagtggagcag


9
3-49
tcgcctatctgcaaatgaacag










B: HpyCH4V REdaptors, Extenders, and Bridges


B.1 REdaptors


! Cutting HC lower strand:


! TmKeller for 100 mM NaC1, zero formamide









! Edapters for cleavage 
TmW
TmK













(ON_HCFR36-1)
5'-agttctcccTGCAgctgaactc-3'
68.0
64.5


(ON_HCFR36-1A)
  5'-ttctcccTGCAgctgaactc-3'
62.0
62.5


(ON_HCFR36-1B)
5'-ttctcccTGCAgctgaac-3'
56.0
59.9


(ON_HCFR33-15)
5'-cgctgtatcTGCAaatgaacag-3'
64.0
60.8


(ON_HCFR33-15A)
  5'-ctgtatcTGCAaatgaacag-3'
56.0
56.3


(ON_HCFR33-15B)
5'-ctgtatcTGCAaatgaac-3'
50.0
53.1


(ON_HCFR33-11)
5'-cactgtatcTGCAaatgaacag-3'
62.0
56.9


(ON_HCFR35-51)
5'-ccgcctaccTGCAgtggagcag-3'
74.0
70.1


!










B.2 Segment of synthetic 3-23 gene into which 


captured CDR3 is to be cloned


!                   XbaI...


!D323* cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC


!      scab........ designed gene 3-23 gene................


!      HpyCH4V


!       .. ..            AflII...


!      Ttg caG atg aac agc TtA agG . . .


!      ........................... . . .


B.3 Extender and Bridges


!Extender (bottom strand):


(ON_HCHpyEx01) 5'-cAAgTAgAgAgTATTcTTAgAgTTgTcTcTAgAcTTAgTgAAgcg-3'


!ON_HCHpyEx01 is the reverse complement of


!5'-cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC Ttg -3'


!Bridges (top strand, 9-base overlap):


!


!(ON_HCBpyBr016-1)  5'-cgCttcacTaag tcT aga gac aaC tcT aag-


                  aaT acT ctC taC Ttg CAgotgaac-3' (3'-term C is 


blocked)


!


!3-15 et al. + 3-11


(ON_HCHpyBr023-15) 5'-cgCttcacTaag tcT aga gac aaC tcT aag-


             aaT acT ctC taC Ttg CAaatgaac-3' (3'-term C is blocked)


!


5-51


(ON_HCHpyBr045-51) 5'-cgCttcacTaag tcT aga gac aaC tcT aag-


             aaT acT ctC taC Ttg CAgtggagc-3' (3'-term C is blocked)


!


!PCR primer (top strand)


(ON_HCHpyPCR)      5'-cgCttcacTaag tcT aga gac-3'


!


C: B1pI Probes from human HC GLGs









 1
1-58, 1-03, 1-08, 1-69, 1-24, 1-45, 1-46,
acatggaGCTGAGCagcctgag



1-f, 1-e



 2
1-02
acatggaGCTGAGCaggctgag


 3
1-18
acatggagctgaggagcctgag


 4
5-51, 5-a
acctgcagtggagcagcctgaa


 5
3-15, 3-73, 3-49, 3-72
atctgcaaatgaacagcctgaa


 6
3303, 3-33, 3-07, 3-11, 3-30, 3-21, 3-23,
atctgcaaatgaacagcctgag



3305, 3-48



 7
3-20, 3-74, 3-09, 3-43
atctgcaaatgaacagtctgag


 8
74.1
atctgcagatctgcagcctaaa


 9
3-66, 3-13, 3-53, 3-d
atcttcaaatgaacagcctgag


10
3-64
atcttcaaatgggcagcctgag


11
4301, 4-28, 4302, 4-04, 4304, 4-31, 4-34,
ccctgaaGCTGAGCtctgtgac



4-39, 4-59, 4-61, 4-b



12
6-1
ccctgcagctgaactctgtgac


13
2-70, 2-05
tccttacaatgaccaacatgga


14
2-26
tccttaccatgaccaacatgga










D: B1pI REdaptors, Extenders, and Bridges


D.1 REdaptors












TmW
TmK





(B1pF3HC1-58)
5'-ac atg gaG CTG AGC agc ctg ag-3'
70
66.4


(B1pF3HC6-1)
5'-cc ctg aag ctg agc tct gtg ac-3'
70
66.4










!B1pF3HC6-1 matches 4-30.1, not 6-1.


D.2 Segment of synthetic 3-23 gene into 


which captured CDR3 is to be cloned


!


B1pI


!                   XbaI... 


... ...


!D323* cgCttcacTaag TCT AGA gac aaC tcT aag aaT acT ctC taC Ttg 


caG atg aac


!                   AflII...


!                 agC TTA AGG


D.3 Extender and Bridges


!Bridges


(B1pF3Br1) 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-


taC Ttg caG Ctg a|GC agc ctg-3'


(B1pF3Br2) 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-


taC Ttg caG Ctg a|gc tct gtg-3'


!                 | lower strand is cut here


!Extender


(B1pF3Ext) 5'-


TcAgcTgcAAgTAcAAAgTATTTTTAcTgTTATcTCTAgAcTgAgTgAAgcg-3'


!B1pF3Ext is the reverse complement of:


!5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG taC Ttg caG 


Ctg a-3'


!


(B1pF3PCR) 5'-cgCttcacTcag tcT aga gaT aaC-3'


E: HpyCH4III Distinct GLG sequences surrounding site, bases 77-98









 1
102#1, 118#4, 146#7, 169#9, 1e#10, 311#17,
ccgtgtattactgtgcgagaga



353#30, 404#37, 4301



 2
103#2, 307#15, 321#21, 3303#24, 333#26,
ctgtgtattactgtgcgagaga



348#28, 364#31, 366#32



 3
108#3
ccgtgtattactgtgcgagagg


 4
124#5, 1f#11
ccgtgtattactgtgcaacaga


 5
145#6
ccatgtattactgtgcaagata


 6
158#8
ccgtgtattactgtgcggcaga


 7
205#12
ccacatattactgtgcacacag


 8
226#13
ccacatattactgtgcacggat


 9
270#14
ccacgtattactgtgcacggat


10
309#16, 343#27
ccttgtattactgtgcaaaaga


11
313#18, 374#35, 61#50
ctctgtattactgtccaagaga


12
315#19
ccgtgtattactgtaccacaga


13
320#20
acttgtatcactgtgcgagaga


14
323#22
ccgtatattactgtgcgaaaga


15
330#23, 3305#25
ctgtgtattactgtgcgaaaga


16
349#29
ccgtgtattactgtactagaga


17
372#33
ccgtgtattactgtgctagaga


18
373#34
ccgtgtattactgtactagaca


19
3d#36
ctgtgtattactgtaagaaaga


20
428#38
ccgtgtattactgtgcgagaaa


21
4302#40, 4304#41
ccgtgtattactgtgccagaga


22
439#44
ctgtgtattactgtgcgagaca


23
551#48
ccatgtattactgtgcgagaca


24
5a#49
ccatgtattactgtgcgaga










F: HpyCH4III REdaptors, Extenders, and Bridges


F.1 REdaptors


!ONs for cleavage of HC(lower) in FR3(bases 77-97)


!For cleavage with HpyCE4III, Bst4CI, or TaaI


!cleavage is in lower chain before base 88.









!
   77 788 888 888 889 999 999 9











!
   78 901 234 567 890 123 456 7
TmW
TmK





(H43.77.97.1-02#1)
5'-cc gtg tat tAC TGT gcg aga g-3'
64
62.6


(H43.77.97.1-03#2)


embedded image


62
60.6


(H43.77.97.108#3)
5'-cc gtg tat tAC TGT gcg aga g-3'
64
62.6


(H43.77.97.323#22)


embedded image


60
58.7


(H43.77.97.330#23)


embedded image


60
58.7


(H43.77.97.439#44)


embedded image


62
60.6


(H43.77.97.551#48)


embedded image


62
60.6


(H43.77.97.5a#49)


embedded image


58
58.3










F.2 Extender and Bridges


!XbaI and AflII sites in bridges are bunged


(H43.XABr1) 5'-ggtgtagtga-


|TCT|AGt|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-


|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aga-3'


(H43.XAEr2) 5'-ggtgtagtga-


|TCT|AGt|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-


|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3'


(H43.XAExt) 5'-ATAgTAgAcT gcAgTgTccT cAgcccTTAA gcTgTTcATc TgcAAgTAgA-


gAgTATTcTT AgAgTTgTcT cTAgATcAcT AcAcc-3'


H43.XAExt is the reverse complement of


!5'-ggtgtactga-


!|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-


!|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat -3'


(H43.XAPCR) 5'-ggtgtagtga |TCT|AGA|gac|aac-3'


!XbaI and AflII sites in bridges are bunged


(H43.ABr1) 5'-ggtgtagtga-


|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aga-3'


(H43.ABr2) 5'-ggtgtagtga-


|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3'


(H43.AExt) 5'-ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTTcAcTAcAcc-3'


!(H43.AExt) is the reverse complement of 5'-ggtgtagtga-


!|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat -3'


(H43.APCR) 5'-ggtgtagtga |aac|agC|TTA|AGg|gct|g-3'
















TABLE 5





Analysis of frequency of matching REdaptors in actual V genes







A: HpyCH4V in HC at bases 35-56














Number of mismatches
Number























Id
Ntot
0
1
2
3
4
5
6
7
8
9
10
Cut
Id
Probe





1

510


5


11


274


92


61


25


22


11


1


3


5


443


6-1


agttctcccTGCAgctgaactc



2

192


54


42


32


24


15


2


3


10


3


1


6


167


3-11


cactgtatcTGCAaatgaacag



3
58
19
7
17
6
5
1
0
1
0
2
0
54
3-09
ccctgtatcTGCAaatgaacag


4

267


42


33


9


8


8


82


43


22


8


11


1


100


5-51


ccgcctaccTGCAgtggagcag



5

250


111


59


41


24


7


5


1


0


0


2


0


242


3-15


cgctgtatcTGCAaatgaacag



6
7
0
2
0
1
0
0
0
0
0
4
0
3
7-4.1
cggcatatcTGCAgatctgcag


7
7
0
2
2
0
0
2
1
0
0
0
0
4
3-73
cggcgtatcTGCAaatgaacag


8
26
10
4
1
3
1
2
1
3
1
0
0
19
5-a
ctgcctaccTGCAgtggagcag


9
21
8
2
3
1
6
1
0
0
0
0
0
20
3-49
tcgcctatcTGCAaatgaacag



1338
249
162
379
149
103
120
71
47
13
23
12
1052






249
411
790
939

1162

1280

1316












1042

1233

1293

1338














Id
Probe
dotted probe






6-1
agttctcccTGCAgctgaactc
agttctcccTGCAgctgaactc



3-11
cactgtatcTGCAaatgaacag
cac.g.at.....aa.....ag



3-09
ccctgtatcTGCAaatgaacag
ccc.g.at.....aa.....ag



5-51
ccgcctaccTGCAgtggagcag
ccgc..a.......tg..g.ag



3-15
cgctgtatcTGCAaatgaacag
c.c.g.at.....aa.....ag



7-4.1
cggcatatcTGCAgatctgcag
c.gca.at......a.ctg.ag



3-73
cggcgtatcTGCAaatgaacag
c.gcg.at.....aa.....ag



5-a
ctgcctaccTGCAgtggagcag
ctgc..a.......tg..g.ag



3-49
tcgcctatcTGCAaatgaacag
tcgc..at.....aa.....ag












Seqs with the expected RE site only.......
1004



(Counts only cases with 4 or fewer mismatches)




Seqs with only an unexpected site.........
0



Seqs with both expected and unexpected
48



(Counts only cases with 4 or fewer mismatches)




Seqs with no sites........................
0








B: BlpI in HC























Id
Ntot
0
1
2
3
4
5
6
7
8
NCut
Name






1

133


73


16


11


13


6


9


1


4


0


119


1-58


acatggaGCTGAGCagcctgag



2
14
11
1
0
0
0
0
1
0
1
12
1-02
acatggagctgagcaggctgag


3
34
17
8
2
6
1
0
0
0
0
0
1-18
acatggagctgaggagcctgag


4
120
50
32
16
10
9
1
1
1
0
2
5-51
acctgcagtggagcagcctgaa


5
55
13
11
10
17
3
1
0
0
0
0
3-15
atctgcaaatgaacagcctgaa


6
340
186
88
41
15
6
3
0
1
0
0
3303
atctgcaaatgaacagcctgag


7
82
25
16
25
12
1
3
0
0
0
0
3-20
atctgcaaatgaacagtctgag


8
3
0
2
0
1
0
0
0
0
0
0
  74.1
atctgcagatctgcagcctaaa


9
23
18
2
2
1
0
0
0
0
0
0
3-66
atcttcaaatgaacagcctgag


10
2
1
0
1
0
0
0
0
0
0
0
3-64
atcttcaaatgggcagcctgag


11

486


249


78


81


38


21


10


4


4


1


467


4301


ccctgaagctgagctctgtgac



12
16
6
3
1
0
1
1
3
1
0
1
6-1
ccctgcagctgaactctgtgac


13
28
15
8
2
2
1
0
0
0
0
0
2-70
tccttacaatgaccaacatgga


14
2
0
2
0
0
0
0
0
0
0
0
2-26
tccttaccatgaccaacatgga













601














Name
Full sequence
Dot mode






1-58
acatggaGCTGAGCagcctgag
acatggaGCTGAGCagcctgag



1-02
acatggagctgagcaggctgag
................g.....



1-18
acatggagctgaggagcctgag
.............g........



5-51
acctgcagtggagcagcctgaa
..c..c..tg...........a



3-15
atctgcaaatgaacagcctgaa
.tc..c.aa...a........a



3-30.3
atctgcaaatgaacagcctgag
.tc..c.aa...a.........



3-20
atctgcaaatgaacagtctgag
.tc..c.aa...a...t.....



7-4.1
atctgcagatctgcagcctaaa
.tc..c..a.ct.......a.a



3-66
atcttcaaatgaacagcctgag
.tc.tc.aa...a.........



3-64
atcttcaaatgggcagcctgag
.tc.tc.aa..g..........



4-30.1
ccctgaagctgagctctgtgac
c.c..a........tctg...c



6-1
ccctgcagctgaactctgtgac
c.c..c......a.tctg...c



2-70
tccttaccatgaccaacatgga
t.c.tacca...c..a.a..ga



2-26
tccttaccatgaccaacatgga
t.c.tacca...c..a.a..ga







Seqs with the expected RE site only....... 597 (counting sequences with 4 or


fewer mismatches)


Seqs with only an unexpected site.........   2


Seqs with both expected and unexpected....   2


Seqs with no sites........................ 686


C: HpyCH4III, Bat4CI, or Taal in HC





In scoring whether the RE site of interest is present, only one that have 4 or fewer


mismatches are counted.


Number of sequences.......... 1617





















Id
Ntot
0
1
2
3
4
5
6
7
8
Ncut

acngt
acngt





1

244

78

92


43


18


10


1


2


0


0


241


102#1,1


ccgtgtattACTGTgcgagaga

ccgtgtattactgtgcgagaga


2

457


69


150


115


66


34


11


8


3


1


434


103#2,3


ctgtgtattactgtgcgagaga

.t....................


3

173


52


45


36


22


14


3


0


0


1


169


108#3


ccgtgtattactgtgcgagagg

.....................g


4
16
0
3
2
2
1
6
0
1
1
8
124#5,1
ccgtgtattactgtgcaacaga
................a.c...


5
4
0
0
1
0
1
1
0
1
0
2
145#6
ccatgtattactgtgcaagata
..a.............a...t.


6
15
1
0
1
0
6
4
1
1
1
8
158#8
ccgtgtattactgtgcggcaga
.................gc...


7
23
4
8
5
2
2
1
1
0
0
21
205#12
ccacatattactgtgcacacag
..aca...........acacag


8
9
1
1
1
0
3
2
1
0
0
6
226#13
ccacatattactgtgcacggat
..aca...........ac.gat


9
7
1
3
1
1
0
0
1
0
0
6
270#14
ccacgtattactgtgcacggat
..ac............ac.gat


10
23
7
3
5
5
2
1
0
0
0
22
309#16,
ccttgtattactgtgcaaaaga
..t.............a.a...


11
35
5
10
7
6
3
3
0
1
0
31
313#18,
ctgtgtattactgtgcaagaga
.t..............a.....


12
18
2
3
2
2
6
1
0
2
0
15
315#19
ccgtgtattactgtaccacaga
..............a.c.c...


13
3
1
2
0
0
0
0
0
0
0
3
320#20
ccttgtatcactgtgcgagaga
..t.....c.............


14

117


29


23


28


22


8


4


2


1


0


110


323#22


ccgtatattactgtgcgaaaga

....a.............a...


15

75


21


25


13


9


1


4


2


0


0


69


330#23,


ctgtgtattactgtgcgaaaga

.t................a...


16
14
2
2
2
3
0
3
1
1
0
9
349#29
ccgtgtattactgtactagaga
..............a.t.....


17
2
0
0
1
0
0
1
0
0
0
1
372#33
ccgtgtattactgtgctagaga
................t.....


18
1
0
0
1
0
0
0
0
0
0
1
373#34
ccgtgtattactgtactagaca
..............a.t...c.


19
2
0
0
0
0
0
0
0
0
2
0
3d#36
ctgtgtattactgtaagaaaga
.t............aa..a...


20
34
4
9
9
4
5
3
0
0
0
31
428#38
ccgtgtattactgtgcgagaaa
....................a.


21
17
5
4
2
2
3
1
0
0
0
16
4302#40
ccgtgtattactgtgccagaga
................c.....


22

75


15


17


24


7


10


1


1


0


0


73


439#44


ctgtgtattactgtgcgagaca

.t..................c.


23

40


14


15


4


5


1


0


1


0


0


39


551#48


ccatgtattactgtgcgagaca

..a.................c.


24

213


26


56


60


42


20


7


2


0


0


204


5a#49


ccatgtattactgtgcgagaAA

..a.................AA





















Group
337
471
363
218
130
58
23
11
6



Cumulative
337
806
1171
1389
1519
1577
1600
1611
1617










Seqs with the expected RE site only.......1511


Seqs with only unexpected site............   0


Seqs with both expected and unexpected....   8


Seqs with no sites........................   0


Table 5D





Analysis repeated using only 8 best REdaptors




















Id
Ntot
0
1
2
3
4
5
6
7
8+








1
301
78
101
54
32
16
9
10
1
0
281
102#1
ccgtgtattactgtgcgagaga


2
493
69
155
125
73
37
14
11
3
6
459
103#2
ctgtgtattactgtgcgagaga


3
189
52
45
38
23
18
5
4
1
3
176
108#3
ccgtgtattactgtgcgagagg


4
127
29
23
26
24
10
6
5
2
0
114
323#22
ccgtatattactgtgcgaaaga


5
78
21
25
14
11
1
4
2
0
0
72
330#23
ctgtgtattactgtgcgaaaga


6
79
15
17
25
8
11
1
2
0
0
76
439#44
ctgtgtattactgtgcgagaca


7
43
14
15
5
5
3
0
1
0
0
42
551#48
ccatgtattactgtgcgagaca


8
307
26
63
72
51
38
24
14
13
6
250
5a#49
ccatgtattactgtgcgaga













1
102#1
ccgtgtattactgtgcgagaga
ccgtgtattactgtgcgagaga


2
103#2
ctgtgtattactgtgcgagaga
.t....................


3
108#3
ccgtgtattactgtgcgagagg
.....................g


4
323#22
ccgtatattactgtgcgaaaga
....a.............a...


5
330#23
ctgtgtattactgtgcgaaaga
.t................a...


6
438#44
ctgtgtattactgtgcgagaca
.t..................c.


7
551#48
ccatgtattactgtgcgagaca
..a.................c.


8
5a#49
ccatgtattactgtgcgagaAA
..a.................AA










Seqs with the expected RE site only.......1463/1617


Seqs with only an unexpected site.........   0


Seqs with both expected and unexpected....   7


Seqs with no sites........................   0













TABLE 6





Human HC GLG FR1 Sequences


VH Exon - Nucleotide sequence alignment
















VH1



1-02
CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG GCC TCA GTG AAG



GTC TCC TGC AAG GCT TCT GGA TAC ACC TTC ACC





1-03
cag gtC cag ctT gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag



gtT tcc tgc aag gct tct gga tac acc ctc acT





1-08
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag



gtc tcc tgc aag gct tct gga tac acc ctc acc





1-18
cag gtT cag ctg gtg cag tct ggA gct gag gtg aag aag cct ggg gcc tca gtg aag



gtc tcc tgc aag gct tct ggT tac acc ttT acc





1-24
cag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag



gtc tcc tgc aag gTt tcC gga tac acc Ctc acT





1-45
cag Atg cag ctg gtg cag tct ggg gct gag gtg aag aag Act ggg Tcc tca gtg aag



gtT tcc tgc aag gct tcC gga tac acc ttc acc





1-46
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag



gtT tcc tgc aag gcA tct gga tac acc ttc acc





1-58
caA Atg cag ctg gtg cag tct ggg Cct gag gtg aag aag cct ggg Acc tca gtg aag



gtc tcc tgc aag gct tct gga tTc acc ttT acT





1-69
cag gtg cag ctg gtg cag tct ggg gct cag gtg aag aag cct ggg Tcc tcG gtg aag



gtc tcc tgc aag gct tct gga GGc acc ttc aGc





1-e
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag



gtc tcc tgc aag gct tct gga GGc acc ttc aGc





1-f
Gag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcT Aca gtg aaA



Atc tcc tgc aag gTt tct gga tac acc ttc acc





VH2



2-05
CAG ATC ACC TTG AAG GAG TCT GGT CCT ACG CTG GTG AAA CCC ACA CAG ACC CTC ACG



CTG ACC TGC ACC TTC TCT GGG TTC TCA CTC AGC





2-26
cag Gtc acc ttg aag gag tct ggt cct GTg ctg gtg aaa ccc aca Gag acc ctc acg



ctg acc tgc acc Gtc tct ggg ttc tca ctc agc





2-70
cag Gtc acc ttg aag gag tct ggt cct Gcg ctg gtg aaa ccc aca cag acc ctc acA



ctg acc tgc acc ttc tct ggg ttc tca ctc agc





VH3



3-07
GAG GTG CAG CTG GTG GAG TCT GGG GGA GGC TTG GTC CAG CCT GGG GGG TCC CTG AGA



CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT AGT





3-09
gaA gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggC Agg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttt GAt





3-11
Cag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc Aag cct ggA ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-13
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-15
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA Aag cct ggg ggg tcc ctT aga



ctc tcc tgt gca gcc tct gga ttc acT ttC agt





3-20
gag gtg cag ctg gtg gag tct ggg gga ggT Gtg gtA cGg cct ggg ggg tcc ctg aga



ctc ccc tgt gca gcc tct gga ttc acc ttt GAt





3-21
gag gtg cag ctg gtg gag tct ggg gga ggc Ctg gtc Aag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttc agt





3-23
gag gtg cag ctg Ttg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttt agC





3-30
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-30.3
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-30.5
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-33
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga



ctc tcc tgt gca gcG tct gga ttc acc ttC agt





3-43
gaA gtg cag ctg gtg gag tct ggg gga gTc Gtg gtA cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttt GAt





3-48
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-49
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag ccA ggg Cgg tcc ctg aga



ctc tcc tgt Aca gcT tct gga ttc acc ttt Ggt





3-53
gag gtg cag ctg gtg gag Act ggA gga ggc ttg Atc cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct ggG ttc acc GtC agt





3-64
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-66
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc GtC agt





3-72
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggA ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC act





3-73
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aAa



ctc tcc tgt gca gcc tct ggG ttc acc ttC agt





3-74
gag gtg cag ctg gtg gag tcC ggg gga ggc ttA gtT cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc ttC agt





3-d
gag gtg cag ctg gtg gag tct Cgg gga gTc ttg gtA cag cct ggg ggg tcc ctg aga



ctc tcc tgt gca gcc tct gga ttc acc GtC agt





VH4



4-04
CAG GTG CAG CTG CAG GAG TCG GGC CCA GGA CTG GTG AAG CCT TCG GGG ACC CTG TCC



CTC ACC TGC GCT GTC TCT GGT GGC TCC ATC AGC





4-28
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAC acc ctg tcc



ctc acc tgc gct gtc tct ggt TAc tcc atc agc





4-30.1
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc



ctc acc tgc Act gtc tct ggt ggc tcc atc agc





4-30.2
cag Ctg cag ctg cag gag tcC ggc Tca gga ctg gtg aag cct tcA CAg acc ctg tcc



ctc acc tgc gct gtc tct ggt ggc tcc atc agc





4-30.4
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc



ctc acc tgc Act gtc tct ggt ggc tcc atc agc





4-31
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc



ctc acc tgc Act gtc tct ggt ggc tcc atc agc





4-34
cag gtg cag ctA cag Cag tGg ggc Gca gga ctg Ttg aag cct tcg gAg acc ctg tcc



ctc acc tgc gct gtc tAt ggt ggG tcc Ttc agT





4-39
cag Ctg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc



ctc acc tgc Act gtc tct ggt ggc tcc atc agc





4-59
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc



ctc acc tgc Act gtc tct ggt ggc tcc atc agT





4-61
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc



ctc acc tgc Act gtc tct ggt ggc tcc Gtc agc





4-b
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc



ctc acc tgc gct gtc tct ggt TAc tcc atc agc





VH5



5-51
GAG GTG CAG CTG GTG CAG TCT GGA GCA GAG GTG AAA AAG CCC GGG GAG TCT CTG AAG



ATC TCC TGT AAG GGT TCT GGA TAC AGC TTT ACC





5-a
gaA gtg cag ctg gtg cag tct gga gca gag gtg aaa aag ccc ggg gag tct ctg aGg



atc tcc tgt aag ggt tct gga tac agc ttt acc





VH6



6-1
CAG GTA CAG CTG CAG CAG TCA GGT CCA GGA CTG GTG AAG CCC TCG CAG ACC CTC TCA



CTC ACC TGT GCC ATC TCC GGG GAC AGT GTC TCT





VH7



7-4.1
CAG GTG CAG CTG GTG CAA TCT GGG TCT GAG TTG AAG AAG CCT GGG GCC TCA GTG AAG



GTT TCC TGC AAG GCT TCT GGA TAC ACC TTC ACT
















TABLE 7





RERS sites in Human HC GLG FR1s where


there are at least 20 GLGs cut

















BsgI
GTGCAG
71 (cuts 16/14 bases to right)












 1: 4
 1: 13
 2: 13
 3: 4
 3: 13
 4: 13


 6: 13
 7: 4
 7: 13
 8: 13
 9: 4
 9: 13


10: 4
10: 13
15: 4
15: 65
16: 4
16: 65


17: 4
17: 65
18: 4
18: 65
19: 4
19: 65


20: 4
20: 65
21: 4
21: 65
22: 4
22: 65


23: 4
23: 65
24: 4
24: 65
25: 4
25: 65


26: 4
26: 65
27: 4
27: 65
28: 4
28: 65


29: 4
30: 4
30: 65
31: 4
31: 65
32: 4


32: 65
33: 4
33: 65
34: 4
34: 65
35: 4


35: 65
36: 4
36: 65
37: 4
38: 4
39: 4


41: 4
42: 4
43: 4
45: 4
46: 4
47: 4


48: 4
48: 13
49: 4
49: 13
51: 4








There are 39 hits at base# 4


There are 21 hits at base# 65









-″-
ctgcac
 9












12: 63
13: 63
14: 63
39: 63
41: 63
42: 63


44: 63
45: 63
46: 63












BbvI
GCAGC
65












 1: 6
 3: 6
 6: 6
 7: 6
 8: 6
 9: 6


10: 6
15: 6
15: 67
16: 6
16: 67
17: 6


17: 67
18: 6
18: 67
19: 6
19: 67
20: 6


20: 67
21: 6
21: 67
22: 6
22: 67
23: 6


23: 67
24: 6
24: 67
25: 6
25: 67
26: 6


26: 67
27: 6
27: 67
28: 6
28: 67
29: 6


30: 6
30: 67
31: 6
31: 67
32: 6
32: 67


33: 6
33: 67
34: 6
34: 67
35: 6
35: 67


36: 6
36: 67

37: 6


38: 6


39: 6


40: 6




41: 6


42: 6

43: 6

44: 6


45: 6


46: 6




47: 6

48: 6
49: 6

50: 12

51: 6








There are 43 hits at base# 6 Bolded sites very near sites


listed below


There are 21 hits at base# 67









-″-
gctgc
13












37: 9
38: 9
39: 9
40: 3
40: 9
41: 9


42: 9
44: 3
44: 9
45: 9
46: 9
47: 9


50: 9












There are 11 hits at base# 9









BsoFI
GCngc
78












 1: 6
 3: 6
 6: 6
 7: 6
 8: 6
 9: 6


10: 6
15: 6
15: 67
16: 6
16: 67
17: 6


17: 67
18: 6
18: 67
19: 6
19: 67
20: 6


20: 67
21: 6
21: 67
22: 6
22: 67
23: 6


23: 67
24: 6
24: 67
25: 6
25: 67
26: 6


26: 67
27: 6
27: 67
28: 6
28: 67
29: 6


30: 6
30: 67
31: 6
31: 67
32: 6
32: 67


33: 6
33: 67
34: 6
34: 67
35: 6
35: 67


36: 6
36: 67

37: 6


37: 9


38: 6


38: 9



39: 6
39: 9

40: 3


40: 6


40: 9

41: 6


41: 9
42: 6
42: 9
43: 6

44: 3


44: 6




44: 9


45: 6


45: 9


46: 6


46: 9


47: 6




47: 9

48: 6
49: 6
50: 9
50: 12
51: 6







There are 43 hits at base# 6 These often occur together.


There are 11 hits at base# 9


There are 2 hits at base# 3


There are 21 hits at base# 67









TseI
Gcwgc
78












 1: 6
 3: 6
 6: 6
 7: 6
 8: 6
 9: 6


10: 6
15: 6
15: 67
16: 6
16: 67
17: 6


17: 67
18: 6
18: 67
19: 6
19: 67
20: 6


20: 67
21: 6
21: 67
22: 6
22: 67
23: 6


23: 67
24: 6
24: 67
25: 6
25: 67
26: 6


26: 67
27: 6
27: 67
28: 6
28: 67
29: 6


30: 6
30: 67
31: 6
31: 67
32: 6
32: 67


33: 6
33: 67
34: 6
34: 67
35: 6
35: 67


36: 6
36: 67

37: 6


37: 9


38: 6


38: 9




39: 6


39: 9


40: 3


40: 6


40: 9


41: 6




41: 9


42: 6


42: 9

43: 6

44: 3


44: 6




44: 9


45: 6


45: 9


46: 6


46: 9


47: 6




47: 9

48: 6
49: 6

50: 9


50: 12

51: 6







There are 43 hits at base# 6 Often together.


There are 11 hits at base# 9


There are 2 hits at base# 3


There are 1 hits at base# 12


There are 21 hits at base# 67









MspAlI
CMGckg
48












 1: 7
 3: 7
 4: 7
 5: 7
 6: 7
 7: 7


 8: 7
 9: 7
10: 7
11: 7
15: 7
16: 7


17: 7
18: 7
19: 7
20: 7
21: 7
22: 7


23: 7
24: 7
25: 7
26: 7
27: 7
28: 7


29: 7
30: 7
31: 7
32: 7
33: 7
34: 7


35: 7
36: 7
37: 7
38: 7
39: 7

40: 1




40: 7

41: 7
42: 7

44: 1


44: 7

45: 7


46: 7
47: 7
48: 7
49: 7
50: 7
51: 7







There are 46 hits at base# 7









PvuII
CAGctg
48












 1: 7
 3: 7
 4: 7
 5: 7
 6: 7
 7: 7


 8: 7
 9: 7
10: 7
11: 7
15: 7
16: 7


17: 7
18: 7
19: 7
20: 7
21: 7
22: 7


23: 7
24: 7
25: 7
26: 7
27: 7
28: 7


29: 7
30: 7
31: 7
32: 7
33: 7
34: 7


35: 7
36: 7
37: 7
38: 7
39: 7

40: 1




40: 7

41: 7
42: 7

44: 1


44: 7

45: 7


46: 7
47: 7
48: 7
49: 7
50: 7
51: 7







There are 46 hits at base# 7


There are 2 hits at base# 1









AluI
AGct
54












 1: 8
 2: 8
 3: 8
 4: 8
 4: 24
 5: 8


 6: 8
 7: 8
 8: 8
 9: 8
10: 8
11: 8


15: 8
16: 8
17: 8
18: 8
19: 8
20: 8


21: 8
22: 8
23: 8
24: 8
25: 8
26: 8


27: 8
28: 8
29: 8
29: 69
30: 8
31: 8


32: 8
33: 8
34: 8
35: 8
36: 8
37: 8


38: 8
39: 8

40: 2


40: 8

41: 8
42: 8


43: 8

44: 2


44: 8

45: 8
46: 8
47: 8


48: 8
48: 82
49: 8
49: 82
50: 8
51: 8







There are 48 hits at base# 8


There are 2 hits at base# 2









DdeI
Ctnag
48












 1: 26
 1: 48
 2: 26
 2: 48
 3: 26
 3: 48


 4: 26
 4: 48
 5: 26
 5: 48
 6: 26
 6: 48


 7: 26
 7: 48
 8: 26
 8: 48
 9: 26
10: 26


11: 26
12: 85
13: 85
14: 85
15: 52
16: 52


17: 52
18: 52
19: 52
20: 52
21: 52
22: 52


23: 52
24: 52
25: 52
26: 52
27: 52
28: 52


29: 52
30: 52
31: 52
32: 52
33: 52
35: 30


35: 52
36: 52
40: 24
49: 52
51: 26
51: 48







There are 22 hits at base# 52 52 and 48 never together.


There are 9 hits at base# 48


There are 12 hits at base# 26 26 and 24 never together.









HphI
tcacc
42












 1: 86
 3: 86
 6: 86
 7: 86
 8: 80
11: 86


12: 5
13: 5
14: 5
15: 80
16: 80
17: 80


18: 80
20: 80
21: 80
22: 80
23: 80
24: 80


25: 80
26: 80
27: 80
28: 80
29: 80
30: 80


31: 80
32: 80
33: 80
34: 80
35: 80
36: 80


37: 59
38: 59
39: 59
40: 59
41: 59
42: 59


43: 59
44: 59
45: 59
46: 59
47: 59
50: 59







There are 22 hits at base# 80 80 and 86 never together


There are 5 hits at base# 86


There are 12 hits at base# 59









BssKI
Nccngg
50












 1: 39
 2: 39
 3: 39
 4: 39
 5: 39
 7: 39


 8: 39
 9: 39
10: 39
11: 39
15: 39
16: 39


17: 39
18: 39
19: 39
20: 39
21: 29
21: 39


22: 39
23: 39
24: 39
25: 39
26: 39
27: 39


28: 39
29: 39
30: 39
31: 39
32: 39
33: 39


34: 39
35: 19
35: 39
36: 39
37: 24
38: 24


39: 24
41: 24
42: 24
44: 24
45: 24
46: 24


47: 24

48: 39


48: 40


49: 39


49: 40

50: 24


50: 73
51: 39











There are 35 hits at base# 39 39 and 40 together twice.


There are 2 hits at base# 40









BsaJI
Ccnngg
47












 1: 40
 2: 40
 3: 40
 4: 40
 5: 40
 7: 40


 8: 40
 9: 40
 9: 47
10: 40
10: 47
11: 40


15: 40
18: 40
19: 40
20: 40
21: 40
22: 40


23: 40
24: 40
25: 40
26: 40
27: 40
28: 40


29: 40
30: 40
31: 40
32: 40
34: 40
35: 20


35: 40
36: 40
37: 24
38: 24
39: 24
41: 24


42: 24
44: 24
45: 24
46: 24
47: 24

48: 40




48: 41


49: 40


49: 41

50: 74
51: 40








There are 32 hits at base# 40 40 and 41 together twice


There are 2 hits at base# 41


There are 9 hits at base# 24


There are 2 hits at base# 47









BstNI
CCwgg
44


PspGI
ccwgg









ScrFI($M, HpaII)
CCwgg












 1: 40
 2: 40
 3: 40
 4: 40
 5: 40
 7: 40


 8: 40
 9: 40
10: 40
11: 40
15: 40
16: 40


17: 40
18: 40
19: 40
20: 40
21: 30
21: 40


22: 40
23: 40
24: 40
25: 40
26: 40
27: 40


28: 40
29: 40
30: 40
31: 40
32: 40
33: 40


34: 40
35: 40
36: 40
37: 25
38: 25
39: 25


41: 25
42: 25
44: 25
45: 25
46: 25
47: 25


50: 25
51: 40











There are 33 hits at base# 40









ScrFI
CCngg
50












 1: 40
 2: 40
 3: 40
 4: 40
 5: 40
 7: 40


 8: 40
 9: 40
10: 40
11: 40
15: 40
16: 40


17: 40
18: 40
19: 40
20: 40
21: 30
21: 40


22: 40
23: 40
24: 40
25: 40
26: 40
27: 40


28: 40
29: 40
30: 40
31: 40
32: 40
33: 40


34: 40
35: 20
35: 40
36: 40
37: 25
38: 25


39: 25
41: 25
42: 25
44: 25
45: 25
46: 25


47: 25
48: 40
48: 41
49: 40
49: 41
50: 25


50: 74
51: 40











There are 35 hits at base# 40


There are 2 hits at base# 41









EcoO109I
RGgnccy
34












 1: 43
 2: 43
 3: 43
 4: 43
 5: 43
 6: 43


 7: 43
 8: 43
 9: 43
10: 43
15: 46
16: 46


17: 46
18: 46
19: 46
20: 46
21: 46
22: 46


23: 46
24: 46
25: 46
26: 46
27: 46
28: 46


30: 46
31: 46
32: 46
33: 46
34: 46
35: 46


36: 46
37: 46
43: 79
51: 43









There are 22 hits at base# 46 46 and 43 never together


There are 11 hits at base# 43









NlaIV
GGNncc
71












 1: 43
 2: 43
 3: 43
 4: 43
 5: 43
 6: 43


 7: 43
 8: 43
 9: 43
 9: 79
10: 43
10: 79



15: 46


15: 47

16: 47

17: 46


17: 47


18: 46




18: 47


19: 46


19: 47


20: 46


20: 47


21: 46




21: 47


22: 46


22: 47

23: 47
24: 47
25: 47


26: 47

27: 46


27: 47


28: 46


28: 47

29: 47



30: 46


30: 47


31: 46


31: 47


32: 46


32: 47




33: 46


33: 47


34: 46


34: 47


35: 46


35: 47




36: 46


36: 47

37: 21

37: 46


37: 47

37: 79


38: 21
39: 21
39: 79
40: 79
41: 21
41: 79


42: 21
42: 79
43: 79
44: 21
44: 79
45: 21


45: 79
46: 21
46: 79
47: 21
51: 43








There are 23 hits at base# 47 46 & 47 often together


There are 17 hits at base# 46 There are 11 hits at base# 43









Sau96I
Ggncc
70













 1: 44
 2: 3
 2: 44
 3: 44
 4: 44
 5: 3
 5: 44  6: 44


 7: 44
 8: 22
 8: 44
 9: 44
10: 44
11: 3
12: 22 13: 22


14: 22
15: 33
15: 47
16: 47
17: 47
18: 47
19: 47 20: 47


21: 47
22: 47
23: 33
23: 47
24: 33
24: 47
25: 33 25: 47


26: 33
26: 47
27: 47
28: 47
29: 47
30: 47
31: 33 31: 47


32: 33
32: 47
33: 33
33: 47
34: 33
34: 47
35: 47 36: 47



37: 21


37: 22

37: 47

38: 21


38: 22

39: 21
39: 22 41: 21


41: 22
42: 21
42: 22
43: 80
44: 21
44: 22
45: 21 45: 22


46: 21
46: 22
47: 21
47: 22
50: 22
51: 44








There are 23 hits at base# 47 These do not occur together.


There are 11 hits at base# 44


There are 14 hits at base# 22 These do occur together.


There are 9 hits at base# 21









BsmAI
GTCTCNnnnn
22












 1: 58
 3: 58
 4: 58
 5: 58
 8: 58
 9: 58


10: 58
13: 70
36: 18
37: 70
38: 70
39: 70


40: 70
41: 70
42: 70
44: 70
45: 70
46: 70


47: 70
48: 48
49: 48
50: 85









There are 11 hits at base# 70









-″-
Nnnnnngagac
27












13: 40
15: 48
16: 48
17: 48
18: 48
20: 48


21: 48
22: 48
23: 48
24: 48
25: 48
26: 48


27: 48
28: 48
29: 48
30: 10
30: 48
31: 48


32: 48
33: 48
35: 48
36: 48
43: 40
44: 40


45: 40
46: 40
47: 40










There are 20 hits at base# 48









AvaII
Ggwcc
44









Sau96I($M.HaeIII)
Ggwcc
44












 2: 3
 5: 3
 6: 44
 8: 44
 9: 44
10: 44


11: 3
12: 22
13: 22
14: 22
15: 33
15: 47


16: 47
17: 47
18: 47
19: 47
20: 47
21: 47


22: 47
23: 33
23: 47
24: 33
24: 47
25: 33


25: 47
26: 33
26: 47
27: 47
28: 47
29: 47


30: 47
31: 33
31: 47
32: 33
32: 47
33: 33


33: 47
34: 33
34: 47
35: 47
36: 47
37: 47


43: 80
50: 22











There are 23 hits at base# 47 44 & 47 never together


There are 4 hits at base# 44









PpuMI
RGgwccy
27












 6: 43
 8: 43
 9: 43
10: 43
15: 46
16: 46


17: 46
18: 46
19: 46
20: 46
21: 46
22: 46


23: 46
24: 46
25: 46
26: 46
27: 46
28: 46


30: 46
31: 46
32: 46
33: 46
34: 46
35: 46


36: 46
37: 46
43: 79










There are 22 hits at base# 46 43 and 46 never occur together.


There are 4 hits at base# 43









BsmFI
GGGAC
 3









 8: 43
37: 46
50: 77









-″-
gtccc
33












15: 48
16: 48
17: 48
 1: 0
 1: 0
20: 48


21: 48
22: 48
23: 48
24: 48
25: 48
26: 48


27: 48
28: 48
29: 48
30: 48
31: 48
32: 48


33: 48
34: 48
35: 48
36: 48
37: 54
38: 54


39: 54
40: 54
41: 54
42: 54
43: 54
44: 54


45: 54
46: 54
47: 54










There are 20 hits at base# 48


There are 11 hits at base# 54









HinfI
Gantc
80












 8: 77
12: 16
13: 16
14: 16
15: 16
15: 56


15: 77
16: 16
16: 56
16: 77
17: 16
17: 56


17: 77
18: 16
18: 56
18: 77
19: 16
19: 56


19: 77
20: 16
20: 56
20: 77
21: 16
21: 56


21: 77
22: 16
22: 56
22: 77
23: 16
23: 56


23: 77
24: 16
24: 56
24: 77
25: 16
25: 56


25: 77
26: 16
26: 56
26: 77
27: 16
27: 26


27: 56
27: 77
28: 16
28: 56
28: 77
29: 16


29: 56
29: 77
30: 56
31: 16
31: 56
31: 77


32: 16
32: 56
32: 77
33: 16
33: 56
33: 77


34: 16
35: 16
35: 56
35: 77
36: 16
36: 26


36: 56
36: 77
37: 16
38: 16
39: 16
40: 16


41: 16
42: 16
44: 16
45: 16
46: 16
47: 16


48: 46
49: 46











There are 34 hits at base# 16









TfiI
Gawtc
21












 8: 77
15: 77
16: 77
17: 77
18: 77
19: 77


20: 77
21: 77
22: 77
23: 77
24: 77
25: 77


26: 77
27: 77
28: 77
29: 77
31: 77
32: 77


33: 77
35: 77
36: 77










There are 21 hits at base# 77









MlyI
GAGTC
38












12: 16
13: 16
14: 16
15: 16
16: 16
17: 16


18: 16
19: 16
20: 16
21: 16
22: 16
23: 16


24: 16
25: 16
26: 16
27: 16
27: 26
28: 16


29: 16
31: 16
32: 16
33: 16
34: 16
35: 16


36: 16
36: 26
37: 16
38: 16
39: 16
40: 16


41: 16
42: 16
44: 16
45: 16
46: 16
47: 16


48: 46
49: 46











There are 34 hits at base# 16









-″-
GACTC
21












15: 56
16: 56
17: 56
18: 56
19: 56
20: 56


21: 56
22: 56
23: 56
24: 56
25: 56
26: 56


27: 56
28: 56
29: 56
30: 56
31: 56
32: 56


33: 56
35: 56
36: 56










There are 21 hits at base# 56









PleI
gagtc
38












12: 16
13: 16
14: 16
15: 16
16: 16
17: 16


18: 16
19: 16
20: 16
21: 16
22: 16
23: 16


24: 16
25: 16
26: 16
27: 16
27: 26
28: 16


29: 16
31: 16
32: 16
33: 16
34: 16
35: 16


36: 16
36: 26
37: 16
38: 16
39: 16
40: 16


41: 16
42: 16
44: 16
45: 16
46: 16
47: 16


48: 46
49: 46











There are 34 hits at base# 16









-″-
gactc
21












15: 56
16: 56
17: 56
18: 56
19: 56
20: 56


21: 56
22: 56
23: 56
24: 56
25: 56
26: 56


27: 56
28: 56
29: 56
30: 56
31: 56
32: 56


33: 56
35: 56
36: 56










There are 21 hits at base# 56









AlwNI
CAGNNNctg
26












15: 68
16: 68
17: 68
18: 68
19: 68
20: 68


21: 68
22: 68
23: 68
24: 68
25: 68
26: 68


27: 68
28: 68
29: 68
30: 68
31: 68
32: 68


33: 68
34: 68
35: 68
36: 68
39: 46
40: 46


41: 46
42: 46











There are 22 hits at base# 68
















TABLE 8





Kappa FR1 GLGs
















1   2   3   4   5   6   7   8   9   10  11  12



GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



13  14  15  16  17  18  19  20  21  22  23



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
O12


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
O2


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
O18


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
O8


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
A20


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
A30


AAC ATC CAG ATG ACC CAG TCT CCA TCT GCC ATG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  !
L14


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCA CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  !
L1


GAC ATC CAG ATG ACC CAG TCT CCA TCC TCA CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  !
L15


GCC ATC CAG TTG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
L4


GCC ATC CAG TTG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
L18


GAC ATC CAG ATG ACC CAG TCT CCA TCT TCC GTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  !
L5


GAC ATC CAG ATG ACC CAG TCT CCA TCT TCT GTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  !
L19


GAC ATC CAG TTG ACC CAG TCT CCA TCC TTC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
L8


GCC ATC CGG ATG ACC CAG TCT CCA TTC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
L23


GCC ATC CGG ATG ACC CAG TCT CCA TCC TCA TTC TCT



GCA TCT ACA GGA GAC AGA GTC ACC ATC ACT TGT  !
L9


GTC ATC TGG ATG ACC CAG TCT CCA TCC TTA CTC TCT



GCA TCT ACA GGA GAC AGA GTC ACC ATC AGT TGT  !
L24


GCC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
L11


GAC ATC CAG ATG ACC CAG TCT CCT TCC ACC CTG TCT



GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  !
L12


GAT ATT GTG ATG ACC CAG ACT CCA CTC TCC CTG CCC



GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC  !
O11


GAT ATT GTG ATG ACC CAG ACT CCA CTC TCC CTG CCC



GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC  !
O1


GAT GTT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC



GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC  !
A17


GAT GTT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC



GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC  !
A1


GAT ATT GTG ATG ACC CAG ACT CCA CTC TCT CTG TCC



GTC ACC CCT GGA CAG CCG GCC TCC ATC TCC TGC  !
A18


GAT ATT GTG ATG ACC CAG ACT CCA CTC TCT CTG TCC



GTC ACC CCT GGA CAG CCG GCC TCC ATC TCC TGC  !
A2


GAT ATT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC



GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC  !
A19


GAT ATT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC



GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC  !
A3


GAT ATT GTG ATG ACC CAG ACT CCA CTC TCC TCA CCT



GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC  !
A23


GAA ATT GTG TTG ACG CAG TCT CCA GGC ACC CTG TCT



TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC  !
A27


GAA ATT GTG TTG ACG CAG TCT CCA GCC ACC CTG TCT



TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC  !
A11


GAA ATA GTG ATG ACG CAG TCT CCA GCC ACC CTG TCT



GTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC  !
L2


GAA ATA GTG ATG ACG CAG TCT CCA GCC ACC CTG TCT



GTG TCT CCA GGG GAA AGA CCC ACC CTC TCC TGC  !
L16


GAA ATT GTG TTG ACA CAG TCT CCA GCC ACC CTG TCT



TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC  !
L6


GAA ATT GTG TTG ACA CAG TCT CCA GCC ACC CTG TCT



TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC  !
L20


GAA ATT GTA ATG ACA CAG TCT CCA GCC ACC CTG TCT



TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC  !
L25


GAC ATC GTG ATG ACC CAG TCT CCA GAC TCC CTG GCT



GTG TCT CTG GGC GAG AGG GCC ACC ATC AAC TGC  !
B3


GAA ACG ACA CTC ACG CAG TCT CCA GCA TTC ATG TCA



GCG ACT CCA GGA GAC AAA GTC AAC ATC TCC TGC  !
B2


GAA ATT GTG CTG ACT CAG TCT CCA GAC TTT CAG TCT



GTG ACT CCA AAG GAG AAA GTC ACC ATC ACC TGC  !
A26


GAA ATT GTG CTG ACT CAG TCT CCA GAC TTT CAG TCT



GTG ACT CCA AAG GAG AAA GTC ACC ATC ACC TGC  !
A10


GAT GTT GTG ATG ACA CAG TCT CCA GCT TTC CTC TCT



GTG ACT CCA GGG GAG AAA GTC ACC ATC ACC TGC  !
A14
















TABLE 9







RERS sites found in Human Kappa FR1 GLGs











FokI

HpyCH

















MslI
-->
<--
-->
PflFI
BsrI
BsmAI
MnlI
4V


























VKI


















O12
 1-69
3
3

23
12
49

15
18

47
 26


36


O2
101-169
103
103

123
112
149

115
118

147
 126


136


O18
201-269
203
203

223
212
249

215
218

247
 226


236


O8
301-369
303
303

323
312
349

315
318

347
 326


336


A20
401-469
403
403

423
412
449

415
418

447
 426


436


A30
501-569
503
503

523
512
549

515
518

547
 526


536


L14
601-669
603
603


612
649

615
618

647



636


L1
701-769
703
703

723
712
749

715
718

747
 726


736


L15
801-869
803
803

823
812
849

815
818

847
 826


836


L4
901-969

903

923
912
949
906
915
918

947
 926


936


L18
1001-1069

1003


1012
1049
1006
1015
1018

1047
1026


1036


L5
1101-1169
1103



1112
1149

1115
1118

1147



1136


L19
1201-1269
1203
1203


1212
1249

1215
1218

1247



1236


L8
1301-1369

1303

1323
1312
1349
1306
1315
1318

1347



1336


L23
1401-1469
1403
1403
1408

1412
1449

1415
1418

1447



1436


L9
1501-1569
1503
1503
1508
1523
1512
1549

1515
1518

1547
1526


1536


L24
1601-1669
1603

1608
1623
1612
1649

1615
1618

1647



1636


L11
1701-1769
1703
1703

1723
1712
1749

1715
1718

1747
1726


1736


L12
1801-1869
1803
1803


1812
1849

1815
1818

1847



1836


VKII


















O11
1901-1969












1956




O1
2001-2069












2056




A17
2101-2169




2112



2118



2156




A1
2201-2269




2212



2218



2256




A18
2301-2369












2356




A2
2401-2469












2456




A19
2501-2569




2512



2518



2556




A3
2601-2669




2612



2618



2656




A23
2701-2769











2729
2756




VKIII


















A27
2801-2869




2812



2818
2839



2860



A11
2901-2969




2912



2918
2939



2960



L2
3001-3069




3012



3018
3039



3060



L16
3101-3169




3112



3118
3139



3160



L6
3201-3269




3212



3218
3239



3260



L20
3301-3369




3312



3318
3339



3360



L25
3401-3469




3412



3418
3439



3460



VKIV


















B3
3501-3569
3503



3512


3515
3518
3539


3551<




VKV


















B2
3601-3669





3649


3618

3647






VKVI


















A26
3701-3769




3712



3718








A10
3801-3869




3812



3818








A14
3901-3969




3912



3918


3930>



















MaeIII

HpaII



MlyI
Tsp45I same
HphI
MspI




















SfaNI
SfcI
HinfI
-->
-->
<--
sites
xx38
xx56
xx62
xx06
xx52


























VKI


















O12
 1-69
37
41


53


53

55

 56





O2
101-169
137
141


153


153

155

 156





O18
201-269
237
241


253


253

255

 256





O8
301-369
337
341


353


353

355

 356





A20
401-469
437
441


453


453

455

 456





A30
501-569
537
541


553


553

555

 556





L14
601-669
637
641


653


653

655

 656





L1
701-769
737
741


753


753

755

 756





L15
801-869
837
841


853


853

855

 856





L4
901-969
937
941


953


953

955

 956





L18
1001-1069
1037
1041


1053


1053

1055

1056





L5
1101-1169
1137
1141


1153


1153

1155

1156





L19
1201-1269
1237
1241


1253


1253

1255

1256





L8
1301-1369
1337
1341


1353


1353

1355

1356





L23
1401-1469
1437
1441


1453


1453

1455

1456

1406



L9
1501-1569
1537
1541


1553


1553

1555

1556

1506



L24
1601-1669
1637
1641


1653


1653

1655

1656





L11
1701-1769
1737
1741


1753


1753

1755

1756





L12
1801-1869
1837
1841


1853


1853

1855

1856





VKII


















O11
1901-1969



1918


1918

1937

1938



1952


O1
2001-2069



2018


2018

2037

2038



2052


A17
2101-2169


2112


2112


2137

2138



2152


A1
2201-2269


2212


2212


2237

2238



2252


A18
2301-2369



2318


2318

2337

2338



2352


A2
2401-2469



2418


2418

2437

2438



2452


A19
2501-2569


2512


2512


2537

2538



2552


A3
2601-2669


2612


2612


2637

2638



2652


A23
2701-2769



2718


2718

2737

 2731*
 2738*





VKIII


















A27
2801-2869

















A11
2901-2969

















L2
3001-3069

















L16
3101-3169

















L6
3201-3269

















L20
3301-3369

















L25
3401-3469

















VKIV


















B3
3501-3569



3525


3525










VKV


















B2
3601-3669




3639


3639









VKVI


















A26
3701-3769


3712

3739
3712

3739
3737
3755

3756
3762




A10
3801-3869


3812

3839
3812

3839
3837
3855

3856
3862




A14
3901-3969




3939


3939
3937
3955

3956
3962











RERS sites found in Human Kappa FR1












BsrFI




BpmI
Cac8I

















BsaJI
BssKI (NstNI)
xx20
xx41
xx44
NaeI






















xx29
xx42
xx43
xx22
xx30
xx43
-->
-->
<--
NgoMIV
HaeIII
Tsp509I























VKI















O12
 1-69














O2
101-169














O18
201-269














O8
301-369














A20
401-469














A30
501-569














L14
601-669














L1
701-769














L15
801-869














L4
901-969














L18
1001-1069














L5
1101-1169














L19
1201-1269














L8
1301-1369














L23
1401-1469














L9
1501-1569














L24
1601-1669














L11
1701-1769














L12
1801-1869














VKII















O11
1901-1969

1942



1943


1944
1951
1954



O1
2001-2069

2042



2043


2044
2051
2054



A17
2101-2169

2142







2151
2154



A1
2201-2269

2242







2251
2254



A18
2301-2369

2342



2343



2351
2354



A2
2401-2469

2442



2443



2451
2454



A19
2501-2569

2542



2543


2544
2551
2554



A3
2601-2669

2642



2643


2644
2651
2654



A23
2701-2769

2742







2751
2754



VKIII















A27
2801-2869


2843
2822

2843
2820
2841



2803


A11
2901-2969


2943


2943
2920
2941



2903


L2
3001-3069


3043


3043

3041






L16
3101-3169


3143


3143
3120
3141






L6
3201-3269


3243


3243
3220
3241



3203


L20
3301-3369


3343


3343
3320
3341



3303


L25
3401-3469


3443


3443
3420
3441



3403


VKIV















B3
3501-3569
3529



3530

3520



3554



VKV















B2
3601-3669





3643
3620
3641






VKVI















A26
3701-3769






3720




3703


A10
3801-3869






3820




3803


A14
3901-3969


3943


3943
3920
3941




















TABLE 10





Lambda FR1 GLG sequences
















VL1
CAG TCT GTG CTG ACT CAG CCA CCC TCG GTG TCT GAA



GCC CCC AGG CAG AGG GTC ACC ATC TCC TGT !  1a



cag tct gtg ctg acG cag ccG ccc tcA gtg tct gGG



gcc ccA Ggg cag agg gtc acc atc tcc tgC !  1e



cag tct gtg ctg act cag cca ccc tcA gCg tct gGG



Acc ccc Ggg cag agg gtc acc atc tcT tgt !  1c



cag tct gtg ctg act cag cca ccc tcA gCg tct gGG



Acc ccc Ggg cag agg gtc acc atc tcT tgt !  1g



cag tct gtg Ttg acG cag ccG ccc tcA gtg tct gCG



gcc ccA GgA cag aAg gtc acc atc tcc tgC !  1b






VL2
CAG TCT GCC CTG ACT CAG CCT CCC TCC GCG TCC GGG



TCT CCT GGA CAG TCA GTC ACC ATC TCC TGC !  2c



cag tct gcc ctg act cag cct cGc tcA gTg tcc ggg



tct cct gga cag tca gtc acc atc tcc tgc!  2e



cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg



tct cct gga cag tcG Atc acc atc tcc tgc !  2a2



cag tct gcc ctg act cag cct ccc tcc gTg tcc ggg



tct cct gga cag tca gtc acc atc tcc tgc !  2d



cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg



tct cct gga cag tcG Atc acc atc tcc tgc !  2b2






VL3
TCC TAT GAG CTG ACT CAG CCA CCC TCA GTG TCC GTG



TCC CCA GGA CAG ACA GCC AGC ATC ACC TGC!   3r



tcc tat gag ctg act cag cca cTc tca gtg tcA gtg



Gcc cTG gga cag acG gcc agG atT acc tgT !  3j



tcc tat gag ctg acA cag cca ccc tcG gtg tcA gtg



tcc cca gga caA acG gcc agG atc acc tgc!  3p



tcc tat gag ctg acA cag cca ccc tcG gtg tcA gtg



tcc cTa gga cag aTG gcc agG atc acc tgc !  3a



tcT tCt gag ctg act cag GAC ccT GcT gtg tcT gtg



Gcc TTG gga cag aca gTc agG atc acA tgc !  31



tcc tat gTg ctg act cag cca ccc tca gtg tcA gtg



Gcc cca gga Aag acG gcc agG atT acc tgT !  3h



tcc tat gag ctg acA cag cTa ccc tcG gtg tcA gtg



tcc cca gga cag aca gcc agG atc acc tgc !  3e



tcc tat gag ctg aTG cag cca ccc tcG gtg tcA gtg



tcc cca gga cag acG acc agG atc acc tgc !  3m



tcc tat gag ctg acA cag cca Tcc tca gtg tcA gtg



tcT ccG gga cag aca gcc agG atc acc tgc !  V2-19






VL4
CTG CCT GTG CTG ACT CAG CCC CCG TCT GCA TCT GCC



TTG CTG GGA GCC TCG ATC AAG CTC ACC TGC !  4c



cAg cct gtg ctg act caA TcA TcC tct gcC tct gcT



tCC ctg gga Tcc tcg Gtc aag ctc acc tgc !  4a



cAg cTt gtg ctg act caA TcG ccC tct gcC tct gcc



tCC ctg gga gcc tcg Gtc aag ctc acc tgc !  4b






VL5
CAG CCT GTG CTG ACT CAG CCA CCT TCC TCC TCC GCA



TCT CCT GGA GAA TCC GCC AGA CTC ACC TGC !  5e



cag Gct gtg ctg act cag ccG Gct tcc CTc tcT gca



tct cct gga gCa tcA gcc agT ctc acc tgc !  5c



cag cct gtg ctg act cag cca Tct tcc CAT tcT gca



tct Tct gga gCa tcA gTc aga ctc acc tgc !  5b






VL6
AAT TTT ATG CTG ACT CAG CCC CAC TCT GTG TCG GAG



TCT CCG GGG AAG ACG GTA ACC ATC TCC TGC !  6a






VL7
CAG ACT GTG GTG ACT CAG GAG CCC TCA CTG ACT GTG



TCC CCA GGA GGG ACA GTC ACT CTC ACC TGT !  7a



cag Gct gtg gtg act cag gag ccc tca ctg act gtg



tcc cca gga ggg aca gtc act ctc acc tgt !  7b






VL8
CAG ACT GTG GTG ACC CAG GAG CCA TCG TTC TCA GTG



TCC CCT GGA GGG ACA GTC ACA CTC ACT TGT !  8a






VL9
CAG CCT GTG CTG ACT CAG CCA CCT TCT GCA TCA GCC



TCC CTG GGA GCC TCG GTC ACA CTC ACC TGC !  9a






VL10
CAG GCA GGG CTG ACT CAG CCA CCC TCG GTG TCC AAG



GGC TTG AGA CAG ACC GCC ACA CTC ACC TGC !  10a
















TABLE 11





RERSs found in human lambda FR1 GLGs















! There are 31 lambda GLGs









MlyI
NnnnnnGACTC
25












 1: 6
 3: 6
 4: 6
 6: 6
 7: 6
 8: 6


 9: 6
10: 6
11: 6
12: 6
15: 6
16: 6


20: 6
21: 6
22: 6
23: 6
23: 50
24: 6


25: 6
25: 50
26: 6
27: 6
28: 6
30: 6


31: 6












There are 23 hits at base# 6









-″-
GAGTCNNNNNn
 1


26: 34




MwoI
GCNNNNNnngc
20












 1: 9
 2: 9
 3: 9
 4: 9
11: 9
11: 56


12: 9
13: 9
14: 9
16: 9
17: 9
18: 9


19: 9
20: 9
23: 9
24: 9
25: 9
26: 9


30: 9
31: 9











There are 19 hits at base# 9









HinfI
Gantc
27












 1: 12
 3: 12
 4: 12
 6: 12
 7: 12
 8: 12


 9: 12
10: 12
11: 12
12: 12
15: 12
16: 12


20: 12
21: 12
22: 12
23: 12
23: 46
23: 56


24: 12
25: 12
25: 56
26: 12
26: 34
27: 12


28: 12
30: 12
31: 12










There are 23 hits at base# 12









PleI
gactc
25












 1: 12
 3: 12
 4: 12
 6: 12
 7: 12
 8: 12


 9: 12
10: 12
11: 12
12: 12
15: 12
16: 12


20: 12
21: 12
22: 12
23: 12
23: 56
24: 12


25: 12
25: 56
26: 12
27: 12
28: 12
30: 12


31: 12












There are 23 hits at base# 12









-″-
gagtc
 1


26: 34




DdeI
Ctnag
32












 1: 14
 2: 24
 3: 14
 3: 24
 4: 14
 4: 24


 5: 24
 6: 14
 7: 14
 7: 24
 8: 14
 9: 14


10: 14
11: 14
11: 24
12: 14
12: 24
15: 5


15: 14
16: 14
16: 24
19: 24
20: 14
23: 14


24: 14
25: 14
26: 14
27: 14
28: 14
29: 30


30: 14
31: 14











There are 21 hits at base# 14









BsaJI
Ccnngg
38












 1: 23
 1: 40
 2: 39
 2: 40
 3: 39
 3: 40


 4: 39
 4: 40
 5: 39
11: 39
12: 38
12: 39


13: 23
13: 39
14: 23
14: 39
15: 38
16: 39


17: 23
17: 39
18: 23
18: 39
21: 38
21: 39


21: 47
22: 38
22: 39
22: 47
26: 40
27: 39


28: 39
29: 14
29: 39
30: 38
30: 39
30: 47


31: 23
31: 32











There are 17 hits at base# 39


There are 5 hits at base# 38


There are 5 hits at base# 40 Makes cleavage ragged.









MnlI
cctc
35












 1: 23
 2: 23
 3: 23
 4: 23
 5: 23
 6: 19


 6: 23
 7: 19
 8: 23
 9: 19
 9: 23
10: 23


11: 23
13: 23
14: 23
16: 23
17: 23
18: 23


19: 23
20: 47
21: 23
21: 29
21: 47
22: 23


22: 29
22: 35
22: 47
23: 26
23: 29
24: 27


27: 23
28: 23
30: 35
30: 47
31: 23








There are 21 hits at base# 23


There are 3 hits at base# 19


There are 3 hits at base# 29


There are 1 hits at base# 26


There are 1 hits at base# 27 These could make cleavage ragged.









-″-
gagg
 7












 1: 48
 2: 48
 3: 48
 4: 48
27: 44
28: 44


29: 44














BssKI
Nccngg
39












 1: 40
 2: 39
 3: 39
 3: 40
 4: 39
 4: 40


 5: 39
 6: 31
 6: 39
 7: 31
 7: 39
 8: 39


 9: 31
 9: 39
10: 39
11: 39
12: 38
12: 52


13: 39
13: 52
14: 52
16: 39
16: 52
17: 39


17: 52
18: 39
18: 52
19: 39
19: 52
21: 38


22: 38
23: 39
24: 39
26: 39
27: 39
28: 39


29: 14
29: 39
30: 38










There are 21 hits at base# 39


There are 4 hits at base# 38


There are 3 hits at base# 31


There are 3 hits at base# 40 Ragged









BstNI
CCwgg
30












 1: 41
 2: 40
 5: 40
 6: 40
 7: 40
 8: 40


 9: 40
10: 40
11: 40
12: 39
12: 53
13: 40


13: 53
14: 53
16: 40
16: 53
17: 40
17: 53


18: 40
18: 53
19: 53
21: 39
22: 39
23: 40


24: 40
27: 40
28: 40
29: 15
29: 40
30: 39







There are 17 hits at base# 40


There are 7 hits at base# 53


There are 4 hits at base# 39


There are 1 hits at base# 41 Ragged









PspGI
ccwgg
30












 1: 41
 2: 40
 5: 40
 6: 40
 7: 40
 8: 40


 9: 40
10: 40
11: 40
12: 39
12: 53
13: 40


13: 53
14: 53
16: 40
16: 53
17: 40
17: 53


18: 40
18: 53
19: 53
21: 39
22: 39
23: 40


24: 40
27: 40
28: 40
29: 15
29: 40
30: 39







There are 17 hits at base# 40


There are 7 hits at base# 53


There are 4 hits at base# 39


There are 1 hits at base# 41









ScrFI
CCngg
39












 1: 41
 2: 40
 3: 40
 3: 41
 4: 40
 4: 41


 5: 40
 6: 32
 6: 40
 7: 32
 7: 40
 8: 40


 9: 32
 9: 40
10: 40
11: 40
12: 39
12: 53


13: 40
13: 53
14: 53
16: 40
16: 53
17: 40


17: 53
18: 40
18: 53
19: 40
19: 53
21: 39


22: 39
23: 40
24: 40
26: 40
27: 40
28: 40


29: 15
29: 40
30: 39










There are 21 hits at base# 40


There are 4 hits at base# 39


There are 3 hits at base# 41









MaeIII
gtnac
16












 1: 52
 2: 52
 3: 52
 4: 52
 5: 52
 6: 52


 7: 52
 9: 52
26: 52
27: 10
27: 52
28: 10


28: 52
29: 10
29: 52
30: 52









There are 13 hits at base# 52









Tsp45I
gtsac
15












 1: 52
 2: 52
 3: 52
 4: 52
 5: 52
 6: 52


 7: 52
 9: 52
27: 10
27: 52
28: 10
28: 52


29: 10
29: 52
30: 52










There are 12 hits at base# 52









HphI
tcacc
26












 1: 53
 2: 53
 3: 53
 4: 53
 5: 53
 6: 53


 7: 53
 8: 53
 9: 53
10: 53
11: 59
13: 59


14: 59
17: 59
18: 59
19: 59
20: 59
21: 59


22: 59
23: 59
24: 59
25: 59
27: 59
28: 59


30: 59
31: 59











There are 16 hits at base# 59


There are 10 hits at base# 53









BspMI
ACCTGCNNNNn
14












11: 61
13: 61
14: 61
17: 61
18: 61
19: 61


20: 61
21: 61
22: 61
23: 61
24: 61
25: 61


30: 61
31: 61











There are 14 hits at base# 61 Goes into CDR1
















TABLE 12





Matches to URE FR3 adapters in 79 human HC.







A. List of Heavy-chains genes sampled
















AF008566
AF103367
HSA235674
HSU94417
S83240



AF035043
AF103368
HSA235673
HSU94418
SABVH369



AF103026
AF103369
HSA240559
HSU96389
SADEIGVH



af103033
AF103370
HSCB201
HSU96391
SAH2IGVH



AF103061
af103371
HSIGGVHC
HSU96392
SDA3IGVH



Af103072
AF103372
HSU44791
HSU96395
SIGVHTTD



af103078
AF158381
HSU44793
HSZ93849
SUK4IGVH



AF103099
E05213
HSU82771
HSZ93850




AF103102
E05886
HSU82949
HSZ93851




AF103103
E05887
HSU82950
HSZ93853




AF103174
HSA235661
HSU82952
HSZ93855




AF103186
HSA235664
HSU82961
HSZ93857




af103187
HSA235660
HSU86522
HSZ93860




AF103195
HSA235659
HSU86523
HSZ93863




af103277
HSA235678
HSU92452
MCOMFRAA




af103286
HSA235677
HSU94412
MCOMFRVA




AF103309
HSA235676
HSU94415
S82745




af103343
HSA235675
HSU94416
S82764










Table 12B. Testing all distinct GLGs from bases 89.1 to 93.2 of


the heavy variable domain

























SEQ ID


Id
Nb
0
1
2
3
4


NO:





1
38
15
11
10
0
2
Seq1
gtgtattactgtgc
25


2
19
7
6
4
2
0
Seq2
gtAtattactgtgc
26


3
1
0
0
1
0
0
Seq3
gtgtattactgtAA
27


4
7
1
5
1
0
0
Seq4
gtgtattactgtAc
28


5
0
0
0
0
0
0
Seq5
Ttgtattactgtgc
29


6
0
0
0
0
0
0
Seq6
TtgtatCactgtgc
30


7
3
1
0
1
1
0
Seq7
ACAtattactgtgc
31


8
2
0
2
0
0
0
Seq8
ACgtattactgtgc
32


9
9
2
2
4
1
0
Seq9
ATgtattactgtgc
33













Group
26
26
21
4
2



Cumulative
26
52
73
77
79










Table 12C Most important URE recognition seqs in FR3 Heavy














1
VHSzy1
GTGtattactgtgc
(ON_SHC103)
(SEQ ID NO: 25)


2
VHSzy2
GTAtattactgtgc
(ON_SHC323)
(SEQ ID NO: 26)


3
VHSzy4
GTGtattactgtac
(ON_SHC349)
(SEQ ID NO: 28)


4
VHSzy9
ATGtattactgtgc
(ON_SHC5a)
(SEQ ID NO: 33)










Table 12D, testing 79 human HC V genes with four probes


Number of sequences . . . . . . . . . . .    79


Number of bases . . . . . . . . . . . . . . 29143










Number of




mismatches


















Id
Best
0
1
2
3
4
5








1
39
15
11
10
1
2
0
Seq1
gtgtattactgtgc
(SEQ ID NO: 25)


2
22
7
6
5
3
0
1
Seq2
gtAtattactgtgc
(SEQ ID NO: 26)


3
7
1
5
1
0
0
0
Seq4
gtgtattactgtAc
(SEQ ID NO: 28)


4
11
2
4
4
1
0
0
Seq9
ATgtattactgtgc
(SEQ ID NO: 33)













Group
25
26
20
5
2



Cumulative
25
51
71
76
78





One sequence has five mismatches with sequences 2, 4, and 9; it is scored as best for 2.


Id is the number of the adapter.


Best is the number of sequence for which the identified adapter was the best available.


The rest of the table shows how well the sequences match the adapters. For example, there are 10 sequences that match VHSzy1(Id = 1) with 2 mismatches and are worse for all other adapters. In this sample, 90% come within 2 bases of one of the four adapters.?













TABLE 13







The following list of enzymes was taken from


http://rebase.neb.com/cgi-bin/asymmlist.


I have removed the enzymes that a) cut within the recognition,


b) cut on both sides of the recognition, or c) have fewer than


2 bases between recognition and closest cut site.


REBASE Enzymes


Apr. 13, 2001


Type II restriction enzymes with asymmetric


recognition sequences:










Enzymes
Recognition Sequence
Isoschizomers
Suppliers





AarI
CACCTGCNNNN{circumflex over ( )}NNNN

y


AceIII
CAGCTCNNNNNNN{circumflex over ( )}NNNN




Bbr7I
GAAGACNNNNNNN{circumflex over ( )}NNNN




BbvI
GCAGCNNNNNNNN{circumflex over ( )}NNNN

y


BbvII
GAAGACNN{circumflex over ( )}NNNN




Bce83I
CTTGAGNNNNNNNNNNNNNN_NN{circumflex over ( )}




BceAI
ACGGCNNNNNNNNNNNN{circumflex over ( )}NN

y


BcefI
ACGGCNNNNNNNNNNNN{circumflex over ( )}N




BciVI
GTATCCNNNNN_N{circumflex over ( )}
BfuI
y


BfiI
ACTGGGNNNN_N{circumflex over ( )}
BmrI
y


BinI
GGATCNNNN{circumflex over ( )}N




BscAI
GCATCNNNN{circumflex over ( )}NN




BseRI
GAGGAGNNNNNNNN_NN{circumflex over ( )}

y


BsmFI
GGGACNNNNNNNNNN{circumflex over ( )}NNNN
BspLU11III
y


BspMI
ACCTGCNNNN{circumflex over ( )}NNNN
Acc36I
y


EciI
GGCGGANNNNNNNNN_NN{circumflex over ( )}

y


Eco57I
CTGAAGNNNNNNNNNNNNNN_NN{circumflex over ( )}
BspKT5I
y


FauI
CCCGCNNNN{circumflex over ( )}NN
BstFZ438I
y


FokI
GGATGNNNNNNNNN{circumflex over ( )}NNNN
BstPZ418I
y


GauI
CTGGAGNNNNNNNNNNNNNN_NN{circumflex over ( )}

y


HgaI
GACGCNNNNN{circumflex over ( )}NNNNN

y


HphI
GGTGANNNNNNN_N{circumflex over ( )}
AsuHPI
y


MboII
GAAGANNNNNNN_N{circumflex over ( )}

y


MlyI
GAGTCNNNNN{circumflex over ( )}
SchI
y


MmeI
TCCRACNNNNNNNNNNNNNNNNNN_NN{circumflex over ( )}




MnlI
CCTCNNNNNN_N{circumflex over ( )}

y


PleI
GAGTCNNNN{circumflex over ( )}N
PpsI
y


RleAI
CCCACANNNNNNNNN_NNN{circumflex over ( )}




SfaNI
GCATCNNNNN{circumflex over ( )}NNNN
BspST5I
y


SspD5I
GGTGANNNNNNNN{circumflex over ( )}




Sth132I
CCCGNNNN{circumflex over ( )}NNNN




StsI
GGATGNNNNNNNNNN{circumflex over ( )}NNNN




TaqII
GACCGANNNNNNNNN_NN{circumflex over ( )}, CACCCANNNNNNNNN_NN{circumflex over ( )}




Tth111II
CAARCANNNNNNNNN_NN{circumflex over ( )}




UbaPI
CGAACG







The notation is {circumflex over ( )} means cut the upper strand and _ means cut the lower strand. If the upper and lower strand are cut at the same place, then only {circumflex over ( )} appears.













TABLE 14









embedded image


















TABLE 15





Use of FokI as “Universal Restriction Enzyme”

















embedded image






embedded image


















TABLE 16





Human heavy chains bases 88.1 to 94.2















Number of sequences.......... 840














Number of Mismatchers.........

Probe




















Id
Ntot
0
1
2
3
4
5
6
7
Name
Sequence............
Dot form............





1
364
152
97
76
26
7
4
2
0
VHS881-1.1
gctgtgtattactgtgcgag
gctgtgtattactgtgcgag


2
265
150
60
33
13
5
4
0
0
VHS881-1.2
gccgtgtattactgtgcgag
..c.................


3
96
14
34
16
10
5
7
9
1
VHS881-2.1
gccgtatattactgtgcgag
..c..a..............


4
20
0
3
4
9
2
2
0
0
VHS881-4.1
gccgtgtattactgtacgag
..c............a....


5
95
25
36
18
11
2
2
0
1
VHS881-9.1
gccatgtattactgtgcgag
..ca................






840
341
230
147
69
21
19
11
2







341
571
718
787
808
827
838
840















embedded image






embedded image


















TABLE 17





Kappa, bases 12-30


























|













| ID
Ntot
0
1
2
3
4
5
6
Name
Sequence...........
Dot Form...........





| 1
84
40
21
20
1
2
0
0
SK12O12
gacccagtctccatcctcc
gacccagtctccatcctcc


| 2
32
19
3
6
2
1
0
1
SK12A17
gactcagtctccactctcc
...t.........ct....


| 3
26
17
8
1
0
0
0
0
SK12A27
gacgcagtctccaggcacc
...g.........gg.a..


| 4
40
21
18
1
0
0
0
0
SK12A11
gacgcagtctccagccacc
...g.........g..a..


|
182
97
50
28
3
3
0
1





|

97
147
175
178
181
181
182










|


URE adapters:




embedded image






embedded image


















TABLE 18





Lambda URE adapters bases 13.3 to 19.3















|


| Number of sequences.............. 128


|











|
Number of mismatches........























| ID
Ntot
0
1
2
3
4
5
6
7
8
Name
Sequence...........
Dot form...........





| 1
58
45
 7
 1
 0
 0
 0
 2
 2
 1
VL133-
gtctcctggacagtcgatc
gtctcctggacagtcgatc













2a2




| 2
16
10
 1
 0
 1
 0
 1
 1
 0
 2
VL133-
ggccttgggacagacagtc
.g.cttg......a.ag..













3l




| 3
17
 6
 0
 0
 0
 4
 1
 1
 5
 0
VL133-
gtctcctggacagtcagtc
...............ag..













2c




| 4
37
 3
 0
10
 4
 4
 3
 7
 4
 2
VL133-
ggccccagggcagagggtc
.g.c..a..g...ag.g..













1c




|
128
64
 8
11
 5
 8
 5
 11
 11
 5





|

64
72
83
88
96
101
112
123
128










|


|




embedded image






embedded image


















TABLE 19







Cleavage of 75 human light chains.















Planned location


Enzyme
Recognition*
Nch
Ns
of site














AfeI
AGCgct
0
0




AflII


Cttaag


0


0


HC FR3



AgeI
Accggt
0
0




AscI


GGcgcgcc


0


0


After LC



BglII
Agatct
0
0



BsiWI
Cgtacg
0
0



BspDI
ATcgat
0
0



BssHII
Gcgcgc
0
0



BstBI
TTcgaa
0
0



DraIII
CACNNNgtg
0
0



EagI
Cggccg
0
0



FseI
GGCCGGcc
0
0



FspI
TGCgca
0
0



HpaI
GTTaac
0
0




MfeI


Caattg


0


0


HC FR1



MluI
Acgcgt
0
0




NcoI


Ccatgg


0


0


Heavy chain








signal




NheI


Gctagc


0


0


HC/anchor linker




NotI


GCggccgc


0


0


In linker after








HC



NruI
TCGcga
0
0



PacI
TTAATtaa
0
0



PmeI
GTTTaaac
0
0



PmlI
CACgtg
0
0



PvuI
CGATcg
0
0



SacII
CCGCgg
0
0



SalI
Gtcgac
0
0




SfiI


GGCCNNNNnggcc


0


0


Heavy Chain








signal



SgfI
GCGATcgc
0
0



SnaBI
TACgta
0
0



StuI
AGGcct
0
0




XbaI


Tctaga


0


0


HC FR3



AatII
GACGTc
1
1



AclI
AAcgtt
1
1



AseI
ATtaat
1
1



BsmI
GAATGCN
1
1




BspEI


Tccgga


1


1


HC FR1




BstXI


CCANNNNNntgg


1


1


HC FR2



DrdI
GACNNNNnngtc
1
1



HindIII
Aagctt
1
1



PciI
Acatgt
1
1



SapI
gaagagc
1
1



ScaI
AGTact
1
1



SexAI
Accwggt
1
1



SpeI
Actagt
1
1



TliI
Ctcgag
1
1



XhoI
Ctcgag
1
1



BcgI
cgannnnnntgc
2
2



BlpI
GCtnagc
2
2



BssSI
Ctcgtg
2
2



BstAPI
GCANNNNntgc
2
2



EspI
GCtnagc
2
2



KasI
Ggcgcc
2
2



PflMI
CCANNNNntgg
2
2



XmnI
GAANNnnttc
2
2




ApaLI


Gtgcac


3


3


LC signal seq



NaeI
GCCggc
3
3



NgoMI
Gccggc
3
3



PvuII
CAGctg
3
3



RsrII
CGgwccg
3
3



BsrBI
GAGcgg
4
4



BsrDI
GCAATGNNn
4
4



BstZ17I
GTAtac
4
4



EcoRI
Gaattc
4
4



SphI
GCATGc
4
4



SspI
AATatt
4
4



AccI
GTmkac
5
5



BclI
Tgatca
5
5



BsmBI
Nnnnnngagacg
5
5



BsrGI
Tgtaca
5
5



DraI
TTTaaa
6
6




NdeI


CAtatg


6


6


HC FR4



SwaI
ATTTaaat
6
6



BamHI
Ggatcc
7
7



SacI
GAGCTc
7
7



BciVI
GTATCCNNNNNN
8
8



BsaBI
GATNNnnatc
8
8



NsiI
ATGCAt
8
8




Bsp120I


Gggccc


9


9


CH1




ApaI


GGGCCc


9


9


CH1



PspOOMI
Gggccc
9
9



BspHI
Tcatga
9
11



EcoRV
GATatc
9
9



AhdI
GACNNNnngtc
11
11



BbsI
GAAGAC
11
14



PsiI
TTAtaa
12
12



BsaI
GGTCTCNnnnn
13
15



XmaI
Cccggg
13
14



AvaI
Cycgrg
14
16



BglI
GCCNNNNnggc
14
17



AlwNI
CAGNNNctg
16
16



BspMI
ACCTGC
17
19



XcmI
CCANNNNNnnnntgg
17
26




BstEII


Ggtnacc


19


22


HC FR4



Sse8387I
CCTGCAgg
20
20



AvrII
Cctagg
22
22



HincII
GTYrac
22
22



BsgI
GTGCAG
27
29



MscI
TGGcca
30
34



BseRI
NNnnnnnnnnctcctc
32
35



Bsu36I
CCtnagg
35
37



PstI
CTGCAg
35
40



EciI
nnnnnnnnntccgcc
38
40



PpuMI
RGgwccy
41
50



StyI
Ccwwgg
44
73



EcoO109I
RGgnccy
46
70



Acc65I
Ggtacc
50
51



KpnI
GGTACc
50
51



BpmI
ctccag
53
82



AvaII
Ggwcc
71
124





*cleavage occurs in the top strand after the last upper-case base. For REs that cut palindromic sequences, the lower strand is cut at the symmetrical site.













TABLE 20







Cleavage of 79 human heavy chains















Planned location


Enzyme
Recognition
Nch
Ns
of site














AfeI
AGCgct
0
0




AflII


Cttaag


0


0


HC FR3




AscI


GGcgcgcc


0


0


After LC



BsiWI
Cgtacg
0
0



BspDI
ATcgat
0
0



BssHII
Gcgcgc
0
0



FseI
GGCCGGcc
0
0



HpaI
GTTaac
0
0




NheI


Gctagc


0


0


HC Linker




NotI


GCggccgc


0


0


In linker,








HC/anchor



NruI
TCGcga
0
0



NsiI
ATGCAt
0
0



PacI
TTAATtaa
0
0



PciI
Acatgt
0
0



PmeI
GTTTaaac
0
0



PvuI
CGATcg
0
0



RsrII
CGgwccg
0
0



SapI
gaagagc
0
0




sfiI


GGCCNNNNnggcc


0


0


HC signal seq



SgfI
GCGATcgc
0
0



SwaI
ATTTaaat
0
0



AclI
AAcgtt
1
1



AgeI
Accggt
1
1



AseI
ATtaat
1
1



AvrII
Cctagg
1
1



BsmI
GAATGCN
1
1



BsrBI
GAGcgg
1
1



BsrDI
GCAATGNNn
1
1



DraI
TTTaaa
1
1



FspI
TGCgca
1
1



HindIII
Aagctt
1
1




MfeI


Caattg


1


1


HC FR1



NaeI
GCCggc
1
1



NgoMI
Gccggc
1
1



SpeI
Actagt
1
1



Acc65I
Ggtacc
2
2



BstBI
TTcgaa
2
2



KpnI
GGTACc
2
2



MluI
Acgcgt
2
2




NcoI


Ccatgg


2


2


In HC signal seq




NdeI


CAtatg


2


2


HC FR4



PmlI
CACgtg
2
2



XcmI
CCANNNNNnnnntgg
2
2



BcgI
cgannnnnntgc
3
3



BclI
Tgatca
3
3



BglI
GCCNNNNnggc
3
3



BsaBI
GATNNnnatc
3
3



BsrGI
Tgtaca
3
3



SnaBI
TACgta
3
3



Sse8387I
CCTGCAgg
3
3




ApaLI


Gtgcac


4


4


LC Signal/FR1



BspHI
Tcatga
4
4



BssSI
Ctcgtg
4
4



PsiI
TTAtaa
4
5



SphI
GCATGc
4
4



AhdI
GACNNNnngtc
5
5




BspEI


Tccgga


5


5


HC FR1



MscI
TGGcca
5
5



SacI
GAGCTc
5
5



ScaI
AGTact
5
5



SexAI
Accwggt
5
6



SspI
AATatt
5
5



TliI
Ctcgag
5
5



XhoI
Ctcgag
5
5



BbsI
GAAGAC
7
8



BstAPI
GCANNNNntgc
7
8



BstZ17I
GTAtac
7
7



EcoRV
GATatc
7
7



EcoRI
Gaattc
8
8



BlpI
GCtnagc
9
9



Bsu36I
CCtnagg
9
9



DraIII
CACNNNgtg
9
9



EspI
GCtnagc
9
9



StuI
AGGcct
9
13




XbaI


Tctaga


9


9


HC FR3




Bsp120I


Gggccc


10


11


CH1




ApaI


GGGCCc


10


11


CH1



PspOOMI
Gggccc
10
11



BciVI
GTATCCNNNNNN
11
11



SalI
Gtcgac
11
12



DrdI
GACNNNNnngtc
12
12



KasI
Ggcgcc
12
12



XmaI
Cccggg
12
14



BglII
Agatct
14
14



HincII
GTYrac
16
18



BamHI
Ggatcc
17
17



PflMI
CCANNNNntgg
17
18



BsmBI
Nnnnnngagacg
18
21




BstXI


CCANNNNNntgg


18


19


HC FR2



XmnI
GAANNnnttc
18
18



SacII
CCGCgg
19
19



PstI
CTGCAg
20
24



PvuII
CAGctg
20
22



AvaI
Cycgrg
21
24



EagI
Cggccg
21
22



AatII
GACGTc
22
22



BspMI
ACCTGC
27
33



AccI
GTmkac
30
43



StyI
Ccwwgg
36
49



AlwNI
CAGNNNctg
38
44



BsaI
GGTCTCNnnnn
38
44



PpuMI
RGgwccy
43
46



BsgI
GTGCAG
44
54



BseRI
NNnnnnnnnnctcctc
48
60



EciI
nnnnnnnnntccgcc
52
57




BstEII


Ggtnacc


54


61


HC Fr4,








47/79 have one



EcoO109I
RGgnccy
54
86



BpmI
ctccag
60
121



AvaII
Ggwcc
71
140





















Table 21; MALIA3, annotated


MALIA3 9532 bases











1
aat gct act act att agt aga att gat gcc acc ttt tca gct cgc gcc







gene ii continued











49
cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta





97
tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca act





145
gtt aca tgg aat gaa act tcc aga cac cgt act tta gtt gca tat tta





193
aaa cat gtt gag cta cag cac cag att cag caa tta agc tct aag cca





241
tcc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc tct





289
aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa gct





337
cga att aaa acg cga tat ttg aag tct ttc ggg ctt cct ctt aat ctt





385
ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa gac





433
ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa gca





481
ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg gac



    RBS?......      Start gene x, ii continues





529
gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct





577
ttt gca aaa gcc tct cgc tat ttt ggt ttt tat cgt cgt ctg gta aac





625
gag ggt tat gat agt gtt gct ctt act atg cct cgt aat tcc ttt tgg





673
cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg





721
atg aat ctt tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt att





769
aac gta gat ttt tct tcc caa cgt cct gac tgg tat aat gag cca gtt





817
ctt aaa atc gca TAA



                End X & II





832
ggtaattca ca






 M1              E5                 Q10                 T15


843
ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act cgt



Start gene V






S17         S20                 P25                 E30


891
tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aat gag cag ctt






        V35                 E40                 V45


939
tgt tac gtt gat ttg ggt aat gaa tat ccg gtt ctt gtc aag att act






    D50                 A55                 L60


987
ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt cat



                                             BsrGI...






L65                 V70                 S75                 R80


1035
ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt






                P85     K87 end of V


1083
ctg cgc ctc gtt ccg gct aag TAA C





1108
ATG gag cag gtc gcg gat ttc gag aca att tat cag gcg atg



Start gene VII





1150
ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc






                  VII and IX overlap.



                  ..... S2  V3  L4  V5                S10


1192
gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttc gcc tct ttc gtt






                    End VII



                  |start IX






L13     W15                 G20                 T25             E29


1242
tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta atg gaa





1293
act tcc tc






 .... stop of IX, IX and VIII overlap by four bases


1301
ATG aaa aag tct tta gtc ctc aaa gcc tct gta gcc gtt gct acc ctc



Start signal sequence of viii.





1349
gtt ccg atg ctg tct ttc gct gct gag ggt gac gat ccc gca aaa gcg



                            mature VIII --->





1397
gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg





1445
tgg gcg atg gtt gtt gtc att





1466
gtc ggc gca act atc ggt atc aag ctg ttt aag





1499
aaa ttc acc tcg aaa gca ! 1515



 ...........  −35  ..





1517
     agc tga taaaccgat acaattaaag gctccttttg



                ..... −10   ...





1552
gagccttttt ttttGGAGAt ttt ! S.D. underlined



     <------ III signal sequence ----------------------------->






      M   K   K   L   L   F   A   I   P   L   V


1575
caac GTG aaa aaa tta tta ttc gca att cct tta gtt ! 1611






 V   P   F   Y   S   H   S   A   Q


1612
gtt cct ttc tat tct cac aGT gcA Cag tCT



                         ApaLI...





1642
GTC GTG ACG CAG CCG CCC TCA GTG TCT GGG GCC CCA GGG GAG




AGG GTC ACC ATC TCC TGC ACT GGG AGC AGC TCC AAC ATC GGG GCA




  BstEII...





1729
GGT TAT GAT GTA CAC TGG TAC CAG CAG CTT CCA GGA ACA GCC CCC AAA





1777
CTC CTC ATC TAT GGT AAC AGC AAT CGG CCC TCA GGG GTC CCT GAC CGA





1825
TTC TCT GGC TCC AAG TCT GGC ACC TCA GCC TCC CTG GCC ATC ACT





1870
GGG CTC GAG GCT GAG GAT GAG GCT GAT TAT





1900
TAC TGC CAG TCC TAT GAC AGC AGC CTG AGT





1930
GGC CTT TAT GTC TTC GGA ACT GGG ACC AAG GTC ACC GTC



                                      BstEII...





1969
CTA GGT CAG CCC AAG GCC AAC CCC ACT GTC ACT





2002
CTG TTC CCG CCC TCC TCT GAG GAG CTC CAA GCC AAC AAG GCC ACA CTA





2050
GTG TGT CTG ATC AGT GAC TTC TAC CCG GGA GCT GTG ACA GTG GCC TGG





2098
AAG GCA GAT AGC AGC CCC GTC AAG GCG GGA GTG GAG ACC ACC ACA CCC





2146
TCC AAA CAA AGC AAC AAC AAG TAC GCG GCC AGC AGC TAT CTG AGC CTG





2194
ACG CCT GAG CAG TGG AAG TCC CAC AGA AGC TAC AGC TGC CAG GTC ACG





2242
CAT GAA GGG AGC ACC GTG GAG AAG ACA GTG GCC CCT ACA GAA TGT TCA





2290
TAA TAA ACCG CCTCCACCGG GCGCGCCAAT TCTATTTCAA GGAGACAGTC ATA



                      AscI.....






PelB signal---------------------------------------------->



 M   K   Y   L   L   P   T   A   A   A   G   L   L   L   L


2343
ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC






 16  17  18  19  20 21  22



 A   A   Q   P   A  M  A


2388
gcG GCC cag ccG GCC      atg gcc



  SfiI.............



          NgoMI...(1/2)



                 NcoI.........






                            FR1(DP47/V3-23)---------------



                            23  24  25  26  27  28  29  30



                             E   V   Q   L   L   E   S   G


2409
                            gaa|gtt|CAA|TTG|tta|gag|tct|ggt|



                                   | MfeI  |






--------------FR1--------------------------------------------



 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45



  G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A


2433
|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|






----FR1---------------->|...CDR1................|---FR2------



 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60



  A   S   G   F   T   F   S   S   Y   A   M   S   W   V   R


2478
|gct|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC|



    | BspEI |                 | BsiWI|                     |BstXI.






-------FR2-------------------------------->|...CDR2.........



 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75



  Q   A   P   G   K   G   L   E   W   V   S   A   I   S   G


2523
|CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|



...BstXI          |






.....CDR2..........................................|---FR3---



  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90



   S   G   G   S   T   Y   Y   A   D   S   V   K   G   R   F


2568
|tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc|






--------FR3--------------------------------------------------



  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105



  T   I   S   R   D   N   S   K   N   T   L   Y   L   Q   M


2613
|act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|



        | XbaI  |






---FR3----------------------------------------------------->|



 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120



  N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   K


2658
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|



       |AflII |               | PstI |






.......CDR3.................|----FR4-------------------------



 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135



  D   Y   E   G   T   G   Y   A   F   D   I   W   G   Q   G


2703
|gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt|



                                       | NdeI |(1/4)






--------------FR4---------->|



 136 137 138 139 140 141 142



  T   M   V   T   V   S   S


2748
|act|atG|GTC|ACC|gtc|tct|agt



       | BstEII |







From BstEII onwards, pV323 is same as pCES1, except as noted.


BstEII sites may occur in light chains; not likely to be unique in final


vector.












                 143 144 145 146 147 148 149 150 151 152



                  A   S   T   K   G   P   S   V   F   P


2769
                 gcc tcc acc aaG GGC CCa tcg GTC TTC ccc



                               Bsp120I.      BbsI...(2/2)



                               ApaI....






153 154 155 156 157 158 159 160 161 162 163 164 165 166 157



 L   A   P   S   S   K   S   T   S   G   G   T   A   A   L


2799
ctg gca ccC TCC TCc aag agc acc tct ggg ggc aca gcg gcc ctg



          BseRI...(2/2)






168 169 170 171 172 173 174 175 176 177 178 179 180 181 182



 G   C   L   V   K   D   Y   F   P   E   P   V   T   V   S


2844
ggc tgc ctg GTC AAG GAC TAC TTC CCC gaA CCG GTg acg gtg tcg



                                      AgeI....






183 184 185 186 187 188 189 190 191 192 193 194 195 196 197



 W   N   S   G   A   L   T   S   G   V   H   T   F   P   A


2889
tgg aac tca GGC GCC ctg acc agc ggc gtc cac acc ttc ccg gct



            KasI...(1/4)






198 199 200 201 202 203 204 205 206 207 206 209 210 211 212



 V   L   Q   S   S   G   L   Y   S   L   S   S   V   V   T


2934
gtc cta cag tCt agc GGa ctc tac tcc ctc agc agc gta gtg acc



            (Bsu36I...) (knocked out)






213 214 215 216 217 218 219 220 221 222 223 224 225 226 227



 V   P   S   S   S   L   G   T   Q   T   Y   I   C   N   V


2979
gtg ccC tCt tct agc tTG Ggc acc cag acc tac atc tgc aac gtg



        (BstXI...........)N.B. destruction of BstXI & BpmI sites.






228 229 230 231 232 233 234 235 236 237 238 239 240 241 242



 N   H   K   P   S   N   T   K   V   D   K   K   V   E   P





3024
aat cac aag ccc agc aac acc aag gtg gac aag aaa gtt gag ccc



243 244 245



 K   S   C   A   A   A   H   H   H   H   H   H   S   A


3069
aaa tct tgt GCG GCC GCt cat cac cac cat cat cac tct gct



            NotI......






 E   Q   K   L   I   S   E   E   D   L   N   G   A   A


3111
gaa caa aaa ctc atc tca gaa gag gat ctg aat ggt gcc gca






 D   I   N   D   D   R   M   A   S   G   A


3153
GAT ATC aac gat gat cgt atg gct AGC ggc ggc



rEK cleavage site.......... NheI... KasI...



EcoRV..










Domain 1 ------------------------------------------------------------









 A   E   T   V   E   S   C   L   A


3183
gct gaa act gtt gaa agt tgt tta gca






 K   p   H   T   E   I   S   F





3210
aaa ccc cat aca gaa aat tca ttt



 T   N   V   W   K   D   D   K   T





3234
aCT AAC GTC TGG AAA GAC GAC AAA ACt






 L   D   R   Y   A   N   Y   E   G   C   L   W   N   A   T   G   V


3261
tta gat cgt tac gct aac tat gag ggt tgt ctg tgG AAT GCt aca ggc gtt



                                              BsmI    






 V   V   C   T   G   D   E   T   Q   C   Y   G   T   W   V   P   I


3312
gta gtt tgt act ggt GAC GAA ACT CAG TGT TAC GGT ACA TGG GTT cct att






 G   L   A   I   P   E   N


3363
ggg ctt gct atc cct gaa aat










L1 linker ------------------------------------









 E   G   G   G   S   E   G   G   G   S


3384
gag ggt ggt ggc tct gag ggt ggc ggt tct






 E   G   G   G   S   E   G   G   G   T


3414
gag ggt ggc ggt tct gag ggt ggc ggt act







Domain 2 ------------------------------------











3444
aaa cct cct gag tac ggt gat aca cct att ccg ggc tat act tat atc aac





3495
cct ctc gac ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct





3546
aat cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag aat



                BseRI





3597
aat agg ttc cga aat agg cag ggg gca tta act gtt tat acg ggc act





3645
gtt act caa ggc act gac ccc gtt aaa act tat tac cag tac act cct





3693
gta tca tca aaa gcc atg tat gac gct tac tgg aac ggt aaa ttC AGA



                                                          AlwNI





3741
GAC TGc gct ttc cat tct ggc ttt aat gaa gat cca ttc gtt tgt gaa



 AlwNI





3789
tat caa ggc caa tcg tct gac ctg cct caa cct cct gtc aat gct





3834
ggc ggc ggc tct







start L2 -------------------------------------------------------------











3846
ggt ggt ggt tct





3858
ggt ggc ggc tct





3870
gag ggt ggt ggc tct gag ggt ggc ggt tct





3900
gag ggt ggc ggc tct gag gga ggc ggt tcc





3930
ggt ggt ggc tct ggt    | end L2










Domain 3 --------------------------------------------------------------









 S   G   D   F   D   Y   E   K   M   A   N   A   N   K   G   A


3945
tcc ggt gat ttt gat tat gaa aag atg gca aac gct aat aag ggg gct






 M   T   E   N   A   D   E   N   A   L   Q   S   D   A   K   G


3993
atg acc gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc






 K   L   D   S   V   A   T   D   Y   G   A   A   I   D   G   F


4041
aaa ctt gat tct gtc gct act gat tac ggt gct gct atc gat ggt ttc






 I   G   D   V   S   G   L   A   N   G   N   G   A   T   G   D


4089
att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt gat






 F   A   G   S   N   S   Q   M   A   Q   V   G   D   G   D   N


4137
ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt gat aat






 S   P   L   M   N   N   F   R   Q   Y   L   P   S   L   P   Q


4185
tca cct tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct caa






 S   V   E   C   R   P   F   V   F   S   A   G   K   P   Y   E


4233
tcg gtt gaa tgt cgc cct ttt gtc ttt agc gct ggt aaa cca tat gaa






 F   S   I   D   C   D   K   I   N   L   F   R


4281
ttt tct att gat tgt gac aaa ata aac tta ttc cgt



                                            End Domain 3






 G   V   F   A   F   L   L   Y   V   A   T   F   M   Y   V   F140


4317
ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat gta ttt



start transmembrane segment






 S   T   F   A   N   I   L


4365
tct acg ttt gct aac ata ctg






 R   N   K   E   S


4386
cgt aat aag gag tct TAA ! stop of iii



Intracellular anchor.






     M1  P2  V   L  L5   G   I   P   L10  L   R   F   G15


4404
 tc ATG cca gtt ctt ttg ggt att ccg tta tta ttg cgt ttc ctc ggt



    Start VI





4451
ttc ctt ctg gta act ttg ttc ggc tat ctg ctt act ttt ctt aaa aag





4499
ggc ttc ggt aag ata gct att gct att tca ttg ttt ctt gct ctt att





4547
att ggg ctt aac tca att ctt gtg ggt tat ctc tct gat att agc gct





4595
caa tta ccc tct gac ttt gtt cag ggt gtt cag tta att ctc ccg tct





4643
aat gcg ctt ccc tgt ttt tat gtt att ctc tct gta aag gct gct att





4691
ttc att ttt gac gtt aaa caa aaa atc gtt tct tat ttg gat tgg gat






           M1  A2  V3      F5                 L10         G13


4739
aaa TAA t ATG gct gtt tat ttt gta act ggc aaa tta ggc tct gga



 end VI   Start gene I






14  15  16  17  18  19  20  21  22  23  24  25  26  27  28



 K   T   L   V   S   V   G   K   I   Q   D   K   I   V   A


4785
aag acg ctc gtt agc gtt ggt aag att cag gat aaa att gta gct






29  30  31  32  33  34  35  36  37  38  39  40  41  42  43



 G   C   K   I   A   T   N   L   D   L   R   L   Q   N   L


4830
ggg tgc aaa ata gca act aat ctt gat tta agg ctt caa aac ctc






 44  45  46  47  48  49  50  51  52  53  54  55  56  57  58



 P   Q   V   G   R   F   A   K   T   P   R   V   L   R   I


4875
ccg caa gtc ggg agg ttc gct aaa acg cct cgc gtt ctt aga ata






 59  60  61  62  63  64  65  66  67  68  69  70  71  72  73



 P   D   K   P   S   I   S   D   L   L   A   I   G   R   G


4920
ccg gat aag cct tct ata tct gat ttg ctt gct att ggg cgc ggt






 74  75  76  77  78  79  80  81  82  83  84  85  86  87  88



 N   D   S   Y   D   E   N   K   N   G   L   L   V   L   D


4965
aat gat tcc tac gat gaa aat aaa aac ggc ttg ctt gtt ctc gat






 89  90  91  92  93  94  95  96  97  98  99  100 101 102 103



 E   C   G   T   W   F   N   T   R   S   W   N   D   K   E


5010
gag tgc ggt act tgg ttt aat acc cgt tct tgg aat gat aag gaa






104 105 106 107 108 109 110 111 112 113 114 115 116 117 118



 R   Q   P   I   I   D   W   F   L   H   A   R   K   L   G


5055
aga cag ccg att att gat tgg ttt cta cat gct cgt aaa tta gga






119 120 121 122 123 124 125 126 127 128 129 130 131 132 133



 W   D   I   I   F   L   V   Q   D   L   S   I   V   D   K


5100
tgg gat att att ttt ctt gtt cag gac tta tct att gtt gat aaa






134 135 136 137 138 139 140 141 142 143 144 145 146 147 148



 Q   A   R   S   A   L   A   E   H   V   V   Y   C   R   R


5145
cag gcg cgt tct gca tta gct gaa cat gtt gtt tat tgt cgt cgt






149 150 151 152 153 154 155 156 157 158 159 160 161 162 163



 L   D   R   I   T   L   P   F   V   G   T   L   Y   S   L


5190
ctg gac aga att act tta cct ttt gtc ggt act tta tat tct ctt






164 165 166 167 168 169 170 171 172 173 174 175 176 177 178



 I   T   G   S   K   M   P   L   P   K   L   H   V   G   V


5235
att act ggc tcg aaa atg cct ctg cct aaa tta cat gtt ggc gtt






179 180 181 182 183 184 185 186 187 188 189 190 191 192 193



 V   K   Y   G   D   S   Q   L   S   P   T   V   E   R   W


5280
gtt aaa tat ggc gat tct caa tta agc cct act gtt gag cgt tgg






194 195 196 197 198 199 200 201 202 203 204 205 206 207 208



 L   Y   T   G   K   N   L   Y   N   A   Y   D   T   K   Q


5325
ctt tat act ggt aag aat ttg tat aac gca tat gat act aaa cag






209 210 211 212 213 214 215 216 217 218 219 220 221 222 223



 A   F   S   S   N   Y   D   S   G   V   Y   S   Y   L   T


5370
gct ttt tct agt aat tat gat tcc ggt gtt tat tct tat tta acg






224 225 226 227 228 229 230 231 232 233 234 235 236 237 238



 P   Y   L   S   H   G   R   Y   F   K   P   L   N   L   G


5415
cct tat tta tca cac ggt cgg tat ttc aaa cca tta aat tta ggt






239 240 241 242 243 244 245 246 247 248 249 250 251 252 253



 Q   K   M   K   L   T   K   I   Y   L   K   K   F   S   R


5460
cag aag atg aaa tta act aaa ata tat ttg aaa aag ttt tct cgc






254 255 256 257 258 259 260 261 262 263 264 265 266 267 268



 V   L   C   L   A   I   G   F   A   S   A   F   T   Y   S


5505
gtt ctt tgt ctt gcg att gga ttt gca tca gca ttt aca tat agt






269 270 271 272 273 274 275 276 277 278 279 280 281 282 283



 Y   I   T   Q   P   K   P   E   V   K   K   V   V   S   Q


5550
tat ata acc caa cct aag ccg gag gtt aaa aag gta gtc tct cag






284 285 286 287 288 289 290 291 292 293 294 295 296 297 298



 T   Y   D   F   D   K   F   T   I   D   S   S   Q   R   L


5595
acc tat gat ttt gat aaa ttc act att gac tct tct cag cgt ctt






299 300 301 302 303 304 305 306 307 308 309 310 311 312 313



 N   L   S   Y   R   Y   V   F   K   D   S   K   G   K   L


5640
aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA



                                                        PacI






314 315 316 317 318 319 320 321 322 323 324 325 326 327 328



 I   N   S   D   D   L   Q   K   Q   G   Y   S   L   T   Y


5685
ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat



PacI






329 330 331 332 333 334 335 336 337 338 339 340 341 342 343


i
 I   D   L   C   T   V   S   I   K   K   G   N   S   N   E


iv
                                                      M1  K


5730
att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa



                                                     Start IV






344 345 345 347 348 349


i
 I   V   K   C   N   .End of I


iv
  L3  L   N5  V   I7  N    F  V10


5775
att gtt aaa tgt aat TAA T TTT GTT







IV continued.....











5800
ttc ttg atg ttt gtt tca tca tct tct ttt gct cag gta att gaa atg





5848
aat aat tcg cct ctg cgc gat ttt gta act tgg tat tca aag caa tca





5896
ggc gaa tcc gtt att gtt tct ccc gat gta aaa ggt act gtt act gta





5944
tat tca tct gac gtt aaa cct gaa aat cta cgc aat ttc ttt att tct





5992
gtt tta cgt gct aat aat ttt gat atg gtt ggt tca att cct tcc ata





6040
att cag aag tat aat cca aac cat cag gat tat att gat gaa ttg cca





6088
tca tct gat aat cag gaa tat gat gat aat tcc gct cct tct ggt ggt





6136
ttc ttt gtt ccg caa aat gat aat gtt act caa act ttt aaa att aat





6184
aac gtt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta aag





6232
tct aat act tct aaa tcc tca aat gta tta tct att gac ggc tct aat





6280
cta tta gtt gtt TCT gca cct aaa gat att tta gat aac ctt cct caa



                 ApeLI removed





6328
ttc ctt tct act gtt gat ttg cca act gac cag ata ttg att gag ggt





6376
ttg ata ttt gag gtt cag caa ggt gat gct tta gat ttt tca ttt gct





6424
gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac cgc





6472
ctc acc tct gtt tta tct tct gct ggt ggt tcg ttc ggt att ttt aat





6520
ggc gat gtt tta ggg cta tca gtt cgc gca tta aag act aat agc cat





6568
tca aaa ata ttg tct gtg cca cgt att ctt acg ctt tca ggt cag aag





6616
ggt tct atc tct gtT GGC CAg aat gtc cct ttt att act ggt cgt gtg



                  MscI    





6664
act ggt gaa tct gcc aat gta aat aat cca ttt cag acg att gag cgt





6712
caa aat gta ggt att tcc atg agc gtt ttt cct gtt gca atg gct ggc





6760
ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct





6808
tct act cag gca agt gat gtt att act aat caa aga agt att gct aca





6856
acg gtt aat ttg cgt gat gga cag act ctt tta ctc ggt ggc ctc act





6904
gat tat aaa aac act tct caa gat tct ggc gta ccg ttc ctg tct aaa





6952
atc cct tta atc ggc ctc ctg ttt agc tcc cgc tct gat tcc aac gag





7000
gaa agc acg tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc ctg





7048
TAG cggcgcatt



End IV





7060
aagcgcggcg ggtgtggtgg ttacgcgcag cctgaccgct acacttgcca gcgccctagc





7120
gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcGCCGGCt ttccccgtca



                                               NgoMI 





7180
agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc





7240
caaaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt



                           DraIII    





7300
tcgccctttG ACGTTGGAGT Ccacgttctt taatagtgga ctcttgttcc aaactggaac



         DrdI          





7360
aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga





7420
accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa





7480
ctctctccgg gccaggcggt gaagggcaat CAGCTGttgc cCGTCTCact ggtgaaaaga



                                 PvuII.      BamBI.





7540
aaaaccaccc tGGATCC  AAGCTT



            BamHI   HindIII (1/2)



            Insert carrying bla gene





7563
   gcaggtg gcacttttcg gggaaatgtg cgcggaaccc





7600
ctatttgttt atttttctaa atacattcaa atatGTATCC gctcatgaga caataaccct



                                     BciVI





7660
gataaatgct tcaataatat tgaaaaAGGA AGAgt



                            RBS.?...



Start bla gene





7695
ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg gca ttt





7746
tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa gat gct





7797
gaa gat cag ttg ggC gCA CGA Gtg ggt tac atc gaa ctg gat ctc aac agc



                     BssSI...



                 ApaLI removed





7848
ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc





7699
act ttt aaa gtt ctg cta tgt cat aca cta tta tcc cgt att gac gcc ggg





7950
caa gaG CAA CTC GGT CGc cgg gcg cgg tat tct cag aat gac ttg gtt gAG



      BcgI                                                       ScaI





8001
TAC Tca cca gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa



ScaI 





8052
tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta ctt





8103
ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg



         PvuI    





8154
ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc





8205
ata cca aac gac gag cgt gac acc acg atg cct gta gca atg cca aca acg





8256
tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa caa



 FspI....





8307
tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg cgc tcg





8358
GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tct gga gcc ggt gag cgt



BglI          





8409
gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc tcc cgt



 BsaI    





8460
atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat



                      AhdI           





8511
aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA ctgt



                                                        stop





8560
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa





8620
ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt





8680
cgttccactg tacgtaagac cccc





8704
AAGCTT   GTCGAC tgaa tggcgaatgg cgctttgcct



HindIII  SalI..



(2/2)    HincII





8740
ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt





8790
CCTGAGG



Bsu36I





8797
     ccgat actgtcgtcg tcccctcaaa ctggcagatg





8832
cacggttacg atgcgcccat ctacaccaac gtaacctatc ccattacggt caatccgccg





8892
tttgttccca cggagaatcc gacgggttgt tactcgctca catttaatgt tgatgaaagc





8952
tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg ttaaaaaatg





9012
agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaATTTAAA



                                                          SwaI...





9072
Tatttgctta tacaatcttc ctgtttttgg ggcttttctg attatcaacc GGGGTAcat



                                                       RBS?





9131
ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt gtt tgc



Start gene II





9182
tcc aga ctc tca ggc aat gac ctg ata gcc ttt gtA GAT CTc tca aaa ata



                                              BglII...





9233
gct acc ctc tcc ggc atg aat tta tca gct aga acg gtt gaa tat cat att





9284
gat ggt gat ttg act gtc tcc ggc ctt tct cac cct ttt gaa tct tta cct





9335
aca cat tac tca ggc att gca ttt aaa ata tat gag ggt tct aaa aat ttt





9386
tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag ggt cat





9437
aat gtt ttt ggt aca acc gat tta gct tta tgc tct gag gct tta ttg ctt





9488
aat ttt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt ! 9532







gene II continues





Table 21B: Sequence of MALIA3, condensed








LOCUS



ORIGIN
 MALIA3      9532             CIRCULAR





   1
AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTTCAG CTCGCGCCCC AAATGAAAAT





  61
ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTCAAAC TAAATCTACT





 121
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA





 181
GTTGCATATT TAAAACATGT TGAGCTACAG CACCAGATTC AGCAATTAAG CTCTAAGCCA





 241
TCCGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAAGG TACTCTCTAA TCCTGACCTG





 361
TCTTTCGGGC TTCCTCTTAA TCTTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT





 421
CAGGGTAAAG ACCTGATTTT TGATTTATGG TCATTCTCGT TTTCTGAACT GTTTAAAGCA





 481
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGCAG TATTGGACGC TATCCAGTCT





 541
AAACATTTTA CTATTACCCC CTCTGGCAAA ACTTCTTTTG CAAAAGCCTC TCGCTATTTT





 601
GGTTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCTCGT





 661
AATTCCTTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCCTAA ATCTCAACTG





 721
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATTTT





 781
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA





 841
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGTTT





 901
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTTG TTACGTTGAT TTGGGTAATG





 961
AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC





1021
TGTACACCGT TCATCTGTCC TCTTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC





1081
GTCTGCGCCT CGTTCCGGCT AAGTAACATG GAGCAGGTCG CGGATTTCGA CACAATTTAT





1141
CAGGCGATGA TACAAATCTC CGTTGTACTT TGTTTCGCGC TTGGTATAAT CGCTGGGGGT





1201
CAAAGATGAG TGTTTTAGTG TATTCTTTCG CCTCTTTCGT TTTAGGTTGG TGCCTTCGTA





1261
GTGGCATTAC GTATTTTACC CGTTTAATGG AAACTTCCTC ATGAAAAAGT CTTTAGTCCT





1321
CAAAGCCTCT GTAGCCGTTG CTACCCTCGT TCCGATGCTG TCTTTCGCTG CTGAGGGTGA





1381
CGATCCCGCA AAAGCGGCCT TTAACTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA





1441
TGCGTGGGCG ATGGTTGTTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTTAAGAA





1501
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTTT GGAGCCTTTT





1561
TTTTTGGAGA TTTTCAACGT GAAAAAATTA TTATTCGCAA TTCCTTTAGT TGTTCCTTTC





1621
TATTCTCACA GTGCACAGTC TGTCGTGACG CAGCCGCCCT CAGTGTCTGG GGCCCCAGGG





1681
CAGAGGGTCA CCATCTCCTG CACTGGGAGC AGCTCCAACA TCGGGGCAGG TTATGATGTA





1741
CACTGGTACC AGCAGCTTCC AGGAACAGCC CCCAAACTCC TCATCTATGG TAACAGCAAT





1801
CGGCCCTCAG GGGTCCCTGA CCGATTCTCT GGCTCCAAGT CTGGCACCTC AGCCTCCCTG





1861
GCCATCACTG GGCTCCAGGC TGAGGATGAG GCTGATTATT ACTGCCAGTC CTATGACAGC





1921
AGCCTGAGTG GCCTTTATGT CTTCGGAACT GGGACCAAGG TCACCGTCCT AGGTCAGCCC





1981
AAGGCCAACC CCACTGTCAC TCTGTTCCCG CCCTCCTCTG AGGAGCTCCA AGCCAACAAG





2041
GCCACACTAG TGTGTCTGAT CAGTGACTTC TACCCGGGAG CTGTGACAGT GGCCTGGAAG





2101
GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA CACCCTCCAA ACAAAGCAAC





2161
AACAAGTACG CGGCCAGCAG CTATCTGAGC CTGACGCCTG AGCAGTGGAA GTCCCACAGA





2221
AGCTACAGCT GCCAGGTCAC GCATGAAGGG AGCACCGTGG AGAAGACAGT GGCCCCTACA





2281
GAATGTTCAT AATAAACCGC CTCCACCGGG CGCGCCAATT CTATTTCAAG GAGACAGTCA





2341
TAATGAAATA CCTATTGCCT ACGGCAGCCG CTGGATTGTT ATTACTCGCG GCCCAGCCGG





2401
CCATGGCCGA AGTTCAATTG TTAGAGTCTG GTGGCGGTCT TGTTCAGCCT GGTGGTTCTT





2461
TACGTCTTTC TTGCGCTGCT TCCGGATTCA CTTTCTCTTC GTACGCTATG TCTTGGGTTC





2521
GCCAAGCTCC TGGTAAAGGT TTGGAGTGGG TTTCTGCTAT CTCTGGTTCT GGTGGCAGTA





2581
CTTACTATGC TGACTCCGTT AAAGGTCGCT TCACTATCTC TAGAGACAAC TCTAAGAATA





2641
CTCTCTACTT GCAGATGAAC AGCTTAAGGG CTGAGGACAC TGCAGTCTAC TATTGCGCTA





2701
AAGACTATGA AGGTACTGGT TATGCTTTCG ACATATGGGG TCAAGGTACT ATGGTCACCG





2761
TCTCTAGTGC CTCCACCAAG GGCCCATCGG TCTTCCCCCT GGCACCCTCC TCCAAGAGCA





2821
CCTCTGGGGG CACAGCGGCC CTGGGCTGCC TGGTCAAGGA CTACTTCCCC GAACCGGTGA





2881
CGGTGTCGTG GAACTCAGGC GCCCTGACCA GCGGCGTCCA CACCTTCCCG GCTGTCCTAC





2941
AGTCTAGCGG ACTCTACTCC CTCAGCAGCG TAGTGACCGT GCCCTCTTCT AGCTTGGGCA





3001
CCCAGACCTA CATCTGCAAC GTGAATCACA AGCCCAGCAA CACCAAGGTG GACAAGAAAG





3061
TTGAGCCCAA ATCTTGTGCG GCCGCTCATC ACCACCATCA TCACTCTGCT GAACAAAAAC





3121
TCATCTCAGA AGAGGATCTG AATGGTGCCG CAGATATCAA CGATGATCGT ATGGCTGGCG





3181
CCGCTGAAAC TGTTGAAAGT TGTTTAGCAA AACCCCATAC AGAAAATTCA TTTACTAACG





3241
TCTGGAAAGA CGACAAAACT TTAGATCGTT ACGCTAACTA TGAGGGTTGT CTGTGGAATG





3301
CTACAGGCGT TGTAGTTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA TGGGTTCCTA





3361
TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT TCTGAGGGTG





3421
GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT ATTCCGGGCT





3481
ATACTTATAT CAACCCTCTC GACGGCACTT ATCCGCCTGG TACTGAGCAA AACCCCGCTA





3541
ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT CAGAATAATA





3601
GGTTCCGAAA TAGGCAGGGG GCATTAACTG TTTATACGGG CACTGTTACT CAAGGCACTG





3661
ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG TATGACGCTT





3721
ACTGGAACGG TAAATTCAGA GACTGCGCTT TCCATTCTGG CTTTAATGAA GATCCATTCG





3781
TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT GCTGGCGGCG





3841
GCTCTGGTGG TGGTTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT GGCGGTTCTG





3901
AGGGTGGCGG CTCTGAGGGA GGCGGTTCCG GTGGTGGCTC TGGTTCCGGT GATTTTGATT





3961
ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT GAAAACGCGC





4021
TACAGTCTGA CGCTAAAGGC AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG





4081
ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG





4141
CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT TTAATGAATA





4201
ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTCGCCCT TTTGTCTTTA





4261
GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAACTTA TTCCGTGGTG





4321
TCTTTGCGTT TCTTTTATAT GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA





4381
TACTGCGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTTG GGTATTCCGT TATTATTGCG





4441
TTTCCTCGGT TTCCTTCTGG TAACTTTGTT CGGCTATCTG CTTACTTTTC TTAAAAAGGG





4501
CTTCGGTAAG ATAGCTATTG CTATTTCATT GTTTCTTGCT CTTATTATTG GGCTTAACTC





4561
AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTCAATTA CCCTCTGACT TTGTTCAGGG





4621
TGTTCAGTTA ATTCTCCCGT CTAATGCGCT TCCCTGTTTT TATGTTATTC TCTCTGTAAA





4681
GGCTGCTATT TTCATTTTTG ACGTTAAACA AAAAATCGTT TCTTATTTGG ATTGGGATAA





4741
ATAATATGGC TGTTTATTTT GTAACTGGCA AATTAGGCTC TGGAAAGACG CTCGTTAGCG





4801
TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT CTTGATTTAA





4861
GGCTTCAAAA CCTCCCGCAA GTCGGGAGGT TCGCTAAAAC GCCTCGCGTT CTTAGAATAC





4921
CGGATAAGCC TTCTATATCT GATTTGCTTG CTATTGGGCG CGGTAATGAT TCCTACGATG





4981
AAAATAAAAA CGGCTTGCTT GTTCTCGATG AGTGCGGTAC TTGGTTTAAT ACCCGTTCTT





5041
GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTTCT ACATGCTCGT AAATTAGGAT





5101
GGGATATTAT TTTTCTTGTT CAGGACTTAT CTATTGTTGA TAAACAGGCG CGTTCTGCAT





5161
TAGCTGAACA TGTTGTTTAT TGTCGTCGTC TGGACAGAAT TACTTTACCT TTTGTCGGTA





5221
CTTTATATTC TCTTATTACT GGCTCGAAAA TGCCTCTGCC TAAATTACAT GTTGGCGTTG





5281
TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGCTTTAT ACTGGTAAGA





5341
ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTTCTAG TAATTATGAT TCCGGTGTTT





5401
ATTCTTATTT AACGCCTTAT TTATCACACG GTCGGTATTT CAAACCATTA AATTTAGGTC





5461
AGAAGATGAA ATTAACTAAA ATATATTTGA AAAAGTTTTC TCGCGTTCTT TGTCTTGCGA





5521
TTGGATTTGC ATCAGCATTT ACATATAGTT ATATAACCCA ACCTAAGCCG GAGGTTAAAA





5581
AGGTAGTCTC TCAGACCTAT GATTTTGATA AATTCACTAT TGACTCTTCT CAGCGTCTTA





5641
ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAT AGCGACGATT





5701
TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTTCC ATTAAAAAAG





5761
GTAATTCAAA TGAAATTGTT AAATGTAATT AATTTTGTTT TCTTGATGTT TGTTTCATCA





5821
TCTTCTTTTG CTCAGGTAAT TGAAATGAAT AATTCGCCTC TGCGCGATTT TGTAACTTGG





5881
TATTCAAAGC AATCAGGCGA ATCCGTTATT GTTTCTCCCG ATGTAAAAGG TACTGTTACT





5941
GTATATTCAT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTTATTTC TGTTTTACGT





6001
GCTAATAATT TTGATATGGT TGGTTCAATT CCTTCCATAA TTCAGAAGTA TAATCCAAAC





6061
AATCAGGATT ATATTGATGA ATTGCCATCA TCTGATAATC AGGAATATGA TGATAATTCC





6121
GCTCCTTCTG GTGGTTTCTT TGTTCCGCAA AATGATAATG TTACTCAAAC TTTTAAAATT





6181
AATAACGTTC GGGCAAAGGA TTTAATACGA GTTGTCGAAT TGTTTGTAAA GTCTAATACT





6241
TCTAAATCCT CAAATGTATT ATCTATTGAC GGCTCTAATC TATTAGTTGT TTCTGCACCT





6301
AAAGATATTT TAGATAACCT TCCTCAATTC CTTTCTACTG TTGATTTGCC AACTGACCAG





6361
ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTTAGA TTTTTCATTT





6421
GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTTA ATACTGACCG CCTCACCTCT





6481
GTTTTATCTT CTGCTGGTGG TTCGTTCGGT ATTTTTAATG GCGATGTTTT AGGGCTATCA





6541
GTTCGCGCAT TAAAGACTAA TAGCCATTCA AAAATATTGT CTGTGCCACG TATTCTTACG





6601
CTTTCAGGTC AGAAGGGTTC TATCTCTGTT GGCCAGAATG TCCCTTTTAT TACTGGTCGT





6661
GTGACTGGTG AATCTGCCAA TGTAAATAAT CCATTTCAGA CGATTGAGCG TCAAAATGTA





6721
GGTATTTCCA TGAGCGTTTT TCCTGTTGCA ATGGCTGGCG GTAATATTGT TCTGGATATT





6781
ACCAGCAAGG CCGATAGTTT GAGTTCTTCT ACTCAGGCAA GTGATGTTAT TACTAATCAA





6841
AGAAGTATTG CTACAACGGT TAATTTGCGT GATGGACAGA CTCTTTTACT CGGTGGCCTC





6901
ACTGATTATA AAAACACTTC TCAAGATTCT GGCGTACCGT TCCTGTCTAA AATCCCTTTA





6961
ATCGGCCTCC TGTTTAGCTC CCGCTCTGAT TCCAACGAGG AAAGCACGTT ATACGTGCTC





7021
GTCAAAGCAA CCATAGTACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT





7081
TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT





7141
CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC





7201
TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTTGGGTGA





7261
TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC





7321
CACGTTCTTT AATAGTGGAC TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG





7381
CTATTCTTTT GATTTATAAG GGATTTTGCC GATTTCGGAA CCACCATCAA ACAGGATTTT





7441
CGCCTGCTGG GGCAAACCAG CGTGGACCGC TTGCTGCAAC TCTCTCAGGG CCAGGCGGTG





7501
AAGGGCAATC AGCTGTTGCC CGTCTCACTG GTGAAAAGAA AAACCACCCT GGATCCAAGC





7561
TTGCAGGTGG CACTTTTCGG GGAAATGTGC GCGGAACCCC TATTTGTTTA TTTTTCTAAA





7621
TACATTCAAA TATGTATCCG CTCATGAGAC AATAACCCTG ATAAATGCTT CAATAATATT





7681
GAAAAAGGAA GAGTATGAGT ATTCAACATT TCCGTGTCGC CCTTATTCCC TTTTTTGCGG





7741
CATTTTGCCT TCCTGTTTTT GCTCACCCAG AAACGCTGGT GAAAGTAAAA GATGCTGAAG





7801
ATCAGTTGGG CGCACGAGTG GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG





7861
AGAGTTTTCG CCCCGAAGAA CGTTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTC





7921
ATACACTATT ATCCCGTATT GACGCCGGGC AAGAGCAACT CGGTCGCCGG GCGCGGTATT





7981
CTCAGAATGA CTTGGTTGAG TACTCACCAG TCACAGAAAA GCATCTTACG GATGGCATGA





8041
CAGTAAGAGA ATTATGCAGT GCTGCCATAA CCATGAGTGA TAACACTGCG GCCAACTTAC





8101
TTCTGACAAC GATCGGAGGA CCGAAGGAGC TAACCGCTTT TTTGCACAAC ATGGGGGATC





8161
ATGTAACTCG CCTTGATCGT TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC





8221
GTGACACCAC GATGCCTGTA GCAATGCCAA CAACGTTGCG CAAACTATTA ACTGGCGAAC





8281
TACTTACTCT AGCTTCCCGG CAACAATTAA TAGACTGGAT GGAGGCGGAT AAAGTTGCAG





8341
GACCACTTCT GCGCTCGGCC CTTCCGGCTG GCTGGTTTAT TGCTGATAAA TCTGGAGCCG





8401
GTGAGCGTGG GTCTCGCGGT ATCATTGCAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA





8461
TCGTAGTTAT CTACACGACG GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG





8521
CTGAGATAGG TGCCTCACTG ATTAAGCATT GGTAACTGTC AGACCAAGTT TACTCATATA





8581
TACTTTAGAT TGATTTAAAA CTTCATTTTT AATTTAAAAG GATCTAGGTG AAGATCCTTT





8641
TTGATAATCT CATGACCAAA ATCCCTTAAC GTGAGTTTTC GTTCCACTGT ACGTAAGACC





8701
CCCAAGCTTG TCGACTGAAT GGCGAATGGC GCTTTGCCTG GTTTCCGGCA CCAGAAGCGG





8761
TGCCGGAAAG CTGGCTGGAG TGCGATCTTC CTGAGGCCGA TACTGTCGTC GTCCCCTCAA





8821
ACTGGCAGAT GCACGGTTAC GATGCGCCCA TCTACACCAA CGTAACCTAT CCCATTACGG





8881
TCAATCCGCC GTTTGTTCCC ACGGAGAATC CGACGGGTTG TTACTCGCTC ACATTTAATG





8941
TTGATGAAAG CTGGCTACAG GAAGGCCAGA CGCGAATTAT TTTTGATGGC GTTCCTATTG





9001
GTTAAAAAAT GAGCTGATTT AACAAAAATT TAACGCGAAT TTTAACAAAA TATTAACGTT





9061
TACAATTTAA ATATTTGCTT ATACAATCTT CCTGTTTTTG GGGCTTTTCT GATTATCAAC





9121
CGGGGTACAT ATGATTGACA TGCTAGTTTT ACGATTACCG TTCATCGATT CTCTTGTTTG





9181
CTCCAGACTC TCAGGCAATG ACCTGATAGC CTTTGTAGAT CTCTCAAAAA TAGCTACCCT





9241
CTCCGGCATG AATTTATCAG CTAGAACGGT TGAATATCAT ATTGATGGTG ATTTGACTGT





9301
CTCCGGCCTT TCTCACCCTT TTGAATCTTT ACCTACACAT TACTCAGGCA TTGCATTTAA





9361
AATATATGAG GGTTCTAAAA ATTTTTATCC TTGCGTTGAA ATAAAGGCTT CTCCCGCAAA





9421
AGTATTACAG GGTCATAATG TTTTTGGTAC AACCGATTTA GCTTTATGCT CTGAGGCTTT





9481
ATTGCTTAAT TTTGCTAATT CTTTGCCTTG CCTGTATGAT TTATTGGATG TT
















TABLE 22





Primers used in RACE amplification:
















Heavy chain



HuCμ-FOR (1st PCR)
5′-TGG AAG AGG CAC GTT CTT TTC TTT-3′


HuCμ-Nested (2nd PCR)
5′ CTT TTC TTT GTT GCC GTT GGG GTG-3′





Kappa light chain


HuCkFor (1st PCR)
5′-ACA CTC TCC CCT GTT GAA GCT CTT-3′


HuCkForAscI(2nd PCR)
5′-ACC GCC TCC ACC GGG CGC GCC TTA TTA ACA CTC TCC



CCT GTT GAA GCT CTT-3′





Lambda light chain


HuClambdaFor (1st PCR)


HuCL2-FOR
5′-TGA ACA TTC TGT AGG GGC CAC TG-3′


HuCL7-FOR
5′-AGA GCA TTC TGC AGG GGC CAC TG-3′





HuClambdaForAscI (2nd PCR)


HuCL2-FOR-ASC
5′-ACC GCC TCC ACC GGG CGC GCC TTA TTA TGA ACA TTC



TGT AGG GGC CAC TG-3′


HuCL7-FOR-ASC
5′-ACC GCC TCC ACC GGG CGC GCC TTA TTA AGA GCA TTC



TGC AGG GGC CAC TG-3′





GeneRAcer 5′ Primers


provided with the kit (Invitrogen)


5′A 1st PCR
5′CGACTGGAGCACGAGGACACTGA 3′


5′NA 2nd pCR
5′GGACACTGACATGGACTGAAGGAGTA-3′
















TABLE 23





ONs used in Capture of kappa light chains using CJ method and BsmAI
















All ONs are written 5′ to 3′.



REdapters (6)


ON_2OSK15O12
gggAggATggAgAcTgggTc


ON_2OSK15L12
gggAAgATggAgAcTgggTc


ON_2OSK15A17
gggAgAgTggAgAcTgAgTc


ON_2OSK15A27
gggTgccTggAgAcTgcgTc


ON_2OSK15A11
gggTggcTggAgAcTgcgTc


ON_2OSK15Btext missing or illegible when filed
gggAgTcTggAgAcTgggTc





Bridges (6)


kapbri1O12
gggAggATggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg


kapbri1L12
gggAAgATggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg


kapbri1A17
gggAgAgTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg


kapbri1A27
gggTgccTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg


kapbri1A11
gggTggcTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg


kapbri1B3
gggAgTcTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg





Extender (5′ biotinylated)


kapextIbio
ccTcTgTcAcAgTgcAcAAgAcATccAgATgAcccAgTcTcc





Primers


kaPCRII
ccTcTgTcAcAgTgcAcAAgAc


kapfor
5′-aca ctc tcc cct gtt gaa gct ctt-3′






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 24





PCR program for amplification of kappa DNA



















95° C.
5
minutes



95° C.
15
seconds



65° C.
30
seconds



72° C.
1
minute



72° C.
7
minutes










 4° C.
hold









Reagents (100 ul reaction):










Template
50 ng



10x turbo PCR buffer
1x



turbo Pfu
4 U



dNTPs
200 μM each



kaPCRt1
300 nM



kapfor
300 nM

















TABLE 25





h3401-h2 captured Via CJ with BsmAI















 1   2   3   4   5   6   7   8   9   10  11  12  13  14  15


 S   A   Q   D   I   Q   M   T   Q   S   P   A   T   L   S



aGT GCA C
aa gac atc cag atg acc cag tct cca gcc acc ctg tct



 ApaLI...                 a gcc acc ! L25, L6, L20, L2, L16, A11


 Extender.................................Bridge...





16  17  18  19  20  21  22  23  24  25  26  27  28  29  30


 V   S   P   G   E   R   A   T   L   S   C   R   A   S   Q


gtg tct cca ggg gaa agg gcc acc ctc tcc tgc agg gcc agt cag





31  32  33  34  35  36  37  38  39  40  41  42  43  44  45


 S   V   S   N   N   L   A   W   Y   Q   Q   K   P   G   Q


agt gtt agt aac aac tta gcc tgg tac cag cag aaa cct ggc cag





46  47  48  49  50  51  52  53  54  55  56  57  58  59  60


 V   P   R   L   L   I   Y   G   A   S   T   R   A   T   D


gtt ccc agg ctc ctc atc tat ggt gca tcc acc agg gcc act gat





61  62  63  64  65  66  67  68  69  70  71  72  73  74  75


 I   P   A   R   F   S   G   S   G   S   G   T   D   F   T


atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gac ttc act





76  77  78  79  80  81  82  83  84  85  86  87  88  89  90


 L   T   I   S   R   L   E   P   E   D   F   A   V   Y   Y


ctc acc atc agc aga ctg gag cct gaa gat ttt gca gtg tat tac





91  92  93  94  95  96  97  98  99  100 101 102 103 104 105


 C   Q   R   Y   G   S   S   P   G   W   T   F   G   Q   G


tgt cag cgg tat ggt agc tca ccg ggg tgg acg ttc ggc caa ggg





106 107 108 109 110 111 112 113 114 115 116 117 118 119 120


 T   K   V   E   I   K   R   T   V   A   A   P   S   V   F


acc aag gtg gaa atc aaa cga act gtg gct gca cca tct gtc ttc





121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


 I   F   P   P   S   D   E   Q   L   K   S   G   T   A   S


atc ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct





136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


 V   V   C   L   L   N   N   F   Y   P   R   E   A   K   V


gtt gtg tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta





151 152 153 154 155 156 157 158 159 160 161 162 163 164 165


 Q   W   K   V   D   N   A   L   Q   S   G   N   S   Q   E


cag tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag





166 167 168 169 170 171 172 173 174 175 176 177 178 179 180


 S   V   T   E   Q   D   S   K   D   S   T   Y   S   L   S


agt gtc aca gag cag gac agc aag gac agc acc tac agc ctc agc





181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


 S   T   L   T   L   S   K   A   D   Y   E   K   H   K   V


agc acc ctg acg ctg agc aaa gca gac tac gag aaa cac aaa gtc





196 197 198 199 200 201 202 203 204 205 206 207 208 209 210


 Y   A   C   E   V   T   H   Q   G   L   S   S   P   V   T


tac gcc tgc gaa gtc acc cat cag ggc ctg agc tcg cct gtc aca





211 212 213 214 215 216 217 218 219 220 221 222 223


 K   S   F   N   K   G   E   C   K   G   E   F   A


aag agc ttc aac aaa gga gag tgt aag ggc gaa ttc gc.....





181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


 T   L   T   L   S   K   V   D   Y   E   K   H   E   V   Y


acc ctg acg ctg agc aaa gta gac tac gag aaa cac gaa gtc tac





196 197 198 199 200 201 202 203 204 205 206 207 208 209 210


 A   C   E   V   T   H   Q   G   L   S   S   P   V   T   K


gcc tgc gaa gtc acc cat cag ggc ctt agc tcg ccc gtc acg aag





211 212 213 214 215 216 217 218 219 220 221 222 223


 S   F   N   R   G   E   C   K   K   E   F   V


agc ttc aac agg gga gag tgt aag aaa gaa ttc gtt t
















TABLE 27





V3-23 VH framework with variegated codons shown
















             17  18  19  20  21  22



             A   Q   P   A   M   A


5′-ctg tct gaa cG GCC cag ccGGCC atg gcc
29


3′-gac aga ctt gc cgg gtc ggc cgg tac cgg


   Scab.........SfiI.............


                 NgoMI...


                     NcoI....





FR1(DP47/V3-23)-------------


23  24  25  26  27  28  29  30


E   V   Q   L   L   E   S   G



gaa|gtt|CAA|TTG|tta|gag|tct|ggt|

53


ctt|caa|gtt|aac|aat|ctc|aga|cca|


     |MfeI |





------------FR1---------------------------------------


 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45


 G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A



|ggc|ggt|ctt|gtt|

cag|cct|ggt|ggt|tct|tta
|cgt|ctt|tct|tgc|gct|

98


|ccg|cca|gaa|caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|





Sites to be varied-->     ***    ***    ***


---FR1---------->|...CDR1................|--FR2----


 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60


 A   S   G   F   T   F   S   S   Y   A   M   S   W   V   R




|gct|TCC|GGA|ttc|act|ttc|

tct|tCG|TAC|Gct|atg|tct|

tgg|gtt|cgC|


143



|cga|agg|cct|aag|tga|aag|aga|agc|atg|cga|tac|aga|acc|caa|gcg|



   |BspEI|           |BsiWI|               |BstXI.





               Sites to be varies--> ***    *** ***


----FR2------------------------>|...CDR2.......


 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75


 Q   A   P   G   K   G   L   E   W   V   S   A   I   S   G




|CAa|gct|ccT|GG
t|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|

188



|gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|cga|tag|aga|cca|



...BstXI   |





         ***    ***


.....CDR2............................................|---FR3---


 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90


 S   G   G   S   T   Y   Y   A   D   S   V   K   G   R   F



|tct|ggt|ggc|agt|act|tac|ta

t|gct|gac|tcc|gtt|aaa|gg
t|cgc|ttc|

233


|aga|cca|ccg|tca|tga|atg|ata|cga|ctg|agg|caa|ttt|cca|gcg|aag|





-------FR3------------------------------------------


 91  92  93  94  95  96  97  98  99 100 101 102 103 104 105


 T   I   S   R   D   N   S   K   N   T   L   Y   L   Q   M


|act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
278



|tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|



     |XbaI |





--FR3--------------------------------------------->|


 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120


 N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   K



|aac|a

gC|TTA|AGg|gct|gag|gac|aCT|

GCA|Gtc|tac|tat|tgc|gct|aaa|

323



|ttg|tcg|aat|tcc|cga|ctc|ctg|tga|cgt|cag|atg|ata|acg|cga|ttt|



     |AflII|          |PstI|





.......CDR3.................|---FR4--------------------


 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


 D   Y   E   G   T   G   Y   A   F   D   I   W   G   Q   G



|gac|tat|gaa|ggt|act|ggt|tat|

gct|ttc|gaC|ATA|TGg|ggt|c

aa|ggt|

368


|ctg|ata|ctt|cca|tga|cca|ata|cga|aag|ctg|tat|acc|cca|gtt|cca|


                             |NdeI|





-----------FR4------->|


 136 137 138 139 140 141 142


 T   M   V   T   V   S   S


|act|atG|GTC|ACC|gtc|tct|agt-
389



|tga|tac|cag|tgg|cag|aga|tca-



     |BstEII|





143 144 145 146 147 148 149 150 151 152


A   S   T   K   G   P   S   V   F   P


gcc tcc acc aaG GGC CCa tcg GTC TTC ccc-3′
419



cgg agg tgg ttc ccg ggt agc cag aag ggg-5′



        Bsp120I.   BbsI...(2/2)


        ApaI....





(SFPRMET) 5′-ctg tct gaa cG GCC cag ccG-3′


(TOPFR1A) 5′-ctg tct gaa cG GCC cag ccG GCC atg gcc-


gaa|gtt|CAA|TTG|tta|gag|tct|ggt|-


|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta-3′


(BOTFR1B) 3′-caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|-



|cga|agg|cct|aag|tga|aag-5′ ! bottom strand



(BOTFR2) 3′-acc|caa|gcg|-



|gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|-5′ ! bottom strand



(BOTFR3) 3′-a|cga|ctg|agg|caa|ttt|cca|gcg|aag|-



|tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|-




|ttg|tcg|aat|tcc|cga|ctc|ctg|tga-5′



(F06) 5′-gC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|-


|gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|c-3′


(BOTFR4) 3′-cga|aag|ctg|tat|acc|cca|gtt|cca|-



|tga|tac|cag|tgg|cag|aga|tca-




cgg agg tgg ttc ccg ggt agc cag aag ggg-5′ ! bottom strand



(BOTPRCPRIM) 3′-gg ttc ccg ggt agc cag aag ggg-5′





CDR1 diversity


(ON-vgC1) 5′-|gct|TCC|GGA|ttc|act|ttc|tct|<1>|TAC|<1>|atg|<1>|-


                    CDR1...................6859




|tgg|gtt|cgC|CAa|gct|ccT|GG

-3′






<1> stands for an equimolar mix of {ADEFGHIKLMNPQRSTVWY}; no C


(this is not a sequence)


CDR2 diversity


(ON-vgC2) 5′-ggt|ttg|gag|tgg|gtt|tct|<2>|atc|<2>|<3>|-


                        CDR2............


|tct|ggt|ggc|<1>|act|<1>|tat|gct|gac|tcc|gtt|aaa|gg-3′


CDR2................................................





<1> is an equimolar mixture of {ADEFGHIKLMNPQRSTVWY}; no C


<2> is an equimolar mixture of {YRWVGS}; no ACDEFHIKLMNPQT


<3> is an equimolar mixture of {PS}; no ACDEFGHIKLMNQRTVWY
















TABLE 28





Stuffer used in VH
















1
TCCGGAGCTT CAGATCTGTT TGCCTTTTTG TGGGGTGGTG



CAGATCGCGT TACGGAGATC





61
GACCGACTGC TTGAGCAAAA GCCACGCTTA ACTGCTGATC



AGGCATGGGA TGTTATTCGC





121
CAAACCAGTC GTCAGGATCT TAACCTGAGG CTTTTTTTAC



CTACTCTGCA AGCAGCGACA





181
TCTGGTTTGA CACAGAGCGA TCCGCGTCGT CAGTTGGTAG



AAACATTAAC ACGTTGGGAT





241
GGCATCAATT TGCTTAATGA TGATGGTAAA ACCTGGCAGC



AGCCAGGCTC TGCCATCCTG





301
AACGTTTGGC TGACCAGTAT GTTGAAGCGT ACCGTAGTGG



CTGCCGTACC TATGCCATTT





361
GATAAGTGGT ACAGCGCCAG TGGCTACGAA ACAACCCAGG



ACGGCCCAAC TGGTTCGCTG





421
AATATAAGTG TTGGAGCAAA AATTTTGTAT GAGGCGGTGC



AGGGAGACAA ATCACCAATC





481
CCACAGGCGG TTGATCTGTT TGCTGGGAAA CCACAGCAGG



AGGTTGTGTT GGCTGCGCTG





541
GAAGATACCT GGGAGACTCT TTCCAAACGC TATGGCAATA



ATGTGAGTAA CTGGAAAACA





601
CCTGCAATGG CCTTAACGTT CCGGGCAAAT AATTTCTTTG



GTGTACCGCA GGCCGCAGCG





661
GAAGAAACGC GTCATCAGGC GGAGTATCAA AACCGTGGAA



CAGAAAACGA TATGATTGTT





721
TTCTCACCAA CGACAAGCGA TCGTCCTGTG CTTGCCTGGG



ATGTGGTCGC ACCCGGTCAG





781
AGTGGGTTTA TTGCTCCCGA TGGAACAGTT GATAAGCACT



ATGAAGATCA GCTGAAAATG





841
TACGAAAATT TTGGCCGTAA GTCGCTCTGG TTAACGAAGC



AGGATGTGGA GGCGCATAAG





901
GAGTCGTCTA GA
















TABLE 29





DNA sequence of pCES5















pCES5 6680 bases = pCes4 with stuffers in CDR1-2 and CDR3 2000.12.13


Ngene = 6680


Useful REs (cut MAnoLI fewer than 3 times) 2000.06.05


Non-cutters









Acc65I Ggtacc
AfcI AGCgct
AvrII Cctagg


BsaBI GATNNnnatc
BsiWI Cgtacg
BsmFI Nnnnnnnnnnnnnnngtccc


BsrGI Tgtaca
BstAPI GCANNNNntgc
BstBI TTcgaa


BstZ17I GTAtac
BtrI CACgtg
Ecl136I GAGctc


EcoRV GATatc
FseI GGCCGGcc
KpnI GGTACc


MscI TGGcca
NruI TCGcga
NsiI ATGCAt


PacI TTAATtaa
PmeI GTTTaaac
PmlI CACgtg


PpuMI RGgwccy
PshAI GACNNnngtc
SacI GAGCTc


SacII CCGCgg
SbfI CCTGCAgg
SexAI Accwggt


SgfI GCGATcgc
SnaBI TACgta
SpeI Actagt


SphI GCATGc
Sse8387I CCTGCAgg
StuI AGGcct


SwaI ATTTaaat
XmaI Cccggg


cutters







Enzymes that cut more than 3 times









AlwNI CAGNNNctg
5



BsgI ctgcac
4


BsrFI Rccggy
5


EarI CTCTTCNnnn
4


FauI nNNNNNNGCGGG
10







Enzymes that cut from 1 to 3 times












EcoO109I RGgnccy
3
7
2636
4208



BssSI Ctcgtg
1
12


-″- Cacgag
1
1703


BspHI Tcatga
3
43
148
1156


AatII GACGTc
1
65


BciYI GTATCCNNNNNN
2
140
1667


Eco57I CTGAAG
1
301


-″- cttcag
2
1349


AvaI Cycgrg
3
319
2347
6137


BsiHKAIGWGCWc
3
401
2321
4245


HgiAI GWGCWc
3
401
2321
4245


BcgI gcatext missing or illegible when filed cg
1
461


ScaI AGTact
1
505


PvuI CGATcg
3
616
3598
5926


FspI TGCgca
2
763
5946


BglI GCCNNNNaggc
3
864
2771
5952


BpmI CTGGAG
1
898


-″- ctccag
1
4413


BsaI GGTCTCNnnnn
1
916


AhdI GACNNNnngtc
1
983


DrdI GACNNNNnngtc
3
1768
6197
6579


SapI gaagagc
1
1998


PvulI CAGctg
3
2054
3689
5896


PflMI CCANNNNatgg
3
2233
3943
3991


HindIII Aagctt
1
2235


ApaLI Gtgcac
1
2321


BspMI Ntext missing or illegible when filed gcaggt
1
2328


-″- ACCTGCNNNNn
2
3460


PslI CTGCAg
1
2335


AccI GTmkac
2
2341
2611


HincII GTYrac
2
2341
3730


SalI Gtcgac
1
2341



text missing or illegible when filed  Ctcgag

1
2347


XhoI Ctcgag
1
2347


BbsI gtcttc
2
2383
4219


BlpI GCtext missing or illegible when filed agc
1
2580


EspI GCtext missing or illegible when filed agc
1
2580


SgrAI CRccggyg
1
2648


AgeI Accggt
2
2649
4302


AscI GGcgcgcc
1
2689


BssHII Gcgcgc
1
2690



S
text missing or illegible when filed
I GGCCNNNNnggcc

1
2770


NacI GCCggc
2
2776
6349


NgcMIV Gccggc
2
2776
6349


BtgI Ccrygg
3
2781
3553
5712


DsaI Ccrygg
3
2781
3553
5712



NcoI Ccatgg

1
2781


StyI Cctext missing or illegible when filed gg
3
2781
4205
4472


MfeI Caattg
1
2795



BspEI Tccgg
text missing or illegible when filed

1
2861



BgtII Agatct

1
2872



BelI Tgatca

1
2956



Bsu36I CCtaagg

3
3004
4143
4373



XcmI CCANNNNN
text missing or illegible when filed
tgg

1
3215



MluI Acgcgt

1
3527



HpaI GTTunc

1
3730



XhaI Tctaga

1
3767



AflII Cttaag

1
3811



BsmI NGcattc

1
3821


-″- GAATGCN
1
4695



BsrII CGg
text missing or illegible when filed
ccg

1
3827



NheI Gctagc

1
4166



BstEII Ggtaacc

1
4182


BsmBI CGTCTCNtext missing or illegible when filed
1
4188
6625


-″- Ntext missing or illegible when filed gagacg
1
6673


ApaI GGGCCc
1
4209


Btext missing or illegible when filed I GRGCYc
3
4209
4492
6319


Bspi20I Gggccc
1
4209


PspOMI Gggccc
1
4209


BseRI NNtext missing or illegible when filed ctcctc
1
4226


-″- GAGGAGNNNNNNNNNN
1
4957


EcoNI CCTNNtext missing or illegible when filed gg
1
4278


Ptext missing or illegible when filed FI GACNnngtc
1
4308


Tth111I GACNnngtc
1
4308


KasI Ggcgcc
2
4327
5967


BstXI CCANNNNNntgg
1
4415


NotI GCggccgc
1
4507


EagI Cggccg
1
4508


BamHI Ggatcc
1
5169


BspDI ATcgat
1
5476


NdaI CAtatg
1
5672


EcoRI Gaattc
1
5806


PsiI TTAtaa
1
6118


DraIII CACNNNgtg
1
6243


BsaAI YACgtr
1
6246











1
gacgaaaggg cCTCGTGata cgcctatttt tataggttaa tgtcatgata ataatggttt



       BssSI(1/2)





61
cttaGACGTC aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt



  AatiI





121
tctaaataca ttcatatatG TATCCgctca tgagacaata accctgataa atgcttcaat



            BciVI (1 of 2)


181
aatattgaaa aaggaagagt










Base # 201 to 1061 = ApR gene from pUC119 with some RE sites removed









1   2   3   4   5   6   7   8   9  10  11  12  13  14  15



FM   S   text missing or illegible when filed    Q   H   F   R   V   A   L   I   P   F   F   A


201
atg agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg






16  17  18  19  20  21  22  23  24  25  26  27  28  29  30



A   F   C   L   P   V   F   A   H   P   E   T   L   V   K


246
gca ttt tgc ctt cct gtt ttt gct cac cca gaa ccg ctg gtg aaa






31  32  33  34  35  36  37  38  39  40  41  42  43  44  45



V   K   D   A   E   D   Q   L   G   A   R   V   G   Y   I


291
gta aaa gat gct gaa gat cag ttg ggt gcc cga gtg ggt tac atc






46  47  48  49  50  51  52  53  54  55  56  57  58  59  60



E   L   D   L   N   S   G   K   I   L   E   S   F   R   P


336
gaa ctg gat ctc aac agc ggt aag atc ctt gag agt ttt cgc ccc






61  62  63  64  65  66  67  68  69  70  71  72  73  74  75



E   E   R   F   P   M   M   S   T   F   K   V   L   L   C


381
gaa gaa cgt ttt cca ctg atg agc act ttt caa gtt ctg cta tgt






76  77  78  79  80  81  82  83  84  85  86  87  88  89  90



G   A   V   L   S   R   I   D   A   G   Q   E   Q   L   G


426
ggc gcg gta tta tcc cgt att gac gcc ggg caa gaG CAa ctc ggT






                                 BcgI..........



91  92  93  94  95  96  97  98  99  100 101 102 103 104 105



R   R   I   H   Y   S   Q   N   D   L   V   E   Y   S   P


471
CGc cgc ata cac tat tct cag aat gac ttg gtt gAG TAC Tca cca






..BcgI......                  ScaI....



106 107 108 109 110 111 112 113 114 115 116 117 118 119 120



V   T   E   K   H   L   T   D   G   M   T   V   R   E   L


516
gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta






121 122 123 124 125 126 127 128 129 130 131 132 133 134 135



C   S   A   A   I   T   M   S   D   N   T   A   A   N   L


561
tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta






136 137 138 139 140 141 142 143 144 145 146 147 148 149 150



L   L   T   T   I   G   G   P   K   E   L   T   A   F   L


606
ctt ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg






        PvuI....(1/2)



151 152 153 154 155 156 157 158 159 160 161 162 163 164 165



H   N   M   G   D   H   V   T   R   L   D   R   W   E   P


651
cac aac atg ggg gat gat cat gta act cgc ctt gat cgt tgg gaa ccg






166 167 168 169 170 171 172 173 174 175 176 177 178 179 180



E   L   N   E   A   I   P   N   D   E   R   D   T   T   M


696
gag ctg aat gaa gcc ata cct aac gac gag cgt gac acc acg atg






181 182 183 184 185 186 187 188 189 190 191 192 193 194 195



P   V   A   M   A   T   T   L   R   K   L   L   T   G   E


741
cct gta GCA ATG gca aca acg tTG CGC Aaa cta tta act ggc gaa






    Bstext missing or illegible when filed DI..(1/2)     FspI...(1/2)



196 197 198 199 200 201 202 203 204 205 206 207 208 209 210



L   L   T   L   A   S   R   Q   Q   L   I   D   W   M   E


786
cta ctt act cta gct tcc cgg caa caa tta ata gac tgg atg gag






211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



A   D   K   V   A   G   P   L   L   R   S   A   L   P   A


831
gcg gat aaa gtt gca gga cca ctt ctg cgc tcg gcc ctt ccg gct






226 227 228 229 230 231 232 233 234 235 236 237 238 239 240



G   W   F   I   A   D   K   S   G   A   G   E   R   G   S


876
ggc tgg ttt att gct gat aaa tCT GGA Gcc ggt gag cgt gGG TCT






                    BpmI....(1/2)    BsaI....



241 242 243 244 245 246 247 248 249 250 251 252 253 254 255



R   G   I   I   A   A   L   G   P   D   G   K   P   S   R


921
Cgc ggt atC ATT GCa gca ctg ggg cca gat ggt aag ccc tcc cgt






BsaI...... BstDI...(2/2)



256 257 258 259 260 261 262 263 264 265 266 267 268 269 270



I   V   V   I   Y   T   T   G   S   Q   A   T   M   D   E


966
atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa






              AhdI..........



271 272 273 274 275 276 277 278 279 280 281 282 283 284 285



R   N   R   Q   I   A   E   I   G   A   S   L   I   K   H


1011
cga aat aga cag atc gct gag ata ggt gcc tca ctg att aag cat






286 287



W


1056
tgg taa





1062
                              ctgtcagac caagtttact





1081
catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga





1141
tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt





1201
cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct





1261
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc





1321
taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc





1381
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc





1441
tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg





1501
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt





1561
cgtgcataca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg





1621
agcattgaga aagcgccacg cttcccgaag ggagaaaggc ggacagGTAT CCggtaagcg



                              BciVI.. (2 of 2)





1681
gcagggtcgg aacaggagag cgCACGAGgg agcttccagg gggaaacgcc tggtatcttt



            BssSI.(2/2)





1741
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag





1801
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt





1861
gctggccttt tgctcACATG Ttctttcctg cgttatcccc tgattctgtg gataaccgta



        PciI...





1921
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt





1981
cagtgagcga ggaagcgGAA GAGCgcccaa tacgcaaacc gcctctcccc gcgcgttggc



         SapI...





2041
cgattcatta atgCAGCTGg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca



       PvuII.(1/3)





2101
acgcaatTAA TGTgagttag ctcactcatt aggcacccca ggcTTTACAc tttatgcttc



  ..−35..     Plac             ..−10.





2161
cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacaCAGGA AACAGCTATG



                               M13Rev_seq_primer





2221
ACcatgatta cgCCAAGCTT TGGagccttt tttttggaga ttttcaac



     PflMI......



      Hind3.



signal::linker::CLight






1   2   3   4   5   6   7   8   9   10  11  12  13  14  15



fM   K   K   L   L   F   A   I   P   L   V   V   P   F   Y


2269
gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat






          Linker..............................End of FR4



16  17  18  19  20  21  22  23  24  25  26  27  28  29  30



S   H   S   A   Q   V   Q   L   Q   V   D   L   E   I   K


2314
tct cac aGT GCA Cag gtc caa CTG CAG GTC GAC CTC GAG atc aaa



    ApaLI......     PstI...     XhcI...



                  BspMI...



                     SalI...



                     AccI...(1/2)



                     HincII.(1/2)










Vlight domains could be cloned in as ApaLI-XhoI fragments.


VL-CL(kappa) segments can be cloned in as ApaLI-AscI fragments. <----------












Ckappa-----------------------------------------



31  32  33  34  35  36  37  38  39  40  41  42  43  44  45



R   G   T   V   A   A   P   S   V   F   I   F   P   P   S


2359
cgt gga act gtg gct gca cca tct GTC TTC atc ttc ccg cca tct



                    BbsI...(1/2)






46  47  48  49  50  51  52  53  54  55  56  57  58  59  60



D   E   Q   L   K   S   G   T   A   S   V   V   C   L   L


2404
gat gag cag ttg aaa tct gga act gcc tct gtt gtg tgc ctg ctg






61  62  63  64  65  66  67  68  69  70  71  72  73  74  75



N   N   F   Y   P   R   E   A   K   V   Q   W   K   V   D


2449
aat aac ttc tat ccc aga gag gcc aaa gta cag tgg aag gtg gat






76  77  78  79  80  81  82  83  84  85  86  87  88  89  90



N   A   L   Q   S   G   N   S   Q   E   S   V   T   E   Q


2494
aac gcc ctc caa tcg ggt aac tcc cag gag agt gtc cca gag cag






91  92  93  94  95  96  97  98  99  100 101 102 103 104 105



D   S   K   D   S   T   Y   S   L   S   S   T   L   T   L


2539
gac agc aag gac agc acc tac agc ctc agc agc acc ctg acG CTG



                                  EspI...






106 107 108 109 110 111 112 113 114 115 116 117 118 119 120



S   K   A   D   Y   E   K   H   K   V   Y   A   C   E   V


2584
AGC aaa gca gac tac gag aaa cac aaa GTC TAC gcc tgc gaa gtc



...EspI...            AccI...(2/2)






121 122 123 124 125 126 127 128 129 130 131 132 133 134 135



T   H   Q   G   L   S   S   P   V   T   K   S   F   N   R


2629
acc cat cag ggc ctg agt tcA CCG GTg aca aag agc ttc aac agg



               AgcI....(1/2)






136 137 138 139 140



G   E   C   .   .


2674
gga gag tgt taa taa GG CGCGCCaatt



             AscI....



              BssHII.





2701
ctatttcaag gagacagtca ta










PelB::3-23(stuffed)::CH1::III fusion gene









1   2   3   4   5   6   7   8   9   10  11  12  13  14  15



M   K   Y   L   L   P   T   A   A   A   G   L   L   L   L


2723
atg aaa tac cta ttg cct acg gca gcc gct gga ttg tta tta ctc



-----------------------------------------






16  17  18  19  20  21  22



A   A   Q   P   A   M   A


2768
gcG GCC cag ccG GCC atg gcc



StiI.............



   NgoMIV..(1/2)



      NcoI...






FR1(DP47/V3-23)--------------



23  24  25  26  27  28  29  30



E   V   Q   L   L   E   S   G


2789
gaa|gtt|CAA|TTG|tta|gag|tct|ggt|



                        |MfeI|






------------------FR1--------------------------------------------------



31  32  33  34  35  36  37  38  39  40  41  42  43  44  45



 G   G   L   V   Q   P   G   S   L   R   L   S   C   A


2813
|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|






-----FR1-------



46  47  48



 A   S   G


2858
|gct|TCC|GGA|



|BspEI|






Stuffer for CDR1, FR2, and CDR2-------------------------



There are no stop codons in this stuffer.


2867
                             gcttcAGATC Tgtttgcctt



                              BgIII.





2887
tttgtggggt ggtgcagatc gcgttacgga gatcgaccga ctgcttgagc aaaagccacg





2947
cttaactgcT GATCAggcat gggatgttat tcgccaaacc agtcgtcagg atcttaacct



   BclI...





3007
gaggcttttt ttacctactc tgcaagcagc gacatctggt ttgacacaga gcgatccgcg





3067
tcgtcagttg gtagaaacat taacacgttg ggatggcatc aatttgctta atgatgatgg





3127
taaaacctgg cagcagccag gctctgccat cctgaacgtt tggctgacca gtatgttgaa





3187
gcgtaccgta gtggctgccg tacctatgCC Atttgataag TGGtacagcg ccagtggcta



                XcmI.............





3247
cgaaacaacc caggacggcc caactggttc gctgaatata agtgttggag caaaaatttt





3307
gtatgaggcg gtgcagggag acaaatcacc aatcccacag gcggttgatc tgtttgctgg





3367
gaaaccacag caggaggttg tgttggctgc gctggaagat acctgggaga ctctttccaa





3427
acgctatggc aataatgtga gtaactggaa aacacctgca atggccttaa cgttccgggc





3487
aaataatttc tttggtgtac cgcaggccgc agcggaagaa ACGCGTcatc aggcggagta



                         MluI..





3547
tcaaaaccgt ggaacagaaa acgatatgat tgttttctca ccaacgacaa gcgatcgtcc





3607
tgtgcttgcc tgggatgtgg tcgcacccgg tcagagtggg tttattgctc ccgatggaac





3667
agttgataag cactatgaag atcagctgaa aatgtacgaa aattttggcc gtaagtcgct



         PvuII.





3727
ctgGTTAACg aagcaggatg tggaggcgca taaggagtcg



Hpa1.



HincII(2/2)






----------FR3-------------------------------------------



4   5   6   7   8   9   10  11  12  13  14  15  16



93  94  95  96  97  98  99  100 101 102 103 104 105



 S   R   D   N   S   K    N   T   L   Y   L   Q   M


3767
|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|



|XbaI|






---FR3----------------------------------------



17  18  19  20



106 107 108 109



 N   S   L   s   l   s   i   r   s   g


3806
|aac|agC|TTA|AG t ctg agc att CGG TCC G



  |AflII|       RsrII..






q  h  s  p  t  .


3834
gg caa cat tct cca aac tga ccagacga cacaaacggc





3872
ttacgctaaa tcacgcgcat gggatggtaa agaggtggcg tctttgctgg cctggactca





3932
tcagatgaag gccaaaaatt ggcaggagtg gacacagcag gcagcgaaac aagcactgac





3992
catcaactgg tactatgctg atgtaaacgg caatattggt tatgttcata ctggtgctta





4052
tccagatcgt caatcaggcc atgatccgcg attacccgtt cctggtacgg gaaaatggga





4112
ctggaaaggg ctattgcctt ttgaaatgaa ccctaaggtg tataaccccc ag





4164
    aa GCTAGC ctgcggcttc



   NheI..





4182
G|GTC|ACC|                         gtc tca agc



|BstEII|






136 137 138 139 140 141 142 143 144 145 146 147 148 149 150



A   S   T   K   G   P   S   V   F   P   L   A   P   S   S


4198
gcc tcc acc aag ggc cca tcg gtc ttc ccc ctg gca ccc tcc tcc






151 152 153 154 155 156 157 158 159 160 161 162 163 164 165



K   S   T   S   G   G   T   A   A   L   G   C   L   V   K


4243
aag agc acc tct ggg ggc aca gcg gcc ctg gcc tgc ctg gtc aag






166 167 168 169 170 171 172 173 174 175 176 177 178 179 180



D   Y   F   P   E   P   V   T   V   S   W   N   S   G   A


4288
gac tac ttc ccc gca ccg gtg acg gtg tcg tgg aac tca ggc gcc






181 182 183 184 185 186 187 188 189 190 191 192 193 194 195



L   T   S   G   V   H   T   F   P   A   V   L   Q   S   S


4333
ctg acc agc ggc gtc cac acc ttc ccg gct gtc cta cag tcc tca






196 197 198 199 200 201 202 203 204 205 206 207 208 209 210



G   L   Y   S   L   S   S   V   V   T   V   P   S   S   S


4378
gga ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agc agc






211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



L   G   T   Q   T   Y   I   C   N   V   N   H   K   P   S


4423
ttg ggc acc cag acc tac atc tgc aac gtg aat cac aag ccc agc






226 227 228 229 230 231 232 233 234 235 236 237 238



N   T   K   V   D   K   K   V   E   P   K   S   C


4468
aac acc aag gtg gac aaG AAA GTT GAG CCC AAA TCT TGT



              ON-TQHCforw........................






       Poly His linker



139 140 141 142 143 144 145 146 147 148 149 150



     A   A   A   H   H   H   H   H   H   G   A   A


4507
GCG GCC GCa cat cat cat cac cat cac gg gcc gca



NotI......



 EagI.....






151 152 153 154 155 156 157 158 159 160 161 162 163 164 165



E   Q   K   L   I   S   E   E   D   L   N   G   A   A   .


4543
gaa caa aaa ctc atc tca gaa gag gat ctg aat ggg gcc gca tag






Mature III---------------------------------------->...



166 167 168 169 170 171 172 173 174 175 176 177 178 179 180



T   V   E   S   C   L   A   K   P   H   T   E   N   S   F


4588
act gtt gaa agt tgt tta gca aaa cct cat aca gaa aat tca ttt






181 182 183 184 185 186 187 188 189 190 191 192 193 194 195



T   N   V   W   K   D   D   K   T   L   D   R   Y   A   N


4633
act aac gtc tgg aaa gac gac aaa act tta gat cgt tac gct aac






196 197 198 199 200 201 202 203 204 205 206 207 208 209 210



Y   E   G   C   L   W   N   A   T   G   V   V   V   C   T


4678
tat gag ggc tgt ctg tgG AAT GCt aca ggc gtt gtg gtt tgt act



              BsmI....






211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



G   D   E   T   Q   C   Y   G   T   W   V   P   I   G   L


4723
ggt gac gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt






226 227 228 229 230 231 232 233 234 235 236 237 238 239 240



A   I   P   E   N   E   G   G   G   S   E   G   G   G   S


4768
gct atc cct gaa aat gag ggt ggt ggc tct gag ggt ggc ggt tct






241 242 243 244 245 246 247 248 249 250 251 252 253 254 255



E   G   G   G   S   E   G   G   G   T   K   P   P   E   Y


4813
gag ggt ggc ggt tct gag ggt ggc ggt act aaa cct cct gag tac






256 257 258 259 260 261 262 263 264 265 266 267 268 269 270



G   D   T   P   I   P   G   Y   T   Y   I   N   P   L   D


4858
ggt gat aca cct att ccg ggc tat act tat atc aac cct ctc gac






271 272 273 274 275 276 277 278 279 280 281 282 283 284 285



G   T   Y   P   P   G   T   E   Q   N   P   A   N   P   N


4903
ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct aat






286 287 288 289 290 291 292 293 294 295 296 297 298 299 300



P   S   L   E   E   S   Q   P   L   N   T   F   M   F   Q


4948
cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag



         BseRI..(2/2)






301 302 303 304 305 306 307 308 309 310 311 312 313 314 315



N   N   R   F   R   N   R   Q   G   A   L   T   V   Y   T


4993
aat aat agg ttc cga aat agg cag ggt gca tta act gtt tat acg






316 317 318 319 320 321 322 323 324 325 326 327 328 329 330



G   T   V   T   Q   G   T   D   P   V   K   T   Y   Y   Q


5038
ggc act gtt act caa ggc act gac ccc gtt aaa act tat tac cag






331 332 333 334 335 336 337 338 339 340 341 342 343 344 345



Y   T   P   V   S   S   K   A   M   Y   D   A   Y   W   N


5083
tac act cct gta tca tca caa gcc atg tat gac gct tac tgg aac






346 347 348 349 350 351 352 353 354 355 356 357 358 359 360



G   K   F   R   D   C   A   F   H   S   G   F   N   E   D


5128
ggt aaa ttc aga gac tgc gct ttc cat tct ggc ttt aat gaG GAT



                                      BamHI..






361 362 363 364 365 366 367 368 369 370 371 372 373 374 375



P   F   V   C   E   Y   Q   G   Q   S   S   D   L   P   Q


5173
CCa ttc gtt tgt gaa tat caa ggc caa tcg tct gAC CTG Cct caa



BamHI...                               =BspMI..(2/2)






376 377 378 379 380 381 382 383 384 385 386 387 388 389 390



P   P   V   N   A   G   G   G   S   G   G   G   S   G   G


5218
cct cct gtc aat gct ggc ggc ggc tct ggt ggt ggt tct ggt ggc






391 392 393 394 395 396 397 398 399 400 401 402 403 404 405



G   S   E   G   G   G   S   E   G   G   G   S   E   G   G


5263
ggc tct gag ggt ggc ggc tct gag ggt ggc ggt tct gag ggt ggc






406 407 408 409 410 411 412 413 414 415 416 417 418 419 420



G   S   E   G   G   G   S   G   G   G   S   G   S   G   D


5308
ggc tct gag ggt ggc ggt tcc ggt ggc ggc tcc ggt tcc ggt gat






421 422 423 424 425 426 427 428 429 430 431 432 433 434 435



F   D   Y   E   K   M   A   N   A   N   K   G   A   M   T


5353
ttt gat tat gaa aaa atg gca aac gct aat aag ggg gct atg acc






436 437 438 439 440 441 442 444 443 445 446 447 448 449 450



E   N   A   D   E   N   A   L   Q   S   D   A   K   G   K


5398
gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc aaa






451 452 453 454 455 456 457 458 459 460 461 462 463 464 465



L   D   S   V   A   T   D   Y   G   A   A   I   D   G   F


5443
ctt gat tct gtc gct act gat tac ggt gct gct ACT GAT ggt ttc



                                BspDI..






466 467 468 469 470 471 472 473 474 475 476 477 478 479 480



I   G   D   V   S   G   L   A   N   G   N   G   A   T   G


5488
att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt






481 482 483 484 485 486 487 488 489 490 491 492 493 494 495



D   F   A   G   S   N   S   Q   M   A   Q   V   G   D   G


5533
gat ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt






496 497 498 499 500 501 502 503 504 505 506 507 508 509 510



D   N   S   P   L   M   N   N   F   R   Q   Y   L   P   S


5578
gat aat tca cct tta atg aat aat ttc cgt caa tat tta cct tct






511 512 513 514 515 516 517 518 519 520 521 522 523 524 5255



L   P   Q   S   V   E   C   R   P   Y   V   F   G   A   G


5623
ttg cct cag tcg gtt gaa tgt cgc cct tat gtc ttt ggc gct ggt






526 527 528 529 530 531 532 533 534 535 536 537 538 539 540



K   P   Y   E   F   S   I   D   C   D   K   I   N   L   F


5668
aaa cCa TAT Gaa ttt tct att gat tgt gac aaa ata aac tta ttc



   NdeI....






541 542 543 544 545 546 547 548 549 550 551 552 553 554 555



R   G   V   F   A   F   L   L   Y   V   A   T   F   M   Y


5713
cgt ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat






556 557 558 559 560 561 562 563 564 565 566 567 568 569 570



V   F   S   T   F   A   N   I   L   R   N   K   E   S   .


5758
gta ttt tcg acg ttt gct aac ata ctg cgt aat aag gag tct taa






571


5803
taa GAATTC



EcoRI.





5812
actggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc





5871
gccttgcagc acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcacCGATC



                                     PvuI..





5931
Gcccttccca acagtTGCGC Agcctgaatg gcgaatGGCG CCtgatgcgg tattttctcc



...PvuI... (3/3) FspI.. (2/2) KasI...(2/2)





5991
ttacgcatct gtgcggtatt tcacaccgca tataaattgt aaacgttaat attttgttaa





6051
aattcgcgtt aaatttttgt taaatcagct cattttttaa ccaatcggcc gaaatcggca





6111
aaatcccTTA TAAatcaaaa gaatagcccg agatagggtt gagtgttgtt ccagtttgga



  PsiI...





6171
acaagagtcc actattaaag aacgtggact ccaacgtcaa agggcgaaaa accgtctatc





6231
agggcgatgg ccCACtacGT Gaaccatcac ccaaatcaag ttttttgggg tcgaggtgcc



      DraIII....





6291
gtaaagcact aaatcggaac cctaaaggga gcccccgatt tagagcttga cggggaaaGC



                                     NgoMIV..





6351
CGGCgaacgt ggcgagaaag gaagggaaga aagcgaaagg agcgggcgct agggcgctgg



..NgoMIV.(2/2)





6411
caagtgtagc ggtcacgctg cgcgtaacca ccacacccgc cgcgcttaat gcgccgctac





6471
agggcgcgta ctatggttgc tttgacgggt gcagtctcag tacaatctgc tctgatgccg





6531
catagttaag ccagccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc





6591
tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga





6651
ggttttcacc gtcatcaccg aaacgcgcga






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 30





Oligonucleotides used to clone CDR1/2 diversity















All sequences are 5′ to 3′.


1) ON_CD1Bsp, 30 bases


A c c T c A c T g g  c  T  T  c  c  g  g  A


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18





T  T  c  A  c  T  T  T  c  T  c  T


19 20 21 22 23 24 25 26 27 28 29 30





2) ON_BrI2; 42 bases


A g A A A c c c A c  T  c  c  A  A  A  c  c


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18





T  T  T  A  c  c  A  g  g  A  g  c  T  T  g  g  c


19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35





g  A  A  c  c  c  A


36 37 38 39 40 41 42





3) ON_CD2Xba, 51 bases


g g A A g g c A g T  g  A  T  c  T  A  g  A


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18





g  A  T  A  g  T  g  A  A  g  c  g  A  c  c  T  T


19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35





T  A  A  c  g  g  A  g  T  c  A  g  c  A  T  A


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51





4) ON_BotXba, 23 bases


g g A A g g c A g T  g  A  T  c  T  A  g  A


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18





g  A  T  A  g


19 20 21 22 23
















TABLE 31





Bridge/Extender Oligonucleotides

















ON_Lam1aB7(rc)
.........................GTGCTGACTCAGCCACCCTC.
20





ON_Lam2aB7(rc)
........................GCCCTGACTCAGCCTGCCTC.
20





ON_Lam3$$B7(rc)
.......................GAGCTGACTCAGG.ACCCTGC
20





ON_Lam3fB7(rc)
........................GAGCTGACTCAGCCACCCTC.
20





ON_LamHf1cBrg(rc)
CCTCGACAGCGAAGTGCACAGAGCGTCTTGACTCAGCC.......
38





ON_LamHf1cExt
CCTCGACAGCGAAGTGCACAGAGCGTCTTG...............
30





ON_LamHf2b2Brg(rc)
CCTCGACAGCGAAGTGCACAGAGCGCTTTGACTCAGCC.......
38





ON_LamHf2b2Ext
CCTCGACAGCGAAGTGCACAGAGCGCTTTG...............
30





ON_LamHf2dBrg(rc)
CCTCGACAGCTAAGTGCACAGAGCGCTTTGACTCAGCC.......
38





ON_LamHf2dExt
CCTCGACAGCGAAGTGCACAGAGCGCTTTG...............
30





ON_LamHf3$$Brg(rc)
CCTCGACAGCGAAGTGCACAGAGCGAATTGACTCAGCC.......
38





ON_LamHf3$$Ext
CCTCGACAGCGAAGTGCACAGAGCGAATTG...............
30





ON_LamHf3rBrg(rc)
CCTCGACAGCGAAGTGCACAGTACGAATTGACTCAGCC.......
38





ON_LamHf3rExt
CCTCGACAGCGAAGTGCACAGTACGAATTG...............
30





ON_LamPlcPCR
CCTCGACAGCGAAGTGCACAG........................
21





Consenses
















TABLE 32





Oligonucleotides used to make SSDNA locally


double-stranded
















Adapters (8)



H43HF3.1-02#1
5′-cc gtg tat tac tgt gcg aga g-3′





H43.77.97.1-03#2
5′-ct gtg tat tac tgt gcg aga g-3′





H43.77.97.323#22
5′-cc gta tat tac tgt gcg aaa g-3′





H43.77.97.330#23
5′-ct gtg tat tac tgt gcg aaa g-3′





H43.77.97.439#44
5′-ct gtg tat tac tgt gcg aga c-3′





H43.77.97.551#48
5′-cc atg tat tac tgt gcg aga c-3′
















TABLE 33





Bridge/extender pairs















Bridges (2)


H43.XABr1


5′ggtgtagtgaTCTAGtgacaactctaagaatactctctacttgcagat


gaacagCTTtAGggctgaggacaCTGCAGtctactattgtgcgaga-3′





H43.XABr2


5′ggtgtagtgaTCTAGtgacaactctaagaatactctctacttgcagat


gaacagCTTtAGggctgaggacaCTGCAGtctactattgtgcgaaa-3′





Extender


H43.XAExt


5′ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTcATcTgcAAgTA


gAgAgTATTcTTAgAgTTgTcTcTAgATcAcTAcAcc-3′
















TABLE 34







PCR primers









Primers














H43.XAPCR2
gactgggTgTAgTgATcTAg



Hucmnest
cttttctttgttgccgttggggtg

















TABLE 35





PCR program for amplification of


heavy chain CDR3 DNA




















95 degrees C.
5
minutes




95 degreee C.
20
seconds




60 degrees C.
30
seconds
repeat 20x



72 degrees C.
1
minute




72 degrees C.
7
minutes












 4 degrees C.
hold










Reagents (100 ul reaction):











Template
5 ul ligation mix




10x PCR buffer
1x




Taq
5 U




dNTPs
200 uM each




MgCl2
 2 mM




H43.XA9CR2-biotin
400 nM




Hucmnest
200 nM

















TABLE 36





Annotated sequence of CJR DY3F7(CJR-A05) 10251 bases

















Non-cutters




BclI Tgatca
BsiWI Cgtacg
BssSI Cacgag


BstZ17I GTAtac
BtrI CACgtg
EcoRV GATatc


FseI GGCCGGcc
HpaI GTTaac
MluI Acgcgt


PmeI GTTTaaac
PmlI CACgtg
PpuMI RGgwccy


RsrII CGgwccg
SapI GCTCTTC
SexAI Accwggt


SgfI GCGATcgc
SgrAI CRccggyg
SphI GCATGc


StuI AGGcct
XmaI Cccggg



cutters









Enzymes that cut from 1 to 4 times and other features













End of genes II and X

829






Start gene V

843






BsrGI Tgtaca
1
1021






BspMI Nnnnnnnnngcaggt
3
1104
5997
9183




-″- ACCTGCNNNNn
1
2281






End of gene V

1106






Start gene VII

1108






BsaBI GATNNnnatc
2
1149
3967





Start gene IX

1208






End gene VII

1211






SnaBI TACgta
2
1268
7133





BspHI Tcatga
3
1299
6085
7093




Start gene VIII

1301






End gene IX

1304






End gene VIII

1522






Start gene III

1578






EagI Cggccg
2
1630
8905





XbaI Tctaga
2
1643
8436





KasI Ggcgcc
4
1650
8724
9039
9120



BsmI GAATGCN
2
1769
9065





BseRI GAGGAGNNNNNNNNNN
2
2031
8516





-″- NNnnnnnnnnctcctc
2
7603
8623





AlwNI CAGNNNctg
3
2210
8072
8182




BspDI ATcgat
2
2520
9883





NdeI CAtatg
3
2716
3796
9847




End gene III

2846






Start gene VI

2848






AfeI AGCgct
1
3032






End gene VI

3187






Start gene I

3189






EarI CTCTTCNnnn
2
4067
9274





-″- Nnnnngaagag
2
6126
8953





PacI TTAATtaa
1
4125






Start gene IV

4213






End gene I

4235






BsmFI Nnnnnnnnnnnnnnngtccc
2
5068
9515





MscI TGGcca
3
5073
7597
9160




PsiI TTAtaa
2
5349
5837





End gene IV

5493






Start ori

5494






NgoMIV Gccggc
3
5606
8213
9315




BanII GRGCYc
4
5636
8080
8606
8889



DraIII CACNNNgtg
1
5709






DrdI GACNNNNnngtc
1
5752






AvaI Cycgrg
2
5818
7240





PvuII CAGctg
1
5953






BsmBI CGTCTCNnnnn
3
5964
8585
9271




End ori region

5993






BamHI Ggatcc
1
5994






HindIII Aagctt
3
6000
7147
7384




BciVI GTATCCNNNNNN
1
6077






Start bla

6138






Eco57I CTGAAG
2
6238
7716





SpeI Actagt
1
6257






BcgI gcannnnnntcg
1
6398






ScaI AGTact
1
6442






PvuI CGATcg
1
6553






FspI TGCgca
1
6700






BglI GCCNNNNnggc
3
6801
8208
8976




BsaI GGTCTCNnnnn
1
6853






AhdI GACNNNnngtc
1
6920






Eam1105I GACNNNnngtc
1
6920






End bla

6998






AccI GTmkac
2
7153
8048





HincII GTYrac
1
7153






SalI Gtcgac
1
7153






XhoI Ctcgag
1
7240






Start PlacZ region

7246






End PlacZ region

7381






PflMI CCANNNNntgg
1
7382






RBS1

7405






start M13-iii signal seq for LC

7418






ApaLI Gtgcac
1
7470






end M13-iii signal seq

7471






Start light chain kappa L20:JK1

7472






PflFI GACNnngtc
3
7489
8705
9099




SbfI CCTGCAgg
1
7542






PstI CTGCAg
1
7543






KpnI GGTACc
1
7581






XcmI CCANNNNNnnnntgg
2
7585
9215





NsiI ATGCAt
2
7626
9503





BsgI ctgcac
1
7809






BbsI gtcttc
2
7820
8616





BlpI GCtnagc
1
8017






EspI GCtnagc
1
8017






EcoO109I RGgnccy
2
8073
8605





Ecl136I GAGctc
1
8080






SacI GAGCTc
1
8080






End light chain

8122






AscI GGcgcgcc
1
8126






BssHII Gcgcgc
1
8127






RBS2

8147






SfiI GGCCNNNNnggcc
1
8207






NcoI Ccatgg
1
8218






Start 3-23, FR1

8226






MfeI Caattg
1
8232






BspEI Tccgga
1
8298






Start CDR1

8316






Start FR2

8331






BstXI CCANNNNNntgg
2
8339
8812





EcoNI CCTNNnnnagg
2
8346
8675





Start FR3

8373






XbaI Tctaga
2
8436
1643





AflII Cttaag
1
8480






Start CDR3

8520






AatII GACGTc
1
8556






Start FR4

8562






PshAI GACNNnngtc
2
8573
9231





BstEII Ggtnacc
1
8579






Start CH1

8595






ApaI GGGCCc
1
8606






Bspl20I Gggccc
1
8606






PspOMI Gggccc
1
8606






AgeI Accggt
1
8699






Bsu36I CCtnagg
2
8770
9509





End of CH1

8903






NotI GCggccgc
1
8904






Start His6 tag

8913






Start cMyc tag

8931






Amber codon

8982






NheI Gctagc
1
8985






Start M13 III Domain 3

8997






NruI TCGcga
1
9106






BstBI TTcgaa
1
9197






EcoRI Gaattc
1
9200






XcmI CCANNNNNnnnntgg
1
9215






BstAPI GCANNNNntga
1
9337






SacII CCGCgg
1
9365






End IIIstump anchor

9455






AvrII Cctagg
1
9462






trp terminator

9470






SwaI ATTTaaat
1
9784






Start gene II

9850






BglII Agatct
1
9936











1
aat gct act act att agt aga att gat gcc acc ttt tca gct cgc



gcc







gene ii continued








49
cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat



gta





97
tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca



act





145
gtt aTa tgg aat gaa act tcc aga cac cgt act tta gtt gca tat



tta





193
aaa cat gtt gag cta cag caT TaT att cag caa tta agc tct aag



cca





241
tcc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc



tct





289
aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa



gct





337
cga att aaa acg cga tat ttg aag tcc ttc ggg ctt cct ctt aat



ctt





385
ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa



gac





433
ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa



gca





481
ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg



gac







Start gene x, ii continues








529
gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act



tct





577
ttt gca aaa gcc tct cgc tat att ggt ttt tat cgt cgt ctg gta



aac





625
gag ggt tat gat agt gtt gct ctt act atg cct cgt aat tcc ttt



tgg





673
cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa



ctg





721
atg aat ctt tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt



att





769
aac gta gat ttt tct tcc caa cgt cct cct tgg tat aat gag cca



gtt





817
ctt aaa atc gca TAA



                End X & II





832
ggtaattca ca






 M1              E5                 Q10                 T15


843
ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act



cgt







Start gene V









S17         S20                 P25                 E30


891
tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aat gag cag



ctt






        V35                 E40                 V45


939
tgt tac gtt gat ttg ggt aat gaa tat ccg gtt ctt gtc aag att



act






    D50                 A55                 L60


987
ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt



cat






                                            BsrGI...



L65                 V70                 S75



R80


1036
ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac



cgt






                P85     K87 end of V


1083
ctg cgc ctc gtt ccg gct aag TAA C





1108
ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg







Start gene VII








1150
ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc






                  VII and IX overlap.



                  ..... S2  V3  L4  V5                 S10


1182
gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttT gcc tct ttc



gtt






                    End VII



                  |start IX



L13     W15                 G20                 T25



E29


1242
tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta



atg gaa





1293
act tcc tc










.... stop of IX, IX and VIII overlap by four bases








1301
ATG aaa aag tct tta gtc ctc aaa gcc tct gta gcc gtt gct acc



ctc







Start signal sequence of viii.








1349
gtt ccg atg ctg tct ttc gct gct gag ggt gac gat ccc gca aaa



gcg






                            mature VIII --->


1397
gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat



gcg





1445
tgg gcg atg gtt gtt gtc att





1466
gtc ggc gca act atc ggt atc aag ctg ttt aag










bases 1499-1539 are probable promoter for iii








1499
aaa ttc acc tcg aaa gca | 1515



 ...........  −35  ..





1517
agc tga taaaccgat acaattaaag gctccttttg



           ..... −10   ...





1552
gagccttttt ttt GGAGAt ttt | S.D. uppercase, thare may be 9 Ts






     <------ III signal sequence ----------------------------->



      M   K   K   L   L   F   A   I   P   L   V   V   P   F


1574
caac GTG aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc |


1620







 Y   S   G   A   A   E   S   H   L   D   G   A


1620
tat tct ggc gCG GCC Gaa tca caT CTA GAc ggc gcc



             EagI....         XbaI....










Domain 1 ----------------------------------------------------------


--









 A   E   T   V   E   S   C   L   A


1656
gct gaa act gtt gaa agt tgt tta gca






 K   S   H   T   E   I   S   F   T   N   V   W   K   D   D   K   T


1683
aaA Tcc cat aca gaa aat tca ttt aCT AAC GTC TGG AAA GAC GAC



AAA ACt






 L   D   R   Y   A   N   Y   E   G   S   L   W   N   A   T   G   V


1734
tta gat cgt tac gct aac tat gag ggC tgt ctg tgG AAT GGt aca



ggc gtt



                                              BsmI....






 V   V   C   T   G   D   E   T   Q   C   Y   G   T   W   V   P   I


1785
gta gtt tgt act ggt GAC GAA ACT CAG TGT TAC GGT ACA TGG GTT



cct att






 G   L   A   I   P   E   N


1836
ggg ctt gct atc cct gaa aat










L1 linker ------------------------------------









 E   G   G   S   E   G   G   G   S


1657
gag ggt ggt ggc tct gag ggt ggc ggt tct






 E   G   G   G   S   E   G   G   G   T


1887
gag ggt ggc ggc tct gag ggt ggc ggt act










Domain 2 ------------------------------------








1917
aaa cct cct gag tac ggt gat aca cct att ccg ggc tat act tat



atc aac





1968
cct ctc gac ggc act tat ccg cct ggt act gag caa aac ccc gct



aat cct





2018
aat cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt



cag aat






                BseRI..


2070
aat agg ttc cga aat agg cag ggg gca tta act gtt tat acg ggc



act





2118
gtt act caa ggc act gac ccc gtt aaa act tat tac cag tac act



cct





2166
gta tca tca aaa gcc atg tat gac gct tac tgg aac ggt aaa ttC



AGA






AlwNI


2214
GAC TGc gct ttc cat tct ggc ttt aat gaG gat TTa ttT gtt tgt



gaa






AlwNI


2262
tat caa ggc caa tcg tct gac ctg cct caa cct cct gtc aat gct





2307
ggc ggc ggc tct







start L2 ---------------------------------------------------------


----








2319
ggt ggt ggt tct





2331
ggt ggc ggc tct





2343
gag ggt ggt ggc tct gag gga ggc ggt tcc





2373
ggt ggt ggc tct ggt    ! end L2










Many published sequences of M13-derived phage have a longer linker


than shown here by repeats of the EGGGS motif two more times.


Domain 3 ----------------------------------------------------------


----









 S   G   D   F   D   Y   E   K   M   A   N   A   N   K   G   A


2388
tcc ggt gat ttt gat tat gaa aag atg gca aac gct aat aag ggg



gct






 M   T   E   N   A   D   E   N   A   L   Q   S   D   A   K   G


2436
atg acc gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa



ggc






 K   L   D   S   V   A   T   D   Y   G   A   A   M   D   G   F


2484
aaa ctt gat tct gtc gct act gat tac ggt gct gct atc gat ggt



ttc






 I   G   D   V   S   G   L   A   N   G   N   G   A   T   G   D


2532
att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt



gat






 F   A   G   S   N   S   Q   M   A   Q   V   G   D   G   D   N


2580
ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt gat



aat






 S   P   L   M   N   N   F   R   Q   Y   L   P   S   L   P   Q


2628
tca cct tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct



caa






 S   V   E   C   R   P   F   V   F   G   A   G   K   P   Y   E


2676
tcg gtt gaa tgt cgc cct ttt gtc ttt Ggc gct ggt aaa cca tat



gaa






 F   S   I   D   C   D   K   I   N   L   F   R


2724
ttt tct att gat tgt gac aaa ata aac tta ttc cgt



                                            End Domain 3






 G   V   F   A   F   L   L   Y   V   A   T   F   M   Y   V



F140


2760
ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat gta



ttt







start transmembrane segment









 S   T   F   A   N   I   L


2808
tct acg ttt gct aac ata ctg






 R    N   K   E   S


2829
cgt aat aag gag tct TAA ! stop of iii



Intracellular anchor.






    M1  P2  V   L  L5   G   I   P   L  L10  L   R   F   L



G15


2847
tc ATG cca gtt ctt ttg ggt att ccg tta tta ttg cgt ttc ctc



ggt







Start VI








2894
ttc ctt ctg gta act ttg ttc ggc tat ctg ctt act ttt ctt aaa



aag





2942
ggc ttc ggt aag ata gct att gct att tca ttg ttt ctt gct ctt



att





2990
att ggg ctt aac tca att ctt gtg ggt tat ctc tct gat att agc



gct





3038
caa tta ccc tct gac ttt gtt cag ggt gtt cag tta att ctc ccg



tct





3086
aat gcg ctt ccc tgt ttt tat gtt att ctc tct gta aag gct gct



att





3134
ttc att ttt gac gtt aaa caa aaa atc gtt tct tat ttg gat tgg



gat






           M1  A2  V3      F5                 L10         G13


3182
aaa TAA t ATG gct gtt tat ttt gta act ggc aaa tta ggc tct gga



 end VI   Start gene I






 K   T   L   V   S   V   G   K   I   Q   D   K   I   V   A


3228
aag acg ctc gtt agc gtt ggt aag att cag gat aaa att gta gct






 G   C   K   I   A   T   N   L   D   L   R   L   Q   N   L


3273
ggg tgc aaa ata gca act aat ctt gat tta agg ctt caa aac ctc






 P   Q   V   G   R   F   A   K   T   P   R   V   L   R   I


3318
ccg caa gtc ggg agg ttc gct aaa acg cct cgc gtt ctt aga ata






 P   D   K   P   S   I   S   D   L   L   A   I   G   R   G


3363
ccg gat aag cct tct ata tct gat ttg ctt gct att ggg cgc ggt






 N   D   S   Y   D   E   N   K   N   G   L   L   V   L   D


3408
aat gat tcc tac gat gaa aat aaa aac ggc ttg ctt gtt ctc gat






 E   C   G   T   W   F   N   T   R   S   W   N   D   K   E


3453
gag tgc ggt act tgg ttt aat acc cgt tct tgg aat gat aag gaa






 R   Q   P   I   I   D   W   F   L   H   A   R   K   L   G


3498
aga cag ccg att att gat tgg ttt cta cat gct cgt aaa tta gga






 W   D   I   I   F   L   V   Q   D   L   S   I   V   D   K


3543
tgg gat att att ttt ctt gtt cag gac tta tct att gtt gat aaa






 Q   A   R   S   A   L   A   E   H   V   V   Y   C   R   R


3588
cag gcg cgt tct gca tta gct gaa cat gtt gtt tat tgt cgt cgt






 L   D   R   I   T   L   P   F   V   G   T   L   Y   S   L


3633
ctg gac aga att act tta cct ttt gtc ggt act tta tat tct ctt






 I   T   G   S   K   M   P   L   P   K   L   H   V   G   V


3678
att act ggc tcg aaa atg cct ctg cct aaa tta cat gtt ggc gtt






 V   K   Y   G   D   S   Q   L   S   P   T   V   E   R   W


3723
gtt aaa tat ggc gat tct caa tta agc cct act gtt gag cgt tgg






 L   Y   T   G   K   N   L   Y   N   A   Y   D   T   K   Q


3768
ctt tat act ggt aag aat ttg tat aac gca tat gat act aaa cag






 A   F   S   S   N   Y   D   S   G   V   Y   S   Y   L   T


3813
gct ttt tct agt aat tat gat tcc ggt gtt tat tct tat tta acg






 P   Y   L   S   H   G   R   Y   F   K   P   L   N   L   G


3858
cct tat tta tca cac ggt cgg tat ttc aaa cca tta aat tta ggt






 Q   K   M   K   L   T   K   I   Y   L   K   K   F   S   R


3903
cag aag atg aaa tta act aaa ata tat ttg aaa aag ttt tct cgc






 V   L   C   L   A   I   G   F   A   S   A   F   T   Y   S


3948
gtt ctt tgt ctt gcg att gga ttt gca tca gca ttt aca tat agt






 Y   I   T   Q   P   K   P   E   V   K   K   V   V   S   Q


3993
tat ata acc caa cct aag ccg gag gtt aaa aag gta gtc tct cag






 T   Y   D   F   D   K   F   T   I   D   S   S   Q   R   L


4038
acc tat gat ttt gat aaa ttc act att gac tct tct cag cgt ctt






 N   L   S   Y   R   Y   V   F   K   D   S   K   G   K   L


4083
aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA



                                                        PacI






 I   N   S   D   D   L   Q   K   Q   G   Y   S   L   T   Y


4128
ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat



PacI






i  I   D   L   C   T   V   S   I   K   K   G   N   S   N   E



iv                                                       Ml  K


4173
att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa



                                                      Start



IV






i  I   V   K   C   N   .End of I



iv  L3  L   N5  V   I7  N    F  V10


4218
att gtt aaa tgt aat TAA T TTT GTT







IV continued.....








4243
ttc ttg atg ttt gtt tca tca tct tct ttt gct cag gta att gaa



atg





4291
aat aat tcg cct ctg cgc gat ttt gta act tgg tat tca aag caa



tca





4339
ggc gaa tcc gtt att gtt tct ccc gat gta aaa ggt act gtt act



gta





4387
tat tca tct gac gtt aaa cct gaa aat cta cgc aat ttc ttt att



tct





4435
gtt tta cgt gcA aat aat ttt gat atg gtA ggt tcT aAC cct tcc



atT





4483
att cag aag tat aat cca aac aat cag gat tat att gat gaa ttg



cca





4531
tca tct gat aat cag gaa tat gat gat aat tcc gct cct tct ggt



ggt





4579
ttc ttt gtt ccg caa aat gat aat gtt act caa act ttt aaa att



aat





4627
aac gtt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta



aag





4675
tct aat act tct aaa tcc tca aat gta tta tct att gac ggc tct



aat





4723
cta tta gtt gtt agt gcT cct aaa gat att tta gat aac ctt cct



caa





4771
ttc ctt tcA act gtt gat ttg cca act gac cag ata ttg att gag



ggt





4819
ttg ata ttt gag gtt cag caa ggt gat gct tta gat ttt tca ttt



gct





4867
gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac



cgc





4915
ctc acc tct gtt tta tct tct gct ggt ggt tcg ttc ggt att ttt



aat





4963
ggc gat gtt tta ggg cta tca gtt cgc gca tta aag act aat agc



cat





5011
tca aaa ata ttg tct gtg cca cgt att ctt acg ctt tca ggt cag



aag





5059
ggt tct atc tct gtT GGC CAg aat gtc cct ttt att act ggt cgt



gtg



                  MscI....





5107
act ggt gaa tct gcc aat gta aat aat cca ttt cag acg att gag



cgt





5155
caa aat gta ggt att tcc atg agc gtt ttt cct gtt gca atg gct



ggc





5203
ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt



tct





5251
tct act cag gca agt gat gtt att act aat caa aga agt att gct



aca





5299
acg gtt aat ttg cgt gat gga cag act ctt tta ctc ggt ggc ctc



act





5347
gat tat aaa aac act tct caG gat tct ggc gta ccg ttc ctg tct



aaa





5395
atc cct tta atc ggc ctc ctg ttt agc tcc cgc tct gat tcT aac



gag





5443
gaa agc acg tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc



ctg





5491
TAG cggcgcatt



End IV





5503
aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca



gcgccctagc





5563
gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcGCCGGCt



ttccccgtca



                                               NgoMI.





5623
agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc



acctcgaccc





5683
caaaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat



agacggtttt



                            DraIII....





5743
tcgcccctttG ACGTTGGAGT Ccacgttctt taatagtgga ctcttgttcc



aaactggaac



         DrdI..........





5803
aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc



cgatttcgga





5863
accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg



cttgctgcaa





5923
ctctctcagg gccaggcggt gaagggcaat CAGCTGttgc cCGTCTCact



ggtgaaaaga



                              PvuII.      BsmBI.





5983
aaaaccaccc tGGATCC AAGCTT



            BamHI   HindIII (1/2)



            Insert carrying bla gene





6006
   gcaggtg gcacttttcg gggaaatgtg cgcgcaaccc





6043
ctatttgttt atttttctaa atacattcaa atatGTATCC gctcatgaga



caataaccct



                                    BciVI





6103
gataaatgct tcaataatat tgaaaaAGGA AGAgt



                            R8S.?...







Start bla gene








6138
ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg



gca ttt





6189
tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa



gat gct





6240
gaa gat cag ttg ggC gcA CTA GTg ggt tac atc gaa ctg gat ctc



aac agc



                      SpeI....



                 ApaLI & BssSI Removed





6291
ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg



atg agc





6342
act ttt aaa gtt ctg cta tgt GGC GcG Gta tta tcc cgt att gac



gcc ggg





6393
caa gaG CAA CTC GGT CGc cgC ATA cAC tat tct cag aat gac ttg



gtt gAG



      BcgI............



ScaI





6444
TAC Tca cca gtc aca gaa aag cat ctt acg gat ggc atg aca gta



aga gaa



ScaI.





6495
tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac



tta ctt





6546
ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac



aac atg



         PvuI....





6597
ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat



gaa gcc





6648
ata cca aac gac gag cgt gac acc acg atg cct gta gca atg Gca



aca acg





6699
tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg



caa caa



FspI....





6750
tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg



cgc tcg





6801
GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tct gga gcc ggt



gag cgt



BglI..........





6852
gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc



tcc cgt



 BsaI....





6903
atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa



cga aat



                      AhdI...........





6954
aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA



ctgt



                                                        stop





7003
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt



taatttaaaa





7063
ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa



cgtgagtttt





7123
cgttccactg tacgtaagac cccc





7147
AAGCTT   GTCGAC tgaa tggcgaatgg cgctttgcct



HindIII  SalI..



(2/2)    HincII





7183
ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt










Start of Fab-display cassette, the Fab DSR-A05, selected for


binding to a protein antigen.








7233
CCTGAcG CTCGAG



xBsu36I XhoI..










PlaeZ promoter is in the following block








7246
                        cgcaacgc aattaatgtg agttagctca





7274
ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg





7324
tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca





7374
tgattacgCC AagcttTGGa gccttttttt tggagatttt caac



        PflMI.......



           Hind3. (there are 3)










Gene iii signal sequence:









 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15



 M   K   K   L   L   F   A   I   P   L   V   V   P   F   Y


7418
gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat






16  17  18          Start light chain (L20:JK1)



 S   H   S   A   Q   D   I   Q   M   T   Q   S   P   A


7463
tct cac aGT GCA Caa gac atc cag atg acc cag tct cca gcc



         ApaLI...



         Sequence supplied by extender............






 T   L   S   L


7505
acc ctg tct ttg






 S   P   G   E   R   A   T   L   S   C   R   A   S   Q   G


7517
tct cca ggg gaa aga gcc acc ctc tcc tgc agg gcc agt cag Ggt






 V   S   S   Y   L   A   W   Y   Q   Q   K   P   G   Q   A


7562
gtt agc agc tac tta gcc tgg tac cag cag aaa cct ggc cag gct






 P   R   L   L   I   Y   D   A   S   S   R   A   T   G   I


7607
ccc agg ctc ctc atc tat gAt gca tcc aAc agg gcc act ggc atc






 P   A   R   F   S   G   S   G   P   G   T   D   F   T   L


7652
cca gCc agg ttc agt ggc agt ggg Cct ggg aca gac ttc act ctc






 T   I   S   S   L   E   P   E   D   F   A   V   Y   Y   C


7697
acc atc agc agC ctA gag cct gaa gat ttt gca gtT tat tac tgt






 Q   Q   R   S   W   H   P   W   T   F   G   Q   G   T   R


7742
cag cag CGt aAc tgg cat ccg tgg ACG TTC GGC CAA GGG ACC AAG






 V   E   I   K   R   T   V   A   A   P   S   V   F   I   F


7787
gtg gaa atc aaa cga act gtg gCT GCA Cca tct gtc ttc atc ttc






                             BsgI....



 P   P   S   D   E   Q   L   K   S   G   T   A   S   V   V


7832
ccg cca tct gat gag cag ttg aaa tct gga act gcc tct gtt gtg






 C   L   L   N   N   F   Y   P   R   E   A   K   V   Q   W


7877
tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta cag tgg






 K   V   D   N   A   L   Q   S   G   N   S   Q   E   S   V


7922
aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag agt gtc






 T   E   R   D   S   K   D   S   T   Y   S   L   S   S   T


7967
aca gag cgg gac agc aag gac agc acc tac agc ctc agc agc acc






 L   T   L   S   K   A   D   Y   E   K   H   K   V   Y   A


8012
ctg acG CTG AGC aaa gca gac tac gag aaa cac aaa gtc tac gcc






      EspI.....



 C   E   V   T   H   Q   G   L   S   S   P   V   T   K   S


8057
tgc gaa gtc acc cat cag ggc ctG AGC TCg ccc gtc aca aag agc






                              SacI....



 F   N   R   G   E   C   .   .


8102
ttc aac agg gga gag tgt taa taa





8126
    GGCGCG CCaattctat ttcaaGGAGA cagtcata



    AscI.....              RBS2.






 PelB signal sequence------(22 codons)----->



  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15



 M   K   Y   L   L   P   T   A   A   A   G   L   L   L   L





8160
atg aaa tac cta ttg cct acg gca gcc gct gga ttg tta tta ctc



...PelB signal------------> Start VH, FR1----------------->



 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30



 A   A   Q   P   A   M   A   E   V   Q   L   L   E   S   G


8205
gcG GCC cag ccG GCC atg gcc gaa gtt CAA TTG tta gag tct ggt



  SfiI.............                 MfeI...



                 NcoI....






 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45



 G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A


8250
ggc ggt ctt gtt cag cct ggt ggt tct tta cgt ctt tct tgc gct






...FR1--------------------> CDR1--------------> FR2-------->



 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60



 A   S   G   F   T   F   S   T   Y   E   M   R   W   V   R


8295
gct TCC GGA ttc act ttc tct act tac gag atg cgt tgg gtt cgC



    BspEI..



BstXI...






 FR2--------------------------------------> CDR2 ----------



 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75



 Q   A   P   G   K   G   L   E   W   V   S   Y   I   A   P


8340
CAa gct ccT GGt aaa ggt ttg gag tgg gtt tct tat atc gct cct



BstX1................






...CDR2---------------------------------------------> FR3---->



 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90



 S   G   G   D   T   A   Y   A   D   S   V   K   G   R   F


8385
tct ggt ggc gat act gct tat gct gac tcc gtt aaa ggt cgc ttc






 91  92  93  94  95  96  97  98  99  100 101 102 103 104 105



 T   I   S   R   D   N   S   K   N   T   L   Y   L   Q   M


8430
act atc TCT AGA gac aac tct aag aat act ctc tac ttg cag atg



        XbaI...



        Supplied by extender-------------------------------






-----------------------------------------FR3-------------->



106 107 108 109 110 111 112 113 114 115 116 117 118 119 120



 N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   R


8475

aac agC TTA AGg gct gag gac act gca gtc tac tat tgt gcg agg




      AflII...



from extender--------------------------------->






CDR3-------------------------------------------------->



FR4-->



121 122 123 124 125 126 127 128 129 130 131 132 133 134 135



 R   L   D   G   Y   I   S   Y   Y   Y   G   M   D   V   W


8520
agg ctc gat ggc tat att tcc tac tac tac ggt atg GAC GTC tgg



                                               AatII..






136 137 138 139 140 141 142 143 144 145



 G   Q   G   T   T   V   T   V   S   S


8565
ggc caa ggg acc acG GTC ACC gtc tca agc






                  BstEII...



CH1 of IgG1---------->



 A   S   T   K   G   P   S   V   F   P   L   A   P   S   S


8595
gcc ccc acc aag ggc cca tcg gtc ttc ccc ctg gca ccc tcc



tcc






 K   S   T   S   G   G   T   A   A   L   G   C   L   V   K


8640
aag agc acc tct ggg ggc aca gcg gcc ctg ggc tgc ctg gtc



aag






 D   Y   F   P   E   P   V   T   V   S   W   N   S   G   A


8685
gac tac ctc ccc gaa ccg gtg acg gtg tcg tgg aac tca ggc



gcc






 L   T   S   G   V   H   T   F   P   A   V   L   Q   S   S


8730
ctg acc agc ggc gtc cac acc ttc ccg gct gtc cta cag tCC



TCA



Bsu36I....






 G   L   Y   S   L   S   S   V   V   T   V   P   S   S   S


8775
GGa ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agc



agc



Bsu36I....






 L   G   T   Q   T   Y   I   C   N   V   N   H   K   P   S


8820
ttg ggc acc cag acc tac atc tgc aac gtg aat cac aag ccc



agc






 N   T   K   V   D   K   K   V   E   P   K   S   C   A   A


8865
aac acc aag gtg gac aag aaa gtt gag ccc aaa tct tgt GCG



GCC



NotI......






 A   H   H   H   H   H   H   G   A   A   E   Q   K   L   I


8910
GCa cat cat cat cac cat cac ggg gcc gca gaa caa aaa ctc



atc



..NotI.... H6 tag................. Myc-



Tag........................






 S   E   E   D   L   N   G   A   A   q   A   S   S   A


8955
tca gaa gag gat ctg aat ggg gcc gca tag GCT AGC tct gct



Myc-Tag....................         ... NheI...



                                  Amber






III′stump







Domain 3 of III ---------------------------------------------------









 S   G   D   F   D   Y   E   K   M   A   N   A   N   K   G   A


8997
agt ggc gac ttc gac tac gag aaa atg gct aat gcc aac aaa GGC



GCC



tcc   t   t   t   t   t   a   g       a   c   t   t   g   g



t !W.T.






KasI...(2/4)



 M   T   E   N   A   D   E   N   A   L   Q   S   D   A   K   G


9045
atG ACT GAG AAC GCT GAC GAG aat gct ttg caa agc gat gcc aag



ggt



      c   a   t   c   t   a   c   g   c   a   g tct   c   t   a



c !W.T.






 K   L   D   S   V   A   T   D   Y   G   A   A   I   D   G   F


9093
aag tra gac agc gTC GCG Acc gac tat GGC GCC gcc ATC GAc ggc



ttt



  a c t   t tct       t   t   t   c   t   t   t       t   t



c !W.T.



                 NruI....           KasI...(3/4)






 I   G   D   V   S   G   L   A   N   G   N   G   A   T   G   D


9141
atc ggc gat gtc agt ggt tTG GCC Aac ggc aac ggc gcc acc gga



gac



  t   t   c   t tcc   c c t   t   t   t   t   t   t   t   t



t !W.T.



                        MscI....(3/3)






 F   A   G   S   N   S   Q   M   A   Q   V   G   D   G   D   N


9189
ttc GCA GGT tcG AAT TCt cag atg gcC CAG GTT GGA GAT GGg gac



aac



  t   t   c   t      c   a      t   a   c   t   c   t   t



t!W.T.



BspMI.. (2/2)                XcmI................



                 EcoRI...






 S   P   L   M   N   N   F   R   Q   Y   L   P   S   L   P   Q


9237
agt ccg ctt atg aac aac ttt aga cag tac ctt ccg tct ctt ccg



cag



tca   t t a       t   t   c c t   a   t t a   t   c   c   t



a !W.T.






 S   V   E   C   R   P   F   V   F   S   A   G   K   P   Y   E


9285
agt gtc gag tgc cgt cca ttc gtt ttc tct gcc ggc aag cct tac



gag



tcg   t   a   t   c   t   t   c   t agc   t   t   a   a   t



a !W.T.






 F   S   I   D   C   D   K   I   N   L   F   R


9333
ttc aGC Atc gac TGC gat aag atc aat ctt ttC CGC



  t tct    t   t   t   c   a   a   c t a   c   t   !W.T.



     BstAPI........                       SacII...



                                            End Domain 3






 G   V   F   A   F   L   L   Y   V   A   T   F   M   Y   V   F


9369
GGc gtt ttc gct ttc ttg cta tac gtc gct act ttc atg tac gtt



ttc



  t   c   t   g   t c t t a   t   t   c   c   t      t   a



t !W.T.







start transmembrane segment









 S   T   F   A   N   I   L    R   N   K   E   S


9417
aGC ACT TTC GCC AAT ATT TTA Cgc aac aaa gaa agc



tct   g   t   t   c   a c g t   t   g   g tct !W.T.



                            Intracellular anchor.





9453
tag tga cct CCT AGG



            AvrII..





9468
aag ccc gcc taa tga gcg ggc ttt ttt ttt ct ggt



  | Trp terminator                     |



End Fab cassette





9503
ATGCAT CCTGAGG ccgat actgtcgtcg tcccctcaaa ctggcagatg



NsiI.. Bsu36I.(3/3)





9551
cacggttacg atgcgcccat ctacaccaac gtgacctatc ccattacggt



caatccgccg





9611
tttgttccca cggagaatcc gacgggttgt tactcgctca catttaatgt



tgatgaaagc





9671
tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg



ttaaaaaatg





9731
agctgattta acaaaaattt aaTgcgaatt ttaacaaaat attaacgttt



acaATTTAAA



SwaI...





9791
Tatttgctta tacaatcttc ctgtttttgg ggcttttctg attatcaacc



GGGGTAcat





9850
ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt



gtt tgc







Start gene II








9901
tcc aga ctc tca ggc aat gac ctg ata gcc ttt gtA GAT CTc tca



aaa ata



                                              BglII...





9952
gct acc ctc tcc ggc atT aat tta tca gct aga acg gtt gaa tat



cat atc





1003
gat ggt gat ttg act gtc tcc ggc ctt tct cac cct ttt gaa tct



tta cct





10054
aca cat tac tca ggc att gca ttt aaa ata tat gag ggt tct aaa



aat ttt





10105
tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag



ggt cat





10156
aat gtt ttt ggt aca acc gat tta gct tta tgc tct gag gct tta



ttg ctt





10207
aat ttt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt !







gene II continues


------------------------ End of Table ------------------------------
















TABLE 37





DNA seq of w.t. M13 gene iii

















 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15



fM   K   K   L   L   F   A   I   P   L   V   V   P   F   Y


1579
gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat







Signal sequence............................................












 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30



 S   H   S   A   E   T   V   E   S   C   L   A   K   P   H


1624
tct cac tcc gct gaa act gtt gaa agt tgt tta gca aaa ccc cat







Signal sequence> Domain 1---------------------------------------












 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45



 T   E   N   S   F   T   N   V   W   K   D   D   K   T   L


1669
aca gaa aat tca ttt act aac gtc tgg aaa gac gac aaa act tta







Domain 1---------------------------------------------------












 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60



 D   R   Y   A   N   Y   E   G   C   L   W   N   A   T   G


1714
gat cgt tac gct aac tat gag ggt tgt ctg tgG AAT GCt aca ggc



                                          BsmI....







Domain 1---------------------------------------------------












 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75



 V   V   V   C   T   G   D   E   T   Q   C   Y   G   T   W


1759
gtt gta gtt tgt act ggt gac gaa act cag tgt tac ggt aca tgg







Domain 1---------------------------------------------------












 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90



 V   P   I   G   L   A   I   P   E   N   E   G   G   G   S


1804
gtt cct att ggg ctt gct atc cct gaa aat gag ggt ggt ggc tct







Domain 1------------------------------> Linker 1-----------












 91  92  93  94  95  96  97  98  99 100 101 102 103 104 105



 E   G   G   G   S   E   G   G   G   S   E   G   G   G   T


1849
gag ggt ggc ggt tct gag ggt ggc ggt tct gag ggt ggc ggt act







Linker 1-------------------------------------------------->












106 107 108 109 110 111 112 113 114 115 116 117 118 119 120



 K   P   P   E   Y   G   D   T   P   I   P   G   Y   T   Y


1894
aaa cct cct gag tac ggt gat aca cct att ccg ggc tat act tat







Domain 2---------------------------------------------------












121 122 123 124 125 126 127 128 129 130 131 132 133 134 135



 I   N   P   L   D   G   T   Y   P   P   G   T   E   Q   N


1939
atc aac cct ctc gac ggc act taT CCG CCt ggt act gag caa aac



                              EciT....







Domain 2---------------------------------------------------












136 137 138 139 140 141 142 143 144 145 146 147 148 149 150



 P   A   N   P   N   P   S   L   E   E   S   Q   P   L   N


1984
ccc gct aat cct aat cct tct ctt GAG GAG tct cag cct ctt aat



                                BseRI..







Domain 2---------------------------------------------------












151 152 153 154 155 156 157 158 159 160 161 162 163 164 165



 T   F   M   F   Q   N   N   R   F   R   N   R   Q   G   A


2029
act ttc atg ttt cag aat aat agg ttc cga aat agg cag ggg gca







Domain 2---------------------------------------------------












166 167 168 169 170 171 172 173 174 175 176 177 178 179 180



 L   T   V   Y   T   G   T   V   T   Q   G   T   D   P   V


2074
tta act gtt tat acg ggc act gtt act caa ggc act gac ccc gtt







Domain 2---------------------------------------------------












181 182 183 184 185 186 187 188 189 190 191 192 193 194 195



 K   T   Y   Y   Q   Y   T   P   V   S   S   K   A   M   Y


2119
aaa act tat tac cag tac act cct gta tca tca aaa gcc atg tat







Domain 2---------------------------------------------------












196 197 198 199 200 201 202 203 204 205 206 207 208 209 210



 D   A   Y   W   N   G   K   F   R   D   C   A   F   H   S


2164
gac gct tac tgg aac ggt aaa ttC AGa gaC TGc gct ttc cat tct



                              AlwNI.......







Domain 2---------------------------------------------------












211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



 G   F   N   E   D   P   F   V   C   E   Y   Q   G   Q   S


2209
ggc ttt aat gaG GAT CCa ttc gtt tgt gaa tat caa ggc caa tcg



              BamHI...







Domain 2---------------------------------------------------












226 227 228 229 230 231 232 233 234 235 236 237 238 239 240



 S   D   L   P   Q   P   P   V   N   A   G   G   G   S   G


2254
tct gac ctg cct caa cct cct gtc aat gct ggc ggc ggc tct ggt







Domain 2------------------------------> Linker 2-----------












241 242 243 244 245 246 247 248 249 250 251 252 253 254 255



 G   G   S   G   G   G   S   E   G   G   G   S   E   G   G


2299
ggt ggt tct ggt ggc ggc tct gag ggt ggt ggc tct gag ggt ggc







Linker 2---------------------------------------------------












256 257 258 259 260 261 262 263 264 265 266 267 268 269 270



 G   S   E   G   G   G   S   E   G   G   G   S   G   G   G


2344
ggt tct gag ggt ggc ggc tct gag gga ggc ggt tcc ggt ggt ggc







Linker 2---------------------------------------------------












271 272 273 274 275 276 277 278 279 280 281 282 283 284 285



 S   G   S   G   D   F   D   Y   E   K   M   A   N   A   N


2389
tct ggt tcc ggt gat ttt gat tat gaa aag atg gca aac gct aat







Linker 2>     Domain 3-------------------------------------------












286 287 288 289 290 291 292 293 294 295 296 297 298 299 300



 K   G   A   M   T   E   N   A   D   E   N   A   L   Q   S


2434
aag ggg gct atg acc gaa aat gcc gat gaa aac gcg cta cag tct







Domain 3---------------------------------------------------












301 302 303 304 305 306 307 308 309 310 311 312 313 314 315



 D   A   K   G   K   L   D   S   V   A   T   D   Y   G   A


2479
gac gct aaa ggc aaa ctt gat tct gtc gct act gat tac ggt gct







Domain 3---------------------------------------------------












316 317 318 319 320 321 322 323 324 325 326 327 328 329 330



 A   I   D   G   F   I   G   D   V   S   G   L   A   N   G


2524
gct atc gat ggt ttc att ggt gac gtt tcc ggc ctt gct aat ggt







Domain 3---------------------------------------------------












331 332 333 334 335 336 337 338 339 340 341 342 343 344 345



 N   G   A   T   G   D   F   A   G   S   N   S   Q   M   A


2569
aat ggt gct act ggt gat ttt gct ggc tct aat tcc caa atg gct







Domain 3---------------------------------------------------












346 347 348 349 350 351 352 353 354 355 356 357 358 359 360



 Q   V   G   D   G   D   N   S   P   L   M   N   N   F   R


2614
caa gtc ggt gac ggt gat aat tca cct tta atg aat aat ttc cgt







Domain 3---------------------------------------------------












361 362 363 364 365 366 367 368 369 370 371 372 373 374 375



 Q   Y   L   P   S   L   P   Q   S   V   E   C   R   P   F


2659
caa tat tta cct tcc ctc cct caa tcg gtt gaa tgc cgc cct ttt







Domain 3---------------------------------------------------












376 377 378 379 380 381 382 383 384 385 386 387 388 389 390



 V   F   S   A   G   K   P   Y   E   F   S   I   D   C   D


2704
gtc ttt agc gct ggt aaa cca tat gaa ttt tct att gat tgt gac







Domain 3---------------------------------------------------












391 392 393 394 395 396 397 398 399 400 401 402 403 404 405



 K   I   N   L   F   R   G   V   F   A   F   L   L   Y   V


2749
aaa ata aac tta ttc cgt ggt gtc ttt gcg ttt ctt tta tat gtt







Domain 3--------------> Transmembrane segment--------------












406 407 408 409 410 411 412 413 414 415 416 417 418 419 420



 A   T   F   M   Y   V   F   S   T   F   A   N   I   L   R


2794
gcc acc ttt atg tat gta ttt tct acg ttt gct aac ata ctg cgt







Transmembrane segment---------------------------------> ICA--












421 422 423 424 425



 N   K   E   S


2839
aat aag gag tct taa ! 2853







ICA----------->            ICA = intracellular anchor





------------------ End of Table ------------------------------------


-----
















TABLE 38





Whole mature III anchor M13-III


derived anchor with recoded DNA

















 1   2   3



 A   A   A


1
GCG gcc gca



Not I......






 4   5   6   7   8   9  10  11  12  13  14  15  16  17



 H   H   H   H   H   H   G   A   A   E   Q   K   L   I


10
cat cat cat cac cat cac ggg gcc gca gaa caa aaa ctc atc






18  19  20  21  22  23  24  25  26  27  28  29



 S   E   E   D   L   N   G   A   A   .   A   S


52
tca gaa gag gat ctg aat ggg gcc gca Tag GCT AGC



                                        NheI...






30  31  32  33  34  35  36    37  38  39



 D   I   N   D   D   R   M     A   S   T


88

GAT ATC aac gat gat cgt atg   gct tct act




(ON_G37bot) [RC] 5′-c aac gat gat cgt atg gcG CAt Gct gcc gag aca



9-3′



EcoRV..



Enterokinase cleavage site.










Start mature III (recoded) Domain 1 ---->









 40  41  42  43



  A   E   T   V


118
|gcC|gaG|acA|gtC|



   t   a   t   t ! W.T.






 44  45  46  47  48  49  50  51  52  53  54  55  56  57  58



  E   S   C   L   A   K   P   H   T   E   N   S   F   T   N


130
|gaa|TCC|tgC|CTG|GCC|AaG|ccT|caC|acT|gaG|aat|AGT|ttC|aCA|Aat|



     agt   t t a   a   a   c   t   a   a     tca   t   t   c



W.T.



              MscI....






 59  60  61  62  63  64  65  66  67  68  69  70  71  72  73



  V   W   K   D   D   K   T   L   D   R   Y   A   N   Y   E


175
|gtg|TGG|aaG|gaT|gaT|aaG|acC|CtT|gAT|CGA|TaT|gcC|aaT|taC|gaA|



   c       a   c   c   a   t t a       t   c   t   c   t   g !



W.T.



                                  BspDI...






 74  75  76  77  78  79  80  81  82  83  84  85  86  87  88



  G   C   L   W   N   A   T   G   V   V   V   C   T   G   D


220
|ggC|tgC|TtA|tgg|aat|gcC|ACC|GGC|GtC|gtT|gtC|TGC|ACG|ggC|gaT|



   t   t c g           t   a       t   a   t   t   t   t   c !



W.T.



                       SgrAI......         BsgI....






 89  90  91  92  93  94  95  96  97  98  99  100 101 102 103



  E   T   Q   C   Y   G   T   W   V   P   I   G   L   A   I


265
|gaG|acA|caA|tgC|taT|ggC|ACG|TGg|gtG|ccG|atA|gGC|TTA|GCC|atA|



   a   t   g   t   c   t   a       t   t   t   g c t   t   c !



W.T.



                       PmlI....               BlpI.....










Domain 1-----> Linker 1---------------->









 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118



  P   E   N   E   G   G   G   S   E   G   G   G   S   E   G


310
|ccG|gaG|aaC|gaA|ggC|ggC|ggT|AGC|gaA|ggC|ggT|ggC|AGC|gaA|ggC|



   t   a   t   g   t   t   c tct   g   t   c   t tct   g   t !



W.T.










Linker 1----------------------> Domain 2--------------->









 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133



  G   G   S   E   G   G   G   T   K   P   P   E   Y   G   D


355
|ggT|GGA|TCC|gaA|ggA|ggT|ggA|acC|aaG|ccG|ccG|gaA|taT|ggC|gaC|



   c   t   t   g   t   c   t   t   a   t   t   g   c   t   t !



W.T.



     BamHI..(2/2)






 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148



  T   P   I   P   G   Y   T   Y   I   N   P   L   D   G   T


400
|acT|ccG|atA|CCT|GGT|taC|acC|taC|atT|aaT|ccG|TtA|gaT|ggA|acC|



   a   t   t   g   c   t   t   t   c   c   t c c   c   c   t !



W.T.



           SexAI....






 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163



  Y   P   P   G   T   E   Q   N   P   A   N   P   N   P   S


445
|taC|ccT|ccG|ggC|acC|gaA|caG|aaT|ccT|gcC|aaC|ccG|aaC|ccA|AGC|



   T   G   t   t   t   g   a   c   c   t   t   t   t   t tct !



W.T.



HindIII...






 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178



  L   E   E   S   Q   P   L   N   T   F   M   F   Q   N   N


490
|TTA|gaA|gaA|AGC|caA|ccG|TtA|aaC|acC|ttT|atg|ttC|caA|aaC|aaC|



 c t   G   G tct   g   t c t   t   t   c       t   g   t   t !



W.T.



HindIII.






 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193



  R   F   R   N   R   Q   G   A   L   T   V   Y   T   G   T


535
|CgT|ttT|AgG|aaC|CgT|caA|gGT|GCT|CtT|acC|gTG|TAC|AcT|ggA|acC|



 a g   c c a   t a g   g   g   a t a   t   t   t   g   c   t !



W.T.



                          HgiAI...        BsrGI...






 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208



  V   T   Q   G   T   D   P   V   K   T   Y   Y   Q   Y   T


580
|gtC|acC|caG|GGT|ACC|gaT|ccT|gtC|aaG|acC|taC|taT|caA|taT|acC|



   t   t   a   c   t   c   c   t   a   t   t   c   g   c   t !



W.T.



             KpnI...






 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223



  P   V   S   S   K   A   M   Y   D   A   Y   W   N   G   K


625
|ccG|gtC|TCG|AGt|aaG|gcT|atg|taC|gaT|gcC|taT|tgg|aaT|ggC|aaG|



   t   a   a tca   a   c       t   c   t   c       c   t   a !



W.T.



   BsaI....



       XhoI....






 224 225 226 227 228 229 230 231 232 234 235 236 237 238



  F   R   D   C   A   F   H   S   G   F   N   E   D   P   F


670
|ttT|CgT|gaT|tgT|gcC|ttT|caC|AGC|ggT|ttC|aaC|gaa|gac|CCt|ttT|



   C A a   C   c   t   c   t tct   c   t   t   G   T   a   c !



W.T.






 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253



  V   C   E   Y   Q   G   Q   S   S   D   L   P   Q   P   P


715
|gtC|tgC|gaG|taC|caG|ggT|caG|AGT|AGC|gaT|TtA|ccG|caG|ccA|CCG|



   t   t   a   t   a   c   a tcg tct   c c g   t   a   t   t !



W.T.



DrdI.....



AgeI.....










Domain 2--------> Linker 2--------------------->









 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268



  V   N   A   G   G   G   S   G   G   G   S   G   G   G   S


760
|GTT|AAC|gcG|ggT|ggT|ggT|AGC|ggC|ggA|ggC|AGC|ggC|ggT|ggT|AGC|



   c   t   t   c   c   c tct   t   t   t tct   t   c   c tct



W.T.



AgeI.....



 HpaI...



 HincII.










Linker 2---------------------------------------------->


Domain 3-->









 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283



  E   G   G   G   S   E   G   G   G   S   G   G   G   S   G


805
|gaA|ggC|ggA|ggT|AGC|gaA|ggA|ggT|ggC|AGC|ggA|ggC|ggT|AGC|ggC|



   g   t   t   c tct   g   t   c   t tct   g   t   c tct   t



W.T.










------------Domain 3------------------->









284 285 286 287 288 289 290 291 292 293 294 295 296 297 298



  S   G   D   F   D   Y   E   K   M   A   N   A   N   K   G


850
|AGT|ggC|gac|ttc|gac|tac|gag|aaa|atg|gct|aat|gcc|aac|aaa|GGC|



 tcc   t   t   t   t   t   a   g       a   c   t   t   g   g !



W.T.



KasI....






 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313



  A   M   T   E   N   A   D   E   N   A   L   Q   S   D   A


895
|GCC|atg|act|gag|aac|gct|gac|gaG|AAT|GCA|ctg|caa|agt|gat|gCC|



   t       c   a   t   c   t   a   c   g   a   g tct   c   t !



W.T.



KasI....                           BsmI....



StyI...






 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328



  K   G   K   L   D   S   V   A   T   D   Y   G   A   A   I


940
|AAG|GGt|aag|tta|gac|agc|gTC|GCc|Aca|gac|tat|ggt|GCt|gcc|atc|



   a   c   a c t   t tct       t   t   t   c           t     !



W.T.



StyI......           PEIFI......






 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343



  D   G   F   I   G   D   V   S   G   L   A   N   G   N   G


985
|gac|ggc|ttt|atc|ggc|gat|gtc|agt|ggt|ctg|gct|aac|ggc|aac|gga|



   t   t   c   t   t   c   t tcc   c c t       t   t   t   t !



W.T.






 344 345 346 347 348 349 350 351 352 353



  A   T   G   D   F   A   G   S   N   S


1030
|gcc|acc|gga|gac|ttc|GCA|GGT|tcG|AAT|TCt|



   t   t   t   t   t   t   c   t       c ! W.T.



                           BstBI...



                               EcoRI...



                     BspMI..






354 355 356 357 358 359 360 361 362 363



 Q   M   A   Q   V   G   D   G   D   N


1060
cag atg gcC CAG GTT GGA GAT GGg gac aac



  a       t   a   c   t   c   t   t   t ! W.T.



          XcmI................






364 365 366 367 368 369 370 371 372 373 374 375 376 377 378



379



 S   P   L   M   N   N   F   R   Q   Y   L   P   S   L   P   Q


1090
agt ccg ctt atg aac aac aac ttt aga cag tac ctt ccg tct ctt ccg



cag



tca   t t a       t   t   c c t   a   t t a   t   c   c   t



a ! W.T.






380 381 382 383 384 385 386 387 388 389 390 391 392 393 394



395



 S   V   E   C   R   P   F   V   F   S   A   G   K   P   Y   E


1138
agt gtc gag tgc cgt cca ttc gtt ttc tct gcc ggc aag cct tac



gag



tcg   t   a   t   c   t   t   c   t agc   t   t   a   a   t



a ! W.T.










Domain 3-------------------------------------->









396 397 398 399 400 401 402 403 404 405 406 407



 F   S   I   D   C   D   K   I   N   L   F   R


1186
ttc aGC Atc gac TGC gat aag atc aat ctt ttC CGC



  t tct   t   t   c   a   a   c t a       t



     BstAPI........                       SacII...










transmembrane segment------------->









408 409 410 411 412 413 414 415 416 417 418 419 420 421 422



423



 G   V   F   A   F   L   Y   V   A   T   F   M   Y   V   F


1222
GGc gtt ttc gct ttc ttg cta tac gtc gct act ttc atg tac gtt



ttc



  t   c   t   g   t c t t a   t   t   c   c   t       t   a



t ! W.T.






424 425 426 427 428 429 430 431 432 433 434 435



 S   T   F   A   N   I   L   R   N   K   E   S


1270
aGC ACT TTC GCC AAT ATT TTA Cgc aac aaa gaa agc



tct   g   t   t   c   a c g   t   t   g   g tct ! W.T.



                            Intracellular anchor.





1306
tag tga tct CCT AGG



            AvrII..





1321
aag ccc gcc taa tga gcg ggc ttt ttt ttt ct ggt



  | Trp terminator                     |







End Fab cassette


---------------------------- End of Table -------------------------
















TABLE 39





ONs to make deletions in III
















ONs for use with NheI



      N



(ON_G29bot)                       5′-c gTT gAT ATc gcT Agc cTA Tgc-3′
22


this is the reverse complement of 5′-gca tag gct agc gat atc aac g-3′






                                  NheI... scab.........



(ON_G104top) 5′-g|ata|ggc|tta|gcT|aGC|ccg|gag|aac|gaa|gg-3′
30





                Scab..........NheI... 104 105 106 107 108



(ON_G236top) 5′-c|ttt|cac|agc|ggt|ttc|GCT|AGC|gac|cct|ttt|gtc|tgc-3′
37





                         NheI... 236 237 238 239 240



(ON_G236tCS) 5′-a|ttt|cac|agc|ggt|ttc|GCT|AGC|gac|cct|ttt|gtc|Agc-



                         NheI... 236 237 238 239 240



                gag|tac|cag|ggt|c-3′
50





ONs for use with SphI G CAT Gc



(ON_X37bot) 5′-gAc TgT cTc ggc Agc ATg cgc cAT Acg ATc ATc gTT g-3′
37





      ‘                  N   D   D   R   M   A   H   A



(ON_X37bot) = (RC) 5′-c aac gat gat cgt atg gcG CAt Gct gcc gag aca gtc-3′






                                SphI....Scab...........



(ON_X104top) 5′-g|gtG ccg|ata|ggc|ttG|CAT|GCa|ccg|gag|aac|gaa|gg-3′
36





                Scab...............SphI.... 104 105 106 107 108



(ON_X236top) 5′-c|ttt|cac|agc|ggt|ttG|CaT|gCa|gac|cct|ttt|gtc|tgc-3′
37





                       SphI.... 236 237 238 239 240



(ON_X236tCS) 5′-c|ttt|cac|agc|ggt|ttG|CaT|gCa|gac|cct|ttt|gtc|Agc-



                         NheI... 236 237 238 239 240



                gag|tac|cag|ggt|c-3′
50
















TABLE 40







Phage titers and enrichments of selections with


a DY3F31-based human Fab library













Output/ input



Input (total cfu)
Output (total cfu)
ratio





R1-ox selected on
4.5 × 1012
3.4 × 105  
7.5 × 10−8


phOx-BSA





R2-Strep selected
9.2 × 1012
3 × 108
3.3 × 10−5


on Strep-beads
















TABLE 41







Frequency of ELISA positives in


DY3F31-based Fab libraries












9E10/RAM-
Anti-CK/CL



Anti-M13 HRP
HRP
Gar-HRP





R2-ox (with IPTG induction)
18/44
10/44
10/44


R2-ox (without IPTG)
13/44
ND
ND


R3-strep (with IPTG)
39/44
38/44
36/44


R3-strep (without IPTG)
33/44
ND
ND








Claims
  • 1. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of: (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • 2. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of: (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • 3. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, wherein the displayed peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved at a desired location by the method of claim 1.
  • 4. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, wherein the displayed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by the method of claim 2.
  • 5. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the method comprising the steps of: (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 1; and(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
  • 6. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a portion of the diversity of the family, the meth(1d comprising the steps of: (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 2; and(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
  • 7. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, wherein the expressed peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved at a desired location by the method of claim 1.
  • 8. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the improvement being characterized in that the expressed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by the method of claim 2.
  • 9. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the method comprising the steps of: (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 1; and(iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
  • 10. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a portion of the diversity of the family, the method comprising the steps of: (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 2; and(iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
  • 11. (canceled)
  • 12. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family, the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by the method of claim 1.
  • 13. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the diversity of the family of the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by the method of claim 2.
  • 14. (canceled)
  • 15. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of diversity of the family, the peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by the method of claim 1.
  • 16. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the diversity of the family, the peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by the method of claim 2.
  • 17.-53. (canceled)
  • 54. A method for preparing single-stranded nucleic acids, the method comprising the steps of: (i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences; and(ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease recognition site contained within the double-stranded region of the partially double-stranded oligonucleotide.the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • 55.-58. (canceled)
  • 59. A method for preparing a library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family comprising the steps: (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 1;(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the singles stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for display and containing a restriction endonuclease recognition site 5′ of those sequences that is different from the restriction site used in step (iii); and(v) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide;the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and(vi) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
  • 60. A method for preparing a library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the family comprising the steps: (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 2;(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequence necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences that is different from the restriction site used in step (iii); and(v) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide;the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and(vi) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
  • 61.-77. (canceled)
  • 78. A vector comprising: (i) a DNA sequence encoding an antibody variable region linked to a version of PIII anchor which does not mediate infection of phage particles; and(ii) wild-type gene III.
  • 79.-91. (canceled)
  • 92. A method for producing a population of immunoglobulin genes that comprises steps of: (i) introducing synthetic diversity into at least one of CDR1 or CDR2 of those genes; and(ii) combining the diversity from step (i) with CDR3 diversity captured from B cells.
  • 93. (canceled)
  • 94. A method for producing a library of immunoglobulin genes that comprises (i) introducing synthetic diversity into at least one of CDR1 or CDR2 of those genes; and(ii) combining the diversity from step (i) with CDR3 diversity captured from B cells.
  • 95. (canceled)
  • 96. A library of immunoglobulins that comprise members with at least one variable domain in which at least one of CDR1 and CDR2 contain synthetic diversity and CDR3 diversity is captured from B cells.
  • 97.-98. (canceled)
  • 99. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, wherein the displayed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5′ terminal and(ii) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • 100. The method of claim 99, the method further comprising the steps of: (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;(ii) rendering the nucleic acids single-stranded; and(iii) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
  • 101. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, wherein the expressed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5′ terminal region; and(ii) cleaving the nucleic acid solely at the restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;the contacting and the cleaving step being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • 102. The method of claim 101, the method further comprising the steps of: (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse 30 family;(ii) rendering the nucleic acids single-stranded; and(iii) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
  • 103. A method for preparing a library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family comprising the steps: (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 1;(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the 5′ terminal region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for display; and(v) cleaving the nucleic acid solely at a restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide, the site being different from that used in step (iii) or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and(vi) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
  • 104. A method for preparing a library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the family comprising the steps: (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;(ii) rendering the nucleic acids single-stranded;(iii) cleaving the single-stranded nucleic acids at a desired location by the method of claim 1;(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the 5′ terminal region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequence necessary to return the sequences that remain after cleavage into proper and original reading frame for expression; and(v) cleaving the nucleic acid solely at a restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide, the site being different from that used in step (iii) or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and(vi) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
  • 105.-107. (canceled)
  • 108. A method for cleaving a nucleic acid sequence at a desired location, the method comprising the steps of: (i) contacting a single-stranded nucleic acid sequence with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the 5′ terminal region of the nucleic acid sequence, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequence in the single-stranded nucleic acid sequence into proper and original reading frame for expression; and(ii) cleaving the partially double-stranded oligonucleotide-single-stranded nucleic acid combination solely at a restriction endonuclease cleavage site contained within the double-stranded oligonucleotide or amplifying the combination using a primer at least in part functionally complementary to at least part of the double-stranded region of the oligonucleotide, the primer introducing during amplification an endonuclease cleavage site and cleaving the amplified sequence solely at the site.
  • 109.-113. (canceled)
  • 114. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the method of claim 99.
  • 115. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprises at least a portion of the diversity of the family, the library being produced using the method of claim 101.
  • 116. (canceled)
Parent Case Info

This application is a continuation-in-part of U.S. provisional application 06/198,069, filed Apr. 17, 2000, a continuation-in-part of U.S. patent application Ser. No. 09/837,306, filed on Apr. 17, 2001, and a continuation-in-part of U.S. application Ser. No. ______, filed by Express Mail (EI125454535US) on Oct. 25, 2001. All of the earlier applications are specifically incorporated by reference herein.

Provisional Applications (1)
Number Date Country
60198069 Apr 2000 US
Continuations (2)
Number Date Country
Parent 10045674 Oct 2001 US
Child 13464047 US
Parent 09837306 Apr 2001 US
Child 10000516 US
Continuation in Parts (1)
Number Date Country
Parent 10000516 Oct 2001 US
Child 10045674 US