Information
-
Patent Application
-
20040029113
-
Publication Number
20040029113
-
Date Filed
April 17, 200123 years ago
-
Date Published
February 12, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
The present invention relates to constructing libraries of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family. In a preferred embodiment, the displayed polypeptides are human Fabs.
Description
BACKGROUND OF THE INVENTION
[0001] It is now common practice in the art to prepare libraries of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family. In many common libraries, the displayed peptides, polypeptides or proteins are related to antibodies. Often, they are Fabs or single chain antibodies.
[0002] In general, the DNAs that encode members of the families to be displayed must be amplified before they are cloned and used to display the desired member on the surface of a genetic package. Such amplification typically makes use of forward and backward primers.
[0003] Such primers can be complementary to sequences native to the DNA to be amplified or complementary to oligonucleotides attached at the 5′ or 3′ ends of that DNA. Primers that are complementary to sequences native to the DNA to be amplified are disadvantaged in that they bias the members of the families to be displayed. Only those members that contain a sequence in the native DNA that is substantially complementary to the primer will be amplified. Those that do not will be absent from the family. For those members that are amplified, any diversity within the primer region will be suppressed.
[0004] For example, in European patent 368,684 B1, the primer that is used is at the 5′ end of the VH region of an antibody gene. It anneals to a sequence region in the native DNA that is said to be “sufficiently well conserved” within a single species. Such primer will bias the members amplified to those having this “conserved” region. Any diversity within this region is extinguished.
[0005] It is generally accepted that human antibody genes arise through a process that involves a combinatorial selection of V and J or V, D, and J followed by somatic mutations. Although most diversity occurs in the Complementary Determining Regions (CDRs), diversity also occurs in the more conserved Framework Regions (FRs) and at least some of this diversity confers or enhances specific binding to antigens (Ag). As a consequence, libraries should contain as much of the CDR and FR diversity as possible.
[0006] To clone the amplified DNAs for display on a genetic package of the peptides, polypeptides or proteins that they encode, the DNAs must be cleaved to produce appropriate ends for ligation to a vector. Such cleavage is generally effected using restriction endonuclease recognition sites carried on the primers. When the primers are at the 5′ end of DNA produced from reverse transcription of RNA, such restriction leaves deleterious 5′ untranslated regions in the amplified DNA. These regions interfere with expression of the cloned genes and thus the display of the peptides, polypeptides and proteins coded for by them.
SUMMARY OF THE INVENTION
[0007] It is an object of this invention to provide novel methods for constructing libraries of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family. These methods are not biased toward DNAs that contain native sequences that are complementary to the primers used for amplification. They also enable any sequences that may be deleterious to expression to be removed from the amplified DNA before cloning and displaying.
[0008] It is another object of this invention to provide a method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
[0009] (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
[0010] (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
[0011] the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
[0012] It is a further object of this invention to provide an alternative method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
[0013] (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and
[0014] (ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
[0015] the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
[0016] It is another objective of the present invention to provide a method of capturing DNA molecules that comprise a member of a diverse family of DNAs and collectively comprise at least a portion of the diversity of the family. These DNA molecules in single-stranded form have been cleaved by one of the methods of this invention. This method involves ligating the individual single-stranded DNA members of the family to a partially duplex DNA complex. The method comprises the steps of:
[0017] (i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences; and
[0018] (ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease recognition site contained within the double-stranded region of the partially double-stranded oligonucleotide.
[0019] It is another object of this invention to prepare libraries, that display a diverse family of peptides, polypeptides or proteins and collectively display at least part of the diversity of the family, using the methods and DNAs described above.
[0020] It is an object of this invention to screen those libraries to identify useful peptides, polypeptides and proteins and to use those substances in human therapy.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021]
FIG. 1 is a schematic of various methods that may be employed to amplify VH genes without using primers specific for VH sequences.
[0022]
FIG. 2 is a schematic of various methods that may be employed to amplify VL genes without using VL sequences.
[0023]
FIG. 3 depicts gel analysis of cleaved kappa DNA from Example 2.
[0024]
FIG. 4 depicts gel analysis of cleaved kappa DNA from Example 2.
[0025]
FIG. 5 depicts gel analysis of amplified kappa DNA from Example 2.
[0026]
FIG. 6 depicts gel purified amplified kappa DNA from Example 2.
TERMS
[0027] In this application, the following terms and abbreviations are used:
1|
|
Sense strandThe upper strand of ds DNA as
usually written. In the sense
strand, 5′-ATG-3′ codes for
Met.
Antisense strandThe lower strand of ds DNA as
usually written. In the
antisense strand, 3′-TAC-5′
would correspond to a Met
codon in the sense strand.
Forward primer:A “forward” primer is
complementary to a part of the
sense strand and primes for
synthesis of a new antisense-
strand molecule. “Forward
primer” and “lower-strand
primer” are equivalent.
Backward primer:A “backward” primer is
complementary to a part of the
antisense strand and primes
for synthesis of a new sense-
strand molecule. “Backward
primer” and “top-strand
primer” are equivalent.
Bases:Bases are specified either by
their position in a vector or
gene as their position within
a gene by codon and base. For
example, “89.1” is the first
base of codon 89, 89.2 is the
second base of codon 89.
SvStreptavidin
ApAmpicillin
apRA gene conferring ampicillin
resistance.
RERestriction endonuclease
UREUniversal restriction
endonuclease
FunctionallyTwo sequences are sufficiently
complementarycomplementary so as to anneal
under the chosen conditions.
RERSRestriction endonuclease
recognition site
AAAmino acid
PCRPolymerization chain reaction
GLGsGermline genes
AbAntibody: an immunoglobin.
The term also covers any
protein having a binding
domain which is homologous to
an immunoglobin binding
domain. A few examples of
antibodies within this
definition are, inter alia,
immunoglobin isotypes and the
Fab, F(ab1)2, scfv, Fv, dAb and
Fd fragments.
FabTwo chain molecule comprising
an Ab light chain and part of
a heavy-chain.
scFvA single-chain Ab comprising
either VH::linker::VL or
VL::linker::VH
w.t.Wild type
HCHeavy chain
LCLight chain
VKA variable domain of a Kappa
light chain.
VHA variable domain of a heavy
chain.
VLA variable domain of a lambda
light chain.
|
[0028] In this application, all references referred to are specifically incorporated by reference.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0029] The nucleic acid sequences that are useful in the methods of this invention, i.e., those that encode at least in part the individual peptides, polypeptides and proteins displayed on the genetic packages of this invention, may be naturally occurring, synthetic or a combination thereof. They may be mRNA, DNA or cDNA. In the preferred embodiment, the nucleic acids encode antibodies. Most preferably, they encode Fabs.
[0030] The nucleic acids useful in this invention may be naturally diverse, synthetic diversity may be introduced into those naturally diverse members, or the diversity may be entirely synthetic. For example, synthetic diversity can be introduced into one or more CDRs of antibody genes.
[0031] Synthetic diversity may be created, for example, through the use of TRIM technology (U.S. Pat. No. 5,869,644). TRIM technology allows control over exactly which amino-acid types are allowed at variegated positions and in what proportions. In TRIM technology, codons to be diversified are synthesized using mixtures of trinucleotides. This allows any set of amino acid types to be included in any proportion.
[0032] Another alternative that may be used to generate diversified DNA is mixed oligonucleotide synthesis. With TRIM technology, one could allow Ala and Trp. With mixed oligonucleotide synthesis, a mixture that included Ala and Trp would also necessarily include Ser and Gly. The amino-acid types allowed at the variegated positions are picked with reference to the structure of antibodies, or other peptides, polypeptides or proteins of the family, the observed diversity in germline genes, the observed somatic mutations frequently observed, and the desired areas and types of variegation.
[0033] In a preferred embodiment of this invention, the nucleic acid sequences for at least one CDR or other region of the peptides, polypeptides or proteins of the family are cDNAs produced by reverse transcription from mRNA. More preferably, the mRNAs are obtained from peripheral blood cells, bone marrow cells, spleen cells or lymph node cells (such as B-lymphocytes or plasma cells) that express members of naturally diverse sets of related genes. More preferable, the mRNAs encode a diverse family of antibodies. Most preferably, the mRNAs are obtained from patients suffering from at least one autoimmune disorder or cancer. Preferably, mRNAs containing a high diversity of autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, antiphospholipid syndrome and vasculitis are used.
[0034] In a preferred embodiment of this invention, the cDNAs are produced from the mRNAs using reverse transcription. In this preferred embodiment, the mRNAs are separated from the cell and degraded using standard methods, such that only the full length (i.e., capped) mRNAs remain. The cap is then removed and reverse transcription used to produce the cDNAs.
[0035] The reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., H J de Haard et al., Journal of Biological Chemistry, 274(26):18218-30 (1999). In the preferred embodiment of this invention where the mRNAs encode antibodies, primers that are complementary to the constant regions of antibody genes may be used. Those primers are useful because they do not generate bias toward subclasses of antibodies. In another embodiment, poly-dT primers may be used (and may be preferred for the heavy-chain genes). Alternatively, sequences complementary to the primer may be attached to the termini of the antisense strand.
[0036] In one preferred embodiment of this invention, the reverse transcriptase primer may be biotinylated, thus allowing the cDNA product to be immobilized on streptavidin (Sv) beads. Immobilization can also be effected using a primer labeled at the 5′ end with one of a) free amine group, b) thiol, c) carboxylic acid, or d) another group not found in DNA that can react to form a strong bond to a known partner on an insoluble medium. If, for example, a free amine (preferably primary amine) is provided at the 5′ end of a DNA primer, this amine can be reacted with carboxylic acid groups on a polymer bead using standard amide-forming chemistry. If such preferred immobilization is used during reverse transcription, the top strand RNA is degraded using well-known enzymes, such as a combination of RNAseH and RNAseA, either before or after immobilization.
[0037] The nucleic acid sequences useful in the methods of this invention are generally amplified before being used to display the peptides, polypeptides or proteins that they encode. Prior to amplification, the single-stranded DNAs may be cleaved using either of the methods described before. Alternatively, the single-stranded DNAs may be amplified and then cleaved using one of those methods.
[0038] Any of the well known methods for amplifying nucleic acid sequences may be used for such amplification. Methods that maximize, and do not bias, diversity are preferred. In a preferred embodiment of this invention where the nucleic acid sequences are derived from antibody genes, the present invention preferably utilizes primers in the constant regions of the heavy and light chain genes and primers to a synthetic sequence that are attached at the 5′ end of the sense strand Priming at such synthetic sequence avoids the use of sequences within the variable regions of the antibody genes. Those variable region priming sites generate bias against V genes that are either of rare subclasses or that have been mutated at the priming sites. This bias is partly due to suppression of diversity within the primer region and partly due to lack of priming when many mutations are present in the region complementary to the primer. The methods disclosed in this invention have the advantage of not biasing the population of amplified antibody genes for particular V gene types.
[0039] The synthetic sequences may be attached to the 5′ end of the DNA strand by various methods well known for ligating DNA sequences together. RT CapExtention is one preferred method.
[0040] In RT CapExtention (derived from Smart PCR(TM), a short overlap (5′- . . . GGG-3′ in the upper-strand primer (USP-GGG) complements 3′-CCC . . . 5′ in the lower strand) and reverse transcriptases are used so that the reverse complement of the upper-strand primer is attached to the lower strand.
[0041] In a preferred embodiment of this invention, the upper strand or lower strand primer may be also biotinylated or labeled at the 5′ end with one of a) free amino group, b) thiol, c) carboxylic acid and d) another group not found in DNA that can react to form a strong bond to a known partner as an insoluble medium. These can then be used to immobilize the labeled strand after amplification. The immobilized DNA can be either single or double-stranded.
[0042]
FIG. 1 shows a schematic of the amplification of VH genes. FIG. 1, Panel A shows a primer specific to the poly-dT region of the 3′ UTR priming synthesis of the first, lower strand. Primers that bind in the constant region are also suitable. Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. Panel E shows immobilized double-stranded (ds) cDNA obtained by using a 5′-biotinylated top-strand primer.
[0043]
FIG. 2 shows a similar schematic for amplification of VL genes. FIG. 2, Panel A shows a primer specific to the constant region at or near the 3′ end priming synthesis of the first, lower strand. Primers that bind in the poly-dT region are also suitable. Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. The bottom-strand primer also contains a useful restriction endonuclease site, such as AscI. Panel E shows immobilized ds cDNA obtained by using a 5′-biotinylated top-strand primer.
[0044] In FIGS. 1 and 2, each V gene consists of a 5′ untranslated region (UTR) and a secretion signal, followed by the variable region, followed by a constant region, followed by a 3′ untranslated region (which typically ends in poly-A). An initial primer for reverse transcription may be complementary to the constant region or to the poly A segment of the 3′-UTR. For human heavy-chain genes, a primer of 15 T is preferred. Reverse transcriptases attach several C residues to the 3′ end of the newly synthesized DNA. RT CapExtention exploits this feature. The reverse transcription reaction is first run with only a lower-strand primer. After about 1 hour, a primer ending in GGG (USP-GGG) and more RTase are added. This causes the lower-strand cDNA to be extended by the reverse complement of the USP-GGG up to the final GGG. Using one primer identical to part of the attached synthetic sequence and a second primer complementary to a region of known sequence at the 3′ end of the sense strand, all the V genes are amplified irrespective of their V gene subclass.
[0045] After amplification, the DNAs of this invention are rendered single-stranded. For example, the strands can be separated by using a biotinylated primer, capturing the biotinylated product on streptavidin beads, denaturing the DNA, and washing away the complementary strand. Depending on which end of the captured DNA is wanted, one will choose to immobilize either the upper (sense) strand or the lower (antisense) strand.
[0046] To prepare the single-stranded amplified DNAs for cloning into genetic packages so as to effect display of the peptides, polypeptides or proteins encoded, at least in part, by those DNAS, they must be manipulated to provide ends suitable for cloning and expression. In particular, any 5′ untranslated regions and mammalian signal sequences must be removed and replaced, in frame, by a suitable signal sequence that functions in the display host. Additionally, parts of the variable domains (in antibody genes) may be removed and replaced by synthetic segments containing synthetic diversity. The diversity of other gene families may likewise be expanded with synthetic diversity.
[0047] According to the methods of this invention, there are two ways to manipulate the single-stranded amplified DNAs for cloning. The first method comprises the steps of:
[0048] (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
[0049] (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
[0050] the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
[0051] In this first method, short oligonucleotides are annealed to the single-stranded DNA so that restriction endonuclease recognition sites formed within the now locally double-stranded regions of the DNA can be cleaved. In particular, a recognition site that occurs at the same position in a substantial fraction of the single-stranded DNAs is identical.
[0052] For antibody genes, this can be done using a catalog of germline sequences. See, e.g., “http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html.” Updates can be obtained from this site under the heading “Amino acid and nucleotide sequence alignments.” For other families, similar comparisons exist and may be used to select appropriate regions for cleavage and to maintain diversity.
[0053] For example, Table 195 depicts the DNA sequences of the FR3 regions of the 51 known human VH germline genes. In this region, the genes contain restriction endonuclease recognition sites shown in Table 200. Restriction endonucleases that cleave a large fraction of germline genes at the same site are preferred over endonucleases that cut at a variety of sites. Furthermore, it is preferred that there be only one site for the restriction endonucleases within the region to which the short oligonucleotide binds on the single-stranded DNA, e.g., about 10 bases on either side of the restriction endonuclease recognition site.
[0054] An enzyme that cleaves downstream in FR3 is also more preferable because it captures fewer mutations in the framework. This may be advantageous is some cases. However, it is well known that framework mutations exist and confer and enhance antibody binding. The present invention, by choice of appropriate restriction site, allows all or part of FR3 diversity to be captured. Hence, the method also allows extensive diversity to be captured.
[0055] Finally, in the methods of this invention restriction endonucleases that are active between about 45° and about 75° C. are used. Preferably enzymes that are active above 50° C., and more preferably active about 55° C., are used. Such temperatures maintain the nucleic acid sequence to be cleaved in substantially single-stranded form.
[0056] Enzymes shown in Table 200 that cut many of the heavy chain FR3 germline genes at a single position include: MaeIII(24@4), Tsp45I(21@4), HphI(44@5), BsaJT(23@65), AluI(23@47), BlpI(21@48), DdeI(29@58), BglTI(10@61), MslI(44@72), BsiEI(23@74), EaeI(23@74), EagI(23@74), HaeIII(25@75), Bst4CI(51@86), HpyCH41II(51@86), HinfI(38@2), MlyI(18@2), PleI(18@2), MnlI(31@67), HpyCH4V(21@44), BsmAI(16@11), BpmI(19@12), XmnI(12@30), and SacI(11@51). (The notation used means, for example, that BsmAI cuts 16 of the FR3 germline genes with a restriction endonuclease recognition site beginning at base 11 of FR3.)
[0057] For cleavage of human heavy chains in FR3, the preferred restriction endonucleases are: Bst4CI (or TaaI or HpyCH41II), BlpI, HpyCH4V, and MslI. Because ACNGT (the restriction endonuclease recognition site for Bst4CI, TaaI, and HpyCH41II) is found at a consistent site in all the human FR3 germline genes, one of those enzymes is the most preferred for capture of heavy chain CDR3 diversity. BlpI and HpyCH4V are complementary. BlpI cuts most members of the VH1 and VH4 families while HpyCH4V cuts most members of the VH3, VH5, VH6, and VH7 families. Neither enzyme cuts VH2s, but this is a very small family, containing only three members. Thus, these enzymes may also be used in preferred embodiments of the methods of this invention.
[0058] The restriction endonucleases HpyCH4III, Bst4CI, and TaaI all recognize 5′-ACnGT-3′ and cut upper strand DNA after n and lower strand DNA before the base complementary to n. This is the most preferred restriction endonuclease recognition site for this method on human heavy chains because it is found in all germline genes. Furthermore, the restriction endonuclease recognition region (ACnGT) matches the second and third bases of a tyrosine codon (tay) and the following cysteine codon (tgy) as shown in Table 206. These codons are highly conserved, especially the cysteine in mature antibody genes.
[0059] Table 250 E shows the distinct oligonucleotides of length 22 (except the last one which is of length 20) bases. Table 255 C shows the analysis of 1617 actual heavy chain antibody genes. Of these, 1511 have the site and match one of the candidate oligonucleotides to within 4 mismatches. Eight oligonucleotides account for most of the matches and are given in Table 250 F.1. The 8 oligonucleotides are very similar so that it is likely that satisfactory cleavage will be achieved with only one oligonucleotide (such as H43.77.97.1-02#1) by adjusting temperature, pH, salinity, and the like. One or two oligonucleotides may likewise suffice whenever the germline gene sequences differ very little and especially if they differ very little close to the restriction endonuclease recognition region to be cleaved. Table 255 D shows a repeat analysis of 1617 actual heavy chain antibody genes using only the 8 chosen oligonucleotides. This shows that 1463 of the sequences match at least one of the oligonucleotides to within 4 mismatches and have the site as expected. Only 7 sequences have a second HpyCH4III restriction endonuclease recognition region in this region.
[0060] Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human heavy chains. Cleavage in FR1 allows capture of the entire CDR diversity of the heavy chain.
[0061] The germline genes for human heavy chain FR1 are shown in Table 217. Table 220 shows the restriction endonuclease recognition sites found in human germline genes FR1s. The preferred sites are BsgI(GTGCAG;39@4), BsoFI(GCngc;43@6,11@9,2@3,1@12), TseI (Gcwgc;43@6,11@9,2@3,1@12), MspA1I(CMGckg;46@7,2@1), PvuII(CAGctg;46@7,2@1), AluI(AGct;48@82@2), DdeI (Ctnag;22@52,9@48), HphI(tcacc;22@80), BssKI(Nccngg;35@39,2@40), BsaJI(Ccnngg;32@40,2@41), BstNI(CCwgg;33@40), ScrFI (CCngg;35@40,2@41), EcoO109I(RGgnccy;22@46, 11@43), Sau96I(Ggncc;23@47,11@44), AvaII(Ggwcc;23@47,4@44), PpuMI(RGgwccy;22@46,4@43), BsmFI(gtccc;20@48), HinfI(Gantc;34@16,21@56,21@77), TfiT(21@77), MlyI(GAGTC;34@16), MlyI(gactc;21@56), and AlwNI(CAGnnnctg;22@68). The more preferred sites are MspAI and PvuII. MspAI and PvuII have 46 sites at 7-12 and 2 at 1-6. To avoid cleavage at both sites, oligonucleotides are used that do not fully cover the site at 1-6. Thus, the DNA will not be cleaved at that site. We have shown that DNA that extends 3, 4, or 5 bases beyond a PvuII-site can be cleaved efficiently.
[0062] Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human kappa light chains. Table 300 shows the human kappa FR1 germline genes and Table 302 shows restriction endonuclease recognition sites that are found in a substantial number of human kappa FR1 germline genes at consistent locations. Of the restriction endonuclease recognition sites listed, BsmAI and PflFI are the most preferred enzymes. BsmAI sites are found at base 18 in 35 of 40 germline genes. PflFI sites are found in 35 of 40 germline genes at base 12.
[0063] Another example of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of the human lambda light chain. Table 400 shows the 31 known human lambda FR1 germline gene sequences. Table 405 shows restriction endonuclease recognition sites found in human lambda FR1 germline genes. HinfI and DdeI are the most preferred restriction endonucleases for cutting human lambda chains in FR1.
[0064] After the appropriate site or sites for cleavage are chosen, one or more short oligonucleotides are prepared so as to functionally complement, alone or in combination, the chosen recognition site. The oligonucleotides also include sequences that flank the recognition site in the majority of the amplified genes. This flanking region allows the sequence to anneal to the single-stranded DNA sufficiently to allow cleavage by the restriction endonuclease specific for the site chosen.
[0065] The actual length and sequence of the oligonucleotide depends on the recognition site and the conditions to be used for contacting and cleavage. The length must be sufficient so that the oligonucleotide is functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and solely at the desired location.
[0066] Typically, the oligonucleotides of this preferred method of the invention are about 17 to about 30 nucleotides in length. Below about 17 bases, annealing is too weak and above 30 bases there can be a loss of specificity. A preferred length is 18 to 24 bases.
[0067] Oligonucleotides of this length need not be identical complements of the germline genes. Rather, a few mismatches taken may be tolerated. Preferably, however, no more than 1-3 mismatches are allowed. Such mismatches do not adversely affect annealing of the oligonucleotide to the single-stranded DNA. Hence, the two DNAs are said to be functionally complementary.
[0068] The second method to manipulate the amplified single-stranded DNAs of this invention for cloning comprises the steps of:
[0069] (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and
[0070] (ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
[0071] the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
[0072] This second method employs Universal Restriction Endonucleases (“URE”). UREs are partially double-stranded oligonucleotides. The single-stranded portion or overlap of the URE consists of a DNA adapter that is functionally complementary to the sequence to be cleaved in the single-stranded DNA. The double-stranded portion consists of a type II-S restriction endonuclease recognition site.
[0073] The URE method of this invention is specific and precise and can tolerate some (e.g., 1-3) mismatches in the complementary regions, i.e., it is functionally complementary to that region. Further, conditions under which the URE is used can be adjusted so that most of the genes that are amplified can be cut, reducing bias in the library produced from those genes.
[0074] The sequence of the single-stranded DNA adapter or overlap portion of the URE typically consists of about 14-22 bases. However, longer or shorter adapters may be used. The size depends on the ability of the adapter to associate with its functional complement in the single-stranded DNA and the temperature used for contacting the URE and the single-stranded DNA at the temperature used for cleaving the DNA with the type II-S enzyme. The adapter must be functionally complementary to the single-stranded DNA ver a large enough region to allow the two strands to associate such that the cleavage may occur at the chosen temperature and at the desired location. We prefer singe-stranded or overlap portions of 14-17 bases in length, and more preferably 18-20 bases in length.
[0075] The site chosen for cleavage using the URE is preferably one that is substantially conserved in the family of amplified DNAs. As compared to the first cleavage method of this invention, these sites do not need to be endonuclease recognition sites. However, like the first method, the sites chosen can be synthetic rather than existing in the native DNA. Such sites may be chosen by references to the sequences of known antibodies or other families of genes. For example, the sequences of many germline genes are reported at http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html. For example, one preferred site occurs near the end of FR3—codon 89 through the second base of codon 93. CDR3 begins at codon 95.
[0076] The sequences of 79 human heavy-chain genes are also available at http://www.ncbi.nlm.nih.gov/entre2/nucleotide.html. This site can be used to identify appropriate sequences for URE cleavage according to the methods of this invention. See, e.g., Table 8B.
[0077] Most preferably, one or more sequences are identified using these sites or other available sequence information. These sequences together are present in a substantial fraction of the amplified DNAs. For example, multiple sequences could be used to allow for known diversity in germline genes or for frequent somatic mutations. Synthetic degenerate sequences could also be used. Preferably, a sequence(s) that occurs in at least 65% of genes examined with no more than 2-3 mismatches is chosen
[0078] URE single-stranded adapters or overlaps are then made to be complementary to the chosen regions. Conditions for using the UREs are determined empirically. These conditions should allow cleavage of DNA that contains the functionally complementary sequences with no more than 2 or 3 mismatches but that do not allow cleavage of DNA lacking such sequences.
[0079] As described above, the double-stranded portion of the URE includes a Type II-S endonuclease recognition site. Any Type II-S enzyme that is active at a temperature necessary to maintain the single-stranded DNA substantially in that form and to allow the single-stranded DNA adapter portion of the URE to anneal long enough to the single-stranded DNA to permit cleavage at the desired site may be used.
[0080] The preferred Type II-S enzymes for use in the URE methods of this invention provide asymmetrical cleavage of the single-stranded DNA. Among these are the enzymes listed in Table 800. The most preferred Type II-S enzyme is FokI.
[0081] When the preferred Fok I containing URE is used, several conditions are preferably used to effect cleavage:
[0082] 1) Excess of the URE over target DNA should be present to activate the enzyme. URE present only in equimolar amounts to the target DNA would yield poor cleavage of ssDNA because the amount of active enzyme available would be limiting.
[0083] 2) An activator may be used to activate part of the FokI enzyme to dimerize without causing cleavage. Examples of appropriate activators are shown in Table 510.
[0084] 3) The cleavage reaction is performed at a temperature between 45°-75° C., preferably above 50° C. and most preferably above 55° C.
[0085] The UREs used in the prior art contained a 14-base single-stranded segment, a 10-base stem (containing a FokI site), followed by the palindrome of the 10-base stem. While such UREs may be used in the methods of this invention, the preferred UREs of this invention also include a segment of three to eight bases (a loop) between the FokI restriction endonuclease recognition site containing segments. In the preferred embodiment, the stem (containing the FokI site) and its palindrome are also longer than 10 bases. Preferably, they are 10-14 bases in length. Examples of these “lollipop” URE adapters are shown in Table 5.
[0086] One example of using a URE to cleave an single-stranded DNA involves the FR3 region of human heavy chain. Table 508 shows an analysis of 840 full-length mature human heavy chains with the URE recognition sequences shown. The vast majority (718/840=0.85) will be recognized with 2 or fewer mismatches using five UREs (VHS881-1.1, VHS881-1.2, VHS881-2.1, VHS881-4.1, and VHS881-9.1). Each has a 20-base adaptor sequence to complement the germline gene, a ten-base stem segment containing a FokI site, a five base loop, and the reverse complement of the first stem segment. Annealing those adapters, alone or in combination, to single-stranded antisense heavy chain DNA and treating with FokI in the presence of, e.g., the activator FOKIact, will lead to cleavage of the antisense strand at the position indicated.
[0087] Another example of using a URE(s) to cleave a single-stranded DNA involves the FR1 region of the human Kappa light chains. Table 512 shows an analysis of 182 full-length human kappa chains for matching by the four 19-base probe sequences shown. Ninety-six percent of the sequences match one of the probes with 2 or fewer mismatches. The URE adapters shown in Table 512 are for cleavage of the sense strand of kappa chains. Thus, the adaptor sequences are the reverse complement of the germline gene sequences. The URE consists of a ten-base stem, a five base loop, the reverse complement of the stem and the complementation sequence. The loop shown here is TTGTT, but other sequences could be used. Its function is to interrupt the palindrome of the stems so that formation of a lollypop monomer is favored over dimerization. Table 512 also shows where the sense strand is cleaved.
[0088] Another example of using a URE to cleave a single-stranded DNA involves the human lambda light chain. Table 515 shows analysis of 128 human lambda light chains for matching the four 19-base probes shown. With three or fewer mismatches, 88 of 128 (69%) of the chains match one of the probes. Table 515 also shows URE adapters corresponding to these probes. Annealing these adapters to upper-strand ssDNA of lambda chains and treatment with FokI in the presence of FOKIact at a temperature at or above 45° C. will lead to specific and precise cleavage of the chains.
[0089] The conditions under which the short oligonucleotide sequences of the first method and the UREs of the second method are contacted with the single-stranded DNAs may be empirically determined. The conditions must be such that the single-stranded DNA remains in substantially single-stranded form. More particularly, the conditions must be such that the single-stranded DNA does not form loops that may interfere with its association with the oligonucleotide sequence or the URE or that may themselves provide sites for cleavage by the chosen restriction endonuclease.
[0090] The effectiveness and specificity of short oligonucleotides (first method) and UREs (second method) can be adjusted by controlling the concentrations of the URE adapters/oligonucleotides and substrate DNA, the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and formamide), the concentration of the restriction endonuclease(e.g., FokI), and the time of the digestion. These conditions can be optimized with synthetic oligonucleotides having: 1) target germline gene sequences, 2) mutated target gene sequences, or 3) somewhat related non-target sequences. The goal is to cleave most of the target sequences and minimal amounts of non-targets.
[0091] In the preferred embodiment of this invention, the single-stranded DNA is maintained in substantially that form using a temperature between 45° C. to 75° C. More preferably, a temperature between 50° C. and 60° C., most preferably between 55° C. and 60° C., is used. These temperatures are employed both when contacting the DNA with the oligonucleotide or URE and when cleaving the DNA using the methods of this invention.
[0092] The two cleavage methods of this invention have several advantages. The first method allows the individual members of the family of single-stranded DNAs to be cleaved solely at one substantially conserved endonuclease recognition site. The method also does not require an endonuclease recognition site to be built in to the reverse transcription or amplification primers. Any native or synthetic site in the family can be used.
[0093] The second method has both of these advantages. In addition, the URE method allows the single-stranded DNAs to be cleaved at positions where no endonuclease recognition site naturally occurs or has been synthetically constructed.
[0094] Most importantly, both cleavage methods permit the use of 5′ and 3′ primers so as to maximize diversity and then cleavage to remove unwanted or deleterious sequences before cloning and display.
[0095] After cleavage of the amplified DNAs using one of the methods of this invention, the DNA is prepared for cloning. This is done by using a partially duplexed synthetic DNA adapter, whose terminal sequence is based on the specific cleavage site at which the amplified DNA has been cleaved.
[0096] The synthetic DNA is designed such that when it is ligated to the cleaved single-stranded DNA, it allows that DNA to be expressed in the correct reading frame so as to display the desired peptide, polypeptide or protein on the surface of the genetic package. Preferably, the double-stranded portion of the adapter comprises the sequence of several codons that encode the amino acid sequence characteristic of the family of peptides, polypeptides or proteins up to the cleavage site. For human heavy chains, the amino acids of the 3-23 framework are preferably used to provide the sequences required for expression of the cleaved DNA.
[0097] Preferably, the double-stranded portion of the adapter is about 12 to 100 bases in length. More preferably, about 20 to 100 bases are used. The double-standard region of the adapter also preferably contains at least one endonuclease recognition site useful for cloning the DNA into a suitable display vector (or a recipient vector used to archive the diversity). This endonuclease restriction site may be native to the germline gene sequences used to extend the DNA sequence. It may be also constructed using degenerate sequences to the native germline gene sequences. Or, it may be wholly synthetic.
[0098] The single-stranded portion of the adapter is complementary to the region of the cleavage in the single-stranded DNA. The overlap can be from about 2 bases up to about 15 bases. The longer the overlap, the more efficient the ligation is likely to be. A preferred length for the overlap is 7 to 10. This allows some mismatches in the region so that diversity in this region may be captured.
[0099] The single-stranded region or overlap of the partially duplexed adapter is advantageous because it allows DNA cleaved at the chosen site, but not other fragments to be captured. Such fragments would contaminate the library with genes encoding sequences that will not fold into proper antibodies and are likely to be non-specifically sticky.
[0100] One illustration of the use of a partially duplexed adaptor in the methods of this invention involves ligating such adaptor to a human FR3 region that has been cleaved, as described above, at 5′-ACnGT-3′ using HpyCH4III, Bst4CI or TaaI.
[0101] Table 250 F.2 shows the bottom strand of the double-stranded portion of the adaptor for ligation to the cleaved bottom-strand DNA. Since the HpyCH4III-Site is so far to the right (as shown in Table 206), a sequence that includes the AflII-site as well as the XbaI site can be added. This bottom strand portion of the partially-duplexed adaptor, H43.XAExt, incorporates both XbaI and AflII-sites. The top strand of the double-stranded portion of the adaptor has neither site (due to planned mismatches in the segments opposite the XbaI and AflII-Sites of H43.XAExt), but will anneal very tightly to H43.XAExt. H43AExt contains only the AflII-site and is to be used with the top strands H43.ABr1 and H43.ABr2 (which have intentional alterations to destroy the AflII-site).
[0102] After ligation, the desired, captured DNA can be PCR amplified again, if desired, using in the preferred embodiment a primer to the downstream constant region of the antibody gene and a primer to part of the double-standard region of the adapter. The primers may also carry restriction endonuclease sites for use in cloning the amplified DNA.
[0103] After ligation, and perhaps amplification, of the partially double-stranded adapter to the single-stranded amplified DNA, the composite DNA is cleaved at chosen 5′ and 3′ endonuclease recognition sites.
[0104] The cleavage sites useful for cloning depend on the phage or phagemid into which the cassette will be inserted and the available sites in the antibody genes. Table 1 provides restriction endonuclease data for 75 human light chains. Table 2 shows corresponding data for 79 human heavy chains in each Table, the endonucleases are ordered by increasing frequency of cutting. In these Tables, Nch is the number of chains cut by the enzyme and Ns is the number of sites (some chains have more than one site).
[0105] From this analysis, SfiI, NotI, AflII, ApaLI, and AscI are very suitable. SfiI and NotI are preferably used in pCES1 to insert the heavy-chain display segment. ApaLI and AscI are preferably used in pCES1 to insert the light-chain display segment.
[0106] BstEII-sites occur in 97% of germ-line JH genes. In rearranged V genes, only 54/79 (68%) of heavy-chain genes contain a BstEII-Site and 7/61 of these contain two sites. Thus, 47/79 (59%) contain a single BstEII-Site. An alternative to using BstEII is to cleave via UREs at the end of JH and ligate to a synthetic oligonucleotide that encodes part of CH1.
[0107] One example of preparing a family of DNA sequences using the methods of this invention involves capturing human CDR 3 diversity. As described above, mRNAs from various autoimmune patients is reverse transcribed into lower strand cDNA. After the top strand RNA is degraded, the lower strand is immobilized and a short oligonucleotide used to cleave the cDNA upstream of CDR3. A partially duplexed synthetic DNA adapter is then annealed to the DNA and the DNA is amplified using a primer to the adapter and a primer to the constant region (after FR4). The DNA is then cleaved using BstEII (in FR4) and a restriction endonuclease appropriate to the partially double-stranded adapter (e.g., Xba I and AflII (in FR3)). The DNA is then ligated into a synthetic VH skeleton such as 3-23.
[0108] One example of preparing a single-stranded DNA that was cleaved using the URE method involves the human Kappa chain. The cleavage site in the sense strand of this chain is depicted in Table 512. The oligonucleotide kapextURE is annealed to the oligonucleotides (kaBR01UR, kaBR02UR, kaBR03UR, and kaBR04UR) to form a partially duplex DNA. This DNA is then ligated to the cleaved soluble kappa chains. The ligation product is then amplified using primers kapextUREPCR and CKForeAsc (which inserts a AscI site after the end of C kappa). This product is then cleaved with ApaLI and AscI and ligated to similarly cut recipient vector.
[0109] Another example involves the cleavage illustrated in Table 515. After cleavage, an extender (ON_LamEx133) and four bridge oligonucleotides (ON_LamB1-133, ON_LamB2-133, ON_LamB3-133, and ON_LamB4-133) are annealed to form a partially duplex DNA. That DNA is ligated to the cleaved lambda-chain sense strands. After ligation, the DNA is amplified with ON_Lam133PCR and a forward primer specific to the lambda constant domain, such as CL2ForeAsc or CL7ForeAsc (Table 130).
[0110] In human heavy chains, one can cleave almost all genes in FR4 (downstream, i.e. toward the 3′ end of the sense strand, of CDR3) at a BstEII-Site that occurs at a constant position in a very large fraction of human heavy-chain V genes. One then needs a site in FR3, if only CDR3 diversity is to be captured, in FR2, if CDR2 and CDR3 diversity is wanted, or in FR1, if all the CDR diversity is wanted. These sites are preferably inserted as part of the partially double-stranded adaptor.
[0111] The preferred process of this invention is to provide recipient vectors having sites that allow cloning of either light or heavy chains. Such vectors are well known and widely used in the art. A preferred phage display vector in accordance with this invention is phage MALIA3. This displays in gene III. The sequence of the phage MALIA3 is shown in Table 120A (annotated) and Table 120B (condensed).
[0112] The DNA encoding the selected regions of the light or heavy chains can be transferred to the vectors using endonucleases that cut either light or heavy chains only very rarely. For example, light chains may be captured with ApaLI and AscI. Heavy-chain genes are preferably cloned into a recipient vector having SfiI, NcoI, XbaI, AflII, BstEII, ApaI, and NotI sites. The light chains are preferably moved into the library as ApaLI-AscI fragments. The heavy chains are preferably moved into the library as SfiI-NotI fragments.
[0113] Most preferably, the display is had on the surface of a derivative of M13 phage. The most preferred vector contains all the genes of M13, an antibiotic resistance gene, and the display cassette. The preferred vector is provided with restriction sites that allow introduction and excision of members of the diverse family of genes, as cassettes. The preferred vector is stable against rearrangement under the growth conditions used to amplify phage.
[0114] In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed in a phagemid vector (e.g., pCES1) that displays the peptide, polypeptide or protein on the III protein. Such vectors may also be used to store the diversity for subsequent display using other vectors or phage.
[0115] In another embodiment, the mode of display may be through a short linker to three possible anchor domains. One anchor domain being the final portion of M13 III (“IIIstump”), a second anchor being the full length III mature protein, and the third being the M13 VIII mature protein.
[0116] The IIIstump fragment contains enough of M13 III to assemble into phage but not the domains involved in mediating infectivity. Because the w.t. III and VIII proteins are present, the phage is unlikely to delete the antibody genes and phage that do delete these segments receive only a very small growth advantage. For each of the anchor domains, the DNA encodes the w.t. AA sequence, but differs from the w.t. DNA sequence to a very high extent. This will greatly reduce the potential for homologous recombination between the display anchor and the w.t. gene that is also present.
[0117] Most preferably, the present invention uses a complete phage carrying an antibiotic-resistance gene (such as an ampicillin-resistance gene) and the display cassette. Because the w.t. iii and viii genes are present, the w.t. proteins are also present. The display cassette is transcribed from a regulatable promoter (e.g., PLacZ) Use of a regulatable promoter allows control of the ratio of the fusion display gene to the corresponding w.t. coat protein. This ratio determines the average number of copies of the display fusion per phage (or phagemid) particle.
[0118] Another aspect of the invention is a method of displaying peptides, polypeptides or proteins (and particularly Fabs) on filamentous phage. In the most preferred embodiment this method displays FABs and comprises:
[0119] a) obtaining a cassette capturing a diversity of segments of DNA encoding the elements:
[0120] Preq::RBS1::SS1::VL::CL::stop::RBS2::SS2::VH::CH1::linker::anchor::stop::,
[0121] where Preq is a regulatable promoter, RBS1 is a first ribosome binding site, SS1 is a signal sequence operable in the host strain, VL is a member of a diverse set of light-chain variable regions, CL is a light-chain constant region, stop is one or more stop codons, RBS2 is a second ribosome binding site, SS2 is a second signal sequence operable in the host strain, VH is a member of a diverse set of heavy-chain variable regions, CH1 is an antibody heavy-chain first constant domain, linker is a sequence of amino acids of one to about 50 residues, anchor is a protein that will assemble into the filamentous phage particle and stop is a second example of one or more stop codons; and
[0122] b) positioning that cassette within the phage genome to maximize the viability of the phage and to minimize the potential for deletion of the cassette or parts thereof.
[0123] The DNA encoding the anchor protein in the above preferred cassette should be designed to encode the same (or a closely related) amino acid sequence as is found in one of the coat proteins of the phage, but with a distinct DNA sequence. This is to prevent unwanted homologous recombination with the w.t. gene. In addition, the cassette should be placed in the intergenic region. The positioning and orientation of the display cassette can influence the behavior of the phage.
[0124] In one embodiment of the invention, a transcription terminator may be placed after the second stop of the display cassette above (e.g., Trp). This will reduce interaction between the display cassette and other genes in the phage antibody display vector (PADV).
[0125] In another embodiment of the methods of this invention, the phage or phagemid can display proteins other than Fab, by replacing the Fab portions indicated above, with other protein genes.
[0126] Various hosts can be used for growth of the display phage or phagemids of this invention. Such hosts are well known in the art. In the preferred embodiment, where Fabs are being displayed, the preferred host should grow at 30° C. and be RecA− (to reduce unwanted genetic recombination) and EndA− (to make recovery of RF DNA easier). It is also preferred that the host strain be easily transformed by electroporation.
[0127] XL1-Blue MRF′ satisfies most of these preferences, but does not grow well at 30° C. XL1-Blue MRF′ does grow slowly at 38° C. and thus is an acceptable host. TG-1 is also an acceptable host although it is RecA+ and EndA+. XL1-Blue MRF′ is more preferred for the intermediate host used to accumulate diversity prior to final construction of the library.
[0128] After display, the libraries of this invention may be screened using well known and conventionally used techniques. The selected peptides, polypeptides or proteins may then be used to treat disease. Generally, the peptides, polypeptides or proteins for use in therapy or in pharmaceutical compositions are produced by isolating the DNA encoding the desired peptide, polypeptide or protein from the member of the library selected. That DNA is then used in conventional methods to produce the peptide, polypeptides or protein it encodes in appropriate host cells, preferably mammalian host cells, e.g., CHO cells. After isolation, the peptide, polypeptide or protein is used alone or with pharmaceutically acceptable compositions in therapy to treat disease.
Capturing Kappa Chains with BsmAI
[0129] A repertoire of human-kappa chain mRNAs was prepared by treating total or poly(A+) RNA isolated from a collection of patients having various autoimmune diseases with calf intestinal phosphatase to remove the 5′-phosphate from all molecules that have them, such as ribosomal RNA, fragmented mRNA, tRNA and genomic DNA. Full length mRNA (containing a protective 7-methyl cap structure) is unaffected. The RNA is then treated with tobacco acid pyrophosphatase to remove the cap structure from full length mRNAs leaving a 5′-monophosphate group.
[0130] Full length mRNA's were modified with an adaptor at the 5′ end and then reversed transcribed and amplified using the GeneRACE™ method and kit (Invitrogen). A 5′ biotinylated primer complementary to the adaptor and a 3′ primer complementary to a portion of the construct region were used.
[0131] Approximately 2 micrograms (ug) of human kappa-chain (Igkappa) gene RACE material with biotin attached to 5′-end of upper strand was immobilized on 200 microliters (μL) of Seradyn magnetic beads. The lower strand was removed by washing the DNA with 2 aliquots 200 μL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 200 μL of 10 mM Tris (pH 7.5) 100 mM NaCl. The short oligonucleotides shown in Table 525 were added in 40 fold molar excess in 100 μL of NEB buffer 2 (50 μM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol pH 7.9) to the dry beads. The mixture was incubated at 95° C. for 5 minutes then cooled down to 55° C. over 30 minutes. Excess oligonucleotide was washed away with 2 washes of NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol pH 7.9). Ten units of BsmAI (NEB) were added in NEB buffer 3 and incubated for 1 h at 55° C. The cleaved downstream DNA was collected and purified over a Qiagen PCR purification column (FIGS. 3 and 4).
[0132] A partially double-stranded adaptor was prepared using the oligonucleotide shown in Table 525. The adaptor was added to the single-stranded DNA in 100 fold molar excess along with 1000 units of T4 DNA ligase (NEB) and incubated overnight at 16° C. The excess oligonucleotide was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using the primers kapPCRt1 and kapfor shown in Table 525 for 10 cycles with the program shown in Table 530.
[0133] The soluble PCR product was run on a gel and showed a band of approximately 700 n, as expected (FIGS. 5 and 6). The DNA was cleaved with enzymes ApaLI and AscI, gel purified, and ligated to similarly cleaved vector pCES1. The presence of the correct size insert was checked by PCR in several clones as shown in FIG. 15.
[0134] Table 500 shows the DNA sequence of a kappa light chain captured by this procedure. Table 501 shows a second sequence captured by this procedure.
[0135] The closest bridge sequence was complementary to the sequence 5′-agccacc-3′, but the sequence captured reads 5′-Tgccacc-3′, showing that some mismatch in the overlapped region is tolerated.
Construction of Synthetic CDR1 and CDR2 Diversity in V-3-23 VH Framework
[0136] A synthetic Complementary Determinant Region (CDR) 1 and 2 diversity was constructed in the 3-23 VH framework in a two step process: first, a vector containing the 3-23 VH framework was constructed, and then, a synthetic CDR 1 and 2 was assembled and cloned into this vector.
[0137] For construction of the V3-23 framework, 8 oligos and two PCR primers (long oligonucleotides: TOPFRLA, BOTFR1B, BOTFR2, BOTFR3, F06, BOTFR4, ON-vgC1, and ON-vgC2 and primers: SFPRMET and BOTPCRPRIM, shown in Table 600) that overlap were designed based on the Genebank sequence of V323 VH. The design incorporated at least one useful restriction site in each framework region, as shown in Table 600. In Table 600, the segments that were synthesized are shown as bold, the overlapping regions are underscored, and the PCR priming regions at each end are underscored. A mixture of these 8 oligos was combined at a final concentration of 2.5 uM in a 20 ul Polymerase Chain Reaction (PCR) reaction. The PCR mixture contained 200 uM dNTPs, 2.5 mM MgCl2, 0.02U Pfu TurboT DNA Polymerase, 1U Qiagen HotStart Taq DNA Polymerase, and 1×Qiagen PCR buffer. The PCR program consisted of 10 cycles of 94° C. for 30s, 55° C. for 30s, and 72° C. for 30s. The assembled V3-23 DNA sequence was then amplified, using 2.5 ul of a 10-fold dilution from the initial PCR in 100 ul PCR reaction. The PCR reaction contained 200 uM dNTPs, 2.5 mM MgCl2, 0.02U Pfu Turbo™ DNA Polymerase, 1U Qiagen HotStart Taq DNA Polymerase, 1×Qiagen PCR Buffer and 2 outside primers (SFPRMET and BOTPCRPRIM) at a concentration of 1 uM. The PCR program consisted of 23 cycles at 94° C. for 30 s, 55° C. for 30 s, and 72° C. for 60 s. The V3-23 VH DNA sequence was digested and cloned into pCES1 (phagemid vector) using the SfiI and BstEII restriction endonuclease sites (All restriction enzymes mentioned herein were supplied by New England BioLabs, Beverly, Mass. and used as per manufacturer's instructions).
[0138] Stuffer sequences (shown in Table 610 and Table 620) were introduced into pCES1 to replace CDR1/CDR2 sequences (900 bases between BspEI and XbaI RE sites) and CDR3 sequences (358 bases between AflII and BstEII), prior to cloning the CDR1/CDR2 diversity. The new vector is pCES5 and its sequence is given in Table 620. Having stuffers in place of the CDRs avoids the risk that a parental sequence would be over-represented in the library. The CDR1-2 stuffer contains restriction sites for BglII, Bsu36I, BclI, XcmI, MluI, PvuII, HpaI, and HincII, the underscored sites being unique within the vector pCES5. The stuffer that replaces CDR3 contains the unique restriction endonuclease site RsrII. The stuffer sequences are fragments from the penicillase gene of E. coli.
[0139] For the construction of the CDR1 and CDR2 diversity, 4 overlapping oligonucleotides (ON-vgCl, ON_Br12, ON_CD2Xba, and ON-vgC2, shown in Table 600 and Table 630) encoding CDR1/2, plus flanking regions, were designed. A mix of these 4 oligos was combined at a final concentration of 2.5 uM in a 40 ul PCR reaction. Two of the 4 oligos contained variegated sequences positioned at the CDR1 and the CDR2. The PCR mixture contained 200 uM dNTPs, 2.5U Pwo DNA Polymerase (Roche), and 1×Pwo PCR buffer with 2 mM MgSO4. The PCR program consisted of 10 cycles at 94° C. for 30 s, 60° C. for 30 s, and 72° C. for 60 s. This assembled CDR1/2 DNA sequence was amplified, using 2.5 ul of the mixture in 100 ul PCR reaction. The PCR reaction contained 200 uM dNTPs, 2.5U Pwo DNA Polymerase, 1×Pwo PCR Buffer with 2 mM MgSO4 and 2 outside primers at a concentration of 1 uM. The PCR program consisted of 10 cycles at 94° C. for 30 s, 60° C. for 30 s, and 72° C. for 60 s. These variegated sequences were digested and cloned into the V3-23 framework in place of the CDR1/2 stuffer.
[0140] We obtained approximately 7×107 independent transformants. Into this diversity, we can clone CDR3 diversity either from donor populations or from synthetic DNA.
[0141] It will be understood that the foregoing is only illustrative of the principles of this invention and that various modifications can be made by those skilled in the art without departing from the scope of and sprit of the invention.
2TABLE 1
|
|
Cleavage of 75 human light chains.
Planned location
EnzymeRecognition*NchNsof site
|
AfeIAGCgct00
AflIICttaag00HC FR3
AgeIAccggt00
AscIGGcgcgcc00After LC
BglIIAgatct00
BsiWICgtacg00
BSpDIATcgat00
BssHIIGcgcgc00
BstBITTcgaa00
DraIIICACNNNgtg00
EagICggccg00
FseIGGCCGGcc00
FspITGCgca00
HpaIGTTaac00
MfeICaattg00HC FR1
MluIAcgcgt00
NcoICcatgg00Heavy chain signal
NheIGctagc00HC/anchor linker
NotIGCggccgc00In linker after HC
NruITCGcga00
PacITTAATtaa00
PmeIGTTTaaac00
PmlICACgtg00
PvuICGATcg00
SacIICCGCgg00
SalIGtcgac00
SfiIGGCCNNNNnggcc00Heavy Chain signal
SgfIGCGATcgc00
SnaBITACgta00
StuIAGGcct00
XbaITctaga00HC FR3
AatIIGACGTc11
AclIAAcgtt11
AsetATtaat11
BsmIGAATGCN11
BspEITccgga11HC FR1
BstXICCANNNNNntgg11HC FR2
DrdIGACNNNNnngtc11
HindIIIAagctt11
PciIAcatgt11
SapIgaagagc11
ScaIAGTact11
SexAIAccwggt11
SpeIActagt11
TliICtcgag11
XhoICtcgag11
BcgIcgannnnnntgc22
BlpIGCtnagc22
BssSICtcgtg22
BstAPIGCANNNNntgc22
EspIGCtnagc22
KasIGgcgcc22
PflMICCANNNNntgg22
XmnIGAANNnnttc22
ApaLIGtgcac33LC signal seq
NaeIGCCggc33
NgoMIGccggc33
PvuIICAGctg33
RsrIICGgwccg33
BsrBIGAGcgg44
BsrDIGCAATGNNn44
BstZl7IGTAtac44
EcoRIGaattc44
SphIGCATGc44
SspIAATatt44
AccIGTmkac55
BclITgatca55
BsmBINnnnnngagacg55
BsrGITgtaca55
DraITTTaaa66
NdeICAtatg66HC FR4
SwaIATTTaaat66
BamHI Ggatcc77
SacIGAGCTc77
BciVIGTATCCNNNNNN88
BsaBIGATNNnnatc88
NsiIATGCAt88
Bsp120IGggccc99CH1
ApaIGGGCCc99CH1
PsPOOMIGggccc99
BspHITcatga911
ECoRVGATatC99
AhdIGACNNNnngtc1111
BbsIGAAGAC1114
PsiITTAtaa1212
BsaIGGTCTCNnnnn1315
XmaICccggg1314
AvaICycgrg1416
BglIGCCNNNNnggc1417
AlwNICAGNNNctg1616
BspMIACCTGC1719
XcmICCANNNNNnnnntgg1726
BstEIIGgtnacc1922HC FR4
Sse8387ICCTGCAgg2020
AvrIICctagg2222
HincIIGTYrac2222
BsgIGTGCAG2729
MscITGGcca3034
BseRINNnnnnnnnnctcctc3235
Bsu36ICCtnagg3537
PstICTGCAg3540
EciInnnnnnnnntccgcc3840
PpuMIRGgwccy4150
StyICcwwgg4473
Eco0109IRGgnccy4670
Acc65IGgtacc5051
KpnIGGTACc5051
BpmIctccag5382
AvaIIGgwcc71124
|
*cleavage occurs in the top strand after the last upper-case base. For REs that cut palindromic sequences, the lower strand is cut at the symmetrical site.
[0142]
3
TABLE 2
|
|
|
Cleavage of 79 human heavy chains
|
Planned location
|
Enzyme
Recognition
Nch
Ns
of site
|
|
AfeI
AGCgct
0
0
|
AflII
Cttaag
0
0
HC FR3
|
AscI
GGcgcgcc
0
0
After LC
|
BsiWI
Cgtacg
0
0
|
BspDI
ATcgat
0
0
|
BssHII
Gcgcgc
0
0
|
FseI
GGCCGGcc
0
0
|
HpaI
GTTaac
0
0
|
NheI
Gctagc
0
0
HC Linker
|
NotI
GCggccgc
0
0
In linker, HC/
|
anchor
|
NruI
TCCcga
0
0
|
NsiI
ATGCAt
0
0
|
PacI
TTAATtaa
0
0
|
PciI
Acatgt
0
0
|
PmeI
GTTTaaac
0
0
|
PvuI
CGATcg
0
0
|
RsrII
CGgwccg
0
0
|
SapI
gaagagc
0
0
|
SfiI
GGCCNNNNnggcc
0
0
HC signal seq
|
SgfI
GCGATcgc
0
0
|
SwaI
ATTTaaat
0
0
|
AclI
AAcgtt
1
1
|
AgeI
Accggt
1
1
|
AseI
ATtaat
1
1
|
AvrII
Cctagg
1
1
|
BsmI
GAATGCN
1
1
|
BsrBI
GAGcgg
1
1
|
BsrDI
GCAATGNNn
1
1
|
DraI
TTTaaa
1
1
|
FspI
TGCgca
1
1
|
HindIII
Aagctt
1
1
|
MfeI
Caattg
1
1
HC FR1
|
NaeI
GCCggc
1
1
|
NgoMI
Gccggc
1
1
|
SpeI
Actagt
1
1
|
Acc65I
Ggtacc
2
2
|
BstBI
TTcgaa
2
2
|
KpnI
GGTACc
2
2
|
MluI
Acgcgt
2
2
|
NcoI
Ccatgg
2
2
In HC signal seq
|
NdeI
CAtatg
2
2
HC FR4
|
PmlI
CACgtg
2
2
|
XcmI
CCANNNNNnnnntgg
2
2
|
BcgI
cgannnnnntgc
3
3
|
BclI
Tgatca
3
3
|
BglI
GCCNNNNnggc
3
3
|
BsaBI
GATNNnnatc
3
3
|
BsrGI
Tgtaca
3
3
|
SnaBI
TACgta
3
3
|
Sse8387I
CCTGCAgg
3
3
|
ApaLI
Gtgcac
4
4
LC Signal/FR1
|
BspHI
Tcatga
4
4
|
BssSI
Ctcgtg
4
4
|
PsiI
TTAtaa
4
5
|
SphI
GCATGc
4
4
|
AhdI
GACNNNnngtc
5
5
|
BspEI
Tccgga
5
5
HC FR1
|
MscI
TGGcca
5
5
|
SacI
GAGCTc
5
5
|
ScaI
AGTact
5
5
|
SexAI
Accwggt
5
6
|
SspI
AATatt
5
5
|
TliI
Ctcgag
5
5
|
XhoI
Ctcgag
5
5
|
BbsI
GAAGAC
7
8
|
BstAPI
GCANNNNntgc
7
8
|
BstZl7I
GTAtac
7
7
|
EcoRV
GATatc
7
7
|
EcoRI
Gaattc
8
8
|
BlpI
GCtnagc
9
9
|
Bsu36I
CCtnagg
9
9
|
DraIII
CACNNNgtg
9
9
|
EspI
Gctriagc
9
9
|
StuI
AGGcct
9
13
|
XbaI
Tctaga
9
9
HC FR3
|
Bsp120I
Gggccc
10
11
CH1
|
ApaI
GGGCCC
10
11
CH1
|
PspOOMI
Gggccc
10
11
|
BciVI
GTATCCNNNNNN
11
11
|
SalI
Gtcgac
11
12
|
DrdI
GACNNNNnngtc
12
12
|
KasI
Ggcgcc
12
12
|
XmaI
Cccggg
12
14
|
BglII
Agatct
14
14
|
HincII
GTYrac
16
18
|
BamHI
Ggatcc
17
17
|
PflMI
CCANNNNntgg
17
18
|
BsmBI
Nnnnnngagacg
18
21
|
BstXI
CCANNNNNntgg
18
19
HC FR2
|
XmnI
GAANNnnttc
18
18
|
SacII
CCGCgg
19
19
|
PstI
CTGCAg
20
24
|
PvuII
CAGctg
20
22
|
AvaI
Cycgrg
21
24
|
EagI
Cggccg
21
22
|
AatII
GACGTc
22
22
|
BspMI
ACCTGC
27
33
|
AccI
GTmkac
30
43
|
StyI
Ccwwgg
36
49
|
AlwNI
CAGNNNctg
38
44
|
BsaI
GGTCTCNnnnn
38
44
|
PpuMI
RGgwccy
43
46
|
BsgI
GTGCAG 44
54
|
BseRI
NNnnnnnnnnctcctc
48
60
|
EciI
nnnnnnnnntccgcc
52
57
|
BstEII
Ggtnacc
54
61
HC Fr4, 47/79 have
|
one
|
EcoOl09I
RGgnccy
54
86
|
BpmI
ctccag
60
121
|
AvaII
Ggwcc
71
140
|
|
[0143]
4
TABLE 5
|
|
|
Use of FokI as “Universal Restriction Enzyme”
|
|
|
|
1
|
2
|
3
|
4
|
|
[0144]
5
TABLE 8
|
|
|
Matches to URE FR3 adapters in 79 human HC.
|
A. List of Heavy-chains genes sampled
|
|
AF008566
|
AF035043
|
AF103026
|
af103033
|
AF103061
|
AF103072
|
af103078
|
AF103099
|
AF103102
|
AF103103
|
AF103174
|
AF103186
|
af103187
|
AF103195
|
af103277
|
af103286
|
AF103309
|
af103343
|
AF103367
|
AF103368
|
AF103369
|
AF103370
|
af103371
|
AF103372
|
AF158381
|
E05213
|
E05886
|
E05887
|
HSA235661
|
HSA235664
|
HSA235660
|
HSA235659
|
HSA235678
|
HSA235677
|
HSA235676
|
HSA235675
|
HSA235674
|
HSA235673
|
HSA240559
|
HSCB201
|
HSIGGVHC
|
HSU44791
|
HSU44793
|
HSU82771
|
HSU82949
|
HSU82950
|
HSU82952
|
HSU82961
|
HSU86522
|
HSU86523
|
HSU92452
|
HSU94412
|
HSU94415
|
HSU94416
|
HSU94417
|
HSU94418
|
HSU96389
|
HSU96391
|
HSU96392
|
HSU96395
|
HSZ93849
|
HSZ93850
|
HSZ93851
|
HSZ93853
|
HSZ93855
|
HSZ93857
|
HSZ93860
|
HSZ93863
|
MCOMFRAA
|
MCOMFRVA
|
S82745
|
S32764
|
S83240
|
SABVH369
|
SADEIGVH
|
SAH2IGVH
|
SDA3IGVH
|
SIGVHTTD
|
SUK4IGVH
|
|
[0145]
6
TABLE 8 B
|
|
|
Testing all distinct GLGs from bases 89.1 to 93.2 of the heavy
|
variable domain
|
Id
Nb
0
1
2
3
4
SEQ ID NO:
|
|
1
38
15
11
10
0
2
Seq1
gtgtattactgtqc
25
|
|
2
19
7
6
4
2
0
Seq2
gtAtattactgtgc
26
|
|
3
1
0
0
1
0
0
Seq3
gtgtattactgtAA
27
|
|
4
7
1
5
1
0
0
Seq4
gtgtattactgtAc
28
|
|
5
0
0
0
0
0
0
Seq5
Ttgtattactgtgc
29
|
|
6
0
0
0
0
0
0
Seq6
TtgtatCactgtgc
30
|
|
7
3
1
0
1
1
0
Seq7
ACAtattactgtgc
31
|
|
8
2
0
2
0
0
0
Seq8
ACgtattactgtgc
32
|
|
9
9
2
2
4
1
0
Seq9
ATgtattactcTtQc
33
|
Group
26
26
21
4
2
|
Cumulative
26
52
73
77
79
|
|
[0146]
7
TABLE 8C
|
|
|
Most important URE recognition seqs in FR3 Heavy
|
|
|
1
VHSzy1
GTGtattactgtgc
(ON_SHC103)
(SEQ ID NO:25)
|
|
2
VHSzy2
GTAtattactgtgc
(ON_SHC323)
(SEQ ID NO:26)
|
|
3
VHSzy4
GTGtattactgtac
(ON_SHC349)
(SEQ ID NO:28)
|
|
4
VHSzy9
ATctattactgtgc
(ON_SHC5a)
(SEQ ID NO:33)
|
|
[0147]
8
TABLE 8D
|
|
|
testing 79 human HC V genes with four probes
|
Number of sequences . . . 79
|
Number of bases . . . 29143
|
|
Number of mismatches
|
Id
Best
0
1
2
3
4
5
|
|
1
39
15
11
10
1
2
0
Seq1
gtgtattactgtgc
(SEQ ID NO:25)
|
|
2
22
7
6
5
3
0
1
Seq2
gtAtattactgtgc
(SEQ ID NO:26)
|
|
3
7
1
5
1
0
0
0
Seq4
gtgtattactgtAc
(SEQ ID NO:28)
|
|
4
11
2
4
4
1
0
0
Seq9
ATgtattactgtgc
(SEQ ID NO:33)
|
Group
25
26
20
5
2
|
Cumulative
25
51
71
76
78
|
|
[0148] One sequence has five mismatches with sequences 2, 4, and 9; it is scored as best for 2.
[0149] Id is the number of the adapter.
[0150] Best is the number of sequence for which the identified adapter was the best available.
[0151] The rest of the table shows how well the sequences match the adapters. For example, there are 11 sequences that match VHSzy1(Id=1) with 2 mismatches and are worse for all other adapters. In this sample, 90% come within 2 bases of one of the four adapters.
9TABLE 130
|
|
PCR primers for amplification of human Ab genes
|
|
(HuIgMFOR) 5′-tgg aag agg cac gtt ctt ttc ttt-3′
|
!(HuIgMFOREtop)5′-aaa gaa aag aac gtg cct ctt cca-3′=reverse complement
|
(HuCkFOR) 5′-aca ctc tcc cct gtt gaa gct ctt-3′
|
(HuCL2FOR) 5′-tga aca ttc tgt agg ggc cac tg-3′
|
(HuCL7FOR) 5′-aga gca ttc tgc agg ggc cac tg-3′
|
! Kappa
|
(CKForeAsc) 5′-acc gcc tcc acc ggg cgc gcc tta tta aca ctc tcc cct gtt-
|
gaa gct ctt-3′
|
(CL2ForeAsc) 5′-acc gcc tcc acc ggg cgc gcc tta tta tga aca ttc tgt-
|
agg ggc cac
|
(CL7ForeAsc) 5′-acc gcc tcc acc ggg cgc gcc tta tta aga gca ttc tgc-
|
agg ggc cac tg-3′
|
[0152]
10
TABLE 195
|
|
|
Human GLG FR3 sequences
|
|
|
! VH1
|
|
! 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
|
agg gtc acc atg acc agg gac acg tcc atc agc aca gcc tac atg
|
|
81 82 82a 82b 82c 83 84 85 86 87 88 89 90 91 92
|
|
gag ctg agc agg ctg aga tct gac gac acg gcc gtg tat tac tgt
|
|
93 94 95
|
|
gcg aga ga ! 1-02# 1
|
|
aga gtc acc att acc agg gac aca tcc gcg agc aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gaa gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 1-03# 2
|
|
aga gtc acc atg acc agg aac acc tcc ata agc aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
|
|
gcg aga gg ! 1-08# 3
|
|
aga gtc acc atg acc aca gac aca tcc acg agc aca gcc tac atg
|
|
gag ctg agg agc ctg aga tct gac gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 1-18# 4
|
|
aga gtc acc atg acc gag gac aca tct aca gac aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
|
|
gca aca ga ! 1-24# 5
|
|
aga gtc acc att acc agg gac agg tct atg agc aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac aca gcc atg tat tac tgt
|
|
gca aga ta ! 1-45# 6
|
|
aga gtc acc atg acc agg gac acg tcc acg agc aca gtc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 1-46# 7
|
|
aga gtc acc att acc agg gac atg tcc aca agc aca gcc tac atg
|
|
gag ctg agc agc ctg aga tcc gag gac acg gcc gtg tat tac tgt
|
|
gcg gca ga ! 1-58# 8
|
|
aga gtc acg att acc gcg gac gaa tcc acg agc aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 1-69#9
|
|
aga gtc acg att acc gcg gac aaa tcc acg agc aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 1-3# 10
|
|
aga gtc acc ata acc gcg gac acg tct aca gac aca gcc tac atg
|
|
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
|
|
gca aca ga ! 1-f# 11
|
|
VH2
|
|
agg ctc acc atc acc aag gac acc tcc aaa aac cag gtg gtc ctt
|
|
aca atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt
|
|
gca cac aga c! 2-05# 12
|
|
agg ctc acc atc tcc aag gac acc tcc aaa agc cag gtg gtc ctt
|
|
acc atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt
|
|
gca cgg ata c! 2-05# 12
|
|
agg ctc acc atc tcc aag gac acc tcc aaa agc cag gtg gtc ctt
|
|
acc atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt
|
|
gca cgg ata c! 2-26# 13
|
|
agg ctc acc atc tcc aag gac acc tcc aaa aac cag gtg gtc ctt
|
|
aca atg acc aac atg gac cct gtg gac aca gcc acg tat tac tgt
|
|
gca cgg ata c! 2-70# 14
|
|
VH3
|
|
cga ttc aac atc tcc aga gac aac gcc aag aac tca ctg tat ctg
|
|
caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3-07# 15
|
|
cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg
|
|
caa atg aac agt ctg aga gct gag gac acg gcc ttg tat tac tgt
|
|
gca aaa gat 1! 3-09#16
|
|
cga ttc acc atc tcc agg gac aac gcc aag aac tca ctg tat ctg
|
|
caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 3-11# 17
|
|
cga ttc acc atc tcc aga gaa aat gcc aag aac tcc ttg tat ctt
|
|
caa atg aac agc ctg aga gcc ggg gac acg gct gtg tat tac tgt
|
|
gca aga ga ! 3-13# 18
|
|
aga ttc acc atc tca aga gat gat tca aaa aac acg ctg tat ctg
|
|
caa atg aac agc ctg aaa acc gag gac aca ggg gtg tat tac tgt
|
|
acc aca ga ! 3-15# 19
|
|
cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg
|
|
caa atg aac agt ctg aga gcc gag gac acg gcc ttg tat cac tgt
|
|
gcg aga ga ! 3-20# 20
|
|
cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg
|
|
caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3-21# 21
|
|
cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
|
|
caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt
|
|
gcg aaa ga ! 3-23# 22
|
|
cga ttc aac atc tcc aga gac aat tcc aag aac acg ctg tat ctg
|
|
caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
|
|
gcg aaa ga ! 3-30# 23
|
|
cga ttc aac atc tcc aga gac aat tcc aag aac acg ctg tat ctg
|
|
caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3303# 24
|
|
cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
|
|
caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3305# 25
|
|
cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
|
|
caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3-33# 26
|
|
cga ttc acc atc tcc aga gac aac agc aaa aac tcc ctg tat ctg
|
|
caa atg aac agt ctg aga act gag gac acc gcc ttg tat tac tgt
|
|
gca aaa gat a! 3-43#27
|
|
cga ttc acc atc tcc aga gac aat gcc aag aac tca ctg tat ctg
|
|
caa atg aac agc ctg aga gac gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3-48# 28
|
|
aga ttc acc atc tca aga gat ggt tcc aaa agc atc gcc tat ctg
|
|
caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt
|
|
act aga ga ! 3-49# 29
|
|
cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt
|
|
caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 3-53# 30
|
|
aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt
|
|
caa atg ggc agc ctg aga gct gag gac atg gct gtg tat tac tgt
|
|
gcg aga ga ! 3-64# 31
|
|
aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt
|
|
caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
|
|
gcg aga ga ! 3-66# 32
|
|
aga ttc acc atc tca aga gat gat tca aag aac tca ctg tat ctg
|
|
caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt
|
|
gct aga ga ! 3-72# 33
|
|
agg ttc acc atc tcc aga gat gat tca aag aac acg gcg tat ctg
|
|
caa atg aac agc ctg aaa acc gag gac acg gcc ctg tat tac tgt
|
|
act aga ca · 3-73# 34
|
|
cga ttc acc atc tcc aga gac aac gcc aag aac acg ctg tat ctg
|
|
caa atg aac agt ctg aga gcc gag gac acg gct gtg tat tac tgt
|
|
gca aga ga ! 3-74# 35
|
|
aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg cat ctt
|
|
caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
|
|
aag aaa ga ! 3-d#36
|
|
VH4
|
|
cga gtc acc ata tca gta gac aag tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tac tac tgt
|
|
gcg aga ga ! 4-04# 37
|
|
cga gtc acc atg tca gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gcc gtg gac acg gcc gtg tat tac tgt
|
|
gcg aga aa ! 4-28 # 38
|
|
cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg act gcc gcg gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 4301# 39
|
|
cga gtc acc ata tca gta gac agg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tat tac tgt
|
|
gcc aga ga ! 4302# 40
|
|
cga gtt acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg act gcc gca gac acg gcc gtg tat tac tgt
|
|
gcc aga ga ! 4304# 41
|
|
cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg act gcc gcg gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 4-31# 42
|
|
cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gcc gcg gac acg gct gtg tat tac tgt
|
|
gcg aga ga !4-34# 43
|
|
cga gtc acc ata tcc gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gcc gca gac acg gt gtg tat tac tgt
|
|
gcg aga ca ! 4-39#10 44
|
|
cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 4-59# 45
|
|
cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 4-61# 46
|
|
cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
|
|
aag ctg agc tct gtg acc gcc gca gac acg gcc gtg tat tac tgt
|
|
gcg aga ga ! 4-b# 47
|
|
! VH5
|
|
cag gtc acc atc tca gcc gac aag tcc atc agc acc gcc tac ctg
|
|
cag tgg agc agc ctg aag gcc tcg gac acc gcc atg tat tac tgt
|
|
gcg aga ca ! 5-51# 48
|
|
cac gtc acc atc tca gct gac aag tcc atc agc act gcc tac ctg
|
|
cag tgg agc agc ctg aag gcc tcg gac acc gcc atg tat tac tgt
|
|
gcg aga ! 5-a# 49
|
|
! VH6
|
|
cga ata acc atc aac cca gac aca tcc aag aac cag ttc tcc ctg
|
|
cag ctg aac tct gtg act ccc gag gac acg gct gtg tat tac tgt
|
|
gca aga ga ! 6-1# 50
|
|
! VH7
|
|
cgg ttt gtc ttc tcc ttg gac acc tct gtc agc acg gca tat ctg
|
|
cag atc tgc agc cta aag gct gag gac act gcc gtg tat tac tgt
|
|
gcg aga ga ! 71.1# 51
|
|
[0153]
11
TABLE 250
|
|
|
REdaptors, Extenders, and Bridges used for Cleavage and Capture of
|
Human Heavy Chains in FR3.
|
|
|
A: BpYCH4V Probes of actual human BC genes
|
!HpyCH4V in FR3 of human HC, bases35-56; only those with TGca site
|
TGca; 10,
|
RE recognition:tgca
of length 4 is expected at 10
|
|
1
6-1
agttctccctgcagctgaactc
|
2
3-11, 3-07, 3-21, 3-72, 3-48
cactgtatctgcaaatgaacag
|
3
3-09, 3-43, 3-20
ccctgtatctgcaaatgaacag
|
4
5-51
ccgcctacctgcagtggagcag
|
5
3-15, 3-30, 3-30.5, 2-30.3, 3-74, 3-23, 3-33
cgctgtatctgcaaatgaacag
|
6
7-4.1
cggcatatctgcagatctgcag
|
7
3-73
cggcgtatctgcaaatgaacag
|
8
5-a
ctgcctacctgcagtggagcag
|
9
3-49
tcgcctatctgcaaatgaacag
|
|
|
B: HpyCH4V REdaptors, Extenders, and Bridges
|
B.1 REdaptors
|
! Cutting HC lower strand:
|
! TmKeller for 100 mM NaCl, zero formamide
|
! Edapters for cleavage
Tm W
Tm K
|
|
(ON_HCFR36-1)
5′-agttctcccTGCAgctgaactc-3′
68.0
64.5
|
(ON_HCFR36-1A)
5′-ttctcccTGCAgctgaactc-3′
62.0
62.5
|
(ON_HCFR36-1B)
5′-ttctcccTGCAgctgaac-3′
56.0
59.9
|
(ON_HCFR33-15)
5′-cgctgtatcTGCAaatgaacag-3′
64.0
60.8
|
(ON_HCFR33-15A)
5′-ctgtatcTGCAaatgaacag-3′
56.0
56.3
|
(ON_HCFR33-15B)
5′-ctgtatcTGCAaatgaac-3′
50.0
53.1
|
(ON_HCER33-11)
5′-cactgtatcTcCAaatgaacag-3′
62.0
58.9
|
(ON_HCFR35-51)
5′-ccgcctaccTGCAgtggagcag-3′
74.0
70.1
|
|
|
!
|
B.2 Segment of synthetic 3-23 gene into which captured CDR3 is to be cloned
|
|
! XbaI...
|
!D323* cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC
|
! scab........ designed gene 3-23 gene.................
|
!
|
|
! HpyCH4V
|
! .. .. AflII...
|
! Ttg caG atg aac agc TtA agG . . .
|
! ............................ . . .
|
!
|
|
|
B.3 Extender and Bridges
|
!Extender (bottom strand):
|
!
|
(ON_HCHpyEx01) 5′-cAAgTAgAgAgTATTcTTAgAgTTgTcTcTAgAcTTAgTgAAgcg-3′
|
! ON
—
HCHpyEx01 is the reverse complement of
|
! 5′-cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC Ttg-3′
|
!
|
! Bridges (top strand, 9-base overlap):
|
|
!
|
(ON_HCHpyBr016-1) 5′-cgCttcacTaag tCT aga gac aaC tcT aag-
|
aaT acT ctC taC Ttg CAgctgaac-3′ {3′-term C is blocked}
|
|
!
|
! 3-15 et al. + 3-11
|
(ON_HCHpyBr023-15) 5′-cgCttcacTaag tcT aga gac aaC tcT aag-
|
aaT acT ctC taC Ttg CAaatgaac-3′ {3′-term C is blocked}
|
|
!
|
! 5-51
|
(ON_HCHpyBr045-51) 5′-cgCttcacTaag tcT aga gac aaC tcT aag-
|
aaT acT ctC taC Ttg CAgtggagc-3′ {3′-term C is blocked}
|
|
!
|
! PCR primer (top strand)
|
!
|
(ON_HCHpyPCR) 5′-cgCttcacTaag tcT aga gac-3′
|
!
|
|
|
C: BlpI Probes from human HC GLGs
|
1
1-58,1-03,1-08,1-69,1-24,1-45,1-46,1-f, 1−e
acatggaGCTGAGCagcctgag
|
2
1-02
acatggaGCTGAGCaagctgag
|
3
1-18
acatggagctgaggagcctgag
|
4
5-51,5-a
acctgcagtggagcagcctgaa
|
5
3-15,3-73,3-49,3-72
atctgcaaatgaacagcctgaa
|
6
3303,3-33,3-07,3-11,3-30,3-21,3-23,3305,3-48
atctgcaaatgaacagcctgag
|
7
3-20,3-74,3-09, 3-43
atctgcaaatgaacagtctgag
|
8
74.1
atctgcagatctgcagcctaaa
|
9
3-66, 3-13, 3-53, 3-d
atcttcaaatgaacagcctgag
|
10
3-64
atcttcaaatgggcagcctgag
|
11
4301,4-28,4302,4-04,4304,4-31,4-34,4-39,4-59,4-61,4-b
ccctgaaGCTGAGCtctgtgac
|
12
6-1
ccctgcagctgaactctgtgac
|
13
2-70,2-05
tccttacaatgaccaacatgga
|
14
2-26
tccttaccatgaccaacatgga
|
|
|
D: BlpI REdaptors, Extenders, and Bridges
|
D.1 REdaptors
|
Tm W
Tm K
|
|
(BlpF3HC1-58)
5′-ac atg gaG CTG AGC agc ctg ag-3′
70
66.4
|
(BlpF3HC6-1)
5′-cc ctg aag ctg agc tct gtg ac-3′
70
66.4
|
! BlpF3HC6-1
matches 4-30.1, not 6-1.
|
|
|
D.2 Segment of synthetic 3
-23 gene into which captured CDR3 is to be cloned
|
|
! BlpI
|
! XbaI... . ... ...
|
!D323* cgCttcacTaag TCT AGA gac aaC tcT aag aaT acT ctC taC Ttg caG atg aac
|
!
|
! AflII...
|
! agC TTA AGG
|
|
|
D.3 Extender and Bridges
|
! Bridges
|
(BlpF3Brl) 5′-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-
|
tac Ttg caG Ctg a|GC agc ctg-3′
|
(BlpF3Br2) 5′-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-
|
taC Ttg caG Ctg a|gc tct gtg-3′
|
| lower strand is cut here
|
!
|
! Extender
|
(BlpF3Ext) 5′-
|
TcAgcTgcAAgTAcAAAgTATTTTTAcTgTTATcTcTAgAcTgAgTgAAgcg-3′
|
! BlpF3Ext is the reverse complement of:
|
! 5′-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG taC Ttg caG Ctg a-3′
|
!
|
(BlpF3PCR) 5′-cgCttcacTcag tcT aga gaT aaC-3′
|
|
|
E: HpyCH4III
Distinct GLG sequences surrounding site, bases 77-98
|
1
102#1,118#4,146#7,169#9,1e#10,311#17,353#30,404#37,4301
ccgtgtattactgtgcgagaga
|
2
103#2, 307#15, 321#21, 3303#24,333#26,348#28, 364#31,366#32
ctgtgtattactgtgcgagaga
|
3
108#3
ccgtgtattactgtgcgagagg
|
4
124#5,1f#11
ccgtgtattactgtgcaacaga
|
5
145#6
ccatgtattactgtgcaagata
|
6
158#8
ccgtgtattactgtgcggcaga
|
7
205#12
ccacatattactgtgcacacag
|
8
226#13
ccacatattactgtgcacggat
|
9
270#14
ccacgtattactgtgcacggat
|
10
309#16,343#27
ccttgtattactgtgcaaaaga
|
11
313#18,374#35,61#50
ctgtgtattactgtgcaagaga
|
12
315#19
ccgtgtattactgtaccacaga
|
13
320#20
ccttgtatcactgtgcgagaga
|
14
323#22
ccgtatattactgtgcgaaaga
|
15
330#23,3305#25
ctgtgtattactgtgcgaaaga
|
16
349#29
ccgtgtattactgtactagaga
|
17
372#33
ccgtgtattactgtgctagaga
|
18
373#34
ccgtgtattactgtactagaca
|
19
3d#36
ctgtgtattactgtaagaaaga
|
20
428#38
ccgtgtattactgtgcgagaaa
|
21
4302#40,4304#41
ccgtgtattactgtgccagaga
|
22
439#44
ctgtgtattactgtgcgagaca
|
23
551#48
ccatgtattactgtgcgagaca
|
24
5a#49
ccatgtattactgtgcgaga
|
|
|
F: HpyCH4III REdaptors, Extenders, and Bridges
|
F.1 REdaptors
|
! ONs for cleavage of HC(lower) in FR3(bases 77-97)
|
! For cleavage with HpyCH4III, Bst4CI, or TaaI
|
! cleavage is in lower chain before base 88.
|
!
77 788 888 888 889 999 999 9
|
!
78 901 234 567 890 123 456 7
Tm W
Tm K
|
|
(H43.77.97.1-02#1)
5′-cc gtg tat tAC TGT gcg aga g-3′
64
62.6
|
(H43.77.97.1-03#2)
5′-ct gtg tat tAC TGT gcg aga g-3′
62
60.6
|
(H43.77.97.108#3)
5′-cc gtg tat tAC TGT gcg aga g-3′
64
62.6
|
(H43.77.97.323#22)
5′-cc gta tat tac tgt gcg aaa g-3′
60
58.7
|
(H43.77.97.330#23)
5′-ct gtg tat tac tgt gcg aaa g-3′
60
58.7
|
(H43.77.97.439#44)
5′-ct gtg tat tac tgt gcg aga c-3′
62
60.6
|
(H43.77.97.551#48)
5′-cc atg tat tac tgt gcg aga c-3′
62
60.6
|
(H43.77.97.5a#49)
5′-cc atg tat tAC TGT gcg aga 3′
58
58.3
|
|
|
F.2 Extender and Bridges
|
! XbaI and AflII Sites in bridges are bunged
|
(H43.XABr1) 5′-ggtgtagtga-
|
|TCT|AGt|gac|aac|tct|aag|aat|act|ctc|tac|55g|cag|atg|-
|
|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aga-3′
|
(H43.XABr2) 5′-ggtgtagtga-
|
|TCT|AGt|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3′
|
(H43.XAExt) 5′-ATAgTAgAcT gcAgTgTccT cAgcccTTAA gcTgTTcATc TgcAAgTAgA-
|
gAgTATTcTT AgAgTTgTcT cTAgATcAcT AcAcc-3′
|
!H43.XAExt is the reverse complement of
|
!5′-ggtgtagtga-
|
! |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
! |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat -3′
|
|
(H43.XAPcR) 5′-ggtgtagtga |TCT|AGA|gac|aac-3′
|
! XbaI and AflII sites in bridges are bunged
|
(H43.ABr1) 5′-ggtgtagtga-
|
|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aga-3′
|
(H43.ABr2) 5′-ggtgtagtga-
|
|aac|aagC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3′
|
(H43.AExt) 5′- ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTTcAcTAcAcc-3′
|
|
!(H43.AExt) is the reverse complement of 5′-ggtgtagtga-
|
′ |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat-3′
|
(H43.APCR) 5′-ggtgtagtga |aac|agC|TTA|AGg|gct|g-3′
|
|
[0154]
12
|
(FOKIact) 5′-cAcATccgTg TTgTT cAcggATgTg-3′
|
|
(VHEx881) 5′-AATAgTAgAc TgcAgTgTcc TcAgcccTTA AgcTgTTcAT cTgcAAgTAg-
|
AgAgTATTcT TAgAgTTgTc TcTAgAcTTA gTgAAgcg-3′
|
! note that VHEx881 is the reverse complement of the ON below
|
! [RC] 5′-cgCttcacTaag-
|
! Scab........
|
! Synthetic 3-23 as in Table 206
|
! |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
! XbaI...
|
! |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|t-3′
|
! AflII...
|
(VHBA881) 5′-cgCttcacTaag-
|
|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3′
|
(VHBB881) 5′-cgCttcacTaag-
|
|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
1 |aac|agC|TTA|AGg|gct|gag|gac|acT|GcA|Gtc|tac|tat|tgt Acg ag-3′
|
(VH881PCR) 5′-cgCttcacTaag|TCT|AGA|gac|aac-3′
|
[0155]
13
TABLE 600
|
|
|
V3-23 VH framework with variegated codons shown
|
!
|
!
///////// 17 18 19 20 21 22
|
!
////////// A Q P A M A
|
///////// 5′-ctg tct gaa cG GCC cag ccG GCC atg gcc
29
|
///////// 3′-gac aga ctt gc cgg gtc ggc cgg tac cgg
|
!
///////// Scab.........SfiI.............
|
!
/////////////////////////////////////// NgoMI...
|
!
///////////////////////////////////////// NcoI....
|
!
|
!
//////////////////////////// FR1(DP47/V3-23)---------------
|
!
//////////////////////////// 23 24 25 26 27 28 29 30
|
!
///////////////////////////// E V Q L L E S G
|
//////////////////////////// gaa|gtt|CAA|TTG|tta|gag|tct|ggt|
53
|
!
//////////////////////////// ctt|caa|gtt|aac|aat|ctc|aga|cca|
|
!
/////////////////////////////////// | MfeI |
|
!
|
!
--------------FR1
|
!
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
!
G G L V Q P C G S L R L S C A
|
|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|
cgt|ctt|tct|tgc|gct|
98
|
!
|ccg|cca|gaa|caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|
|
|
!
Sites to be varied---> *** *** ***
|
!
----FR1---------------->|...CDR1................|---FR2------
|
!
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
!
A S G F T F S S Y A M S W V R
|
|gct|TCC|GGA|ttc|act|ttc|
tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC|
143
|
!
|cga|agg|cct|aag|tga|aag
|aga|agc|atg|cga|tac|aga|acc|caa|gcg|
|
!
| BspEI | | BsiWI| |BstXI.
|
!
|
!
Sites to be varies---> *** *** ***
|
!
-------FR2--------------------------------->|...CDR2........
|
!
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
!
Q A P G K G L E W V S A I S G
|
|CAa|gct|ccT|GG
t|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|
188
|
!
|gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga
|cga|tag|aga|cca|
|
!
...BstXI |
|
!
|
!
*** ***
|
!
.....CDR2............................................|---FR3---
|
!
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
!
S G G S T Y Y A D S V K G R F
|
|tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc|
233
|
!
|aga|cca|ccg|tca|tga|atg|ata|cga|ctg|agg|caa|ttt|cca|gcg|aag|
|
!
|
!
--------FR3--------------------------------------------------
|
!
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
!
T I S R D N S K N T L Y L Q M
|
|act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
278
|
!
|tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|
|
!
| XbaI |
|
!
|
!
---FR3----------------------------------------------------->|
|
!
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
!
N S L R A E D T A V Y Y C A K
|
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|
323
|
!
|ttg|tcg|aat|tcc|cga|ctc|ctg|tga
|cgt|cag|atg|ata|acg|cga|ttt|
|
!
|AflII | | PstI |
|
!
|
!
.......CDR3.................|----FR4-------------------------
|
!
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
!
D Y E G T G Y A F D I W G Q G
|
|gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|c
aa|ggt|
368
|
!
|ctg|ata|ctt|cca|tga|cca|ata|cga|aag|ctg|tat|acc|cca|gtt|cca|
|
!
| NdeI |
|
!
|
!
--------------FR4---------->|
|
!
136 137 138 139 140 141 142
|
!
T N V T V S S
|
|act|atG|GTC|ACC|gtc|tct|agt-
389
|
!
|tga|tac|cag|tgg|cag|aga|tca
-
|
!
| BstEII |
|
!
|
!
/////////////// 143 144 145 146 147 148 149 150 151 152
|
!
//////////////// A S T K G P S V F P
|
/////////////// gcc tcc acc aaG GGC CCa tcg GTC TTC ccc-3′
419
|
!
/////////////// cgg agg tgg tta ccg ggt agc cag aag ggg-5′
|
!
////////////// /////////////// Bsp120I. BbsI...(2/2)
|
!
////////////// /////////////// ApaI....
|
!
|
(SFPRMET)
5′-ctg tct gaa cG GCC cag ccG-3′
|
(TOPFR1A)
5′-ctg tct gaa cG GCC cag ccG GCC atg gcc-
|
gaa|gtt|CAA|TTG|tta|gag|tct|ggt|-
|
|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta-3′
|
(BOTR1B)
3′-caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|-
|
|cga|agg|cct|aag|tga|aag
-5′ ! bottom strand
|
(BOTFR2)
3
′-acc|caa|gcg|-
|
|gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|-5′ ! bottom strand
|
(BOTFR3)
3
′- a|cga|ctg|agg|caa|ttt|cca|gcg|aag|-
|
|tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|-
|
|ttg|tcg|aat|tcc|cga|ctc|ctg|tga
-5′
|
(F06)
5′-gC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|-
|
|gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gac|ATA|TGg|ggt|c-3′
|
(BOTFR4)
3
′-cga|aag|ctg|tat|acc|cca|gtt|cca|-
|
|tga|tac|cag|tgg|cag|aga|tca-
|
cgg agg tgg ttc ccg ggt aga cag aag ggg-5′ ! bottom strand
|
(BOTPRCPRIM)
3′-gg ttc ccg ggt agc cag aag ggg-5′
|
!
|
!
CDR1 diversity
|
!
|
(ON-vgC1)
5′-|gct|TCC|GGA|tta|act|ttc|tct|<1>|TAC|<11>|atg|<1>|-
|
!
CDR1....................6859
|
|tgg|gtt|cgc|CAa|gct|ccT|GG-3′
|
!
|
!<1> stands for an equimolar mix of (ADEFGHIKLMNPQRSTVWY); no C
|
! (this is not a sequence)
|
!
CDR2 diversity
|
!
|
(ON-vgC2)
5′-ggt|ttg|gag|tgg|gtt|tct|<2>|atc|<2>|<3>|-
|
!
CDR2............
|
|tct|ggt|ggc|<1>|act|<1>|tat|gct|gac|tcc|gtt|aaa|gg-3′
|
!
CDR2................................................
|
|
!<1> is an equimolar mixture of {ADEFGHIKLMNPQRSTVWT}; no C
|
!<2> is an equimolar mixture of {YRWVGS}; no ACDEFHIKLMNPQT
|
!<3> is an equimolar mixture of {PS}; no ACDEFGHIKLMNQRTVWY
|
|
[0156]
14
TABLE 800
|
|
|
(new)
|
|
The following list of enzymes was taken from
|
http://rebase.neb.com/cgi-bin/asymmlist.
|
|
I have removed the enzymes that a) cut within the recognition, b)
|
cut on both sides of the recognition, or c) have fewer than 2
|
bases between recognition and closest cut site.
|
|
REBASE Enzymes
|
04/13/2001
|
|
Type II Restriction Enzymes with Asymmetric Recognition
|
Sequences:
|
Enzymes
Recognition Sequence
Isoschizomers
Suppliers
|
|
AarI
CACCTGCNNNN{circumflex over ( )}NNNN_
-
y
|
|
AceIII
CAGCTCNNNNNNN{circumflex over ( )}NNNN_
-
-
|
|
Bbr7I
GAAGACNNNNNNN{circumflex over ( )}NNNN_
-
-
|
|
BbvI
GCAGCNNNNNNNN{circumflex over ( )}NNNN_
y
|
|
BbvII
GAAGACNN{circumflex over ( )}NNNN_
|
|
Bce83I
CTTGAGNNNNNNNNNNNNNN_NN{circumflex over ( )}
-
-
|
|
BceAI
ACGGCNNNNNNNNNNNN{circumflex over ( )}NN_
-
y
|
|
BcefI
ACGGCNNNNNNNNNNNN{circumflex over ( )}N_
-
-
|
|
BciVI
GTATCCNNNNN_N{circumflex over ( )}
BfuI
y
|
|
BfiI
ACTGGGNNNN_N{circumflex over ( )}
BmrI
y
|
|
BinI
GGATCNNNN{circumflex over ( )}N_
|
|
BscAI
GCATCNNNN{circumflex over ( )}NN_
-
-
|
|
BseRI
GAGGAGNNNNNNNN_NN{circumflex over ( )}
-
y
|
|
BsmFI
GGGACNNNNNNNNNN{circumflex over ( )}NNNN_
BspLU11III
y
|
|
BspMI
ACCTGCNNNN{circumflex over ( )}NNNN_
Acc36I
y
|
|
EciI
GGCGGANNNNNNNNN_NN{circumflex over ( )}
-
y
|
|
Eco57I
CTGAAGNNNNNNNNNNNNNN_NN{circumflex over ( )}
BspKT5I
y
|
|
FauI
CCCGCNNNNNN_
BstFZ438I
y
|
|
FokI
GGATGNNNNNNNNN{circumflex over ( )}NNNN_
BstPZ418I
y
|
|
GsuI
CTGGAGNNNNNNNNNNNNNN_NN{circumflex over ( )}
-
y
|
|
HgaI
GACGCNNNNN{circumflex over ( )}NNNNN_
-
y
|
|
HphI
GGTGANNNNNNN_N{circumflex over ( )}
AsuHPI
y
|
|
MboII
GAAGANNNNNNN_N{circumflex over ( )}
-
y
|
|
MlyI
GAGTCNNNNN{circumflex over ( )}
SchI
y
|
|
MmeI
TCCRACNNNNNNNNNNNNNNNNNN_NN{circumflex over ( )}
-
-
|
|
MnlI
CCTCNNNNNN_N{circumflex over ( )}
-
y
|
|
PleI
GAGTCNNNN{circumflex over ( )}N_
PpsI
y
|
|
RleAI
CCCACANNNNNNNNN_NNN{circumflex over ( )}
-
-
|
|
SfaNI
GCATCNNNNN{circumflex over ( )}NNNN_
BspST5I
y
|
|
SspD5I
GGTGANNNNNNNN{circumflex over ( )}
-
-
|
|
Sth132I
CCCGNNNN{circumflex over ( )}NNNN_
-
-
|
|
StsI
GGATGNNNNNNNNNN{circumflex over ( )}NNNN
-
-
|
|
TaqII
GACCGANNNNNNNNN_NN{circumflex over ( )}, CACCCANNNNNNNNN_NN{circumflex over ( )}
-
-
|
|
Tth111II
CAARCANNNNNNNNN_NN{circumflex over ( )}
-
-
|
|
UbaPI
CGAACG
-
-
|
|
[0157] The notation is {circumflex over ( )} means cut the upper strand and _ means cut the lower strand. If the upper and lower strand are cut at the same place, then only {circumflex over ( )} appears.
15TABLE 120
|
|
MALIA3, annotated
! MALIA3 9532 bases
!--------------------------------------------------------------------
1aat gct act act att agt aga att gat gcc acc ttt tca gct cgc gcc
!gene ii continued
49cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta
97tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca act
145gtt aca tgg aat gaa act tcc aga cac cgt act tta gtt gca tat tta
193aaa cat gtt gag cta cag cac cag att cag caa tta agc tct aag cca
241tcc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc tct
289aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa gct
337cga att aaa acg cga tat ttg aag tct ttc ggg ctt cct ctt aat ctt
385ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa gac
433ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa gca
481ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg gac
! RBS?...... Start gene x, ii continues
529gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct
577ttt gca aaa gcc tct cgc tat ttt ggt ttt tat cgt cgt ctg gta aac
625gag ggt tat gat agt gtt gct ctt act atg cct cgt aat tcc ttt tgg
673cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg
721atg aat ctt tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt att
769aac gta gat ttt tct tcc caa cgt cct gac tgg tat aat gag cca gtt
817ctt aaa atc gca TAA
! End X & II
832ggtaattca ca
!
! M1 E5 Q10 T15
843ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act cgt
!Start gene V
!S17 S20 P25 E30
891tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aat gag cag ctt
!
! V35 E40 V45
939tgt tac gtt gat ttg ggt aat gaa tat ccg gtt ctt gtc aag att act
!
! D50 A55 L60
987ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt cat
! BsrGI...
|
!L65 V70 S75 R80
1035ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt
!
! P85 K87 end of V
1083ctg cgc ctc gtt ccg gct aag TAA C
!
1108ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg
!Start gene VII
!
1150ata caa atc tcc gtt gta ctt tgt ttc gcg att ggt ata atc
!
! VII and IX overlap.
! ..... S2 V3 L4 V5 S10
1192gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttc gcc tct ttc gtt
! End VII
! |start IX
!L13 W15 G20 T25 E29
1242tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta atg gaa
!
1293act tcc tc
!
! .... stop of IX, IX and VIII overlap by four bases
1301ATG aaa aag tct tta gtc ctc aaa gcc tct gta gcc gtt gct acc ctc
!Start signal sequence of viii.
!
1349gtt ccg atg ctg tct ttc gct gct gag ggt gac gat ccc gca aaa gcg
! mature VIII --->
1397gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg
1445tgg gcg atg gtt gtt gtc att
1466gtc ggc gca act atc ggt atc aag ctg ttt aag
1499aaa ttc acc tcg aaa gca ! 1515
! ........... -35 ..
!
1517 agc tga taaaccgat acaattaaag gctccttttg
! ..... -10 ...
1552gagccttttt ttttGGAGAt ttt ? S.D. underlined
!
! <------ III signal sequence -------------------------->
! M K K L L F A I P L V
1575caac GTG aaa aaa tta tta ttc gca att cct tta gtt ! 1611
!
! V P F Y S H S A Q
1612gtt cct ttc tat tct cac aGT gcA Cag tCT
! ApaLI...
!
1642GTC GTG ACG CAG CCG CCC TCA GTG TCT GGG GCC CCA GGG GAG
AGG GTC ACC ATC TCC TGC ACT GGG AGC AGC TCC AAC ATC GGG GCA
! BstEII...
1729GGT TAT GAT GTA CAC TGG TAC CAG CAG CTT CCA GGA ACA GCC CCC AAA
1777CTC CTC ATC TAT GGT AAC AGC AAT CGG CCC TCA GGG GTC CCT GAC CGA
1825TTC TCT GGC TCC AAG TCT GGC ACC TCA GCC TCC CTG GCC ATC ACT
1870GGG CTC CAG GCT GAG GAT GAG GCT GAT TAT
1900TAG TGC CAG TCC TAT GAC AGC AGC CTG AGT
1930GGC CTT TAT GTC TTC GGA ACT GGG ACC AAG GTC ACC GTC
! BstEII...
1969CTA GGT CAG CCC AAG GCC AAC CCC ACT GTC ACT
2002CTG TTC CCG CCC TCC TCT GAG GAG CTC CAA GCC AAC AAG GCC ACA CTA
2050GTG TGT CTG ATC AGT GAC TTC TAC CCG GGA GCT GTG ACA GTG GCC TGG
2098AAG GCA GAT AGC AGC CCC GTC AAG GCG GGA GTG GAG ACC ACC ACA CCC
2146TCC AAA CAA AGC AAC AAC AAG TAC GCG GCC AGC AGC TAT CTG AGC CTG
2194ACG CCT GAG CAG TGG AAG TCC CAC AGA AGC TAC AGC TGC CAG GTC ACG
2242CAT GAA GGG AGC ACC GTG GAG AAG ACA GTG GCC CCT ACA GAA TGT TCA
2290TAA TAA ACCG CCTCCACCGG GCGCGCCAAT TCTATTTCAA GGAGACAGTG ATA
! AscI.....
!
!PelB signal---------------------------------------------->
! M K Y L L P T A A A C L L L L
2343ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC
!
! 16 17 18 19 20 21 22
! A A Q P A M A
2388gcG GCC cag ccG GCC atg gcc
! SfiI.............
! NgoMI...(1/2)
! NcoI.........
!
! FR1 (DP47/V3-23)--------------
! 23 24 25 26 27 28 29 30
! E V Q L L E S G
2409 gaa|gtt|CAA|TTG|tta|gag|tct|ggt|
! |MfeI |
!
!--------------FR1--------------------------------------------
! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
! G G L V Q P G G S L R L S C A
2433|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|
!
!----FR1---------------->|...CDR1................|---FR2------
! 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
A S G F T F S S Y A M S W V R
2478|gct|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC|
! |BspEI | |BsiWI| |BstXI
!
! -------FR2-------------------------------->|...CDR2.........
! 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
! Q A P G K G L E W V S A I S G
2523 |CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|
!...BstXI |
!
!.....CDR2............................................|---FR3---
! 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
! S C C S T Y Y A D S V K G R F
!2568 |tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc|
!
!
!--------FR3--------------------------------------------------
! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
! T I S R D N S K N T L Y L Q M
2613|act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
! |XbaI |
!
!---FR3----------------------------------------------------->|
! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
! N S L R A E D T A V Y Y C A K
2658|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|
! |AflII | |PstI |
!
!.......CDR3.................|----FR4-------------------------
! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
! D Y E G T G Y A F D I W G Q G
2703|gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt|
! |NdeI |(1/4)
!
!--------------FR4---------->|
! 136 137 138 139 140 141 142
! T M V T V S S
2748|act|atG|GTC|ACC|gtc|tct|agt
! |BstEII |
!From BstEII onwards, pV323 is same as pCES1, except as noted.
!BstEII sites may occur in light chains; not likely to be unique in final
!vector.
!
! 143 144 145 146 147 148 149 150 151 152
! A S T K G P S V F P
2769 gcc tcc acc aaG GGC CCa tcg GTC TTC ccc
! Bsp120I. BbsI...(2/2)
! ApaI....
!
!153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
! L A P S S K S T S G G T A A L
2799ctg gca ccC TCC TCc aag agc acc tct ggg ggc aca gcg gcc ctg
! BseRI...(2/2)
!
!168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
! G C L V K D Y F P E P V T V S
2844ggc tgc ctg GTC AAG GAC TAC TTC CCc gaA CCG GTg acg gtg tcg
! AgeI....
!
!183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
! W N S G A L T S G V H T F P A
2889tgg aac tca GGC GCC ctg acc agc ggc gtc cac acc ttc ccg gct
! KasI...(1/4)
!
!198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
! V L Q S S G L Y S I S S V V T
2934gtc cta cag tCt agc GGa ctc tac tcc ctc agc agc gta gtg acc
! (Bsu36I...)(knocked out)
!
!213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
! V P S S S L G T Q T Y I C N V
2979gtg ccC tCt tct agc tTG Ggc acc cag acc tac atc tgc aac gtg
! (BstXI...........)N.B. destruction of BstXI & BpmI sites.
!
!228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
! N H K P S N T K V D K K V E P
3024aat cac aag ccc agc aac acc aag gtg gac aag aaa gtt gag ccc
!
!243 244 245
! K S C A A A H H H H H H S A
3069aaa tct tgt GCG GCC GCt cat cac cac cat cat cac tct gct
! NotI......
!
! E Q K L I S E E D L N G A A
3111gaa caa aaa ctc atc tca gaa gag gat ctg aat ggt gcc gca
!
!
! D I N D D R M A S G A
3153GAT ATC aac gat gat cgt atg gct AGC ggc gcc
!rEK cleavage site.......... NheI... KasI...
!EcoRV..
!
!Domain1 ---------------------------------------------------------
! A E T V E S C L A
!3183 gct gaa act gtt gaa agt tgt tta gca
!
!
! K P H T E I S F
3210aaa ccc cat aca gaa aat tca ttt
!
! T N V W K D D K T
3234aCT AAC GTC TGG AAA GAC GAC AAA ACt
!
! L D R Y A N Y E G C L W N A T G V
3261tta gat cgt tac gct aac tat gag ggt tgt ctg tgG AAT GCt aca ggc gtt
! BsmI
!
! V V C T G D E T Q C Y G T W V P I
3312gta gtt tgt act ggt GAC GAA ACT GAG TGT TAC GGT ACA TGG GTT cct att
!
! G L A I P E N
3363ggg ctt gct atc cct gaa aat
!
!L1 linker-------------------------------------
! E G G G S E G G G S
3384gag ggt ggt ggc tct gag ggt ggc ggt tct
!
! E G G G S E G G G T
3414gag ggt ggc ggt tct gag ggt ggc ggt act
!
!Domain2 ---------------------------------------
3444aaa cct cct gag tac ggt gat aca cct att ccg ggc tat act tat atc aac
3495cct ctc gac ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct
3546aat cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag aat
! BseRI
3597aat agg ttc cga aat agg cag ggg gca tta act gtt tat acg ggc act
3645gtt act caa ggc act gac ccc gtt aaa act tat tac cag tac act cct
3693gta tca tca aaa gcc atg tat gac gct tac tgg aac ggt aaa ttC AGA
! AlwNI
3741GAC TGc gct ttc cat tct ggc ttt aat gaa gat cca ttc gtt tgt gaa
! AlwNI
3789tat caa ggc caa tcg tct gac ctg cct caa cct cct gtc aat gct
!
3834ggc ggc ggc tct
!startL2 --------------------------------------------------------------
3846ggt ggt ggt tct
3858ggt ggc ggc tct
3870gag ggt ggt ggc tct gag ggt ggc ggt tct
3900gag ggt ggc ggc tct gag gga ggc ggt tcc
3930ggt ggt ggc tct ggt ! end L2
!
!Domain3 ---------------------------------------------------------------
! S G D F D Y E K M A N A N K G A
3945tcc ggt gat ttt gat tat gaa aag atg gca aac gct aat aag ggg gct
!
! M T E N A D E N A L Q S D A K G
3993atg acc gaa aat gcc gat gaa aac gag cta cag tct gac gct aaa ggc
!
! K L D S V A T D Y G A A I D G F
4041aaa ctt gat tct gtc gct act gat tac ggt gat gct atc gat ggt ttc
!
! I G D V S G L A N G N G A T G D
4089att ggt gac gtt tcc ggc ctt gat aat ggt aat ggt gct act ggt gat
!
! F A G S N S Q M A Q V G D G D N
4137ttt gat ggc tat aat tcc caa atg gct caa gtc ggt gac ggt gat aat
!
! S P L M N N F R Q Y L P S L P Q
4185tca cat tta atg aat aat ttc cgt caa tat tta cct tcc atc cat caa
!
! S V E C R P F V F S A G K P Y E
4233tcg gtt gaa tgt cgc cct ttt gtc ttt aga gct ggt aaa cca tat gaa
!
! F S I D C D K I N L F R
4281ttt tct att gat tgt gac aaa ata aac tta tta cgt
! End Domain 3
!
! G V F A F L L Y V A T F M Y V F140
4317ggt gtc ttt gcg ttt ctt tta tat gtt gcc aac ttt atg tat gta ttt
!start transmembrane segment
!
! S T F A N I L
4365tat acg ttt gct aac ata ctg
!
! R N K E S
4386cgt aat aag gag tct TAA ! stop of iii
!Intracellular anchor.
!
! M1 P2 V L L5 G I P L L10 L R F L G15
4404tc ATG cca gtt ctt ttg ggt att ccg tta tta ttg cgt ttc ctc ggt
! Start VI
!
4451ttc ctt ctg gta act ttg ttc ggc tat ctg ctt act ttt ctt aaa aag
4499ggc ttc ggt aag ata gct att gct att tca ttg ttt ctt gct ctt att
4547att ggg ctt aac tca att ctt gtg ggt tat ctc tct gat att agc gct
4595caa tta ccc tct gac ttt gtt cag ggt gtt cag tta att ctc ccg tct
4643aat gcg ctt ccc tgt ttt tat gtt att ctc tct gta aag gct gct att
4691ttc att ttt gac gtt aaa caa aaa atc gtt tct tat ttg gat tgg gat
!
! M1 A2 V3 F5 L10 G13
4739aaa TAA t ATG gct gtt tat ttt gta act ggc aaa tta ggc tct gga
! end VI Start gene I
!
! 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
! K T L V S V G K I Q D K I V A
4785aag acg ctc gtt agc gtt ggt aag att cag gat aaa att gta gct
!
! 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
! G C K I A T N L D L R L Q N L
4830ggg tgc aaa ata gca act aat ctt gat tta agg ctt caa aac ctc
!
! 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
! P Q V G R F A K T P I V L R I
4875ccg caa gtc ggg agg ttc gct aaa acg cct cgc gtt ctt aga ata
!
! 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
! P D K P S I S D L L A I G R G
4920ccg gat aag cct tct ata tct gat ttg ctt gct att ggg cgc ggt
!
! 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
! N D S Y D E N K N G L L V L D
4965aat gat tcc tac gat gaa aat aaa aac ggc ttg ctt gtt ctc gat
!
! 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
! E C G T W F N T R S W N D K E
5010gag tgc ggt act tgg ttt aat acc cgt tct tgg aat gat aag gaa
!
!104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
! R Q P I I D W F L H A R K L G
5055aga cag ccg att att gat tgg ttt cta cat gct cgt aaa tta gga
!
!119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
! W D I I F L V Q D L S I V D K
5100tgg gat att att ttt ctt gtt cag gac tta tct att gtt gat aaa
!
!134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
! Q A R S A L A E H V V Y C R R
5145cag gcg cgt tct gca tta gct gaa cat gtt gtt tat tgt cgt cgt
!
!149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
! L D R I T L P F V G T L Y S L
5190ctg gac aga att act tta cct ttt gtc ggt act tta tat tct ctt
!
!164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
! I T G S K M P L P K L H V C V
5235att act ggc tcg aaa atg cct ctg cct aaa tta cat gtt ggc gtt
!
!179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
! V K Y G D S Q L S P T V E R W
5280gtt aaa tat ggc gat tct caa tta agc cct act gtt gag cgt tgg
!
!194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
! L Y T C K N L Y N A Y D T K Q
5325ctt tat act ggt aag aat ttg tat aac gca tat gat act aaa cag
!
!209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
! A F S S N Y D S G V Y S Y L T
5370gct ttt tct agt aat tat gat tcc ggt gtt tat tct tat tta acg
!
!224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
! P Y L S H G R Y F K P L N L G
5415cct tat tta tca cac ggt cgg tat ttc aaa cca tta aat tta ggt
!
!239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
! Q K M K L T K I Y L K K F S R
5460cag aag atg aaa tta act aaa ata tat ttg aaa aag ttt tct cgc
!
!254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
! V L C L A I G F A S A F T Y S
5505gtt ctt tgt ctt gcg att gga ttt gca tca gca ttt aca tat agt
!
!269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
! Y I T Q P K P E V K K V V S Q
5550tat ata acc caa cct aag ccg gag gtt aaa aag gta gtc tct cag
!
!284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
! T Y D F D K F T I D S S Q R L
5595acc tat gat ttt gat aaa ttc act att gac tct tct cag cgt ctt
!
!299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
! N L S Y R Y V F K D S K G K L
5640aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA
! PacI
!
! 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
! I N S D D L Q K Q G Y S L T Y
5685 ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat
!PacI
!
! 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
! i I D L C T V S I K K G N S N E
!iv Ml K
5730 att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa
! Start IV
!
! 344 345 346 347 348 349
!i I V K C N .End of I
!iv L3 L N5 V I7 N F V10
5775 att gtt aaa tgt aat TAA T TTT GTT
!IV continued.....
5800ttc ttg atg ttt gtt tca tca tct tct ttt gct cag gta att gaa atg
5848aat aat tcg cct ctg cgc gat ttt gta act tgg tat tca aag caa tca
5896ggc gaa tcc gtt att gtt tct ccc gat gta aaa ggt act gtt act gta
5944tat tca tct gac gtt aaa cct gaa aat cta cgc aat ttc ttt att tct
5992gtt tta cgt gct aat aat ttt gat atg gtt ggt tca att cct tcc ata
6040att cag aag tat aat cca aac aat cag gat tat att gat gaa ttg cca
6088tca tct gat aat cag gaa tat gat gat aat tcc gct cct tct ggt ggt
6136ttc ttt gtt ccg caa aat gat aat gtt act caa act ttt aaa att aat
6184aac gtt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta aag
6232tct aat act tct aaa tcc tca aat gta tta tct att gac ggc tct aat
6280cta tta gtt gtt TCT gca cct aaa gat att tta gat aac ctt cct caa
! ApaLI removed
6328ttc ctt tct act gtt gat ttg cca act gac cag ata ttg att gag ggt
6376ttg ata ttt gag gtt cag caa ggt gat gct tta gat ttt tca ttt gct
6424gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac cgc
6472ctc acc tct gtt tta tct tct gct ggt ggt tcg ttc ggt att ttt aat
6520ggc gat gtt tta ggg cta tca gtt cgc gca tta aag act aat agc cat
6568tca aaa ata ttg tct gtg cca cgt att ctt acg ctt tca ggt cag aag
6616ggt tct atc tct gtT GGC CAg aat gtc cct ttt att act ggt cgt gtg
! MscI
6664act ggt gaa tct gec aat gta aat aat cca ttt cag acg att gag cgt
6712caa aat gta ggt att tcc atg agc gtt ttt cct gtt gca atg gct ggc
6760ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct
6808tct act cag gca agt gat gtt att act aat caa aga agt att gct aca
6856acg gtt aat ttg cgt gat gga cag act ctt tta ctc ggt ggc ctc act
6904gat tat aaa aac act tct caa gat tct ggc gta ccg ttc ctg tct aaa
6952atc cct tta atc ggc ctc ctg ttt agc tcc cgc tct gat tcc aac gag
7000gaa agc acg tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc ctg
7048TAG cggcgcatt
!End IV
7060aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc
7120gcccgctcct ttcgctttct tccgttcctt tctcgccacg ttcGCCGGCt ttccccgtca
! NgoMI
7180agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc
7240caaaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt
! DraIII
7300tcgccctttG ACGTTGGAGT Ccacgttctt taatagtgga ctcttgttcc aaactggaac
! DrdI
7360aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga
7420accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgaaa
7480ctctctcagg gccaggcggt gaagggcaat CAGCTGttgc cCGTCTCact ggtgaaaaga
! PvuII. BsmBI.
7540aaaaccaccc tGGATCC AAGCTT
! BamHI HindIII (1/2)
! Insert carrying bla gene
7563 gcaggtg gcacttttcg gggaaatgtg cgcggaaccc
7600ctatttgttt atttttctaa atacattcaa atatGTATCC gctcatgaga caataaccct
! BciVI
7660gataaatgct tcaataatat tgaaaaAGGA AGAgt
! RBS.?...
!Start bla gene
7695ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg gca ttt
7746tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa gat gct
7797gaa gat cag ttg ggC gCA CGA Gtg ggt tac atc gaa ctg gat ctc aac agc
! BssSI...
! ApaLI removed
7848ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc
7899act ttt aaa gtt ctg cta tgt cat aca cta tta tcc cgt att gac gcc ggg
7950caa gaG CAA CTC GGT CGc cgg gcg cgg tat tct cag aat gac ttg gtt gAG
! BcgI ScaI
8001TAC Tca cca gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa
!ScaI
8052tta tgc agt gct gcc ata aca atg agt gat aac act gcg gcc aac tta ctt
8103ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg
! PvuI
8154ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc
8205ata cca aac gac gag cgt gac acc acg atg cct gta gca atg cca aca acg
8256tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa caa
! FspI....
8307tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg cgc tcg
8358GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tct gga gcc ggt gag cgt
!BglI
8409gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc tcc cgt
! BsaI
8460atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat
! AhdI
8511aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA ctgt
! stop
8560cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa
8620ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt
8680cgttccactg tacgtaagac cccc
8704AAGCTT GTCGAC tgaa tggcgaatgg cgctttgcct
!HindIII SalI..
!(2/2) HincII
8740ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt
!
8790CCTGAGG
!Bsu36I
8797 ccgat actgtcgtcg tcccctcaaa ctggcagatg
8832cacggttacg atgcgcccat ctacaccaac gtaacctatc ccattacggt caatccgccg
8892tttgttccca cggagaatcc gacgggttgt tactcgctca catttaatgt tgatgaaagc
8952tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg ttaaaaaatg
9012agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaATTTAAA
! SwaI...
9072Tatttgctta tacaatcttc ctgtttttgg ggcttttctg attatcaacc GGGGTAcat
! RBS?
9131ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt gtt tgc
!Start gene II
9182tcc aga ctc tca ggc aat gac ctg ata gcc ttt gtA GAT CTc tca aaa ata
! BglII...
9233gct acc ctc tcc ggc atg aat tta tca gct aga acg gtt gaa tat cat att
9284gat ggt gat ttg act gtc tcc ggc ctt tct cac cct ttt gaa tct tta cct
9335aca cat tac tca ggc att gca ttt aaa ata tat gag ggt tct aaa aat ttt
9386tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag ggt cat
9437aat gtt ttt ggt aca acc gat tta gct tta tgc tct gag gct tta ttg ctt
9488aat ttt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt ! 9532
!gene II continues
|
[0158]
16
TABLE 120B
|
|
|
Sequence of MALIA3, condensed
|
LOCUS
|
ORIGIN MALIA3 9532 CIRCULAR
|
1
AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTTCAG CTCGCGCCCC AAATGAAAAT
|
|
61
ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGCTCAAAC TAAATCTACT
|
|
121
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATCAAA CTTCCAGACA CCGTACTTTA
|
|
181
GTTGCATATT TAAAACATGT TGAGCTACAG CACCAGATTC AGCAATTAAG CTCTAAGCCA
|
|
241
TCCGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAAGG TACTCTCTAA TCCTGACCTG
|
|
301
TTGGAGTTTG CTTCCGGTCT GGTTCGCTTT GAAGCTCGAA TTAAAACGCG ATATTTGAAG
|
|
361
TCTTTCGGGC TTCCTCTTAA TCTTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT
|
|
421
CAGGGTAAAG ACCTGATTTT TGATTTATGG TCATTCTCGT TTTCTGAACT GTTTAAAGCA
|
|
481
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGCAG TATTGGACGC TATCCAGTCT
|
|
541
AAACATTTTA CTATTACCCC CTCTGGCAAA ACTTCTTTTG CAAAAGCCTC TCGCTATTTT
|
|
601
GGTTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCTCGT
|
|
661
AATTCCTTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCCTAA ATCTCAACTG
|
|
721
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATTTT
|
|
781
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA
|
|
841
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGTTT
|
|
901
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTTG TTACGTTGAT TTGGGTAATG
|
|
961
AATATCCCGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC
|
|
1021
TGTACACCGT TCATCTGTCC TCTTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC
|
|
1081
GTCTGCGCCT CGTTCCGGCT AAGTAACATG GAGCAGGTCG CGGATTTCGA CACAATTTAT
|
|
1141
CAGGCGATGA TACAAATCTC CGTTGTACTT TGTTTCGCGC TTGGTATAAT CGCTGGGGGT
|
|
1201
CAAAGATGAG TGTTTTAGTG TATTCTTTCG CCTCTTTCGT TTTAGGTTGG TGCCTTCGTA
|
|
1261
GTGGCATTAC GTATTTTACC CGTTTAATGG AAACTTCCTC ATGAAAAAGT CTTTAGTCCT
|
|
1321
CAAAGCCTCT GTAGCCGTTG CTACCCTCGT TCCGATGCTG TCTTTCGCTG CTGAGGGTGA
|
|
1381
CGATCCCGCA AAAGCGGCCT TTAACTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA
|
|
1441
TGCGTGGGCG ATGGTTGTTG TCATTCTCGG CGCAACTATC GGTATCAAGC TGTTTAAGAA
|
|
1501
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTTT GGAGCCTTTT
|
|
1561
TTTTTGGAGA TTTTCAACGT GAAAAAATTA TTATTCGCAA TTCCTTTAGT TGTTCCTTTC
|
|
1621
TATTCTCACA GTGCACAGTC TGTCGTGACG CAGCCGCCCT CAGTGTCTGG GGCCCCAGGG
|
|
1681
CAGAGGGTCA CCATCTCCTG CACTGGGAGC AGCTCCAACA TCGGGGCAGG TTATGATGTA
|
|
1741
CACTGGTACC AGCAGCTTCC AGGAACAGCC CCCAAACTCC TCATCTATGG TAACAGCAAT
|
|
1801
CGGCCCTCAG GGGTCCCTGA CCGATTCTCT GGCTCCAAGT CTGGCACCTC AGCCTCCCTG
|
|
1861
GCCATCACTG GGCTCCAGGC TGAGGATGAG GCTGATTATT ACTGCCAGTC CTATGACAGC
|
|
1921
AGCCTGAGTG GCCTTTATGT CTTCGGAACT GGGACCAAGG TCACCGTCCT AGGTCAGCCC
|
|
1981
AAGGCCAACC CCACTGTCAC TCTGTTCCCG CCCTCCTCTG AGGAGCTCCA AGCCAACAAG
|
|
2041
GCCACACTAG TGTGTCTGAT CAGTGACTTC TACCCGGGAG CTGTGACAGT GGCCTGGAAG
|
|
2101
GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA CACCCTCCAA ACAAAGCAAC
|
|
2161
AACAAGTACG CGGCCAGCAG CTATCTGAGC CTGACGCCTG AGCAGTGGAA GTCCCACAGA
|
|
2221
AGCTACAGCT GCCAGGTCAC GCATGAAGGG AGCACCGTGG AGAAGACAGT GGCCCCTACA
|
|
2281
GAATGTTCAT AATAAACCGC CTCCACCGGG CGCGCCAATT CTATTTCAAG GAGACAGTCA
|
|
2341
TAATGAAATA CCTATTGCCT ACGGCAGCCG CTGGATTGTT ATTACTCGCG GCCCAGCCGG
|
|
2401
CCATGGCCGA AGTTCAATTG TTAGAGTCTG GTGGCGGTCT TGTTCAGCCT GGTGGTTCTT
|
|
2461
TACGTCTTTC TTGCGCTGCT TCCGGATTCA CTTTCTCTTC GTACGCTATG TCTTGGGTTC
|
|
2521
GCCAAGCTCC TGGTAAAGGT TTGGAGTGGG TTTCTGCTAT CTCTGGTTCT GGTGGCAGTA
|
|
2581
CTTACTATGC TGACTCCGTT AAAGGTCGCT TCACTATCTC TAGAGACAAC TCTAAGAATA
|
|
2641
CTCTCTACTT GCAGATGAAC AGCTTAAGGG CTGAGGACAC TGCAGTCTAC TATTGCGCTA
|
|
2701
AAGACTATGA AGGTACTGGT TATGCTTTCG ACATATGGGG TCAAGGTACT ATGGTCACCG
|
|
2761
TCTCTAGTGC CTCCACCAAG GGCCCATCGG TCTTCCCCCT GGCACCCTCC TCCAAGAGCA
|
|
2821
CCTCTGGGGG CACAGCGGCC CTGGGCTGCC TGGTCAAGGA CTACTTCCCC GAACCGGTGA
|
|
2881
CGGTGTCGTG GAACTCAGGC GCCCTGACCA GCGGCGTCCA CACCTTCCCG GCTGTCCTAC
|
|
2941
AGTCTAGCGG ACTCTACTCC CTCAGCAGCG TAGTGACCGT GCCCTCTTCT AGCTTGGGCA
|
|
3001
CCCAGACCTA CATCTGCAAC GTGAATCACA AGCCCAGCAA CACCAAGGTG GACAAGAAAG
|
|
3061
TTGAGCCCAA ATCTTGTGCG GCCGCTCATC ACCACCATCA TCACTCTGCT GAACAAAAAC
|
|
3121
TCATCTCAGA AGAGGATCTG AATGGTGCCG CAGATATCAA CGATGATCGT ATGGCTGGCG
|
|
3181
CCGCTGAAAC TGTTGAAAGT TGTTTAGCAA AACCCCATAC AGAAAATTCA TTTACTAACG
|
|
3241
TCTGGAAAGA CGACAAAACT TTAGATCGTT ACGCTAACTA TGAGGGTTGT CTGTGGAATG
|
|
3301
CTACAGGCGT TGTAGTTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA TGGGTTCCTA
|
|
3361
TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT TCTGAGGGTG
|
|
3421
GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT ATTCCGGGCT
|
|
3481
ATACTTATAT CAACCCTCTC GACGGCACTT ATCCGCCTGG TACTGAGCAA AACCCCGCTA
|
|
3541
ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT CAGAATAATA
|
|
3601
GGTTCCGAAA TAGGCAGGGG GCATTAACTG TTTATACGGG CACTGTTACT CAAGGCACTG
|
|
3661
ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG TATGACGCTT
|
|
3721
ACTGGAACGG TAAATTCAGA GACTGCGCTT TCCATTCTGG CTTTAATGAA GATCCATTCG
|
|
3781
TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT GCTGGCGGCG
|
|
3841
GCTCTGGTGG TGGTTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT GGCGGTTCTG
|
|
3901
AGGGTGGCGG CTCTGAGGGA GGCGGTTCCC GTGGTGGCTC TGGTTCCGGT GATTTTGATT
|
|
3961
ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT GAAAACGCGC
|
|
4021
TACAGTCTGA CGCTAAAGGC AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG
|
|
4081
ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG
|
|
4141
CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT TTAATGAATA
|
|
4201
ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTCGCCCT TTTGTCTTTA
|
|
4261
GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAACTTA TTCCGTGGTG
|
|
4321
TCTTTGCGTT TCTTTTATAT GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA
|
|
4381
TACTGCGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTTG GGTATTCCGT TATTATTGCG
|
|
4441
TTTCCTCGGT TTCCTTCTGG TAACTTTGTT CGGCTATCTG CTTACTTTTC TTAAAAAGGG
|
|
4501
CTTCGGTAAG ATAGCTATTG CTATTTCATT GTTTCTTGCT CTTATTATTG GGCTTAACTC
|
|
4561
AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTCAATTA CCCTCTGACT TTGTTCAGGG
|
|
4621
TGTTCAGTTA ATTCTCCCGT CTAATGCGCT TCCCTGTTTT TATGTTATTC TCTCTGTAAA
|
|
4681
GGCTGCTATT TTCATTTTTG ACGTTAAACA AAAAATCGTT TCTTATTTGG ATTGGGATAA
|
|
4741
ATAATATGGC TGTTTATTTT GTAACTGGCA AATTAGGCTC TGGAAAGACG CTCGTTAGCG
|
|
4801
TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT CTTGATTTAA
|
|
4861
GGCTTCAAAA CCTCCCGCAA GTCGGGAGGT TCGCTAAAAC GCCTCGCGTT CTTAGAATAC
|
|
4921
CGGATAAGCC TTCTATATCT GATTTGCTTG CTATTGGGCG CGGTAATGAT TCCTACGATG
|
|
4981
AAAATAAAAA CGGCTTGCTT GTTCTCGATG AGTGCGGTAC TTGGTTTAAT ACCCGTTCTT
|
|
5041
GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTTCT ACATGCTCGT AAATTAGGAT
|
|
5101
GGGATATTAT TTTTCTTGTT CAGGACTTAT CTATTGTTGA TAAACAGGCG CGTTCTGCAT
|
|
5161
TAGCTGAACA TGTTGTTTAT TGTCGTCGTC TGGACAGAAT TACTTTACCT TTTGTCGGTA
|
|
5221
CTTTATATTC TCTTATTACT GGCTCGAAAA TGCCTCTGCC TAAATTACAT GTTGGCGTTG
|
|
5281
TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGCTTTAT ACTGGTAAGA
|
|
5341
ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTTCTAG TAATTATGAT TCCGGTGTTT
|
|
5401
ATTCTTATTT AACGCCTTAT TTATCACACG GTCGGTATTT CAAACCATTA AATTTAGGTC
|
|
5461
AGAAGATGAA ATTAACTAAA ATATATTTGA AAAAGTTTTC TCGCGTTCTT TGTCTTGCGA
|
|
5521
TTGGATTTGC ATCAGCATTT ACATATAGTT ATATAACCCA ACCTAAGCCG GAGGTTAAAA
|
|
5581
AGGTAGTCTC TCAGACCTAT GATTTTGATA AATTCACTAT TGACTCTTCT CAGCGTCTTA
|
|
5641
ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAT AGCGACGATT
|
|
5701
TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTTCC ATTAAAAAAG
|
|
5761
GTAATTCAAA TGAAATTGTT AAATGTAATT AATTTTGTTT TCTTGATGTT TGTTTCATCA
|
|
5821
TCTTCTTTTG CTCAGGTAAT TGAAATGAAT AATTCGCCTC TGCGCGATTT TGTAACTTGG
|
|
5881
TATTCAAAGC AATCAGGCGA ATCCGTTATT GTTTCTCCCG ATGTAAAAGG TACTGTTACT
|
|
5941
GTATATTCAT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTTATTTC TGTTTTACGT
|
|
6001
GCTAATAATT TTGATATGGT TGGTTCAATT CCTTCCATAA TTCAGAAGTA TAATCCAAAC
|
|
6061
AATCAGGATT ATATTGATGA ATTGCCATCA TCTGATAATC AGGAATATGA TGATAATTCC
|
|
6121
GCTCCTTCTG GTGGTTTCTT TGTTCCGCAA AATGATAATG TTACTCAAAC TTTTAAAATT
|
|
6181
AATAACGTTC GGGCAAAGGA TTTAATACGA GTTGTCGAAT TGTTTGTAAA GTCTAATACT
|
|
6241
TCTAAATCCT CAAATGTATT ATCTATTGAC GGCTCTAATC TATTAGTTGT TTCTGCACCT
|
|
6301
AAAGATATTT TAGATAACCT TCCTCAATTC CTTTCTACTG TTGATTTGCC AACTGACCAG
|
|
6361
ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTTAGA TTTTTCATTT
|
|
6421
GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTTA ATACTGACCG CCTCACCTCT
|
|
6481
GTTTTATCTT CTGCTGGTGG TTCGTTCGGT ATTTTTAATG GCGATGTTTT AGGGCTATCA
|
|
6541
GTTCGCGCAT TAAAGACTAA TAGCCATTCA AAAATATTGT CTGTGCCACG TATTCTTACG
|
|
6601
CTTTCAGGTC AGAAGGGTTC TATCTCTGTT GGCCAGAATG TCCCTTTTAT TACTGGTCGT
|
|
6661
GTGACTGGTG AATCTGCCAA TGTAAATAAT CCATTTCAGA CGATTGAGCG TCAAAATGTA
|
|
6721
GGTATTTCCA TGAGCGTTTT TCCTGTTGCA ATGGCTGGCG GTAATATTGT TCTGGATATT
|
|
6781
ACCAGCAAGG CCGATAGTTT GAGTTCTTCT ACTCAGGCAA GTGATGTTAT TACTAATCAA
|
|
6841
AGAAGTATTG CTACAACGGT TAATTTGCGT GATGGACAGA CTCTTTTACT CGGTGGCCTC
|
|
6901
ACTGATTATA AAAACACTTC TCAAGATTCT GGCGTACCGT TCCTGTCTAA AATCCCTTTA
|
|
6961
ATCGGCCTCC TGTTTAGCTC CCGCTCTGAT TCCAACGAGG AAAGCACGTT ATACGTGCTC
|
|
7021
GTCAAAGCAA CCATAGTACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT
|
|
7081
TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT
|
|
7141
CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC
|
|
7201
TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTTGGGTGA
|
|
7261
TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC
|
|
7321
CACGTTCTTT AATAGTGGAC TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG
|
|
7381
CTATTCTTTT GATTTATAAG GGATTTTGCC GATTTCGGAA CCACCATCAA ACAGGATTTT
|
|
7441
CGCCTGCTGG GGCAAACCAG CGTGGACCGC TTGCTGCAAC TCTCTCAGGG CCAGGCGGTG
|
|
7501
AAGGGCAATC AGCTGTTtCC CGTCTCACTG GTGAAAAGAA AAACCACCCT GGATCCAAGC
|
|
7561
TTGCAGGTGG CACTTTTCGG GGAAATGTGC GCGGAACCCC TATTTGTTTA TTTTTCTAAA
|
|
7621
TACATTCAAA TATGTATCCG CTCATGAGAC AATAACCCTG ATAAATGCTT CAATAATATT
|
|
7681
GAAAAAGGAA GAGTATGAGT ATTCAACATT TCCGTGTCGC CCTTATTCCC TTTTTTGCGG
|
|
7741
CATTTTGCCT TCCTGTTTTT GCTCACCCAG AAACGCTGGT GAAAGTAAAA GATGCTGAAG
|
|
7801
ATCAGTTGGG CGCACGAGTG GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG
|
|
7861
AGAGTTTTCG CCCCGAAGAA CGTTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTC
|
|
7921
ATACACTATT ATCCCGTATT GACGCCGGGC AAGAGCAACT CGGTCGCCGG GCGCGGTATT
|
|
7981
CTCAGAATGA CTTGGTTGAG TACTCACCAG TCACAGAAAA GCATCTTACG GATGGCATGA
|
|
8041
CAGTAAGAGA ATTATGCAGT GCTGCCATAA CCATGAGTGA TAACACTGCG GCCAACTTAC
|
|
8101
TTCTGACAAC GATCGGAGGA CCGAAGGAGC TAACCGCTTT TTTGCACAAC ATGGGGGATC
|
|
8161
ATGTAACTCG CCTTGATCGT TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC
|
|
8221
GTGACACCAC GATGCCTGTA GCAATGCCAA CAACGTTGCG CAAACTATTA ACTGGCGAAC
|
|
8281
TACTTACTCT AGCTTCCCGG CAACAATTAA TAGACTGGAT GGAGGCGGAT AAAGTTGCAG
|
|
8341
GACCACTTCT GCGCTCGGCC CTTCCGGCTG GCTGGTTTAT TGCTGATAAA TCTGGAGCCG
|
|
8401
GTGAGCGTGG GTCTCGCGGT ATCATTGCAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA
|
|
8461
TCGTAGTTAT CTACACGACG GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG
|
|
8521
CTGAGATAGG TGCCTCACTG ATTAAGCATT GGTAACTGTC AGACCAAGTT TACTCATATA
|
|
8581
TACTTTAGAT TGATTTAAAA CTTCATTTTT AATTTAAAAG GATCTAGGTG AAGATCCTTT
|
|
8641
TTGATAATCT CATGACCAAA ATCCCTTAAC GTGAGTTTTC GTTCCACTGT ACGTAAGACC
|
|
8701
CCCAAGCTTG TCGACTGAAT GGCGAATGGC GCTTTGCCTG GTTTCCGGCA CCAGAAGCGG
|
|
8761
TGCCGGAAAG CTGGCTGGAG TGCGATCTTC CTGAGGCCGA TACTGTCGTC GTCCCCTCAA
|
|
8821
ACTGGCAGAT GCACGGTTAC GATGCGCCCA TCTACACCAA CGTAACCTAT CCCATTACGG
|
|
8881
TCAATCCGCC GTTTGTTCCC ACGGAGAATC CGACGGGTTG TTACTCGCTC ACATTTAATG
|
|
8941
TTGATGAAAG CTGGCTACAG GAAGGCCAGA CGCGAATTAT TTTTGATGGC GTTCCTATTG
|
|
9001
GTTAAAAAAT GAGCTGATTT AACAAAAATT TAACGCGAAT TTTAACAAAA TATTAACGTT
|
|
9061
TACAATTTAA ATATTTGCTT ATACAATCTT CCTGTTTTTG GGGCTTTTCT GATTATCAAC
|
|
9121
CGGGGTACAT ATGATTGACA TGCTAGTTTT ACGATTACCG TTCATCGATT CTCTTGTTTG
|
|
9181
CTCCAGACTC TCAGGCAATG ACCTGATAGC CTTTGTAGAT CTCTCAAAAA TAGCTACCCT
|
|
9241
CTCCGGCATG AATTTATCAG CTAGAACGGT TGAATATCAT ATTGATGGTG ATTTGACTGT
|
|
9301
CTCCGGCCTT TCTCACCCTT TTGAATCTTT ACCTACACAT TACTCAGGCA TTGCATTTAA
|
|
9361
AATATATGAG GGTTCTAAAA ATTTTTATCC TTGCGTTGAA ATAAAGGCTT CTCCCGCAAA
|
|
9421
AGTATTACAG GGTCATAATG TTTTTGGTAC AACCGATTTA GCTTTATGCT CTGAGGCTTT
|
|
9481
ATTGCTTAAT TTTGCTAATT CTTTGCCTTG CCTGTATGAT TTATTGGATG TT
|
|
[0159]
17
TABLE 200
|
|
|
Enzymes that either cut 15 or more human GLGs or have 5 + -base recognition in FR3
|
|
Typical entry:
|
REname Recognition
#sites
|
GLGid#:base# GLGid#:base# GLGid#:base#
|
|
BstEII Ggtnacc
2
|
1: 3 48: 3
|
There are 2 hits at base# 3
|
|
MaeIII gtnac
36
|
1: 4 2: 4 3: 4 4: 4 5: 4 6: 4
|
7: 4 8: 4 9: 4 10: 4 11: 4 37: 4
|
37: 58 38: 4 38: 58 39: 4 39: 58 40: 4
|
40: 58 41: 4 41: 58 42: 4 42: 58 43: 4
|
43: 58 44: 4 44: 58 45: 4 45: 58 46: 4
|
46: 58 47: 4 47: 58 48: 4 49: 4 50: 58
|
There are 24 hits at base# 4
|
|
Tsp45I gtsac
33
|
1: 4 2: 4 3: 4 4: 4 5: 4 6: 4
|
7: 4 8: 4 9: 4 10: 4 11: 4 37: 4
|
7: 58 38: 4 38: 58 39: 58 40: 4 40: 58
|
41: 58 42: 58 43: 4 43: 58 44: 4 44: 58
|
45: 4 45: 58 46: 4 46: 58 47: 4 47: 58
|
48: 4 49: 4 50: 58
|
There are 21 hits at base# 4
|
|
1-IphI tcacc
45
|
1: 5 2: 5 3: 5 4: 5 5: 5 6: 5
|
7: 5 8: 5 11: 5 12: 5 12: 11 13: 5
|
14: 5 15: 5 16: 5 17: 5 18: 5 19: 5
|
20: 5 21: 5 22: 5 23: 5 24: 5 25: 5
|
26: 5 27: 5 28: 5 29: 5 30: 5 31: 5
|
32: 5 33: 5 34: 5 35: 5 36: 5 37: 5
|
38: 5 40: 5 43: 5 44: 5 45: 5 46: 5
|
47: 5 48: 5 49: 5
|
There are 44 hits at base# 5
|
|
NlaIII CATG
26
|
1: 9 1: 42 2: 42 3: 9 3: 42 4: 9
|
4: 42 5: 9 5: 42 6: 42 6: 78 7: 9
|
7: 42 8: 21 8: 42 9: 42 10: 42 11: 42
|
12: 57 13: 48 13: 57 14: 57 31: 72 38: 9
|
48: 78 49: 78
|
There are 11 hits at base# 42
|
There are 1 hits at base# 48 Could cause raggedness.
|
|
BsaJI Ccnngg
37
|
1: 14 2: 14 5: 14 6: 14 7: 14 8: 14
|
8: 65 9: 14 10: 14 11: 14 12: 14 13: 14
|
14: 14 15: 65 17: 14 17: 65 18: 65 19: 65
|
20: 65 21: 65 22: 65 26: 65 29: 65 30: 65
|
33: 65 34: 65 35: 65 37: 65 38: 65 39: 65
|
40: 65 42: 65 43: 65 48: 65 49: 65 50: 65
|
51: 14
|
There are 23 hits at base# 65
|
There are 14 hits at base# 14
|
|
AluI AGct
42
|
1: 47 2: 47 3: 47 4: 47 5: 47 6: 47
|
7: 47 8: 47 9: 47 10: 47 11: 47 16: 63
|
23: 63 24: 63 25: 63 31: 63 32: 63 36: 63
|
37: 47 37: 52
38: 47 38: 52 39: 47 39: 52
|
40: 47 40: 52
41: 47 41: 52 42: 47 42: 52
|
43: 47 43: 52
44: 47 44: 52 45: 47 45: 52
|
46: 47 46: 52
47: 47 47: 52 49: 15 50: 47
|
There are 23 hits at base# 47
|
There are 11 hits at base# 52
Only 5 bases from 47
|
|
BlpI GCtnagc
21
|
1: 48 2: 48 3: 48 5:48 6:48 7:48
|
8: 48 9: 48 10: 48 11:48 37:48 38:48
|
39: 48 40: 48 41: 48 42:48 43:48 44:48
|
45: 48 46: 48 47: 48
|
There are 21 hits at base# 48
|
|
MwoI GCNNNNNnngc
19
|
1: 48 2: 28 19: 36 22: 36 23: 36 24: 36
|
25: 36 26: 36 35: 36 37: 67 39: 67 40: 67
|
41: 67 42: 67 43: 67 44: 67 45: 67 46: 67
|
47: 67
|
There are 10 hits at base# 67
|
There are 7 hits at base# 36
|
|
DdeI Ctnag
71
|
1: 49 1: 58 2: 49 2: 58 3: 49 3: 58
|
3: 65 4: 49 4: 58 5: 49 5: 58 5: 65
|
6: 49 6: 58 6: 65 7: 49 7: 58 7: 65
|
8: 49 8: 58 9: 49 9: 58 9: 65 10: 49
|
10: 58 10: 65
11: 49 11: 58 11: 65 15: 58
|
16: 58 16: 65
17: 58 18: 58 20: 58 21: 58
|
22: 58 23: 58 23: 65 24: 58 24: 65 25: 58
|
25: 65
26: 58 27: 58 27: 65 28: 58 30: 58
|
31: 58 31: 65
32: 58 32: 65 35: 58 36: 58
|
36: 65
37: 49 38: 49 39: 26 39: 49 40: 49
|
41: 49 42: 26 42: 49 43: 49 44: 49 45: 49
|
46: 49 47: 49 48: 12 49: 12 51: 65
|
There are 29 hits at base# 58
|
There are 22 hits at base# 49
Only nine base from 58
|
There are 16 hits at base# 65
Only seven bases from 58
|
|
BglII Agatct
11
|
1: 61 2: 61 3: 61 4: 61 5: 61 6: 61
|
7: 61 9: 61 10: 61 11: 61 51: 47
|
There are 10 hits at base# 61
|
|
BstYI Rgatcy
12
|
1: 61 2: 61 3: 61 4: 61 5: 61 6: 61
|
7: 61 8: 61 9: 61 10: 61 11: 61 51: 47
|
There are 11 hits at base# 61
|
|
Hpy188I TCNga
17
|
1: 64 2: 64 3: 64 4: 64 5: 64 6: 64
|
7: 64 8: 64 9: 64 10: 64 11: 64 16: 57
|
20: 57 27: 57 35: 57 48: 67 49: 67
|
There are 11 hits at base# 64
|
There are 4 hits at base# 57
|
There are 2 hits at base# 67 Could be ragged
.
|
|
MslI CAYNNnnRTG
44
|
1: 72 2: 72 3: 72 4: 72 5: 72 6: 72
|
7: 72 8: 72 9: 72 10: 72 11: 72 15: 72
|
17: 72 18: 72 19: 72 21: 72 23: 72 24: 72
|
25: 72 26: 72 28: 72 29: 72 30: 72 31: 72
|
32: 72 33: 72 34: 72 35: 72 36: 72 37: 72
|
39: 72 39: 72 40: 72 41: 72 42: 72 43: 72
|
44: 72 45: 72 46: 72 47: 72 48: 72 49: 72
|
50: 72 51: 72
|
There are 44 hits at base# 72
|
|
BsiEI CGRYcg
23
|
1: 74 3: 74 4: 74 5: 74 7: 74 8: 74
|
9: 74 10: 74 11: 74 17: 74 22: 74 30: 74
|
33: 74 34: 74 37: 74 38: 74 39: 74 40: 74
|
41: 74 42: 74 45: 74 46: 74 47: 74
|
There are 23 hits at base# 74
|
|
EaeI Yggccr
23
|
1: 74 3: 74 4: 74 5: 74 7: 74 8: 74
|
9: 74 10: 74 11: 74 17: 74 22: 74 30: 74
|
33: 74 34: 74 37: 74 38: 74 39: 74 40: 74
|
41: 74 42: 74 45: 74 46: 74 47: 74
|
There are 23 hits at basef 74
|
|
EagI Cggccg
23
|
1: 74 3: 74 4: 74 5: 74 7: 74 8: 74
|
9: 74 10: 74 11: 74 17: 74 22: 74 30: 74
|
33: 74 34: 74 37: 74 38: 74 39: 74 40: 74
|
41: 74 42: 74 45: 74 46: 74 47: 74
|
There are 23 hits at base# 74
|
|
HaeIII GGcc
27
|
1: 75 3: 75 4: 75 5: 75 7: 75 8: 75
|
9: 75 10: 75 11: 75 16: 75 17: 75 20: 75
|
22: 75 30: 75 33: 75 34: 75 37: 75 38: 75
|
39: 75 40: 75 41: 75 42: 75 45: 75 46: 75
|
47: 75 48: 63 49: 63
|
There are 25 hits at base# 75
|
|
Bst4CI ACNgt 65° C.
63 Sites There is a third isoschismer
|
1: 86 2: 86 3: 86 4: 86 5: 86 6: 86
|
7: 34 7: 86 8: 86 9: 86 10: 86 11: 86
|
12: 86 13: 86 14: 96 15: 36 15: 86 16: 53
|
16: 86 17: 36 17: 86 18: 86 19: 86 20: 53
|
20: 86 21: 36 21: 86 22: 0 22: 66 23: 86
|
24: 86 25: 86 26: 86 27: 53 27: 86 28: 36
|
28: 86 29: 86 30: 86 31: 86 32: 86 33: 36
|
33: 86 34: 86 35: 53 35: 86 36: 86 37: 86
|
38: 86 39: 86 40: 86 41: 86 42: 86 43: 86
|
44: 86 45: 86 46: 86 47: 86 48: 86 49: 86
|
50: 86 51: 0 51: 86
|
There are 51 hits at base# 86
All the other sites are well away
|
|
HpyCH4III ACNgt
63
|
1: 86 2: 86 3: 86 4: 86 5: 86 6: 86
|
7: 34 7: 86 8: 86 9: 86 10: 86 11: 86
|
12: 86 13: 86 14: 86 15: 36 15: 86 16: 53
|
16: 86 17: 36 17: 86 18: 86 19: 86 20: 53
|
20: 86 21: 36 21: 86 22: 0 22: 86 23: 86
|
24: 86 25: 86 26: 86 27: 53 27: 86 28: 36
|
28: 86 29: 86 30: 86 31: 86 32: 86 33: 36
|
33: 86 34: 86 35: 53 35: 86 36: 86 37: 86
|
38: 86 39: 86 40: 86 41: 86 42: 86 43: 86
|
44: 96 45: 86 46: 86 47: 86 48: 86 49: 86
|
50: 66 51: 0 51: 96
|
There are 51 hits at base# 86
|
|
Hinf I Gantc
43
|
2: 2 3: 2 4: 2 5: 2 6: 2 7: 2
|
8: 2 9: 2 9: 22 10: 2 11: 2 15: 2
|
16: 2 17: 2 19: 2 19: 2 19: 22 20: 2
|
21: 2 23: 2 24: 2 25: 2 26: 2 27: 2
|
28: 2 29: 2 30: 2 31: 2 32: 2 33: 2
|
33: 22 34: 22 35: 2 36: 2 37: 2 38: 2
|
40: 2 43: 2 44: 2 45: 2 46: 2 47: 2
|
50: 60
|
There are 38 hits at base# 2
|
|
MlyI GAGTCNNNNNn
18
|
2: 2 3: 2 4: 2 5: 2 6: 2 7: 2
|
8: 2 9: 2 10: 2 11: 2 37: 2 38: 2
|
40: 2 43: 2 44: 2 45: 2 46: 2 47: 2
|
There are 18 hits at base# 2
|
|
PleI gagtc
18
|
2: 2 3: 2 4: 2 5: 2 6: 2 7: 2
|
8: 2 9: 2 10: 2 11: 2 37: 2 38: 2
|
40: 2 43: 2 44: 2 45: 2 46: 2 47: 2
|
There are 18 hits at base# 2
|
|
AciI Ccgc
24
|
2: 26 9: 14 10: 14 11: 14 27: 74 37: 62
|
37: 65 38: 62 39: 65 40: 62 40: 65 41: 65
|
42: 65 43: 62 43: 65 44: 62 44: 65 45: 62
|
46: 62 47: 62 47: 65 48: 35 48: 74 49: 74
|
There are 8 hits at base# 62
|
There are 8 hits at base# 65
|
There are 3 hits at base# 14
|
There are 3 hits at base# 74
|
There are 1 hits at base# 26
|
There are 1 hits at base# 35
|
|
-″- Gcgg
11
|
8: 91 9: 16 10: 16 11: 16 37: 67 39: 67
|
40: 67 42: 67 43: 67 45: 67 46: 67
|
There are 7 hits at base# 67
|
There are 3 hits at base#16
|
There are 1 hits at base#91
|
|
BsiIHKAI GWGCWc
20
|
2: 30 4: 30 6: 30 7: 30 9: 30 10: 30
|
12: 89 13: 89 14: 89 37: 51 38: 51 39: 51
|
40: 51 41: 51 42: 51 43: 51 44: 51 45: 51
|
46: 51 47: 51
|
There are 11 hits at base# 51
|
|
Bsp1286I GDGCHc
20
|
2: 30 4: 30 6: 30 7: 30 9: 30 10: 30
|
12: 89 13: 89 14: 89 37: 51 38: 51 39: 51
|
40: 51 41: 51 42: 51 43: 51 44: 51 45: 51
|
46: 51 47: 51
|
There are 11 hits at base# 51
|
|
HgiAI GWGCWc
20
|
2: 30 4: 30 6: 30 7: 30 9: 30 10: 30
|
12: 89 13: 89 14: 89 37: 51 38: 51 39: 51
|
40: 51 41: 51 42: 51 43: 51 44: 51 45: 51
|
46: 51 47: 51
|
There are 11 hits at base# 51
|
|
BsoFI GCngc
26
|
2: 53 3: 53 5: 53 6: 53 7: 53 8: 53
|
8: 91 9: 53 10: 53 11: 53 31: 53 36: 36
|
37: 64 39: 64 40: 64 41: 64 42: 64 43: 64
|
44: 64 45: 64 46: 64 47: 64 48: 53 49: 53
|
50: 45 51: 53
|
There are 13 hits at base# 53
|
There are 10 hits at base# 64
|
|
TseI Gcwgc
17
|
2: 53 3: 53 5: 53 6: 53 7: 53 8: 53
|
9: 53 10: 53 11: 53 31: 53 36: 36 45: 64
|
46: 64 48: 53 49: 53 50: 45 51: 53
|
There are 13 hits at base# 53
|
|
MnlI gagg
34
|
3: 67 3: 95 4: 51 5: 16 5: 67 6: 67
|
7: 67 8: 67 9: 67 10: 67 11: 67 15: 67
|
16: 67 17: 67 19: 67 20: 67 21: 67 22: 67
|
23: 67 24: 67 25: 67 26: 67 27: 67 28: 67
|
29: 67 30: 67 31: 67 32: 67 33: 67 34: 67
|
35: 67 36: 67 50: 67 51: 67
|
There are 31 hits at base#67
|
|
HpyCH4V TGCa
34
|
5: 90 6: 90 11: 90 12: 90 13: 90 14: 90
|
15: 44 16: 44 16: 90 17: 44 16: 90 19: 44
|
20: 44 21: 44 22: 44 23: 44 24: 44 25: 44
|
26: 44 27: 44 27: 90 28: 44 29: 44 33: 44
|
34: 44 35: 44 35: 90 36: 39 48: 44 49: 44
|
50: 44 50: 90 51: 44 51: 52
|
There are 21 hits at base# 44
|
There are 1 hits at base# 52
|
|
AccI GTmkac
13 5-base recognition
|
7: 37 11: 24 37: 16 38: 16 39: 16 40: 16
|
41: 16 42: 16 43: 16 44: 16 45: 16 46: 16
|
47: 16
|
There are 11 hits at base# 16
|
|
SacII CCGCgg
8 6-base recognition
|
9: 14 10: 14 11: 14 37: 65 39: 65 40: 65
|
42: 65 43: 65
|
There are 5 hits at base# 65
|
There are 3 hits at base# 14
|
|
TfiI Gawtc
24
|
9: 22 15: 2 16: 2 17: 2 18: 2 19: 2
|
19: 22 20: 2 21: 2 23: 2 24: 2 25: 2
|
26: 2 27: 2 28: 2 29: 2 30: 2 31: 2
|
32: 2 33: 2 33: 22 34: 22 35: 2 36: 2
|
There are 20 hits at base# 2
|
|
BsmAI Nnnnnngagac
19
|
15: 12 16: 11 20: 11 21: 11 22: 11 23: 11
|
24: 11 25: 11 26: 11 27: 11 28: 12 28: 56
|
30: 11 31: 11 32: 11 35: 11 36: 11 44: 87
|
48: 87
|
There are 16 hits at base# 11
|
|
BpmI ctccag
19
|
15: 12 16: 12 17: 12 18: 12 20: 12 21: 12
|
22: 12 23: 12 24: 12 25: 12 26: 12 27: 12
|
28: 12 30: 12 31: 12 32: 12 34: 12 35: 12
|
36: 12
|
There are 19 hits at base# 12
|
|
XmnI GAANNnnttc
12
|
37: 30 38: 30 39: 30 40: 30 41: 30 42: 30
|
43: 30 44: 30 45: 30 46: 30 47: 30 50: 30
|
There are 12 hits at base# 30
|
|
BsrI NCcagt
12
|
37: 32 38: 32 39: 32 40: 32 41: 32 42: 32
|
43: 32 44: 32 45: 32 46: 32 47: 32 50: 32
|
There are 12 hits at base# 32
|
|
BanII GRGCYc
11
|
37: 51 38: 51 39: 51 40: 51 41: 51 42: 51
|
43: 51 44: 51 45: 51 46: 51 47: 51
|
There are 11 hits at base# 51
|
|
Ecl136I GAGctc
11
|
37: 51 38: 51 39: 51 40: 51 41: 51 42: 51
|
43: 51 44: 51 45: 51 46: 51 47: 51
|
There are 11 hits at base# 51
|
|
SacI GAGCTc
11
|
37: 51 38: 51 39: 51 40: 51 41: 51 42: 51
|
43: 51 44: 51 45: 51 46: 51 47: 51
|
There are 11 hits at base# 51
|
|
[0160]
18
TABLE 206
|
|
|
! Synthetic 3-23 FR3 of human heavy chains showning positions of possible cleavage sites
|
|
|
! Sites engineered into the synthetic gene are shown in upper case DNA
|
! with the RE name between vertical bars (as in Xibal I).
|
! RERSs frequently found in GLGs are shown below the synthetic sequence
|
! with the name to the right (as in gtn ac=MaeIII(24), indicating that
|
! 24 of the 51 GLGs contain the site)
|
! |---FR3---
|
! 89 90 (codon # in
|
! R F synthetic 3-23)
|
|cgc|ttc| 6
|
! Allowed DNA |cgn|tty|
|
! |agr|
|
! ga ntc = HinfI (38)
|
! ga gtc = PleI (18)
|
! ga wtc = TfiI (20)
|
! gtn ac = MaeIII (24)
|
! gts ac = Tsp45I (21)
|
! tc acc = HphI (44)
|
! --------FR3-------------------------------------------------
|
! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
! T I S R D N S K N T L Y L Q M
|
|act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg| 51
|
!allowed|acn|ath|tcn|cgn|gay|aay|tcn|aar|aay|acn|ttr|tay|ttr|car|atg|
|
! |agy|agr| |agy| |ctn| |ctn|
|
! | ga|gac = BsmAI (16) ag ct = AluI (23)
|
! c|tcc ag = BpmI (19) g ctn agc = BlpI (21)
|
! | | g aan nnn ttc = XmnI (12)
|
! |XbaI | tg ca = HpyCH4V (21)
|
!
|
! ---FR3----------------------------------------------------->|
|
! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
! N S L R A E D T A V Y Y C A K
|
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa| 96
|
!allowed|aay|tcn|ttr|cgn|gcn|gar|gay|acn|gcn|gtn|tay|tay|tgy|gcn|aar|
|
! |agy|ctn|agr| | |
|
! | | cc nng g = BsaJI (23) ac ngt = Bst4cI (51)
|
! | aga tct = BglII (10) | ac ngt = HpyCH4III (51)
|
! | Rga tcY = BstYI (11) | ac ngt = TaaI (51)
|
! | | c ayn nnn rtc = MslI (44)
|
! | | cg ryc g = BsiEI (23)
|
! | | yg gcc r = EaeI (23)
|
! | | cg gcc g = EagI (23)
|
! | | |g gcc = HaeIII (25)
|
! | | gag g = MnlI (31)|
|
! |AflII | |PstI |
|
[0161]
19
TABLE 217
|
|
|
Human HG GLG FR1 Sequences
|
|
|
VH Exon-Nucleotide sequence alignment
|
VH1
|
1-02
CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG GCC TCA GTG AAG
|
GTC TCC TGC AAG GCT TCT GGA TAC ACC TTC ACC
|
1-03
cag gtC cag ctT gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
|
gtT tcc tgc aag gct tct gga tac acc ttc acT
|
1-08
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
|
gtc tcc tgc aag gct tct gga tac acc ttc acc
|
1-18
cag gtT cag ctg gtg cag tct ggA gct gag gtg aag cag cct ggg gcc tca gtg aag
|
gtc tcc tgc aag gct tct ggT tac acc ttT acc
|
1-24
cag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
|
gtc tcc tgc aag gTt tcC gga tac acc Ctc acT
|
1-45
cag Atg cag ctg gtg cag tct ggg gct gag gtg aag aag Act ggg Tcc tca gtg aag
|
gtT tcc tgc aag gct tcC gga tac acc ttc acc
|
1-46
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
|
gtT tcc tgc aag gcA tct gga tac acc ttc acc
|
1-58
caA Atg cag ctg gtg cag tct ggg cct gag gtg aag aag cct ggg Acc tca gtg aag
|
gtc tcc tgc aag gct tct gga tTc acc ttT acT
|
1-69
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag
|
gtc tcc tgc aag gct tct gga GGc acc ttc aGc
|
1-e
cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag
|
gtc tcc tgc aag gct tct gga GGc acc ttc aGc
|
1-f
Gag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcT Aca gtg aaA
|
Atc tcc tgc aag gTt tct gga tac acc ttc acc
|
|
VH2
|
2-05
CAG ATC ACC TTG AAG GAG TCT GGT CCT ACG CTG GTG AAA CCC ACA CAG ACC CTC ACG
|
CTG ACC TGC ACC TTC TCT GGG TTC TCA CTC AGC
|
2-26
cag Gtc acc ttg aag gag tct ggt cct GTg ctg gtg aaa ccc aca Gag acc ctc acg
|
ctg acc tgc acc Gtc tct ggg ttc tca ctc agc
|
2-70
cag Gtc acc ttg aag gag tct ggt cct Gcg ctg gtg aaa ccc aca cag acc ctc acA
|
ctg acc tgc acc ttc tct ggg ttc tca ctc agc
|
|
VH3
|
3-07
GAG GTG CAG CTC GTG GAG TCT GGG GGA GGC TTG GTC CAG CCT GGG GGG TCC CTG AGA
|
CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT AGT
|
3-09
gaA gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggC Agg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttt GAt
|
3-11
Cag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc Aag cct ggA ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttC agt
|
3-13
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttC agt
|
3-15
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA Aag cct ggg ggg tcc ctT aga
|
ctc tcc tgt gca gcc tct gga ttc acT ttC agt
|
3-20
gag gtg cag ctg gtg gag tct ggg gga ggT Gtg gtA cGg cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttt GAt
|
3-21
gag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc Aag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttC agt
|
3-23
gag gtg cag ctg Ttg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tac ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttt agC
|
3-30
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttc agt
|
3-30.3
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttC acc ttG agt
|
3-30.5
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttC agt
|
3-33
Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
|
ctc tcc tgt gca gcG tct gga ttc acc ttC agt
|
3-43
gaA gtg cag ctg gtg gag tct ggg gga gTc Gtg gtA cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttt GAt
|
3-48
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttc agt
|
3-49
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag ccA ggg Cgg tcc ctg aga
|
ctc tcc tgt Aca gcT tct qga ttc acc ttt Ggt
|
3-53
gag gtg cag ctg gtg gag Act ggA gga ggc ttg Atc cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct ggG ttc acc GtG agt
|
3-64
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttG agt
|
3-66
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc GtC agt
|
3-72
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggA ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttC agt
|
3-73
gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aAa
|
ctc tcc tgt gca gcc tct ggG ttc acc ttc agt
|
3-74
gag gtg cag ctg gtg gag tcC ggg gga ggc ttA gtT cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc ttG agt
|
3-d
gag gtg cag ctg gtg gag tct Cgg gga gTc ttg gtA cag cct ggg ggg tcc ctg aga
|
ctc tcc tgt gca gcc tct gga ttc acc GtC agt
|
|
VH4
|
4-04
GAG GTG GAG CTG GAG GAG TGG CCC GGA CGA CTG GTG AAG CCT TCG GGG ACC CTG TCC
|
CTC AGC TGC GGT GTC TCT GGT CCC TCC ATC AGC
|
4-28
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAG acc ctg tcc
|
ctc acc tgc gct gtc tct ggt TAc tcc atc agc
|
4-30.1
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA GAg acc ctg tcc
|
ctc acc tgc Act gtc tct ggt ggc tcc atc agc
|
4-30.2
cag Ctg cag ctg cag gag tcG ggc Tca gga ctg gtg aag cct tcA GAg acc ctg tcc
|
ctc acc tgc gct gtc tct ggt ggc tcc atc agc
|
4-30.4
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA GAg acc ctg tcc
|
ctc acc tgc Act gtc tct ggt ggc tcc atc agc
|
4-31
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc
|
ctc acc tgc Act gtc tct ggt ggc tcc atc agc
|
4-34
cag gtg cag ctA cag Cag tGg ggc Gca gga ctg Ttg aag cct tcg gAg acc ctg tcc
|
ctc acc tgc gct gtc tAt ggt ggG tcc Ttc agT
|
4-39
cag Ctg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
|
ctc acc tgc Act gtc tct ggt ggc tcc atc agc
|
4-59
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
|
ctc acc tgc Act gtc tct ggt ggc tcc atc agT
|
4-61
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
|
ctc acc tgc Act gtc tct ggt ggc tcc Gtc agc
|
4-b
cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
|
ctc acc tgc gct gtc tct ggt TAc tcc atc agc
|
|
VH5
|
5-51
GAG GTG CAG CTG GTG CAG TCT GGA GCA GAG GTG AAA AAG CCC GGG GAG TCT CTG AAG
|
ATC TCC TGT AAG GGT TCT GGA TAC AGC TTT ACC
|
5-a
gaA gtg cag ctg gtg cag tct gga gca gag gtg aaa aag ccc ggg gag tct ctg aGg
|
atc tcc tgt aag ggt tct gga tac agc ttt acc
|
|
VH6
|
6-1
CAG GTA CAG CTG CAG CAG TCA GCT CCA GGA CTG GTG AAG CCC TCG CAG ACC CTC TCA
|
CTC ACC TGT GCC ATC TCC GGG GAC AGT GTC TCT
|
|
VH7
|
7-4.1
CAG GTG CAG CTG GTG CAA TCT GGG TCT GAG TTG AAG AAG CCT GGG GCC TCA GTG AAG
|
GTT TCC TGC AAG GCT TCT GGA TAC ACC TTC ACT
|
|
[0162]
20
TABLE 220
|
|
|
RERS Sites in Human HC GLG FR1s where there are
|
at least 20 GLGs cut
|
|
|
Bsg1 GTGCAG 71 (cuts 16 14 bases to right)
|
|
1: 4 1: 13 2: 13 3: 4 3:13 4: 13
|
6: 13 7: 4 7: 13 8: 13 9: 4 9: 13
|
10: 4 10: 13 15: 4 15: 65 16: 4 16: 65
|
27: 4 17: 65 18: 4 18: 65 19: 4 19: 65
|
20: 4 20: 65 21: 4 21: 65 22: 4 22: 65
|
23: 4 23: 65 24: 4 24: 65 25: 4 25: 65
|
26: 4 26: 65 27: 4 27: 65 28: 4 28: 65
|
29: 4 30: 4 30: 65 31: 4 31: 65 32: 4
|
32: 65 33: 4 33: 65 34: 4 34: 65 35: 4
|
35: 65 36: 4 36: 65 37: 4 38: 4 39: 4
|
41: 4 42: 4 43: 4 45: 4 46: 4 47: 4
|
48: 4 48: 13 49: 4 49: 13 51: 4
|
|
There are 39 hits at base# 4
|
There are 21 hits at base#65
|
|
-″- ctgcac 9
|
12: 63 13: 63 14: 63 39: 63 41: 63 42: 63
|
44: 63 45: 63 46: 63
|
|
BbvI GCAGC 65
|
1: 6 3: 6 6: 6 7: 6 8: 6 9: 6
|
10: 6 15: 6 15: 67 16: 6 16: 67 17: 6
|
17: 67 18: 6 18: 67 19: 6 19: 67 20: 6
|
20: 67 21: 6 21: 67 22: 6 22: 67 23: 6
|
23: 67 24: 6 24: 67 25: 6 25: 67 26: 6
|
26: 67 27: 6 27: 67 28: 6 28: 67 29: 6
|
30: 6 30: 67 31: 6 31: 67 32: 6 32: 67
|
33: 6 33: 67 34: 6 34: 67 35: 6 35: 67
|
36: 6 36: 67 37: 6 38: 6 39: 6 40: 6
|
41: 6 42: 6 43: 6 44: 6 45: 6 46: 6
|
47: 6 48: 6 49: 6 50: 12 51: 6
|
|
There are 43 hits at base#6 Bolded sites very near sites
|
listed below
|
There are 21 hits at base#67
|
|
-″- gctgc 13
|
37: 9 38: 9 39: 9 40: 3 40: 9 41: 9
|
42: 9 44: 3 44: 9 45: 9 46: 9 47: 9
|
50: 9
|
|
There are 11 hits at base#9
|
|
BsoFI GCngc 78
|
1: 6 3: 6 6: 6 7: 6 8: 6 9: 6
|
10: 6 15: 6 15: 67 16: 6 16: 67 17: 6
|
17: 67 18: 6 18: 67 19: 6 19: 67 20: 6
|
20: 67 21: 6 21: 67 22: 6 22: 67 23: 6
|
23: 67 24: 6 24: 67 25: 6 25: 67 26: 6
|
26: 67 27: 6 27: 67 28: 6 28: 67 29: 6
|
30: 6 30: 67 31: 6 31: 67 32: 6 32: 67
|
33: 6 33: 67 34: 6 34: 67 35: 6 35: 67
|
36: 6 36: 67 37: 6 37: 9 38: 6 38: 9
|
39: 6 39: 9 40: 3 40: 6 40: 9 41: 6
|
41: 9 42: 6 42: 9 43: 6 44: 3 44: 6
|
44: 9
45: 6 45: 9 46: 6 46: 9 47: 6
|
47: 9
48: 6 49: 6 50: 9 50: 12 51: 6
|
|
There are 43 hits at base#6 These of ten occur together.
|
There are 11 hits at base#9
|
There are 2 hits at base#3
|
There are 21 hits at base#67
|
|
TseI Gcwgc 78
|
1: 6 3: 6 6: 6 7: 6 8: 6 9: 6
|
10: 6 15: 6 15: 67 16: 6 16: 67 17: 6
|
17: 67 18: 6 18: 67 19: 6 19: 67 20: 6
|
20: 67 21: 6 21: 67 22: 6 22: 67 23: 6
|
23: 67 24: 6 24: 67 25: 6 25: 67 26: 6
|
26: 67 27: 6 27: 67 28: 6 28: 67 29: 6
|
30: 6 30: 67 31: 6 31: 67 32: 6 32: 67
|
33: 6 33: 67 34: 6 34: 67 35: 6 35: 67
|
36: 6 36: 67 37: 6 37: 9 38: 6 38: 9
|
39: 6 39: 9
40: 3 40: 6 40: 90 41: 6
|
41: 9
42: 6 42: 9 43: 6 44: 3 44: 6
|
44: 9
45: 6 45: 9 46: 6 46: 9 47: 6
|
47: 9
48: 6 49: 6 50: 9 50: 12 51: 6
|
|
There are 43 hits at base#6 Often together.
|
There are 11 hits at base#9
|
There are 2 hits at base#3
|
There are 1 hits at base#12
|
There are 21 hits at base#67
|
|
MspAlI CMGckg 48
|
1: 7 3: 7 4: 7 5: 7 6: 7 7: 7
|
8: 7 9: 7 10: 7 11: 7 15: 7 16: 7
|
17: 7 18: 7 19: 7 20: 7 21: 7 22: 7
|
23: 7 24: 7 25: 7 26: 7 27: 7 28: 7
|
29: 7 30: 7 31: 7 32: 7 33: 7 34: 7
|
35: 7 36: 7 37: 7 38: 7 39: 7 40: 1
|
40: 7
41: 7 42: 7 44: 1 44: 7 45: 7
|
46: 7 47: 7 48: 7 49: 7 50: 7 51: 7
|
|
There are 46 hits at base#7
|
|
PvuII CAGctg 48
|
1: 7 3: 7 4: 7 5: 7 6: 7 7: 7
|
8: 7 9: 7 10: 7 11: 7 15: 7 16: 7
|
17: 7 18: 7 19: 7 20: 7 21: 7 22: 7
|
23: 7 24: 7 25: 7 26: 7 27: 7 28: 7
|
29: 7 30: 7 31: 7 32: 7 33: 7 34: 7
|
35: 7 36: 7 37: 7 38: 7 39: 7 40: 1
|
40: 7
41: 7 42: 7 44: 1 44: 7 45: 7
|
46: 7 47: 7 48: 7 49: 7 50: 7 51: 7
|
|
There are 46 hits at base#7
|
There are 2 hits at base#1
|
|
AluI AGct 54
|
1: 8 2: 8 3: 8 4: 8 4: 24 5: 8
|
6: 8 7: 8 8: 8 9: 8 10: 8 11: 8
|
15: 8 16: 8 17: 8 18: 8 19: 8 20: 8
|
21: 8 22: 8 23: 8 24: 8 25: 8 26: 8
|
27: 8 28: 8 29: 8 29: 69 30: 8 31: 8
|
32: 8 33: 8 34: 8 35: 8 36: 8 37: 8
|
38: 8 39: 8 40: 2 40: 8 41: 8 42: 8
|
43: 8 44: 2 44: 8 45: 8 46: 8 47: 8
|
48: 8 48: 82 49: 8 49: 82 50: 8 51: 8
|
|
There are 48 hits at base#8
|
There are 2 hits at base#2
|
|
DdeI Ctnag 48
|
1: 26 1: 48 2: 26 2: 48 3: 26 3: 48
|
4: 26 4: 48 5: 26 5: 48 6: 26 6: 48
|
7: 26 7: 48 8: 26 8: 48 9: 26 10: 26
|
11: 26 12: 85 13: 85 14: 85 15: 52 16: 52
|
17: 52 18: 52 19: 52 20: 52 21: 52 22: 52
|
23: 52 24: 52 25: 52 26: 52 27: 52 28: 52
|
29: 52 30: 52 31: 52 32: 52 33: 52 35: 30
|
35: 52 36: 52 40: 24 49: 52 51: 26 51: 48
|
|
There are 22 hits at base#52 52 and 48 never together.
|
There are 9 hits at base#48
|
There are 12 hits at base#26 26 and 24 never together.
|
|
HphI tcacc 42
|
1: 86 3: 86 6: 86 7: 86 8: 80 11: 86
|
12: 5 13: 5 14: 5 15: 80 16: 80 17: 80
|
18: 80 20: 80 21: 80 22: 80 23: 80 24: 80
|
25: 80 26: 80 27: 80 28: 80 29: 80 30: 80
|
31: 80 32: 80 33: 80 34: 80 35: 80 36: 80
|
37: 59 38: 59 39: 59 40: 59 41: 59 42: 59
|
43: 59 44: 59 45: 59 46: 59 47: 59 50: 59
|
|
There are 22 hits at base#80 80 and 86 never together
|
There are 5 hits at base#86
|
There are 12 hits at base#59
|
|
BssKI Nccngg 50
|
1: 39 2: 39 3: 39 4: 39 5: 39 7: 39
|
8: 39 9: 39 10: 39 11: 39 15: 39 16: 39
|
17: 39 18: 39 19: 39 20: 39 21: 29 21: 39
|
22: 39 23: 39 24: 39 25: 39 26: 39 27: 39
|
28: 39 29: 39 30: 39 31: 39 32: 39 33: 39
|
34: 39 35: 19 35: 39 36: 39 37: 24 38: 24
|
39: 24 41: 24 42: 24 44: 24 45: 24 46: 24
|
47: 24 48: 39 48: 40 49: 39 49: 40 50: 24
|
50: 73 51: 39
|
|
There are 35 hits at base#39 39 and 40 together twice.
|
There are 2 hits at base#40
|
|
BsaJI Ccnngg 47
|
1: 40 2: 40 3: 40 4: 40 5: 40 7: 40
|
8: 40 9: 40 9: 47 10: 40 10: 47 11: 40
|
15: 40 18: 40 19: 40 20: 40 21: 40 22: 40
|
23: 40 24: 40 25: 40 26: 40 27: 40 28: 40
|
29: 40 30: 40 31: 40 32: 40 34: 40 35: 20
|
35: 40 36: 40 37: 24 38: 24 39: 24 41: 24
|
42: 24 44: 24 45: 24 46: 24 47: 24 48: 40
|
48: 41
49: 40 49: 41 50: 74 51: 40
|
|
There are 32 hits at base#40 40 and 41 together twice
|
There are 2 hits at base#41
|
There are 9 hits at base#24
|
There are 2 hits at base#47
|
|
BstNI Ccwgg 44
|
PspGI ccwgg
|
ScrFI ($M.HpaII) CCwgg
|
1: 40 2: 40 3: 40 4: 40 5: 40 7: 40
|
8: 40 9: 40 10: 40 11: 40 15: 40 16: 40
|
17: 40 18: 40 19: 40 20: 40 21: 30 21: 40
|
22: 40 23: 40 24: 40 25: 40 26: 40 27: 40
|
28: 40 29: 40 30: 40 31: 40 32: 40 33: 40
|
34: 40 35: 40 36: 40 37: 25 38: 25 39: 25
|
41: 25 42: 25 44: 25 45: 25 46: 25 47: 25
|
50: 25 51: 40
|
|
There are 33 hits at base#40
|
|
ScrFI CCngg 50
|
1: 40 2: 40 3: 40 4: 40 5: 40 7: 40
|
8: 40 9: 40 10: 40 11: 40 15: 40 16: 40
|
17: 40 18: 40 19: 40 20: 40 21: 30 21: 40
|
22: 40 23: 40 24: 40 25: 40 26: 40 27: 40
|
28: 40 29: 40 30: 40 31: 40 32: 40 33: 40
|
34: 40 35: 20 35: 40 36: 40 37: 25 38: 25
|
39: 25 41: 25 42: 25 44: 25 45: 25 46: 25
|
47: 25 48: 40 48: 41 49: 40 49: 41 50: 25
|
50: 74 51: 40
|
|
There are 35 hits at base#40
|
There are 2 hits at base#41
|
|
Eco01091 RGgnccy 34
|
1: 43 2: 43 3: 43 4: 43 5: 43 6: 43
|
7: 43 8: 43 9: 43 10: 43 15: 46 16: 46
|
17: 46 18: 46 19: 46 20: 46 21: 46 22: 46
|
23: 46 24: 46 25: 46 26: 46 27: 46 28: 46
|
30: 46 31: 46 32: 46 33: 46 34: 46 35: 46
|
36: 46 37: 46 43: 79 51: 43
|
|
There are 22 hits at base#46 46 and 43 never together
|
There are 11 hits at base#43
|
|
NlaIV GGNncc 71
|
1: 43 2: 43 3: 43 4: 43 5: 43 6: 43
|
7: 43 8: 43 9: 43 9: 79 10: 43 10: 79
|
15: 46 15: 47
16: 47 17: 46 17: 47 18: 46
|
18: 47
19: 46 19: 47 20: 46 20: 47 21: 46
|
21: 47
22: 46 22: 47 23: 47 24: 47 25: 47
|
26: 47 27: 46 27: 47 28: 46 28: 47 29: 47
|
30: 46 30: 47
31: 46 31: 47 32: 46 32: 47
|
33: 46 33: 47
34: 46 34: 47 35: 46 35: 47
|
36: 46 36: 47
37: 21 37: 46 37: 47 37: 79
|
38: 21 39: 21 39: 79 40: 79 41: 21 41: 79
|
42: 21 42: 79 43: 79 44: 21 44: 79 45: 21
|
45: 79 46: 21 46: 79 47: 21 51: 43
|
|
There are 23 hits at base#47 46 & 47 often together
|
There are 17 hits at base#46 There are 11 hits at base#43
|
|
Sau96I Ggncc 70
|
1: 44 2: 3 2: 44 3: 44 4: 44 5: 3 5: 44 6: 44
|
7: 44 8: 22 8: 44 9: 44 10: 44 11: 3 12: 22 13: 22
|
14: 22 15: 33 15: 47 16: 47 17: 47 18: 47 19: 47 20: 47
|
21: 47 22: 47 23: 33 23: 47 24: 33 24: 47 25: 33 25: 47
|
26: 33 26: 47 27: 47 28: 47 29: 47 30: 47 31: 33 31: 47
|
32: 33 32: 47 33: 33 33: 47 34: 33 34: 47 35: 47 36: 47
|
37: 21 37: 22
37: 47 38: 21 38: 22 39: 21 39: 22 41: 21
|
41: 22 42: 21 42: 22 43: 80 44: 21 44: 22 45: 21 45: 22
|
46: 21 46: 22 47: 21 47: 22 50: 22 51: 44
|
|
There are 23 hits at base#47 These do not occur together.
|
There are 11 hits at base#44
|
There are 14 hits at base#22 These do occur together.
|
There are 9 hits at base#21
|
|
BsmAI GTCTCNnnnn 22
|
1: 58 3: 58 4: 58 5: 58 8: 58 9: 58
|
10: 58 13: 70 36: 18 37: 70 38: 70 39: 70
|
40: 70 41: 70 42: 70 44: 70 45: 70 46: 70
|
47: 70 48: 48 49: 48 50: 85
|
|
There are 11 hits at base#70
|
|
-″- Nnnnnngagac 27
|
13: 40 15: 48 16: 48 17: 48 18: 48 20: 48
|
21: 48 22: 48 23: 48 24: 48 25: 48 26: 48
|
27: 48 28: 48 29: 48 30: 10 30: 48 31: 48
|
32: 48 33: 48 35: 48 36: 48 43: 40 44: 40
|
45: 40 46: 40 47: 40
|
|
There are 20 hits at base#48
|
|
AvaII Ggwcc 44
|
Sau96I($M.HaeIII) Ggwcc 44
|
2: 3 5: 3 6: 44 8: 44 9: 44 10: 44
|
11: 3 12: 22 13: 22 14: 22 15: 33 15: 47
|
16: 47 17: 47 18: 47 19: 47 20: 47 21: 47
|
22: 47 23: 33 23: 47 24: 33 24: 47 25: 33
|
25: 47 26: 33 26: 47 27: 47 28: 47 29: 47
|
30: 47 31: 33 31: 47 32: 33 32: 47 33: 33
|
33: 47 34: 33 34: 47 35: 47 36: 47 37: 47
|
43: 80 50: 22
|
|
There are 23 hits at base#47 44 & 47 never together
|
There are 4 hits at base#44
|
|
PpuMI RGgwccy 27
|
6: 43 8: 43 9: 43 10: 43 15: 46 16: 46
|
17: 46 18: 46 19: 46 20: 46 21: 46 22: 46
|
23: 46 24: 46 25: 46 26: 46 27: 46 28: 46
|
30: 46 31: 46 32: 46 33: 46 34: 46 35: 46
|
36: 46 37: 46 43: 79
|
|
There are 22 hits at base#46 43 and 46 never occur together.
|
There are 4 hits at base#43
|
|
BsmFI GGGAC 3
|
8: 43 37: 46 50: 77
|
-″- gtccc 33
|
15: 48 16: 48 17: 48 1: 0 1: 0 20: 48
|
21: 48 22: 48 23: 48 24: 48 25: 48 26: 48
|
27: 48 28: 48 29: 48 30: 48 31: 48 32: 48
|
33: 48 34: 48 35: 48 36: 48 37: 54 38: 54
|
39: 54 40: 54 41: 54 42: 54 43: 54 44: 54
|
45: 54 46: 54 47: 54
|
|
There are 20 hits at base#48
|
There are 11 hits at base#54
|
|
HinfI Ganto 80
|
8: 77 12: 16 13: 16 14: 16 15: 16 15: 56
|
15: 77 16: 16 16: 56 16: 77 17: 16 17: 56
|
17: 77 18: 16 18: 56 18: 77 19: 16 19: 56
|
19: 77 20: 16 20: 56 20: 77 21: 16 21: 56
|
21: 77 22: 16 22: 56 22: 77 23: 16 23: 56
|
23: 77 24: 16 24: 56 24: 77 25: 16 25: 56
|
25: 77 26: 16 26: 56 26: 77 27: 16 27: 26
|
27: 56 27: 77 28: 16 28: 56 28: 77 29: 16
|
29: 56 29: 77 30: 56 31: 16 31: 56 31: 77
|
32: 16 32: 56 32: 77 33: 16 33: 56 33: 77
|
34: 16 35: 16 35: 56 35: 77 36: 16 36: 26
|
36: 56 36: 77 37: 16 38: 16 39: 16 40: 16
|
41: 16 42: 16 44: 16 45: 16 46: 16 47: 16
|
48: 46 49: 46
|
|
There are 34 hits at base#16
|
|
TfiI Gawtc 21
|
8: 77 15: 77 16: 77 17: 77 18: 77 19: 77
|
20: 77 21: 77 22: 77 23: 77 24: 77 25: 77
|
26: 77 27: 77 28: 77 29: 77 31: 77 32: 77
|
33: 77 35: 77 36: 77
|
|
There are 21 hits at base#77
|
|
MlyI GAGTC 38
|
12: 16 13: 16 14: 16 15: 16 16: 16 17: 16
|
18: 16 19: 16 20: 16 21: 16 22: 16 23: 16
|
24: 16 25: 16 26: 16 27: 16 27: 26 28: 16
|
29: 16 31: 16 32: 16 33: 16 34: 16 35: 16
|
36: 16 36: 26 37: 16 38: 16 39: 16 40: 16
|
41: 16 42: 16 44: 16 45: 16 46: 16 47: 16
|
48: 46 49: 46
|
|
There are 34 hits at base#16
|
|
-″- GACTC 21
|
15: 56 16: 56 17: 56 18: 56 19: 56 20: 56
|
21: 56 22: 56 23: 56 24: 56 25: 56 26: 56
|
27: 56 28: 56 29: 56 30: 56 31: 56 32: 56
|
33: 56 35: 56 36: 56
|
|
There are 21 hits at base#56
|
|
PleI gagtc 38
|
12: 16 13: 16 14: 16 15: 16 16: 16 17: 16
|
18: 16 19: 16 20: 16 21: 16 22: 16 23: 16
|
24: 16 25: 16 26: 16 27: 16 27: 26 28: 16
|
29: 16 31: 16 32: 16 33: 16 34: 16 35: 16
|
36: 16 36: 26 37: 16 38: 16 39: 16 40: 16
|
41: 16 42: 16 44: 16 45: 16 46: 16 47: 16
|
48: 46 49: 46
|
|
There are 34 hits at base#16
|
|
-″- gactc 21
|
15: 56 16: 56 17: 56 18: 56 19: 56 20: 56
|
21: 56 22: 56 23: 56 24: 56 25: 56 26: 56
|
27: 56 28: 56 29: 56 30: 56 31: 56 32: 56
|
33: 56 35: 56 36: 56
|
|
There are 21 hits at base#56
|
|
AlwNI CAGNNNctg 26
|
15: 68 16: 68 17: 68 18: 68 19: 68 20: 68
|
21: 68 22: 68 23: 68 24: 68 25: 68 26: 68
|
27: 68 28: 68 29: 68 30: 68 31: 68 32: 68
|
33: 68 34: 68 35: 68 36: 68 39: 46 40: 46
|
41: 46 42: 46
|
|
There are 22 hits at base#69
|
|
[0163]
21
TABLE 255
|
|
|
Analysis of frequency of matching REdaptors in actual V genes
|
|
|
A: HpyCH4V in HC at bases 35-56
|
|
Number of mismatches.....................Number
|
Id
Ntot
0
1
2
3
4
5
6
7
8
9
10
Cut
Id
Probe
|
|
1
510
5
11
274
92
61
25
22
11
1
3
5
443
6-1
agttctcccTGCAgctgaactc
|
2
192
54
42
32
24
15
2
3
10
3
1
6
167
3-11
cactqtatcTGCAaatgaacag
|
3
58
19
7
17
6
5
1
0
1
0
2
0
54
3-09
ccctgtatcTGCAaatgaacag
|
4
267
42
33
9
8
8
82
43
22
8
11
1
100
5-51
ccgcctaccTGCAgtggagcag
|
5
250
111
59
41
24
7
5
1
0
0
2
0
242
3-15
cgctgtatcTGCAaatgaaaag
|
6
7
0
2
0
1
0
0
0
0
0
4
0
3
7-4.1
cggcatatcTGCAgatctgcag
|
7
7
0
2
2
0
0
2
1
0
0
0
0
4
3-73
cggcgtatcTGCAaatgaacag
|
8
26
10
4
1
3
1
2
1
3
1
0
0
19
5-a
ctgcctaccTGCAgtggagcag
|
9
21
8
2
3
1
6
1
0
0
0
0
0
20
3-49
tcgcctatcTGCAaatgaacag
|
1338
249
162
379
149
103
120
71
47
13
23
12
1052
|
249
411
790
939
1162
1280
1316
|
1042
1233
1293
1338+TZ,1 59
|
|
Id
Probe
dotted probe+TZ,1 59
|
6-1
agttctcccTGCAgctgaactc
agttctcccTGCAgctgaactc
|
3-11
cactgtatcTGCAaatgaacag
cac.g.at.....aa.....ag
|
3-09
ccctgtatcTGCAaatgaacag
ccc.g.at.....aa.....ag
|
5-51
ccgcctaccTGCAgtggagcag
ccgc..a.......tg..g.ag
|
3-15
cgctgtatcTGCAaatgaacag
c.c.g.at.....aa.....ag
|
7-4.1
cggcatatcTGCAqatctgcag
c.gca.at......a.ctg.ag
|
3-73
cggcgtatcTGCAaatgaacag
c.gcg.at.....aa.....ag
|
5-a
ctgcctaccTGCAgtggagcag
ctgc..a.......tg..g.ag
|
3-49
tcgcctatcTGCAaatgaacag
tcgc..at.....aa.....ag+TZ,1 59
|
|
Seqs with the expected RE site only.......1004
|
(Counts only cases with 4 or fewer mismatches)
|
Seqs with only an unexpected site......... 0
|
Seqs with both expected and unexpected.... 48
|
(Counts only cases with 4 or fewer mismatches)
|
Seqs with no sites........................ 0
|
|
B: BlpI in HC
|
|
Id
Ntot
0
1
2
3
4
5
6
7
8
Ncut
Name
|
|
/1
133
/73
/16
/11
/13
//6
//9
//1
//4
//0
119
1-58
acatggaGCTGAGCagactgag
|
/2
/14
/11
//1
//0
//0
//0
//0
//1
//0
//1
//12
1-02
acatggagctgagcaggctgag
|
/3
/34
/17
//8
// 2
//6
//1
//0
//0
//0
//0
//0
1-18
acatggagctgaggagcctgag
|
/4
120
/50
/32
/16
/10
//9
//1
//1
//1
//0
//2
5-51
acctgcagtggagcagcctgaa
|
/5
/55
/13
/11
/10
/17
//3
//1
//0
//0
//0
//0
3-15
atctgcaaatgaacagcctgaa
|
/6
340
186
/88
/41
/15
//6
//3
//0
//1
//0
//0
3303
atctgcaaatgaacagcctgag
|
/7
/82
/25
/16
/25
/12
//1
//3
//0
//0
//0
//0
3-20
atctgcaaatgaacagtctgag
|
/8
//3
// 0
//2
//0
//1
//0
//0
//0
//0
//0
//0
74.1
atctgcagatctgcagcctaaa
|
/9
/23
/18
//2
//2
//1
//0
//0
//0
//0
//0
//0
3-66
atcttcaaatgaacagcctgag
|
10
//2
//1
//0
//1
//0
//0
//0
//0
//0
//0
//0
3-64
atcttcaaatgggcagcctgag
|
11
486
249
/78
/81
/38
/21
/10
//4
//4
//1
467
4301
ccctgaagctgagctctgtgac
|
12
/16
//6
//3
//1
//0
//1
//1
//3
//1
//0
//1
6-1
ccctgcagctgaactctgtgac
|
13
/28
/15
//8
//2
//2
//1
//0
//0
//0
//0
//0
2-70
tccttacaatgaccaacatgga
|
14
//2
//0
//2
//0
//0
//0
//0
//0
//0
//0
//0
2-26
tccttaccatgaccaacatgga
|
601
|
|
Name
Full sequence
Dot mode
|
|
1-58
acatggaGCTGAGCagcctgag
acatggaGCTGAGCagcctgag
|
1-02
acatggagctgagcaggctgag
................g.....
|
1-18
acatggagctgaggagcctgag
.............g........
|
5-51
acctgcagtggagcagcctgaa
..c..c..tg...........a
|
3-15
atctgcaaatgaacagcctgaa
.tc..c.aa...a........a
|
3-30.3
atctgcaaatgaacagcctgag
.tc..c.aa...a.........
|
3-20
atctgcaaatgaacagtctgag
.tc..c.aa...a...t.....
|
7-4.1
atctgcagatctgcagcctaaa
.tc..c..a.ct.......a.a
|
3-66
atcttcaaatgaacagcctgag
.tc.tc.aa...a.........
|
3-64
atcttcaaatgggcagcctgag
.tc.tc.aa..g..........
|
4-30.1
ccctgaagctgagctctgtgac
c.c..a........tctg...c
|
6-1
ccctgcagctgaactctgtgac
c.c..c......a.tctg...c
|
2-70
tccttacaatgaccaacatgga
t.c.tacaa...c..a.a..ga
|
2-26
tccttaccatgaccaacatgga
t.c.tacca...c..a.a..ga
|
|
Seqs with the expected RE site only....... 597 (counting sequences with 4 or fewer mismatches)
|
Seqs with only an unexpected site......... 2
|
Seqs with both expected and unexpected.... 2
|
Seqs with no sites........................ 686
|
|
C: HpyCH4III, Bst4CI, or TaaI in HC
|
|
In scoring whether the RE site of interest is present, only ONs that have 4 or fewer mismatches are counted.
|
|
Number of sequences.......... 1617
|
|
Id
Ntot
0
1
2
3
4
5
6
7
8
Ncut
acngt
acngt
|
1
244
79
92
43
18
10
1
2
0
0
241
102#1,1
ccgtgtattACTGTgcgagaga
ccgtgtattactgtgcgagaga
|
2
457
69
150
115
66
34
11
8
3
1
434
103#2,3
ctqtgtattaatgtgcgaqaga
.t....................
|
3
173
52
45
36
22
14
3
0
0
1
169
108#3
ccgtgtattactgtgcgagagg
.....................g
|
4
16
0
3
2
2
1
6
0
1
1
8
124#5,1
ccgtgtattactgtgcaacaga
................a.c...
|
5
4
0
0
1
0
1
1
0
1
0
2
145#6
ccatgtattactgtgcaagata
..a.............a...t.
|
6
15
1
0
1
0
6
4
1
1
1
8
158#8
ccgtgtattactgtgcggcaga
.................gc...
|
7
23
4
8
5
2
2
1
1
0
0
21
205#12
ccacatattactgtgcacacag
..aca...........acacag
|
8
9
1
1
1
0
3
2
1
0
0
6
226#13
ccacatattactgtgcacggat
..aca...........ac.gat
|
9
7
1
3
1
1
0
0
1
0
0
6
270#14
ccacgtattactgtgcacggat
..ac............ac.gat
|
10
23
7
3
5
5
2
1
0
0
0
22
309#16,
ccttgtattactgtgcaaaaga
..t.............a.a...
|
11
35
5
10
7
6
3
3
0
1
0
31
313#18,
ctgtgtattactgtgcaagaga
.t..............a.....
|
12
18
2
3
2
2
6
1
0
2
0
15
315#19
ccgtgtattactgtaccacaga
..............a.c.c...
|
13
3
1
2
0
0
0
0
0
0
0
3
320#20
ccttgtatcactgtgcgagaga
..tc.....c............
|
14
117
29
23
28
22
8
4
2
1
0
110
323#22
ccgtatattactgtgcgaaaga
....a.............a...
|
15
75
21
25
13
9
1
4
2
0
0
69
330#23,
ctgtgtattactgtgcgaaaga
.t................a...
|
16
14
2
2
2
3
0
3
1
1
0
9
349#29
ccgtgtattactgtactagaga
..............a.t.....
|
17
2
0
0
1
0
0
1
0
0
0
1
372#33
ccgtgtattactgtgctagaga
................t.....
|
18
1
0
0
1
0
0
0
0
0
0
1
373#34
ccgtgtattactgtactagaca
..............a.t...c.
|
19
2
0
0
0
0
0
0
0
0
2
0
3d#36
ctgtgtattactgtaagaaaga
.t............aa..a...
|
20
34
4
9
9
4
5
3
0
0
0
31
428#38
ccgtgtattactgtgcgagaaa
....................a.
|
21
17
5
4
2
2
3
1
0
0
0
16
4302#40
ccgtgtattactgtgccagaga
................c.....
|
22
75
15
17
24
7
10
1
1
0
0
73
439#44
ctgtgtattactgtgcgagaca
.t..................c.
|
23
40
14
15
4
5
1
0
1
0
0
39
551#48
ccatgtattactgtgcgagaca
..a.................c.
|
24
213
26
56
60
42
20
7
2
0
0
204
5a#49
ccatatattactgtgcgagaAA
..a.................AA
|
|
|
Group
337
471
363
218
130
58
23
11
6
|
Cumulative
337
808
1171
1389
1519
1577
1600
1611
1617
|
Seqs with the expected RS site only.......1511
|
Seqs with only an unexpected site......... 0
|
|
[0164]
22
|
|
Seqs with both expected and unexpected....8
|
Seqs with no sites........................0
|
|
Analysis repeated using only 8 best REdaptors
|
Id
Ntot
0
1
2
3
4
5
6
7
8+
|
|
1
301
78
101
54
32
16
9
10
1
0
281
102#1
ccgtgtattactgtgcgagaga
|
|
2
493
69
155
125
73
37
14
11
3
6
459
103#2
ctgtgtattactgtgcgagaga
|
|
3
189
52
45
38
23
18
5
4
1
3
176
108#3
ccgtgtattactgtgcgagagg
|
|
4
127
29
23
28
24
10
6
5
2
0
114
323#22
ccgtatattactgtgcgaaaga
|
|
5
78
21
25
14
11
1
4
2
0
0
72
330#23
ctgtgtattactgtgcgaaaga
|
|
6
79
15
17
25
8
11
1
2
0
0
76
439#44
ctgtgtattactgtgcgagaca
|
|
7
43
14
15
5
5
3
0
1
0
0
42
551#48
ccatgtattactgtgcgagaca
|
|
8
307
26
63
72
51
38
24
14
13
6
250
5a#49
ccatgtattactgtgcgaga
|
|
|
1
102#1
ccgtgtattactgtgcgagaga ccgtgtattactgtgcgagaga
|
|
2
103#2
ctgtgtattactgtgcgagaga .t....................
|
|
3
108#3
ccgtgtattactgtgcgagagg .....................g
|
|
4
323#22
ccgtatattactgtgcgaaaga ....a.............a...
|
|
5
330#23
ctgtgtattactgtgcgaaaga .t................a...
|
|
6
439#44
ctgtgtattactgtgcgagaca .t.................c.
|
|
7
551#48
ccatgtattactgtgcgagaca ..a.................c.
|
|
8
5a#49
ccatgtattactgtgcgagaAA ..a.................AA
|
|
|
Segs with the expected RE site only........1463/1617
|
Segs with only an unexpected site.......... 0
|
Segs with both expected and unexpected..... 7
|
Segs with no sites......................... 0
|
|
[0165]
23
TABLE 300
|
|
|
Kappa FR1 GLGs
|
|
|
! 1 2 3 4 5 6 7 8 9 10 11 12
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT
|
|
! 13 14 15 16 17 18 19 20 21 22 23
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! O12
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! O2
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCG CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! O18
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! O8
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! A20
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! A30
|
|
AAC ATC CAG ATG ACC CAG TCT CCA TCT GCC ATG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT ! L14
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCA CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT ! L1
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCC TCA CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT ! L15
|
|
GCC ATC CAG TTG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! L4
|
|
GCC ATC CAG TTG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! L18
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCT TCC GTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT ! L5
|
|
GAC ATC CAG ATG ACC CAG TCT CCA TCT TCT GTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT ! L19
|
|
GAC ATC CAG TTG ACC CAG TCT CCA TCC TTC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! L8
|
|
GCC ATC CGG ATG ACC CAG TCT CCA TTC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! L23
|
|
GCC ATC CGG ATG ACC CAG TCT CCA TCC TCA TTC TCT
|
GCA TCT ACA GGA GAC AGA GTC ACC ATC ACT TGT ! L9
|
|
GTC ATC TGG ATG ACC CAG TCT CCA TCC TTA CTC TCT
|
GCA TCT ACA GGA GAC AGA GTC ACC ATC AGT TGT ! L24
|
|
GCC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! L11
|
|
GAC ATC CAG ATG ACC GAG TCT CCT TCC ACC CTG TCT !
|
GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC ! L12
|
|
GAT ATT GTG ATG ACC CAG ACT CCA CTC TCC CTG CCC
|
GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC ! O11
|
|
GAT ATT GTG ATG ACC CAG ACT CCA CTC TCC CTG CCC
|
GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC ! O1
|
|
GAT GTT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC
|
GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC ! A17
|
|
GAT GTT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC
|
GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC ! A1
|
|
GAT ATT GTG ATG ACC CAG ACT CCA CTC TCT CTG TCC
|
GTC ACC CCT GGA CAG CCG GCC TCC ATC TCC TGC ! A18
|
|
GAT ATT GTG ATG ACC CAG ACT CCA CTC TCT CTG TCC
|
GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC ! A2
|
|
GAT ATT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC
|
GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC ! A19
|
|
GAT ATT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC
|
GTC ACC CCT GGA GAG CCG GCC TCC ATC TCC TGC ! A3
|
|
GAT ATT GTG ATG ACC CAG ACT CCA CTC TCC TCA CCT
|
GTC ACC CTT GGA GAG CCG GCC TCC ATC TCC TGC ! A23
|
|
GAA ATT GTG TTG ACG CAG TCT CCA GGC ACC CTG TCT
|
TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! A27
|
|
GAA ATT GTG TTG ACG CAG TCT CCA GCC ACC CTG TCT
|
TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! A11
|
|
GAA ATA GTG ATG ACG CAG TCT CCA GCC ACC CTG TCT
|
GTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L2
|
|
GAA ATA GTG ATG ACG CAG TCT CCA GCC ACC CTG TCT
|
GTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L16
|
|
GAA ATT GTC TTG ACA CAG TCT CCA GCC ACC CTG TCT
|
TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L6
|
|
GAA ATT GTG TTG ACA CAG TCT CCA GCC ACC CTG TCT
|
TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TCG ! L20
|
|
GAA ATT GTA ATG ACA CAG TCT CCA GCC ACC CTG TCT
|
TTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L25
|
|
GAC ATC GTG ATG ACC CAG TCT CCA GAC TCC CTG GCT
|
GTG TCT CTG GGC GAG AGG GCC ACC ATC AAC TGC ! B3
|
|
GAA ACG ACA CTC ACG CAG TCT CCA GCA TTC ATG TCA
|
GCG ACT CCA GGA GAC AAA GTC AAC ATC TCC TGC ! B2
|
|
GAA ATT GTG CTG ACT CAG TCT CCA GAC TTT GAG TCT
|
GTG ACT CCA AAG GAG AAA GTC ACC ATC ACC TGC ! A26
|
|
GAA ATT GTG CTG ACT CAG TCT CCA GAC TTT CAG TCT
|
GTG ACT CCA AAG GAG AAA GTC ACC ATC ACC TGC ! A10
|
|
GAT GTT GTG ATG ACA CAG TCT CCA GCT TTC CTC TCT
|
GTG ACT CCA GGG GAG AAA GTC ACC ACG ACC TGC ! A14
|
|
[0166]
24
TABLE 302
|
|
|
RERS sites found in Human Kappa FR1 GLGs
|
|
|
FokI
HPyCH
|
MslI
→ ← →
PflFI
BsrI
BsmAI
MnlI
4V
|
|
VKI
|
O12
1-69
3
3
23
12
49
15
18
47
26
36
|
O2
101-169
103
103
123
112
149
115
118
147
126
136
|
O18
201-269
203
203
223
212
249
215
218
247
226
236
|
O8
301-369
303
303
323
312
349
315
318
347
326
336
|
A20
401-469
403
403
423
412
449
415
418
447
426
436
|
A30
501-569
503
503
523
512
549
515
518
547
526
536
|
L14
601-669
603
603
612
649
615
618
647
—
636
|
L1
701-769
703
703
723
712
749
715
718
747
726
736
|
L15
801-869
803
803
823
812
849
815
818
847
826
836
|
L4
901-969
—
903
923
912
949
906
915
918
947
926
936
|
L18
1001-1069
—
1003
1012
1049
1006
1015
1018
1047
1026
1036
|
L5
1101-1169
1103
—
1112
1149
1115
1118
1147
—
1136
|
L19
1201-1269
1203
1203
1212
1249
1215
1218
1247
—
1236
|
L8
1301-1369
—
1303
1323
1312
1349
1306
1315
1318
1347
—
1336
|
L23
1401-1469
1403
1403
1408
1412
1449
1415
1418
1447
—
1436
|
L9
1501-1569
1503
1503
1508
1523
1512
1549
1515
1518
1547
1526
1536
|
L24
1601-1669
1603
1608
1623
1612
1649
1615
1618
1647
—
1636
|
L11
1701-1769
1703
1703
1723
1712
1749
1715
1718
1747
1726
1736
|
L12
1801-1869
1803
1803
1812
1849
1815
1818
1847
—
1836
|
VKII
|
O11
1901-1969
—
—
—
—
—
1956
—
|
O1
2001-2069
—
—
—
—
2056
—
|
A17
2101-2169
—
—
2112
—
2118
2156
—
|
A1
2201-2269
—
—
2212
—
2218
2256
—
|
A18
2301-2369
—
—
—
—
—
2356
—
|
A2
2401-2469
—
—
—
—
—
2456
—
|
A19
2501-2569
—
—
2512
—
2518
2556
—
|
A3
2601-2669
—
—
2612
—
2618
2656
—
|
A23
2701-2769
—
—
—
—
—
2729
2756
—
|
VKIII
|
A27
2801-2869
—
—
2812
—
2818
2839
—
|
2860
—
|
A11
2901-2969
—
—
2912
—
2918
2939
—
|
2960
—
|
L2
3001-3069
—
—
3012
—
3018
3039
—
|
—
3060
|
L16
3101-3169
—
—
3112
—
3118
3139
—
|
3160
|
L6
3201-3269
—
—
3212
—
3218
3239
—
|
3260
|
L20
3301-3369
—
—
3312
—
3318
3339
—
|
3360
|
L25
3401-3469
—
—
3412
—
3418
3439
—
|
3460
|
VKIV
|
B3
3501-3569
3503
—
3512
3515
3518
3539
—
|
3551<
|
VKV
|
B2
3601-3669
—
—
3649
—
3618
3647
—
|
VKVI
|
A26
3701-3769
—
—
3712
—
3718
—
|
A10
3801-3869
—
—
3812
—
3818
—
|
A14
3901-3969
—
—
3912
—
3918
3930>
—
|
|
MaeIII
HpaII
|
MlyI
Tsp45I
HphI
MspI
|
SfaNI
SfcI
HinfI
→→ ←
same sites
xx38 xx56 xx62
xx06 xx52
|
|
VKI
|
O12
1-69
37
41
53
53
55
56
—
|
O2
101-169
137
141
153
153
155
156
—
|
O18
201-269
237
241
253
253
255
256
—
|
O8
301-369
337
341
353
353
355
356
—
|
A20
401-469
437
441
453
453
455
456
—
|
A30
501-569
537
541
553
553
555
556
—
|
L14
601-669
637
641
653
653
655
656
—
|
L1
701-769
737
741
753
753
755
756
—
|
L15
801-869
837
841
853
853
855
856
—
|
L4
901-969
937
941
953
953
955
956
—
|
L18
1001-1069
1037
1041
1053
1053
1055
1056
—
|
L5
1101-1169
1137
1141
1153
1153
1155
1156
—
|
L19
1201-1269
1237
1241
1253
1253
1255
1256
—
|
L8
1301-1369
1337
1341
1353
1353
1355
1356
—
|
L23
1401-1469
1437
1441
1453
1453
1455
1456
1406
|
L9
1501-1569
1537
1541
1553
1553
1555
1556
1506
|
L24
1601-1669
1637
1641
1653
1653
1655
1656
|
L11
1701-1769
1737
1741
1753
1753
1755
1756
|
L12
1801-1869
1837
1841
1853
1853
1855
1856
|
VKII
|
O11
1901-1969
—
—
1918
1918
1937
1938
1952
|
O1
2001-2069
—
—
2018
2018
2037
2038
2052
|
A17
2101-2169
—
—
2112
2112
2137
2138
2152
|
A1
2201-2269
—
—
2212
2212
2237
2238
2252
|
A18
2301-2369
—
—
2318
2318
2337
2336
2352
|
A2
2401-2469
—
—
2418
2418
2437
2436
2452
|
A19
2501-2569
—
—
2512
2512
2537
2538
2552
|
A3
2601-2669
—
—
2612
2612
2637
2638
2652
|
A23
2701-2769
—
—
2718
2718
2737
2731*
2738*
—
|
VKIII
|
A27
2801-2669
—
—
—
—
—
|
A11
2901-2969
—
—
—
—
—
|
L2
3001-3069
—
—
—
—
—
|
L16
3101-3169
—
—
—
—
—
|
L6
3201-3269
—
—
—
—
—
|
L20
3301-3369
—
—
—
—
—
|
L25
3401-3469
—
—
—
—
—
|
VKIV
|
B3
3501-3569
—
—
3525
3525
—
|
VKV
|
B2
3601-3669
—
—
3639
3639
—
|
VKVI
|
A26
3701-3769
—
—
3712
3739
3712
3739
3737
3755
3756
3762
—
|
A10
3801-3869
—
—
3812
3839
3812
3839
3837
3855
3856
3862
—
|
A14
3901-3969
—
—
3939
3939
3937
3955
3956
3962
—
|
BsrFI
|
Cac8I
|
BpmI
NaeI
|
BsaJI
BssKI (NstNI)
xx20 xx41 xx44
NgoMI
HaeII
|
xx29 xx42 xx43
xx22 xx30 xx43
→→ ←
V
I
Tsp509I
|
VKI
|
O12
1-69
—
—
—
—
—
—
|
O2
101-169
—
—
—
—
—
—
|
O18
201-269
—
—
—
—
—
—
|
O8
301-369
—
—
—
—
—
—
|
A20
401-469
—
—
—
—
—
—
|
A30
501-569
—
—
—
—
—
—
|
L14
601-669
—
—
—
—
—
—
|
L1
701-769
—
—
—
—
—
—
|
L15
801-869
—
—
—
—
—
—
|
L4
901-969
—
—
—
—
—
—
|
L18
1001-1069
—
—
—
—
—
—
|
L5
1101-1169
—
—
—
—
—
—
|
L19
1201-1269
—
—
—
—
—
—
|
L8
1301-1369
—
—
—
—
—
—
|
L23
1401-1469
—
—
—
—
—
—
|
L9
1501-1569
—
—
—
—
—
—
|
L24
1601-1669
—
—
—
—
—
—
|
L11
1701-1769
—
—
—
—
—
—
|
L12
1801-1869
—
—
—
—
—
—
|
VKII
|
O11
1901-1969
1942
1943
1944
1951
1954
—
|
O1
2001-2069
2042
2043
2044
2051
2054
—
|
A17
2101-2169
2142
—
—
2151
2154
—
|
A1
2201-2269
2242
—
—
2251
2254
—
|
A18
2301-2369
2342
2343
—
2351
2354
—
|
A2
2401-2469
2442
2443
—
2451
2454
—
|
A19
2501-2569
2542
2543
2544
2551
2554
—
|
A3
2601-2669
2642
2643
2644
2651
2654
—
|
A23
2701-2769
2742
—
—
2751
2754
—
|
VKIII
|
A27
2801-2869
2843
2822
2843
2820
2841
—
—
2803
|
A11
2901-2969
2943
2943
2920
2941
—
—
2903
|
L2
3001-3069
3043
3043
3041
—
—
—
|
L16
3101-3169
3143
3143
3120
3141
—
—
—
|
L6
3201-3269
3243
3243
3220
3241
—
—
3203
|
L20
3301-3369
3343
3343
3320
3341
—
—
—
3303
|
L25
3401-3469
3443
3443
3420
3441
—
—
3403
|
VKIV
|
B3
3501-3569
3529
3530
3520
—
3554
|
VKV
|
B2
3601-3669
3643
3620
3641
—
—
|
VKVI
|
A26
3701-3769
—
3720
—
—
3703
|
A10
3801-3869
—
3820
—
—
3803
|
A14
3901-3969
3943
3943
3920
3941
—
—
—
|
|
[0167]
25
TABLE 400
|
|
|
Lambda FR1 GLG sequences
|
|
|
! VL1
|
CAG TCT GTG CTG ACT CAG CCA CCC TCG GTG TCT GAA
|
|
GCC CCC AGG CAG AGG GTC ACC ATC TCC TGT ! 1a
|
|
cag tct gtg gtg acG cag ccG ccc tcA gtg tct gGG
|
|
gcc ccA Ggg cag agg gtc acc atc tcc tgC ! 1e
|
|
cag tct gtg ctg act cag cca ccc tcA gCg tct gGG
|
|
Acc ccc Ggg cag agg gtc acc atc tcT tgt ! 1c
|
|
cag tct gtg ctg act cag cca ccc tcA gCg tct gGG
|
|
Acc ccc Ggg cag agg gtc acc atc tcT tgt ! 1g
|
|
cag tct gtg Ttg acG cag ccG ccc tcA gtg tct gCG
|
|
gcc ccA GgA cag aAg gtc acc atc tcc tgC ! 1b
|
|
! VL2
|
CAG TCT GCC CTG ACT CAG CCT CCC TCC GCG TCC GGG
|
|
TCT CCT GGA CAG TCA GTC ACC ATC TCC TGC ! 2c
|
|
cag tct gcc ctg act cag cct cGc tcA gTg tcc ggg
|
|
tct cct gga cag tca gtc acc atc tcc tgc ! 2e
|
|
cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg
|
|
tct cct gga cag tcG Atc acc atc tcc tgc ! 2a2
|
|
cag tct gcc ctg act cag cct ccc tcc gTg tcc ggg
|
|
tct cct gga cag tca gtc acc atc tcc tgc ! 2d
|
|
cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg
|
|
tct cct gga cag tcG Atc acc atc tcc tgc ! 2b2
|
|
! VL3
|
TCC TAT GAG CTG ACT CAG CCA CCC TCA GTG TCC GTG
|
|
TCC CCA GGA CAG ACA GCC AGC ATC ACC TGC ! 3r
|
|
tcc tat gag ctg act cag cca cTc tca gtg tcA gtg
|
|
Gcc cTG gga cag acG gcc agG atT acc tgT ! 3j
|
|
tcc tat gag ctg acA cag cca ccc tcG gtg tcA gtg
|
|
tcc cca gga caA acG gcc agG atc acc tgc ! 3p
|
|
tcc tat gag ctg acA cag cca ccc tcG gtg tcA gtg
|
|
tcc cTa gga cag aTG gcc agG atc acc tgc ! 3a
|
|
tcT tCt gag ctg act cag GAC ccT GcT gtg tcT gtg
|
|
Gcc TTG gga cag aca gTc agG atc acA tgc ! 3l
|
|
tcc tat gTg ctg act cag cca ccc tca gtg tcA gtg
|
|
Gcc cca gga Aag acG gcc agG atT acc tgT ! 3h
|
|
tcc tat gag ctg acA cag cTa ccc tcG gtg tcA gtg
|
|
tcc cca gga cag aca gcc agG atc acc tgc ! 3e
|
|
tcc tat gag ctg aTG cag cca ccc tcG gtg tcA gtg
|
|
tcc cca gga cag acG gcc agG atc acc tgc ! 3m
|
|
tcc tat gag ctg acA cag cca Tcc tca gtg tcA gtg
|
|
tcT ccG gga cag aca gcc agG atc acc tgc ! V2-19
|
|
! VL4
|
CTG CCT GTG CTG ACT CAG CCC CCG TCT GCA TCT GCC
|
|
TTG CTG GGA GCC TCG ATC AAG CTC ACC TGC ! 4c
|
|
cAg cct gtg ctg act caA TcA TcC tct gcC tct gcT
|
|
tCC ctg gga Tcc tcg Gtc aag ctc acc tgc ! 4a
|
|
cAg cTt gtg ctg act caA TcG ccC tct gcC tct gcc
|
|
tCC ctg gga gcc tcg Gtc aag ctc acc tgc ! 4b
|
|
! VL5
|
CAG CCT GTG CTG ACT CAG CCA CCT TCC TCC TCC GCA
|
|
TCT CCT GGA GAA TCC GCC AGA CTC ACC TGC ! 5e
|
|
cag Gct gtg ctg act cag ccG Gct tcc CTc tcT gca
|
|
tct cct gga gCa tcA gcc agT ctc acc tgc ! 5c
|
|
cag cct gtg ctg act cag cca Tct tcc CAT tcT gca
|
|
tct Tct gga gCa tcA gTc aga ctc acc tgc ! 5b
|
|
! VL6
|
AAT TTT ATG CTG ACT CAG CCC CAC TCT GTG TCG GAG
|
|
TCT CCG GGG AAG ACG GTA ACC ATC TCC TGC ! 6a
|
|
! VL7
|
CAG ACT GTG GTG ACT CAG GAG CCC TCA CTG ACT GTG
|
|
TCC CCA GGA GGG ACA GTC ACT CTC ACC TGT ! 7a
|
|
cag Gct gtg gtg act cag gag ccc tca ctg act gtg
|
|
tcc cca gga ggg aca gtc act ctc acc tgt ! 7b
|
|
! VL8
|
CAG ACT GTG GTG ACC CAG GAG CCA TCG TTG TCA GTG
|
|
TCC CCT GGA GGG ACA GTC ACA CTC ACT TGT ! 8a
|
|
! VL9
|
CAG CCT GTG CTG ACT CAG CCA CCT TCT GCA TCA GCC
|
|
TCC CTG GGA GCC TCG GTC ACA CTC ACC TGC ! 9a
|
|
! VL10
|
CAG GCA GGG CTG ACT CAG CCA CCC TCG GTG TCC AAG
|
|
GGC TTG AGA CAG ACC GCC ACA CTC ACC TGC ! 10a
|
|
[0168]
26
TABLE 405
|
|
|
RERSs found in human lambda FR1 GLGs
|
|
! There are 31 lambda GLGs
|
MlyI NnnnnnGACTC 25
|
1: 6
3: 6
4: 6
6: 6
7: 6
8: 6
|
|
9: 6
10: 6
11: 6
12: 6
15: 6
16: 6
|
|
20: 6
21: 6
22: 6
23: 6
23: 50
24: 6
|
|
25: 6
25: 50
26: 6
27: 6
28: 6
30: 6
|
|
31: 6
|
|
There are 23 hits at base# 6
|
-“- GAGTCNNNNNn
1
|
26: 34
|
|
MwoI GCNNNNNnngc 20
|
1: 9
2: 9
3: 9
4: 9
11: 9
11: 56
|
|
12: 9
13: 9
14: 9
16: 9
17: 9
18: 9
|
|
19: 9
20: 9
23: 9
24: 9
25: 9
26: 9
|
|
30: 9
31: 9
|
|
There are 19 hits at base# 9
|
HinfI Gantc 27
|
1: 12
3: 12
4: 12
6: 12
7: 12
8: 12
|
|
9: 12
10: 12
11: 12
12: 12
15: 12
16: 12
|
|
20: 12
21: 12
22: 12
23: 12
23: 46
23: 56
|
|
24: 12
25: 12
25: 56
26: 12
26: 34
27: 12
|
|
28: 12
30: 12
31: 12
|
|
There are 23 hits at base# 12
|
PleI gactc 25
|
1: 12
3: 12
4: 12
6: 12
7: 12
8: 12
|
|
9: 12
10: 12
11: 12
12: 12
15: 12
16: 12
|
|
20: 12
21: 12
22: 12
23: 12
23: 56
24: 12
|
|
25: 12
25: 56
26: 12
27: 12
28: 12
30: 12
|
|
31: 12
|
There are 23 hits at base# 12
|
-“- gagtc 1
|
26: 34
|
|
DdeI Ctnag 32
|
1: 14
2: 24
3: 14
3: 24
4: 14
4: 24
|
|
5: 24
6: 14
7: 14
7: 24
8: 14
9: 14
|
|
10: 14
11: 14
11: 24
12: 14
12: 24
15: 5
|
|
15: 14
16: 14
16: 24
19: 24
20: 14
23: 14
|
|
24: 14
25: 14
26: 14
27: 14
28: 14
29: 30
|
|
30: 14
31: 14
|
|
There are 21 hits at base# 14
|
BsaJI Ccnngg 38
|
1: 23
1: 40
2: 39
2: 40
3: 39
3: 40
|
|
4: 39
4: 40
5: 39
11: 39
12: 38
12: 39
|
|
13: 23
13: 39
14: 23
14: 39
15: 38
16: 39
|
|
17: 23
17: 39
18: 23
18: 39
21: 38
21: 39
|
|
21: 47
22: 38
22: 39
22: 47
26: 40
27: 39
|
|
28: 39
29: 14
29: 39
30: 38
30: 39
30: 47
|
|
31: 23
31: 32
|
|
There are 17 hits at base# 39
|
There are 5 hits at base# 38
|
There are 5 hits at base# 40 Makes cleavage
|
ragged.
|
MnlI cctc 35
|
1: 23
2: 23
3: 23
4: 23
5: 23
6: 19
|
|
6: 23
7: 19
8: 23
9: 19
9: 23
10: 23
|
|
11: 23
13: 23
14: 23
16: 23
17: 23
18: 23
|
|
19: 23
20: 47
21: 23
21: 29
21: 47
22: 23
|
|
22: 29
22: 35
22: 47
23: 26
23: 29
24: 27
|
|
27: 23
28: 23
30: 35
30: 47
31: 23
|
|
There are 21 hits at base# 23
|
There are 3 hits at base# 19
|
There are 3 hits at base# 29
|
There are 1 hits at base# 26
|
There are 1 hits at base# 27 These could make
|
cleavage ragged.
|
-“- gagg 7
|
1: 48
2: 48
3: 48
4: 48
27: 44
28: 44
|
|
29: 44
|
|
BssKI Nccngg 39
|
1: 40
2: 39
3: 39
3: 40
4: 39
4: 40
|
|
5: 39
6: 31
6: 39
7: 31
7: 39
8: 39
|
|
9: 31
9: 39
10: 39
11: 39
12: 38
12: 52
|
|
13: 39
13: 52
14: 52
16: 39
16: 52
17: 39
|
|
17: 52
18: 39
18: 52
19: 39
19: 52
21: 38
|
|
22: 38
23: 39
24: 39
26: 39
27: 39
28: 39
|
|
29: 14
29: 39
30: 38
|
|
There are 21 hits at base# 39
|
There are 4 hits at base# 38
|
There are 3 hits at base# 31
|
There are 3 hits at base# 40 Ragged
|
BstNI CCwgg 30
|
1: 41
2: 40
5: 40
6: 40
7: 40
8: 40
|
|
9: 40
10: 40
11: 40
12: 39
12: 53
13: 40
|
|
13: 53
14: 53
16: 40
16: 53
17: 40
17: 53
|
|
18: 40
18: 53
19: 53
21: 39
22: 39
23: 40
|
|
24: 40
27: 40
28: 40
29: 15
29: 40
30: 39
|
|
There are 17 hits at base# 40
|
There are 7 hits at base# 53
|
There are 4 hits at base# 39
|
There are 1 hits at base# 41 Ragged
|
PspGI ccwgg 30
|
1: 41
2: 40
5: 40
6: 40
7: 40
8: 40
|
|
9: 40
10: 40
11: 40
12: 39
12: 53
13: 40
|
|
13: 53
14: 53
16: 40
16: 53
17: 40
17: 53
|
|
18: 40
18: 53
19: 53
21: 39
22: 39
23: 40
|
|
24: 40
27: 40
28: 40
29: 15
29: 40
30: 39
|
|
There are 17 hits at base# 40
|
There are 7 hits at base# 53
|
There are 4 hits at base# 39
|
There are 1 hits at base# 41
|
ScrFI CCngg 39
|
1: 41
2: 40
3: 40
3: 41
4: 40
4: 41
|
|
5: 40
6: 32
6: 40
7: 32
7: 40
8: 40
|
|
9: 32
9: 40
10: 40
11: 40
12: 39
12: 53
|
|
13: 40
13: 53
14: 53
16: 40
16: 53
17: 40
|
|
17: 53
18: 40
18: 53
19: 40
19: 53
21: 39
|
|
22: 39
23: 40
24: 40
26: 40
27: 40
28: 40
|
|
29: 15
29: 40
30: 39
|
|
There are 21 hits at base# 40
|
There are 4 hits at base# 39
|
There are 3 hits at base# 41
|
MaeIII gtnac 16
|
1: 52
2: 52
3: 52
4: 52
5: 52
6: 52
|
|
7: 52
9: 52
26: 52
27: 10
27: 52
28: 10
|
|
28: 52
29: 10
29: 52
30: 52
|
|
There are 13 hits at base# 52
|
Tsp45I gtsac 15
|
1: 52
2: 52
3: 52
4: 52
5: 52
6: 52
|
|
7: 52
9: 52
27: 10
27: 52
28: 10
28: 52
|
|
29: 10
29: 52
30: 52
|
|
There are 12 hits at base# 52
|
HphI tcacc 26
|
1: 53
2: 53
3: 53
4: 53
5: 53
6: 53
|
|
7: 53
8: 53
9: 53
10: 53
11: 59
13: 59
|
|
14: 59
17: 59
18: 59
19: 59
20: 59
21: 59
|
|
22: 59
23: 59
24: 59
25: 59
27: 59
28: 59
|
|
30: 59
31: 59
|
|
There are 16 hits at base# 59
|
There are 10 hits at base# 53
|
BspMI ACCTGCNNNNn 14
|
11: 61
13: 61
14: 61
17: 61
18: 61
19: 61
|
|
20: 61
21: 61
22: 61
23: 61
24: 61
25: 61
|
|
30: 61
31: 61
|
|
There are 14 hits at base# 61 Goes into CDR1
|
|
[0169]
27
TABLE 500
|
|
|
h3401-h2 captured Via CJ with BsmAI
|
|
|
! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
! S A Q D I Q M T Q S P A T L S
|
aGT GCA Caa gac atc cag atg acc cag tct cca gcc acc ctg tct
|
! ApaLI... a gcc acc !
|
L25,L6,L20,L2,L16,A11
|
! Extender.................................Bridge...
|
|
! 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
! V S P G E R A T L S C R A S Q
|
gtg tct cca ggg gaa agg gcc acc ctc tcc tgc agg gcc agt cag
|
|
! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
! S V S N N L A W Y Q Q K P G Q
|
agt gtt agt aac aac tta gcc tgg tac cag cag aaa cct ggc cag
|
|
! 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
! V P R L L I Y G A S T R A T D
|
gtt ccc agg ctc ctc atc tat ggt gca tcc acc agg gcc act gat
|
|
! 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
! I P A R F S G S G S G T D F T
|
atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gac ttc act
|
|
! 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
! L T I S R L E P E D F A V Y Y
|
ctc acc atc agc aga ctg gag cct gaa gat ttt gca gtg tat tac
|
|
! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
! C Q R Y G S S P G W T F G Q G
|
tgt cag cgg tat ggt agc tca ccg ggg tgg acg ttc ggc caa ggg
|
|
! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
! T K V E I K R T V A A P S V F
|
acc aag gtg gaa atc aaa cga act gtg gct gca cca tct gtc ttc
|
|
! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
! I F P P S D E Q L K S G T A S
|
atc ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct
|
|
! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
! V V C L L N N F Y P R E A K V
|
gtt gtg tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta
|
|
! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
! Q W K V D N A L Q S G N S Q E
|
cag tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag
|
|
! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
! S V T E Q D S K D S T Y S L S
|
agt gtc aca gag cag gac agc aag gac agc acc tac agc ctc agc
|
|
! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
! S T L T L S K A D Y E K H K V
|
agc acc ctg acg ctg agc aaa gca gac tac gag aaa cac aaa gtc
|
|
! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
! Y A C E V T H Q G L S S P V T
|
tac gcc tgc gaa gtc acc cat cag ggc ctg agc tcg cct gtc aca
|
|
! 211 212 213 214 215 216 217 218 219 220 221 222 223
|
! K S F N K G E C K G E F A
|
aag agc ttc aac aaa gga gag tgt aag ggc gaa ttc gc.....
|
|
[0170]
28
TABLE 501
|
|
|
h3401-d8 KAPPA captured with CJ and BsmAI
|
|
|
! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
! S A Q D I Q M T Q S P A T L S
|
aGT GCA Caa gac atc cag atg acc cag tct cct gcc acc ctg tct
|
! ApaLI...Extender.........................a gcc acc !
|
L25,L6,L20,L2,L16,A11
|
! A GCC ACC CTG TCT !L2
|
|
! 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
! V S P G E R A T L S C R A S Q
|
gtg tct cca ggt gaa aga gcc acc ctc tcc tgc agg gcc agt cag
|
! GTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L2
|
|
! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
! N L L S N L A W Y Q Q K P G Q
|
aat ctt ctc agc aac tta gcc tgg tac cag cag aaa cct ggc cag
|
|
! 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
! A P R L L I Y G A S T G A I G
|
gct ccc agg ctc ctc atc tat ggt gct tcc acc ggg gcc att ggt
|
|
! 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
! I P A R F S G S G S G T E F T
|
atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gag ttc act
|
|
! 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
! L T I S S L Q S E D F A V Y F
|
ctc acc atc agc agc ctg cag tct gaa gat ttt gca gtg tat ttc
|
|
! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
! C Q Q Y G T S P P T F G G G T
|
tgt cag cag tat ggt acc tca ccg ccc act ttc ggc gga ggg acc
|
|
! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
! K V E I K R T V A A P S V F I
|
aag gtg gag atc aaa cga act gtg gct gca cca tct gtc ttc atc
|
|
! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
! F P P S D E Q L K S G T A S V
|
ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct gtt
|
|
! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
! V C P L N N F Y P R E A K V Q
|
gtg tgc ccg ctg aat aac ttc tat ccc aga gag gcc aaa gta cag
|
|
! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
! W K V D N A L Q S G N S Q E S
|
tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag agt
|
|
! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
! V T E Q D N K D S T Y S L S S
|
gtc aca gag cag gac aac aag gac agc acc tac agc ctc agc agc
|
|
! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
! T L T L S K V D Y E K H E V Y
|
acc ctg acg ctg agc aaa gta gac tac gag aaa cac gaa gtc tac
|
|
! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
! A C E V T H Q G L S S P V T K
|
gcc tgc gaa gtc acc cat cag ggc ctt agc tcg ccc gtc acg aag
|
|
! 211 212 213 214 215 216 217 218 219 220 221 222 223
|
! S F N R G E C K K E F V
|
agc ttc aac agg gga gag tgt aag aaa gaa ttc gtt t
|
|
[0171]
29
TABLE 508
|
|
|
Human heavy chains bases 88.1 to 94.2
|
|
|
Number of sequences.......... 840
|
Number of Mismatchers.........
Probe
|
Id
Ntot
0
1
2
3
4
5
6
7
Name
Sequence............
Dot form............
|
|
1
364
152
97
76
26
7
4
2
0
VHS881-1.1
gctgtgtattactgtgcgag
gctgtgtattactgtgcgag
|
|
2
265
150
60
33
13
5
4
0
0
VHS881-1.2
gccgtgtattactgtgcgag
..c.................
|
|
3
96
14
34
16
10
5
7
9
1
VHS881-2.1
gccgtatattactgtgcgag
..c..a..............
|
|
4
20
0
3
4
9
2
2
0
0
VHS881-4.1
gccgtgtattactgtacgag
..c............a....
|
|
5
95
25
36
18
11
2
2
0
1
VHS881-9.1
gccatgtattactgtgcgag
..ca................
|
|
840
341
230
147
69
21
19
11
2
|
341
571
718
787
808
827
838
840
|
|
88 89 90 91 92 93 94 95 Codon number as in Table 195
|
Recognition........... Stem...... Loop. Stem......
|
(VHS881-1.1)
5′-gctgtgtat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
|
|
(VHS881-1.2)
5′-gccgtgtat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
|
|
(VHS881-2.1)
5′-gccgtatat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
|
|
(VHS881-4.1)
5′-gccgtgtat|tact-gtacgag cAcATccgTg TTgTT cAcggATgTg-3′
|
|
(VHS881-9.1)
5′-gccatgtat|tact-gtgccgagcAcATccgTg TTgTT cAcggATgTg-3′
|
| site of substrate cleavage
|
|
(FOKIact)
5′-cAcATccgTg TTgTT cAcggATgTg-3′
|
|
(VHEx881)
5′-AATAgTAgAc TgcAgTgTcc TcAgcccTTA AgcTgTTcAT cTgcAAgTAg-
|
|
AgAgTATTcT TAgAgTTgTc TcTAgAcTTA gTgAAgcg-3′
|
|
! note that VHEx881 is the reverse complement of the ON below
|
!
[RC] 5′-cgCttcacTaag-
|
!
Scab........
|
|
!
Synthetic 3-23 as in Table 206
|
!
|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
|
!
XbaI...
|
!
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|t-3′
|
|
!
AflII...
|
(VHBA881)
5′-cgCttcacTaag-
|
|
|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
|
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3′
|
|
(VHBB881)
5′-cgCttcacTaag-
|
|
TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
|
|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3′
|
|
(VH881PCR)
5′-cgCttcacTaag|TCT|AGA|gac|aac-3′
|
|
[0172]
30
TABLE 512
|
|
|
Kappa, bases 12-30
|
|
|
!
ID
Ntot
0
1
2
3
4
5
6
Name
Sequence..........
Dot Form...........
|
|
!
1
84
40
21
20
1
2
0
0
SK12O12
gacccagtctccatcctcc
gacccagtctccatcctcc
|
|
!
2
32
19
3
6
2
1
0
1
SK12A17
gactcagtctccactctcc
..t..........ct....
|
|
!
3
26
17
8
1
0
0
0
0
SK12A27
gacgcagtctccaggcacc
..g..........gg.a..
|
|
!
4
40
21
18
1
0
0
0
0
SK12A11
gacgcagtctccagccacc
..g..........g..a..
|
|
!
182
97
50
28
3
3
0
1
|
|
!
97
147
175
178
181
181
182
|
|
URE adapters:
|
!
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-012)
5′-cAcATccgTg TTgTT cAcggATgTg ggAggATggAgAcTgggTc-3′
|
|
!
[RC] 5′-gacccagtctccatcctcc cAcATccgTg AAcAA cAcggATgTg-3′
|
!
Recognition........ Stem...... loop. Stem......
|
!
FokI. FokI.
|
!
|
!
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-A17)
5′-cAcATccgTg TTgTT cAcggATgTg ggAgAgTggAgAcTgAgTc-3′
|
|
!
[RC] 5′-gactcagtctccactctcc cAcATccgTg AAcAA cAcggATgTg-3′
|
!
Recognition........ Stem...... loop. Stem......
|
!
FokI. FokI.
|
!
|
!
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-A27)
5′-cAcATccgTg TTgTT cAcggATgTg ggTgccTggAgAcTgcgTc-3′
|
|
!
[RC] 5′-gacgcagtctccaggcacc cAcATccgTg AAcAA cAcggATgTg-3′
|
!
Recognition........ Stem...... loop. Stem......
|
!
FokI. FokI.
|
!
|
!
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-All)
5′-cAcATccgTg TTgTT cAcggATgTg ggTggcTggAgAcTgcgTc-3′
|
|
!
[RC[ 5′-gacgcagtctccagccacc cAcATccgTg AAcAA cAcggATgTg-3′
|
!
Recognition........ Stem...... loop. Stem......
|
!
FokI. FokI.
|
What happens in the upper strand:
|
(SzKB1230-012*)
5′-gac cca gtc|tcc a-tc ctc c-3′
|
!
| Site of cleavage in substrate
|
!
|
(SzKB1230-A17*)
5′-gac tca gtc|tcc a-ct ctc c-3′
|
|
!
|
(SzKB1230-A27*)
5′-gac gca gtc|tcc a-gg cac c-3′
|
|
!
|
(SzKB1230-A11*)
5′-gac gca gtc|tcc a-gc cac c-3′
|
|
!
|
(kapextURE)
5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg-3′
!sense strand
|
Scab.............ApaLI.
|
|
(kapextUREPCR)
5′-ccTctactctTgTcAcAgTg-3′
|
Scab.............
|
|
(kaBRO1UR)
5′-ggAggATggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC]5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-tc ctc c-3′ ON above is R C. of
|
this one
|
|
(kaBRO2UR)
5′-ggAgAgTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC]5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-ct ctc c-3′ ON above is R.C. of
|
this one
|
|
(kaBRO3UR)
5′-ggTgccTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC]5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-gg cac c-3′ ON above is R.C. of
|
this one
|
|
(kaBRO4UR)
5′-ggTggcTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC]5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-gc cac c-3′ ON above is R.C. of
|
this one
|
Scab.............ApaLI.
|
|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
|
|
|aac|aqC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3′
|
|
(VH881PCR)
5′-cgCttcacTaag|TCT|AGA|gac|aac-3′
|
|
[0173]
31
TABLE 512
|
|
|
Kappa, bases 12-30
|
|
|
!
|
!
ID
Ntot
0
1
2
3
4
5
6
Name
Sequence...........
Dot Form...........
|
|
!
1
84
40
21
20
1
2
0
0
SK12012
gacccagtctccatcctcc
gacccagtctccatcctcc
|
|
!
2
32
19
3
6
2
1
0
1
SK12A17
gactcagtctccactctcc
..t..........ct....
|
|
!
3
26
17
8
1
0
0
0
0
SK12A27
gacgcagtctccaggcacc
...g.........gg.a..
|
|
!
4
40
21
18
1
0
0
0
0
SK12A11
gacgcagtctccagccacc
...g.........g..a..
|
|
!
182
97
50
28
3
3
0
1
|
!
97
147
175
178
181
181
182
|
!
|
URE adapters:
|
!
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-012)
5′-cAcATccgTg TTgTT cAcggATgTg ggAggATggAgAcTgggTc-3′
|
|
!
[RC] 5′-gacccagtctccatcctcc cAcATccgTg AAcAA cAcggATgTg-3′
|
!
Recognition........ Stem...... loop. Stem......
|
FokI. FokI.
|
|
!
|
!
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-A17)
5′-cAcATccgTg TTgTT cAcggATgTg ggAgAgTggAgAcTgAgTc-3′
|
|
!
[RC] 5′-gactcagtctccactctcc cAcATccgTg AAcAA cAcggATqTg-3′
|
!
Recognition........ Stem...... loop. Stem......
|
FokI. FokI.
|
|
!
|
Stem...... Loop. Stem...... Recognition........
|
(SzKB1230-A27)
5′-cAcATccgTg TTgTT cAcggATgTg ggTgccTggAgAcTgcgTc-3′
|
|
!
[RC] 5′-gacgcagtctccaggcacc cAcATccgTg AAcAA cAcggATgTg-3′
|
Recognition........ Stem...... loop. Stem......
|
FokI. FokI.
|
Stem...... Loop. Stem...... Recognition........
|
|
(SzKB1230-A11)
5′-cAcATccgTg TTgTT cAcggATgTg ggTggcTggAgAcTgcgTc-3′
|
|
[RC] 5′-gacgcagtctccagccacc cAcATccgTg AAcAA cAcggATgTg-3′
|
Recognition........ Stem...... loop. Stem......
|
FokI. FokI.
|
|
What happens in the upper strand:
|
(SzKB1230-012*)
5′-gac cca gtc|tcc a-tc ctc c-3′
|
!
| Site of cleavage in substrate
|
|
!
|
(SzKB1230-A17*)
5′-gac tca gtc|tcc a-ct ctc c-3′
|
|
!
|
(SzKB1230-A27*)
5′-gac gca gtc|tcc a-gg cac c-3′
|
|
!
|
(SzKB1230-A11*)
5′-gac gca gtc|tcc a-gc cac c-3′
|
|
(kapextURE)
5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg-3′
!sense strand
|
Scab.............ApaLI.
|
|
(kapextUREPGR)
5′-ccTctactctTgTcAcAgTg-3′
|
Scab.............
|
|
(kaBRO1UR)
5′-ggAggATggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-tc ctc c-3′ ON above is R.C. of this one
|
|
(kaBRO2UR)
5′-ggAgAgTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-ct ctc c-3′ ON above is R.C. of this one
|
|
(kaBRO3UR)
5′-ggTgccTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
[RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-gg cac c-3′ ON above is R C. of this one
|
|
(kaBRO4UR)
5′-ggTggcTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
|
|
!
[RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-gc cac c-3′ ON above is R.C. of this one
|
Scab.............ApaLI.
|
|
[0174]
32
TABLE 515
|
|
|
Lambda URE adapters bases 13.3 to 19.3
|
|
|
!
|
!
Number of sequences.......... 128
|
!
|
!
Number of mismatches..............
|
!
Id
Ntot
0
1
2
3
4
5
6
7
8
Name
Sequence...........
Dot form...........
|
|
!
1
58
45
7
1
0
0
0
2
2
1
VL133-2a2
gtctcctggacagtcgatc
gtctcctggacagtcgatc
|
|
!
2
16
10
1
0
1
0
1
1
0
2
V1133-31
ggccttgggacagacagtc
.g.cttg......a.ag..
|
|
!
3
17
6
0
0
0
4
1
1
5
0
VL133-2c
gtctcctggacagtcagtc
...............ag..
|
|
!
4
37
3
0
10
4
4
3
7
4
2
VL133-1c
ggccccagggcagagggtc
.g.c..a..g...ag.g..
|
|
!
128
64
8
11
5
8
5
11
11
5
|
!
64
72
83
88
96
101
112
123
128
|
!
|
!
Stem...... loop. Stem...... Recognition........
|
(VL133-2a2)
5′-cAcATccgTg TTgTT cAcggATgTg gATcgAcTgTccAggAgAc-3′
|
|
!
[RC] 5′-gtctcctggacagtcgatc cAcATccgTg AAcAA cAcggATgTg-3′
|
Recognition........ Stem...... Loop. Stem......
|
|
!
|
!
Stem...... loop. Stem...... Recognition........
|
(VL133-31)
5′-cAcATccgTg TTgTT cAcggATgTg gAcTgTcTgTcccAAggcc-3′
|
|
!
[RC] 5′-ggccttgggacagacagtc cAcATccgTg AAcAA cAcggATgTg-3′
|
Recognition........ Stem...... Loop. Stem......
|
|
!
|
!
Stem...... loop. Stem...... Recognition........
|
(VL133-2c)
5′-cAcATccgTg TTgTT cAcggATgTg gAcTgAcTgTccAggAgAc-3′
|
|
[RC] 5′-gtctcctggacagtcagtc cAcATccgTg AAcAA cAcggATgTg-3′
|
!
Recognition........ Stem...... Loop. Stem......
|
|
!
|
!
Stem...... loop. Stem...... Recognition........
|
(VL133-1c)
5′-cAcATccgTg TTgTT cAcggATgTg gAcccTcTgcccTggggcc-3′
|
|
[RC] 5′-ggccccagggcagagggtc cAcATccgTg AAcAA cAcggATgTg-3′
|
What happens in the top strand:
|
!
|site of cleavage in the upper strand
|
(VL133-2a2*)
5′-g tct cct g|ga cag tcg atc
|
|
!
|
(VL133-31*)
5′-g gcc ttg g|ga cag aca gtc
|
|
!
|
(VL133-2c*)
5′-g tct cct g|ga cag tca gtc
|
|
!
|
(VL133-1c*)
5′-g gcc cca g|gg cag agg gtc
|
|
!
|
! The following Extenders and Bridges all encode the AA sequence of 2a2 for
|
codons 1-15
|
!
1
|
(ON_LamEx133)
5′-ccTcTgAcTgAgT gcA cAg -
|
|
!
|
!
2 3 4 5 6 7 8 9 10 11 12
|
AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
|
|
!
|
!
13 14 15
|
tcC ccG g ! 2a2
|
|
! 1
|
(ON_LamB1-133)
[RC] 5′-ccTcTgAcTgAgT gcA cAg -
|
|
!
|
!
2 3 4 5 6 7 8 9 10 11 12
|
AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
|
|
!
|
!
13 14 15
|
!
tcC ccG g ga cag tcg at-3′ ! 2a2 N.B. the actual seq is the
|
reverse complement of the
|
one shown.
|
|
(ON_LamB2-133)
[RC] 5′-ccTcTgAcTgAgT gcA cAg -
|
!
2 3 4 5 6 7 8 9 10 11 12
|
AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
|
|
!
13 14 15
|
tcC ccG g ga cag aca gt-3′ ! 31 N.B. the actual seq. is the
|
!
reverse complement of the
|
!
one shown.
|
|
!
|
(ON_LamB3-133)
[RC] 5′-ccTcTgAcTgAgT gcA cAg -
|
|
!
|
2 3 4 5 6 7 8 9 10 11 12
|
AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
|
|
|
!
13 14 15
|
tcC ccG g ga cag tca gt -3′! 2c N.B. the actual seq is the
|
reverse complement of the
|
one shown.
|
|
(ON_LamB4-133)
[RC] 5′-ccTcTgAcTgAgT gcA cAg -
|
|
!
2 3 4 5 6 7 8 9 10 11 12
|
AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
|
|
!
|
13 14 15
|
tcC ccG g gg cag agg gt-3′ ! 1c N.B. the actual seq is the
|
reverse complement of the
|
one shown.
|
|
(ON_Lam133PCR)
5′-ccTcTgAcTgAgT gcA cAg AGt gc-3′
|
|
[0175]
33
TABLE 525
|
|
|
ONs used in Capture of kappa light chains using CJ
|
method and BsmAI
|
|
|
All ONs are written 5′ to 3′.
|
REdapters (6)
|
ON_20SK15012
|
gggAggATggAgAcTgggTc
|
|
ON_20SK15L12
|
gggAAgATggAgAcTgggTc
|
|
ON_20SK15A17
|
gggAgAgTggAgAcTgAgTc
|
|
ON_20SK15A27
|
gggTgccTggAgAcTgcgTc
|
|
ON_20SK15A11
|
gggTggcTggAgAcTgcgTc
|
|
ON_20SK15B3
|
gggAgTcTggAgAcTgggTc
|
|
Bridges (6)
|
kapbri1012
|
gggAggATggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
|
|
kapbri1L12
|
gggAAgATggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
|
|
kapbri1A17
|
gggAgAgTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
|
|
kapbri1A27
|
gggTgccTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
|
|
kapbri1A11
|
gggTggcTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
|
|
kapbri1B3
|
gggAgTcTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
|
|
Extender (5′biotinylated)
|
kapext1bi
|
ccTcTgTcAcAgTgcAcAAgAcATccAgATgAcccAgTcTcc
|
|
Primers
|
kaPCRt1
|
ccTcTgTcAcAgTgcAcAAgAc
|
|
kapfor
|
5′-aca ctc tcc cct gtt gaa gct ctt-3′
|
|
[0176]
34
TABLE 530
|
|
|
PCR program for
|
amplification of kappa DNA
|
95° C.
5
minutes
|
95° C.
15
seconds
|
65° C.
30
seconds
|
72° C.
1
minute
|
72° C.
7
minutes
|
4° C.
hold
|
Reagents (100 ul reaction):
|
Template
50
ng
|
10x turbo PCR buffer
1x
|
turbo Pfu
4U
|
dNTPs
200
μM each
|
kaPCRt1
300
nM
|
kapfor
300
nM
|
|
[0177]
35
TABLE 610
|
|
|
Stuffer used in VH
|
|
|
1
TCCGGAGCTT CAGATCTGTT TGCCTTTTTG TGGGGTGGTG CAGATCGCGT TACGGAGATC
|
|
61
GACCGACTGC TTGAGCAAAA GCCACGCTTA ACTGCTGATC AGGCATGGGA TGTTATTCGC
|
|
121
CAAACCAGTC GTCAGGATCT TAACCTGAGG CTTTTTTTAC CTACTCTGCA AGCAGCGACA
|
|
181
TCTGGTTTGA CACAGAGCGA TCCGCGTCGT CAGTTGGTAG AAACATTAAC ACGTTGGGAT
|
|
241
GGCATCAATT TGCTTAATGA TGATGGTAAA ACCTGGCAGC AGCCAGGCTC TGCCATCCTG
|
|
301
AACGTTTGGC TGACCAGTAT GTTGAAGCGT ACCGTAGTGG CTGCCGTACC TATGCCATTT
|
|
361
GATAAGTGGT ACAGCGCCAG TGGCTACGAA ACAACCCAGG ACGGCCCAAC TGGTTCGCTG
|
|
421
AATATAAGTG TTGGAGCAAA AATTTTGTAT GAGGCGGTGC AGGGAGACAA ATCACCAATC
|
|
481
CCACAGGCGG TTGATCTGTT TGCTGGGAAA CCACAGCAGG AGGTTGTGTT GGCTGCGCTG
|
|
541
GAAGATACCT GGGAGACTCT TTCCAAACGC TATGGCAATA ATGTGAGTAA CTGGAAAACA
|
|
601
CCTGCAATGG CCTTAACGTT CCGGGCAAAT AATTTCTTTG GTGTACCGCA GGCCGCAGCG
|
|
661
GAAGAAACGC GTCATCAGGC GGAGTATCAA AACCGTGGAA CAGAAAACGA TATGATTGTT
|
|
721
TTCTCACCAA CGACAAGCGA TCGTCCTGTG CTTGCCTGGG ATGTGGTCGC ACCCGGTCAG
|
|
781
AGTGGGTTTA TTGCTCCCGA TGGAACAGTT GATAAGCACT ATGAAGATCA GCTGAAAATG
|
|
841
TACGAAAATT TTGGCCGTAA GTCGCTCTGG TTAACGAAGC AGGATGTGGA GGCGCATAAG
|
|
901
GAGTCGTCTA GA
|
|
[0178]
36
TABLE 620
|
|
|
DNA sequence off pCEs5
|
|
|
!
pCES5 6680 bases=pCes4 with stuffers in CDR1-2 and CDR3 2000.12.13
|
!
|
!
Ngene=6680
|
!
Useful REs (cut MAnoLI fewer than 3 times) 2000.06.05
|
!
|
!
Non-cutters
|
!
Acc65I Ggtacc
AfeI AGCgct
AvrII Cctagg
|
!
BsaBI GATNNnnatc
BsiWI Cqtacg
BsmFI Nnnnnnnnnnnnnnngtccc
|
!
BsrGI Tgtaca
BstAPI GCANNNNntgc
BstBI TTcgaa
|
!
Bst817I GTAtac
BtrI CACgtg
Ecl136I GAGctc
|
!
EcoRV GATatc
FseI GGCCGGcc
KpnI GGTACc
|
!
MscI TGGcca
NruI TCGcga
NsiI ATGCAt
|
!
PacI TTAATtaa
PmeI GTTTaac
PmlI CACgtg
|
!
PpuMT RGgwccy
PshAI GACNNnngtc
SacI GAGCTc
|
!
SacII CCGCgg
SbfI CCTGCAgg
SexAI Accwggt
|
!
SgfI GCGATcgc
SnaBI TACgta
SpeI Actagt
|
!
SphI GCATGc
Sse8387I CCTGCAgg
StuI AGGcct
|
!
SwaI ATTTaaat
XmaI Cccggg
|
!
|
!
cutters
|
!
Enzymes that cut more than
3 times.
|
!
AlwNI CAGNNNctg
5
|
!
BsgI ctgcac
4
|
!
BsrFI Rccggy
5
|
!
EarI CTCTTCNnnn
4
|
!
FauI nNNNNNNGCGGG
10
|
!
|
!
Enzymes that cut from 1 to
3 times.
|
!
|
!
Eco0109I RGgnccy
3
7
2636
4208
|
!
BssSI Ctcgtg
1
12
|
!
-″- Cacgag
1
1703
|
!
BspHI Tcatga
3
43
148
1156
|
!
AatII GACGTc
1
65
|
!
BciVI GTATCCNNNNNN
2
140
1667
|
!
Eco57I CTGAAG
1
301
|
!
-″- cttcag
2
1349
|
!
AvaI Cycgrg
3
319
2347
6137
|
!
BsiHKAI GWGCWc
3
401
2321
4245
|
!
HgiAI GWGCWc
3
401
2321
4245
|
!
BcgI gcannnnnntcg
1
461
|
!
ScaI AGTact
1
505
|
!
PvuI CGATcg
3
616
3598
5926
|
!
FspI TGCgca
2
763
5946
|
!
BglI GCCNNNNnggc
3
864
2771
5952
|
!
BpmI CTGGAG
1
898
|
!
-″- ctccag
1
4413
|
!
BsaI GGTCTCNnnnn
1
916
|
!
AhdI GACNNNnngtc
1
983
|
!
Eam1105I GACNNNnngtc
1
983
|
!
DrdI GACNNNNnngtc
3
1768
6197
6579
|
!
SapI gaagagc
1
1998
|
!
PvuII CAGctg
3
2054
3689
5896
|
!
PflMT CCANNNNntgg
3
2233
3943
3991
|
!
HindIII Aagctt
1
2235
|
!
ApaLI Gtgcac
1
2321
|
!
BspMI Nnnnnnnnngcaggt
1
2328
|
!
-″- ACCTGCNNNNn
2
3460
|
!
PstI CTGCAg
1
2335
|
!
AccI GTmkac
2
2341
2611
|
!
HincII GYYrac
2
2341
3730
|
!
SalI Gtcgac
1
2341
|
!
TliI Ctcgag
1
2347
|
!
XhoI Ctcgag
1
2347
|
!
BbsI gtcttc
2
2383
4219
|
!
BlpI GCtnagc
1
2580
|
!
EspI GCtnagc
1
2580
|
!
SgrAI CRccggyg
1
2648
|
!
AgeI Accggt
2
2649
4302
|
!
AscI GGcgcgcc
1
2689
|
!
BssHII Gcgcgc
1
2690
|
!
SfiI GGCCNNNNnggcc
1
2770
|
!
NaeI GCCggc
2
2776
6349
|
!
NgoMIV Gccggc
2
2776
6349
|
!
BtgI Ccrygg
3
2781
3553
5712
|
!
DsaI Ccrygg
3
2781
3553
5712
|
!
NcoI Ccatgg
1
2781
|
!
StyI Ccwwgg
3
2781
4205
4472
|
!
MfeI Caattg
1
2795
|
!
BspEI Tccgga
1
2861
|
!
BglII Agatct
1
2872
|
!
BclI Tgatca
1
2956
|
!
Bsu36I CCtnagg
3
3004
4143
4373
|
!
XcmI CCANNNNNnnnntgg
1
3215
|
!
MluI Acgcgt
1
3527
|
!
HpaI GTTaac
1
3730
|
!
XbaI Tctaga
1
3767
|
!
|
!
AflII Cttaag
1
3811
|
!
BsmI NGcattc
1
3821
|
!
-″- GAATGCN
1
4695
|
!
RsrII CGgwccg
1
3827
|
!
NheI Gctagc
1
4166
|
!
BstEII Ggtnacc
1
4182
|
!
BsmBI CGTCTCNnnnn
2
4188
6625
|
!
-″- Nnnnnngagacg
1
6673
|
!
ApaI GGGCCc
1
4209
|
!
BanII GRGCYc
3
4209
4492
6319
|
!
Bsp120I Gggccc
1
4209
|
!
PspOMI Gggccc
1
4209
|
!
BseRI NNnnnnnnnnctcctc
1
4226
|
!
-″- GAGGAGNNNNNNNNNN
1
4957
|
!
EcoNI CCTNNnnnagg
1
4278
|
!
PflFI GACNnngtc
1
4308
|
!
TthlllI GACNnngtc
1
4308
|
!
KasI Ggcgcc
2
4327
5967
|
!
BstXI CCANNNNNntgg
1
4415
|
!
NotI GCggccgc
1
4507
|
!
EagI Cggccg
1
4508
|
!
BamHI Ggatcc
1
5169
|
!
BspDI ATcgat
1
5476
|
!
NdeI CAtatg
1
5672
|
!
EcoRI Gaattc
1
5806
|
!
PsiI TTAtaa
1
6118
|
!
DraIII CACNNNgtg
1
6243
|
!
BsaAI YACgtr
1
6246
|
!----------------------------------------------------------------------------
|
1
gacgaaaggg cCTCGTGata cgcctatttt tataggttaa tgtcatgata ataatggttt
|
!
BssSI.(1 2)
|
61
cttaGACGTC aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt
|
!
AatII.
|
121
tctaaataca ttcaaatatG TATCCgctca tgagacaata accctgataa atgcttcaat
|
!
BciVI..(1 of 2)
|
181
aatattgaaa aaggaagagt
|
!Base # 201 to 1061=ApR gene from pUC119 with some RE sites removed
|
!
|
!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
!
fM S I Q H F R V A L I P F F A
|
201
atg agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg
|
!
|
!
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
!
A F C L P V F A H P E T L V K
|
246
gca ttt tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa
|
!
|
!
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
!
V K D A E D Q L G A R V G Y I
|
291
gta aaa gat gct gaa gat cag ttg ggt gcc cga gtg ggt tac atc
|
!
|
!
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
!
E L D L N S G K I L E S F R P
|
336
gaa ctg gat ctc aac agc ggt aag atc ctt gag agt ttt cgc ccc
|
!
|
!
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
!
E E R F P M M S T F K V L L C
|
381
gaa gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg cta tgt
|
!
|
!
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
!
G A V L S R I D A G Q E Q L G
|
426
ggc gcg gta tta tcc cgt att gac gcc ggg caa gaG CAa ctc ggT
|
!
BcgI............
|
!
|
!
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
!
R R I H Y S Q N D K V E Y S P
|
471
CGc cgc ata cac tat tct cag aat gac ttg gtt gAG TAC Tca cca
|
!..BcgI...... ScaI....
|
!
|
!
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
!
V T E K H L T D G M T V R E L
|
516
gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta
|
!
|
!
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
!
C S A A I T M S D N T A A N L
|
561
tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta
|
!
|
!
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
!
L L T I G G P K E L T A F L
|
606
ctt ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg
|
!
PvuI.... (1 2)
|
!
|
!
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
!
H N M G D H V T R L D R W E P
|
651
cac aac atg ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg
|
!
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
!
E L N E A I P N D E R D T T M
|
696
gag ctg aat gaa gcc ata cca aac gac gag cgt gac acc acg atg
|
!
|
!
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
!
P V A M A T T L R K L L T G E
|
741
cct gta GCA ATG gca aca acg tTG CGC Aaa cta tta act ggc gaa
|
!
BsrDI..(1 2) FspI.... (1 2)
|
!
|
!
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
!
L L T L A S R Q Q L I D W M E
|
786
cta ctt act cta gct tcc cgg caa caa tta ata gac tgg atg gag
|
!
|
!
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
!
A D K V A G P L L R S A L P A
|
831
gcg gat aaa gtt gca gga cca ctt ctg cgc tcg gcc ctt ccg gct
|
!
|
!
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
!
G W F I A D K S G A G E R G S
|
876
ggc tgg ttt att gct gat aaa tCT GGA Gcc ggt gag cgt gGG TCT
|
!
BpmI....(1 2) BsaI....
|
!
|
!
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
!
R G I I A A L G P D G K P S R
|
921
Cgc ggt atC ATT GCa gca ctg ggg cca gat ggt aag ccc tcc cgt
|
!BsaI...... BsrDI...(2 2)
|
!
|
!
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
!
I V V I Y T T G S Q A T M D E
|
966
atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa
|
!
AhdI...........
|
!
|
!
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
!
R N R Q I A E I G A S L I K H
|
1011
cga aat aga cag atc gct gag ata ggt gcc tca ctg att aag cat
|
!
|
!
286 287
|
!
W .
|
1056
tgg taa
|
1062
ctgtcagac caagtttact
|
1081
catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga
|
1141
tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt
|
1201
cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct
|
1261
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc
|
1321
taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc
|
1381
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc
|
1441
tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg
|
1501
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt
|
1561
cgtgcataca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg
|
1621
agcattgaga aagcgccacg cttcccgaag ggagaaaggc ggacagGTAT CCggtaagcg
|
!
BciVI.. (2 of 2)
|
1681
gcagggtcgg aacaggagag cgCACGAGgg agcttccagg gggaaacgcc tggtatcttt
|
!
BssSI.(2 2)
|
1741
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag
|
1801
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt
|
1861
gctggccttt tgctcACATG Ttctttcctg cgttatcccc tgattctgtg gataaccgta
|
!
PciI...
|
1921
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt
|
1981
cagtgagcga ggaagcgGAA GAGGgcccaa tacgcaaacc gcctctcccc gcgcgttggc
|
!
SapI....
|
2041
cgattcatta atgCAGCTGg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca
|
!
PvuII.(1 3)
|
2101
acgcaatTAA TGTgagttag ctcactcatt aggcacccca ggcTTTACAc tttatgcttc
|
!
..-35.. Plac ..-10.
|
2161
cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacaCAGGA AACAGCTATG
|
!
M13Rev_seq_primer
|
2221
Accatgatta cgCCAAGCTT TGGagccttt tttttggaga ttttcaac
|
!
PflMI.......
|
2221
ACcatgatta cgCCAAGCTT TGGagccttt tttttggaga ttttcaac
|
!
PflMI.......
|
!
Hind3.
|
!
signal::linker::CLight
|
!
|
!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
!
fM K K L L F A I P L V V P F Y
|
2269
gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat
|
!
|
!
Linker.............................. End of FR4
|
!
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
!
S H S A Q V Q L Q V D L E I K
|
2314
tct cac aGT GCA Cag gtc caa CTG CAG GTC GAC CTC GAG atc aaa
|
!
ApaLI...... PstI... XhoI...
|
!
BspMI...
|
!
SalI...
|
!
AccI...(1 2)
|
!
HincII.(1 2)
|
!
|
!
Vlight domains could be cloned in as ApaLI-XhoI fragments.
|
!
VL-CL (kappa) segments can be cloned in as ApaLI-AscI fragments.
|
!
|
!
Ckappa----------------------------------------------------
|
!
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
!
R G T V A A P S V F I F P P S
|
2359
cgt gga act gtg gct gca cca tct GTC TTC atc ttc ccg cca tct
|
!
BbsI...(1 2)
|
!
|
!
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
!
D E Q L K S G T A S V V C L L
|
2404
gat gag cag ttg aaa tct gga act gcc tct gtt gtg tgc ctg ctg
|
!
|
!
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
N N F Y P R E A K V Q W K V D
|
2449
aat aac ttc tat ccc aga gag gcc aaa gta cag tgg aag gtg gat
|
!
|
!
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
!
N A L Q S G N S Q E S V T E Q
|
2494
aac gcc ctc caa tcg ggt aac tcc cag gag agt gtc aca gag cag
|
!
|
!
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
!
D S K D S T Y S L S S T L T L
|
2539
gac agc aag gac agc acc tac agc ctc agc agc acc ctg acG CTG
|
!
EspI...
|
!
|
!
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
!
S K A D Y E K H K V Y A C E V
|
2584
AGC aaa gca gac tac gag aaa cac aaa GTC TAC gcc tgc gaa gtc
|
!
...EspI....
AccI...(2 2)
|
!
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
!
T H Q G L S S P V T K S F N R
|
2629
acc cat cag ggc ctg agt tcA CCG GTg aca aag agc ttc aac agg
|
!
AgeI....(1 2)
|
!
|
!
136 137 138 139 140
|
!
G E C . .
|
2674
gga gag tgt taa taa GG CGCGCCaatt
|
!
AscI.....
|
!
BssHII.
|
2701
ctatttcaag gagacagtca ta
|
!
|
!
PelB::3-23(stuffed)::CHl::III fusion gene
|
!
|
!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
!
M K Y L L P T A A A G L L L L
|
2723
atg aaa tac cta ttg cct acg gca gcc gct gga ttg tta tta ctc
|
!
|
!
----------------------------------------
|
!
|
!
16 17 18 19 20 21 22
|
!
A A Q P A M A
|
2768
gcG GCC cag ccG GCC atg gcc
|
!
SfiI..............
|
!
NgcMIV..(1 2)
|
!
NcoI....
|
!
|
!
FRl(DP47 V3-23)-------------------
|
!
23 23 24 25 26 27 28 29 30
|
!
E V Q L L E S G
|
2789
gaa|gtt|CAA|TTG|tta|gag|tct|ggt|
|
!
|MfeI|
|
!
|
!
-------------FRl---------------------------------------------
|
!
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
!
G G L V Q P G G S L R L S C A
|
2813
|ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|
|
!
|
!
----FRl-----
|
!
46 47 48
|
!
A S G
|
2858
|gct|TCC|GGA|
|
!
|BspEI|
|
!
|
!
Stuffer for CDR1, FR2, and CDR2----------------------------------
|
!
There are no stp codons in this stuffer.
|
2867
gcttcAGATC Tgtttgcctt
|
!
BglII..
|
2887
tttgtggggt ggtgcagatc gcgttacgga gatcgaccga ctgcttgagc aaaagccacg
|
2947
cttaactgcT GATCAggcat gggatgttat tcgccaaacc agtcgtcagg atcttaacct
|
!
BclT...
|
3007
gaggcttttt ttacctactc tgcaagcagc gacatctggt ttgacacaga gcgatccgcg
|
3067
tcgtcagttg gtagaaacat taacacgttg ggatggcatc aatttgctta atgatgatgg
|
3127
taaaacctgg cagcagccag gctctgccat cctgaacgtt tggctgacca gtatgttgaa
|
3187
gcgtaccgta gtggctgccg tacctatgCC Atttgataag TGGtacagcg ccagtggcta
|
!
XcmI..............
|
3247
cgaaacaacc caggacggcc caactggttc gctgaatata agtgttggag caaaaatttt
|
3307
gtatgaggcg gtgcagggag acaaatcacc aatcccacag gcggttgatc tgtttgctgg
|
3367
gaaaccacag caggaggttg tgttggctgc gctggaagat acctgggaga ctctttccaa
|
3427
acgctatggc aataatgtga gtaactggaa aacacctgca atggccttaa cgttccgggc
|
3487
aaataatttc tttggtgtac cgcaggccgc agcggaagaa ACGCGTcatc aggcggagta
|
!
MluI..
|
3547
tcaaaaccgt ggaacagaaa acgatatgat tgttttctca ccaacgacaa gcgatcgtcc
|
3607
tgtgcttgcc tgggatgtgg tcgcacccgg tcagagtggg tttattgctc ccgatggaac
|
3667
agttgataag cactatgaag atcagctgaa aatgtacgaa aattttggcc gtaagtcgct
|
!
PvuII.
|
3727
ctgGTTAACg aagcaggatg tggaggcgca taaggagtcg
|
!
HpaI..
|
!
HincII(2 2)
|
!
|
!
-------FR3------------------------------------------------
|
!
4 5 6 7 8 9 10 11 12 13 14 15 16
|
!
93 94 95 96 97 98 99 100 101 102 103 104 105
|
!
S R D N S K N T L Y L Q M
|
3767
|TCT|AGA|aga|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg
|
!
|XbaI|
|
!
|
!
---FR3----------------------------------------------------|
|
!
17 18 19 20
|
!
106 107 108 109
|
!
N S L s l s i t s q
|
3806
|aac|agC|TTA|Ag t ctg agc att CGG TCC G
|
!
|AflII| RsrII..
|
!
|
!
g h s p t .
|
3834
gg caa cat tct cca aac tga ccagacga cacaaacggc
|
3872
ttacgctaaa tcccgcgcat gggatggtaa agaggtggcg tctttgctgg cctggactca
|
3934
tcagatgaag gccaaaaatt ggcaggagtg gacacagcag gcagcgaaac aagcactgac
|
3992
catcaactgg tactatgctg atgtaaacgg caatattggt tatgttcata ctggtgctta
|
4052
tccagatcgt caatcaggcc atgatccgcg attacccgtt cctggtacgg gaaaatggga
|
4112
ctggaaaggg ctattgcctt ttgaaatgaa ccctaaggtg tataaccccc ag
|
4164
aa GCTAGC ctgcggcttc
|
!
NheI..
|
!
|
4182
G|GTC|ACC| gtc tca agc
|
!
|BstEII|
|
!
|
!
137 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
!
A S T K G P S V F P L A P S S
|
4198
gcc tcc acc aag ggc cca tcg gtc ttc ccc ctg gca ccc tcc tcc
|
!
|
!
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
!
K S T S G G T A A L G C L V K
|
4243
aag agc acc tct ggg ggc aca gcg gcc ctg ggc tgc ctg gtc aag
|
!
|
!
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
!
D Y F P E P V T V S W N S G A
|
4288
gac tac ttc ccc gaa ccg gtg acg gtg tcg tgg aac tca ggc gcc
|
!
|
!
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
!
L T S G V H T F P A V L Q S S
|
4333
ctg acc agc ggc gtc cac acc ttc ccg gct gtc cta cag tcc tca
|
!
|
!
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
!
G L Y S L S S V V T V P S S S
|
4378
gga ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agt agc
|
!
|
!
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
!
L G T Q T Y I C N V N H K P S
|
4423
ttg ggc acc cag acc tac atc tgc aac gtg aat cac aag ccc agc
|
!
|
!
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
!
N T K V D K K V E P K S C
|
4468
aac acc aag gtg gac aaG AAA GTT GAG CCC AAA TCT TGT
|
!
CN-TQHCforw......................
|
!
|
!
Poly His linker
|
!
139 140 141 142 143 144 145 146 147 148 149 150
|
!
A A A H H H H H H G A A
|
4507
GCG GCC GCa cat cat cat cac cat cac ggg gcc gca
|
!
NotI......
|
!
EagI....
|
!
|
!
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
!
E Q K L I S E E D L N G A A
|
4543
gaa caa aaa ctc atc tca gaa gag gat ctg aat ggg gcc gca tag
|
!
|
!
Mature III--------------------------------------------------...
|
!
166 167 168 169 170 171 172 173 174 175 176 177 178 178 180
|
!
T V E S C L A K P H T E N S F
|
4588
act ggt gaa agt tgt tta gca aaa cct cat aca gaa aat tca ttt
|
!
|
!
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
!
T N V W K D D K T L D R Y A N
|
4633
act aac gtc tgg aaa gac gac aaa act tta gat cgt tac gct aac
|
!
|
!
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
!
Y E G C L W N A T G V V V C T
|
4678
tat gag ggc tgt ctg tgG AAT GCt aca ggc gtt gtg gtt tgt act
|
!
BsmI....
|
!
|
!
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
!
G D E T Q C Y G T W V P I G L
|
4723
ggt gac gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt
|
!
|
!
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
!
A I P E N E G G G S E G G G S
|
4768
gct atc cct gaa aat gag ggt ggt ggc tct gag ggt ggc ggt tct
|
!
|
!
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
!
E G G G S E G G G T K P P E Y
|
4813
gag ggt ggc ggt tct gag ggt ggc ggt act aaa cct cct gag tac
|
!
|
!
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
!
G D T P I P G Y T Y I N P L D
|
4858
ggt gat aca cct att ccg ggc tat act tat atc aac cct ctc gac
|
!
|
!
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
!
G T Y P P G T E Q N P A N P N
|
4903
ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct aat
|
!
|
!
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
!
P S L E E S Q P L N T F M F Q
|
4948
cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag
|
!
BseRI..(2 2)
|
!
|
!
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
!
N N R F R N R Q G A L T V Y T
|
4993
aat aat agg ttc cga aat agg cag ggt gca tta act gtt tat acg
|
!
|
!
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
!
G T V T Q G T D P V K T Y Y Q
|
5038
ggc act gtt act caa ggc act gac ccc gtt aaa act tat tac cag
|
!
|
!
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
!
Y T P V S S K A M Y D A Y W N
|
5083
tac act cct gta tca tca aaa gcc atg tat gac gct tac tgg aac
|
!
|
!
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
!
G K P R D C A F H S G P N E D
|
5128
ggt aaa ttc aga gac tgc gct ttc cat tct ggc ttt aat gaG GAT
|
!
BamHI..
|
!
|
!
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
!
P F V C E Y Q G Q S S D L P Q
|
5173
CCa ttc gtt tgt gaa tat caa ggc caa tcg tct gAC CTG Cct caa
|
!
BAMHI... BspMI...(2 2)
|
!
|
!
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
!
P P V N A G G G S G G G S G G
|
5218
cct cct gtc aat gct ggc ggc ggc tct ggt ggt ggt tct ggt ggc
|
!
|
!
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
!
G S E G G G S E G G G S E G G
|
5263
ggc tct gag ggt ggc ggc tct gag ggt ggc ggt tct gag ggt ggc
|
!
|
!
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
!
G S E G G G S G G G S G S G D
|
5308
ggc tct gag ggt ggc ggt tcc ggt ggc ggc tcc ggt tcc ggt gat
|
!
|
!
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
!
F D Y E K M A N A N K G A M T
|
5353
ttt gat tat gaa aaa atg gca aac gct aat aag ggg gct atg acc
|
!
|
!
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
!
E N A D E N A L Q S D A K G K
|
5398
gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc aaa
|
!
|
!
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
!
L D S V A T D Y G A A I D G F
|
5443
ctt gat tct gtc gct act gat tac ggt gct gct ATC GAT ggt ttc
|
!
BspDI..
|
!
|
!
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
!
I G D V S G L A N G N G A T G
|
5488
att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt
|
!
|
!
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
!
D F A G S N S Q M A Q V G D G
|
5533
gat ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt
|
!
|
!
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
!
D N S P L M N N F R Q Y L P S
|
5578
gat aat tca cct tta atg aat aat ttc cgt caa tat tta cct tct
|
!
|
!
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
!
L P Q S V E C R P Y V F G A G
|
5623
ttg cct cag tcg gtt gaa tgt cgc cct tat gtc ttt ggc gct ggt
|
!
|
!
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
!
K P Y E P S I D C D K I N L F
|
5668
aaa cCA TAT Gaa ttt tct att gat tgt gac aaa ata aac tta ttc
|
!
NdeI
|
!
|
!
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
!
R G V F A F L L Y V A T F M Y
|
5713
cgt ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat
|
!
|
!
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
!
V F S T F A N I L R N K E S .
|
5758
gta ttt tcg acg ttt gct aac ata ctg cgt aat aag gag tct taa
|
!
|
!
571
|
!
.
|
5803
taa GAATTC
|
!
EcoRI.
|
5812
actggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc
|
5871
gccttgcagc acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcacCGATC
|
!
|
5931
Gcccttccca acagtTGCGC Agcctgaatg gcgaatGGCG CCtgatgcgg tattttctcc
|
!...PvuI... (3 3) FspI... (2 2) KasI...(2 2)
|
5991
ttacgcatct gtgcggtatt tcacaccgca tataaattgt aaacgttaat attttgttaa
|
6051
aattcgcgtt aaatttttgt taaatcagct cattttttaa ccaataggcc gaaatcggca
|
6111
aaatcccTTA TAAatcaaaa gaatagcccg agatagggtt gagtgttgtt ccagtttgga
|
!
PsiI...
|
6171
acaagagtcc actattaaag aacgtggact ccaacgtcaa agggcgaaaa accgtctatc
|
6231
agggcgatgg ccCACtacGT Gaaccatcac ccaaatcaag ttttttgggg tcgaggtgcc
|
!
DraIII....
|
6291
gtaaagcact aaatcggaac cctaaaggga gcccccgatt tagagcttga cggggaaaGC
|
!
NgoMIV..
|
6351
CGGCgaacgt ggcgagaaag gaagggaaga aagcgaaagg agcgggcgct agggcgctgg
|
!..NGoMIV.(2 2)
|
6411
caagtgtagc ggtcacgctg cgcgtaacca ccacacccgc cgcgcttaat gcgccgctac
|
6471
agggcgcgta ctatggttgc tttgacgggt gcagtctcag tacaatctgc tctgatgccg
|
6531
catagttaag ccagccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc
|
6591
tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga
|
6651
ggttttcacc gtcatcaccg aaacgcgcga
|
|
[0179]
37
TABLE 630
|
|
|
Oligonucleotides used to clone CDR1/2 diversity
|
|
|
All sequences are 5′ to 3′.
|
|
1) on_CD1Bsp, 30 bases
|
A c c T c A c T g g c T T c c g g A
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
|
T T c A c T T T c T c T
|
19 20 21 22 23 24 25 26 27 28 29 30
|
|
2) ON_Br12, 42 bases
|
|
A g A A A c c c A c T c c A A A c c
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
|
T T T A c c A g g A g c T T g g c g
|
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
|
|
A A c c c A
|
37 38 39 40 41 42
|
|
3) ON_CD2Xba, 51 bases
|
|
g g A A g g c A g T g A T c T A g A
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
|
g A T A g T g A A g c g A c c T T T
|
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
|
|
A A c g g A g T c A g c A T A
|
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
|
4) ON_BotXba, 23 bases
|
|
g g A A g g c A g T g A T c T A g A
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
|
g A T A g
|
19 20 21 22 23
|
|
Claims
- 1. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
- 2. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and (ii) cleaving the nucleic acid solely at the Type 11-S cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
- 3. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed at least a part of peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
- 4. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and (ii) cleaving the nucleic acid solely at the Type II-S cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desires location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
- 5. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family; (ii) rendering the nucleic acids single-stranded; (iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and (b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature; and (iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
- 6. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a portion of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family; (ii) rendering the nucleic acids single-stranded; (iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and (b) cleaving the nucleic acid solely at the Type II-S cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and (iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
- 7. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 3, 4, 5 or 6.
- 8. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family, the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
- 9. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the diversity of the family of the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site where the cleavage of the nucleic acid is desired; and (ii) cleaving the nucleic acid solely at the Type II-S cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
- 10. The methods according to any one of claims 1 to 9, wherein the nucleic acids encode at least a portion of an immunoglobulin.
- 11. The methods according to claim 10, wherein the immunoglobulin comprises a Fab or single chain Fv.
- 12. The methods according to claim 10 or 11, wherein the immunoglobin comprises at least portion of a heavy chain.
- 13. The methods according to claim 12, wherein at least a portion of the heavy chain is human.
- 14. The methods according to claim 10 or 11, wherein the immunoglobulin comprises at least a portion of FR1.
- 15. The methods according to claim 14, wherein at least a portion of the FR1 is human.
- 16. The methods according to claim 10 or 11, wherein the immunoglobulin comprises at least a portion of a light chain.
- 17. The methods according to claim 16, wherein at least a portion of the light chain is human.
- 18. The methods according to any one of claims 1 to 9, wherein the nucleic acid sequences are at least in part derived from patients suffering from at least one autoimmune disease and/or cancer.
- 19. The methods according to claim 18, wherein the autoimmune disease is selected from the group comprising lupus, erythematosus, systemic sclerosis, rheumatoid arthritis, antiphosolipid syndrome or vasculitis.
- 20. The methods according to claim 18, wherein the nucleic acids are at least in part isolated from the group comprising peripheral blood cells, bone marrow cells spleen cells or lymph node cells.
- 21. The methods according to claim 5 or 6 further comprising an nucleic acid amplification step between steps (i) and (ii), between steps (ii) and (iii) or between steps (iii) and (iv).
- 22. The methods according to claim 21, wherein the amplification step uses geneRACE™.
- 23. The methods according to any one of claims 1 to 9, wherein the temperature is between 45° C. and 75° C.
- 24. The methods according to claim 23, wherein the temperature is between 50° C. and 60° C.
- 25. The methods according to claim 24, wherein the temperature is between 55° C. and 60° C.
- 26. The methods according to claim 1, 3, 5 or 8, wherein the length of the single-stranded oligonucleotide is between 17 and 30 bases.
- 27. The methods according to claim 26, wherein the length of the single-stranded oligonucleotide is between 18 and 24 bases.
- 28. The methods according to claim 1, 3, 5 or 8, wherein the restriction endonuclease is selected from the group comprising MaelII, Tsp45I, HphI, BsaJI, AluI, BlpI, DdeI, BglII, MslI, BsiEI, EaeI, EagI, HaeIII, Bst4CI, HpyCH41II, HinfI, MlyI, PleI, MnlI, HpyCH4V, BsmAI, BpmI, XmnI, or SacI.
- 29. The methods according to claim 28, wherein the restriction endonuclease is selected from the group comprising Bst4CI, TaaI, HpyCH4III, BlpI, HpyCH4V or MslI.
- 30. The methods according to claim 2, 4, 6 or 9, wherein the length of the single-stranded region of the partially double-stranded oligonucleotide is between 14 and 22 bases.
- 31. The methods according to claim 30, wherein the length of the single-stranded region of the partially double-stranded oligonucleotide is between 14 and 17 bases.
- 32. The methods according to claim 31, wherein the length of the single-stranded region of the oligonucleotide is between 18 and 20 bases.
- 33. The methods according to claim 2, 4, 6 or 9, wherein the length of the double-stranded region of the partially double-stranded oligonucleotide is between 10 and 14 base pairs formed by a stem and its palindrome.
- 34. The methods according to claim 33 wherein, the partially double-stranded oligonucleotide comprises a loop of 3 to 8 bases between the stem and the palindrome.
- 35. The methods according to claim 2, 4, 6 or 9, wherein the Type II-S restriction endonuclease is selected from the group comprising AarICAC, AceIII, Bbr7I, BbvI, BbvII, Bce83I, BceAI, BcefI, BciVI, BfiI, BinI, BscAI, BseRI, BsmFI, BspMI, EciI, Eco57I, FauI, FokI, GsuI, HgaI, HphI, MboII, MlyI, MmeI, MnlI, PleI, RleAI, SfaNI, SspD5I, Sthl32I, StsI, TaqII, Tth111II, or UbaPI.
- 36. The methods according to claim 35, wherein the Type II-S restriction endonuclease is FokI.
- 37. A method for preparing single-stranded nucleic acids for cloning into an vector, the method comprising the steps of:
(i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences; and (ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease recognition site contained within the double-stranded region of the partially double-stranded oligonucleotide.
- 38. The method according to claim 37, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 2 and 15 bases.
- 39. The method according to claim 38, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 7 and 10 bases.
- 40. The method according to claim 37, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 12 and 100 base pairs.
- 41. The method according to claim 40, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 20 and 100 base pairs.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60198069 |
Apr 2000 |
US |