Novel proteins and nucleic acids encoding same

Information

  • Patent Application
  • 20040058338
  • Publication Number
    20040058338
  • Date Filed
    December 02, 2002
    21 years ago
  • Date Published
    March 25, 2004
    20 years ago
Abstract
The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to novel polypeptides that are targets of small molecule drugs and that have properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.



BACKGROUND

[0003] Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins and signal transducing components located within the cells.


[0004] Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.


[0005] Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.


[0006] Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.


[0007] Small molecule targets have been implicated in various disease states or pathologies. These targets may be proteins, and particularly enzymatic proteins, which are acted upon by small molecule drugs for the purpose of altering target function and achieving a desired result. Cellular, animal and clinical studies can be performed to elucidate the genetic contribution to the etiology and pathogenesis of conditions in which small molecule targets are implicated in a variety of physiologic, pharmacologic or native states. These studies utilize the core technologies at CuraGen Corporation to look at differential gene expression, protein-protein interactions, large-scale sequencing of expressed genes and the association of genetic variations such as, but not limited to, single nucleotide polymorphisms (SNPs) or splice variants in and between biological samples from experimental and control groups. The goal of such studies is to identify potential avenues for therapeutic intervention in order to prevent, treat the consequences or cure the conditions.


[0008] In order to treat diseases, pathologies and other abnormal states or conditions in which a mammalian organism has been diagnosed as being, or as being at risk for becoming, other than in a normal state or condition, it is important to identify new therapeutic agents. Such a procedure includes at least the steps of identifying a target component within an affected tissue or organ, and identifying a candidate therapeutic agent that modulates the functional attributes of the target. The target component may be any biological macromolecule implicated in the disease or pathology. Commonly the target is a polypeptide or protein with specific functional attributes. Other classes of macromolecule may be a nucleic acid, a polysaccharide, a lipid such as a complex lipid or a glycolipid; in addition a target may be a sub-cellular structure or extra-cellular structure that is comprised of more than one of these classes of macromolecule. Once such a target has been identified, it may be employed in a screening assay in order to identify favorable candidate therapeutic agents from among a large population of substances or compounds.


[0009] In many cases the objective of such screening assays is to identify small molecule candidates; this is commonly approached by the use of combinatorial methodologies to develop the population of substances to be tested. The implementation of high throughput screening methodologies is advantageous when working with large, combinatorial libraries of compounds.



SUMMARY OF THE INVENTION

[0010] The invention includes nucleic acid sequences and the novel polypeptides they encode. The novel nucleic acids and polypeptides are referred to herein as NOVX, or NOV1, NOV2, NOV3, etc., nucleic acids and polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as “NOVX” nucleic acid, which represents the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188, or polypeptide sequences, which represents the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188.


[0011] In one aspect, the invention provides an isolated polypeptide comprising a mature form of a NOVX amino acid. One example is a variant of a mature form of a NOVX amino acid sequence, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. The amino acid can be, for example, a NOVX amino acid sequence or a variant of a NOVX amino acid sequence, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also includes fragments of any of these. In another aspect, the invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof.


[0012] Also included in the invention is a NOVX polypeptide that is a naturally occurring allelic variant of a NOVX sequence. In one embodiment, the allelic variant includes an amino acid sequence that is the translation of a nucleic acid sequence differing by a single nucleotide from a NOVX nucleic acid sequence. In another embodiment, the NOVX polypeptide is a variant polypeptide described therein, wherein any amino acid specified in the chosen sequence is changed to provide a conservative substitution. In one embodiment, the invention discloses a method for determining the presence or amount of the NOVX polypeptide in a sample. The method involves the steps of: providing a sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the NOVX polypeptide, thereby determining the presence or amount of the NOVX polypeptide in the sample. In another embodiment, the invention provides a method for determining the presence of or predisposition to a disease associated with altered levels of a NOVX polypeptide in a mammalian subject. This method involves the steps of: measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in the sample of the first step to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0013] In a further embodiment, the invention includes a method of identifying an agent that binds to a NOVX polypeptide. This method involves the steps of: introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. In various embodiments, the agent is a cellular receptor or a downstream effector.


[0014] In another aspect, the invention provides a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a NOVX polypeptide. The method involves the steps of: providing a cell expressing the NOVX polypeptide and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent. In another aspect, the invention describes a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with the NOVX polypeptide. This method involves the following steps: administering a test compound to a test animal at increased risk for a pathology associated with the NOVX polypeptide, wherein the test animal recombinantly expresses the NOVX polypeptide. This method involves the steps of measuring the activity of the NOVX polypeptide in the test animal after administering the compound of step; and comparing the activity of the protein in the test animal with the activity of the NOVX polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the NOVX polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the NOVX polypeptide. In one embodiment, the test animal is a recombinant test animal that expresses a test protein transgene or expresses the transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein the promoter is not the native gene promoter of the transgene. In another aspect, the invention includes a method for modulating the activity of the NOVX polypeptide, the method comprising introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.


[0015] The invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof. In a preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant. In another embodiment, the nucleic acid encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence. In one embodiment, the NOVX nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188, or a complement of the nucleotide sequence. In another aspect, the invention provides a vector or a cell expressing a NOVX nucleotide sequence.


[0016] In one embodiment, the invention discloses a method for modulating the activity of a NOVX polypeptide. The method includes the steps of: introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide. In another embodiment, the invention includes an isolated NOVX nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising a NOVX amino acid sequence or a variant of a mature form of the NOVX amino acid sequence, wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes an amino acid sequence that is a variant of the NOVX amino acid sequence, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed.


[0017] In one embodiment, the invention discloses a NOVX nucleic acid fragment encoding at least a portion of a NOVX polypeptide or any variant of the polypeptide, wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed. In another embodiment, the invention includes the complement of any of the NOVX nucleic acid molecules or a naturally occurring allelic nucleic acid variant. In another embodiment, the invention discloses a NOVX nucleic acid molecule that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the invention discloses a NOVX nucleic acid, wherein the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence.


[0018] In another aspect, the invention includes a NOVX nucleic acid, wherein one or more nucleotides in the NOVX nucleotide sequence is changed to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In one embodiment, the invention discloses a nucleic acid fragment of the NOVX nucleotide sequence and a nucleic acid fragment wherein one or more nucleotides in the NOVX nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In another embodiment, the invention includes a nucleic acid molecule wherein the nucleic acid molecule hybridizes under stringent conditions to a NOVX nucleotide sequence or a complement of the NOVX nucleotide sequence. In one embodiment, the invention includes a nucleic acid molecule, wherein the sequence is changed such that no more than 15% of the nucleotides in the coding sequence differ from the NOVX nucleotide sequence or a fragment thereof.


[0019] In a further aspect, the invention includes a method for determining the presence or amount of the NOVX nucleic acid in a sample. The method involves the steps of: providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the NOVX nucleic acid molecule, thereby determining the presence or amount of the NOVX nucleic acid molecule in the sample. In one embodiment, the presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.


[0020] In another aspect, the invention discloses a method for determining the presence of or predisposition to a disease associated with altered levels of the NOVX nucleic acid molecule of in a first mammalian subject. The method involves the steps of: measuring the amount of NOVX nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of NOVX nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0021] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


[0022] Other features and advantages of the invention will be apparent from the following detailed description and claims.



DETAILED DESCRIPTION OF THE INVENTION

[0023] The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides are referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
1TABLE ASequences and Corresponding SEQ ID NumbersSEQ IDSEQ IDNONONOVXInternal(nucleic(aminoAssignmentIdentificationacidacid)HomologyNOV1aCG101719-0212Fibroblast growth factor receptor 1IIIb-like proteinNOV1bCG101719-0434Fibroblast growth factor receptor 1IIIb-like proteinNOV1cCG101719-0556Fibroblast growth factor receptor 1IIIb-like proteinNOV1dCG101719-0178Fibroblast growth factor receptor 1IIIb-like proteinNOV1eCG101719-03910Fibroblast growth factor receptor 1IIIb-like proteinNOV2aCG102006-011112Human peroxiredoxin 2-like proteinNOV2bCG102006-021314Human peroxiredoxin 2-like proteinNOV2cCG102006-031516Human peroxiredoxin 2-like proteinNOV3aCG127322-071718Human kynurenine hydroxylase-likeproteinNOV3bCG127322-011920Human kynurenine hydroxylase-likeproteinNOV3cCG127322-042122Human kynurenine hydroxylase-likeproteinNOV3dCG127322-032324Human kynurenine hydroxylase-likeproteinNOV3e 2593575952526Human kynurenine hydroxylase-likeproteinNOV3f 2556375612728Human kynurenine hydroxylase-likeproteinNOV3g 2593576102930Human kynurenine hydroxylase-likeproteinNOV3h 2593479113132Human kynurenine hydroxylase-likeproteinNOV3i 2593479153334Human kynurenine hydroxylase-likeproteinNOV3j 2605685453536Human kynurenine hydroxylase-likeproteinNOV3k 2558728263738Human kynurenine hydroxylase-likeproteinNOV31 2558728533940Human kynurenine hydroxylase-likeproteinNOV3mCG127322-024142Human kynurenine hydroxylase-likeproteinNOV3nCG127322-054344Human kynurenine hydroxylase-likeproteinNOV3oCG127322-064546Human kynurenine hydroxylase-likeproteinNOV4aCG140122-074748Human polyamine oxidase-like proteinNOV4bCG140122-014950Human polyamine oxidase-like proteinNOV4cCG140122-035152Human polyamine oxidase-like proteinNOV4dCG140122-045354Human Polyamine oxidase-like proteinNOV4e24686440435556Human polyamine oxidase-like proteinNOV4f 2468640865758Human polyamine oxidase-like proteinNOV4g 2582800835960Human polyamine oxidase-like proteinNOV4h 2583299886162Human potyamine oxidase-like proteinNOV4i 2582800666364Human polyamine oxidase-like proteinNOV4j 2540478976566Human polyamine oxidase-like proteinNOV4k 2583299886768Human polyamine oxidase-like proteinNOV4l 2582800666970Human polyamine oxidase-like proteinNOV4m 2582800837172Human polyamine oxiclase-like proteinNOV4nCG140122-027374Human polyamine oxidase-like proteinNOV4oCG140122-057576Human polyamine oxidase-like proteinNOV4pCG140122-067778Human polyamine oxidase-like proteinNOV4qCG140122-087980Human polyamine oxidase-like proteinNOV5aCG141O51-018182Human glyceraldehyde-3-phosphatededrogenase-like proteinNOV6aCG142427-058384Human ATP-citrate (pro-S-)-lyase-likeproteinNOV6bCG142427-028586Human ATP-citrate (pro-S-)-lyase-likeproteinNOV6cCG142427-038788Human ATP-citrate (pro-S-)-lyase-likeproteinNOV6dCG142427-048990Human ATP-citrate (pro-S-)-lyase-likeproteinNOV6eCG142427-019192Human ATP-citrate (pro-S-)-lyase-likeproteinNOV7aCG148010-039394Human dacylglycerol acyltransferase2-like proteinNOV7bCG148010-019596Human dacylglycerol acyltransferase2-like proteinNOV7c 2468641149798Human dacylglycerol acyltransferase2-like proteinNOV7d 25744869599100Human dacylglycerol acyltransferase2-like proteinNOV7e 259357675101102Human dacylglycerol acyltransferase2-like roteinNOV7f 254868590103104Human dacylglycerol acyltransferase2-like proteinNOV7gCG148010-02105106Human dacylglycerol acyltransferase2-like proteinNOV7hCG148010-04107108Human dacylglycerol acyltransferase2-like proteinNOV8aCG148278-02109110Human longchain acyl CoA synthetase1-like proteinNOV8bCG148278-01111112Human longchain acyl CoA synthetase1-like proteinNOV9aCG152981-01113114Corticosteroid 11-beta-dehydrogenase,isozyme 1-like proteinNOV9bCG152981-02115116Corticosteroid 11-beta-dehydrogenase,isozyme 1-like proteinNOV10aCG159035-01117118Glucuronosyltransferase-like proteinNOV11aCG159232-01119120Human cAMP-specificphosphodiesterase 8 B1-like proteinNOV12aCG159251-03121122O-Methyltansferase-like proteinNOV12bCG159251-01123124O-Methyltansferase-like proteinNOVI2cCG159251-02125126O-Methyitansferase-like proteinNOV13aCG160563-01127128Monocarboxylate transporter 7-likeproteinNOV13bCG160563-01129130Monocarboxylate transporter 7-likeproteinNOV14aCG161527-01131132Sodium/potassium-transporting ATPasealpha-4 chain-like proteinNOV15aCG161579-01133134Dimethylaniline monooxygenase(N-oxide-forming)-like proteinNOV16aCG161650-0l135136Cytochrome c oxidase polypeptideVIc-like peptideNOV17aCG161733-01137138Axonemal dynein heavy chain-likeproteinNOV18aCG161762-01139140Voltage-dependent anion-selectivechannel protein 3-like proteinNOV19aCG162855-01141142Neurolgin Y-like proteinNOV20aCG163937-01143144Diamine N-acetyltransferase-likeproteinNOV21aCG164449-02145146Granzyme H precursor-like proteinNOV21bCG164449-01147148Granzyme H precursor-like proteinNOV22aCG54007-06149150Carboxypeptidase X precursor-likeproteinNOV22bCG54007-04151152Carboxypeptidase X precursor-likeproteinNOV22cCG54007-01153154Carboxypeptidase X precursor-likeproteinNOV22dCG54007-02155156Carboxypeptidase X precursor-likeproteinNOV22eCG54007-03157158Carboxypeptidase X precursor-likeproteinNOV22fCG54007-05159160Carboxypeptidase X precursor-likeproteinNOV22gCG54007-07161162Carboxypeptidase X precursor-likeproteinNOV23aCG55078-04163164Serine carboxypeptidase 1precursor-like proteinNOV23bCG55078-01165166Serine carboxypeptidase 1NOV23cCG55078-03167168precursor-like proteinNOV23d 171094334169170Serine carboxypeptidase 1precursor-like proteinNOV23e 171095197171172Serine carboxypeptidase 1precursor-like proteinNOV23f 214374121173174Serine carboxypeptidase 1precursor-like proteinNOV23g 171095146175176Serine carboxypeptidase 1precursor-like proteinNOV23h 171095500177178Serine carboxypeptidase 1precursor-like proteinNOV23i 171095508179180Serine carboxypeptidase 1precursor-like proteinNOV23j 171095572181182Serine carboxypeptidase 1precursor-like proteinNOV23k 171095162183184Serine carboxypeptidase 1precursor-like proteinN0V23l 171095169185186Serine carboxypeptidase 1precursor-like proteinNOV23m 222681273187188Serine carboxypeptidase 1precursor-like proteinNOV23n 201536204189190Serine carboxypeptidase 1precursor-like proteinNOV23oCG55078-02191192Serine carboxypeptidase 1precursor-like proteinNOV23pCG55078-05193194Serine carboxypeptidase 1precursor-like proteinNOV23qCG55078-06195196Serine carboxypeptidase 1precursor-like proteinNOV23rCG55078-07197198Serine carboxypeptidase 1precursor-like proteinNOV24aCG56149-07199200Nardilysin 1-like proteinNOV24bCG56149-03201202Nardilysin 1-like proteinNOV24cCG56149-01203204Nardilysin 1-like proteinNOV24dCG56149-02205206Nardilysin 1-like proteinNOV24eCG56149-04207208Nardilysin 1-like proteinNOV24fCG56149-05209210Nardilysin 1-like proteinNOV24gCG56149-06211212Nardilysin 1-like proteinNOV24hCG56149-08213214Nardilysin 1-like proteinNOV25aCG56216-01215216SERCA3-like proteinNOV25b 222682222217218SERCA3-like proteinNOV25c 248851003219220SERCA3-like proteinNOV25dCG56216-02221222SERCA3-like proteinNOV26aCG56230-01223224Olfactory receptor-like proteinNOV27aCG56246-04225226Human carboxypeptidase A2-likeproteinNOV27bCG56246-02227228Human carboxypeptidase A2-likeproteinNOV27c 171092849229230Human carboxypeptidase A2-likeproteinNOV27d 183852323231232Human carboxypeptidase A2-likeNOV27e 173229182233234Human carboxypeptidase A2-likeNOV27f 173172465235236Human carboxypeptidase A2-likeNOV27gCG56246-01237238Human carboxypeptidase A2-likeNOV27h 274057795239240Human carboxypeptidase A2-likeproteinNOV27i 274057823241242Human carboxypeptidase A2-likeproteinNOV27j 274057830243244Human carboxypeptidase A2-likeproteinNOV27k 274057838245246Human carboxypeptidase A2-likeproteinN0V27lCG56246-03247248Human carboxypeptidase A2-likeproteinNOV27mCG56246-05249250Human carboxypeptidase A2-likeproteinNOV28aCG57417-05251252Human SERCA 1-like proteinNOV28bCG57417-03253254Human SERCA 1-like proteinNOV28c 255169268255256Human SERCA 1-like proteinNOV28dCG57417-01257258Human SERCA 1-like proteinNOV28e 181356924259260Human SERCA 1-like proteinNOV28f 255169268261262Human SERCA 1-like proteinNOV28g 206977032263264Human SERCA 1-like proteinNOV28h 201190923265266Human SERCA 1-like proteinNOV28iCG57417-02267268Human SERCA 1-like proteinN0V28jCG57417-04269270Human SERCA 1-like proteinNOV28kCG57417-06271272Human SERCA 1-like proteinN0V28lCG57417-07273274Human SERCA 1-like proteinNOV29aCG93541-05275276Human autotaxin-t-like proteinNOV29bCG93541-01277278Human autotaxin-t-like proteinNOV29cCG93541-02279280Human autotaxin-t-like proteinNOV29dCG93541-03281282Human autotaxin-t-like proteinNOV29eCG93541-04283284Human autotaxin-t-like proteinNOV29fCG93541-06285286Human autotaxin-t-like proteinNOV30aCG93735-05287288Human adenylate kinase 3 alpha-likeproteinNOV30bCG93735-01289290Human AK3 alpha-like proteinNOV30c 171094650291292Human AK3 alpha-like proteinNOV30d 173172155293294Human AK3 alpha-like proteinNOV30e 195803542295296Human AK3 alpha-like proteinNOV30f 171093359297298Human AK3 alpha-like proteinNOV30g 171065502299300Human AK3 alpha-like proteinNOV30h 171093533301302Human AK3 alpha-like proteinNOV30i 171094630303304Human AK3 alpha-like proteinNOV30j 278391231305306Human AK3 alpha-like proteinNOV30k 283291704307308Human AK3 alpha-like proteinNOV30ICG93735-02309310Human AK3 alpha-like proteinNOV30mCG93735-03311312Human AK3 alpha-like proteinNOV30nCG93735-04313314Human AK3 alpha-like proteinNOV30oCG93735-06315316Human AK3 alpha-like proteinNOV31aCG93817-01317318GPCR olfactory receptor-like proteinNOV32aCG96859-03319320Human HMG CoA lyase precursor-likeproteinNOV32b 233169960321322Human HMG CoA lyase precursor-likeproteinNOV32c 223316987323324Human HMG CoA lyase precursor-likeproteinNOV32dCG96859-01325326Human HMG CoA lyase precursor-likeproteinNOV32eCG96859-02327328Human HMG CoA lyase precursor-likeproteinNOV32fCG96859-04329330Human HMG CoA lyase precursor-likeproteinNOV32gCG96859-05331332Human HMG CoA lyase precursor-likeproteinNOV32hCG96859-06333334Human HMG CoA lyase precursor-likeproteinNOV32iCG96859-07335336Human HMG CoA lyase precursor-likeproteinNOV32jCG96859-08337338Human HMG CoA lyase precursor-likeproteinNOV32kCG96859-09339340Human HMG CoA lyase precursor-likeproteinNOV33aCG105355-03341342Human aryl hydrocarbon (Ah) receptor-like proteinNOV33bCG105355-01343344Human Ah receptor-like proteinNOV33cCG105355-02345346Human Ah receptor-like proteinNOV33dCG105355-04347348Human Ah receptor-like proteinNOV34aCG96736-02349350Human neutral amino acid transporterB(0)-like proteinNOV34bCG96736-01351352Human neutral ATB(0)-like proteinNOV34c 210203253353354Human neutral ATB(0)-like proteinNOV34d 210203261355356Human neutral ATB(0)-like proteinNOV35aCG97025-04357358Human hydroxymethylglutaryl-CoAsynthase-like proteinNOV35bCG97025-01359360Human HMG-CoA synthase-likeproteinNOV35c 254869578361362Human HMG-CoA synthase-likeproteinNOV35d 253174237363364Human HMG-CoA synthase-likeproteinNOV35e 256420363365366Human HMG-CoA synthase-likeproteinNOV35f 255667064367368Human HMG-CoA synthase-likeproteinNOV35g 228832739369370Human HMG-CoA synthase-likeproteinNOV35hCG97025-02371372Human HMG-CoA synthase-likeproteinNOV35iCG97025-03373374Human HMG-CoA synthase-likeproteinNOV35jCG97025-05375376Human HMG-CoA synthase-likeprotein


[0024] Table A indicates the homology of NOVX polypeptides to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.


[0025] Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to, e.g., cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease;


[0026] multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as well as conditions such as transplantation and fertility.


[0027] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins.


[0028] Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0029] Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.


[0030] The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.


[0031] The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers. SNP analysis for each NOVX, if applicable,, is presented in Example D.


[0032] Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.


[0033] NOVX Clones


[0034] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0035] The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.


[0036] The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.


[0037] In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).


[0038] In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 188; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 188 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.


[0039] In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0040] NOVX Nucleic Acids and Polypeptides


[0041] One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g, cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.


[0042] A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a “mature” form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product “mature” form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises. Examples of such processing steps leading to a “mature” form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.


[0043] The term “probe”, as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single-stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.


[0044] The term “isolated” nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.


[0045] A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), Molecular Cloning: A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, et al., (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1993.)


[0046] A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


[0047] As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.


[0048] In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, thereby forming a stable duplex.


[0049] As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term “binding” means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.


[0050] A “fragment” provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.


[0051] A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5′ direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3′ direction of the disclosed sequence.


[0052] A “derivative” is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An “analog” is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A “homolog” is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.


[0053] Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1993, and below.


[0054] A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.


[0055] A NOVX polypeptide is encoded by the open reading frame (“ORF”) of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG “start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bonafide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.


[0056] The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188; or an anti-sense strand nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188; or of a naturally occurring mutant of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188.


[0057] Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.


[0058] “A polypeptide having a biologically-active portion of a NOVX polypeptide” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a “biologically-active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.


[0059] NOVX Nucleic Acid and Polypeptide Variants


[0060] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 188.


[0061] In addition to the human NOVX nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.


[0062] Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.


[0063] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.


[0064] Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.


[0065] As used herein, the phrase “stringent hybridization conditions” refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60° C. for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.


[0066] Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65° C., followed by one or more washes in 0.2×SSC, 0.01% BSA at 50° C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0067] In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6×SSC, 5× Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55° C., followed by one or more washes in 1×SSC, 0.1% SDS at 37° C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al. (eds.), 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY, and Krieger, 1990; Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY.


[0068] In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5×SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40° C., followed by one or more washes in 2×SSC, 25 mM Tris-HCI (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50° C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY, and Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.


[0069] Conservative Mutations


[0070] In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 188. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an “essential” amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are not particularly amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.


[0071] Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO:2n, wherein n is an integer between 1 and 188. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 188; more preferably at least about 70% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 188; still more preferably at least about 80% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 188; even more preferably at least about 90% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 188; and most preferably at least about 95% homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 188.


[0072] An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 188, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


[0073] Mutations can be introduced any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.


[0074] The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved “strong” residues or fully conserved “weak” residues. The “strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the “weak” group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.


[0075] In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).


[0076] In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).


[0077] Interfering RNA


[0078] In one aspect of the invention, NOVX gene expression can be attenuated by RNA interference. One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5′ untranslated (UT) region, the ORF, or the 3′ UT region. See, e.g., PCT applications WO00/44895, WO99/32619, WO01/75164, WO01/92513, WO 01/29058, WO01/89304, WO02/16620, and WO02/29858, each incorporated by reference herein in their entirety. Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene. Nonlimiting examples of upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway.


[0079] According to the methods of the present invention, NOVX gene expression is silenced using short interfering RNA. A NOVX polynucleotide according to the invention includes a siRNA polynucleotide. Such a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence. See, e.g., Tuschl, Zamore, Lehmann, Bartel and Sharp (1999), Genes & Dev. 13: 3191-3197, incorporated herein by reference in its entirety. When synthesized, a typical 0.2 micromolar-scale RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24-well tissue culture plate format.


[0080] The most efficient silencing is generally observed with siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3′ overhang. The sequence of the 2-nt 3′ overhang makes an additional small contribution to the specificity of siRNA target recognition. The contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases. In one embodiment, the nucleotides in the 3′ overhang are ribonucleotides. In an alternative embodiment, the. nucleotides in the 3′ overhang are deoxyribonucleotides. Using 2′-deoxyribonucleotides in the 3′ overhangs is as efficient as using ribonucleotides, but deoxyribonucleotides are often cheaper to synthesize and are most likely more nuclease resistant.


[0081] A contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands. An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3′ of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5′ of the cloned DNA). The sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene. Alternatively, two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct. Finally, cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes. In an example of this embodiment, a hairpin RNAi product is homologous to all or a portion of the target gene. In another example, a hairpin RNAi product is a siRNA. The regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.


[0082] In a specific embodiment, siRNAs are transcribed intracellularly by cloning the NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA H1. One example of a vector system is the GeneSuppressor™ RNA Interference kit (commercially available from Imgenex). The U6 and H1 promoters are members of the type III class of Pol III promoters. The +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for H1 promoters is adenosine. The termination signal for these promoters is defined by five consecutive thymidines. The transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3′ UU overhang in the expressed siRNA, which is similar to the 3′ overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.


[0083] A siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired. Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition. In contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division. The long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.


[0084] In general, siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER. DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex. In vitro studies in Drosophila suggest that the siRNAs/protein complex (siRNP) is then transferred to a second enzyme complex, called an RNA-induced silencing complex (RISC), which contains an endoribonuclease that is distinct from DICER. RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.


[0085] A NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 to 100 nt downstream of the start codon. Alternatively, 5′ or 3′ UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation. See, Elbashir et al. 2001 EMBO J. 20(23):6877-88. Hence, consideration should be taken to accommodate SNPs, polymorphisms, allelic variants or species-specific variations when targeting a desired gene.


[0086] In one embodiment, a complete NOVX siRNA experiment includes the proper negative control. A negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.


[0087] Two independent NOVX siRNA duplexes can be used to knock-down a target NOVX gene. This helps to control for specificity of the silencing effect. In addition, expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide. Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.


[0088] A targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT). A desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21). The sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3′ end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3′ overhangs. Symmetric 3′ overhangs may help to ensure that the siRNPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, incorporated by reference herein in its entirely. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.


[0089] Alternatively, if the NOVX target mRNA does not contain a suitable AA(N21) sequence, one may search for the sequence NA(N21). Further, the sequence of the sense strand and antisense strand may still be synthesized as 5′ (N19)TT, as it is believed that the sequence of the 3′-most nucleotide of the antisense siRNA does not contribute to specificity. Unlike antisense or ribozyme technology, the secondary structure of the target mRNA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, incorporated by reference in its entirety.


[0090] Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen). An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type and silenced NOVX phenotypes. In a specific embodiment, for one well of a 24-well plate, approximately 0.84 μg of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence. The choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type. The efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing. The efficiency of transfection needs to be carefully examined for each new cell line to be used. Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.


[0091] For a control experiment, transfection of 0.84 μg single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 μg antisense siRNA has a weak silencing effect when compared to 0.84 μg of duplex siRNAs. Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes. To control for transfection efficiency, targeting of common proteins is typically performed, for example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech). In the above example, a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression. Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology.


[0092] Depending on the abundance and the half life (or turnover) of the targeted NOVX polynucleotide in a cell, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no NOVX knock-down phenotype is observed, depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting. If the NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.


[0093] An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or aberrant NOVX expression or activity. The NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above. The NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above. A NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.


[0094] The present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. A specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.


[0095] Where the NOVX gene function is not correlated with a known phenotype, a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like. A subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state. The NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product. These cells or tissues are treated by administering NOVX siRNA's to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample, using the assays described. This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX) phenotype in the treated subject sample. The NOVX phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.


[0096] In specific embodiments, a NOVX siRNA is used in therapy. Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.


[0097] Production of RNAs


[0098] Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors. In the initial experiments, the sense and antisense RNA are about 500 bases in length each. The produced ssRNA and asRNA (0.5 μM) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 95° C. for 1 min then cooled and annealed at room temperature for 12 to 16 h. The RNAs are precipitated and resuspended in lysis buffer (below). To monitor annealing, RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).


[0099] Lysate Preparation


[0100] Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C. for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200:1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.


[0101] In a parallel experiment made with the same conditions, the double stranded RNA is internally radiolabeled with a 32P-ATP. Reactions are stopped by the addition of 2× proteinase K buffer and deproteinized as described previously (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.


[0102] The band of double stranded RNA, about 21-23 bps, is eluded. The efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay. The sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.


[0103] RNA Preparation


[0104] 21 nt RNAs, based on the sequence determined above, are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)).


[0105] These RNAs (20 μM) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C. followed by 1 h at 37° C.


[0106] Cell Culture


[0107] A cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1:5 with fresh medium without antibiotics (1-3×105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3′ ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used. An efficient concentration for suppression in vitro in mammalian culture is between 25 nM to 100 nM final concentration. This indicates that siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments.


[0108] The above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression. In vivo suppression may be performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques.


[0109] Antisense Nucleic Acids


[0110] Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or fragments, analogs or derivatives thereof. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 188, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, are additionally provided.


[0111] In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a NOVX protein. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding the NOVX protein. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).


[0112] Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35,40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).


[0113] Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-thiouracil, 4-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0114] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


[0115] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.


[0116] Ribozymes and PNA Moieties


[0117] Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.


[0118] In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO:2n−1, wherein n is an integer between 1 and 188). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Pat. No. 4,987,071 to Cech, et al. and U.S. Pat. No. 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.


[0119] Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.


[0120] In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.


[0121] PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).


[0122] In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5′ end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.


[0123] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.


[0124] NOVX Polypeptides


[0125] A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 188. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO:2n, wherein n is an integer between 1 and 188, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.


[0126] In general, a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.


[0127] One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.


[0128] An “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language “substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.


[0129] The language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.


[0130] Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 188) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.


[0131] Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.


[0132] In an embodiment, the NOVX protein has an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 188. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO:2n, wherein n is an integer between 1 and 188, and retains the functional activity of the protein of SEQ ID NO:2n, wherein n is an integer between 1 and 188, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 188, and retains the functional activity of the NOVX proteins of SEQ ID NO:2n, wherein n is an integer between 1 and 188.


[0133] Determining Homology Between Two or More Sequences


[0134] To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid “homology” is equivalent to amino acid or nucleic acid “identity”).


[0135] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188.


[0136] The term “sequence identity” refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.


[0137] Chimeric and Fusion Proteins


[0138] The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX “chimeric protein” or “fusion protein” comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a NOVX protein of SEQ ID NO:2n, wherein n is an integer between 1 and 188, whereas a “non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term “operatively-linked” is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.


[0139] In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.


[0140] In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.


[0141] In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.


[0142] A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) Current Protocols in Molecular Biology, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.


[0143] NOVX Agonists and Antagonists


[0144] The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.


[0145] Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.


[0146] Polypeptide Libraries


[0147] In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.


[0148] Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.


[0149] Anti-NOVX Antibodies


[0150] Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab′ and F(ab′)2 fragments, and an Fab expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


[0151] An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO:2n, wherein n is an integer between 1 and 188, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.


[0152] In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0153] The term “epitope” includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (KD) is ≦1 μM, preferably ≦100 nM, more preferably ≦10 nM, and most preferably ≦100 pM to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.


[0154] A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.


[0155] Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference). Some of these antibodies are discussed below.


[0156] Polyclonal Antibodies


[0157] For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).


[0158] The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).


[0159] Monoclonal Antibodies


[0160] The term “monoclonal antibody” (MAb) or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.


[0161] Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.


[0162] The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


[0163] Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).


[0164] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.


[0165] After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding,1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.


[0166] The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.


[0167] The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.


[0168] Humanized Antibodies


[0169] The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Pat. No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).


[0170] Human Antibodies


[0171] Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed “human antibodies”, or “fully human antibodies” herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).


[0172] In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al, (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).


[0173] Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.


[0174] An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Pat. No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.


[0175] A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Pat. No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.


[0176] In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.


[0177] Fab Fragments and Single Chain Antibodies


[0178] According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Pat. No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(ab′)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab′)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.


[0179] Bispecific Antibodies


[0180] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.


[0181] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).


[0182] Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).


[0183] According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.


[0184] Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.


[0185] Additionally, Fab′ fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.


[0186] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).


[0187] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).


[0188] Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).


[0189] Heteroconjugate Antibodies


[0190] Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.


[0191] Effector Function Engineering


[0192] It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).


[0193] Immunoconjugates


[0194] The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (ire., a radioconjugate).


[0195] Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 90Y, and 186Re.


[0196] Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis(p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.


[0197] In another embodiment, the antibody can be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.


[0198] Immunoliposomes


[0199] The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.


[0200] Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).


[0201] Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention


[0202] In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0203] Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as “Therapeutics”).


[0204] An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.


[0205] Antibody Therapeutics


[0206] Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.


[0207] Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.


[0208] A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.


[0209] Pharmaceutical Compositions of Antibodies


[0210] Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.


[0211] If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.


[0212] The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.


[0213] The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.


[0214] Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.


[0215] ELISA Assay


[0216] An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in “ELISA: Theory and Practice: Methods in Molecular Biology”, Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, N.J., 1995; “Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, Calif., 1996; and “Practice and Theory of Enzyme Immunoassays”, P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0217] NOVX Recombinant Expression Vectors and Host Cells


[0218] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


[0219] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably-linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).


[0220] The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).


[0221] The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0222] Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 3140), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0223] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 60-89).


[0224] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0225] In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


[0226] Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


[0227] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


[0228] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


[0229] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., “Antisense RNA as a molecular tool for genetic analysis,” Reviews-Trends in Genetics, Vol. 1(1) 1986.


[0230] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0231] A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0232] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.


[0233] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


[0234] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.


[0235] Transgenic NOVX Animals


[0236] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0237] A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences, i.e., any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.


[0238] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).


[0239] Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5′- and 3′-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′- and 3′-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.


[0240] The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.


[0241] In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.


[0242] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.


[0243] Pharmaceutical Compositions


[0244] The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as “active compounds”) of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


[0245] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0246] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0247] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0248] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0249] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0250] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdernal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0251] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0252] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0253] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


[0254] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.


[0255] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


[0256] Screening and Detection Methods


[0257] The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.


[0258] The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.


[0259] Screening Assays


[0260] The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.


[0261] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.


[0262] A “small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.


[0263] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1941. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.


[0264] Libraries of compounds may be presented in solution (e.g. Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner, U.S. Pat. No. 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Pat. No. 5,233,409.).


[0265] In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.


[0266] In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a “target molecule” is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention. In one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.


[0267] Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.


[0268] In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.


[0269] In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.


[0270] In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of-the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.


[0271] The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).


[0272] In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.


[0273] Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.


[0274] In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.


[0275] In yet another aspect of the invention, the NOVX proteins can be used as “bait proteins” in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX (“NOVX-binding proteins” or “NOVX-bp”) and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.


[0276] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.


[0277] The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.


[0278] Detection Assays


[0279] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.


[0280] Chromosome Mapping


[0281] Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.


[0282] Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.


[0283] Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.


[0284] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.


[0285] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).


[0286] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0287] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.


[0288] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.


[0289] Tissue Typing


[0290] The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP (“restriction fragment length polymorphisms,” described in U.S. Pat. No. 5,272,057).


[0291] Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5′- and 3′-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.


[0292] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).


[0293] Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.


[0294] Predictive Medicine


[0295] The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.


[0296] Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as “pharmacogenomics”). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)


[0297] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.


[0298] These and other agents are described in further detail in the following sections.


[0299] Diagnostic Assays


[0300] An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.


[0301] An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0302] In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.


[0303] In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.


[0304] The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.


[0305] Prognostic Assays


[0306] The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.


[0307] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).


[0308] The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) aberrant modification of a NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non-wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0309] In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


[0310] Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


[0311] In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Pat. No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0312] In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0313] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).


[0314] Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.


[0315] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Pat. No. 5,459,039.


[0316] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.


[0317] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.


[0318] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


[0319] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3′-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0320] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.


[0321] Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0322] Pharmacogenomics


[0323] Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0324] In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.


[0325] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.


[0326] As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.


[0327] Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.


[0328] Monitoring of Effects During Clinical Trials


[0329] Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a “read out” or markers of the immune responsiveness of a particular cell.


[0330] By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.


[0331] In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.


[0332] Methods of Treatment


[0333] The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0334] These methods of treatment will be discussed more fully, below.


[0335] Diseases and Disorders


[0336] Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are “dysfunctional” (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to “knockout” endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators (i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.


[0337] Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.


[0338] Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).


[0339] Prophylactic Methods


[0340] In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.


[0341] Therapeutic Methods


[0342] Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.


[0343] Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).


[0344] Determination of the Biological Effect of the Therapeutic


[0345] In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.


[0346] In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.


[0347] Prophylactic and Therapeutic Uses of the Compositions of the Invention


[0348] The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0349] As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.


[0350] Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.


[0351] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.







EXAMPLES


Example A: Polynucleotide and Polypeptide Sequences, and Homology Data


Example 1

[0352] The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
2TABLE 1ANOV1 Sequence AnalysisSEQ ID NO:1494 bpNOV1a,ATGTGGAGCTGGAAGTGCCTCCCCTTCTGGGCTGTGCTGGTCACAGCCACACTCTGCACCGCTAGGCCCG101719-02DNA SequenceGTCCCCGACCTTGCCTGAACAAGCCCAGCCCTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAATGTTTCAGCTTGCCCAGATCTCCAGGAGGCTAAGTGGTGCTCGGCCAGCTTCCACTCCATCACTCCCTTGCCATTTGGACTTGGTACTCGGCTTAGTGATTAGAGGCCCTGAACAGGTGGTGGTATCCCTGCTCTGCTGGAGAGORF Start: ATG at 1ORF Stop: TAG at 451SEQ ID NO:2150 aaMW at 16470.3 kDNOV1a,MWSWKCLPFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDLLQLRCRLRDDVQSINWLRCG101719-02ProteinDGVQLAESNRTRITGEEVEVQDSVPADSGLYACVTSSPSGSDTTYFSVNVSACPDLQEAKWCSASFHSSequenceITPLPFGLGTRLSDSEQ ID NO:32737 bpNOV1b,CGAGGCGGAACCTCCAGCCCGAGCGAGGGTCAGTTTGAAAAGGAGGATCGAGCTCACTGTGGAGTATCG101719-04CCATGGAGATGTGGAGCCTTGTCACCAACCTCTAACTGCAGAACTGGGATGTGGAGCTGGAAGTGCCDNA SequenceTCCTCTTCTGGGCTGTGCTGGTCACAGCCACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCGTATGCCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGCATTCGGGGATTAATAGCTCGGATGCGGAGGTGCTGACCCTGTTCAATGTGACAGAGGCCCAGAGCGGGGAGTATGTGTGTAAGGTTTCCAATTATATTGGTGAAGCTAACCAGTCTGCGTGGCTCACTGTCACCAGACCTGTGGCAAAAGCCCTGGAAGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCTATTGCACAGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTCTACAAGATGAAGAGTGGTACCAAGAAGAGTGACTTCCACAGCCAGATGGCTGTGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGTAACAGTGTCTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTTCTGGTTCGGCCATCACGGCTCTCCTCCAGTGGGACTCCCATGCTAGCAGGGGTCTCTGAGTATGAGCTTCCCGAAGACCCTCGCTGGGAGCTGCCTCGGGACAGACTGGTCTTAGGCAAACCCCTGGGAGAGGGCTGCTTTGGGCAGGTGGTGTTGGCAGAGGCTATCGGGCTGGACAAGGACAAACCCAACCGTGTGACCAAAGTGGCTGTGAAGATGTTGAAGTCGGACGCAACAGAGAAAGACTTGTCAGACCTGATCTCAGAAATGGAGATGATGAAGATGATCGGGAAGCATAAGAATATCATCAACCTGCTGGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACCTGCAGGCCCGGAGGCCCCCAGGGCTGGAATACTGCTACAACCCCAGCCACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCAGGTGGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACCTGGCAGCCAGGAATGTCCTGGTGACAGAGGACAATGTGATGAAGATAGCAGACTTTGGCCTCGCACGGGACATTCACCACATCGACTACTATAAAAAGACAACCAACGGCCGACTGCCTGTGAAGTGGATGGCACCCGAGGCATTATTTGACCGGATCTACACCCACCAGAGTGATGTGTGGTCTTTCGGGGTGCTCCTGTGGGAGATCTTCACTCTGGGCGGCTCCCCATACCCCGGTGTGCCTGTGGAGGAACTTTTCAAGCTGCTGAAGGAGGGTCACCGCATGGACAAGCCCAGTAACTGCACCAACGAGCTGTACATGATGATGCGGGACTGCTGGCATGCAGTGCCCTCACAGAGACCCACCTTCAAGCAGCTGGTGGAAGACCTGGACCGCATCGTGGCCTTGACCTCCAACCAGGAGTACCTGGACCTGTCCATGCCCCTGGACCAGTACTCCCCCAGCTTTCCCGACACCCGGAGCTCTACGTGCTCCTCAGGGGAGGATTCCGTCTTCTCTCATGAGCCGCTGCCCGAGGAGCCCTGCCTGCCCCGACACCCAGCCCAGCTTGCCAATCGGGGACTCAAACGCCGCTGACTGCCACCCACACGCCCTCCCCAGACTCCACCGTCAGCTGTAACCCTCACCCACAGCCCCTGCTGGGCCCACCACCTGTCCGTCCCTGTCCCCTTTCCTGCTGGCAGCCGGCTGCCTACCAGGGGCCTTCCTGTGTGGCCTGCTTCAORF Start: ATG at 116ORF Stop: TGA at 2588SEQ ID NO:4824 aaMW at 92134.0 kDNOV1b,MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDLLQLRCRLRDDVQSINWLCG101719-04RDGVQLAESNRTRITGEEVEVQDSVPADSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSProteinSSEEKETDNTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHSequenceRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGPDNLPYVQILKHSGINSSDAEVLTLFNVTEAQSGEYVCKVSNYIGEANQSAWLTVTRPVAKALEERPAVMTSPLYLEIIIYCTGAFLISCMVGSVIVYKMKSGTKKSDFHSQMAVHKLAKSIPLRRQVTVSADSSASMNSGVLLVRPSRLSSSGTPMLAGVSEYELPEDPRWELPRDRLVLGKPLGEGCFGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATEKDLSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLQARRPPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASKKCIHRDLAARNVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIYTHQSDVWSFGVLLWEIFTLGGSPYPGVPVEELFKLLKEGHRMDKPSNCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDRIVALTSNQEYLDLSMPLDQYSPSFPDTRSSTCSSGEDSVFSHEPLPEEPCLPRHPAQLANRGLKRRSEQ ID NO:52470 bpNOV1c,CGAGGCGGAACCTCCAGCCCGAGCGAGGGTCAGTTTGAAAAGGAGGATCGAGCTCACTGTGGAGTATCCG101719-05CATGGAGATGTGGAGCCTTGTCACCAACCTCTAACTGCAGAACTGGGATGTGGAGCTGGAAGTGCCTCDNA SequenceCTCTTCTGGGCTGTGCTGGTCACAGCCACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCGTATGCCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGCATTCGGGGATTAATAGCTCGGATGCGGAGGTGCTGACCCTGTTCAATGTGACAGAGGCCCAGAGCGGGGAGTATGTGTGTAAGGTTTCCAATTATATTGGTGAAGCTAACCAGTCTGCGTGGCTCACTGTCACCAGACCTGTGGCAAAAGCCCTGGAAGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCTATTGCACAGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTCTACAAGATGAAGAGTGGTACCAAGAAGAGTGACTTCCACAGCCAGATGGCTGTGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGTAACAGTGTCTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTTCTGGTTCGGCCATCACGGCTCTCCTCCAGTGGGACTCCCATGCTAGCAGGGGTCTCTGAGTATGAGCTTCCCGAAGACCCTCGCTGGGAGCTGCCTCGGGACAGACTGGTCTTAGGCAAACCCCTGGGAGAGGGCTGCTTTGGGCAGGTGGTGTTGGCAGAGGCTATCGGGCTGGACAAGGACAAACCCAACCGTGTGACCAAAGTGGCTGTGAAGATGTTGAAGTCGGACGCAACAGAGAAAGACTTGTCAGACCTGATCTCAGAAATGGAGATGATGAAGATGATCGGGAAGCATAAGAATATCATCAACCTGCTGGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACCTGCAGGCCCGGAGGCCCCCAGGGCTGGAATACTGCTACAACCCCAGCCACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCAGGTGGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACCTGGCAGCCAGGAATGTCCTGGTGACAGAGGACAATGTGATGAAGATAGCAGACTTTGGCCTCGCACGGGACATTCACCACATCGACTACTATAAAAAGACAACCAACGGCCGACTGCCTGTGAAGTGGATGGCACCCGAGGCATTATTTGACCGGATCTACACCCACCAGAGTGATGTGTGGTCTTTCGGGGTGCTCCTGTGGGAGATCTTCACTCTGGGCGGCTCCCCATACCCCGGTGTGCCTGTGGAGGAACTTTTCAAGCTGCTGAAGGAGGGTCACCGCATGGACAAGCCCAGTAACTGCACCAACGAGCTGTACATGATGATGCGGGACTGCTGGCATGCAGTGCCCTCACAGAGACCCACCTTCAAGCAGCTGGTGGAAGACCTGGACCGCATCGTGGCCTTGACCTCCAACCAGGAGTACCTGGACCTGTCCATGCCCCTGGACCAGTACTCCCCCAGCTTTCCCGACACCCGGAGCTCTACGTGCTCCTCAGGGGAGGATTCCGTCTTCTCTCATGAGCCGCTGCCCGAGGAGCCCTGCCTGCCCCGACACCCAGCCCAGCTTGCCAATCGGGGACTCAAACGCCGCTGACTGCCACCCACACGCCCTCCCCAGACTCCACCGTCAGCTGTAACCCTCACCCACAGCCCCTGCTGGGCCCACCACCTGTCCGTCCCTGTCCCCTTTCCTGCTGGCAGCCGGCTGCCTACCAGGGGCCTTCCTGTGTGGCCTGCTTCAORF Start: ATG at 116ORF Stop: TGA at 2321SEQ ID NO:6735 aaMW at 82428.4 kDNOV1c,MWSWKCLLFWAVLVTATLCTARPSPTLPEQDALPSSEDDDDDDDSSSEEKETDNTKPNRMPVAPYWTSCG101719-05PEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKProteinGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHISequenceEVNGSKIGPDNLPYVQILKHSGINSSDAEVLTLFNVTEAQSGEYVCKVSNYIGEANQSAWLTVTRPVAKALEERPAVMTSPLYLEIIIYCTGAFLISCMVGSVIVYKMKSGTKKSDFHSQMAVHKLAKSIPLRRQVTVSADSSASMNSGVLLVRPSRLSSSGTPMLAGVSEYELPEDPRWELPRDRLVLGKPLGEGCFGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATEKDLSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLQARRPPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASKKCIHRDLAARNVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIYTHQSDVWSFGVLLWEIFTLGGSPYPGVPVEELFKLLKEGHRMDKPSNCTNELYMMMRGCWHAVPSQRPTFKQLVEDLDRIVALTSNQEYLDLSMPLDQYSPSFPDTRSSTCSSGEDSVFSHEPLPEEPCLPRHPAQLANRGLKRRSEQ ID NO:72731 bpNOV1d,CGAGGCGGAACCTCCAGCCCGAGCGAGGGTCAGTTTGAAAAGGAGGATCGAGCTCACTGTGGAGTATCG101719-01CCATGGAGATGTGGAGCCTTGTCACCAACCTCTAACTGCAGAACTGGGATGTGGAGCTGGAAGTGCCDNA SequenceTCCTCTTCTGGGCTGTGCTGGTCACAGCCACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGCCCAGCCCTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCACCCCGGTGACCTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGCAGAGCATCAACTGGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCAACCGCACCCGCATCACAGGGGAGGAGGTGGAGGTGCAGGACTCCGTGCCCGCAGACTCCGGCCTCTATGCTTGCGTAACCAGCAGCCCCTCGGGCAGTGACACCACCTACTTCTCCGTCAATGTTTCAGATGCTCTCCCCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGAGAAAGAAACAGATAACACCAAACCAAACCGTATGCCCGTAGCTCCATATTGGACATCCCCAGAAAAGATGGAAAAGAAATTGCATGCAGTGCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACCCCAAACCCCACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAACCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGAGCATCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACACCTGCATTGTGGAGAATGAGTACGGCAGCATCAACCACACATACCAGCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCAGGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAGTTCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGCTAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACCTGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCACCGACAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGACGCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCCATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCCGGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCTATTGCACAGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTCTACAAGATGAAGAGTGGTACCAAGAAGAGTGACTTCCACAGCCAGATGGCTGTGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGTAACAGTGTCTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTTCTGGTTCGGCCATCACGGCTCTCCTCCAGTGGGACTCCCATGCTAGCAGGGGTCTCTGAGTATGAGCTTCCCGAAGACCCTCGCTGGGAGCTGCCTCGGGACAGACTGGTCTTAGGCAAACCCCTGGGAGAGGGCTGCTTTGGGCAGGTGGTGTTGGCAGAGGCTATCGGGCTGGACAAGGACAAACCCAACCGTGTGACCAAAGTGGCTGTGAAGATGTTGAAGTCGGACGCAACAGAGAAAGACTTGTCAGACCTGATCTCAGAAATGGAGATGATGAAGATGATCGGGAAGCATAAGAATATCATCAACCTGCTGGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACCTGCAGGCCCGGAGGCCCCCAGGGCTGGAATACTGCTACAACCCCAGCCACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCAGGTGGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACCTGGCAGCCAGGAATGTCCTGGTGACAGAGGACAATGTGATGAAGATAGCAGACTTTGGCCTCGCACGGGACATTCACCACATCGACTACTATAAAAAGACAACCAACGGCCGACTGCCTGTGAAGTGGATGGCACCCGAGGCATTATTTGACCGGATCTACACCCACCAGAGTGATGTGTGGTCTTTCGGGGTGCTCCTGTGGGAGATCTTCACTCTGGGCGGCTCCCCATACCCCGGTGTGCCTGTGGAGGAACTTTTCAAGCTGCTGAAGGAGGGTCACCGCATGGACAAGCCCAGTAACTGCACCAACGAGCTGTACATGATGATGCGGGACTGCTGGCATGCAGTGCCCTCACAGAGACCCACCTTCAAGCAGCTGGTGGAAGACCTGGACCGCATCGTGGCCTTGACCTCCAACCAGGAGTACCTGGACCTGTCCATGCCCCTGGACCAGTACTCCCCCAGCTTTCCCGACACCCGGAGCTCTACGTGCTCCTCAGGGGAGGATTCCGTCTTCTCTCATGAGCCGCTGCCCGAGGAGCCCTGCCTGCCCCGACACCCAGCCCAGCTTGCCAATCGGGGACTCAAACGCCGCTGACTGCCACCCACACGCCCTCCCCAGACTCCACCGTCAGCTGTAACCCTCACCCACAGCCCCTGCTGGGCCCACCACCTGTCCGTCCCTGTCCCCTTTCCTGCTGGCAGCCGGCTGCCTACCAGGGGCCTTCCTGTGTGGCCTGCTTCAORF Start: ATG at 116Stop: TGA at 2582SEQ ID NO:8822 aaMW at 91965.8 kDNOV1d,MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHPGDLLQLRCRLRDDVQSINWLCG101719-01RDGVQLAESNRTRITGEEVEVQDSVPADSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSProteinSSEEKETDNTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLRWLKNGKEFKPDHSequenceRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEYGSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQPHIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVSFEDAGEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSPLYLEIIIYCTGAFLISCMVGSVIVYKMKSGTKKSDFHSQMAVHKLAKSIPLRRQVTVSADSSASMNSGVLLVRPSRLSSSGTPMLAGVSEYELPEDPRWELPRDRLVLGKPLGEGCEGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATEKDLSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLQARRPPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASKKCIHRDLAARNVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIYTHQSDVWSFGVLLWEIFTLGSSPYPGVPVEELFKLLKEGHRMDKPSNCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDRIVALTSNQEYLDLSMPLDQYSPSFPDTRSSTCSSGEDSVFSHEPLPEEPCLPRHPAQLANRGLKRRSEQ ID NO:9203 bpNOV1e,ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAGCCACACTCTGCACCGCTAGGCCCG101719-03GTCCCCGACCTTGCCTGAACAAGCTTGCCCAGATCTCCAGGAGGCTAAGTGGTGCTCGGCCAGCTTCCDNA SequenceACTCCATCACTCCCTTGCCATTTGGACTTGGTACTCGGCTTAGTGATATGAGGCCCTGAACAGGTGGORF Start: ATG at 1ORF Stop: TAG at 184SEQ ID NO:1061 aaMW at 6780.8 kDNOV1e,MWSWKCLLFWAVLVTATLCTARPSPTLPEQACPDLQEAKWCSASFHSITPLPFGLGTRLSDCG101719-03ProteinSequence


[0353] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.
3TABLE 1BComparison of NOV1a against NOV1b through NOV1e.NOV1a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV1b1 . . . 119118/119 (99%)1 . . . 119118/119 (99%)NOV1c1 . . . 118 50/158 (31%)1 . . . 158 70/158 (43%)NOV1d1 . . . 119118/119 (99%)1 . . . 119118/119 (99%)NOV1e1 . . . 33  31/33 (93%)1 . . . 33  31/33 (93%)


[0354] Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.
4TABLE 1CProtein Sequence Properties NOV1aSignalP analysis:Cleavage site between residues 24 and 25SORT II analysis:PSG: a new signal peptide prediction methodN-region: length 5; pos.chg 1; neg.chg 0H-region: length 16; peak value 9.41PSG score: 5.01GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: -2.1): 1.64possible cleavage site: between 21 and 22>>> Seems to have a cleavable signal peptide (1 to 21)ALOM: Klein et al's method for TM region allocationInit position for calculation: 22Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 8.43 (at 130)ALOM score: 8.43 (number of TMSs: 0)MTOP: Prediction of membrane topology (Harmnann et al.)Center position for calculation: 10Charge difference: -2.0 C(0.0) - N(2.0)N >= C: N-terminal side will be insideMITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment(75):6.11Hyd Monent(95):4.64G content:0D/E content: 1S/T content:6Score:−2.45Gavel: prediction of cleavage sites for mitochondrial preseqR-2 motif at 32 ARP|SPNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 6.7%NLS Score: -0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 76.7COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23): 22.2%: extracellular, including cell wall22.2%: Golgi22.2%: vacuolar22.2%: endoplasmic reticulum11.1%: mitochondrial>> prediction for CG101719-02 is exc (k = 9)


[0355] A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1D.
5TABLE 1DGeneseq Results for NOV1aNOV1aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABG79680Tumour involved gene (TIG)1 . . . 119118/119 (99%)1e−65splice variant protein, NV-11 -1 . . . 119118/119 (99%)Homo sapiens, 702 aa.[US2002086384-A1,04-JUL-2002]AAB84383Amino acid sequence of a1 . . . 119118/119 (99%)1e−65fibroblast growth factor1 . . . 119118/119 (99%)receptor - Homo sapiens, 820aa. [US6255454-B1,03-JUL-2001]AAY97170Human FGF-RI Extracellular1 . . . 119118/119 (99%)1e−65domain-Ig Fc fusion protein 1 -1 . . . 119118/119 (99%)Homo sapiens, 622 aa.[WO200046380-A2,10-AUG-2000]AAY06458Fibroblast growth factor1 . . . 119118/119 (99%)1e−65receptor 1 - Homo sapiens,1 . . . 119118/119 (99%)820 aa. [WO9935159-A1,15-JUL-1999]AAR47233Human fibroblast growth1 . . . 119118/119 (99%)1e−65factor receptor - Homo sapiens, 8201 . . . 119118/119 (99%)aa. [WO9403620-A,17-FEB-1994]


[0356] In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1E.
6TABLE 1EPublic BLASTP Results for NOV1aNOV1aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueA40862fibroblast growth factor1 . . . 150149/150 (99%)2e−85receptor 1, secreted form -1 . . . 150149/150 (99%)human, 150 aa.C40862heparin-binding growth factor1 . . . 119118/119 (99%)4e−65receptor variant alpha-a2 -1 . . . 119118/119 (99%)human, 662 aa.AAH15035Similar to fibroblast growth1 . . . 119118/119 (99%)4e−65factor receptor 1 (fms-related1 . . . 119118/119 (99%)tyrosine kinase 2, Pfeiffersyndrome) - Homo sapiens(Human), 820 aa.Q8N685Similar to fibroblast growth1 . . . 119118/119 (99%)4e−65factor receptor 1 (fms-related1 . . . 119118/119 (99%)tyrosine kinase 2,Pfeiffer syndrome) - Homo sapiens(Human), 820 aa.P11362Basic fibroblast growth factor1 . . . 119118/119 (99%)4e−65receptor 1 precursor (EC1 . . . 119118/119 (99%)2.7.1.112) (FGFR-1) (bFGF-R)(Fms-like tyrosinekinase-2) (c-fgr) -Homo sapiens (Human), 822 aa.


[0357] PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1F.
7TABLE 1FDomain Analysis of NOV1aIdentities/NOV1aSimilarities for thePfam DomainMatch RegionMatched RegionExpect Valueig48 . . . 10314/60 (23%)2.1e−0639/60 (65%)



Example 2

[0358] The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
8TABLE 2ANOV2 Sequence AnalysisSEQ ID NO:11937 bpNOV2a,CGCGGCCCCAGGGCTCACTTGGCGCTGAGAACGCGGGTGCAGCGTGTGATCGTCCGTGCGTCTAGCCTCG102006-01DNA SequenceTTGCCCACGCAGCTTTCAGTCATGGCCTCCGGTAACGCGCGCATCGGAAAGCCAGCCCCTGACTTCAAGGCCACAGCGGTGGTTGATGGCGCCTTCAAAGAGGTGAAGCTGTCGGACTACAAAGGGAAGTACGTGGTCCTCTTTTTCTACCCTCTGGACTTCACTTTTGTGTGCCCCACCGAGATCATCGCGTTCACAACCGTGAAGAGGACTTCCGCAAAGCTGGGCTGTGAAGTGCTGGGCGTCTCGGTGGACTCTCAGTTCACCCACCTGGCTTGGATCAACACCCCCCGGAAAGAGGGAGGCTTGGGCCCCTTGAACATCCCCCTGCTTGCTGACGTGACCAGACGCTTGTCTGAGGATTACGGCGTGCTGAAAAACGATGAGGGCATTGCTTACAGGGGCCTCTTTATCATCGATGGCAAGGGTGTCCTTCGCCAGATCACTGTTAATGATTTGCCTGTGGGACGCTCCGTGGATGAGGCTCTGCGGCTGGTCCAGGCCTTCCAGTACACAGACGAGCATGGGGAAGTTTGTCCGGCTGCTTGGAAGCCTGGACGTGACACGATTAAGCCGAACGTGGATGACAGCAAGGAATATTTCTCCAAACACAATTAGGCTGGCTAACGGATAGTGAGCTTGTGCCCCTGCCTAGGTGCCTGTGCTGGGTGTCCACCTGTGCCCCCACCTGGGTGCCCTATGCTGACCCAGGAAAGGCCAGACCTGCCCCTCCAAAATCCACAGTATGGGACCCTGGAGGGCTAGCAAGGCCTTCTCATGCCTCCACCTAGAAGCTGAATAGTGACGCCCTCCCCCAAGCCCACCCAGCCGCACACAGGCCTAGAGGTAACCAATAAAGTATTAGGGCCORF Start: ATG at 90ORF Stop: TAG at 684SEQ ID NO:12198 aaMW at 21856.8 kDNOV2a,MASGNARIGKPAPDFKATAVVDGAFKEVKLSDYKGKYVVLFFYPLDFTFVCPTEIIAFTTVKRTSAKLCG102006-01ProteinGCEVLGVSVDSQFTHLAWINTPRKEGGLGPLNIPLLADVTRRLSEDYGVLKNDEGIAYRGLFIIDGKGSequenceVLRQITVNDLPVGRSVDEALRLVQAFQYTDEHGEVCPAAWKPGRDTIKPNVDDSKEYFSKHNSEQ ID NO:13656 bpNOV2b,CTCACTTGGCGCTGAGAACGCGGGTCCACGCGTGTGATCGTCCGTGCGTCTAGCCTTTGCCCACGCACG102006-02DNA SequenceGCTTTCAGTCATGGCCTCCGGTAACGCGCGCATCGGAAAGCCAGCCCCTGACTTCAAGGCCACAGCGGTGGTTGATGGCGCCTTCAAAGAGGTGAAGCTGTCGGACTACAAAGGGAAGTACGTGGTCCTCTTTTTCTACCCTCTGGACTTCACTTTTGTGTGCCCCACCGAGATCATCGCGTTCAGCAACCGTGCAGAGGACTTCCGCAAGCTGGGCTGTGAAGTGCTGGGCGTCTCGGTGGACTCTCAGTTCACCCACCTGGCTTGGTATGAGCAGGGGCCAAAGAGGGAGGTTGCAGCTAAGCTCACACCCTCAGGTCCTAGCAGTGTGGCTTCGTGGCCATTGCTCAACCTCTGGAACCTGCGTTTCCCCATCGTGAAAATAATGGAAACATTGCCGCCCAAGTCTTTAAGGATGATGACAGTAATTAGCATTTGACAACTAGTTGCCTGGTATATAGAGTTGCAGATGCAACTCAGATGCAACTCTATCTACTCTATGTACTTAGTTCCCAGGAGGGAGGCTGTGCTGCCCTATTTCATGAAGATGGAAACTCCAGTTCACCGAAGTGAAGGGCTGTACCCATGAORF Start: ATG at 78ORF Stop: TGA at 504SEQ ID NO:14142 aaMW at 15818.3 kDNOV2b,MASGNARIGKPAPDFKATAVVDGAFKEVKLSDYKGKYVVLFFYPLDFTFVCPTEIIAFSNRAEDFRKCG102006-02ProteinLGCEVLGVSVDSQFTHLAWYEQGPKREVAAKLTPSGPSSVASWPLLNLWNLRFPIVKIMETLPPKSLSequenceRMMTVISISEQ ID NO:15923 bpNOV2c,GGCACGAGGCGCGGGTCCACGCGTGTGATCGTCCGTGCGTCTAGCCTTTGCCCACGCAGCTTTCAGTCCG102006-03DNA SequenceATGGCCTCCGGTAACGCGCGCATCGGAAAGCCAGCCCCTGACTTCAAGGCCACAGCGGTGGTTGATGGCGCCTTCAAAGAGGTGAAGCTGTCGGACTACAAAGGGAAGTACGTGGTCCTCTTTTTCTACCCTCTGGACTTCACTTTTGTGTGCCCCACCGAGATCATCGCGTTCAGCAACCGTGCAGAGGACTTCCGCAAGCTGGGCTGTGAAGTGCTGGCCGTCTCGGTGGACTCTCAGTTCACCCACCTGGCTTGGATCAACACCCCCCGGAAAGAGGGAGGCTTGGGCCCCCTGAACATCCCCCTGCTTGCTGACGTGACCAGACGCTTGTCTGAGGATTACGGCGTGCTGAAAACAGATGAGGGCATTGCCTACAGGGGCCTCTTTATCATCGATGGCAAGGGTGTCCTTCGCCAGATCACTGTTAATGATTTGCCTGTGGGACGCTCCGTGGATGAGGCTCTGCGGCTGGTCCAGGCCTTCCAGTACACAGACGAGCATGGGGAAGTTTGTCCCGCTGGCTGGAAGCCTGGCAGTGACACGATTAAGCCCAACGTGGATGACAGCAAGGAATATTTCTCCAAACACAATTAGGCTGGCTAACGGATAGTGAGCTTGTGCCCCTGCCTAGGTGCCTGTGCTGGGTGTCCACCTGTGCCCCCACCTGGGTGCCCTATGCTGACCCAGGAAAGGCCAGACCTGCCCCTCCAAACTCCACAGTATGGGACCCTGGAGGGCTACGCCAAGGCCTTCTCATGCCTCCACCTAGAAGCTGAATAGTGACGCCCTCCCCCAAGCCCACCCAGCCGCACACAGGCCTAGAGGTAACCAATAAAGTATTAGGGAAAGGTGORF Start: ATG at 69ORF Stop: TAG at 663SEQ ID NO:16198 aaMW at 21891.7 kDNOV2c,MASGNARIGKPAPDFKATAVVDGAFKEVKLSDYKGKYVVLFFYPLDFTFVCPTEIIAFSNRAEDFRKLCG102006-03ProteinGCEVLGVSVDSQFTHLAWINTPRKEGGLGPLNIPLLADVTRRLSEDYGVLKTDEGIAYRGLFIIDGKGSequenceVLRQITVNDLPVGRSVDEALRLVQAFQYTDEHGEVCPAGWKPGSDTIKPNVDDSKEYFSKHN


[0359] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.
9TABLE 2BComparison of NOV2a against NOV2b and NOV2c.NOV2a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV2b1 . . . 93  80/94 (85%)1 . . . 94  83/94 (88%)NOV2c1 . . . 198187/198 (94%)1 . . . 198188/198 (94%)


[0360] Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.
10TABLE 2CProtein Sequence Properties NOV2aSignalP analysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 10; pos.chg 2; neg.chg 0H-region: length 3; peak value −5.37PSG score: −9.77GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −5.82possible cleavage site: between 57 and 58>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 1.96 (at 37)ALOM score: 1.96 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targetingseqR content:1Hyd Moment(75):3.10Hyd Moment(95):5.71G content:2DIE content:2S/T content:2Score:−6.95Gavel: prediction of cleavage sites for mitochondrialpreseq R-2 motif at 17 ARI|GKNUCDISC: discrimination of nuclear localizationsignalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 12.6%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: KKXX-like motif in the C-terminus: FSKHSKL: peroxisomal targeting signal in theC-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern : nonePrenylation motif: nonemenYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosonal protein motifs: nonechecking 33 PROSITE prokaryotic DNA bindingmotifs: noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23)52.2%: cytoplasmic21.7%: nuclear17.4%: mitochondrial 8.7%: peroxisomal>> prediction for CG102006-01 is cyt (k = 23)


[0361] A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2D.
11TABLE 2DGeneseq Results for NOV2aNOV2aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB68036Amino acid sequence of the 1 . . . 198187/198 (94%) e−106acid form of peroxyredoxin 1 . . . 198188/198 (94%)TDX1 - Homo sapiens, 198aa. [FR2798672-A1,23-MAR-2001]ABP53045Rat thiol-specific antioxidant 1 . . . 198178/198 (89%) e−102(TSA) protein SEQ ID NO: 28 - 1 . . . 198184/198 (92%)Rattus norvegicus, 198 aa.[WO200264169-A1,22-AUG-2002]AAU78580Mouse peroxiredoxin II-1 1 . . . 198176/198 (88%) e−100(PrxII-1) protein - Mus sp, 1 . . . 198182/198 (91%)198 aa. [KR99066020-A,16-AUG-1999]ABG26215Novel human diagnostic22 . . . 198164/177 (92%)3e−93protein #26206 - Homo43 . . . 219166/177 (93%)sapiens, 219 aa.[WO200175067-A2,11-OCT-2001]AAW09794Natural killer cell enhancing 1 . . . 198166/198 (83%)2e−89factor B - Homo sapiens, 178 1 . . . 178167/198 (83%)aa. [US5610286-A,11-MAR-1997]


[0362] In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.
12TABLE 2EPublic BLASTP Results for NOV2aNOV2aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP32119Peroxiredoxin 2 (EC1.11.1.-)1 . . . 198187/198 (94%)e−106(Thioredoxin peroxidase 1)1 . . . 198188/198 (94%)(Thioredoxin-dependentperoxide reductase 1)(Thiol-specific antioxidantprotein) (TSA) (PRP) (Naturalkiller cell enhancing factor B)(NKEF-B) - Homo sapiens(Human), 198 aa.168897probable thioredoxin1 . . . 198185/198 (93%)e−105peroxidase (EC 1.11.1.-) 1-1 . . . 198186/198 (93%)human, 198 aa.Q8K3U7Peroxiredoxin 2 - Cricetulus1 . . . 198180/198 (90%)e−102griseus (Chinese hamster), 1981 . . . 198184/198 (92%)aa.P35704Peroxiredoxin 2 (EC 1.11.1.-)1 . . . 198178/198 (89%)e−102(Thioredoxin peroxidase 1)1 . . . 198184/198 (92%)(Thioredoxin-dependentperoxide reductase 1)(Thiol-specific antioxidantprotein) (TSA) - Rattusnorvegicus (Rat), 198 aa.Q61171Peroxiredoxin 2(EC 1.11.1.-)1 . . . 198178/198 (89%)e−101(Thioredoxin peroxidase 1)1 . . . 198185/198 (92%)(Thioredoxin-dependentperoxide reductase 1)(Thiol-specific antioxidantprotein) (TSA) - Musmusculus (Mouse), 198 aa.


[0363] PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.
13TABLE 2FDomain Analysis of NOV2aIdentities/NOV2aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueAhpC-TSA8 . . . 15794/161 (58%)1.3e−80139/161 (86%) 



Example 3

[0364] The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
14TABLE 3ANOV3 Sequence AnalysisSEQ ID NO:171485 bpNOV3a,ACCATGGGCCACCATCACCACCATCACGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGCG127322-07DNA SequenceTGGTGGCTTGGTTGGTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAACAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGGCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAORF Start: at 1ORF Stop: TGA at 1483SEQ ID NO: 18494 aaMW at 56790.3 kDNOV3a,TMGHHHHHHDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHCG127322-07ProteinRGRQALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVSequenceKMHFNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 195000 bpNOV3b,GGCACGAGCAGAAGCAACAATAATTGTGAAAAATACTTCAGCAGTTATGGACTCATCTGTCATTCAAACG127322-01DNA SequenceGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGGCTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCTGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGATAGAAAGGTTTTGTGGTAGCAAATGCATGATTTCTCTGTGACCAAAATTAAGCATGAAAAAAATGTTTCCATTGCCATATTTGATTCACTAGTGGAAGATAGTGTTCTGCTTATAATTAAACTGAATGTAGAGTATCTCTGTATGTTAATTGCAATTACTGGTTGGGGGGTGCATTTTAAAAGATGAAACATGCAGCTTCCCTACATTACACACACTCAGGTTGAGTCATTCTAACTATAAAAGTGCAATGACTAAGATCCTTCACTTCTCTGAAAGTAAGGCCCTAGATGCCTCAGGGAAGACAGTAATCATGCCTTTTCTTTAAAAGACACAATAGGACTCGCAACAGCATTGACTCAACACCTAGGACTAAAAATCACAACTTAACTAGCATGTTAACTGCACTTTTCATTACGTGAATGGAACTTACCTAACCACAGGGCTCAGACTTACTAGATAAAACCAGAAATGGAAATAAGGAATTCAGGGGACTTCCAGAGACTTACAAAATGAACTCATTTTATTTTCCCACCTTCAAATATAAGTATTATCATCTATCTGTTTATCGTCTATCTATCTATCATCTATCTATCTATCTATCATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTCTATTTATTTATGTATTTAGAGATCAGGTCTCACTCTGTTGACCAGGCTGGAGTGCAGTGGTGAGATCTGGGTTCACTGCAACCTCTGCCTCCTGGGCTCAAGCAATCCTCCCACTTCAGCCTCCCAAATAGCTGGGGCTACCATGGTATTTTTCAGTAGAGACCGGGTCTTGCCATGCTGCCCAGGCCAGTCTCAAACTCCTGGCCTCATGTGATCTGCCCACCTCAGCCTCCCAAAGTACAGGGATTAGAGTTGTGAGCCACCGCTGCCAGCCCAGAGTTACCCTCTAAAGATAAGAAAAAGGCTATTAATATCATACTAAGTGAAGGACAGGAAAGGGTTTTATTCATAAATTAAATGTCTACATGTGCCAGAATGGAAAGGAAACAAGGGGAGACAACTTTTATAGAAATACAAAGCCATTACTTTATTCAATTTCAGACCCTCAGAAGCAATTTACTAATTTATTCTTCGACTACATACTGCAGCAGAACCAGCAATACACTTGATTTTTAAAAGCACATTTAGTGAAATGTTTTCTTTGGTTCATCCTTCTTTAACAGGCTGCTGAGTCACTCAGAAATCCTTCAAACATGATTAATTATGAAGATGAAACACTAGAGTCATATAAGAAATAAAAATTGGGCAATAAAATAAAATGATTCAGTGTTTCTTTTCTATATTGTCAATGAAAACCTTGAGTTCTAATAATCCATGTTCAGTTTGTAGGGAAAGAAAAAATAATTTTTCCTTCTACCCACTTTAGGTTCCTTGGCTGGGGCCCCTATAACAAAAGACAGATTGACAAGAGAAAAACAAACATAAATTTATTAGCGGGTATATGTAATATATATGTGGGAAATACAGGGGAATGAGCAAATCTCAAAGAGCTGGCGTCTTAGAACTCCCTGGCTTATATAGCATCGACAAAGAACAGTAAATTTTTAGAGAAACAACAAAACAAAGAAAAAGAGCTTTGAGTCTGTAGGGGCAGCAATTTGGGGGAAGCAAATATATGGGAGTTTGCCTTGTAGATTCCTCTGGTGGTGGTCTCCAGGCTGACAAGGATTCAAAGTTGTCTCTGAAACTCCTCTTTGTCATACTGCACATATAAAACGTCTTTTGTTTCCAACAAGAGGATTTCTTTTTCATTCTAGAATTATCTCCTTGATAACTTGATCAGATATAGGACATGACACTGAATAGAGTCCAACAGTACAAAAAAAATTCAGTATGTTCTAGCTACTTCACACATGTGTACGCGACAGTTATTTTTACAGTAAGGTATTTTCGAGAAAAATGCATTACGTGTTTTGGAAAATAGAGTAATTTAAAAAATATATTTGAAATGAAAATCTCCAACACATTAGAAGATGATGATGTTAGATGCCCATCGTGTGCCACAAGTGGTTTTTTCATTATGTAAAGCACCCGTTGAATTAAAAGAATTTGTTTTTGTTCAACCTCTTCCTGAGGCCCAAGAGCATATGGGCAATTCGGATTTCCTGCTGGACCACAAGGTTCTGTTGATATTACATAGAAACGGGTATTCCAGACACTTCTTATGATGAAAGTCCAAAAGTGGCATCCAATTTAAGGCCCCATCTTTCGTTGCCATTCTTCATTCCTACAAAGGACGAACTTGGATTACATCAACTTTGGACCCATTGGTTTTGTCGCTGTCGTCAACTGACAGTGATTCACCACTGGTGATGATAAAAATGATGGAAGAAGAGTTGAAAGTCACTTTTTTCTTTGGCCTGTCCCCATCTTTCTGTGACATCACAATGGGTCTGATCTGCATTTCACTTCCAGCTGCTGGTAGGTCTTTAGCAGGCCTCTGGCACCTCAGCAGTCGGAGGCACAGAAGCTGCAAAAGGGATCTTCGAAACTGGGCAGAGAAAAAATAAAGTGGAATATTAAGTAAAAGTTGGGCACTAATCTGGATTAACATTCGAGGAAATCAGTTGAGCTGATTTAAGTTGTTTTTTGTTTGTTAGCAGGTGTGGATGTGGGGTTATGTGGTCATGCTCAGATCTACCTAAATCACCCCAGAGCTTTATGTCTTTTATTCATTCTAAATCTTATTAACCGGAATATGTAGGACCATTTCAATACCTTGTAATCCTCCAAGCTTCAATCTGCACACACTTTCTATGAGGGCAGGTACAACTATTAAGAGATTTTGAACATTAAGTTAGTCCACAAATATTCAGTGGGCATCTACTAGGTGACAGCCACTGTGCTATAATTAGAGACTTTTTACTATAAGCATCAAAAACAGATAAGGCTCTTCCTGGCAGAGTTTACAGCCTGGTGTACTTGCTAATGTCTCTTTAATTAGGTGAAGAATTTTTTTTTTCTATCGAAATTACTAATCAGTTGGGGAAAAAAATACTATAGCAGACAGCACTAATGTCATCAACAAACATTGTTCTTCTCCGTGTCCTGGGTACAACATCGAATAATATTTCTTGGCCTCCTTTCCGCTTCTCCTCTCTGCTGTTCCTCTCTACAAGAACCTGGGAGGCCAACGCCTAAAGATCATAATATCACAATGGAAGGAACCTAGATTCCTAAATGACTGCATAGGACAGATCCCATCTCCTCCACCCAATACATTATTAGACTGAACTGTGACCTGAAATGAGCAATAAACTCTGTATTAATTCACTGAAATGTTGGGGTTGCTTGTTATAGTAGTCGGTCCATCATGACCAGTAAAACATAAATCAAAAGTTAATGTAATTGTTATCCCATTATTTAGAGCGAAATAAATGTTGAATATATGGACTTTCTCAGATTAGGAAATACCAATTAAAAATATAATAAATAGCTORF Start: ATG at 47ORF Stop: TGA at 1505SEQ ID NO: 20486 aaMW at 55756.3 kDNOV3b,MDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQALKACG127322-01ProteinVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNHRLSequenceLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLCLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 211380 bpNOV3c,CGCGGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTCG127322-04DNA SequenceTGGCTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTCCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCGGACCTATCCATGTACAATTACATAGAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTATCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1360SEQ ID NO: 22453 aaMW at 51681.4 kDNOV3c,RGSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQCG127322-04ProteinALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFSequenceNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSIYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 231452 bpNOV3d,CGCGGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTCG127322-03DNA SequenceTGGTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAGATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCAGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1432SEQ ID NO: 24477 aaMW at 54605.9 kDNOV3d,RGSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQCG127322-03ProteinALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFSequenceNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 251485 bpNOV3e,ACCATGGGCCACCATCACCACCATCACGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGG259357595DNA SequenceTGGTGGCTTGGTTGGTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAORF Start: at 1ORF Stop: TGA at 1483SEQ ID NO: 26494 aaMW at 56790.3 kDNOV3e,TMGHHHHHHDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSH259357595ProteinRGRQALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVSequenceKMHFNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 271491 bpNOV3f,CGCGGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGT255637561DNA SequenceTGGTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1471SEQ ID NO: 28490 aaMW at 56210.7 kDNOV3f,RGSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQ255637561ProteinALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFSequenceNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVPSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 291482 bpNOV3g,ACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGGTTCAT259357610DNA SequenceTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATCAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGCACCATCACCACCATCACTGAORF Start: at 1ORF Stop: TGA at 1480SEQ ID NO: 30493 aaMW at 56733.3 kDNOV3g,TMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQAL259357610ProteinKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNSequenceHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRHHHHHHSEQ ID NO:311464 bpNOV3h,ACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGGTTCAT259347911DNA SequenceTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAORF Start: at 1ORF Stop: TGA at 1462SEQ ID NO: 32487 aaMW at 55910.4 kDNOV3h,TMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQAL259347911ProteinKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNSequenceHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFHDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 331462 bpNOV3i,CATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGGTTCATTAC259347915DNA SequenceAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGCGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAORF Start: ATG at 2ORF Stop: TGA at 1460SEQ ID NO: 34486 aaMW at 55809.3 kDNOV3i,MDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQALKA259347915ProteinVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNHRLSequenceLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 351470 bpNOV3j,GGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGG260568545DNA SequenceTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAORF Start: at 1ORF Stop: TGA at 1468SEQ ID NO: 36489 aaMW at 56054.5 kDNOV3j,GSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQA260568545ProteinLKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNSequenceHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 371491 bpNOV3k,CGCGGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGG255872826DNA SequenceTTGGCTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCTGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1471SEQ ID NO: 38490 aaMW at 56157.7 kDNOV3k,RGSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGR255872826ProteinQALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMSequenceHFNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLCLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 391452 bpNOV3l,CGCGGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGT255872853DNA SequenceTGGTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAGATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCAGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1432SEQ ID NO: 40477 aaMW at 54605.9 kDNOV3l,RGSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQ255872853ProteinALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFSequenceNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 411491 bpNOV3m,CGCGGATCCACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGCG127322-02DNA SequenceTTGGTTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1471SEQ ID NO: 42490 aaMW at 56210.7 kDNOV3m,RGSTMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRCG127322-02ProteinQALKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMSequenceHFNHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 431464 bpNOV3n,ACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGGTTCATCG127322-05DNA SequenceTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGAORF Start: at 1ORF Stop: TGA at 1462SEQ ID NO: 44487 aaMW at 55910.4 kDNOV3n,TMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQALCG127322-05ProteinKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNSequenceHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRSEQ ID NO: 451482 bpNOV3o,ACCATGGACTCATCTGTCATTCAAAGGAAAAAAGTAGCTGTCATTGGTGGTGGCTTGGTTGGTTCATCG127322-06DNA SequenceTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATGAAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAAGCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTCAGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATCTATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGAATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTCAACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGACTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATTGCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAATGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCTTCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGATGCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATGAGTTAATGGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCGATTTCAGACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGATTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGCTGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTACCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCCGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGGAATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGCACCATCACCACCATCACTGAORF Start: at 1ORF Stop: TGA at 1480SEQ ID NO: 46493 aaMW at 56733.3 kDNOV3o,TMDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQALCG127322-06ProteinKAVGLEDQIVSQGIPMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNSequenceHRLLKCNPEEGMITVLGSDKVPKDVTCDLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMPFEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAGFEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIFQKNMERFLHAIMPSTFIPLYTMVTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLRLRRPWNWIAHFRNTTCFPAKAVDSLEQISNLISRHHHHHH


[0365] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 3B.
15TABLE 3BComparison of NOV3a against NOV3b through NOV3o.Identities/NOV3aSimilaritiesResidues/for theProteinMatchMatchedSequenceResiduesRegionNOV3b10 . . . 494 484/485 (99%) 2 . . . 486484/485 (99%) NOV3c10 . . . 494 447/485 (92%) 6 . . . 453447/485 (92%) NOV3d10 . . . 494 472/485 (97%) 6 . . . 477472/485 (97%) NOV3e1 . . . 494494/494 (100%)1 . . . 494494/494 (100%)NOV3f10 . . . 494 485/485 (100%)6 . . . 490485/485 (100%)NOV3g10 . . . 494 485/485 (100%)3 . . . 487485/485 (100%)NOV3h10 . . . 494 485/485 (100%)3 . . . 487485/485 (100%)NOV3i10 . . . 494 485/485 (100%)2 . . . 486485/485 (100%)NOV3j10 . . . 494 485/485 (100%)5 . . . 489485/485 (100%)NOV3k10 . . . 494 484/485 (99%) 6 . . . 490484/485 (99%) NOV3l10 . . . 494 472/485 (97%) 6 . . . 477472/485 (97%) NOV3m10 . . . 494 485/485 (100%)6 . . . 490485/485 (100%)NOV3n10 . . . 494 485/485 (100%)3 . . . 487485/485 (100%)NOV3o10 . . . 494 485/485 (100%)3 . . . 487485/485 (100%)


[0366] Further analysis of the NOV3a protein yielded the following properties shown in Table 3C.
16TABLE 3CProtein Sequence Properties NOV3aSignalPNo Known Signal Sequence Predictedanalysis:PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 10; pos.chg 0; neg.chg 1H-region: length 5; peak value 0.00PSG score: −4.40GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −2.97possible cleavage site: between 32 and 33>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 2INTEGRAL Likelihood = −2.44 Transmembrane19-35INTEGRAL Likelihood = −4.35 Transmembrane434-450PERIPHERAL Likelihood = 1.96 (at 272)ALOM score: −4.35 (number of TMSs: 2)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 26Charge difference: −6.0 C(−1.0) − N(5.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:2 HydMoment(75):2.28Hyd Moment(95):3.41G content:5D/E content:2S/T content:4Score: −7.24Gavel: prediction of cleavage sites for mitochondrialpreseqR-2 motif at 48 KRN|FQNUCDISC: discrimination of nuclear localization signalspat4: KKPR (4) at 187pat 7: nonebipartite: nonecontent of basic residues: 11.3%NLS Score: −0.22KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residues--------------------------Final Results (k = 9/23):39.1%: endoplasmic reticulum34.8%: mitochondrial17.4%: nuclear4.3%: vesicles of secretory system4.3%: cytoplasmic>> prediction for CG127322-07 is end (k = 23)


[0367] A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.
17TABLE 3DGeneseq Results for NOV3aNOV3aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABJ05589Breast cancer-associated10 . . . 494484/485 (99%)0.0protein 54 - Unidentified, 486 2 . . . 486484/485 (99%)aa. [WO200259377-A2,01 AUG 2002]AAW48252Human10 . . . 494484/485 (99%)0.0kynurenine-3-hydroxylase - 2 . . . 486484/485 (99%)Homo sapiens, 486 aa.[WO9802553-A1,22 JAN 1998]AAW48251Human10 . . . 494484/485 (99%)0.0kynurenine-3-hydroxylase - 2 . . . 486484/485 (99%)Homo sapiens, 486 aa.[WO9802553-A1,22 JAN 1998]AAW48250Rat11 . . . 465371/455 (81%)0.0kynurenine-3-hydroxylase - 3 . . . 457413/455 (90%)Rattus sp, 478 aa.[W09802553-A1,22 JAN 1998]ABB58248Drosophila melanogaster15 . . . 376187/363 (51%)    e−103polypeptide SEQ ID NO86 . . . 447247/363 (67%)1536 - Drosophilamelanogaster, 506 aa.[W0200171042-A2,27 SEP 2001]


[0368] In a BLAST search of public sequence datbases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
18TABLE 3EPublic BLASTP Results for NOV3aIdentities/ProteinSimilarities forAccessionNOV3a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueO15229Kynurenine 3-monooxygenase10 . . . 494484/485 (99%)0.0(EC 1.14.13.9) - Homo 2 . . . 486484/485 (99%)sapiens (Human), 486 aa.Q9BS61Similar to kynurenine10 . . . 428405/419 (96%)0.03-monooxygenase 2 . . . 407406/419 (96%)(Kynurenine 3-hydroxylase) -Homo sapiens (Human), 407aa.Q9MZS9L-kynurenine10 . . . 473381/464 (82%)0.03-monooxygenase Fpk - Sus 9 . . . 472420/464 (90%)scrofa (Pig), 478 aa.Q91WN4Similar to kynurenine11 . . . 464375/454 (82%)0.03-hydroxylase - Mus musculus 3 . . . 456415/454 (90%)(Mouse), 479 aa.O88867Kynurenine 3-hydroxylase -11 . . . 465371/455 (81%)0.0Rattus norvegicus (Rat), 478 3 . . . 457413/455 (90%)aa.


[0369] PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.
19TABLE 3FDomain Analysis of NOV3aIdentities/SimilaritiesNOV3afor theMatchMatchedExpectPfam DomainRegionRegionValueFAD_binding_3 19 . . . 15827/147 (18%)0.03483/147 (56%)Monooxygenase167 . . . 36955/224 (25%)   2.8e−52169/224 (75%) 



Example 4

[0370] The NOV4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
20TABLE 4ANOV4 Sequence AnalysisSEQ ID NO: 471690 bpNOV4a,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAACG140122-07DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCCATCATCACCACCATCACTGAORF Start: at 2ORF Stop: TGA at 1688SEQ ID NO: 48562 aaMW at 62742.6 kDNOV4a,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSVCG140122-07ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTHHHHHHSEQ ID NO: 491894 bpNOV4b,CGCCGCTCGCCGCAGACTTACTTCCCCGGCTCAGCAGGGAAAGGTTCCTAGAAGGTGAGCGCGGACGGCG140122-01DNA SequenceTATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACCGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCGGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGTGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAGGGCTGTCCTCGCTGCTGAGAAGAGCCACTAACTCGTGACCTCCAGCCTGCCCCTTGCTGCCGTGTGCTCCTGCCTTCCTGATCCTCTGTAGAAAGGATTTTTATCTTCTGTAGAGCTAGCCGCCCTGACTGCCTTCAGACCTGGCCCTGTAGCTTTORF Start: ATG at 70ORF Stop: TGA at 1735SEQ ID NO: 50555 aaMW at 61871.7 kDNOV4b,MQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSVKCG140122-01ProteinLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVVSequenceEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDRELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 511012 bpNOV4c,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAACG140122-03DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCTGCCGTACACAGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1010SEQ ID NO: 52336 aaMW at 37093.2 kDNOV4c,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSVCG140122-03ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 531603 bpNOV4d,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAACG140122-04DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCGGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCATGGAAGCTCCACAAAGCAGCAGCCTGGTCACCTTTTCTCTTCCAAGTGCCCAGAACAGCCCCTGGATGCTAACAGGGGCGCCGTAAAGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1601SEQ ID NO: 54533 aaMW at 59379.2 kDNOV4d,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSVCG144122-04ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAHGSSTKQQPGHLFSSKCPEQPLDANRGAVKPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 551012 bpNOV4e,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAA246864043DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCTGCCGTACACAGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1010SEQ ID NO: 56336 aaMW at 37093.2 kDNOV4e,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSV246864043ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 571603 bpNOV4f,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAA246864086DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCGGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCATGGAAGCTCCACAAAGCAGCAGCCTGGTCACCTTTTCTCTTCCAAGTGCCCAGAACAGCCCCTGGATGCTAACAGGGGCGCCGTAAAGCCCATGCACGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1601SEQ ID NO: 58533 aaMW at 59379.2 kDNOV4f,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSV246864086ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAHGSSTKQQPGHLFSSKCPEQPLDANRGAVKPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 591693 bpNOV4g,CACCATGGGACATCATCACCACCATCACCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCT258280083DNA SequenceCTCAGTCGCGGCCTACGGAGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTGTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1691SEQ ID NO: 60563 aaMW at 62799.6 kDNOV4g,TMGHHHHHHQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSH258280083ProteinIGGRVQSVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNSequenceHGRRIPKDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 611690 bpNOV4h,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGA258329988DNA SequenceAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCCATCATCACCACCATCACTGAORF Start: at 2ORF Stop: TGA at 1688SEQ ID NO: 62562 aaMW at 62742.6 kDNOV4h,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQS258329988ProteinVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKSequenceDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTHHHHHHSEQ ID NO: 631672 bpNOV4i,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAA258280066DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGCCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1670SEQ ID NO: 64556 aaMW at 61919.7 kDNOV4i,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSV258280066KLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVProteinSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 651700 bpNOV4j,AAGGAAAAAAGCGGCCGCCACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCA254047897DNA SequenceGTCGCGGCCTACGGAGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGATCTAGACTAGORF Start: at 2ORF Stop: TGA at 1688SEQ ID NO: 66562 aaMW at 62545.5 kDNOV4j,RKKAAATMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIG254047897ProteinGRVQSVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRSequenceRIPKDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 671690 bpNOV4k,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGA258329988DNA SequenceAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCCATCATCACCACCATCACTGAORF Start: at 2ORF Stop: TGA at 1688SEQ ID NO: 68562 aaMW at 62742.6 kDNOV4k,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQS258329988ProteinVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKSequenceDVVEEFSDLYNEVYNLTQEFFRDHKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVTFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTHHHHHHSEQ ID NO: 691672 bpNOV4l,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAA258280066DNA SequenceGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1670SEQ ID NO: 70556 aaMW at 61919.7 kDNOV4l,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSV258280066ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 711693 bpNOV4m,CACCATGGGACATCATCACCACCATCACCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCT258280083DNA SequenceCTCAGTCGCGGCCTACGGAGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1691SEQ ID NO: 72563 aaMW at 62799.6 kDNOV4m,TMGHHHHHHQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSH258280083ProteinIGGRVQSVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNSequenceHGRRIPKDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 731993 bpNOV4n,GGCACGAGGGTCCCGGCGGCGGCTGGAGGAGGAAGCCAGGCGGCTGGCGGAGGAGGAGAGACGGAGGCG140122-02DNA SequenceAGGCCGAGACCGGAGCGCCGCTCGCCGCAGACTTACTTCCCCGGCTCAGCAGGGAAAGGTTCCTAGAAGGTGAGCGCGGACGGTATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCGGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAGGGCTGTCCTCGCTGCTGAGAAGAGCCACTAACTCGTGACCTCCAGCCTGCCCCTTGCTGCCGTGTGCTCCTGCCTTCCTGATCCTCTGTAGAAAGGATTTTTATCTTCTGTAGAGCTAGCCGCCCTGACTGCCTTCAGACCTGGCCCTGTAGCTTTTCTTTTTCTCCAGGCTGGGCCGTGAGCAGGTGGGCCGTTGAGTTACCTCTGTGCTGGATCCCGTGCCCCCACTTGCCTACCCTCTGTCCTGCCTTGTTATTGTAAGTGCCTTCAATACTTTGCATTTTGGGATAATAAAAAAGGCTCCCTCCCCTGCAAAAAAAAAAAAAAAAAAAORF Start: ATG at 152ORF Stop: TGA at 1658SEQ ID NO: 74502 aaMW at 56090.6 kDNOV4n,MQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSVCG140122-02ProteinKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDSequenceVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 751513 bpNOV4o,CACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGAGACG141022-05DNA SequenceAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCGGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 2ORF Stop: TGA at 1511SEQ ID NO: 76503 aaMW at 56191.7 kDNOV4o,TMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSCG140122-05ProteinVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKSequenceDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 771693 bpNOV4p,CACCATGGGACATCATCACCACCATCACCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCG140122-06DNA SequenceCTCAGTCGCGGCCTACGGAGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGCACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCGGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGGAGCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAORF Start: at 29ORF Stop: TGA at 1691SEQ ID NO: 78554 aaMW at 61687.4 kDNOV4p,QSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQSVKCG140122-06ProteinLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPKDVSequenceVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGTSEQ ID NO: 791680 bpNOV4q,TCCACCATGCAAAGTTGTGAATCCAGTGGTGACAGTGCGGATGACCCTCTCAGTCGCGGCCTACGGACG140122-08DNA SequenceGAAGGGGACAGCCTCGTGTGGTGGTGATCGGCGCCGGCTTGGCTGGCCTGGCTGCAGCCAAAGCACTTCTTGAGCAGGGTTTCACGGATGTCACTGTGCTTGAGGCTTCCAGCCACATCGGAGGCCGTGTGCAGAGTGTGAAACTTGGACACGCCACCTTTGAGCTGGGAGCCACCTGGATCCATGGCTCCCATGGGAACCCTATCTATCATCTAGCAGAAGCCAACGGCCTCCTGGAAGAGACAACCGATGGGGAACGCAGCGTGGGCCGCATCAGCCTCTATTCCAAGAATGGCGTGGCCTGCTACCTTACCAACCACGGCCGCAGGATCCCCAAGGACGTGGTTGAGGAATTCAGCGATTTATACAACGAGGTCTATAACTTGACCCAGGAGTTCTTCCGGCACGATAAACCAGTCAATGCTGAAAGTCAAAATAGCGTGGGGGTGTTCACCCGAGAGGAGGTGCGTAACCGCATCAGGAATGACCCTGACGACCCAGAGGCTACCAAGCGCCTGAAGCTCGCCATGATCCAGCAGTACCTGAAGGTGGAGAGCTGTGAGAGCAGCTCACACAGCATGGACGAGGTGTCCCTGAGCGCCTTCGGGGAGTGGACCGAGATCCCCGGCGCTCACCACATCATCCCCTCGGGCTTCATGCGGGTTGTGGAGCTGCTGGCGGAGGGCATCCCTGCCCACGTCATCCAGCTAGGGAAACCTGTCCGCTGCATTCACTGGGACCAGGCCTCAGCCCGCCCCAGAGGCCCTGAGATTGAGCCCCGGGGTGAGGGCGACCACAATCACGACACTGGGGAGGGTGGCCAGGGTGGAGAGGAGCCCCGGGGGGGCAGGTGGGATGAGGATGAGCAGTGGTCGGTGGTGGTGGAGTGCGAGGACTGTGAGCTGATCCCCGCGGACCATGTGATTGTGACCGTGTCGCTAGGTGTGCTAAAGAGGCAGTACACCAGTTTCTTCCGGCCAGGCCTGCCCACAGAGAAGGTGGCTGCCATCCACCGCCTGGGCATTGGCACCACCGACAAGATCTTTCTGGAATTCGAGCACCCCTTCTGGGGCCCTGAGTGCAACAGCCTACAGTTTGTGTGGGAGGACGAAGCAGAGAGCCACACCCTCACCTACCCACCTGAGCTCTGGTACCGCAAGATCTGCGGCTTTGATGTCCTCTACCCGCCTGAGCGCTACGGCCATGTGCTGAGCGGCTGGATCTGCGGGGAGGAGGCCCTCGTCATGGAGAAGTGTGATGACGAGGCAGTGGCCGAGATCTGCACGGAGATGCTGCGTCAGTTCACAGGGAACCCCAACATTCCAAAACCTCGGCGAATCTTGCGCTCGGCCTGGGGCAGCAACCCTTACTTCCGCGGCTCCTATTCATACACGCAGGTGGGCTCCAGCGGGGCGGATGTGGAGAAGCTGGCCAAGCCCCTGCCGTACACGGAGAGCTCAAAGACAGCGCCCATGCAGGTGCTGTTTTCCGGTGAGGCCACCCACCGCAAGTACTATTCCACCACCCACGGTGCTCTGCTGTCCGGCCAGCGTGAGGCTGCCCGCCTCATTGAGATGTACCGAGACCTCTTCCAGCAGGGGACCTGAAAGCTTORF Start: at 1ORF Stop: TGA at 1672SEQ ID NO: 80557 aaMW at 62006.8 kDNOV4q,STMQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHIGGRVQCG140122-08ProteinSVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGVACYLTNHGRRIPSequenceKDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRIRNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFMRVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEPRGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRLGIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERYGHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRGSYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREAARLIEMYRDLFQQGT


[0371] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 4B.
21TABLE 4BComparison of NOV4a against NOV4b through NOV4q.Identities/NOV4aSimilaritiesResidues/for theProteinMatchMatchedSequenceResiduesRegionNOV4b2 . . . 556554/555 (99%) 1 . . . 555554/555 (99%) NOV4c1 . . . 281281/281 (100%)1 . . . 281281/281 (100%)NOV4d1 . . . 556503/586 (85%) 1 . . . 533503/586 (85%) NOV4e1 . . . 281281/281 (100%)1 . . . 281281/281 (100%)NOV4f1 . . . 556503/586 (85%) 1 . . . 533503/586 (85%) NOV4g3 . . . 556554/554 (100%)10 . . . 563 554/554 (100%)NOV4h1 . . . 562562/562 (100%)1 . . . 562562/562 (100%)NOV4i1 . . . 556556/556 (100%)1 . . . 556556/556 (100%)NOV4j1 . . . 556556/556 (100%)7 . . . 562556/556 (100%)NOV4k1 . . . 562562/562 (100%)1 . . . 562562/562 (100%)NOV4l1 . . . 556556/556 (100%)1 . . . 556556/556 (100%)NOV4m3 . . . 556554/554 (100%)10 . . . 563 554/554 (100%)NOV4n2 . . . 556502/555 (90%) 1 . . . 502502/555 (90%) NOV4o1 . . . 556503/556 (90%) 1 . . . 503503/556 (90%) NOV4p3 . . . 556554/554 (100%)1 . . . 554554/554 (100%)NOV4q1 . . . 556556/556 (100%)2 . . . 557556/556 (100%)


[0372] Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.
22TABLE 4CProtein Sequence Properties NOV4aSignalPCleavage site between residues 42 and 43analysis:PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 10; pos.chg 0; neg.chg 2H-region: length 2; peak value 0.00PSG score: −4.40GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −2.31possible cleavage site: between 41 and 42>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −3.88 Transmembrane28-44PERIPHERAL Likelihood = 0.85 (at 322)ALOM score: −3.88 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 35Charge difference: −5.0 C(−2.0) − N( 3.0)N >= C: N-terminal side will be inside>>> membrane topology: type 2 (cytoplasmic tail 1 to 28)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):1.70Hyd Moment(95):5.77G content:1D/E content:2S/T content:4Score: −6.97Gavel: prediction of cleavage sites for mitochondrialpreseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: KPRR (4) at 464pat7: PKPRRIL (5) at 463bipartite: nonecontent of basic residues: 10.0%NLS Score: 0.21KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residues--------------------------Final Results (k = 9/23):30.4%: cytoplasmic30.4%: mitochondrial13.0%: Golgi8.7%: endoplasmic reticulum4.3%: extracellular, including cell wall4.3%: vacuolar4.3%: nuclear4.3%: vesicles of secretory system>> prediction for CG140122-07 is cyt (k = 23)


[0373] A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4D.
23TABLE 4DGeneseq Results for NOV4aNOV4aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB73670Human oxidoreductase2 . . . 556555/555 (100%)0.0protein ORP-3 - Homo1 . . . 555555/555 (100%)sapiens, 555 aa.[WO200144448-A2,21 JUN 2001]AAB12164Hydrophobic domain protein2 . . . 556555/555 (100%)0.0from clone HP10673 isolated1 . . . 555555/555 (100%)from Thymus cells - Homosapiens, 555 aa.[WO200029448-A2,25 MAY 2000]AAM79546Human protein SEQ ID NO2 . . . 511509/510 (99%) 0.03192 - Homo sapiens, 5187 . . . 516509/510 (99%) aa. [WO200157190-A2,09 AUG 2001]AAM78562Human protein SEQ ID NO2 . . . 511502/511 (98%) 0.01224 - Homo sapiens, 5131 . . . 511502/511 (98%) aa. [WO200157190-A2,09 AUG 2001]AAU21643Novel human neoplastic274 . . . 556 283/283 (100%)    e−173disease associated53 . . . 335 283/283 (100%)polypeptide #76 - Homosapiens, 335 aa.[WO200155163-A1,02 AUG 2001]


[0374] In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.
24TABLE 4EPublic BLASTP Results for NOV4aNOV4aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9NWM0Hypothetical protein2 . . . 556 555/555 (100%)0.0FLJ20746 - Homo sapiens1 . . . 555 555/555 (100%)(Human), 555 aa.Q96QT3Polyamine oxidase2 . . . 556554/555 (99%)0.0isoform-1 - Homo sapiens1 . . . 555554/555 (99%)(Human), 555 aa.Q99K82Similar to hypothetical2 . . . 555529/554 (95%)0.0protein - Mus musculus1 . . . 554538/554 (96%)(Mouse), 555 aa.Q9NP51DJ779E11.1.5 (Novel flavin145 . . . 556  412/412 (100%)0.0containing amine oxidase1 . . . 412 412/412 (100%)(Translation of cDNADFKZp761P0724(Em: AL162058)) (Isoform5)) - Homo sapiens (Human),412 aa (fragment).Q9H6H1Hypothetical protein198 . . . 556 358/389 (92%)0.0FLJ22285 - Homo sapiens1 . . . 389358/389 (92%)(Human), 389 aa.


[0375] PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.
25TABLE 4FDomain Analysis of NOV4aPfamNOV4aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueFAD_binding_328 . . . 142 24/142 (17%)0.31 74/142 (52%)Amino_oxidase35 . . . 545124/574 (22%)2.3e−28365/574 (64%)



Example 5

[0376] The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
26TABLE 5ANOV5 Sequence AnalysisSEQ ID NO:811122 bpNOV5a,ACAGACAGCCGCATCTTCTTGTGCTTTGCCAGCCACGTACGTCCCTGAGACACCACAGTGAAGTTGAACG141051-01DNA SequenceGTCCGGAGTCAATGGATTTGTTGGAACCGGGAGCCTAGTCACCAGGGCTGTTTTTAACTCTAGTAAAGTAGATATTGTTGCCATCAATGACCCCTTCATTGACCTCAACTACATGGTCTACATGTTCCAGTATGATTCCACCCATGGCAAATTCCATGGCACCATCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATTTTCGAGGTGCGAGACCCCTCCAAAATCAAATGGGGCAATGCTGGTGCTGAGTCCATCATGGAGTCGACCGGCATCTTCACCACCAGGAAGAAGGCTGGGGCTCGCTTGCAGGGAGGAGCCAAAAGGGTTATCATCTCTGCCCCCTCTTCTGACGCTCCCATGTTCGTGATGGGCATGAACCACGAGAAGTATGACAACAGCTTCAAGATCATCAGCAATGCCTCCTGCACCACCAACTGCCTGGCCCCAGCCAAGGTCACCCATGACAACTTTGGTATCGTGGAAGGACTCATGACCACAGTCCACGCCATTACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCATCATGGCCGTCGGACTCTCCAGAATATCATCCGTGCCTCTACTGGCACTGCCAAGGCTGTAGGCAAGGTCATCCTTGAGCTGAATGGGAAGCTCATAGGCATGGCCTTCCATATCCCCACTGCCAACGTGTTGGTCATGGACCTGACCTGCCATCTGGGAAAACCCTGCCAAGCCAAATATGATGATGTCAAGAAAATGATGAAGCAGGCATTGGAGGACCCCCTCAAGGGCATCCTGGGCCACAGTGAGCACCAGGTCGTCTCCTCTGACTTCGACAGCGACACCCACTCTTCCACCTTCAATGCTGGGGCTGGCATTGCCCTCAACAACCACTTTGTGAAGCTCATTTCCTGGTATGACGATGAATTTGGCTACAGCAACAGTATGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCCAGACCACCAGCTCCAGAGAGAGCATGAGAGGAACAGAGAGGTCCTCACTGORF Start: ATG at 181ORF Stop: TAA at 1063SEQ ID NO:82294 aaMW at 32015.4 kDNOV5a,MVYMFQYDSTHGKFHGTIKAENGKLVINGNPITIFEVRDPSKIKWGNAGAESIMESTGIFTTRKKAGACG141051-01ProteinRLQGGAKRVIISAPSSDAPMFVMGMNHEKYDNSFKIISNASCTTNCLAPAKVTHDNFGIVEGLMTTVHSequenceAITATQKTVDGPSGKLWHHGRRTLQNIIRASTGTAKAVGKVILELNGKLIGMAFHIPTANVLVMDLTCHLGKPCQAKYDDVKKMMKQALEDPLKGILGHSEHQVVSSDFDSDTHSSTFNAGAGIALNNHFVKLISWYDDEFGYSNSMVDLMAHMASKE


[0377] Further analysis of the NOV5a protein yielded the following properties shown in Table 5B.
27TABLE 5BProtein Sequence Properties NOV5aSignalP analysis:No Known Signal Sequence PredictedPSORTII analysis:PSG: a new signal peptide prediction methodN-region: length 8;   pos.chg 0;  neg.chg 1H-region: length 4;   peak value  0.00PSG score: −4.40GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1) −11.52possible cleavage site: between 61 and 62>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calcculation: 1Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 2.44 (at 185)ALOM score: 2.44 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):6.17Hyd Moment(95):3.75G content:2D/E content:2S/T content:3Score: −7.36Gavel: prediction of cleavage sites for mitochondrial preseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 10.5%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: MASKSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern : nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasnic/Nuclear discriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):69.6 %: cytoplasmic 8.7 %: mitochondrial 8.7 %: nuclear 4.3 %: vacuolar 4.3 %: plasma membrane 4.3 %: peroxisomal> prediction for CG1410S1-01 is cyt (k = 23)


[0378] A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5C.
28TABLE 5CGeneseq Results for NOV5aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV5a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABP65145Hypoxia-regulated protein 1 . . . 294250/295 (84%)e−143#19 - Homo sapiens, 335 aa.43 . . . 335271/295 (91%)[WO200246465-A2,13-JUN-2002]AAY05368Human HCMV inducible 1 . . . 294250/295 (84%)e−143gene protein, SEQ ID NO 4 -43 . . . 335271/295 (91%)Homo sapiens, 335 aa.[WO9913075-A2,18-MAR-1999]AAY07036Breast cancer associated 1 . . . 294250/295 (84%)e−143antigen precursor sequence -43 . . . 335271/295 (91%)Homo sapiens, 335 aa.[WO9904265-A2,28-JAN-1999]ABG13650Novel human diagnostic 1 . . . 294248/295 (84%)e−141protein #13641 - Homo65 . . . 357268/295 (90%)sapiens, 357 aa[WO200175067-A2,11-OCT-2001]ABG13646Novel human diagnostic 1 . . . 294248/295 (84%)e−141protein #13637 - Homo65 . . . 357268/295 (90%)sapiens, 357 aa.[WO200175067-A2,11-OCT-2001]


[0379] In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5D.
29TALBE 5DPublic BLASTP Results for NOV5aNOV5aProteinResidues/Identities/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueAAH23632Similar to 1 . . . 294250/295 (84%)e−143glyceraldehyde-3-phosphate43 . . . 335271/295 (91%)dehydrogenase - Homosapiens (Human), 335 aa.P04406Glyceraldehyde-3-phosphate 1 . . . 294250/295 (84%)e−143dehydrogenase, liver (EC42 . . . 334271/295 (91%)1.2.1.12) - Homo sapiens(Human), 334 aa.Q9N2D5Glyceraldehyde-3-phosphate 1 . . . 294239/295 (81%)e−136dehydrogenase (EC 1.2.1.12)41 . . . 333264/295 (89%)(GAPDH) - Felis silvestriscatus (Cat), 333 aa.P00355Glyceraldehyde 3-phosphate 1 . . . 294237/295 (80%)e−135dehydrogenase (EC 1.2.1.12)40 . . . 332262/295 (88%)(GAPDH) - Sus scrofa (Pig),332 as.Q9QWU4Glyceraldehyde 3-phosphate 1 . . . 294235/295 (79%)e−134dehydrogenase (EC 1.2.1.12)41 . . . 333265/295 (89%)(GAPDH) - Rattus norvegicus(Rat), 333 aa.


[0380] PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5E.
30TABLE 5EDomain Analysis of NOV5aPfamNOV5aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValuegpdh 1 . . . 110 60/135 (44%)  4e−85103/135 (76%)gpdh_C111 . . . 273100/178 (56%)1.4e−78135/178 (76%)



Example 6

[0381] The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
31TABLE 6ANOV6 Sequence AnalysisSEQ ID NO:833368 bpNOV6a,CCCGGTCCGAAGCGCGCGGATTCCACCATGTCGGCCAAGGCAATTTCAGAGCAGACGGGCAAAGAACTCG142427-05DNA SequenceCCTTTACAAGTTCATCTGTACCACCTCAGCCATCCAGAATCGGTTCAAGTATGCTCGGGTCACTCCTGACACAGACTGGGCCCGCTTGCTGCAGGACCACCCCTGGCTGCTCAGCCAGAACTTGGTAGTCAAGCCAGACCAGCTGATCAAACGTCGTGGAAAACTTGGTCTCGTTGGGGTCAACCTCACTCTGGATGGGGTCAAGTCCTGGCTGAAGCCACGGCTGGGACAGGAAGCCACAGTTGGCAAGGCCACAGGCTTCCTCAAGAACTTTCTGATCGAGCCCTTCGTCCCCCACAGTCAGGCTGAGGAGTTCTATGTCTGCATCTATGCCACCCGAGAAGGGGACTACGTCCTGTTCCACCACGAGGGGGGTGTGGACGTGGGTGATGTGGACGCCAAGGCCCAGAAGCTGCTTGTTGGCGTGGATGAGAAACTGAATCCTGAGGACATCAAAAAACACCTGTTGGTCCACGCCCCTGAAGACAAGAAAGAAATTCTGGCCAGTTTTATCTCCGGCCTCTTCAATTTCTACGAGGACTTGTACTTCACCTACCTCGAGATCAATCCCCTTGTAGTGACCAAAGATGGAGTCTATGTCCTTGACTTGGCGGCCAAGGTGGACGCCACTGCCGACTACATCTGCAAAGTGAAGTGGGGTGACATCGAGTTCCCTCCCCCCTTCGGGCGGGAGGCATATCCAGAGGAAGCCTACATTGCAGACCTCGATGCCAAAAGTGGGGCAAGCCTGAAGCTGACCTTGCTGAACCCCAAAGGGAGGATCTGGACCATGGTGGCCGGGGGTGGCGCCTCTGTCGTGTACAGCGATACCATCTGTGATCTAGGGGGTGTCAACGAGCTGGCAAACTATGGGGAGTACTCAGGCGCCCCCAGCGAGCAGCAGACCTATGATTATGCCAAGACTATCCTCTCCCTCATGACCCGAGAGAAGCACCCAGATGGCAAGATCCTCATCATTGGAGGCAGCATCGCAAACTTCACCAACGTGGCTGCCACGTTCAAGGGCATCGTGAGAGCAATTCGAGATTACCAGGGCCCCCTGAAGGAGCACGAAGTCACAATCTTTGTCCGAAGAGGTGGCCCCAACTATCAGGAGGGCTTACGGGTGATGGGAGAAGTCGGGAAGACCACTGGGATCCCCATCCATGTCTTTGGCACAGAGACTCACATGACGGCCATTGTGGGCATGGCCCTGGGCCACCGGCCCATCCCCAACCAGCCACCCACAGCGGCCCACACTGCAAACTTCCTCCTCAACGCCAGCGGGAGCACATCGACGCCAGCCCCCAGCAGGACAGCATCTTTTTCTGAGTCCAGGGCCGATGAGGTGGCGCCTGCAAAGAAGGCCAAGCCTGCCATGCCACAAGATTCAGTCCCAAGTCCAAGATCCCTGCAAGGAAAGAGCACCACCCTCTTCAGCCGCCACACCAAGGCCATTGTGTGGGGCATGCAGACCCGGGCCGTGCAAGGCATGCTGGACTTTGACTATGTCTGCTCCCGAGACGAGCCCTCAGTGGCTGCCATGGTCTACCCTTTCACTGGGGACCACAAGCAGAAGTTTTACTGGGGGCACAAAGAGATCCTGATCCCTGTCTTCAAGAACATGGCTGATGCCATGAGGAAGCACCCGGAGGTAGATGTGCTCATCAACTTTGCCTCTCTCCGCTCTGCCTATGACAGCACCATGGAGACCATGAACTATGCCCAGATCCGGACCATCGCCATCATAGCTGAAGGCATCCCTGAGGCCCTCACGAGAAAGCTGATCAAGAAGGCGGACCAGAAGGGAGTGACCATCATCGGACCTGCCACTGTTGGAGGCATCAAGCCTGGGTGCTTTAAGATTGGCAACACAGGTGGGATGCTGGACAACATCCTGGCCTCCAAACTGTACCGCCCAGGCAGCGTGGCCTATGTCTCACGTTCCGGAGGCATGTCCAACGAGCTCAACAATATCATCTCTCGGACCACGGATGGCGTCTATGAGGGCGTGGCCATTGGTGGGGACAGGTACCCGGGCTCCACATTCATGGATCATGTGTTACGCTATCAGGACACTCCAGGAGTCAAAATGATTGTGGTTCTTGGAGAGATTGGGGGCACTGAGGAATATAAGATTTGCCGGGGCATCAAGGAGGGCCGCCTCACTAAGCCCATCGTCTGCTGGTGCATCGGGACGTGTGCCACCATGTTCTCCTCTGAGGTCCAGTTTGGCCATGCTGGAGCTTGTGCCAACCAGGCTTCTGAAACTGCAGTAGCCAAGAACCAGGCTTTGAAGGAAGCAGGAGTGTTTGTGCCCCGGAGCTTTGATGAGCTTGGAGAGATCATCCAGTCTGTATACGAAGATCTCGTGGCCAATGGAGTCATTGTACCTGCCCAGGAGGTGCCGCCCCCAACCGTGCCCATGGACTACTCCTGGGCCAGGGAGCTTGGTTTGATCCGCAAACCTGCCTCGTTCATGACCAGCATCTGCGATGAGCGAGGACAGGAGCTCATCTACGCGGGCATGCCCATCACTGAGGTCTTCAAGGAAGAGATGGGCATTGGCGGGGTCCTCGGCCTCCTCTGGTTCCAGAAAAGGTTGCCTAAGTACTCTTGCCAGTTCATTGAGATGTGTCTGATGGTGACAGCTGATCACGGGCCAGCCGTCTCTGGAGCCCACAACACCATCATTTGTGCGCGAGCTGGGAAAGACCTGGTCTCCAGCCTCACCTCGGGGCTGCTCACCATCGGGGATCGGTTTGGGGGTGCCTTGGATGCAGCAGCCAAGATGTTCAGTAAAGCCTTTGACAGTGGCATTATCCCCATGGAGTTTGTGAACAAGATGAAGAAGGAAGGGAAGCTGATCATGGGCATTGGTCACCGAGTGAAGTCGATAAACAACCCAGACATGCGAGTGCAGATCCTCAAAGATTACGTCAGGCAGCACTTCCCTGCCACTCCTCTGCTCGATTATGCACTGGAAGTAGAGAAGATTACCACCTCGAAGAAGCCAAATCTTATCCTGAATGTAGATGGTCTCATCGGAGTCGCATTTGTAGACATGCTTAGAAACTGTGGGTCCTTTACTCGGGAGGAAGCTGATGAATATATTGACATTGGAGCCCTCAATGGCATCTTTGTGCTGGGAAGGAGTATGGGGTTCATTGGACACTATCTTGATCAGAAGAGGCTGAAGCAGGGGCTGTATCGTCATCCGTGGGATGATATTTCATATGTTCTTCCGGAACACATGAGCATGCATCATCACCACCATCACTAAGCGGCCGCTTTCGAATCORF Start: ATG at 28ORF Stop: at 3331SEQ ID NO:841101 aaMW at 120838.0 kDNOV6a,MSAKAISEQTGKELLYKFICTTSAIQNRFKYARVTPDTDWARLLQDHPWLLSQNLVVKPDQLIKRRGKCG142427-05ProteinLGLVGVNLTLDGVKSWLKPRLGQEATVGKATGFLKNFLIEPFVPHSQAEEFYVCIYATREGDYVLFHHSequenceEGGVDVGDVDAKAQKLLVGVDEKLNPEDIKKHLLVHAPEDKKEILASFISGLFNFYEDLYFTYLEINPLVVTKDGVYVLDLAAKVDATADYICKVKWGDIEFPPPFGREAYPEEAYIADLDAKSGASLKLTLLNPKGRIWTMVAGGGASVVYSDTICDLGGVNELANYGEYSGAPSEQQTYDYAKTILSLMTREKHPDGKILIIGGSIANFTNVAATFKGIVRAIRDYQGPLKEHEVTIFVRRGGPNYQEGLRVMGEVGKTTGIPIHVFGTETHMTAIVGMALGHRPIPNQPPTAAHTANFLLNASGSTSTPAPSRTASFSESRADEVAPAKKAKPAMPQDSVPSPRSLQGKSTTLFSRHTKAIVWGMQTRAVQGMLDFDYVCSRDEPSVAAMVYPFTGDHKQKFYWGHKEILIPVFKNMADAMRKHPEVDVLINFASLRSAYDSTMETMNYAQIRTIAIIAEGIPEALTRKLIKKADQKGVTIIGPATVGGIKPGCFKIGNTGGMLDNILASKLYRPGSVAYVSRSGGMSNELNNIISRTTDGVYEGVAIGGDRYPGSTFMDHVLRYQDTPGVKMIVVLGEIGGTEEYKICRGIKEGRLTKPIVCWCIGTCATMFSSEVQFGHAGACANQASETAVAKNQALKEAGVFVPRSFDELGEIIQSVYEDLVANGVIVPAQEVPPPTVPMDYSWARELGLIRKPASFMTSICDERGQELIYAGMPITEVFKEEMGIGGVLGLLWFQKRLPKYSCQFIEMCLMVTADHGPAVSGAHNTIICARAGKDLVSSLTSGLLTIGDRFGGALDAAAKMFSKAFDSGIIPMEFVNKMKKEGKLIMGIGHRVKSINNPDMRVQILKDYVRQHFPATPLLDYALEVEKITTSKKPNLILNVDGLIGVAFVDMLRNCGSFTREEADEYIDIGALNGIFVLGRSMGFIGHYLDQKRLKQGLYRHPWDDISYVLPEHMSMSEQ ID NO:853307 bpNOV6b,CCAGAATTCCACCATGTCGGCCAAGGCAATTTCAGAGCAGACGGGCAAAGAACTCCTTTACAAGTTCCG142427-02DNA SequenceATCTGTACCACCTCAGCCATCCAGAATCGGTTCAAGTATGCTCGGGTCACTCCTGACACAGACTGGGCCCGCTTGCTGCAGGACCACCCCTGGCTGCTCAGCCAGAACTTGGTAGTCAAGCCAGACCAGCTGATCAAACGTCGTGGAAAACTTGGTCTCGTTGGGGTCAACCTCACTCTGGATGGGGTCAAGTCCTGGCTGAAGCCACGGCTGGGACAGGAAGCCACAGTTGGCAAGGCCACAGGCTTCCTCAAGAACTTTCTGATCGAGCCCTTCGTCCCCCACAGTCAGGCTGAGGAGTTCTATGTCTGCATCTATGCCACCCGAGAAGGGGACTACGTCCTGTTCCACCACGAGGGGGGTGTGGACGTGGGTGATGTGGACGCCAAGGCCCAGAAGCTGCTTGTTGGCGTGGATGAGAAACTGAATCCTGAGGACATCAAAAAACACCTGTTGGTCCACGCCCCTGAAGACAAGAAAGAAATTCTGGCCAGTTTTATCTCCGGCCTCTTCAATTTCTACGAGGACTTGTACTTCACCTACCTCGAGATCAATCCCCTTGTAGTGACCAAAGATGGAGTCTATGTCCTTGACTTGGCGGCCAAGGTGGACGCCACTGCCGACTACATCTGCAAAGTGAAGTGGGGTGACATCGAGTTCCCTCCCCCCTTCGGGCGGGAGGCATATCCAGAGGAAGCCTACATTGCAGACCTCGATGCCAAAAGTGGGGCAAGCCTGAAGCTGACCTTGCTGAACCCCAAAGGGAGGATCTGGACCATGGTGGCCGGGGGTGGCGCCTCTGTCGTGTACAGCGATACCATCTGTGATCTAGGGGGTGTCAACGAGCTGGCAAACTATGGGGAGTACTCAGGCGCCCCCAGCGAGCAGCAGACCTATGACTATGCCAAGACTATCCTCTCCCTCATGACCCGAGAGAAGCACCCAGATGGCAAGATCCTCATCATTGGAGGCAGCATCGCAAACTTCACCAACGTGGCTGCCACGTTCAAGGGCATCGTGAGAGCAATTCGAGATTACCAGGGCCCCCTGAAGGAGCACGAAGTCACAATCTTTGTCCGAAGAGGTGGCCCCAACTATCAGGAGGGCTTACGGGTGATGGGAGAAGTCGGGAAGACCACTGGGATCCCCATCCATGTCTTTGGCACAGAGACTCACATGACGGCCATTGTGGGCATGGCCCTGGGCCACCGGCCCATCCCCAACCAGCCACCCACAGCGGCCCACACTGCAAACTTCCTCCTCAACGCCAGCGGGAGCACATCGACGCCAGCCCCCAGCAGGACAGCATCTTTTTCTGAGTCCAGGGCCGATGAGGTGGCGCCTGCAAAGAAGGCCAAGCCTGCCATGCCACAAGGAAAGAGCACCACCCTCTTCAGCCGCCACACCAAGGCCATTGTGTGGGGCATGCAGACCCGGGCCGTGCAAGGCATGCTGGACTTTGACTATGTCTGCTCCCGAGACGAGCCCTCAGTGGCTGCCATGGTCTACCCTTTCACTGGGGACCACAAGCAGAAGTTTTACTGGGGGCACAAAGAGATCCTGATCCCTGTCTTCAAGAACATGGCTGATGCCATGAGGAAGCACCCGGAGGTAGATGTGCTCATCAACTTTGCCTCTCTCCGCTCTGCCTATGACAGCACCATGGAGACCATGAACTATGCCCAGATCCGGACCATCGCCATCATAGCTGAAGGCATCCCTGAGGCCCTCACGAGAAAGCTGATCAAGAAGGCGGACCAGAAGGGAGTGACCATCATCGGACCTGCCACTGTTGGAGGCATCAAGCCTGGGTGCTTTAAGATTGGCAACACAGGTGGGATGCTGGACAACATCCTGGCCTCCAAACTGTACCGCCCAGGCAGCGTGGCCTATGTCTCACGTTCCGGAGGCATGTCCAACGAGCTCAACAATATCATCTCTCGGACCACGGATGGCGTCTATGAGGGCGTGGCCATTGGTGGGGACAGGTACCCGGGCTCCACATTCATGGATCATGTGTTACGCTATCAGGACACTCCAGGAGTCAAAATGATTGTGGTTCTTGGAGAGATTGGGGGCACTGAGGAATATAAGATTTGCCGGGGCATCAAGGAGGGCCGCCTCACTAAGCCCATCGTCTGCTGGTGCATCGGGACGTGTGCCACCATGTTCTCCTCTGAGGTCCAGTTTGGCCATGCTGGAGCTTGTGCCAACCAGGCTTCTGAAACTGCAGTAGCCAAGAACCAGGCTTTGAAGGAAGCAGGAGTGTTTGTGCCCCGGAGCTTTGATGAGCTTGGAGAGATCATCCAGTCTGTATACGAAGATCTCGTGGCCAATGGAGTCATTGTACCTGCCCAGGAGGTGCCGCCCCCAACCGTGCCCATGGACTACTCCTGGGCCAGGGAGCTTGGTTTGATCCGCAAACCTGCCTCGTTCATGACCAGCATCTGCGATGAGCGAGGACAGGAGCTCATCTACGCGGGCATGCCCATCACTGAGGTCTTCAAGGAAGAGATGGGCATTGGCGGGGTCCTCGGCCTCCTCTGGTTCCAGAAAAGGTTGCCTAAGTACTCTTGCCAGTTCATTGAGATGTGTCTGATGGTGACAGCTGATCACGGGCCAGCCGTCTCTGGAGCCCACAACACCATCATTTGTGCGCGAGCTGGGAAAGACCTGGTCTCCAGCCTCACCTCGGGGCTGCTCACCATCGGGGATCGGTTTGGGGGTGCCTTGGATGCAGCAGCCAAGATGTTCAGTAAAGCCTTTGACAGTGGCATTATCCCCATGGAGTTTGTGAACAAGATGAAGAAGGAAGGGAAGCTGATCATGGGCATTGGTCACCGAGTGAAGTCGATAAACAACCCAGACATGCGAGTGCAGATCCTCAAAGATTACGTCAGGCAGCACTTCCCTGCCACTCCTCTGCTCGATTATGCACTGGAAGTAGAGAAGATTACCACCTCGAAGAAGCCAAATCTTATCCTGAATGTAGATGGTCTCATCGGAGTCGCATTTGTAGACATGCTTAGAAACTGTGGGTCCTTTACTCGGGAGGAAGCTGATGAATATATTGACATTGGAGCCCTCAATGGCATCTTTGTGCTGGGAAGGAGTATGGGGTTCATTGGACACTATCTTGATCAGAAGAGGCTGAAGCAGGGGCTGTATCGTCATCCGTGGGATGATATTTCATATGTTCTTCCGGAACACATGAGCATGTAAGCGGCCGCTTTTTTCCTTORF Start: at 2ORF Stop: TAA at 3287SEQ ID NO:861095 aaMW at 120201.2 kDNOV6b,QNSTMSAKAISEQTGKELLYKFICTTSAIQNRFKYARVTPDTDWARLLQDHPWLLSQNLVVKPDQLICG142427-02ProteinKRRGKLGLVGVNLTLDGVKSWLKPRLGQEATVGKATGFLKNFLIEPFVPHSQAEEFYVCIYATREGDSequenceYVLFHHEGGVDVGDVDAKAQKLLVGVDEKLNPEDIKKHLLVHAPEDKKEILASFISGLFNFYEDLYFTYLEINPLVVTKDGVYVLDLAAKVDATADYICKVKWGDIEFPPPFGREAYPEEAYIADLDAKSGASLKLTLLNPKGRIWTMVAGGGASVVYSDTICDLGGVNELANYGEYSGAPSEQQTYDYAKTILSLMTREKHPDGKILIIGGSIANFTNVAATFKGIVRAIRDYQGPLKEHEVTIFVRRGGPNYQEGLRVMGEVGKTTGIPIHVFGTETHMTAIVGMALGHRPIPNQPPTAAHTANFLLNASGSTSTPAPSRTASFSESRADEVAPAKKAKPAMPQGKSTTLFSRHTKAIVWGMQTRAVQGMLDFDYVCSRDEPSVAAMVYPFTGDHKQKFYWGHKEILIPVFKNMADAMRKHPEVDVLINFASLRSAYDSTMETMNYAQIRTIAIIAEGIPEALTRKLIKKADQKGVTIIGPATVGGIKPGCFKIGNTGGMLDNILASKLYRPGSVAYVSRSGGMSNELNNIISRTTDGVYEGVAIGGDRYPGSTFMDHVLRYQDTPGVKMIVVLGEIGGTEEYKICRGIKEGRLTKPIVCWCIGTCATMFSSEVQFGHAGACANQASETAVAKNQALKEAGVFVPRSFDELGEIIQSVYEDLVANGVIVPAQEVPPPTVPMDYSWARELGLIRKPASFMTSICDERGQELIYAGMPITEVFKEEMGIGGVLGLLWFQKRLPKYSCQFIEMCLMVTADHGPAVSGAHNTIICARAGKDLVSSLTSGLLTIGDRFGGALDAAAKMFSKAFDSGIIPMEFVNKMKKEGKLIMGIGHRVKSINNPDMRVQILKDYVRQHFPATPLLDYALEVEKITTSKKPNLILNVDGLIGVAFVDMLRNCGSFTREEADEYIDIGALNGIFVLGRSMGFIGHYLDQKRLKQGLYRHPWDDISYVLPEHMSMSEQ ID NO:872290 bpNOV6c,CCAGAATTCCACCATGTCGGCCAAGGCAATTTCAGAGCAGACGGGCAAAGAACTCCTTTACAAGTTCACG142427-03DNA SequenceTCTGTACCACCTCAGCCATCCAGAATCGGTTCAAGTATGCTCGGGTCACTCCTGACACAGACTGGGCCCGCTTGCTGCAGGACCACCCCTGGCTGCTCAGCCAGAACTTGGTAGTCAAGCCAGACCAGCTGATCAAACGTCGTGGAAAACTTGGTCTCGTTGGGGTCAACCTCACTCTGGATGGGGTCAAGTCCTGGCTGAAGCCACGGCTGGGACAGGAAGCCACAGTGAGTGGGCATGGGGTCAAGATGAACGTGTGTGGTAACAGAAGCAAATATGGTCACCTTCAGGTTGGCAAGGCCACAGGCTTCCTCAAGAACTTTCTGATCGAGCCCTTCGTCCCCCACAGTCAGGCTGAGGAGTTCTATGTCTGCATCTATGCCACCCGAGAAGGGGACTACGTCCTGTTCCACCACGAGGGGGGTGTGGACGTGGGTGATGTGGACGCCAAGGCCCAGAAGCTGCTTGTTGGCGTGGATGAGAAACTGAATCCTGAGGACATCAAAAAACACCTGTTGGTCCACGCCCCTGAAGACAAGAAAGAAATTCTGGCCAGTTTTATCTCCGGCCTCTTCAATTTCTACGAGGACTTGTACTTCACCTACCTCGAGATCAATCCCCTTGTAGTGACCAAAGATGGAGTCTATGTCCTTGACTTGGCGGCCAAGGTGGACGCCACTGCCGACTACATCTGCAAAGTGAAGTGGGGTGACATCGAGTTCCCTCCCCCCTTCGGGCGGGAGGCATATCCAGAGGAAGCCTACATTGCAGACCTCGACGCCAAAAGTGGGGCAAGCCTGAAGCTGACCTTGCTGAACCCCAAAGGGAGGATCTGGACCATGGTGGCCGGGGGTGGCGCCTCTGTCGTGTACAGCGATACCATCTGTGATCTAGGGGGTGTCAACGAGCTGGCAAACTATGGGGAGTACTCAGGCGCCCCCAGCGAGCAGCAGACCTATGACTATGCCAAGACTATCCTCTCCCTCATGACCCGAGAGAAGCACCCAGATGGCAAGATCCTCATCATTGGAGGCAGCATCGCAAACTTCACCAACGTGGCTGCCACGTTCAAGGGCATCGTGAGAGCAATTCGAGATTACCAGGGCCCCCTGAAGGAGCACGAAGTCACAATCTTTGTCCGAAGAGGTGGCCCCAACTATCAGGAGGGCTTACGGGTGATGGGAGAAGTCGGGAAGACCACTGGGATCCCCATCCATGTCTTTGGCACAGAGACTCACATGACGGCCATTGTGGGCATGGCCCTGGGCCACCGGCCCATCCCCAACCAGCCACCCACAGCGGCCCACACTGCAAACTTCCTCCTCAACGCCAGCGGGAGCACATCGACGCCAGCCCCCAGCAGGACAGCATCTTTTTCTGAGTCCAGGGCCGATGAGGTGGCGCCTGCAAAGAAGGCCAAGCCTGCCATGCCACAAGGAAAGAGCACCACCCTCTTCAGCCGCCACACCAAGGCCATTGTGTGGGGCATGCAGACCCGGGCCGTGCAAGGCATGCTGGACTTTGACTATGTCTGCTCCCGAGACGAGCCCTCAGTGGCTGCCATGGTCTACCCTTTCACTGGGGACCACAAGCAGAAGTTTTACTGGGGGCACAAAGAGATCCTGATCCCTGTCTTCAAGAACATGGCTGATGCCATGAGGAAGCACCCGGAGGTAGATGTGCTCATCAACTTTGCTTCTCTCCGCTCTGCCTTGGATGCAGCAGCCAAGATGTTCAGTAAAGCCTTTGACAGTGGCATTATCCCCATGGAGTTTGTGAACAAGATGAAGAAGGAAGGGAAGCTGATCATGGGCATTGGTCACCGAGTGAAGTCGATAAACAACCCAGACATGCGAGTGCGGATCCTCAAAGATTACGTCAGGCAGCACTTCCCTGCCACTCCTCTGCTCGATTATGCACTGGAAGTAGAGAAGATTACCACCTCGAAGAAGCCAAATCTTATCCTGAATGTAGATGGTCTCATCGGAGTCGCATTTGTAGACATGCTTAGAAACTGTGGGTCCTTTACTCGGGAGGAAGCTGATGAATATATTGACATTGGAGCCCTCAATGGCATCTTTGTGCTGGGAAGGAGTATGGGGTTCATTGGACACTATCTTGATCAGAAGAGGCTGAAGCAGGGGCTGTATCGTCATCCGTGGGATGATATTTCATATGTTCTTCCGGAACACATGAGCATGTAAGCGGCCGCTTTTTTCCTTORF Start: at 2ORF Stop: TAA at 2270SEQ ID NO:88756 aaMW at 83890.7 kDNOV6c,QNSTMSAKAISEQTGKELLYKFICTTSAIQNRFKYARVTPDTDWARLLQDHPWLLSQNLVVKPDQLIKCG142427-03ProteinRRGKLGLVGVNLTLDGVKSWLKPRLGQEATVSGHGVKMNVCGNRSKYGHLQVGKATGFLKNFLIEPFVSequencePHSQAEEFYVCIYATREGDYVLFHHEGGVDVGDVDAKAQKLLVGVDEKLNPEDIKKHLLVHAPEDKKEILASFISGLFNFYEDLYFTYLEINPLVVTKDGVYVLDLAAKVDATADYICKVKWGDIEFPPPFGREAYPEEAYIADLDAKSGASLKLTLLNPKGRIWTMVAGGGASVVYSDTICDLGGVNELANYGEYSGAPSEQQTYDYAKTILSLMTREKHPDGKILIIGGSIANFTNVAATFKGIVRAIRDYQGPLKEHEVTIFVRRGGPNYQEGLRVMGEVGKTTGIPIHVFGTETHMTAIVGMALGHRPIPNQPPTAAHTANFLLNASGSTSTPAPSRTASFSESRADEVAPAKKAKPAMPQGKSTTLFSRHTKAIVWGMQTRAVQGMLDFDYVCSRDEPSVAAMVYPFTGDHKQKFYWGHKEILIPVFKNMADAMRKHPEVDVLINFASLRSALDAAAKMFSKAFDSGIIPMEFVNKMKKEGKLIMGIGHRVKSINNPDMRVRILKDYVRQHFPATPLLDYALEVEKITTSKKPNLILNVDGLIGVAFVDMLRNCGSFTREEADEYIDIGALNGIFVLGRSMGFIGHYLDQKRLKQGLYRHPWDDISYVLPEHMSMSEQ ID NO:893238 bpNOV6d,CCAGAATTCCACCATGTCGGCCAAGGCAATTTCAGAGCAGACGGGCAAAGAACTCCTTTACAAGTTCCG142427-04DNA SequenceATCTGTACCACCTCAGCCATCCAGAATCGGTTCAAGTATGCTCGGGTCACTCCTGACACAGACTGGGCCCGCTTGCTGCAGGACCACCCCTGGCTGCTCAGCCAGAACTTGGTAGTCAAGCCAGACCAGCTGATCAAACGTCGTGGAAAACTTGGTCTCGTTGGGGTCAACCTCACTCTGGATGGGGTCAAGTCCTGGCTGAAGCCACGGCTGGGACAGGAAGCCACAGTTGGCAAGGCCACAGGCTTCCTCAAGAACTTTCTGATCGAGCCCTTCGTCCCCCACAGTCAGGCTGAGGAGTTCTATGTCTGCATCTATGCCACCCGAGAAGGGGACTACGTCCTGTTCCACCACGAGGGGGGTGTGGACGTGGGTGATGTGGACGCCAAGGCCCAGAAGCTGCTTGTTGGCGTGGATGAGAAACTGAATCCTGAGGACATCAAAAAACACCTGTTGGTCCACGCCCCTGAAGACAAGAAAGAAATTCTGGCCAGTTTTATCTCCGGCCTCTTCAATTTCTACGAGGACTTGTACTTCACCTACCTCGAGATCAATCCCCTTGTAGTGACCAAAGATGGAGTCTATGTCCTTGACTTGGCGGCCAAGGTGGACGCCACTGCCGACTACATCTGCAAAGTGAAGTGGGGTGACATCGAGTTCCCTCCCCCCTTCGGGCGGGAGGCATATCCAGAGGAAGCCTACATTGCAGGCCTCGATGCCAAAAGTGGGGCAAGCCTGAAGCTGACCTTGCTGAACCCCAAAGGGAGGATCTGGACCATGGTGGCCGGGGGTGGCGCCTCTGTCGTGTACAGCGATACCATCTGTGATCTAGGGGGTGTCAACGAGCTGGCAAACTATGGGGAGTACTCAGGCGCCCCCAGCGAGCAGCAGACCTATGACTATGCCAAGACTATCCTCTCCCTCATGACCCGAGAGAAGCACCCAGATGGCAAGATCCTCATCATTGGAGGCAGCATCGCAAACTTCACCAACGTGGCTGCCACGTTCAAGGGCATCGTGAGAGCAATTCGAGATTACCAGGGCCCCCTGAAGGAGCACGAAGTCACAATCTTTGTCCGAAGAGGTGGCCCCAACTATCAGGAGGGCTTACGGGTGATGGGAGAAGTCGGGAAGACCACTGGGATCCCCATCCATGTCTTTGGCACAGAGACCCACACTGCAAACTTCCTCCTCAACGCCAGCGGGAGCACATCGACGCCAGCCCCCAGCAGGACAGCATCTTTTTCTGAGTCCAGGGCCGATGAGGTGGCGCCTGCAAAGAAGGCCAAGCCTGCCATGCCACAAGGAAAGAGCACCACCCTCTTCAGCCGCCACACCAAGGCCATTGTGTGGGGCATGCAGACCCGGGCCGTGCAAGGCATGCTGGACTTTGACTATGTCTGCTCCCGAGACGAGCCCTCAGTGGCTGCCATGGTCTACCCTTTCACTGGGGACCACAAGCAGAAGTTTTACTGGGGGCACAAAGAGATCCTGATCCCTGTCTTCAAGAACATGGCTGATGCCATGAGGAAGCATCCGGAGGTAGATGTGCTCATCAACTTTGCCTCTCTCCGCTCTGCCTATGACAGCACCATGGAGACCACGAACTATGCCCAGATCCGGACCATCGCCATCATAGCTGAAGGCATTCCTGAGGCCCTCACGAGAAAGCTGATCAAGAAGGCGGACCAGAAGGGAGTGACCATCATCHHACCTGCCACTGTTGGAGGCATCAAGCCTGGGTGCTTTAAGATTGGCAACACAGGTGGGATGCTGGACAACATCCTGGCCTCCAAACTGTACCGCCCAGGCAGCGTGGCCTATGCCTCACGTTCCGGAGGCATGTCCAACGAGCTCAACAATATCATCTCTCGGACCACGGATGGCGTCTATGAGGGCGTGGCCATTGGTGGGGACAGGTACCCGGGCTCCACATTCATGGATCATGTGTTACGCTATCAGGACACTCCAGGAGTCAAAATGATTGTGGTTCTTGGAGAGATTGGGGGCACTGAGGAATATAAGATTTGCCGGGGCATCAAGGAGGGCCGCCTCACTAAGCCCATCGTCTGCTGGTGCATCGGGACGTGTGCCACCATGTTCTCCTCTGAGGTCCAGTTTGGCCATGCTGGAGCTTGTGCCAACCAGGCTTCTGAAACTGCAGTAGCCAAGAACCAGGCTTTGAAGGAAGCAGGAGTGTTTGTGCCCCGGAGCTTTGATGAGCTTGGAGAGATCATCCAGTCTGTATACGAAGATCTCGTGGCCAATGGAGTCATTGTACCTGCCCAGGAGGTGCCGCCCCCAACCGTGCCCATGGACTACTCCTGGGCCAGGGAGCTTGGTTTGATCCGCAAACCTGCCTCGTTCATGACCAGCATCTGCGATGAGCGAGGACAGGAGCTCATCTACGCGGGCATGCCCATCACTGAGGTCTTCAAGGAAGAGATGGGCATTGGCGGGGTCCTCGGCCTCCTCTGGTTCCAGAAAAGGTTGCCTAAGTACTCTTGCCAGTTCATTGAGATGTGTCTGATGGTGACAGCTGATCACGGGCCAGCCGTCTCTGGAGCCCACAACACCATCATTTGTGCGCGAGCTGGGAAAGACCTGGTCTCCAGCCTCACCTCGGGGCTGCTCACCATCGGGGATCGGTTTGGGGGTGCCTTGGATGCAGCAGCCAAGATGTTCAGTAAAGCCTTTGACAGTGGCATTATCCCCATGGAGTTTGTGAACAAGATGAAGAAGGAAGGGAAGCTGATCATGGGCATTGGTCACCGAGTGAAGTCGATAAACAACCCAGACATGCGAGTGCAGATCCTCAAAGATTACGTCAGGCAGCACTTCCCTGCCACTCCTCTGCTCGATTATGCACTGGAAGTAGAGAAGATTACCACCTCGAAGAAGCCAAATCTTATCCTGAATGTAGATGGTCTCATCGGAGTCGCATTTGTAGACATGCTTAGAAACTGTGGGTCCTTTACTCGGGAGGAAGCTGATGAATATATTGACATTGGAGCCCTCAATGGCATCTTTGTGCTGGGAAGGAGTATGGGGTTCATTGGACACTATCTTGATCAGAAGAGGCTGAAGCAGGGGCTGTATCGTCATCCGTGGGATGATATTTCATATGTTCTTCCGGAACACATGAGCATGTAAGCGGCCGCTTTTTTCCTTORF Start: at 2ORF Stop: TAA at 3218SEQ ID NO:901072 aaMW at 117722.3 kDNOV6d,QNSTMSAKAISEQTGKELLYKFICTTSAIQNRFKYARVTPDTDWARLLQDHPWLLSQNLVVKPDQLICG142427-04ProteinKRRGKLGLVGVNLTLDGVKSWLKPRLGQEATVGKATGFLKNFLIEPFVPHSQAEEFYVCIYATREGDSequenceYVLFHHEGGVDVGDVDAKAQKLLVGVDEKLNPEDIKKHLLVHAPEDKKEILASFISGLFNFYEDLYFTYLEINPLVVTKDGVYVLDLAAKVDATADYICKVKWGDIEFPPPFGREAYPEEAYIAGLDAKSGASLKLTLLNPKGRIWTMVAGGGASVVYSDTICDLGGVNELANYGEYSGAPSEQQTYDYAKTILSLMTREKHPDGKILIIGGSIANFTNVAATFKGIVRAIRDYQGPLKEHEVTIFVRRGGPNYQEGLRVMGEVGKTTGIPIHVFGTETHTANFLLNASGSTSTPAPSRTASFSESRADEVAPAKKAKPAMPQGKSTTLFSRHTKAIVWGMQTRAVQGMLDFDYVCSRDEPSVAAMVYPFTGDHKQKFYWGHKEILIPVFKNMADAMRKHPEVDVLINFASLRSAYDSTMETTNYAQIRTIAIIAEGIPEALTRKLIKKADQKGVTIIGPATVGGIKPGCFKIGNTGGMLDNILASKLYRPGSVAYASRSGGMSNELNNIISRTTDGVYEGVAIGGDRYPGSTFMDHVLRYQDTPGVKMIVVLGEIGGTEEYKICRGIKEGRLTKPIVCWCIGTCATMFSSEVQFGHAGACANQASETAVAKNQALKEAGVFVPRSFDELGEIIQSVYEDLVANGVIVPAQEVPPPTVPMDYSWARELGLIRKPASFMTSICDERGQELIYAGMPITEVFKEEMGIGGVLGLLWFQKRLPKYSCQFIEMCLMVTADHGPAVSGAHNTIICARAGKDLVSSLTSGLLTIGDRFGGALDAAAKMFSKAFDSGIIPMEFVNKMKKEGKLIMGIGHRVKSINNPDMRVQILKDYVRQHFPATPLLDYALEVEKITTSKKPNLILNVDGLIGVAFVDMLRNCGSFTREEADEYIDIGALNGIFVLGRSMGFIGHYLDQKRLKQGLYRHPWDDISYVLPEHMSMSEQ ID NO:914427 bpNOV6e,GGCACGAGGCCGGGACAAAAGCCGGATCCCGGGAAGCTACCGGCTGCTGGGGTGCTCCGGATTTTGCGCG142427-01DNA SequenceGGGTTCGTCGGGCCTGTGGAAGAAGCGCCGCGCACGGACTTCGGCAGAGGTAGAGCAGGTCTCTCTGCAGCCATGTCGGCCAAGGCAATTTCAGAGCAGACGGGCAAAGAACTCCTTTACAAGTTCATCTGTACCACCTCAGCCATCCAGAATCGGTTCAAGTATGCTCGGGTCACTCCTGACACAGACTGGGCCCGCTTGCTGCAGGACCACCCCTGGCTGCTCAGCCAGAACTTGGTAGTCAAGCCAGACCAGCTGATCAAACGTCGTGGAAAACTTGGTCTCGTTGGGGTCAACCTCACTCTGGATGGGGTCAAGTCCTGGCTGAAGCCACGGCTGGGACAGGAAGCCACAGTTGGCAAGGCCACAGGCTTCCTCAAGAACTTTCTGATCGAGCCCTTCGTCCCCCACAGTCAGGCTGAGGAGTTCTATGTCTGCATCTATGCCACCCGAGAAGGGGACTACGTCCTGTTCCACCACGAGGGGGGTGTGGACGTGGGTGATGTGGACGCCAAGGCCCAGAAGCTGCTTGTTGGCGTGGATGAGAAACTGAATCCTGAGGACATCAAAAAACACCTGTTGGTCCACGCCCCTGAAGACAAGAAAGAAATTCTGGCCAGTTTTATCTCCGGCCTCTTCAATTTCTACGAGGACTTGTACTTCACCTACCTCGAGATCAATCCCCTTGTAGTGACCAAAGATGGAGTCTATGTCCTTGACTTGGCGGCCAAGGTGGACGCCACTGCCGACTACATCTGCAAAGTGAAGTGGGGTGACATCGAGTTCCCTCCCCCCTTCGGGCGGGAGGCATATCCAGAGGAAGCCTACATTGCAGACCTCGATGCCAAAAGTGGGGCAAGCCTGAAGCTGACCTTGCTGAACCCCAAAGGGAGGATCTGGACCATGGTGGCCGGGGGTGGCGCCTCTGTCGTGTACAGCGATACCATCTGTGATCTAGGGGGTGTCAACGAGCTGGCAAACTATGGGGAGTACTCAGGCGCCCCCAGCGAGCAGCAGACCTATGACTATGCCAAGACTATCCTCTCCCTCATGACCCGAGAGAAGCACCCAGATGGCAAGATCCTCATCATTGGAGGCAGCATCGCAAACTTCACCAACGTGGCTGCCACGTTCAAGGGCATCGTGAGAGCAATTCGAGATTACCAGGGCCCCCTGAAGGAGCACGAAGTCACAATCTTTGTCCGAAGAGGTGGCCCCAACTATCAGGAGGGCTTACGGGTGATGGGAGAAGTCGGGAAGACCACTGGGATCCCCATCCATGTCTTTGGCACAGAGACTCACATGACGGCCATTGTGGGCATGGCCCTGGGCCACCGGCCCATCCCCAACCAGCCACCCACAGCGGCCCACACTGCAAACTTCCTCCTCAACGCCAGCGGGAGCACATCGACGCCAGCCCCCAGCAGGACAGCATCTTTTTCTGAGTCCAGGGCCGATGAGGTGGCGCCTGCAAAGAAGGCCAAGCCTGCCATGCCACAAGATTCAGTCCCAAGTCCAAGATCCCTGCAAGGAAAGAGCACCACCCTCTTCAGCCGCCACACCAAGGCCATTGTGTGGGGCATGCAGACCCGGGCCGTGCAAGGCATGCTGGACTTTGACTATGTCTGCTCCCGAGACGAGCCCTCAGTGGCTGCCATGGTCTACCCTTTCACTGGGGACCACAAGCAGAAGTTTTACTGGGGGCACAAAGAGATCCTGATCCCTGTCTTCAAGAACATGGCTGATGCCATGAGGAAGCATCCGGAGGTAGATGTGCTCATCAACTTTGCCTCTCTCCGCTCTGCCTATGACAGCACCATGGAGACCATGAACTATGCCCAGATCCGGACCATCGCCATCATAGCTGAAGGCATCCCTGAGGCCCTCACGAGAAAGCTGATCAAGAAGGCGGACCAGAAGGGAGTGACCATCATCGGACCTGCCACTGTTGGAGGCATCAAGCCTGGGTGCTTTAAGATTGGCAACACAGGTGGGATGCTGGACAACATCCTGGCCTCCAAACTGTACCGCCCAGGCAGCGTGGCCTATGTCTCACGTTCCGGAGGCATGTCCAACGAGCTCAACAATATCATCTCTCGGACCACGGATGGCGTCTATGAGGGCGTGGCCATTGGTGGGGACAGGTACCCGGGCTCCACATTCATGGATCATGTGTTACGCTATCAGGACACTCCAGGAGTCAAAATGATTGTGGTTCTTGGAGAGATTGGGGGCACTGAGGAATATAAGATTTGCCGGGGCATCAAGGAGGGCCGCCTCACTAAGCCCATCGTCTGCTGGTGCATCGGGACGTGTGCCACCATGTTCTCCTCTGAGGTCCAGTTTGGCCATGCTGGAGCTTGTGCCAACCAGGCTTCTGAAACTGCAGTAGCCAAGAACCAGGCTTTGAAGGAAGCAGGAGTGTTTGTGCCCCGGAGCTTTGATGAGCTTGGAGAGATCATCCAGTCTGTATACGAAGATCTCGTGGCCAATGGAGTCATTGTACCTGCCCAGGAGGTGCCGCCCCCAACCGTGCCCATGGACTACTCCTGGGCCAGGGAGCTTGGTTTGATCCGCAAACCTGCCTCGTTCATGACCAGCATCTGCGATGAGCGAGGACAGGAGCTCATCTACGCGGGCATGCCCATCACTGAGGTCTTCAAGGAAGAGATGGGCATTGGCGGGGTCCTCGGCCTCCTCTGGTTCCAGAAAAGGTTGCCTAAGTACTCTTGCCAGTTCATTGAGATGTGTCTGATGGTGACAGCTGATCACGGGCCAGCCGTCTCTGGAGCCCACAACACCATCATTTGTGCGCGAGCTGGGAAAGACCTGGTCTCCAGCCTCACCTCGGGGCTGCTCACCATCGGGGATCGGTTTGGGGGTGCCTTGGATGCAGCAGCCAAGATGTTCAGTAAAGCCTTTGACAGTGGCATTATCCCCATGGAGTTTGTGAACAAGATGAAGAAGGAAGGGAAGCTGATCATGGGCATTGGTCACCGAGTGAAGTCGATAAACAACCCAGACATGCGAGTGCAGATCCTCAAAGATTACGTCAGGCAGCACTTCCCTGCCACTCCTCTGCTCGATTATGCACTGGAAGTAGAGAAGATTACCACCTCGAAGAAGCCAAATCTTATCCTGAATGTAGATGGTCTCATCGGAGTCGCATTTGTAGACATGCTTAGAAACTGTGGGTCCTTTACTCGGGAGGAAGCTGATGAATATATTGACATTGGAGCCCTCAATGGCATCTTTGTGCTGGGAAGGAGTATGGGGTTCATTGGACACTATCTTGATCAGAAGAGGCTGAAGCAGGGGCTGTATCGTCATCCGTGGGATGATATTTCATATGTTCTTCCGGAACACATGAGCATGTAACAGAGCCAGGAACCCTACTGCAGTAAACTGAAGACAAGATCTCTTCCCCCAAGAAAAAGTGTACAGACAGCTGGCAGTGGAGCCTGCTTTATTTAGCAGGGGCCTGGAATGTAAACAGCCACTGGGGTACAGGCACCGAAGACCAACATCCACAGGCTAACACCCCTTCAGTCCACACAAAGAAGCTTCATATTTTTTTTATAAGCATAGAAATAAAAACCAAGCCAATATTTGTGACTTTGCTCTGCTACCTGCTGTATTTATTATATGGAAGCATCTAAGTACTGTCAGGATGGGGTCTTCCTCATTGTAGGGCGTTAGGATGTTGCTTTCTTTTTCCATTAGTTAAACATTTTTTTCTCCTTTGGAGGAAGGGAATGAAACATTTATGGCCTCAAGATACTATACATTTAAAGCACCCCAATGTCTCTCTTTTTTTTTTTTTACTTCCCTTTCTTCTTCCTTATATAACATGAAGAACATTGTATTAATCTGATTTTTAAAGATCTTTTTGTATGTTACGTGTTAAGGGCTTGTTTGGTATCCCACTGAAATGTTCTGTGTTGCAGACCAGAGTCTGTTTATGTCAGGGGGATGGGGCCATTGCATCCTTAGCCATTGTCACAAAATATGTGGAGTAGTAACTTAATATGTAAAGTTGTAACATACATACATTTAAAATGGAAATGCAGAAAGCTGTGAAATGTCTTGTGTCTTATGTTCTCTGTATTTATGCAGCTGATTTGTCTGTCTGTAACTGAAGTGTGGGTCCAAGGACTCCTAACTACTTTGCATCTGTAATCCACAAAGATTCTGGGCAGCTGCCACCTCAGTCTCTTCTCTGTATTATCATAGTCTGGTTTAAATAAACTATATAGTAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 141ORF Stop: TAA at 3444SEQ ID NO:921101 aaMW at 120838.0 kDNOV6e,MSAKAISEQTGKELLYKFICTTSAIQNRFKYARVTPDTDWARLLQDHPWLLSQNLVVKPDQLIKRRGKCG142427-01ProteinLGLVGVNLTLDGVKSWLKPRLGQEATVGKATGFLKNFLIEPFVPHSQAEEFYVCIYATREGDYVLFHHSequenceEGGVDVGDVDAKAQKLLVGVDEKLNPEDIKKHLLVHAPEDKKEILASFISGLFNFYEDLYFTYLEINPLVVTKDGVYVLDLAAKVDATADYICKVKWGDIEFPPPFGREAYPEEAYIADLDAKSGASLKLTLLNPKGRIWTMVAGGGASVVYSDTICDLGGVNELANYGEYSGAPSEQQTYDYAKTILSLMTREKHPDGKILIIGGSIANFTNVAATFKGIVRAIRDYQGPLKEHEVTIFVRRGGPNYQEGLRVMGEVGKTTGIPIHVFGTETHMTAIVGMALGHRPIPNQPPTAAHTANFLLNASGSTSTPAPSRTASFSESRADEVAPAKKAKPAMPQDSVPSPRSLQGKSTTLFSRHTKAIVWGMQTRAVQGMLDFDYVCSRDEPSVAAMVYPFTGDHKQKFYWGHKEILIPVFKNMADAMRKHPEVDVLINFASLRSAYDSTMETMNYAQIRTIAIIAEGIPEALTRKLIKKADQKGVTIIGPATVGGIKPGCFKIGNTGGMLDNILASKLYRPGSVAYVSRSGGMSNELNNIISRTTDGVYEGVAIGGDRYPGSTFMDHVLRYQDTPGVKMIVVLGEIGGTEEYKICRGIKEGRLTKPIVCWCIGTCATMFSSEVQFGHAGACANQASETAVAKNQALKEAGVFVPRSFDELGEIIQSVYEDLVANGVIVPAQEVPPPTVPMDYSWARELGLIRKPASFMTSICDERGQELIYAGMPITEVFKEEMGIGGVLGLLWFQKRLPKYSCQFIEMCLMVTADHGPAVSGAHNTIICARAGKDLVSSLTSGLLTIGDRFGGALDAAAKMFSKAFDSGIIPMEFVNKMKKEGKLIMGIGHRVRSINNPDMRVQILKDYVRQHFPATPLLDYALEVEKITTSKKPNLILNVDGLIGVAFVDMLRNCGSFTREEADEYIDIGALNGIFVLGRSMGFIGHYLDQKRLKQGLYRHPWDDISYVLPEHMSM


[0382] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 6B.
32TABLE 6BComparison of NOV6a against NOV6b through NOV6e.ProteinNOV6a Residues/Identities/Similarities forSequenceMatch Residuesthe Matched RegionNOV6b1 . . . 11011091/1101 (99%)5 . . . 10951091/1101 (99%)NOV6c1 . . . 589  570/610 (93%)5 . . . 604  573/610 (93%)NOV6d1 . . . 11011065/1101 (96%)5 . . . 10721065/1101 (96%)NOV6e1 . . . 1101 1101/1101 (100%)1 . . . 1101 1101/1101 (100%)


[0383] Further analysis of the NOV6a protein yielded the following properties shown in Table 6C.
33TABLE 6CProtein Sequence Properties NOV6aSignalP analysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysisN-region: length 8; pos.chg 1; neg.chg 1H-region: length 3; peak value −7.32PSG score: −11.72GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −5.32possible cleavage site: between 52 and 53>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −2.71 Transmembrane 1021 -1037PERIPHERAL Likelihood = 1.43 (at 1054)ALOM score: −2.71 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 1028Charge difference: −4.0 C(-2.0) - N( 2.0)N >= C: N-terminal side will be inside>>> Single TMS is located near the C-terminus>>> membrane topology: type Nt (cytoplasmic tail 1 to 1020)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):10.90Hyd Moment(95):10.15G content:1D/E content:2SIT content:3Score: −5.48Gavel: prediction of cleavage sites for mitochondrial preseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: PAKKAKP (4) at 466bipartite: nonecontent of basic residues: 10.9%NLS Score: −0.13KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-bindin motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern : nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: too long tailDileucine motif in the tail: foundLL at 14LL at 43LL at 50LL at 152LL at 169LL at 268LL at 438LL at 875LL at 928LL at 1003checking 63 PROSITE DNA binding motifs:Leucine zipper pattern (PS00029): *** found ***LVVKPDQLIKRRGKLGLVGVNL at 55nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):26.1 %: nuclear21.7 %: mitochondrial21.7 %: cytoplasmic13.0 %: Golgi 8.7 %: endoplasmic reticulum 4.3 %: vesicles of secretory system 4.3 %: peroxisomal>> prediction for CG142427-05 is nuc (k = 23)


[0384] A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6D.
34TABLE 6DGeneseq Results for NOV6aIdentities/GeneseqProtein/Organism/LengthNOV6a Residues/Similarities for theExpectIdentifier[Patent #, Date]Match ResiduesMatched RegionValueABB61832Drosophila melanogaster 1 . . . 1097762/1099 (69%) 0.0polypeptide SEQ ID NO 1 . . . 1083895/1099 (81%) 12288 - Drosophilamelanogaster, 1086 aa[WO200171042-A2,27-SEP-2001]AAB56952Human prostate cancer753 . . . 1101347/349 (99%)0.0antigen protein sequence15 . . . 363347/349 (99%)SEQ ID NO:1530 - Homosapiens, 363 aa.[WO200055174-A1,21-SEP-2000]AAY67408Arabidopsis ATP citrate492 . . . 1093321/602 (53%)0.0lyase (ACL) B-2 subunit - 6 . . . 606429/602 (70%)Arabidopsis sp, 608 aa.[WO200000619-A2,06-JAN-2000]AAG36247Arabidopsis thaliana protein492 . . . 1093321/602 (53%)0.0fragment SEQ ID NO: 44394 - 6 . . . 606429/602 (70%)Arabidopsis thaliana, 681aa. [EP1033405-A2,06-SEP-2000]AAG36248Arabidopsis thaliana protein512 . . . 1093313/582 (53%)0.0fragment SEQ ID NO: 44395 - 1 . . . 581417/582 (70%)Arabidopsis thaliana, 656aa. [EP1033405-A2,06-SEP-2000]


[0385] In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6E.
35TABLE 6EPublic BLASTP Results for NOV6aProteinIdentities/AccessionNOV6a Residues/Similarities for theExpectNumberProtein/Organism/LengthMatch ResiduesMatched PortionValueP53396ATP-citrate (pro-S-)-lyase1 . . . 11011100/1101 (99%)0.0(EC 4.1.3.8) (Citrate1 . . . 11011101/1101 (99%)cleavage enzyme) - Homosapiens (Human), 1101 aa.P16638ATP-citrate (pro-S-)-lyase1 . . . 11011074/1101 (97%)0.0(EC 4.1.3.8) (Citrate1 . . . 11001086/1101 (98%)cleavage enzyme) - Rattusnorvegicus (Rat), 1100 aa.Q91V92ATP-citrate (pro-S-)-lyase1 . . . 11011070/1101 (97%)0.0(EC 4.1.3.8) (Citrate1 . . . 10911083/1101 (98%)cleavage enzyme) - Musmusculus (Mouse), 1091 aa.S21173ATP citrate (pro-S)-lyase -1 . . . 11011078/1106 (97%)0.0human, 1105 aa.1 . . . 11051082/1106 (97%)Q8VIQ1ATP-citrate lyase - Rattus250 . . . 1101  835/852 (98%)0.0norvegicus (Rat), 851 aa1 . . . 851  842/852 (98%)(fragment).


[0386] PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6F.
36TABLE 6FDomain Analysis of NOV6aIdentities/SimilaritiesPfamfor the MatchedExpectDomainNOV6a Match RegionRegionValueCoA_binding492 . . . 61633/126 (26%)1.5e−1988/126 (70%)ligase-CoA642 . . . 79349/156 (31%)3.9e−53126/156 (81%) 



Example 7

[0387] The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
37TABLE 7ANOV7 Sequence AnalysisSEQ ID NO:931191 bpNOV7a,AGTCCAGTGTGGTGGAATTCCACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGACG148010-03DNA SequenceGCGTCAGGCCGAGGCTGACCGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACTGAORF Start: at 1ORF Stop: TGA at 1189SEQ ID NO:94396 aaMW at 44788.4 kDNOV7a,SPVWWNSTMKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNCG148010-03ProteinRSKVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRSequenceNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNSEQ ID NO:951230 bpNOV7b,TTCAGCCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTCG148010-01DNA SequenceGACCGGAGCCAGCGCTCTCACGGAGGACCCGTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACTGAGCCAGCCTTCGGGGCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTTTGCTCTGTORF Start: ATG at 8ORF Stop: TGA at 1169SEQ ID NO:96387 aaMW at 43745.3 kDNOV7b,MKTLIAAYSGVLRGERQAEADRSQRSHGGPVSREGSGRWGTGSSILSALQDLFSVTWLNRSKVEKQLCG148010-01ProteinQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWAVWRYSequenceFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNSEQ ID NO:971191 bpNOV7c,AGTCCAGTGTGGTGGAATTCCACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGA246864114DNA SequenceGCGTCAGGCCGAGGCTGACCGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACTGAORF Start: at 1ORF Stop: TGA at 1189SEQ ID NO:98396 aaMW at 44788.4 kDNOV7c,SPVWWNSTMKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLN246864114ProteinRSKVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRSequenceNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNSEQ ID NO:991207 bpNOV7d,CCAAGATCTACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCG257448695DNA SequenceAGGCTGACCGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACCACCATCACCACCATCACTGAGCGGCCGCCAORF Start: at 1ORF Stop: TGA at 1195SEQ ID NO:100398 aaMW at 45094.7 kDNOV7d,PRSTMKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRSK257448695ProteinVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWSequenceAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNHHHHHHSEQ ID NO:1011189 bpNOV7e,TACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACC259357675DNA SequenceGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACCACCATCACCACCATCACTGAORF Start: at 2ORF Stop: TGA at 1187SEQ ID NO:102395 aaMW at 44754.4 kDNOV7e,TMKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRSKVEKQ259357675ProteinLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWAVWRYSequenceFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNHHHHHHSEQ ID NO:1031172 bpNOV7f,CCACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGAC254868590DNA SequenceCGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACTGAORF Start: at 3ORF Stop: TGA at 1170SEQ ID NO:104389 aaMW at 43931.5 kDNOV7f,TMKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRSKVEKQ254868590ProteinLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWAVWRYSequenceFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNSEQ ID NO:1051198 bpNOV7g,CCAGAATTCCACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCCG148010-02DNA SequenceGAGGCTGACCGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACTGAGCGGCCGCTTTTTTCCTTORF Start: ATG at 14ORF Stop: at 1118SEQ ID NO:106368 aaMW at 41503.7 kDNOV7g,MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRSKVEKQCG148010-02ProteinLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWAVWRSequenceYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKSEQ ID NO:1071189 bpNOV7h,TACCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACCG148010-04DNA SequenceCGGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACCACCATCACCACCATCACTGAORF Start: at 2ORF Stop: TGA at 1187SEQ ID NO:108395 aaMW at 44754.4 kDNOV7h,TMKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRSKVEKCG148010-04ProteinQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWAVWSequenceRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVNHHHHHH


[0388] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 7B.
38TABLE 7BComparison of NOV7a against NOV7b through NOV7h.NOV7aIdentities/Residues/Similarities forProteinMatchthe MatchedSequenceResiduesRegionNOVTb9 . . . 396386/388 (99%) 1 . . . 387387/388 (99%) NOV7c1 . . . 396396/396 (100%)1 . . . 396396/396 (100%)NOV7d7 . . . 396390/390 (100%)3 . . . 392390/390 (100%)NOV7e8 . . . 396389/389 (100%)1 . . . 389389/389 (100%)NOV7f8 . . . 396389/389 (100%)1 . . . 389389/389 (100%)NOV7g9 . . . 376368/368 (100%)1 . . . 368368/368 (100%)NOV7h8 . . . 396389/389 (100%)1 . . . 389389/389 (100%)


[0389] Further analysis of the NOV7a protein yielded the following properties shown in Table 7C.
39TABLE 7CProtein Sequence Properties NOV7aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 10; pos.chg 1; neg.chg 0H-region: length 10; peak value 6.60PSG score: 2.20GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −5.66possible cleavage site: between 22 and 23>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −8.23 Transmembrane88-104PERIPHERAL Likelihood = 1.16 (at 241)ALOM score: −8.23 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 95Charge difference: −2.0 C(−1.0) −N(1.0)N >= C: N-terminal side will be inside>>> membrane topology: type 2 (cytoplasmic tail 1 to 88)MITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment(75):4.28Hyd Moment(95):4.11G content:2D/E content:1S/T content:5Score: −4.01Gavel: prediction of cleavage sites for mitochondrialpreseqR-2 motif at 31 LRG|ERNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 11.1%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: too long tailDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residues--------------------------Final Results (k = 9/23):34.8%: mitochondrial26.1%: cytoplasmic13.0%: Golgi 8.7%: endoplasmic reticulum 4.3%: extracellular, including cell wall 4.3%: vacuolar 4.3%: nuclear 4.3%: vesicles of secretory system>> prediction for CG148010-03 is mit (k = 23)


[0390] A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7D.
40TABLE 7DGeneseq Results for NOV7aNOV7aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB75677Breast protein-eukaryotic9 . . . 396388/388 (100%)0.0conserved gene 11 . . . 388388/388 (100%)(BSTP-ECG1) protein -Homo sapiens, 388 aa.[WO200208260-A2,31 JAN. 2002]AAB66170Protein of the invention #82 -9 . . . 396388/388 (100%)0.0Unidentified, 388 aa.1 . . . 388388/388 (100%)[WO200078961-A1,28 DEC. 2000]AAU29191Human PRO polypeptide9 . . . 396388/388 (100%)0.0sequence #168 - Homo1 . . . 388388/388 (100%)sapiens, 388 aa.[WO200168848-A2,20 SEP. 2001]AAY99421Human PRO1433 (UNQ738)9 . . . 396388/388 (100%)0.0amino acid sequence SEQ ID1 . . . 388388/388 (100%)NO: 292 - Homo sapiens, 388aa. [WO200012708-A2,09 MAR. 2000]AAY48474Human breast209 . . . 396 188/188 (100%)e−108tumour-associated protein1 . . . 188188/188 (100%)19 - Homo sapiens, 188 aa.[DE19813835-A1,23 SEP. 1999]


[0391] In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7E.
41TABLE 7EPublic BLASTP Results for NOV7aNOV7aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ8NDB7Hypothetical protein - Homo7 . . . 396389/390 (99%)0.0sapiens (Human), 434 aa45 . . . 434 389/390 (99%)(fragment).Q96PD7Diacylglycerol9 . . . 396 388/388 (100%)0.0acyltransferase 21 . . . 388 388/388 (100%)(Hypothetical protein)(GS1999full protein) - Homosapiens (Human), 388 aa.Q9DCV30610010B06Rik protein9 . . . 396369/388 (95%)0.0(Diacylglycerol1 . . . 388377/388 (97%)acyltransferase 2) - Musmusculus (Mouse), 388 aa.Q8TAB1BA351K23.5 (Novel protein) -105 . . . 395 152/291 (52%)1e−93Homo sapiens (Human), 2966 . . . 295214/291 (73%)aa (fragment).Q96PD6Diacylglycerol71 . . . 393 164/323 (50%)5e−92acyltransferase 2-like11 . . . 331 222/323 (67%)protein - Homo sapiens(Human), 334 aa.



Example 8

[0392] The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
42TABLE 8ANOV8 Sequence AnalysisSEQ ID NO:1092127 bpNOV8a,CGCGGATCCACCATGCAAGCCCATGAGCTGTTCCGGTATTTTCGAATGCCAGAGCTGGTTGACTTCCGCG148278-02DNA SequenceACAGTACGTGCGTACTCTTCCGACCAACACGCTTATGGGCTTCGGAGCTTTTGCAGCACTCACCACCTTCTGGTACGCCACGAGACCCAAACCCCTGAAGCCGCCATGCGACCTCTCCATGCAGTCAGTGGAAGTGGCGGGTAGTGGTGGTGCACGAAGATCCGCACTACTTGACAGCGACGAGCCCTTGGTGTATTTCTATGATGATGTCACAACATTATACGAAGGTTTCCAGAGGGGAATACAGGTGTCAAATAATGGCCCTTGTTTAGGCTCTCGGAAACCAGACCAACCCTACGAATGGCTTTCATATAAACAGGTTGCAGAATTGTCGGAGTGCATAGGCTCAGCACTGATCCAGAAGGGCTTCAAGACTGCCCCAGATCAGTTCATTGGCATCTTTGCTCAAAATAGACCTGAGTGGGTGATTATTGAACAAGGATGCTTTGCTTATTCGATGGTGATCGTTCCACTTTATGATACCCTTGGAAATGAAGCCATCACGTACATAGTCAACAAAGCTGAACTCTCTCTGGTTTTTGTTGACAAGCCAGAGAAGGCCAAACTCTTATTAGAGGGTGTAGAAAATAAGTTAATACCAGGCCTTAAAATCATAGTTGTCATGGATGCCTACGGCAGTGAACTGGTGGAACGAGGCCAGAGGTGTGGGGTGGAAGTCACCAGCATGAAGGCGATGGAGGACCTGGGAAGAGCCAACAGACGGAAGCCCAAGCCTCCAGCACCTGAAGATCTTGCAGTAATTTGTTTCACAAGTGGAACTACAGGCAACCCCAAAGGAGCAATGGTCACTCACCGAAACATAGTGAGCGATTGTTCAGCTTTTGTGAAAGCAACAGAGAATACAGTCAATCCTTGCCCAGATGATACTTTGATATCTTTCTTGCCTCTCGCCCATATGTTTGAGAGAGTTGTAGAGTGTGTAATGCTGTGTCATGGAGCTAAAATCGGATTTTTCCAAGGAGATATCAGGCTGCTCATGGATGACCTCAAGGTGCTTCAACCCACTGTCTTCCCCGTGGTTCCAAGACTGCTGAACCGGATGTTTGACCGAATTTTCGGACAAGCAAACACCACGCTGAAGCGATGGCTCTTGGACTTTGCCTCCAAGAGGAAAGAAGCAGAGCTTCGCAGCGGCATCATCAGAAACAACAGCCTGTGGGACCGGCTGATCTTCCACAAAGTACAGTCGAGCCTGGGCGGAAGAGTCCGGCTGATGGTGACAGGAGCCGCCCCGGTGTCTGCCACTGTGCTGACGTTCCTCAGAGCAGCCCTGGGCTGTCAGTTTTATGAAGGATACGGACAGACAGAGTGCACTGCCGGGTGCTGCCTGACCATGCCTGGAGACTGGACCGCAGGCCATGTTGGGGCCCCGATGCCGTGCAATTTGATAAAACTTGTTGATGTGGAAGAAATGAATTACATGGCTGCCGAGGGCGAGGGCGAGGTGTGTGTGAAAGGGCCAAATGTATTTCAGGGCTACTTGAAGGACCCAGCGAAAACAGCAGAAGCTTTGGACAAAGACGGCTGGTTACACACAGGGGACATTGGAAAATGGTTACCAAATGGCACCTTGAAAATTATCGACCGGAAAAAGCACATATTTAAGCTGGCACAAGGAGAATACATAGCCCCTGAAAAGATTGAAAATATCTACATGCGAAGTGAGCCTGTTGCTCAGGTGTTTGTCCACGGAGAAAGCCTGCAGGCATTTCTCATTGCAATTGTGGTACCAGATGTTGAGACATTATGTTCCTGGGCCCAAAAGAGAGGATTTGAAGGGTCGTTTGAGGAACTGTGCAGAAATAAGGATGTCAAAAAAGCTATCCTCGAAGATATGGTGAGACTTGGGAAGGATTCTGGTCTGAAACCATTTGAACAGGTCAAAGGCATCACATTGCACCCTGAATTATTTTCTATCGACAATGGCCTTCTGACTCCAACAATGAAGGCGAAAAGGCCAGAGCTGCGGAACTATTTCAGGTCGCAGATAGATGACCTCTATTCCATCATCAAGGTTTAGGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TAG at 2107SEQ ID NO:110702 aaMW at 78355.9 kDNOV8a,RGSTMQAHELFRYFRMPELVDFRQYVRTLPTNTLMGFGAFAALTTFWYATRPKPLKPPCDLSMQSVEVCG148278-02ProteinAGSGGARRSALLDSDEPLVYFYDDVTTLYEGFQRGIQVSNNGPCLGSRKPDQPYEWLSYKQVAELSECSequenceIGSALIQKGFKTAPDQFIGIFAQNRPEWVIIEQGCFAYSMVIVPLYDTLGNEAITYIVNKAELSLVFVDKPEKAKLLLEGVENKLIPGLKIIVVMDAYGSELVERGQRCGVEVTSMKAMEDLGRANRRKPKPPAPEDLAVICFTSGTTGNPKGAMVTHRNIVSDCSAFVKATENTVNPCPDDTLISFLPLAHMFERVVECVMLCHGAKIGFFQGDIRLLMDDLKVLQPTVFPVVPRLLNRMFDRIFGQANTTLKRWLLDFASKRKEAELRSGIIRNNSLWDRLIFHKVQSSLGGRVRLMVTGAAPVSATVLTFLRAALGCQFYEGYGQTECTAGCCLTMPGDWTAGHVGAPMPCNLIKLVDVEEMNYMAAEGEGEVCVKGPNVFQGYLKDPAKTAEALDKDGWLHTGDIGKWLPNGTLKIIDRKKHIFKLAQGEYIAPEKIENIYMRSEPVAQVFVHGESLQAFLIAIVVPDVETLCSWAQKRGFEGSFEELCRNKDVKKAILEDMVRLGKDSGLKPFEQVKGITLHPELFSIDNGLLTPTMKAKRPELRNYFRSQIDDLYSIIKVSEQ ID NO:1113188 bpNOV8b,CGGGCAGTGACAGCCGGCGCGGATCGCGCGTCCACGGAGGAGAATCAGCTTAGAGAACTATCAACACCG148278-01DNA SequenceAGGACAATGCAAGCCCATGAGCTGTTCCGGTATTTTCGAATGCCAGAGCTGGTTGACTTCCGACAGTGCGTGACTCTTCCGACCAACACGCTTATGGGCTTCGGAGCTTTTTCCAGACGACTCACCACCTTCTGGCGGCCACGCCACCCAAAACCCCTGAAGCCGCCATGGCACCTCTCCATGCAGTCAGTGGAAGTGGCGGGTAGTGGTGGTGCACGAAGATCCGCACTACTTGACAGCGACGAGCCCTTGGTGTATTTCTATGATGATGTTACAACATTATACGAAGGTTTCCAGAGAGGGATACAGGTGTCAAATAATGGCCCTTGTTTAGGCTCTCGGAAACCAGACCAACCCTATGAATGGCTTTCATATAAACAGGTTGCAGAATTGTCGGAGTGCATAGGCTCAGCACTGATCCAGAAGGGCTTCAAGACTGCCCCAGATCAGTTCATTGGCATCTTTGCTCAAAATAGACCTGAGTGGGTGATTATTGAACAAGGATGCTTTGCTTATTCGATGGTGATCGTTCCACTTTATGATACCCTTGGAAATGAAGCCATCACGTACATAGTCAACAAAGCTGAACTCTCTCTGGTTTTTGTTGACAAGCCAGAGAAGGCCAAACTCTTATTAGAGGGTGTAGAAAATAAGTTAATACCAGGCCTTAAAATCATAGTTGTCATGGACTCGTACGGCAGTGAACTGGTGGAACGAGGCCAGAGGTGTGGGGTGGAAGTCACCAGCATGAAGGCGATGGAGGACCTGGGAAGAGCCAACAGACGGAAGCCCAAGCCTCCAGCACCTGAAGATCTTGCAGTAATTTGTTTCACAAGTGGAACTACAGGCAACCCCAAAGGAGCAATGGTCACTCACCGAAACATAGTGAGCGATTGTTCAGCTTTTGTGAAAGCAACAGAGAATACAGTCAATCCTTGCCCAGATGATACTTTGATATCTTTCTTGCCTCTCGCCCATATGTTTGAGAGAGTTGTAGAGTGTGTAATGCTGTGTCATGGAGCTAAAATCGGATTTTTCCAAGGAGATATCAGGCTGCTCATGGATGACCTCAAGGTGCTTCAACCCACTGTCTTCCCCGTGGTTCCAAGACTGCTGAACCGGATGTTTGACCGAATTTTCGGACAAGCAAACACCACCGTGAAGCGATGGCTCTTGGACTTTGCCTCCAAGAGGAAAGAAGCAGACGTTCGCAGCGGCATCATCAGAAACAACAGCCTGTGGGACCGGCTGATCTTCCACAAAGTACAGTCGAGCCTGGGCGGAAGAGTCCGGCTGATGGTGACAGGAGCCGCCCCGGTGTCTGCCACTGTGCTGACGTTCCTCAGAGCAGCCCTGGGCTGTCAGTTTTATGAAGGATACGGACAGACAGAGTGCACTGCCGGGTGCTGCCTAACCATGCCTGGAGACTGGACCACAGGCCATGTTGGGGCCCCGATGCCGTGCAATTTGATAAAACTTGGTTGGCAGTTGGAAGAAATGAATTACATGGCGTCCGAGGGCGAGGGCGAGGTGTGTGTGAAAGGGCCAAATGTATTTCAGGGCTACTTGAAGGACCCAGCGAAAACAGCAGAAGCTTTGGACAAAGACGGCTGGTTACACACAGGGGACATCGGAAAATGGTTACCAAATGGCACCTTGAAAATTATCGACCGGAAAAAGCACATATTTAAGCTGGCACAAGGAGAATACATAGCCCCTGAAAAGATTGAAAATATCTACATGCGAAGTGAGCCTGTTGCTCAGGTGTTTGTCCACGGAGAAAGCCTGCAGGCATTTCTCATTGCAATTGTGGTACCAGATGTTGAGACATTATGTTCCTGGGCCCAAAAGAGAGGATTTGAAGGGTCGTTTGAGGAACTGTGCAGAAATAAGGATGTCAAAAAAGCTATCCTCGAAGATATGGTGAGACTTGGGAAGGATTCTGGTCTGAAACCATTTGAACAGGTCAAAGGCATCACATTGCACCCTGAATTATTTTCTATCGACAATGGCCTTCTGACTCCAACAATGAAGGCGAAAAGGCCAGAGCTGCGGAACTATTTCAGGTCGCAGATAGATGACCTCTATTCCATCATCAAGGTTTAGTGTGAAGAAGAAAGCTCAGAGGAAATGGCACAGTTCCACAATCTCTTCTCCTGCTGATGGCCTTCATGTTGTTAATTTTGAATACAGCAAGTGTAGGGAAGGAAGCGTTCTGTGTTTGACTTGTCCATTCGGGGTTCTTCTCATAGGAATGCTAGAGGAAACAGAACACTGCCTTACAGTCACCTCAGTGTTCAGACCATGTTTATGGTAATACACACTTCCAAAAGTAGCCTTAAAAATTGTAAAGGGATACTATAAATGTGCTAATTATTTGAGACTTCCTCAGTTTAAAAAGTGGGTTTTAAATCTTCTGTCTCCCTGTTTTTCTAATCAAGGGGTTAGGACTTTGCTATCTCTGAGATGTCTGCTACTTCGTCGAAATTCTGCAGCTGTCTGCTGCTCTAAAGAGTACAGTGCTCTAGAGGGAAGTGTTCCCTTTAAAAATAAGAACAACTGTCCTGGCTGGAGATCTCACAAGCGGACCAGAGATCTTTTTAAATCCCTGCTACTGTCCCTTCTCACAGGCATTCACAGAACCCTTCTGATTCGAAGGGTTACGAAACTCATGTTCTTCTCCAGTCCCCTGTGGTTTCTGTTGGAGCATAAGGTTTCCAGTAAGCGGGAGGGCAGATCCAACTCAGAACCATGCAGATAAGGAGCCTCTGGCAAATGGGTGCTGCATCAGAACGCGTGGATTCTCTTTCATGGCAGATGCTCTTGGACTCGGTTCTCCAGGCCTGATTCCCCGACTCCATCCTTTTTCAGGGTTATTTAAAAATCTGCCTTAGATTCTATAGTGAAGACAAGCATTTCAAGAAAGAGTTACCTGGATCAGCCATGCTCAGCTGTGACGCCTGATAACTGTCTACTTTATCTTCACTGAACCACTCACTCTGTGTAAAGGCCAACGGATTTTTAATGTGGTTTTCATATCAAAAGATCATGTTGGGATTAACTTGCCTTTTTCCCCAAAAAATAAACTCTCAGGCAAGGCATTTCTTTTAAAGCTATTCCGORF Start: ATG at 74ORF Stop: TAG at 2171SEQ ID NO:112699 aaMW at 78347.0 kDNOV8b,MQAHELFRYFRMPELVDFRQCVTLPTNTLMGFGAFSRRLTTFWRPRHPKPLKPPWHLSMQSVEVAGSCG148278-01ProteinGGARRSALLDSDEPLVYFYDDVTTLYEGFQRGIQVSNNGPCLGSRKPDQPYEWLSYKQVAELSECIGSequenceSALIQKGFKTAPDQFIGIFAQNRPEWVIIEQGCFAYSMVIVPLYDTLGNEAITYIVNKAELSLVFVDKPEKAKLLLEGVENKLIPGLKIIVVMDSYGSELVERGQRCGVEVTSMKAMEDLGRANRRKPKPPAPEDLAVICFTSGTTGNPKGAMVTHRNIVSDCSAFVKATENTVNPCPDDTLISFLPLAHMFERVVECVMLCHGAKIGFFQGDIRLLMDDLKVLQPTVFPVVPRLLNRMFDRIFGQANTTVKRWLLDFASKRKEADVRSGIIRNNSLWDRLIFHKVQSSLGGRVRLMVTGAAPVSATVLTFLRAALGCQFYEGYGQTECTAGCCLTMPGDWTTGHVGAPMPCNLIKLGWQLEEMNYMASEGEGEVCVKGPNVFQGYLKDPAKTAEALDKDGWLHTGDIGKWLPNGTLKIIDRKKHIFKLAQGEYIAPEKIENIYMRSEPVAQVFVHGESLQAFLIAIVVPDVETLCSWAQKRGFEGSFEELCRNKDVKKAILEDMVRLGKDSGLKPFEQVKGITLHPELFSIDNGLLTPTMKAKRPELRNYFRSQIDDLYSIIKV


[0393] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 8B.
43TABLE 8BComparison of NOV8a against NOV8b.NOV8aIdentities/Residues/Similarities forProteinMatchthe MatchedSequenceResiduesRegionNOV8b5 . . . 702679/700 (97%)1 . . . 699686/700 (98%)


[0394] Further analysis of the NOV8a protein yielded the following properties shown in Table 8C.
44TABLE 8CProtein Sequence Properties NOV8aSignalPanalysis:Cleavage site between residues 53 and 54PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 9; pos.chg 1; neg.chg 1H-region: length 2; peak value −6.22PSG score: −10.62GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −3.91possible cleavage site: between 52 and 53>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 3Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −2.28 Transmembrane590-606PERIPHERAL Likelihood = 2.92 (at 323)ALOM score: −2.28 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 597Charge difference: −0.5 C(−1.0) − N(−0.5)N >= C: N-terminal side will be inside>>> Single TMS is located near the C-terminus>>> membrane topology: type Nt (cytoplasmic tail 1 to 589)MITDISC: discrimination of mitochondrial targeting seqR content:3Hyd Moment (75):6.84Hyd Moment(95):5.71G content:1D/E content:2S/T content:2Score: −4.13Gavel: prediction of cleavage sites for mitochondrialpreseq cleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: RRKP (4) at 263pat4: RKPK (4) at 264pat4: RKKH (3) at 559pat7: PTMKAKR (3) at 676bipartite: nonecontent of basic residues: 11.7%NLS Score: 0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: SIIKSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: too long tailDileucine motif in the tail: foundLL at 79LL at 212LL at 213LL at 354LL at 373checking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residues--------------------------Final Results (k = 9/23):30.4%: cytoplasmic26.1%: nuclear13.0%: Golgi13.0%: mitochondrial 8.7%: endoplasmic reticulum 4.3%: vesicles of secretory system 4.3%: peroxisomal>> prediction for CG148278-02 is cyt (k = 23)


[0395] A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8D.
45TABLE 8DGeneseq Results for NOV8aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV8a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABP65246Hypoxia-regulated protein5 . . . 702697/698 (99%)0.0#120 - Homo sapiens, 698 aa.1 . . . 698697/698 (99%)[WO200246465-A2,13 JUN. 2002]AAU74393Human cDNA encoding5 . . . 702697/698 (99%)0.0ovarian tumour protein clone1 . . . 698697/698 (99%)OVM-65 - Homo sapiens,698 aa. [WO200190154-A2,29 NOV. 2001]AAB42827Human ORFX ORF25915 . . . 699464/695 (66%)0.0polypeptide sequence SEQ ID1 . . . 695569/695 (81%)NO: 5182 - Homo sapiens,697 aa. [WO200058473-A2,05 OCT. 2000]ABG65301Human albumin fusion29 . . . 701 414/673 (61%)0.0protein #1976 - Homo12 . . . 682 527/673 (77%)sapiens, 683 aa.[WO200177137-A1,18 OCT. 2001]AAU77791Human PRO1250 protein -29 . . . 701 414/673 (61%)0.0Homo sapiens, 739 aa.68 . . . 738 527/673 (77%)[WO200149715-A2,12 JUL. 2001]


[0396] In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8E.
46TABLE 8EPublic BLASTP Results for NOV8aIdentities/ProteinSimilarities forAccessionNOV8a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueP33121Long-chain-fatty-acid--CoA5 . . . 702697/698 (99%)0.0ligase 2 (EC 6.2.1.3)1 . . . 698697/698 (99%)(Long-chain acyl-CoAsynthetase 2) (LACS 2) -Homo sapiens (Human), 698aa.P41215Long-chain-fatty-acid--CoA5 . . . 702679/700 (97%)0.0ligase 1 (EC 6.2.1.3)1 . . . 699686/700 (98%)(Long-chain acyl-CoAsynthetase 1) (LACS 1)(Palmitoyl-CoA ligase) -Homo sapiens (Human), 699aa.Q9GLP3Long-chain fatty acid CoA5 . . . 702649/698 (92%)0.0ligase (EC 6.2.1.3) - Callithrix1 . . . 698677/698 (96%)jacchus (Common marmoset),698 aa.Q9JID6Long-chain-fatty-acid--CoA5 . . . 702618/698 (88%)0.0ligase 1 (EC 6.2.1.3)1 . . . 698662/698 (94%)(Long-chain acyl-CoAsynthetase 1) (LACS 1)(Palmitoyl-CoA ligase) - Caviaporcellus (Guinea pig), 698 aa.P18163Long-chain-fatty-acid--CoA5 . . . 702597/699 (85%)0.0ligase, liver isozyme (EC1 . . . 699657/699 (93%)6.2.1.3) (Long-chain acyl-CoAsynthetase 2) (LACS 2) -Rattus norvegicus (Rat), 699aa.


[0397] PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8F.
47TABLE 8FDomain Analysis of NOV8aIdentities/Similarities forNOV8a Matchthe MatchedExpectPfam DomainRegionRegionValueAMP-binding126 . . . 592108/478 (23%)9.8e−106346/478 (72%)



Example 9

[0398] The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
48TABLE 9ANOV9 Sequence AnalysisSEQ ID NO:113975 bpNOV9a,CTGCCTGCTTAGGAGGTTGTAGAAAGCTCTGTAGGTTCTCTCTGTGTGTCCTACAGGAGTCTTCAGGCCG152981-01DNA SequenceCAGCTCCCTGTCGGATGGCTTTTATGAAAAAATATCTCCTCCCCATTCTGGGGCTCTTCATGGCCTACTACTACTATTCTGCAAACGAGGAATTCAGACCAGAGATGCTCCAAGGAAAGAAAGTGATTGTCACAGGGGCCAGCAAAGGGATCGGAAGAGAGATGGCTTATCATCTGGCGAAGATGGGAGCCCATGTGGTGGTGACAGCGAGGTCAAAAGAAACTCTACAGAAGGTGGTATCCCACTGCCTGGAGCTTGGAGCAGCCTCAGCACACTACATTGCTGGCACCATGGAAGACATGACCTTCGCAGAGCAATTTGTTGCCCAAGCAGGAAAGCTCATGGGAGGACTAGACATGCTCATTCTCAACCACATCACCAACACTTCTTTGAATCTTTTTCATGATGATATTCACCATGTGCGCAAAAGCATGGAAGTCAACTTCCTCAGTTACGTGGTCCTGACTGTAGCTGCCTTGCCCATGCTGAAGCAGAGCAATGGAAGCATTGTTGTCGTCTCCTCTCTGGCTGGGAAAGTGGCTTATCCAATGGTTGCTGCCTATTCTGCAAGCAAGTTTGCTTTGGATGGGTTCTTCTCCTCCATCAGAAAGGAATATTCAGTGTCCAGGGTCAATGTATCAATCACTCTCTGTGTTCTTGGCCTCATAGACACAGAAACAGCCATGAAGGCAGTTTCTGGGATAGTCCATATGCAAGCAGCTCCAAAGGAGGAATGTGCCCTGGAGGTCATCAAAGGGGGAGCTCTGCGCCAAGAAGAAGTGTATTATGACAGCTCACTCTGGACCACTCTTCTGATCAGAAATCCATGCAGGAAGATCCTGGAATTTCTCTACTCAACGAGCTATAATATGGACAGATTCATAAACAAGTAGGAACTCCCTGAGGGORF Start: ATG at 83ORF Stop: TAG at 959SEQ ID NO:114292 aaMW at 32386.6 kDNOV9a,MAFMKKYLLPILGLFMAYYYYSANEEFRPEMLQGKKVIVTGASKGIGREMAYHLAKMGAHVVVTARSKCG152981-01ProteinETLQKVVSHCLELGAASAHYIAGTMEDMTFAEQFVAQAGKLMGGLDMLILNHITNTSLNLFHDDIHHVSequenceRKSMEVNFLSYVVLTVAALPMLKQSNGSIVVVSSLAGKVAYPMVAAYSASKFALDGFFSSIRKEYSVSRVNVSITLCVLGLIDTETAMKAVSGIVHMQAAPKEECALEVIKGGALRQEEVYYDSSLWTTLLIRNPCRKILEFLYSTSYNMDRFINKSEQ ID NO:115831 bpNOV9b,CTGCCTGCTTAGGAGGTTGTAGAAAGCTCTGTAGGTTCTCTCTGTGTGTCCTACAGGAGTCTTCAGGCG152981-02DNA SequenceCCAGCTCCCTGTCGGATGGCTTTTATGAAAAATATCTCCTCCCCATTCTGGGGCTCTTCATGGCCTACTACTACTATTCTGCAAACGAGGAATTCAGACCAGAGATGCTCCAAGGAAAGAAAGTGATTGTCACAGGGGCCAGCAAAGGGATCGGAAGAGAGATGGCTTATCATCTGGCGAAGATGGGAGCCCATGTGGTGGTGACAGCGAGGTCAAAAGAAACTCTACAGAAGGTGGTATCCCACTGCCTGGAGCTTGGAGCAGCCTCAGCACACTACATTGCTGGCACCATGGAAGACATGACCTTCGCAGAGCAATTTGTTGCCCAAGCAGGAAAGCTCATGGGAGGACTAGACATGCTCATTCTCAACCACATCACCAACACTTCTTTGAATCTTTTTCATGATGATATTCACCATGTGCGCAAAAGCATGGAAGTCAACTTCCTCAGTTACGTGGTCCTGACTGTAGCTGCCTTGCCCATGCTGAAGCAGAGCAATGGAAGCATTGTTGTCGTCTCCTCTCTGGCTGAAACAGCCATGAAGGCAGTTTCTGGGATAGTCCATATGCAAGCAGCTCCAAAGGAGGAATGTGCCCTGGAGATCATCAAAGGGGGAGCTCTGCGCCAAGAAGAAGTGTATTATGACAGCTCACTCTGGACCACTCTTCTGATCAGAAATCCATGCAGGAAGATCCTGGAATTTCTCTACTCAACGAGCTATAATATGGACAGATTCATAAACAAGTAGGAACTCCCTGAGGGORF Start: ATG at 83ORF Stop: TAG at 815SEQ ID NO:116244 aaMW at 27242.6 kDNOV9b,MAFMKKYLLPILGLFMAYYYYSANEEFRPEMLQGKKVIVTGASKGIGREMAYHLAKMGAHVVVTARSCG152981-02ProteinKETLQKVVSHCLELGAASAHYIAGTMEDMTFAEQFVAQAGKLMGGLDMLILNHITNTSLNLFHDDIHSequenceHVRKSMEVNFLSYVVLTVAALPMLKQSNGSIVVVSSLAETAMKAVSGIVHMQAAPKEECALEIIKGGALRQEEVYYDSSLWTTLLIRNPCRKILEFLYSTSYNMDRFINK


[0399] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 9B.
49TABLE 9BComparison of NOV9a against NOV9b.NOV9aIdentities/Residues/Similarities forProteinMatchthe MatchedSequenceResiduesRegionNOV9b1 . . . 292243/292 (83%)1 . . . 244244/292 (83%)


[0400] Further analysis of the NOV9a protein yielded the following properties shown in Table 9C.
50TABLE 9CProtein Sequence Properties NOV9aSignalPanalysis:Cleavage site between residues 24 and 25PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 6; pos.chg 2; neg.chg 0H-region: length 18; peak value 10.15PSG score: 5.75GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −9.92possible cleavage site: between 13 and 14>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 3Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −2.92 Transmembrane142-158PERIPHERAL Likelihood = 1.80 (at 1)ALOM score: −2.92 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 149Charge difference: 0.5 C(1.0)-N(0.5)C > N: C-terminal side will be inside>>>Caution: Inconsistent mtop result with signal peptide>>> membrane topology: type 1b (cytoplasmic tail142 to 292)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):9.69Hyd Moment(95):8.03G content:1D/E content:1S/T content:1Score: −4.45Gavel: prediction of cleavage sites for mitochondrialpreseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 9.9%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: too long tailDileucine motif in the tail: foundLL at 266checking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):34.8%: nuclear21.7%: mitochondrial21.7%: cytoplasmic 8.7%: vesicles of secretory system 4.3%: vacuolar 4.3%: endoplasmic reticulum 4.3%: peroxisomal>> prediction for CG152981-01 is nuc (k = 23)


[0401] A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9D.
51TABLE 9DGeneseq Results for NOV9aNOV9aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM79592Human protein SEQ ID NO1 . . . 292291/292 (99%) e−1643238 - Homo sapiens, 308 aa.17 . . . 308 292/292 (99%)[W0200157190-A2,09 AUG. 2001]AAO14408Rat corticosteroid 11-beta4 . . . 291219/288 (76%) e−123dehydrogenase enzyme -1 . . . 286254/288 (88%)Rattus sp, 287 aa.[W0200202797-A2,10 JAN. 2002]AAU99344Human short-chain4 . . . 258125/256 (48%)1e−57dehydrogenase/reductase,1 . . . 253162/256 (62%)25206, protein - Homosapiens, 286 aa.[WO200244356-A2,06 JUN. 2002]ABG16187Novel human diagnostic140 . . . 252 111/113 (98%)6e−55protein #16178 - Homo1 . . . 113112/113 (98%)sapiens, 119 aa.[WO200175067-A2,11 OCT. 2001]ABG16188Novel human diagnostic11 . . . 174 107/164 (65%)1e−45protein #16179 - Homo11 . . . 174 115/164 (69%)sapiens, 203 aa.[WO200175067-A2,11 OCT. 2001]


[0402] In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9E.
52TABLE 9EPublic BLASTP Results for NOV9aNOV9aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP28845Corticosteroid1 . . . 292291/292 (99%)e−16411-beta-dehydrogenase,1 . . . 292292/292 (99%)isozyme 1 (EC 1.1.1.146)(11-DH)(11-beta-hydroxysteroiddehydrogenase 1)(11-beta-HSD1) - Homosapiens (Human), 292 aa.Q29608Corticosteroid1 . . . 291264/291 (90%)e−14811-beta-dehydrogenase,1 . . . 291276/291 (94%)isozyme 1 (EC 1.1.1.146)(11-DH)(11-beta-hydroxysteroiddehydrogenase 1)(11-beta-HSD1) - Saimirisciureus (Common squirrelmonkey), 291 aa.A5557311beta-hydroxysteroid2 . . . 291233/290 (80%)e−134dehydrogenase1 . . . 290270/290 (92%)(EC 1.1.1.146) -rabbit, 291 aa.Q95L6111-beta hydroxysteroid1 . . . 291238/291 (81%)e−133dehydrogenase isoform 1 - Sus1 . . . 291268/291 (91%)scrofa (Pig), 292 aa.P51975Corticosteroid1 . . . 291227/291 (78%)e−13011-beta-dehydrogenase,1 . . . 291269/291 (92%)isozyme 1 (EC 1.1.1.146)(11-DH)(11-beta-hydroxysteroiddehydrogenase 1)(11-beta-HSD1) - Ovis aries(Sheep), 292 aa.


[0403] PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9F.
53TABLE 9FDomain Analysis of NOV9aIdentities/SimilaritiesNOV9afor thePfamMatchMatchedExpectDomainRegionRegionValueadh_short33 . . . 286 74/278 (27%)1.8e−65187/278 (67%)



Example 10

[0404] The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.
54TABLE 10ANOV10 Sequence AnalysisSEQ ID NO:1171662 bpNOV10a,TGCAGATCAGTGTGTGAGGGAACTGCCATCATGAGGTCTGACAAGTCAGCTTTGGTATTTCTGCTCCCG159035-01DNA SequenceTGCAGCTCTTCTGTGTTGGCTGTGGATTCTGTGGGAAAGTCCTGGTGTGGCCCTGTGACATGAGCCATTGGCTTAATGTCAAGGTCATTCTAGAAGAGCTCATAGTGAGAGGCCATGAGGTAACAGTATTGACTCACTCAAAGCCTTCGTTAATTGACTACAGGAAGCCTTCTGCATTGAAATTTGAGGTGGTCCATATGCCACAGGACAGAACAGAAGAAAATGAAATATTTGTTGACCTAGCTCTGAATGTCTTGCCAGGCTTATCAACCTGGCAATCAGTTATAAAATTAAATGATTTTTTTGTTGAAATAAGAGGAACTTTAAAAATGATGTGTGAGAGCTTTATCTACAATCAGACGCTTATGAAGAAGCTACAGGAAACCAACTACGATGTAATGCTTATAGACCCTGTGATTCCCTGTGGAGACCTGATGGCTGAGTTGCTTGCAGTCCCTTTTGTGCTCACACTTAGAATTTCTGTAGGAGGCAATATGGAGCGAAGCTGTGGGAAACTTCCAGCTCCACTTTCCTATGTACCTGTGCCTATGACAGGACTAACAGACAGAATGACCTTTCTGGAAAGAGTAAAAAATTCAATGCTTTCAGTTTTGTTCCACTTCTGGATTCAGGATTACGACTATCATTTTTGGGAAGAGTTTTATAGTAAGGCATTAGGAAGACCCACTACCTTATTTGAGACAATGGGGAAAGCTGACATATGGCTTATGCGAAACTCCTGGAATTTTCAGTTTCCTCATCCTTTCTTACCAAACGTTGATTTTGTTGGAGGACTCCACTGCAAACCTGCCAAACCCCTACCTAAGGAAATGGAGGAGTTTGTACAGAGCTCTGGAGAAAATGGTGTTGTGGTGTTTTCTCTGGGGTCAATCATAAGTAACATGACAGCAGAAAGGGCCAATGTAATTGCAACAGCCCTGGCCAAGATCCCACAAAAGGTACTGTGGAGATTTGATGGGAATAAACCAGATGCTTTAGGTCTCAATACTTGGCTGTACGAGTGGATATCCCAGAATGACCTTCTAGGTCATCCAAAAACCAGAGCTTTTATAACTCATGGTGGAGCCAATGGCATCTATGAGGCAATCTACCATGGGATCCCTATATTGGGCATTCCATTGTTTGCCGATCAACCTGATAATATTGCTCACATGAAGGCCAAGGGAGCAGCTGTTAGATTGGACTTCAACACAATGTCGAGTACAGACTTGTTGAATGCACTGAAGACAGTAATTAATGTTCCTTTGTATAAAGAGAGTGTTATGAAATTATCAAGAATTCAACATGATCAACCAGTGAAGCCCCTGGATCGAGCAGTCTTCTGGATTGAATTTGTCATGCGCCACAAAGGAGCCAAACACCTTCGAGTTGCAGCCCGTGACCTCACCTGGTTCCAGTACCACTCTTTGGATGTGATTGGGTTTCTGCTGGCCTGTGTGGCAACTGTGACATTTATCATCACAAAGTGTTGTCTGTTTTGTTTCTGGAAGTTTACTAGAAAAGTGAAGAAGGAAAAAAGGGATTAGTTATGTCCGACATTTGAAGCTGGAAAACCTGATAGATGGGATGACTTCORF Start: ATG at 31ORF Stop: TAG at 1612SEQ ID NO:118527 aaMW at 60130.9 kDNOV10a,MRSDKSALVFLLLQLFCVGCGFCGKVLVWPCDMSHWLNVKVILEELIVRGHEVTVLTHSKPSLIDYRCG159035-01Protein SequenceKPSALKFEVVHMPQDRTEENEIFVDLALNVLPGLSTWQSVIKLNDFFVEIRGTLKMMCESFIYNQTLMKKLQETNYDVMLIDPVIPCGDLMAELLAVPFVLTLRISVGGNMERSCGKLPAPLSYVPVPMTGLTDRMTFLERVKNSMLSVLFHFWIQDYDYHFWEEFYSKALGRPTTLFETMGKADIWLMRNSWNFQFPHPFLPNVDFVGGLHCKPAKPLPKEMEEFVQSSGENGVVVFSLGSIISNMTAERANVIATALAKIPQKVLWRFDGNKPDALGLNTWLYEWISQNDLLGHPKTRAFITHGGANGIYEAIYHGIPILGIPLFADQPDNIAHMKAKGAAVRLDFNTMSSTDLLNALKTVINVPLYKESVMKLSRIQHDQPVKPLDRAVFWIEFVMRHKGAKHLRVAARDLTWFQYHSLDVIGFLLACVATVTFIITKCCLFCFWKFTRKVKKEKRD


[0405] Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.
55TABLE 10BProtein Sequence Properties NOV10aSignalPanalysis:Cleavage site between residues 24 and 25PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 5; pos.chg 2; neg.chg 1H-region: length 19; peak value 10.30PSG score: 5.90GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): 1.27possible cleavage site: between 21 and 22>>> Seems to have a cleavable signal peptide (1 to 21)ALOM: Klein et al's method for TM region allocationInit position for calculation: 22Tentative number of TMS(s) for the threshold 0.5: 2Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −8.49 Transmembrane491-507PERIPHERAL Likelihood = 2.92 (at 378)ALOM score: −8.49 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 10Charge difference: −1.5 C( 0.5)-N( 2.0)N >= C: N-terminal side will be inside>>> membrane topology: type 1a (cytoplasmic tail508 to 527)MITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment (75):2.63Hyd Moment (95):5.92G content:3D/E content:2S/T content:2Score: −7.46Gavel: prediction of cleavage sites for mitochondrialpreseqR-2 motif at 12 MRS|DKNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 10.8%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals:XXRR-like motif in the N-terminus: RSDKKKXX-like motif in the C-terminus: KEKRSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):44.4%: endoplasmic reticulum22.2%: Golgi11.1%: plasma membrane11.1%: vesicles of secretory system11.1%: extracellular, including cell wall>> prediction for CG159035-01 is end (k = 9)


[0406] A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10C.
56TABLE 10CGeneseq Results for NOV10aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV10a Residues/the MatchedIdentifier[Patent #, Date]Match ResiduesRegionExpect ValueAAE15434Human drug metabolising1 . . . 527447/527 (84%)0.0enzyme (DME)-1 - Homo1 . . . 527482/527 (90%)sapiens, 527 aa.[WO200179468-A2,25 OCT. 2001]AAU77927Human drug-metabolising1 . . . 527447/527 (84%)0.0enzyme - Homo sapiens, 5271 . . . 527482/527 (90%)aa. [WO200218554-A2,07 MAR. 2002]AAU29284Human PRO polypeptide1 . . . 527447/527 (84%)0.0sequence #261 - Homo1 . . . 527482/527 (90%)sapiens, 527 aa.[WO200168848-A2,20 SEP. 2001]AAE02188Human breast cancer specific9 . . . 527367/522 (70%)0.0gene-2 (BCSG-2) protein -8 . . . 529413/522 (78%)Homo sapiens, 529 aa.[WO200137779-A2,31 MAY 2001]ABG05523Novel human diagnostic3 . . . 527360/528 (68%)0.0protein #5514 - Homo6 . . . 533412/528 (77%)sapiens, 533 aa.[WO200175067-A2,11 OCT. 2001]


[0407] In a BLAST search of public sequence datbases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.
57TABLE 10DPublic BLASTP Results for NOV10aIdentities/ProteinSimilarities forAccessionNOV10a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueCAD48648Sequence 1 from Patent1 . . . 527448/527 (85%)0.0WO0226834 - Homo sapiens1 . . . 527483/527 (91%)(Human), 527 aa.Q9H6S4Hypothetical protein79 . . . 527 370/449 (82%)0.0FLJ21934 - Homo sapiens1 . . . 449405/449 (89%)(Human), 449 aa.Q9R110UDP glucuronosyltransferase1 . . . 527351/530 (66%)0.0UGT2A3 - Cavia porcellus1 . . . 530428/530 (80%)(Guinea pig), 530 aa.O75310UDP-glucuronosyltransferase9 . . . 527367/522 (70%)0.02B11 precursor, microsomal8 . . . 529413/522 (78%)(EC 2.4.1.17) (UDPGT)-Homo sapiens (Human), 529aa.JE0200orphan9 . . . 527366/522 (70%)0.0UDP-glucuronosyltransferase8 . . . 529412/522 (78%)(EC 2.4.-.-) - human, 529 aa.


[0408] PFam analysis predicts that the NOV10a protein contains the domains shown in the Table 10E.
58TABLE 10EDomain Analysis of NOV10aIdentities/SimilaritiesNOV10afor thePfamMatchMatchedExpectDomainRegionRegionValueUDPGT24 . . . 525303/507 (60%)3.9e−290436/507 (86%)



Example 11

[0409] The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.
59TABLE 11ANOV11 Sequence AnalysisSEQ ID NO:1193030 bpNOV11a,GCGGCCGCGGGCGCGGGCGGGCGCGCGGGGGAGCCCGGCCGAGGGATGGGCTGCGCCCCCAGCATCCCG159232-01DNA SequenceATGTCTCGCAGAGCGGCGTGATCTACTGCCGGGACTCGGACGAGTCCAGCTCGCCCCGCCAGACCACCAGCGTGTCGCAGGGCCCGGCGGCACCCCTGCCCGGCCTCTTCGTCCAGACCGACGCCGCCGACGCCATCCCCCCGAGCCGCGCGTCGGGACCCCCCAGCGTAGCCCGCGTCCGCAGGGCCCGCACCGAGCTGGGCAGCGGTAGCAGCGCGGGTTCCGCAGCCCCCGCCGCGACCACCAGCAGGGGCCGGAGGCGCCACTGCTGCAGCAGCGCCGAGGCCGAGACTCAGACCTGCTACACCAGCGTGAAGCAGGTGTCTTCTGCGGAGGTGCGCATCGGGCCCATGAGACTGACGCAGGACCCTATTCAGGTTTTGCTGATCTTTGCAAAGGAAGATAGTCAGAGCGATGGCTTCTGGTGGGCCTGCGACAGAGCTGGTTATAGATGCAATATTGCTCGGACTCCAGAGTCAGCCCTTGAATGCTTTCTTGATAAGCATCATGAAATTATTGTAATTGATCATAGACAAACTCAGAACTTCGATGCAGAAGCAGTGTGCAGGTCGATCCGGGCCACAAATCCCTCCGAGCACACGGTGATCCTCGCAGTGGTTTCGCGAGTATCGGATGACCATGAAGAGGCGTCAGTCCTTCCTCTTCTCCACGCAGGCTTCAACAGGAGATTTATGGAGAATAGCAGCATAATTGCTTGCTATAATGAACTGATTCAAATAGAACATGGGGAAGTTCGCTCCCAGTTCAAATTACGGGCCTGTAATTCAGTGTTTACAGCATTAGATCACTGTCATGAAGCCATAGAAATAACAAGCGATGACCACGTGATTCAGTATGTCAACCCAGCCTTCGAAAGGATGATGGGCTACCACAAAGGTGAGCTCCTGGGAAAAGAACTCGCTGATCTGCCCAAAAGCGATAAGAACCGGGCAGACCTTCTCGACACCATCAATACATGCATCAAGAAGGGAAAGGAGTGGCAGGGGGTTTACTATGCCAGACGGAAATCCGGGGACAGCATCCAACAGCACGTGAAGATCACCCCAGTGATTGGCCAAGGAGGGAAAATTAGGCATTTTGTCTCGCTCAAGAAACTGTGTTGTACCACTGACAATAATAAGCAGATTCACAAGATTCATCGTGATTCAGGAGACAATTCTCAGACAGAGCCTCATTCATTCAGATATAAGAACAGGAGGAAAGAGTCCATTGACGTGAAATCGATATCATCTCGAGGCAGTGATGCACCAAGCCTGCAGAATCGTCGCTATCCGTCCATGGCGAGGATCCACTCCATGACCATCGAGGCTCCCATCACAAAGGTTATAAATATAATCAATGCAGCCCAAGAAAACAGCCCAGTCACAGTAGCGGAAGCCTTGGACAGAGTTCTAGAGATTTTACGGACCACAGAACTGTACTCCCCTCAGCTGGGTACCAAAGATGAAGATCCCCACACCAGTGATCTTGTTGGAGGCCTGATGACTGACGGCTTGAGAAGACTGTCAGGAAACGAGTATGTGTTTACTAAGAATGTGCACCAGAGTCACAGTCACCTTGCAATGCCAATAACCATCAATGATGTTCCCCCTTGTATCTCTCAATTACTTGATAATGAGGAGAGTTGGGACTTCAACATCTTTGAATTGGAAGCCATTACGCATAAAAGGCCATTGGTTTATCTGGGCTTAAAGGTCTTCTCTCGGTTTGGAGTATGTGAGTTTTTAAACTGTTCTGAAACCACTCTTCGGGCCTGGTTCCAAGTGATCGAAGCCAACTACCACTCTTCCAATGCCTACCACAACTCCACCCATGCTGCCGACGTCCTGCACGCCACCGCTTTCTTTCTTGGAAAGGAAAGAGTAAAGGGAAGCCTCGATCAGTTGGATGAGGTGGCAGCCCTCATTGCTGCCACAGTCCATGACGTGGATCACCCGGGAAGGACCAACTCTTTCCTCTGCAATGCAGGCAGTGAGCTTGCTGTGCTCTACAATGACACTGCTGTTCTGGAGAGTCACCACACCGCCCTGGCCTTCCAGCTCACGGTCAAGGACACCAAATGCAACATTTTCAAGAATATTGACAGGAACCATTATCGAACGCTGCGCCAGGCTATTATTGACATGGTTTTGGCAACAGAGATGACAAAACACTTTGAACATGTGAATAAGTTTGTGAACAGCATCAACAAGCCAATGGCAGCTGAGATTGAAGGCAGCGACTGTGAATGCAACCCTGCTGGGAAGAACTTCCCTGAAAACCAAATCCTGATCAAACGCATGATGATTAAGTGTGCTGACGTGGCCAACCCATGCCGCCCCTTGGACCTGTGCATTGAATGGGCTGGGAGGATCTCTGAGGAGTATTTTGCACAGACTGATGAAGAGAAGAGACAGGGACTACCTGTGGTGATGCCAGTGTTTGACCGGAATACCTGTAGCATCCCCAAGTCTCAGATCTCTTTCATTGACTACTTCATAACAGACATGTTTGATGCTTGGGATGCCTTTGCACATCTGCCAGCCCTGATGCAACATTTGGCTGACAACTACAAACACTGGAAGACACTAGATGACCTAAAGTGCAAAAGTTTGAGGCTTCCATCTGACAGCTAAAGCCAAGCCACAGAGGGGGCCTCTTGACCGACAAAGGACACTGTGAATCACAGTAGCGTAAACAAGAGGCCTTCCTTTCTAATGACAATGACAGGTATTGGTGAAGGAGCTAATGTTTAATATTTGACCTTGAATCATTCAAGTCCCCAAATTTCATTCTTAGAAAGTTATGTTCCATGAAGAAAAATATATGTTCTTTTGAATACTTAATGACAGAACAAATACTTGGCAAACTCCTTTGCTCTGCTGTCATCCTGTGTACCCTTGTCAATCCATGGAGCTGGTTCACTGTAACTAGCAGGCCACAGGAAGCAAAGCCTTGGTGCCORF Start: ATG at 46ORF Stop: TAA at 2701SEQ ID NO:120885 aaMW at 98977.6 kDNOV11a,MGCAPSIHVSQSGVIYCRDSDESSSPRQTTSVSQGPAAPLPGLFVQTDAADAIPPSRASGPPSVARVCG159232-01Protein SequenceRRARTELGSGSSAGSAAPAATTSRGRRRHCCSSAEAETQTCYTSVKQVSSAEVRIGPMRLTQDPIQVLLIFAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKHHEIIVIDHRQTQNFDAEAVCRSIRATNPSEHTVILAVVSRVSDDHEEASVLPLLHAGFNRRFMENSSIIACYNELIQIEHGEVRSQFKLRACNSVFTALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGELLGKELADLPKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSIQQHVKITPVIGQGGKIRHFVSLKKLCCTTDNNKQIHKIHRDSGDNSQTEPHSFRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSMARIHSMTIEAPITKVINIINAAQENSPVTVAEALDRVLEILRTTELYSPQLGTKDEDPHTSDLVGGLMTDGLRRLSGNEYVFTKNVHQSHSHLAMPITINDVPPCISQLLDNEESWDFNIFELEAITHKRPLVYLGLKVFSRFGVCEFLNCSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGKERVKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAGSELAVLYNDTAVLESHHTALAFQLTVKDTKCNIFKNIDRNHYRTLRQAIIDMVLATEMTKHFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALMQHLADNYKHWKTLDDLKCKSLRLPSDS


[0410] Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.
60TABLE 11BProtein Sequence Properties NOV11aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 0; pos.chg 0; neg.chg 0H-region: length 17; peak value 4.45PSG score: 0.05GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −6.11possible cleavage site: between 52 and 53>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 3.61 (at 573)ALOM score: 3.61 (number of TMSs: 0)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 6Charge difference: −2.5 C(−1.5)-N(1.0)N >= C: N-terminal side will be insideMITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment (75):2.84Hyd Moment(95):1.65G content:2D/E content:1S/T content:3Score: −5.11Gavel: prediction of cleavage sites for mitochondrialpreseq cleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: RRRH (3) at 93pat7: nonebipartite: KKGKEWQGVYYARRKSG at 336content of basic residues: 11.1%NLS Score: 0.21KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: MGCAPSI3rd aa is cysteine (may be palmitylated)Prenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: nuclearReliability: 70.6COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):78.3%: nuclear13.0%: cytoplasmic 4.3%: mitochondrial 4.3%: peroxisomal>> prediction for CG159232-01 is nuc (k = 23)


[0411] A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11C.
61TABLE 11CGeneseq Results for NOV11aIdentities/GeneseqProtein/Organism/LengthNOV11a Residues/Similarities for theExpectIdentifier[Patent #, Date]Match ResiduesMatched RegionValueABB09006Human phosphodiesterase-2 -1 . . . 885885/885 (100%)0.0Homo sapiens, 885 aa.1 . . . 885885/885 (100%)[WO200198471-A2,27 DEC. 2001]AAM79141Human protein SEQ ID NO114 . . . 885 772/772 (100%)0.01803 - Homo sapiens, 7732 . . . 773772/772 (100%)aa. [WO200157190-A2,09 AUG. 2001]AAB64411Amino acid sequence of125 . . . 885 761/761 (100%)0.0human intracellular1 . . . 761761/761 (100%)signalling moleculeINTRA43 - Homo sapiens,761 aa. [WO200077040-A2,21 DEC. 2000]AAB11938Human cyclic nucleotide168 . . . 885 718/718 (100%)0.0phosphodiesterase,1 . . . 718718/718 (100%)PDE8B(E) - Homo sapiens,718 aa. [US6080548-A,27 JUN. 2000]AAY27196Human cyclic nucleotide168 . . . 885 718/718 (100%)0.0phosphodiester PDE8B(E)1 . . . 718718/718 (100%)amino acid sequence - Homosapiens, 718 aa.[US5932423-A,03 AUG. 1999]


[0412] In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.
62TABLE 11DPublic BLASTP Results for NOV11aProteinIdentities/AccessionNOV11a Residues/Similarities for theExpectNumberProtein/Organism/LengthMatch ResiduesMatched PortionValueAAC69564CAMP-specific1 . . . 885 885/885 (100%)0.0phosphodiesterase 8B1 -1 . . . 885 885/885 (100%)Homo sapiens (Human), 885aa.Q8N3T2Hypothetical protein - Homo43 . . . 885 842/843 (99%)0.0sapiens (Human), 843 aa1 . . . 843842/843 (99%)(fragment).O95263High-affinity cAMP-specific227 . . . 885  659/659 (100%)0.0and IBMX-insensitive1 . . . 659 659/659 (100%)3′,5′-cyclicphosphodiesterase 8B (EC3.1.4.17) - Homo sapiens(Human), 659 aa (fragment).JE02933′,5′-cyclic-nucleotide227 . . . 885 658/659 (99%)0.0phosphodiesterase (EC1 . . . 659658/659 (99%)3.1.4.17) 8B, cAMP-specific - human, 659 aa(fragment).Q96T71cAMP-specific cyclic1 . . . 884551/889 (61%)0.0nucleotide phosphodiesterase1 . . . 829682/889 (75%)PDE8A1 - Homo sapiens(Human), 829 aa.


[0413] PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11E.
63TABLE 11EDomain Analysis of NOV11aIdentities/SimilaritiesNOV11afor thePfamMatchMatchedExpectDomainRegionRegionValuePAS269 . . . 33416/70 (23%)3.4e−0545/70 (64%)PDEase614 . . . 85388/244 (36%) 1.1e−74154/244 (63%) 



Example 12

[0414] The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.
64TABLE 12ANOV12 Sequence AnalysisSEQ ID NO:121989 bpNOV12a,GCGGGCCCGCGAGTCCGAGACCTGTCCCAGGAGCTCCAGCTCACGTGACCTGTCACTGCCTCCCGCCCG159251-03DNA SequenceGCCTCCTGCCCGCGCCATGACCCAGCCGGTGCCCCGGCTCTCCGTGCCCGCCGCGCTGGCCCTGGGCTCAGCCGCACTGGGCGCCGCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGTGCCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCCGAGGACAGCCGCCTGTGGCAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGACCCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACCTGGCGCGGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCCCTGGCCCTGGCCCTGGCGCTGCCCGCGGACGGGCGCGTGGTGACCTGCGAGGTGGACGCGCAGCCCCCGGAGCTGGGACGGCCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCCGGCTGAAGCCCGCCTTGGAGACCCTGGACGAGCTGCTGGCGGCGGGCGAGGCCGGCACCTTCGACGTGGCCGTGGTGGATGCGGACAAGGAGAACTGCTCCGCCTACTACGAGCGCTGCCTGCAGCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGCAACCTCCGAAAGGGGACGTGGCGGCCGAGTGTGTGCGAAACCTAAACGAACGCATCCGGCGGGACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGATCTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGAACCCCAGGAATTGACCCTGAGTTTTAAATTCGAAAATAAAGTGGGGCTGGGACACAAAAAAAAAAAAAAAAAAAORF Start: ATG at 84ORF Stop: TAG at 870SEQ ID NO:122262 aaMW at 28808.2 kDNOV12a,MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRSMREHPCG159251-03Protein SequenceALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALALPADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDADKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYISLLPLGDGLTLAFKISEQ ID NO:123787 bpNOV12b,CCGCGGGTAGTGCCCCGACAAGGTGGAGCCCGGCGGGCCCGCGAGTCCGAGACCTGTCCCAGGAGCTCG159251-01DNA SequenceCCAGCTCACGTGACCTGTCACTGCCTCCCGCCGCCTCCTGCCCGCGCCATGACCCAGCCGGTGCCCCGGCTCTCCGTGCCCGCCGCGCTGGCCCTGGGCTCAGCCGCACTGGGCGCCGCCTTCGCCACTGGCCTCTTCCTGGGCACCTTCACGGGCTACTCCGCCCTGGCCCTGGCCCTGGCGCTGCCCGCGGACGGGCGCGTGGTGACCTGCGAGGTGGACGCGCAGCCCCCGGAGCTGGGACGGCCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCCGGCTGAAGCCCGCCTTGGAGACCCTGGACGAGCTGCTGGCGGCGGGCGAGGCCGGCACCTTCGACGTGGCCGTGGTGGATGCGGACAAGGAGAACTGCTCCGCCTACTACGAGCGCTGCCTGCAGCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGCAACCTCCGAAAGGGGACGTGGCGGCCGAGTGTGTGCGAAACCTAAACGAACGCATCCGGCGGGACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGATCTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGACCCTGAGTTTTAAATTCGAAAATAAAGTGGGGCTGGGACACAAAAAAAAAAAAAAAAAAAORF Start: ATG at 116ORF Stop: TAG at 668SEQ ID NO:124184 aaMW at 19714.6 kDNOV12b,MTQPVPRLSVPAALALGSAALGAAFATGLFLGTFTGYSALALALALPADGRVVTCEVDAQPPELGRPCG159251-01Protein SequenceLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDADKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYISLLPLGDGLTLAFKISEQ ID NO:125989 bpNOV12c,GCGGGCCCGCGAGTCCGAGACCTGTCCCAGGAGCTCCAGCTCACGTGACCTGTCACTGCCTCCCGCCCG159251-02DNA SequenceGCCTCCTGCCCGCGCCATGACCCAGCCGGTGCCCCGGCTCTCCGTGCCCGCCGCGCTGGCCCTGGGCTCAGCCGCACTGGGCGCCGCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGTGCCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCCGAGGACAGCCGCCTGTGGCAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGACCCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACCTGGCGCGGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCCCTGGCCCTGGCCCTGGCGCTGCCCGCGGACGGGCGCGTGGTGACCTGCGAGGTGGACGCGCAGCCCCCGGAGCTGGGACGGCCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCCGGCTGAAGCCCGCCTTGGAGACCCTGGACGAGCTGCTGGCGGCGGGCGAGGCCGGCACCTTCGACGTGGCCGTGGTGGATGCGGACAAGGAGAACTGCTCCGCCTACTACGAGCGCTGCCTGCAGCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGCAACCTCCGAAAGGGGACGTGGCGGCCGAGTGTGTGCGAAACCTAAACGAACGCATCCGGCGGGACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGATCTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGACCCTGAGTTTTAAATTCGAAAATAAAGTGGGGCTGGGACACAAAAAAAAAAAAAAAAAAAORF Start: ATG at 84ORF Stop: TAG at 870SEQ ID NO:126262 aaMW at 28808.2 kDNOV12c,MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRSMREHPCG159251-02Protein SequenceALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALALPADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDADKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYISLLPLGDGLTLAFKI


[0415] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 12B.
65TABLE 12BComparison of NOV12a against NOV12b and NOV12c.Identities/NOV12aSimilaritiesResidues/for theProteinMatchMatchedSequenceResiduesRegionNOV12b107 . . . 262 155/156 (99%)29 . . . 184 155/156 (99%)NOV12c1 . . . 262 262/262 (100%)1 . . . 262 262/262 (100%)


[0416] Further analysis of the NOV12a protein yielded the following properties shown in Table 12C.
66TABLE 12CProtein Sequence Properties NOV12aSignalPCleavage site between residues 27 and 28analysis:PSORT IIPSG: a new signal peptide prediction methodanalysis:N- region: length 7; pos. chg 1; neg. chg 0H-region: length 25; peak value 9.00PSG score: 4.60GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −0.30possible cleavage site: between 26 and 27>>> Seems to have a cleavable signal peptide (1 to 26)ALOM: Klein et al's method for TM region allocationInit position for calculation: 27Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 0.95 (at 198)ALOM score: 0.95 (number of TMSs: 0)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 13Charge difference: 2.0 C( 4.0) − N( 2.0)C > N: C-terminal side will be inside>>>Caution: Inconsistent mtop result with signal peptideMITDISC: discrimination of mitochondrial targeting seqR content:6Hyd Moment (75):8.25Hyd Moment (95):12.06G content:5D/E content:1S/T content:4Score:0.30Gavel: prediction of cleavage sites for mitochondrialpreseqR-2 motif at 51 GRR|EQNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: PPWRGRR (3) at 36pat7: PWRGRRE (4) at 37bipartite: nonecontent of basic residues: 12.6%NLS Score: 0.13KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: LAFKSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):60.9%: mitochondrial13.0%: endoplasmic reticulum 8.7%: extracellular, including cell wall 8.7%: cytoplasmic 4.3%: vacuolar 4.3%: Golgi>> prediction for CG159251-03 is mit (k = 23)


[0417] A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12D.
67TABLE 12DGeneseq Results for NOV12aIdentities/GeneseqProtein/Organism/LengthNOV12a Residues/Similarities for theExpectIdentifier[Patent #, Date]Match ResiduesMatched RegionValueAAM47928Human O-methyltransferase1 . . . 262262/262 (100%)e−149family member 25692 -1 . . . 262262/262 (100%)Homo sapiens, 262 aa.[WO200183719-A2,08 NOV. 2001]AAU86138Human PRO15581 . . . 262262/262 (100%)e−149polypeptide - Homo sapiens,1 . . . 262262/262 (100%)262 aa. [WO200153486-A1,26 JUL. 2001]AAB66174Protein of the invention #86 -1 . . . 262262/262 (100%)e−149Unidentified, 262 aa.1 . . . 262262/262 (100%)[WO200078961-A1,28 DEC. 2000]AAY87281Human signal peptide1 . . . 262262/262 (100%)e−149containing protein HSPP-581 . . . 262262/262 (100%)SEQ ID NO: 58 - Homosapiens, 262 aa.[WO200000610-A2,06 JAN. 2000]AAY99425Human PRO 1558 (UNQ766)1 . . . 262262/262 (100%)e−149amino acid sequence SEQ ID1 . . . 262262/262 (100%)NO: 306 - Homo sapiens, 262aa. [WO200012708-A2,09 MAR. 2000]


[0418] In a BLAST search of public sequence datbases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12E.
68TABLE 12EPublic BLASTP Results for NOV12aProteinIdentities/AccessionNOV12a Residues/Similarities for theExpectNumberProtein/Organism/LengthMatch ResiduesMatched PortionValueCAD20539Sequence 1 from Patent1 . . . 262 262/262 (100%)e−149WO0183719 - Homo sapiens1 . . . 262 262/262 (100%)(Human), 262 aa.Q8TE79Hypothetical protein1 . . . 262261/262 (99%)e−148FLJ23841 - Homo sapiens1 . . . 262261/262 (99%)(Human), 262 aa.Q9D8V11810030M08Rik protein -1 . . . 262224/262 (85%)e−127Mus musculus (Mouse), 2621 . . . 262242/262 (91%)aa.Q8YLW7O-methyltransferase -54 . . . 261 104/208 (50%)3e−52 Anabaena sp. (strain PCC12 . . . 219 141/208 (67%)7120), 220 aa.O85769Hypothetical 24.8 kDa47 . . . 258  99/212 (46%)1e−46 protein - Legionella6 . . . 214135/212 (62%)pneumophila, 218 aa.


[0419] PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12F.
69TABLE 12FDomain Analysis of NOV12aIdentities/SimilaritiesNOV12afor theMatchMatchedExpectPfam DomainRegionRegionValueMethyltransf_359 . . . 26286/213 (40%)3.8e−72148/213 (69%) 



Example 13

[0420] The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.
70TABLE 13ANOV13 Sequence AnalysisSEQ ID NO:1271834 bpNOV13a,GTAGTGTGATCACTTCTTACTGCCGCCTCAAGCTTCCAGCCTCAACTCAAGCAATCCTCCCACCTCACG160563-01DNA SequenceGCCACCCAAGTGACTGGGACTACAGAGTCTCCTTCTGTCACCCAGGCTAGAGTGAAGTGGCATGATCTCAGCTCACTGCAACCTCCACCTCCTGGATTCAAGCAATCCTCGTCCCTCAGCCTCCCAAGCAGCTGGGACTACAGATTAAGAATGACCCAAAATAAATTAAAGCTTTGTTCCAAAGCCAATGTGTATACTGAAGTGCCTGATGGAGGATGGGGCTGGGCGGTAGCTGTTTCATTTTTCTTCGTTGAAGTCTTCACCTACGGCATCATCAAGATATTTGGTGTCTTCTTTAATGACTTAATGGACAGTTTTAATGAATCCAATAGCAGGATCTCATGGATAATCTCAATCTGTGTGTTTGTCTTAACATTTTCAGCTCCCCTCGCCACAGTCCTGAGCAATCGTTTCGGACACCGTCTGGTAGTGATGTTGGGGGGGCTACTTGTCAGCACCGGGATGGTGGCCGCCTCCTTCTCACAAGAGGTTTCTCATATGTACGTCGCCATCGGCATCATCTCTGGTCTGGGATACTGCTTTAGTTTTCTCCCAACTGTAACCATCCTATCACAATATTTTGGCAAAAGACGTTCCATAGTCACTGCAGTTGCTTCCACAGGAGAATGTTTCGCTGTGTTTGCTTTCGCACCAGCAATCATGGCTCTGAAGGAGCGCATTGGCTGGAGATACAGCCTCCTCTTCGTGGGCCTACTACAGTTAAACATTGTCATCTTCGGAGCACTGCTCAGACCCATCTTTATCAGAGGACCAGCGTCACCGAAAATAGTCATCCAGGAAAATCGGAAAGAAGCGCAGTATATGCTTGAAAATGAGAAAACACGAACCTCAATAGACTCCATTGACTCAGGAGTAGAACTAACTACCCCACCTAAAAATGTGCCTACTCACACTAACCTGGAACTGGAGCCGAAGGCCGACATGCAGCAGGTCCTGGTGAAGACCAGCCCCAGGCCAAGCGAAAAGAAAGCCCCGCTATTAGACTTCTCCATTTTGAAAGAGAAAAGTTTTATTTGTTATGCATTATTTGGTCTCTTTGCAACACTGGGATTCTTTGCACCTTCCTTGTACATCATTCCTCTGGGCATTAGTCTGGGCATTGACCAGGACCGCGCTGCTTTTTTATTATCTACGATGGCCATTGCAGAAGTTTTCGGAAGGATCGGAGCTGGTTTTGTCCTCAACAGGGAGCCCATTCGTAAGATTTACATTGAGCTCATCTGCGTCATCTTATTGACTGTGTCTCTGTTTGCCTTTACTTTTGCTACTGAATTCTGGGGTCTAATGTCATGCAGCATATTTTTTGGGTTTATGGTTGGAACAATAGGAGGGACTCACATTCCACTGCTTGCTGAGGATGATGTCGTGGGCATTGAGAAGATGTCTTCTGCAGCTGGGGTCTACATCTTCATTCAGAGCATAGCAGGACTGGCTGGACCGCCCCTTGCAGGTTTGTTGGTGGACCAAAGTAAGATCTACAGCAGGGCCTTCTACTCCTGCGCAGCTGGCATGGCCCTGGCTGCTGTGTGCCTCGCCCTGGTGAGACCGTGTAAGATGGGACTGTGCCAGCATCATCACTCAGGTGAAACAAAGGTAGTGAGCCATCGTGGGAAGACTTTACAGGACATACCTGAAGACTTTCTGGAAATGGATCTTGCAAAAAATGAGCACAGAGTTCACGTGCAAATGGAGCCGGCTATGACACACTTTCTTACAACAACAGCCACTGTGTTGGCTGGAGAGGGATORF Start: ATG at 218ORF Stop: TGA at 1787SEQ ID NO:128523 aaMW at 57414.8 kDNOV13a,MTQNKLKLCSKANVYTEVPDGGWGWAVAVSFFFVEVFTYGIIKIFGVFFNDLMDSFNESNSRISWIICG160563-01Protein SequenceSICVFVLTFSAPLATVLSNRFGHRLVVMLGGLLVSTGMVAASFSQEVSHMYVAIGIISGLGYCFSFLPTVTILSQYFGKRRSIVTAVASTGECFAVFAFAPAIMALKERIGWRYSLLFVGLLQLNIVIFGALLRPIFIRGPASPKIVIQENRKEAQYMLENEKTRTSIDSIDSGVELTTPPKNVPTHTNLELEPKADMQQVLVKTSPRPSEKKAPLLDFSILKEKSFICYALFGLFATLGFFAPSLYIIPLGISLGIDQDRAAFLLSTMAIAEVFGRIGAGFVLNREPIRKIYIELICVILLTVSLFAFTFATEFWGLMSCSIFFGFMVGTIGGTHIPLLAEDDVVGIEKMSSAAGVYIFIQSIAGLAGPPLAGLLVDQSKIYSRAFYSCAAGMALAAVCLALVRPCKMGLCQHHHSGETKVVSHRGKTLQDIPEDFLEMDLAKNEHRVHVQMEPVSEQ ID NO:1291834 bpNOV13b,GTAGTGTGATCACTTCTTACTGCCGCCTCAAGCTTCCAGCCTCAACTCAAGCAATCCTCCCACCTCACG160563-01DNA SequenceGCCACCCAAGTGACTGGGACTACAGAGTCTCCTTCTGTCACCCAGGCTAGAGTGAAGTGGCATGATCTCAGCTCACTGCAACCTCCACCTCCTGGATTCAAGCAATCCTCGTCCCTCAGCCTCCCAAGCAGCTGGGACTACAGATTAAGAATGACCCAAAATAAATTAAAGCTTTGTTCCAAAGCCAATGTGTATACTGAAGTGCCTGATGGAGGATGGGGCTGGGCGGTAGCTGTTTCATTTTTCTTCGTTGAAGTCTTCACCTACGGCATCATCAAGATATTTGGTGTCTTCTTTAATGACTTAATGGACAGTTTTAATGAATCCAATAGCAGGATCTCATGGATAATCTCAATCTGTGTGTTTGTCTTAACATTTTCAGCTCCCCTCGCCACAGTCCTGAGCAATCGTTTCGGACACCGTCTGGTAGTGATGTTGGGGGGGCTACTTGTCAGCACCGGGATGGTGGCCGCCTCCTTCTCACAAGAGGTTTCTCATATGTACGTCGCCATCGGCATCATCTCTGGTCTGGGATACTGCTTTAGTTTTCTCCCAACTGTAACCATCCTATCACAATATTTTGGCAAAAGACGTTCCATAGTCACTGCAGTTGCTTCCACAGGAGAATGTTTCGCTGTGTTTGCTTTCGCACCAGCAATCATGGCTCTGAAGGAGCGCATTGGCTGGAGATACAGCCTCCTCTTCGTGGGCCTACTACAGTTAAACATTGTCATCTTCGGAGCACTGCTCAGACCCATCTTTATCAGAGGACCAGCGTCACCGAAAATAGTCATCCAGGAAAATCGGAAAGAAGCGCAGTATATGCTTGAAAATGAGAAAACACGAACCTCAATAGACTCCATTGACTCAGGAGTAGAACTAACTACCCCACCTAAAAATGTGCCTACTCACACTAACCTGGAACTGGAGCCGAAGGCCGACATGCAGCAGGTCCTGGTGAAGACCAGCCCCAGGCCAAGCGAAAAGAAAGCCCCGCTATTAGACTTCTCCATTTTGAAAGAGAAAAGTTTTATTTGTTATGCATTATTTGGTCTCTTTGCAACACTGGGATTCTTTGCACCTTCCTTGTACATCATTCCTCTGGGCATTAGTCTGGGCATTGACCAGGACCGCGCTGCTTTTTTATTATCTACGATGGCCATTGCAGAAGTTTTCGGAAGGATCGGAGCTGGTTTTGTCCTCAACAGGGAGCCCATTCGTAAGATTTACATTGAGCTCATCTGCGTCATCTTATTGACTGTGTCTCTGTTTGCCTTTACTTTTGCTACTGAATTCTGGGGTCTAATGTCATGCAGCATATTTTTTGGGTTTATGGTTGGAACAATAGGAGGGACTCACATTCCACTGCTTGCTGAGGATGATGTCGTGGGCATTGAGAAGATGTCTTCTGCAGCTGGGGTCTACATCTTCATTCAGAGCATAGCAGGACTGGCTGGACCGCCCCTTGCAGGTTTGTTGGTGGACCAAAGTAAGATCTACAGCAGGGCCTTCTACTCCTGCGCAGCTGGCATGGCCCTGGCTGCTGTGTGCCTCGCCCTGGTGAGACCGTGTAAGATGGGACTGTGCCAGCATCATCACTCAGGTGAAACAAAGGTAGTGAGCCATCGTGGGAAGACTTTACAGGACATACCTGAAGACTTTCTGGAAATGGATCTTGCAAAAAATGAGCACAGAGTTCACGTGCAAATGGAGCCGGTATGACACACTTTCTTACAACAACAGCCACTGTGTTGGCTGGAGAGGGATORF Start: ATG at 218ORF Stop: TGA at 1787SEQ ID NO:130523 aaMW at 57414.8 kDNOV13b,MTQNKLKLCSKANVYTEVPDGGWGWAVAVSFFFVEVFTYGIIKIFGVFFNDLMDSFNESNSRISWIICG160563-01Protein SequenceSICVFVLTFSAPLATVLSNRFGHRLVVMLGGLLVSTGMVAASFSQEVSHMYVAIGIISGLGYCFSFLPTVTILSQYFGKRRSIVTAVASTGECFAVFAFAPAIMALKERIGWRYSLLFVGLLQLNIVIFGALLRPIFIRGPASPKIVIQENRKEAQYMLENEKTRTSIDSIDSGVELTTPPKNVPTHTNLELEPKADMQQVLVKTSPRPSEKKAPLLDFSILKEKSFICYALFGLFATLGFFAPSLYIIPLGISLGIDQDRAAFLLSTMAIAEVFGRIGAGFVLNREPIRKIYIELICVILLTVSLFAFTFATEFWGLMSCSIFFGFMVGTIGGTHIPLLAEDDVVGIEKMSSAAGVYIFIQSIAGLAGPPLAGLLVDQSKIYSRAFYSCAAGMALAAVCLALVRPCKMGLCQHHHSGETKVVSHRGKTLQDIPEDFLEMDLAKNEHRVHVQMEPV


[0421] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 13B.
71TABLE 13BComparison of NOV13a against NOV13b.NOV13aIdentities/Residues/SimilaritiesProteinMatchfor theSequenceResiduesMatched RegionNOV13b1 . . . 523523/523 (100%)1 . . . 523523/523 (100%)


[0422] Further analysis of the NOV13a protein yielded the following properties shown in Table 13C.
72TABLE 13CProtein Sequence Properties NOV13aSignalPCleavage site between residues 41 and 42analysis:PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 11; pos.chg 3; neg.chg 0H-region: length 5; peak value −3.08PSG score: −7.48GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −7.41possible cleavage site: between 38 and 39>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 10INTEGRALLikelihood =−3.72Transmembrane26-42INTEGRALLikelihood =−5.15Transmembrane66-82INTEGRALLikelihood =−5.20Transmembrane 92-108INTEGRALLikelihood =−1.54Transmembrane118-134INTEGRALLikelihood =−1.17Transmembrane150-166INTEGRALLikelihood =−6.85Transmembrane183-199INTEGRALLikelihood =−4.30Transmembrane294-310INTEGRALLikelihood =−9.55Transmembrane363-379INTEGRALLikelihood =−0.48Transmembrane384-400INTEGRALLikelihood =−4.30Transmembrane455-471PERIPHERALLikelihood =0.69 (at 329)ALOM score: −9.55 (number of TMSs: 10)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 33Charge difference: 0.0 C(0.0) − N(0.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):3.58Hyd Moment(95):5.26G content:0D/E content:1S/T content:3Score:−4.54Gavel: prediction of cleavage sites for mitochondrial preseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 8.2%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:Bacterial regulatory proteins, lysR family signature(PS00044): *** found ***TAVASTGECFAVFAFAPAIMALKERI at 152NNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):66.7%: endoplasmic reticulum22.2%: mitochondrial11.1%: nuclear>> prediction for CG160563-01 is end (k = 9)


[0423] A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13D.
73TABLE 13DGeneseq Results for NOV13aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV13a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABJ05556Breast cancer-associated1 . . . 523521/523 (99%)0.0protein 21 - Unidentified, 5231 . . . 523521/523 (99%)aa. [WO200259377-A2,01 AUG. 2002]AAB47977BCY5 - Homo sapiens, 5231 . . . 523521/523 (99%)0.0aa. [WO200221134-A2,1 . . . 523521/523 (99%)14 MAR. 2002]ABP65184Hypoxia-regulated protein171 . . . 306 129/136 (94%)7e−68#58 - Homo sapiens, 136 aa.1 . . . 136132/136 (96%)[W0200246465-A2,13 JUN. 2002]AAE22913Human transporter and ion3 . . . 475132/479 (27%)1e−55channel (TRICH) 12 - Homo25 . . . 464 225/479 (46%)sapiens, 516 aa.[WO200222684-A2,21 MAR. 2002]AAE22711Human transporter protein -16 . . . 475 128/464 (27%)2e−55Homo sapiens, 486 aa.10 . . . 434 219/464 (46%)[WO200222678-A2,21 MAR. 2002]


[0424] In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13E.
74TABLE 13EPublic BLASTP Results for NOV13aIdentities/ProteinSimilarities forAccessionNOV13a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueO15403Monocarboxylate transporter 1 . . . 523505/523 (96%)0.07 (MCT 7) (MCT 6) - Homo 1 . . . 523508/523 (96%)sapiens (Human), 523 aa.Q91W47Hypothetical 57.3 kDa 1 . . . 523442/524 (84%)0.0protein - Mus musculus 1 . . . 523476/524 (90%)(Mouse), 523 aa.JC5507monocarboxylate transporter19 . . . 474144/459 (31%)7e−613 - chicken, 542 aa.18 . . . 446226/459 (48%)Q90632Monocarboxylate transporter19 . . . 474143/459 (31%)3e−593 (MCT 3) (Retinal epithelial18 . . . 446223/459 (48%)membrane protein) - Gallusgallus (Chicken), 542 aa.A55568monocarboxylate transporter19 . . . 468138/453 (30%)5e−551 - human, 500 aa.14 . . . 437215/453 (46%)


[0425] PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13F.
75TABLE 13FDomain Analysis of NOV13aIdentities/SimilaritiesNOV13afor thePfamMatchMatchedExpectDomainRegionRegionValuesugar_tr23 . . . 50475/556 (13%)0.017302/556 (54%) 



Example 14

[0426] The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
76TABLE 14ANOV14 Sequence AnalysisSEQ ID NO:1313624 bpNOV14a,GAGCGGAGTAACCACAGGGCCTGGGACTGGGGGGTTCCCAGATCCTTGAAGCTCACTCCGCCTCCTCCG161527-01DNA SequenceACTCTCACTGCATTTCCCACCTTCCTGTGGGCCTTGCGGCATCTTCATCACTGAGGCACCTGGTTACGCTTCACCTCTTGTTTCCTGCCCTCACTGCATTCCCTCACCTCTACCTTTTTATCCTTCCACCCTAGGCTTCTCTCCTCCCTCTTCCCTCACTCCTGACTCTTCCTCTTCCCAGCGGACGGCTGGAGGACCGCTCAGTCTCTCCTCTCTCACTTCCCTTCCTCTCTCTCACCTTCACCACCCAACACCTCCCTCCCTGCCTCTTTCTTTCTGCTCCCTCATTCTCTCCCCACCACTCTCTTCTCGTGGCCCCCTTGCCCGCGCGCCCTCTTCCCTTCCCCTTGCCTCACTCTCTCAGCTTTCTTCCCACAGTTGAGCTCGGGCAGCTCTTTCTGGGGATAGCTATGGGGCTTTGGGGGAAGAAAGGGACAGTGGCTCCCCATGACCAGAGTCCAAGACGAAGACCTAAAAAAGGGCTTATCAAGAAAAAAATGGTGAAGAGGGAAAAACAGAAGCGCAATATGGAGGAACTGAAGAAGGAAGTGGTCATGGATGATCACAAATTAACCTTGGAAGAGCTGAGCACCAAGTACTCCGTGGACCTGACAAAGGGCCATAGCCACCAAAGGGCAAAGGAAATCCTGACTCGAGGTGGACCCAATACTGTTACCCCACCCCCCACCACTCCAGAATGGGTCAAATTCTGTAAGCAACTGTTCGGAGGCTTCTCCCTCCTACTATGGACTGGGGCCATTCTCTGCTTTGTGGCCTACAGCATCCAGATATATTTCAATGAGGAGCCTACCAAAGACAACCTCTACCTGAGCATCGTACTGTCCGTCGTGGTCATCGTCACTGGCTGCTTCTCCTATTATCAGGAGGCCAAGAGCTCCAAGATCATGGAGTCTTTTAAGAACATGGTGCCTCAGCAAGCTCTGGTAATTCGAGGAGGAGAGAAGATGCAAATTAATGTACAAGAGGTGGTGTTGGGAGACCTGGTGGAAATCAAGGGTGGAGACCGAGTCCCTGCTGACCTCCGGCTTATCTCTGCACAAGGATGTAAGGTGGACAACTCATCCTTGACTGGGGAGTCAGAACCCCAGAGCCGCTCCCCTGACTTCACCCATGAGAACCCTCTGGAGACCCGAAACATCTGCTTCTTTTCCACCAACTGTGTGGAAGGAACCGCCCGGGGTATTGTGATTGCTACGGGAGACTCCACAGTGATGGGCAGAATTGCCTCCCTGACGTCAGGCCTGGCGGTTGGCCAGACACCTATCGCTGCTGAGATCGAACACTTCATCCATCTGATCACTGTGGTGGCCGTCTTCCTTGGTGTCACTTTTTTTGCGCTCTCACTTCTCTTGGGCTATGGTTGGCTGGAGGCTATCATTTTTCTCATTGGCATCATTGTGGCCAATGTGCCTGAGGGGCTGTTGGCCACAGTCACTGTGTGCCTGACCCTCACAGCCAAGCGCATGGCGCGGAAGAACTGCCTGGTGAAGAACCTGGAGGCGGTGGAGACGCTGGGCTCCACGTCCACCATCTGCTCAGACAAGACGGGCACCCTCACCCAGAACCGCATGACCGTCGCCCACATGTCGTTTGATATGACCGTGTATGAGGCCGACACCACTGAAGAACAGACTGGAAAAACATTTACCAAGAGCTCTGATACCTGGTTTATGCTGGCCCGAATCGCTGGCCTCTGCAACCGGGCTGACTTTAAGGCTAATCAGGAGATCCTGCCCATTGCTAAGAGGGCCACAACAGGTGATGCTTCCGAGTCAGCCCTCCTCAAGTTCATCGAGCAGTCTTACAGCTCTGTGGCGGAGATGAGAGAGAAAAACCCCAAGGTGGCAGAGATTCCCTTTAATTCTACCAACAAGTACCAGATGTCCATCCACCTTCGGGAGGACAGCTCCCAGACCCACGTACTGATGATGAAGGGTGCTCCGGAGAGGATCTTGGAGTTTTGTTCTACCTTTCTTCTGAATGGGCAGGAGTACTCAATGAACGATGAAATGAAGGAAGCCTTCCAAAATGCCTACTTAGAACTGGGAGGTCTGGGGGAACGTGTGCTAGGCTTCTGCTTCTTGAATCTGCCTAGCAGCTTCTCCAAGGGATTCCCATTTAATACAGATGAAATAAATTTCCCCATGGACAACCTTTGTTTTGTGGGCCTCATATCCATGATTGACCCTCCCCGAGCTGCAGTGCCTGATGCTGTGAGCAAGTGTCGCAGTGCAGGAATTAAGGTGATCATGGTAACAGGAGATCATCCCATTACAGCTAAGGCCATTGCCAAGGGTGTGGGCATCATCTCAGAAGGCACTGAGACGGCAGAGGAAGTCGCTGCCCGGCTTAAGATCCCTATCAGCAAGGTCGATGCCAGTGCTGCCAAAGCCATTGTGGTGCATGGTGCAGAACTGAAGGACATACAGTCCAAGCAGCTTGATCAGATCCTCCAGAACCACCCTGAGATCGTGTTTGCTCGGACCTCCCCTCAGCAGAAGCTCATCATTGTCGAGGGATGTCAGAGGCTGGGAGCCGTTGTGGCCGTGACAGGTGACGGGGTGAACGACTCCCCTGCGCTGAAGAAGGCTGACATTGGCATTGCCATGGGCATCTCTGGCTCTGACGTCTCTAAGCAGGCAGCCGACATGATCCTGCTGGATGACAACTTTGCCTCCATCGTCACGGGGGTGGAGGAGGGCCGCCTGATCTTTGACAACCTGAAGAAATCCATCATGTACACCCTGACCAGCAACATCCCCGAGATCACGCCCTTCCTGATGTTCATCATCCTCGGTATACCCCTGCCTCTGGGAACCATAACCATCCTCTGCATTGATCTCGGCACTGACATGGTCCCTGCCATCTCCTTGGCTTATGAGTCAGCTGAAAGCGACATCATGAAGAGGCTTCCAAGGAACCCAAAGACGGATAATCTGGTGAACCACCGTCTCATTGGCATGGCCTATGGACAGATTGGGATGATCCAGGCTCTGGCTGGATTCTTTACCTACTTTGTAATCCTGGCTGAGAATGGTTTTAGGCCTGTTGATCTGCTGGGCATCCGCCTCCACTGGGAAGATAAATACTTGAATGACCTGGAGGACAGCTACGGACAGCAGTGGACCTATGAGCAACGAAAAGTTGTGGAGTTCACATGCCAAACGGCCTTTTTTGTCACCATCGTGGTTGTGCAGTGGGCGGATCTCATCATCTCCAAGACTCGCCGCAACTCACTTTTCCAGCAGGGCATGAGAAACAAAGTCTTAATATTTGGGATCCTGGAGGAGACACTCTTGGCTGCATTTCTGTCCTACACTCCAGGCATGGACGTGGCCCTGCGAATGTACCCACTCAAGATAACCTGGTGGCTCTGTGCCATTCCCTACAGTATTCTCATCTTCGTCTATGATGAAATCAGAAAACTCCTCATCCGTCAGCACCCGGATGGCTGGGTGGAAAGGGAGACGTACTACTAAACTCAGCAGATGAAGAGCTTCATGTGACACAGGGGTGTTGTGAGAGCTGGGATGGGGORF Start: ATG at 478ORF Stop: TAA at 3565SEQ ID NO:1321029 aaMW at 114165.1 kDNOV14a,MGLWGKKGTVAPHDQSPRRRPKKGLIKKKMVKREKQKRNMEELKKEVVMDDHKLTLEELSTKYSVDLCG161527-01Protein SequenceTKGHSHQRAKEILTRGGPNTVTPPPTTPEWVKFCKQLFGGFSLLLWTGAILCFVAYSIQIYFNEEPTKDNLYLSIVLSVVVIVTGCFSYYQEAKSSKIMESFKNMVPQQALVIRGGEKMQINVQEVVLGDLVEIKGGDRVPADLRLISAQGCKVDNSSLTGESEPQSRSPDFTHENPLETRNICFFSTNCVEGTARGIVIATGDSTVMGRIASLTSGLAVGQTPIAAEIEHFIHLITVVAVFLGVTFFALSLLLGYGWLEAIIFLIGIIVANVPEGLLATVTVCLTLTAKRMARKNCLVKNLEAVETLGSTSTICSDKTGTLTQNRMTVAHMWFDMTVYEADTTEEQTGKTFTKSSDTWFMLARIAGLCNRADFKANQEILPIAKRATTGDASESALLKFIEQSYSSVAEMREKNPKVAEIPFNSTNKYQMSIHLREDSSQTHVLMMKGAPERILEFCSTFLLNGQEYSMNDEMKEAFQNAYLELGGLGERVLGFCFLNLPSSFSKGFPFNTDEINFPMDNLCFVGLISMIDPPRAAVPDAVSKCRSAGIKVIMVTGDHPITAKAIAKGVGIISEGTETAEEVAARLKIPISKVDASAAKAIVVHGAELKDIQSKQLDQILQNHPEIVFARTSPQQKLIIVEGCQRLGAVVAVTGDGVNDSPALKKADIGIAMGISGSDVSKQAADMILLDDNFASIVTGVEEGRLIFDNLKKSIMYTLTSNIPEITPFLMFIILGIPLPLGTITILCIDLGTDMVPAISLAYESAESDIMKRLPRNPKTDNLVNHRLIGMAYGQIGMIQALAGFFTYFVILAENGFRPVDLLGIRLHWEDKYLNDLEDSYGQQWTYEQRKVVEFTCQTAFFVTIVVVQWADLIISKTRRNSLFQQGMRNKVLIFGILEETLLAAFLSYTPGMDVALRMYPLKITWWLCAIPYSILIFVYDEIRKLLIRQHPDGWVERETYY


[0427] Further analysis of the NOV14a protein yielded the following properties shown in Table 14B.
77TABLE 14BProtein Sequence Properties NOV14aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 7; pos.chg 2; neg.chg 0H-region: length 6; peak value −5.29PSG score: −9.69GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −14.68possible cleavage site: between 15 and 16>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 10INTEGRALLikelihood =−3.24Transmembrane105-121INTEGRALLikelihood =−8.39Transmembrane138-154INTEGRALLikelihood =−10.08Transmembrane305-321INTEGRALLikelihood =−5.63Transmembrane329-345INTEGRALLikelihood =  0.21Transmembrane705-721INTEGRALLikelihood =−6.58Transmembrane800-816INTEGRALLikelihood =−3.19Transmembrane863-879INTEGRALLikelihood =−3.77Transmembrane926-942INTEGRALLikelihood =−2.97Transmembrane959-975INTEGRALLikelihood =−1.33Transmembrane991-1007PERIPHERAL Likelihood = 1.59 (at 582)ALOM score: −10.08 (number of TMSs: 10)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 112Charge difference: −3.0 C(−2.0) - N( 1.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3 aMITDISC: discrimination of mitochondrial targeting seqR content:4Hyd Moment(75):7.31Hyd Moment(95):7.79G content:4D/E content:2S/T content:2Score: −4.33Gavel: prediction of cleavage sites for mitochondrialpreseqR-2 motif at 30 RRP|KKNUCDISC: discrimination of nuclear localization signalspat4: PRRR (4) at 17pat4: RRRP (4) at 18pat4: RRPK (4) at 19pat4: RPKK (4) at 20pat7: PRRRPKK (5) at 17bipartite: KKGTVAPHDQSPRRRPK at 6bipartite: RRPKKGLIKKKMVKREK at 19bipartite: KKGLIKKKMVKREKQKR at 22content of basic residues: 10.3%NLS Score: 2.60KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: foundILPI at 447RNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regions30 V0.6331 K0.7132 R0.7133 E0.7134 K0.7135 Q0.7136 K0.7137 R0.7138 N0.7139 M0.7140 E0.7141 E0.7142 L0.7143 K0.7144 K0.7145 E0.7146 V0.7147 V0.7148 M0.7149 D0.7150 D0.7151 H0.7152 K0.7153 L0.7154 T0.7155 L0.7156 E0.7157 E0.7158 L0.71total: 29 residuesFinal Results (k = 9/23):55.6%: endoplasmic reticulum11.1%: Golgi11.1%: vesicles of secretory system11.1%: nuclear11.1%: vacuolar>> prediction for CG161527-01 is end (k = 9)


[0428] A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14C.
78TABLE 14CGeneseq Results for NOV14aNOV14aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABP52413Human TCH115 protein1 . . . 10291028/1029 (99%) 0.0SEQ ID NO: 24 - Homo1 . . . 10291028/1029 (99%) sapiens, 1029 aa.[WO200261095-A1,08 AUG. 2002]ABP52415Human TCH115 protein1 . . . 10291027/1029 (99%) 0.0SEQ ID NO: 34 - Homo1 . . . 10291028/1029 (99%) sapiens, 1029 aa.[WO200261095-A1,08 AUG. 2002]ABP52412Human TCH115 protein30 . . . 1029 999/1000 (99%)0.0SEQ ID NO: 1 - Homo1 . . . 1000999/1000 (99%)sapiens, 1000 aa.[WO200261095-A1,08 AUG. 2002]ABP52414Human TCH115 protein30 . . . 1029 998/1000 (99%)0.0SEQ ID NO: 33 - Homo1 . . . 1000999/1000 (99%)sapiens, 1000 aa.[WO200261095-A1,08 AUG. 2002]AAU10501Rat (Na, K)-ATPase - Rattus29 . . . 1029 795/1003 (79%)0.0rattus, 1212 aa.100 . . . 1102 886/1003 (88%)[US6309874-B1,30 OCT. 2001]


[0429] In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14D.
79TABLE 14DPublic BLASTP Results for NOV14aNOV14aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ13733Sodium/potassium-transporting1 . . . 10291029/1029 (100%)0.0ATPase alpha-4 chain (EC1 . . . 10291029/1029 (100%)3.6.3.9) (Sodium pump 4)(Na+/K+ ATPase 4) - Homosapiens (Human), 1029 aa.Q9WV27Sodium/potassium-transporting6 . . . 1029858/1027 (83%)0.0ATPase alpha-4 chain (EC6 . . . 1032947/1027 (91%)3.6.3.9) (Sodium pump 4)(Na+/K+ ATPase 4) - Musmusculus (Mouse), 1032 aa.Q64541Sodium/potassium-transporting7 . . . 1029853/1025 (83%)0.0ATPase alpha-4 chain (EC5 . . . 1028938/1025 (91%)3.6.3.9) (Sodium pump 4)(Na+/K+ ATPase 4) - Rattusnorvegicus (Rat), 1028 aa.Q9UQ25KIAA0778 protein - Homo32 . . . 1029  804/999 (80%)0.0sapiens (Human), 1049 aa51 . . . 1049  902/999 (89%)(fragment).P50993Sodium/potassium-transporting32 . . . 1029  804/999 (80%)0.0ATPase alpha-2 chain22 . . . 1020  902/999 (89%)precursor (EC 3.6.3.9) (Sodiumpump 2) (Na+/K+ ATPase 2) -Homo sapiens (Human), 1020aa.


[0430] PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14E.
80TABLE 14EDomain Analysis of NOV14aIdentities/SimilaritiesNOV14afor theMatchMatchedExpectPfam DomainRegionRegionValueCation_ATPase_N 41 . . . 124 41/87 (47%)2.1e−34 73/87 (84%)E1-E2_ATPase143 . . . 374102/244 (42%) 1.2e−113214/244 (88%)Hydrolase378 . . . 744 42/373 (11%)1.7e−14231/373 (62%)Cation_ATPase_C 840 . . . 1028 72/193 (37%)6.3e−92174/193 (90%)



Example 15

[0431] The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
81TABLE 15ANOV15 Sequence AnalysisSEQ ID NO: 1331714 bpNOV15a,GGATGGATGACAGTGACAGAGCTCTAAATTTCTACTAACCAGCTGAGACACAATGGCCAAAAAAGCGCG161579-01DNA SequenceATTGCTGTGATTGGAGCTGGAATTAGCGGACTGGGGGCCATCAAGTGCTGCCTGGATGAAGATCTGGAGCCCACCTGCTTTGAAAGAAATGATGATATTGGACATCTCTGGAAATTTCAAAAAAATACTTCAGAGAAAATGCCTAGTATCTACAAATCTGTGACCATCAATACTTCCAAGGAGATGATGTGCTTCAGTGACTTCCCTGTCCCTGATCATTTTCCCAACTACATGCACAACTCCAAACTCATGGACTACTTCGGGATGTATGCCACACACTTTGGCCTCCTGAATTACATTCGTTTTAAGACTGAAGTGCAAAGTGTGAGGAAGCACCCAGATTTTTCTATCAATGGACAATGGGATGTTGTTGTGGAGACTGAAGAGAAACAAGAGACTTTGGTCTTTGATGGGGTCTTAGTTTGCAGTGGACACCACACAGATCCCTACTTACCACTTCAGTCCTTCCCAGGCATTGAGAAATTTGAAGGCTGTTATTTCCATAGTCGGGAATACAAAAGTCCCGAGGACTTTTCAGGGAAAAGAATCATAGTGATCGGCATTGGAAATTCTGGAGTGGATATTGCGGTGGAGCTCAGTCGTGTAGCAAAACAGATATTCCTTAGTACTAGACGTGGATCATGGATTTTACACCGTGTTTGGGATAATGGGTATCCCATGGATAGTTCATTTTTCACTCGGTTCAATAGTTTTCTCCAGAAAATACTAACTACACCACAAATAAATAACCAGCTAGAGAAAATAATGAACTCAAGATTTAATCATGCGCACTGTGGCCTGCAGCCTCAGCACAGGGCTTTAAGTCAGCATCCAACTGTCAGTGATGACCTGCCAAATCACATAATTTCTGGAAAAGTCCAAGTAAAGCCCAGCGTGAAGGAGTTCACAGAAACAGATGCCATTTTTGAAGACAGCACTGTAGAGGAGAATATTGATGTTGTCATCTTTGCTACAGGATACAGTTTTTCTTTTTCTTTCCTTGATGGTCTGATCAAGGTTACTAACAATGAAGTATCTCTGTATAAGCTTATGTTCCCTCCTGACCTGGAGAAGCCAACCTTGGCTGTCATCGGTCTTATCCAACCACTGGGCATCATCTTACCTATTGCAGAGCTCCAATCTCGTTGGGCTACACGAGTGTTCAAAGGGCTGATCAAATTACCCTCAGCGGAGAACATGATGGCAGATATTGCCCAGAGGAAAAGGGCTATGGAAAAAAGATATGTAAAGACACCCCGCCACACAATCCAAGTGGATCACATTGAGTACATGGATGAGATTGCCATGCCAGCAGGGGTGAAACCCAACCTGCTCTTCCTCTTTCTCTCAGATCCAAAGCTGGCCATGGAGGTTTTCTTTGGCCCCTGCACCCCATACCAGTACCACCTCCATGGGCCCGAGAAATGGGATGGGGCCCGGAGAGCTAACCTGACCCAGAGAGAGAGGATCATCAAGCCCCTGAGCACTCGCATTACTAGTGAGGACAGCCACCCATCCTCACAGCTCTCTTGGATAAAGATGGCCCCAGTGAGCCTGGCATTTCTGGCTGCTGGCTTGGCATACTTTCGATATACTCATTACGGTAAATGGAAATAAATGAAAGAACACTGAGGGGGAAAAGCATGGORF Start: ATG at 53ORF Stop: TAA at 1682SEQ ID NO: 134543 aaMW at 61938.6kDNOV15a,MAKKAIAVIGAGISGLGAIKCCLDEDLEPTCFERNDDIGHLWKFQKNTSEKMPSIYKSVTINTSKEMCG161579-01Protein SequenceMCFSDFPVPDHFPNYMHNSKLMDYFGMYATHFGLLNYIRFKTEVQSVRKHPDFSINGQWDVVVETEEKQETLVFDGVLVCSGHHTDPYLPLQSFPGIEKFEGCYFHSREYKSPEDFSGKRIIVIGIGNSGVDIAVELSRVAKQIFLSTRRGSWILHRVWDNGYPMDSSFFTRFNSFLQKILTTPQINNQLEKIMNSRFNHAHCGLQPQHRALSQHPTVSDDLPNHIISGKVQVKPSVKEFTETDAIFEDSTVEENIDVVIFATGYSFSFSFLDGLIKVTNNEVSLYKLMFPPDLEKPTLAVIGLIQPLGIILPIAELQSRWATRVFKGLIKLPSAENMMADIAQRKRAMEKRYVKTPRHTIQVDHIEYMDEIAMPAGVKPNLLFLFLSDPKLAMEVFFGPCTPYQYHLHGPEKWDGARRANLTQRERIIKPLSTRITSEDSHPSSQLSWIKMAPVSLAFLAAGLAYFRYTHYGKWK


[0432] Further analysis of the NOV15a protein yielded the following properties shown in Table 15B.
82TABLE 15BProtein Sequence Properties NOV15aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 4; pos.chg 2; neg.chg 0H-region: length 15; peak value 8.96PSG score: 4.56GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −6.84possible cleavage site: between 18 and 19>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 4Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −5.89 Transmembrane366-382PERIPHERAL Likelihood = 0.53 (at 323)ALOM score: −5.89 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 373Charge difference: 3.0 C(2.0) - N(−1.0)C > N: C-terminal side will be inside>>>Caution: Inconsistent mtop result with signalpeptide>>> membrane topology: type 1b (cytoplasmic tail366 to 543)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):10.25Hyd Moment (95):8.17G content:4D/E content:1S/T content:1Score: −5.79Gavel: prediction of cleavage sites for mitochondrialpreseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 11.0%MLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: YGKWSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: foundILPI at 378RNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: too long tailDileucine motif in the tail: foundLL at 449checking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):34.8%: nuclear26.1%: mitochondrial21.7%: cytoplasmic 4.3%: vacuolar 4.3%: vesicles of secretory system 4.3%: endoplasmic reticulum 4.3%: peroxisomal>> prediction for CG161579-01 is nuc (k = 23)


[0433] A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15C.
83TABLE 15CGeneseq Results for NOV15aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV15a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAE21044Human drug metabolising1 . . . 543540/544 (99%)0.0enzyme (DME-2) protein -1 . . . 544541/544 (99%)Homo sapiens, 544 aa.[WO200212467-A2,14 FEB. 2002]AAM40962Human polypeptide SEQ ID1 . . . 534292/535 (54%)e−175NO 5893 - Homo sapiens,16 . . . 544 391/535 (72%)550 aa. [WO200153312-A1,26 JUL. 2001]AAW49699Human flavin-containing1 . . . 534291/535 (54%)e−174mono-oxygenase 2 - Homo1 . . . 529390/535 (72%)sapiens, 535 aa.[WO9824914-A1,11 JUN. 1998]ABG31581Human flavin containing1 . . . 534288/535 (53%)e−172monooxygenase-2 (FMO2)1 . . . 529387/535 (71%)variant protein - Homosapiens, 535 aa.[WO200253579-A2,11 JUL. 2002]AAR97549Human flavin-containing4 . . . 531287/529 (54%)e−169monooxygenase - Homo3 . . . 529370/529 (69%)sapiens, 532 aa.[EP712932-A2,22 MAY 1996]


[0434] In a BLAST search of public sequence datbases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15D.
84TABLE 15DPublic BLASTP Results for NOV15aIdentities/ProteinSimilarities forAccessionNOV15a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueA46677dimethylaniline1 . . . 534337/534 (63%)0.0monooxygenase1 . . . 533420/534 (78%)(N-oxide-forming) (EC1.14.13.8) 1C1- rabbit, 533aa.Q8K4C0Flavin-containing1 . . . 534338/534 (63%)0.0monooxygenase 5 (EC1 . . . 533417/534 (77%)1.14.13.8) - Rattus norvegicus(Rat), 533 aa.Q04799Dimethylaniline2 . . . 534336/533 (63%)0.0monooxygenase [N-oxide1 . . . 532419/533 (78%)forming] 5 (EC 1.14.13.8)(Hepatic flavin-containingmonooxygenase 5) (FMO 5)(Dimethylaniline oxidase 5)(FMO 1C1) (FMO form 3) -Oryctolagus cuniculus(Rabbit), 532 aa.S71618dimethylaniline1 . . . 534330/534 (61%)0.0monooxygenase1 . . . 533418/534 (77%)(N-oxide-forming) (EC1.14.13.8) FMO5- human,533 aa.Q8R1W6Flavin containing1 . . . 534335/534 (62%)0.0monooxygenase 5 - Mus1 . . . 533414/534 (76%)musculus (Mouse), 533 aa.


[0435] PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15E.
85TABLE 15EDomain Analysis of NOV15aIdentities/SimilaritiesNOV15afor thePfamMatchMatchedExpectDomainRegionRegionValuepyr_redox5 . . . 360 48/438 (11%)0.0092223/438 (51%)FMO-like3 . . . 534327/536 (61%)0427/536 (80%)



Example 16

[0436] The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.
86TABLE 16ANOV16 Sequence AnalysisSEQ ID NO: 135345 bpNOV16a,CATCATCCAGGAAAGACGTTGGTTTTGAGGTTGACATACCTATAAAGGACAGTAACTACCATGGCTTCG161650-01DNA SequenceCCACCGCTTTGGCAAAACCTCAGATGTGTGGTCTTCTGGCCAAATGTCTGCAATTTCATATTGTTGGAGCCTTTATTGTATCCCTGGGGGTTGCAGCTGTCTGTAAGATTGCTGTGGCTGAACCAAGAAAGAAGACATATGCAGATTTCTACAGAAATTATGATTCCGTGAAAGATTTGGAGGAGATGGGGAAGGCTGGTATCTTTCAGAATACAAAGTGATTTTGGAATGCAAAGGATTTCTTTGGGTTGAATTACCTAGAAGTTTGTCACTTACCTORF Start: ATG at 61ORF Stop: TGA at 286SEQ ID NO: 13675 aaMW at 8171.6kDNOV16a,MASTALAKPQMCGLLAKCLQFHIVGAFIVSLGVAAVCKIAVAEPRKKTYADFYRNYDSVKDLEEMGKCG161650-01Protein SequenceAGIFQNTK


[0437] Further analysis of the NOV16a protein yielded the following properties shown in Table 16B.
87TABLE 16BProtein Sequence Properties NOV16aSignalP analysis:Cleavage site between residues 43 and 44PSORT II analysis:PSG:a new signal peptide predictionmethodN-region: length 8;pos.chg 1; neg.chg 0H-region: length 8; peak value 4.86PSG score: 0.46GvH:von Heijne's method forsignal seq. recognitionGvH score (threshold: −2.1): −4.84possible cleavage site:between 26 and 27>>>Seems to have no N-terminal signal peptideALOM:Klein et al's method forTM region allocationInit position for calculation: 1Tentative number of TMS(s)for the threshold 0.5: 1Number of TMS(s)for threshold 0.5: 1INTEGRAL Likelihood = −6.58Transmenbrane 23-39PERIPHERALLikelihood = 7.11 (at 5)ALOM score:−6.58 (number of TMSs: 1)MTOP:Prediction of membranetopology (Hartmann et al.)Center position for calculation: 30Charge difference: -0.5C(2.0) − N(2.5)N >= C: N-terminalside will be inside>>>membrane topology: type 2(cytoplasmic tail 1 to 23)MITDISC:discrimination of mitochondrialtargeting seqR content: 0 Hyd Moment(75): 7.56Hyd Moment(95): 5.39 G content: 3D/E content: 1 S/T content: 3Score: - 5.40Gavel:prediction of cleavage sites formitochondrial preseqcleavage site motif not foundNUCDISC:discrimination of nuclearlocalization signalspat4: PRKK (4) at 44pat7: PRKKTYA (5) at 44bipartite: nonecontent of basic residues: 13.3%NLS Score: 0.21KDEL:ER retention motif inthe C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signalin the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern : nonePrenylation motif: nonememYQRL: transport motif from cellsurface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: foundLL at 14checking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal proteinmotifs: nonechecking 33 PROSITE prokaryoticDNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 94.1COIL:Lupas's algorithm to detectcoiled-coil regionstotal: 0 residuesFinal Results (k = 9/23)30.4 %: cytoplasmic30.4 %: mitochondrial13.0 %: Golgi 8.7 %: endoplasmic reticulum 4.3 %: extracellular,including cell wall 4.3 %: vacuolar 4.3 %: vesicles of secretory system 4.3 %: nuclear>>prediction for CG161650-01 is cyt (k = 23)


[0438] A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16C.
88TABLE 16CGeneseq Results for NOV16aNOV16aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAM79710Human protein SEQ ID NO 6 . . . 7547/70 (67%)1e−203356 - Homo sapiens, 83 aa.15 . . . 8356/70 (79%)[WO200157190-A2, 09-AUG-2001]ABP62939Human polypeptide SEQ ID 1 . . . 7547/75 (62%)1e−19NO 376 - Homo sapiens, 75 1 . . . 7557/75 (75%)aa. [WO200218424-A2, 07-MAR-2002]AAB56523Human prostate cancer 1 . . . 7547/75 (62%)1e−19antigen protein sequence SEQ19 . . . 9357/75 (75%)ID NO: 1101 - Homo sapiens,93 aa. [WO200055174-A1,21-SEP-2000]AAM23875Human EST encoded protein26 . . . 7535/50 (70%)9e−14SEQ ID NO: 1400 - Homo 4 . . . 5341/50 (82%)sapiens, 53 aa.[WO200154477-A2, 02-AUG-2001]AAM78726Human protein SEQ ID NO 1 . . . 3322/33 (66%)8e−061388 - Homo sapiens, 74 aa.12 . . . 4427/33 (81%)[WO200157190-A2, 09-AUG-2001]


[0439] In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16D.
89TABLE 16D.Public BLASTP Results for NOV16aNOV16aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP04038Cytochrome c oxidase3 . . . 7556/73 (76%)2e−24polypeptide VIC (EC 1.9.3.1)1 . . . 7361/73 (82%)(STA) - Bos taurus (Bovine), 73 aa.S00114cytochrome-c oxidase (EC6 . . . 7551/70 (72%)8e−231.9.3.1) chain VIc [validated]-7 . . . 7658/70(82%)rat, 76 aa.P11951Cytochrome c oxidase6 . . . 7551/70(72%)8e−23polypeptide VIC-2 (EC6 . . . 7558/70 (82%)1.9.3.1) - Mus musculus(Mouse), and, 75 aa.Q9CPQ1Adult male hippocampus6 . . . 7552/70 (74%)1e−22cDNA, RIKEN full-length7 . . . 7657/70 (81%)enriched library, clone: 2900001B12,full insert sequence (11 daysembryo cDNA, RIKENfull-length enriched library,clone: 2700093G08, full insertsequence) (Cytochrome coxidase, subunit VIc) - Musmusculus (Mouse), 76 aa.CAB25169RAT CYTOCHROME C6 . . . 7551/70 (72%)4e−22OXIDASE SUBUNIT VIC7 . . . 7655/70 (77%)PROCESSEDPSEUDOGENE, COMPLETECDS - Rattus norvegicus (Rat), 76 aa.


[0440] PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16E.
90TABLE 16EDomain Analysis of NOV16aIdentities/NOV16aSimilarities forPfam DomainMatch Regionthe Matched RegionExpect ValueCOX6C1 . . . 7549/75 (65%)4e−4466/75 (88%)



Example 17

[0441] The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.
91TABLE 17ANOV17 Sequence AnalysisSEQ ID NO: 13712258 bpNOV17a,ATGCAAAGACTGAAGGGAGAGAAGGAAGCCAAGCGGGCTCTTTTGGATGCGAGGCATAACTACTTATCG161733-01DNA SequenceTTGCAATTGTGGCTTCCTGTTTGGACCTGAACAAAACCGAAGTGGAGGATGCCATTCTTGAAGGGAATCAGATTGAAAGAATTGATCAACTTTTTGCTGTTGGAGGTCTCCGACACCTCATGTTTTACTATCAAGATGTGGAGGAAGCAGAAACAGGACAACTTGGCTCTCTAGGAGGGGTAAATCTTGTTTCTGGAAAGATTAAAAAACCTAAGGTGTTCGTGACCGAGGGAAACGATGTGGCTCTTACTGGGGTATGTGTGTTCTTCATCAGGACTGACCCTTCCAAAGCCATCACCCCTGACAACATCCACCAGGAGGTGAGTTTTAACATGTTAGATGCGGCAGATGGAGGCCTGCTCAACAGTGTGAGACGTTTGCTGTCGGACATCTTCATTCCTGCTCTCAGAGCCACGAGCCATGGCTGGGGCGAGCTCGAGGGCCTTCAGGACGCAGCTAACATTCGCCAGGAGTTCTTGAGCTCCCTGGAAGGCTTTGTGAACGTCCTGTCGGGTGCACAGGAGAGTCTGAAGGAGAAGGTGAACCTTCGAAAGTGTGACATACTTGAACTGAAAACCCTAAAGGAACCTACGGACTACTTGACTCTAGCAAATAACCCTGAGACTTTGGGAAAAATAGAGGATTGCATGAAAGTATGGATCAAACAGACAGAACAGGTTCTTGCTGAAAACAATCAGCTGCTGAAGGAAGCGGATGACGTTGGGCCACGAGCGGAGCTGGAGCACTGGAAAAAAAGACTCTCCAAGTTTAACTACCTTTTGGAACAATTGAAAAGCCCGGATGTGAAGGCTGTGCTGGCAGTGCTTGCGGCGGCCAAGTCGAAACTGCTGAAGACTTGGCGGGAGATGGATATTCGAATCACTGATGCAACTAATGAAGCAAAGGACAATGTGAAATACTTGTATACACTTGAAAAATGTTGTGACCCTTTGTACAGCAGTGATCCCGTGTCCATGATGGATGCTATTCCTACACTTATAAATGCAATTAAAATGATCTATAGTATCTCTCATTACTATAATACCTCTGAGAAGATCACATCTCTGTTTGTAAAGGTAACAAATCAGATTATATCTGCATGTAAAGCCTATATTACCAATAATGGAACCGCTTCCATCTGGAACCAGCCACAGGATGTTGTTGAAGAAAAAATACTATCTGCGATTTTTGATTTTAAGGAATACCAGCTCTGCTTTCACAAGACAAAACAAAAGCTTAAACAAAATCCAAATGCAAAACAATTTGATTTTAGCGAGATGTATATTTTTGGAAAATTCGAAACTTTTCACCGACGCCTTGCCAAGATAATAGACATCTTTACAACCCTCAAGACGTATTCAGTCCTGCAAGATTCCACAATTGAAGGGCTGGAAGACATGGCCACTAAATACCAGGTATTGTACTTTAAAATAAAGAAAAAGGAATACAATTTCCTAGACCAGCGGAAAATGGATTTTGACCAAGATTACGAAGAGTTTTGCAAGCAGACTAATGACCTTCATGTAGAGTTGCGGAAGTTCATGGATGTTACATTTGCAAAGATTCAAAACACAAATCAAGCTCTAAGAATGTTGAAGAAATTTGAAAGGGCACAAATACTACATTTTAAACTTGGTATTGATGACAAATATCAACTTATCCTTGAGAACTATGGGGCTGACATTGATATGATTTCAAAGCTGTATACAAAGCAGAAATACGATCCTCCTCTGGCTCGAAACCAGCCTCCCATCGCTGGAAAGATTTTGTGGGCCCGCCAGCTCTTCCATAGGATTCAGCAGCCCATGCAGCTTTTCCAGCAGCACCCAGCTGTGCTAAGCACGGCAGAAGCCAAACCTATAATTCGCAGTTACAACAGGATGGCCAAGGTCCTCCTGGAGTTTGAGGTCCTCTTCCACAGGGCGTGGCTTCGGCAAGTGAGTGAAATTCATGTAGGTCTTGAGGCTTCATTATTGGTGAAGGCTCCAGGCACAGGGGAATTGTTTGTAAACTTTGACCCTCAGATATTAATCTTATTTAGAGAAACAGAGTGCATGGCCCAGATGGGTCTGGAAGTCTCTCCACTGGCAACTTCCCTCTTCCAGTTTGAAGGAGGTGCAAAGGCCCTGAGGCTCAGGACCAGAAAGATGCTAGCTGAATATCAGAGAGTGAAGTCAAAAATACCTGCTGCCATTGAGCAATTGATTGTCCCTCACTTGGCCAAAGTGGATGAAGCTCTCCAACCTGGCTTGGCTGCACTGACCTGGACATCACTGAATATTGAGGCTTATTTAGAAAACACTTTTGCAAAGATCAAGGACCTGGAGTTGCTGCTTGACAGGGTCAATGATTTGATTGAGTTCCGCATTGATGCCATTCTAGAAGAAATGAGCAGCACGCCTCTTTGTCAGCTTCCCCAGGAGGAGATGACAAAGGTTGAGGAAATGGTGGAGCCCCATGCTGATTATTCAAGGAATGGTGCACAAATACTACATTTTAAAAGCTCATTAGTGGAGGAGGCAGTCAATGAGCTTGTAAATATGTTGCTGGATGTGGAAGTTTTAAAAATATCCAATGAGAATAGTGTTAATTACAAAAATGAAAGTTCAGCAAAAAGAGAAGAAGGAAATTTTGACACCTTGACATCATCTATTAATGCCAGGGCCAATGCCCTGCTTTTGACGACAGTCACGAGGAAAAAGAAAGAAACTGAGATGTTAGGGGAAGAAGCCCGCGAGTTACTCTCTCATTTCAACCATCAGAACATGGATGCTCTTCTGAAAGTTACAAGGAATACACTAGAGGCCATTCGCAAACGTATTCATTCCTCTCACACAATTAACTTCCGGGGTAATAATCTTGTGCCCATTTTCCGGGCAAGCGTCACTCTGGCCATTCCCAACATCGTCATGGCCCCTGCCCTGGAAGATGTACAGCAGACCCTGAACAAAGCCGTGGAGTGCATCATCAGTGTCCCTAAGGGGGTCAGACAGTGGAGCAAGATACAAGAAAGAAAAATGGCTGCTTTGCAGAGTAATGAAGACAGTGATTCTGATGTTGAAATGGGAGAAAATGAACTTCAAGATACCTTGGAGATAGCATCTGTAAATTTACCCATTCCCGTGCAAACCAAGAACTATTATAAGAATGTTTCTGAAAACAAAGAGATTGTAAAATTAGTTTCTGTGCTTAGCACAATTATCAACTCCACCAAAAAGGTATGTCAAGAGGGTCTGGATTGCTTCAAACGCTACAATCACATTTGGCAAAAGGGAAAAGAAGAAGCCATTAAGACATTTATTACACAGAGCCCCTTGCTTTCTGAATTTGAGTCCCAGATTCTCTATTTCCAAAACCTAGAGCAGGAAATTAATGCTGAGCCTGAATATGTCTGTGTGGGTTCCATTGCTCTGTACACAGCTGACTTGAAGTTCGCCCTGACTGCTGAGACAAAGGCCTGGATGGTTGTCATTGGACGCCACTGTAACAAAAAATACCGGAGTGAGATGGAAAACATTTTTATGCTTATTGAAGAATTCAATAAGAAACTAAATCGTCCAATTAAGGACCTAGATGATATTCGGATTGCAATGGCAGCGCTGAAAGAAATAAGGGAGGAGCAAATCTCCATTGACTTTCAAGTAGGACCTATTGAGGAATCTTATGCCCTGCTTAACAGATATGGACTTCTGATAGCAAGGGAAGAGATAGACAAAGTTGATACACTGCACTATGCTTGGGAGAAGCTGCTGGCACGTGCTGGCGAAGTCCAGAATAAATTAGTCTCACTGCAGCCCAGTTTCAAGAAAGAGCTTATTAGTGCTGTGGAGGTATTCCTCCAAGATTGTCACCAGTTTTATCTGGACTATGATTTGGTATGTGTTCAGAATGGTCCAATGGCTAGCGGCTTGAAGCCCCAGGAAGCCAGTGACAGGCTTATCATGTTTCAGGTAATCTTTGATAATATCTATCGGAAATACATCACATATACTGGAGGAGAGGAGCTTTTTGGCCTGCCAGCTACACAGTATCCTCAGCTTCTTGAAATAAAGAAGCAACTAAATCTTCTACAGAAAATATATACTCTGTACAACAGTGTCATAGAAACTGTAAATAGCTATTATGATATTCTTTGGTCAGAGGTGAATATTGAAAAAATTAACAATGAACTCTTAGAATTCCAGAACAGGTGTCGAAAGCTTCCCCGGGCCTTGAAGGACTGGCAGGCTTTTTTGGACCTGAAGAAGATCATTGATGATTTCAGCGAGTGTTGCCCGCTGCTGGAATACATGGCCAGTAAAGCCATGATGGAGCGGCACTGGGAAAGGATAACCACCCTCACCGGGCACAGTCTGGATGTGGGGAATGAAAGCTTTAAGTTAAGAAATATCATGGAGGCACCTCTTCTGAAATATAAAGAGGAAATAGAGGACATCTGTATCAGTGCGGTGAAAGAGAGAGACATTGAGCAAAAGCTGAAGCAAGTGATTAATGAATGGGACAATAAAACATTCACCTTCGGCAGCTTTAAAACCCGTGGAGAGCTCCTCTTGAGAGGAGACAGTACCTCGGAAATCATCGCCAACATGGAGGACAGCTTGATGTTGCTGGGATCCCTACTGAGCAACAGGTACAATATGCCATTCAAAGCCCAGATTCAAAAATGGGTGCAGTACCTTTCCAACTCAACAGACATCATCGAGAGCTGGATGACGGTGCAAAACCTGTGGATTTATTTAGAAGCTGTCTTTGTGGGAGGAGACATTGCCAAGCAGCTGCCCAAGGAAGCCAAGCGGTTTTCTAACATAGATAAATCTTGGGTGAAGATCATGACTCGGGCACATGAAGTGCCCAGTGTAGTCCAGTGCTGTGTTGGAGATGAGACCCTGGGGCAGCTGTTACCACACTTGCTGGACCAGTTGGAAATATGCCAGAAATCCCTTACTGGGTACTTGGAGAAAAAACGACTGTGCTTTCCTCGGTTTTTCTTCGTCTCAGATCCTGCCCTTCTAGAGATTCTGGGGCAGGCGTCGGACTCCCACACTATACAGGCCCATTTGCTGAATGTGTTTGACAACATTAAATCTGTCAAGTTCCACGAAAAGGTTATCTATGATCGAATTCTGTCAATTTCCTCTCAAGAGGGTGAGACGATTGAATTGGATAAACCTGTCATGGCAGAGGGCAATGTGGAAGTTTGGCTTAATTCTCTTTTGGAAGAATCTCAGTCCTCATTGCATCTTGTGATTCGCCAGGCAGCCGCAAATATTCAAGAAACAGGTTTCCAACTAACTGAATTTCTTTCATCCTTCCCTGCTCAGGTCGGATTATTAGGAATTCAGATGATATGGACACGGGATTCAGAAGAAGCCCTTAGAAATGCCAAGTTTGATAAAAAAATCATGCAGAAAACTAATCAGGCTTTCCTGGAGCTACTCAATACATTGATAGACGTCACCACGAGGGATCTGAGTTCCACGGAACGAGTGAAATACGAGACTCTGATTACTATTCATGTGCACCAAAGGGATATCTTTGATGACCTGGTACATATGCATATCAAGAGTCCCATGGACTTTGAGTGGCTGAAACAGTGCAGATTTTACTTTAACGAAGATTCTGACAAGATGATGATTCACATCACAGATGTGGCGTTCATATACCAGAATGAATTTTTAGGCTGCACTGACAGGCTTGTAATAACTCCACTTACAGACAGATGTTACATCACGCTGGCTCAAGCTCTGGGAATGAGCATGGGGGGAGCCCCTGCTGGACCTGCAGGCACAGGCAAAACAGAAACCACTAAAGACATGGGACGATGCCTCGGGAAATACGTCGTGGTTTTCAATTGTTCAGACCAGATGGATTTCCGAGGACTTGGACGGATTTTTAAGGGACTGGCACAGTCTGGATCCTGGGGTTGTTTTGATGAATTTAACCGTATTGATCTACCAGTTCTCTCGGTTGCAGCCCAGCAAATTTCCATTATTCTGACATGTAAAAAGGAGCACAAAAAGTCTTTTATCTTTACTGATGGAGATAATGTGACTATGAACCCTGAATTTGGGCTTTTCTTAACCATGAATCCTGGCTATGCCGGACGGCAGGAACTCCCTGAAAACTTGAAGATTAATTTCCGCTCAGTGGCCATGATGGTGCCTGACCGTCAGATTATCATAAGGGTGAAGTTGGCTAGTTGTGGCTTCATTGACAACGTTGTTTTGGCCAGGAAGTTTTTCACGCTCTACAAACTGTGTGAGGAGCAGCTTTCTAAGCAGGTTCATTATGACTTTGGCCTGCGTAACATTCTGTCAGTTCTTCGGACCTTGGGAGCAGCAAAAAGAGCCAATCCAATGGATACGGAGTCCACGATTGTCATGCGTGTACTACGGGACATGAATCTTTCTAAACTGGTAGATGAGGATGAACCCTTGTTTTTGAGTTTGATTGAAGATCTCTTTCCAAATATTCTTCTGGACAAGGCAGGTTACCCTGAACTGGAAGCAGCAATTAGTAGACAGGTTGAAGAAGCTGGTTTAATCAACCATCCTCCTTGGAAACTGAAGGTCATCCAGCTATTCGAAACGCAGAGAGTGCGACATGGGATGATGACTCTGGGGCCCAGTGGGGCTGGGAAGACCACCTGCATCCACACCTTGATGAGAGCCATGACAGATTGTGGAAAACCACATCGGGAAATGAGGATGAATCCCAAAGCGATTACTGCCCCACAGATGTTTGGTCGGCTGGACGTTGCCACAAATGACTGGACTGATGGGATATTTTCTACGCTTTGGAGGAAAACATTAAGAGCAAAGAAAGGTGAACATATCTGGATAATTCTTGATGGTCCAGTAGATGCCATCTGGATTGAAAATCTGAATTCTGTTTTGGATGATAACAAAACTCTAACCCTTGCCAATGGTGATCGGATTCCCATGGCTCCAAACTGCAAGATCATTTTCGAGCCTCATAACATTGACAATGCTTCTCCTGCCACCGTCTCAAGAAATGGAATGGTTTTCATGAGCTCTTCTATCCTTGATTGGAGTCCTATTCTTCAGGGTTTTCTTAAGAAACGCTCACCTCAAGAAGCAGAAATTCTTCGTCAGCTGTACACCGAGTCTTTCCCAGACTTGTATCGCTTCTGTATCCAGAACTTAGAATACAAGATGGAGGTGCTGGAGGCCTTTGTCATCACACAGAGCATTAACATGCTTCAAGGCCTGATTCCTCTGAAGGAGCAAGGCGGGGAGGTGAGCCAGGCTCACCTGGGGCGGCTGTTCGTGTTCGCGCTGCTGTGGAGCGCGGGGGCGGCGCTGGAGCTGGACGGACGGCGCCGCCTGGAGCTCTGGCTGCGCTCTCGGCCCACAGGGACGCTGGAGCTGCCGCCGCCAGCGGGGCCCGGGGACACCGCCTTCGACTACTATGTGGCGCCCGATGGTACATGGACGCACTGGAACACGCGTACCCAGGAATACCTGTATCCGTCTGATACCACCCCAGAGTATGGTTCTATTCTGGTGCCAAATGTTGACAATGTGAGGACTGACTTTCTAATTCAAACCATTGCTAAACAGGGCAAGGCTGTGCTATTAATTGGTGAACAAGGAACAGCCAAAACAGTAATAATTAAAGGATTTATGTCAAAATATGATCCTGAATGTCACATGATCAAGAGTCTGAATTTTTCTTCTGCAACCACCCCACTGATGTTCCAGAGGACGATAGAGAGCTATGTGGATAAACGAATGGGTACAACATATGGCCCTCCTGCGGGAAAGAAGATGACTGTTTTTATTGATGATGTGAATATGCCAATAATCAATGAGTGGGGAGATCAGGTTACGAATGAGATAGTGCGACAGCTGATGGAACAAAATGGATTCTATAATCTAGAGAAGCCTGGGGAGTTCACCAGCATCGTGGACATCCAGTTTTTGGCAGCCATGATCCATCCTGGTGGTGGACGCAATGACATACCCCAAAGACTCAAGAGGCAGTTCTCTATATTTAATTGCACGTTGCCCTCTGAAGCTTCTGTGGACAAGATCTTTGGTGTGATTGGGGTAGGCCACTACTGTACTCAGAGGGGTTTCTCAGAAGAAGTGAGAGATTCTGTGACAAAATTGGTGCCTCTGACACGCCGACTATGGCAGATGACCAAGATTAAAATGCTTCCTACCCCTGCAAAATTCCATTATGTGTTTAACCTACGAGATCTTTCTCGGGTCTGGCAGGGAATGCTGAACACTACTTCAGAGCTGTTAAAGCTGTGGAAGCATGAGTGTAAACGTGTTATAGCTGACCGTTTCACAGTGTCCAGTGATGTGACCTGGTTTGATAAGGCTTTAGTAAGTTTGGTAGAGGAGGAGTTTGGTGAAGAGAAAAAACTCTTGGTGGATTGTGGAATTGACACATATTTTGTGGATTTCTTGAGAGATGCACCTGAAGCTGCAGGTGGTGAAACATCTGAAGAGGCTGATGCTGAAACACCTAAAATTTATGAGCCAATTGAATCTTTTAGTCACCTAAAAGAGCGTCTGAATATGTTCCTGCAGCTCTATAATGAGAGCATCCGTGGCGCCGGCATGGACATGGTGTTCTTTGCAGATGCCATGGTTCACTTAGTCAAGATCTCTCGTGTCATTCGTACTCCTCAGGGAAATGCCCTCCTGGTCGGGGTGGGCGGATCAGGAAAGCAGAGCCTGACGAGGTTGGCTTCATTCATTGCTGGCTACGTTTCCTTCCAGATCACTCTGACGAGATCCTACAACACATCAAATCTGATGGAAGATCTGAAGGTTTTGTATCGAACAGCTGGTCAGCAAGGCAAAGGAATCACTTTTATTTTCACAGACAATGAGATTAAAGATGAGTCATTTTTGGAATATATGAACAATGTTTTATCATCAGGTGAGGTATCTAACCTATTTGCTCGAGATGAAATTGATGAAATTAATAGCGACCTGGCATCAGTCATGAAAAAAGAATTCCCCAGGTGCCTTCCTACCAATGAGAACCTGCACGACTACTTCATGAGTCGGGTCCGACAGAACCTTCATATTGTGCTCTGCTTCTCGCCAGTGGGGGAGAAATTTCGAAACAGAGCTTTGAAGTTCCCTGCCCTAATTTCAGGATGCACAATTGACTGGTTCAGCCGATGGCCCAAAGATGCTTTAGTTGCTGTGTCTGAACACTTCCTCACTTCCTATGATATTGACTGCAGTTTGGAAATCAAGAAGGAGGTGGTCCAATGCATGGGCTCCTTCCAGGATGGGGTGGCTGAGAAGTGTGTTGATTATTTTCAGAGATTCCGACGTTCTACCCACGTGACGCCCAAATCATACCTCTCCTTTATTCAGGGCTATAAGTTCATATATGGAGAAAAGCATGTGGAGGTGCGGACCCTGGCCAACAGAATGAATACTGGATTGGAAAAGCTCAAAGAAGCTTCAGAGTCTGTTGCAGCCTTGAGTAAAGAACTGGAAGCGAAAGAAAAGGAGCTACAAGTGGCCAACGATAAAGCCGACATGGTCTTAAAAGAAGTGACAATGAAAGCACAGGCTGCTGAAAAGGTCAAGGCTGAGGTACAGAAGGTGAAGGACAGGGCCCAGGCCATTGTGGACAGCATCTCTAAAGACAAAGCCATTGCTGAAGAAAAACTGGAAGCAGCAAAACCAGCTTTAGAAGAGGCAGAAGCTGCATTGACCATCAGGCCTTCGGACATCGCCACTGTTCGCACGTTGGGCCGCCCCCCTCACCTCATCATGCGGATCATGGATTGCGTACTGCTGCTGTTTCAAAGGAAAGTCAGTGCTGTGAAAATTGACCTGGAAAAAAGCTGTACCATGCCCTCCTGGCAGGAATCCTTAAAATTGATGACTGCAGGGAACTTTTTACAGAACTTACAGCAATTCCCAAAAGACACAATCAATGAAGAGGTGATAGAATTTTTGAGTCCTTACTTTGAAATGCCTGACTATAACATCGAAACTGCTAAACGCGTATGTGGAAATGTAGCTGGTCTTTGTTCCTGGACGAAAGCTATGGCTTCCTTCTTTTCTATAAACAAAGAAGTACTGCCTCTGAAGGCCAACTTGGTGGTGCAAGAGAATCGCCATCTCCTGGCCATGCAGGATCTGCAGAAAGCCCAGGCCGAGTTGGATGACAAGCAGGCGGAACTTGACGTGGTGCAGGCTGAGTATGAACAGGCCATGACTGAAAAGTTGCTTGAAGATGCAGAGCGATGCAGACACAAGATGCAGACAGCTTCCACGCTCATCAGTGGCTTGGCAGGTGAAAAAGAAAGATGGACAGAGCAAAGCCAAGAGTTTGCTGCACAAACTAAAAGACTTGTAGGTGATGTACTGTTGGCTACAGCTTTTCTATCTTATTCTGGTCCATTTAACCAAGAGTTTCGTGATCTTCTGTTAAATGACTGGCGGAAGGAAATGAAAGCCCGGAAAATTCCATTTGGAAAGAACCTAAATCTCAGTGAGATGTTGATTGATGCTCCTACTATTAGTGAATGGAACCTCCAAGGTCTGCCAAATGATGACTTGTCCATTCAAAATGGAATTATTGTCACGAAGGCATCTCGTTACCCTTTGTTAATTGATCCACAGACTCAAGGCAAGATCTGGATTAAAAATAAAGAAAGCCGAAATGAACTCCAGGTAACGTCTTTAAATCACAAGTACTTCAGAAACCACCTGGAAGACAGCCTTTCTCTTGGAAGGCCTTTGCTTATTGAAGATGTTGGAGAGGAACTAGATCCAGCACTAGATAATGTTTTGGAAAGAAACTTCATTAAAACTGGGTCTACCTTTAAGGTGAAAGTTGGTGACAAGGAAGTAGATGTGTTGGATGGCTTTAGACTCTACATTACCACCAAATTGCCTAACCCAGCCTACACCCCTGAGATAAGTGCCCGTACCTCCATCATTGACTTCACTGTCACCATGAAAGGTCTAGAAGATCAGTTACTGGGGAGGGTCATTCTCACAGAGAAGCAGGAATTGGAGAAAGAAAGAACTCATCTGATGGAAGATGTAACTGCAAACAAAAGAAGGATGAAGGAACTAGAAGATAACTTGCTTTACCGCCTGACAAGTACCCAGGGGTCCCTGGTAGAAGATGAAAGTCTCATTGTCGTGCTGAGTAACACAAAAAGGACAGCCGAGGAGGTGACACAGAAGCTAGAAATTTCTGCTGAGACAGAAGTTCAAATTAACTCAGCCCGGGAGGAATACAGACCAGTGGCTACGCGGGGCAGCATCCTCTACTTCCTCATTACTGAGATGCGCTTGGTTAATGAGATGTATCAGACTTCGCTTCGCCAGTTTCTGGGCTTATTTGACCTTTCCTTAGCCAGGTCTGTCAAGAGCCCGATTACAAGCAAGAGGATTGCTAATATCATCGAGCACATGACCTACGAGGTTTATAAGTATGCTGCCCGAGGGCTGTACGAGGAGCACAAATTCCTGTTCACCTTGTTGCTTACCCTAAAGATTGACATCCAGAGGAACCGAGTCAAGCATGAAGAGTTTCTCACTCTTATTAAAGGAGGTGCCTCATTAGACCTTAAAGCTTGTCCTCCAAAACCATCAAAATGGATCCTGGACATAACATGGCTGAATTTGGTGGAACTTAGCAAACTCAGACAGTTTTCAGATGTCCTTGACCAGATATCGAGAAATGAGAAAATGTGGAAAATTTGGTTTGATAAGGAAAACCCGGAGGAGGAACCTCTTCCAAATGCCTATGATAAATCTCTTGACTGCTTCAGACGTCTTCTCCTTATTAGATCCTGGTGTCCTGACAGAACCATCTGGCAGGCCCGCAAGTACATCGTGGACTCCATGGGAGAAAAATATGCCGAAGGTGTTATTTTAGACTTGGAGAAGACGTGGGAGGAATCTGATCCACGGACGCCACTCATCTGTCTCCTGTCTATGGGCTCAGACCCCACAGATTCCATCATTGCCTTGGGGAAGAGATTAAAAATAGAAACCCGTTATGTGTCCATGGGCCAGGGCCAGGAAGTCCATGCTCGGAAGCTCTTGCAGCAGACCATGGCGAACGTAAGGCTGAATAGTCTACTTTTGTGCCATGCTGTTCATATTACAGGTTATAGAATAGCAATGCAGAAGAAAAATATAAATCATTAGGAGTTTAAATTTACAORF Start: ATG at 1ORF Stop: TAG at 12241SEQ ID NO: 1384080 aaMW at 466144.8 kDNOV17a,MQRLKGEKEAKRALLDARHNYLFAIVASCLDLNKTEVEDAILEGNQIERIDQLFAVGGLRHLMFYYQCG161733-01Protein SequenceDVEEAETGQLGSLGGVNLVSGKIKKPKVFVTEGNDVALTGVCVFFIRTDPSKAITPDNIHQEVSFNMLDAADGGLLNSVRRLLSDIFIPALRATSHGWGELEGLQDAANIRQEFLSSLEGFVNVLSGAQESLKEKVNLRKCDILELKTLKEPTDYLTLANNPETLGKIEDCMKVWIKQTEQVLAENNQLLKEADDVGPRAELEHWKKRLSKFNYLLEQLKSPDVKAVLAVLAAAKSKLLKTWREMDIRITDATNEAKDNVKYLYTLEKCCDPLYSSDPVSMMDAIPTLINAIKMIYSISHYYNTSEKITSLFVKVTNQIISACKAYITNNGTASIWNQPQDVVEEKILSAIFDFKEYQLCFHKTKQKLKQNPNAKQFDFSEMYIFGKFETFHRRLAKIIDIFTTLKTYSVLQDSTIEGLEDMATKYQVLYFKIKKKEYNFLDQRKMDFDQDYEEFCKQTNDLHVELRKFMDVTFAKIQNTNQALRMLKKFERAQILHFKLGIDDKYQLILENYGADIDMISKLYTKQKYDPPLARNQPPIAGKILWARQLFHRIQQPMQLFQQHPAVLSTAEAKPIIRSYNRMAKVLLEFEVLFHRAWLRQVAEIHVGLEASLLVKAPGTGELFVNFDPQILILFRETECMAQMGLEVSPLATSLFQFEGGAKALRLRTRKMLAEYQRVKSKIPAAIEQLIVPHLAKVDEALQPGLAALTWTSLNIEAYLENTFAKIKDLELLLDRVNDLIEFRIDAILEEMSSTPLCQLPQEEMTKVEEMVEPHADYSRNGAQILHFKSSLVEEAVNELVNMLLDVEVLKISNENSVNYKNESSAKREEGNFDTLTSSINARANALLLTTVTRKKKETEMLGEEARELLSHFNHQNMDALLKVTRNTLEAIRKRIHSSHTINFRGNNLVPIFRASVTLAIPNIVMAPALEDVQQTLNKAVECIISVPKGVRQWSKIQERKMAALQSNEDSDSDVEMGENELQDTLEIASVNLPIPVQTKNYYKNVSENKEIVKLVSVLSTIINSTKKVCQEGLDCFKRYNHIWQKGKEEAIKTFITQSPLLSEFESQILYFQNLEQEINAEPEYVCVGSIALYTADLKFALTAETKAWMVVIGRHCNKKYRSEMENIFMLIEEFNKKLNRPIKDLDDIRIAMAALKEIREEQISIDFQVGPIEESYALLNRYGLLIAREEIDKVDTLHYAWEKLLARAGEVQNKLVSLQPSFKKELISAVEVFLQDCHQFYLDYDLVCVQNGPMASGLKPQEASDRLIMFQVIFDNIYRKYITYTGGEELFGLPATQYPQLLEIKKQLNLLQKIYTLYNSVIETVNSYYDILWSEVNIEKINNELLEFQNRCRKLPRALKDWQAFLDLKKIIDDFSECCPLLEYMASKAMMERHWERITTLTGHSLDVGNESFKLRNIMEAPLLKYKEEIEDICISAVKERDIEQKLKQVINEWDNKTFTFGSFKTRGELLLRGDSTSEIIANMEDSLMLLGSLLSNRYNMPFKAQIQKWVQYLSNSTKIIESWMTVQNLWIYLEAVFVGGDIAKQLPKEAKRFSNIDKSWVKIMTRAHEVPSVVQCCVGDETLGQLLPHLLDQLEICQKSLTGYLEKKRLCFPRFFFVSDPALLEILGQASDSHTIQAHLLNVFDNIKSVKFHEKVIYDRILSISSQEGETIELDKPVMAEGNVEVWLNSLLEESQSSLHLVIRQAAANIQETGFQLTEFLSSFPAQVGLLGIQMIWTRDSEEALRNAKFDKKIMQKTNQAFLELLNTLIDVTTRDLSSTERVKYETLITIHVHQRDIFDDLVHMHIKSPMDFEWLKQCRFYFNEDSDKNMIHITDVAFIYQNEFLGCTDRLVITPLTDRCYITLAQALGMSMGGAPAGPAGTGKTETTKDMGRCLGKYVVVFNCSDQMDFRGLGRIFKGLAQSGSWGCFDEFNRIDLPVLSVAAQQISIILTCKKEHKKSFIFTDGDNVTMNPEFGLFLTMNPGYAGRQELPENLKINFRSVAMMVPDRQIIIRVKLASCGFIDNVVLARKFFTLYKLCEEQLSKQVHYDFGLRNILSVLRTLGAAKRANPMDTESTIVMRVLRDMNLSKLVDEDEPLFLSLIEDLFPNILLDKAGYPELEAAISRQVEEAGLINHPPWKLKVIQLFETQRVRHGMMTLGPSGAGKTTCIHTLMRAMTDCGKPHREMRMNPKAITAPQMFGRLDVATNDWTDGIFSTLWRKTLRAKKGEHIWIILDGPVDAIWIENLNSVLDDNKTLTLANGDRIPMAPNCKIIFEPHNIDNASPATVSRNGMVFMSSSILDWSPILQGFLKKRSPQEAEILRQLYTESFPDLYRFCIQNLEYKMEVLEAFVITQSINMLQGLIPLKEQGGEVSQAHLGRLFVFALLWSAGAALELDGRRRLELWLRSRPTGTLELPPPAGPGDTAFDYYVAPDGTWTHWNTRTQEYLYPSDTTPEYGSILVPNVDNVRTDFLIQTIAKQGKAVLLIGEQGTAKTVIIKGFMSKYDPECHMIKSLNFSSATTPLMFQRTIESYVDKRMGTTYGPPAGKKMTVFIDDVNMPIINEWGDQVTNEIVRQLMEQNGFYNLEKPGEFTSIVDIQFLAAMIHPGGGRNDIPQRLKRQFSIFNCTLPSEASVDKIFGVIGVGHYCTQRGFSEEVRDSVTKLVPLTRRLWQMTKIKMLPTPAKFHYVFNLRDLSRVWQGMLNTTSELLKLWKHECKRVIADRFTVSSDVTWFDKALVSLVEEEFGEEKKLLVDCGIDTYFVDFLRDAPEAAGGETSEEADAETPKIYEPIESFSHLKERLNMFLQLYNESIRGAGMDMVFFADAMVHLVKISRVIRTPQGNALLVGVGGSGKQSLTRLASFIAGYVSFQITLTRSYNTSNLMEDLKVLYRTAGQQGKGITFIFTDNEIKDESFLEYMNNVLSSGEVSNLFARDEIDEINSDLASVMKKEFPRCLPTNENLHDYFMSRVRQNLHIVLCFSPVGEKFRNRALKFPALISGCTIDWFSRWPKDALVAVSEHFLTSYDIDCSLEIKKEVVQCMGSFQDGVAEKCVDYFQRFRRSTHVTPKSYLSFIQGYKFIYGEKHVEVRTLANRMNTGLEKLKEASESVAALSKELEAKEKELQVANDKADMVLKEVTMKAQAAEKVKAEVQKVKDRAQAIVDSISKDKAIAEEKLEAAKPALEEAEAALTIRPSDIATVRTLGRPPHLIMRIMDCVLLLFQRKVSAVKIDLEKSCTMPSWQESLKLMTAGNFLQNLQQFPKDTINEEVIEFLSPYFEMPDYNIETAKRVCGNVAGLCSWTKAMASFFSINKEVLPLKANLVVQENRHLLAMQDLQKAQAELDDKQAELDVVQAEYEQAMTEKLLEDAERCRHKMQTASTLISGLAGEKERWTEQSQEFAAQTKRLVGDVLLATAFLSYSGPFNQEFRDLLLNDWRKEMKARKIPFGKNLNLSEMLIDAPTISEWNLQGLPNDDLSIQNGIIVTKASRYPLLIDPQTQGKIWIKNKESRNELQVTSLNHKYFRNHLEDSLSLGRPLLIEDVGEELDPALDNVLERNFIKTGSTFKVKVGDKEVDVLDGFRLYITTKLPNPAYTPEISARTSIIDFTVTMKGLEDQLLGRVILTEKQELEKERTHLMEDVTANKRRMKELEDNLLYRLTSTQGSLVEDESLIVVLSNTKRTAEEVTQKLEISAETEVQINSAREEYRPVATRGSILYFLITEMRLVNEMYQTSLRQFLGLFDLSLARSVKSPITSKRIANIIEHMTYEVYKYAARGLYEEHKFLFTLLLTLKIDIQRNRVKHEEFLTLIKGGASLDLKACPPKPSKWILDITWLNLVELSKLRQFSDVLDQISRNEKMWKIWFDKENPEEEPLPNAYDKSLDCFRRLLLIRSWCPDRTIWQARKYIVDSMGEKYAEGVILDLEKTWEESDPRTPLICLLSMGSDPTDSIIALGKRLKIETRYVSMGQGQEVHARKLLQQTMANVRLNSLLLCHAVHITGYRIAMQKKNINH


[0442] Further analysis of the NOV17a protein yielded the following properties shown in Table 17B.
92TABLE 17BProtein Sequence Properties NOV17aSignalP analysis:No Known Signal Sequence PredictedPSORT II analysis:PSG:a new signal peptideprediction methodN-region: length 11;pos.chg 4; neg.chg 2H-region: length 0;peak value −14.66PSG score: −19.06GvH:von Heijne's method forsignal seq. recognitionGyM score (threshold: −2.1): −9.75possible cleavage site:between 24 and 25>>>Seems to have no N-terminal signal peptideALOM:Klein et al's method for TMregion allocationInit position for calculation: 1Tentative number of TMS(s)for the threshold 0.5: 3Number of TMS(s) forthreshold 0-5: 0PERIPHERAL Likelihood = 1.06 (at 2081)ALOM score: −1.12 (number of TMSs: 0)MITDISC:discrimination of mitochondrialtargeting seqR content: 1 Hyd Moment(75): 11.39Hyd Moment(95): 5.73 G content: 1D/E content: 2 S/T content: 0Score: −5.92Gavel:prediction of cleavage sitesfor mitochondrial preseqR-2 motif at 13 QRL|KGNUCDISC:discrimination of nuclearlocalization signalspat4: KKPK (4) at 91pat4: RKKK (5) at 921pat7: PQRLKRQ (4) at 2685bipartite: nonecontent of basic residues: 12.2%NLS Score: 0.44KDEL:ER retention motif inthe C-terminus: noneER Membrane Retention Signals:XXRR-like motif in the N-terminus: QRLKKKXX-like motif in the C-terminus: KNINSKL:peroxisomal targeting signal inthe C-terminus: nonePTS2:2nd peroxisomal targetingsignal: foundKIPAAIEQL at 749VAC:possible vacuolartargeting motif: foundKLPN at 3656RNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNNYR:N-myristoylation pattern : nonePrenylation motif: nonememYQRL:transport motif fromcell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomalprotein motifs: nonechecking 33 PROSITE prokaryoticDNA binding motifs:Bacterial regulatory proteins, lysR family signature(PS00044) : *** found ***IFRASVTLAIPNIVMAPALEDVQQTL at 979NNCN:Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm todetect coiled-coil regions8780L0.63781N0.96782I0.96783E0.96784A0.96785Y0.96786L0.96787E0.96788N0.96789T0.96790F0.96791A0.96792K0.96793I0.96794K0.96795D0.96796L0.96797E0.96798L0.96799L0.96800L0.96801D0.96802R0.96803V0.96804N0.96805D0.96806L0.96807I0.96808E0.96809F0.841022K0.571023I0.621024Q0.621025E0.621026R0.621027K0.621028M0.621029A0.621030A0.621031L0.621032Q0.621033S0.621034N0.621035E0.621036D0.621037S0.621038D0.621039S0.621040D0.621041V0.621042E0.621043M0.621044G0.621045E0.621046N0.621047E0.621048L0.621049Q0.621050D0.621051T0.551197L0.521198I0.521199E0.521200E0.521201F0.521202N0.521203K0.521204K0.521205L0.521206N0.521207R0.521208P0.521209I0.521210K0.521211D0.521212L0.521213D0.521214D0.521215I0.521216R0.521217I0.521218A0.521219M0.521220A0.521221A0.521222L0.521223K0.521224H0.523154H0.563155V0.693156E0.933157V0.933158R0.973159T0.993160L0.993161A0.993162N0.993163R0.993164M0.993165N0.993166T1.003167G1.003168L1.003169E1.003170K1.003171L1.003172K1.003173E1.003174A1.003175S1.003176E1.003177S1.003178V1.003179A1.003180A1.003181L1.003182S1.003183K1.003184E1.003185L1.003186E1.003187A1.003188K1.003189E1.003190K1.003191E1.003192L1.003193Q1.003194V1.003195A1.003196N1.003197D1.003198K1.003199A1.003200D1.003201M1.003202V1.003203L1.003204K1.003205E1.003206V1.003207T0.993208M0.993209K0.993210A0.993211Q0.993212A0.983213A0.983214E0.983215K0.983216V0.983217K0.983218A0.983219E0.993220V0.993221Q0.993222K0.993223V0.993224K0.993225D0.993226R0.993227A0.993228Q0.993229A0.993230I0.993231V0.993232D0.993233S0.993234I0.993235S0.993236K0.993237D0.993238K0.993239A0.993240I0.993241A0.993242E0.993243E0.993244K0.993245L0.993246E0.993247A0.993248A0.993249K0.983386L0.963387K0.963388A0.963389N0.963390L0.963391V0.963392V0.963393Q0.963394E0.963395N0.963396R0.963397H0.963398L0.973399L1.003400A1.003401M1.003402Q1.003403D1.003404L1.003405Q1.003406K1.003407A1.003408Q1.003409A1.003410E1.003411L1.003412D1.003413D1.003414K1.003415Q1.003416A1.003417E1.003418L1.003419D1.003420V1.003421V1.003422Q1.003423A1.003424E1.003425Y1.003426E1.003427Q1.003428A1.003429M1.003430T1.003431E1.003432K1.003433L0.993434L0.963435E0.903436D0.693437A0.693438E0.693439R0.523690I0.823691L0.963692T1.003693E1.003694K1.003695Q1.003696E1.003697L1.003698E1.003699K1.003700E1.003701R1.003702T1.003703H1.003704L1.003705M1.003706E1.003707D1.003708V1.003709T1.003710A1.003711N1.003712K1.003713R1.003714R1.003715M1.003716K1.003717E1.003718L1.003719E1.003720D1.003721N1.003722L1.003723L0.993724Y0.78total: 273 residuesFinal Results (k = 9/23)47.8 %: nuclear34.8 %: cytoplasmic 8.7 %: mitochondrial 4.3 %: vacuolar 4.3 %: vesicles of secretory system>>prediction for CG161733-01 is nuc (k = 23)


[0443] A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17C.
93TABLE 17CGeneseq Results for NOV17aNOV17aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABB64461Drosophila melanogaster  2 . . . 34721789/3581 (49%)0.0polypeptide SEQ ID NO  9 . . . 35002381/3581 (65%)20175 - Drosophilamelanogaster, 3508 aa.[WO200171042-A2,27-SEP-2001]ABB60101Drosophila melanogaster 272 . . . 40421159/3884(29%)0.0polypeptide SEQ ID NO 256 . . . 39271923/3884 (48%)7095 - Drosophilamelanogaster, 4472 aa.[WO200171042-A2,27-SEP-2001]ABB58592Drosophila melanogaster 735 . . . 40461040/3428 (30%)0.0polypeptide SEQ ID NO1210 . . . 44601741/3428 (50%)2568 - Drosophilamelanogaster, 4820 aa.[WO200171042-A2,27-SEP-2001]ABB61520Drosophila melanogaster1279 . . . 4062 949/2885 (32%)0.0polypeptide SEQ ID NO 642 . . . 34641517/2885 (51%)11352 - Drosophilamelanogaster, 4010 aa.[WO200171042-A2,27-SEP-2001]ABB62958Drosophila melanogaster1151 . . . 4062 940/2994 (31%)0.0polypeptide SEQ ID NO 609 . . . 35201530/2994 (50%)15666 - Drosophilamelanogaster, 4081 aa.[WO200171042-A2,27-SEP-2001]


[0444] In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17D.
94TABLE 17DPublic BLASTP Results for NOV17aNOV17aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ8TE73Axonemal dynein heavy 2 . . . 40623986/4092 (97%)0.0chain DNAH5 - Homo 20 . . . 41034000/4092 (97%)sapiens (Human), 4624 aa.Q8VHE6Axonemal dynein heavy 2 . . . 40623554/4090 (86%)0.0chain 5 - Mus musculus 20 . . . 41003800/4090 (92%)(Mouse), 4621 aa.Q91XP9Axonemal dynem heavy 3 . . . 40532472/4072 (60%)0.0chain 8 short form - Mus158 . . . 42003080/4072 (74%)musculus (Mouse), 4202 aa.Q91XQ0Axonemal dynein heavy 3 . . . 40622474/4081(60%)0.0chain 8 long form - Mus158 . . . 42093082/4081 (74%)musculus (Mouse), 4731 aa.Q91XP8Axonemal dynein heavy 3 . . . 40622471/4081 (60%)0.0chain 8 long form - Mus158 . . . 42093079/4081 (74%)musculus (Mouse), 4731 aa.


[0445] PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17E.
95TABLE 17EDomain Analysis of NOV17aIdentities/NOV17aSimilarities forPfam DomainMatch Regionthe Matched Region Expect ValueAAA2225 . . . 2416 31/247 (13%)0.65113/247 (46%)



Example 18

[0446] The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.
96TABLE 18ANOV18 Sequence AnalysisSEQ ID NO: 139770 bpNOV18a,GAATCGCCCTTAGATATGTGTAACACACCAACTTACTGTGACCTGGGAAAGGCTGCTAAGGATGTCTCG161762-01DNA SequenceTCAACAAAGGATATGGCTTTGGCATGGGGAAGATAGACCTGAAAACCAAGTCCTGTAGTGGAGTGATGGAATTTTCTACTTCTGGTCATGCTTACACTGATACAGGGAAAGCATCAGGCAACCTAGAAACCAAATATAAGGTCTGTAACTATGGACTTACCTTCACCCAGAAATGGAACACAGACAATACTCTAGGGACAGAAATCTCTTGGGAGAATAAGTTGGCTGAAGGGTTGAAACTGACTCTTGATACCATATTTGTACCGAACACAGGAAAGAAGAGTGGGAAATTGAAGGCCTCCTATAAACGGGATTGTTTTAGTGTTGGCAGTAATGTTGATATAGATTTTTCTGGACCAACCATCTATGGCTGGGCTGTGTTGGCCTTCGAAGGGTGGCTTGCTGGCTATCAGATGAGTTTTGACACAGCCAAATCCAAACTGTCACAGAATAATTTCGCCCTGGGTTACAAGGCTGCGGACTTCCAGCTGCACACACATGTGAACGATGGCACTGAATTTGGAGGTTCTATCTACCAGAAGGCTAAAGTAAATAATGCCAGCCTGATTGGACTGGGTTATACTCAGACCCTTCGACCAGGAGTCAAATTGACTTTATCAGCTTTAATCGATGGGAAGAACTTCAGTGCAGGAGGTCACAAGGTTGGCTTGGGATTTGAACTGCAAGCTTAATGTGGTTTGAGORF Start: ATG at 16ORF Stop: TAA at 757SEQ ID NO: 140247 aaMW at 26688.0 kDNOV18a,MCNTPTYCDLGKAAKDVFNKGYGFGMGKIDLKTKSCSGVMEFSTSGHAYTDTGKASGNLETKYKVCNCG161762-01Protein SequenceYGLTFTQKWNTDNTLGTEISWENKLAEGLKLTLDTIFVPNTGKKSGKLKASYKRDCFSVGSNVDIDFSGPTIYGWAVLAFEGWLAGYQMSFDTAKSKLSQNNFALGYKAADFQLHTHVNDGTEFGGSIYQKAKVNNASLIGLGYTQTLRPGVKLTLSALIDGKNFSAGGHKVGLGFELQA


[0447] Further analysis of the NOV18a protein yielded the following properties shown in Table 18B.
97TABLE 18BProtein Sequence Properties NOV18aSignalP analysis:No Known Signal Sequence PredictedPSORT II analysis:PSG:a new signal peptideprediction methodN-region: length 9; pos.chg 0;neg.chg 1H-region: length 2; peak value 0.00PSG score: −4.40GvH:von Heijne's method for signalseq. recognitionGvH score (threshold: −2.1): −9.23possible cleavage site:between 50 and 51>>>Seems to have no N-terminal signal peptideALOM:Klein et al's method forTM region allocationInit position for calculation: 1Tentative number of TMS(s)for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERALLikelihood = 6.47 (at 138)ALOM score: 6.47 (numberof TMSs: 0)MITDISC:discrimination of mitochondrialtargeting seqcontent: 0 Hyd Moment(75): 3.36Hyd Moment(95): 4.93 G content: 1D/E content: 2 S/T content: 2Score: −7.44Gavel:prediction of cleavage sitesfor mitochondrial preseqcleavage site motif not foundNUCDISC:discrimination of nuclearlocalization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 10.9%NLS Score: −0.47KDEL:ER retention motif inthe C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signalin the C-terminus: nonePTS2:2nd peroxisonal targetingsignal: noneVAC:possible vacuolartargeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern : nonePrenylation motif: nonememYQRL:transport motif fromcell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNAbinding motifs: nonechecking 71 PROSITE ribosomalprotein motifs: nonechecking 33 PROSITE prokaryoticDNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 89COIL:Lupas's algorithm to detectcoiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):65.2 %: cytoplasmic26.1 %: nuclear 4.3 %: Golgi 4.3 %: mitochondrial>>prediction for CG161762-0l is cyt (k = 23)


[0448] A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18C.
98TABLE 18CGeneseq Results for NOV18aNOV18aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABP41522Human ovarian antigen1 . . . 247244/284 (85%)e−137HVVAQ70, SEQ ID2 . . . 284245/284 (85%)NO:2654 - Homo sapiens,284 aa. [WO200200677-A1,03-JAN-2002]AAY45015Protein encoded by fchd545l . . . 247244/284 (85%)e−137gene - Homo sapiens, 283 aa.1 . . . 283245/284 (85%)[WO200006206-A1,10-FEB-2000]AAY07222Voltage-dependent anion1 . . . 247244/284 (85%)e−137channel CBMAAD07 protein1 . . . 283245/284 (85%)sequence - Homo sapiens,283 aa. [WO9921990-A1,06-MAY-1999]AAW48908Human highl . . . 247244/284 (85%)e−137voltage-dependent anion1 . . . 283245/284 (85%)channel protein - Homosapiens, 283 aa.[US5780235-A, 14-JUL-1998]AAW36004Human Fchd545 gene1 . . . 247244/284 (85%)e−137product - Homo sapiens, 283 aa.1 . . . 283245/284 (85%)[WO9730065-A1, 21-AUG-1997]


[0449] In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18D.
99TABLE 18DPublic BLASTP Results for NOV18aIdentities/ProteinSimilarities forAccessionNOV18a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ96J36Voltage-dependent anion1 . . . 247245/284 (86%)e−138channel 3 - Homo sapiens1 . . . 284246/284 (86%)(Human), 284 aa.Q9Y277Voltage-dependent1 . . . 247244/284 (85%)e−136anion-selective channel1 . . . 283245/284 (85%)protein 3 (VDAC-3)(hVDAC3) (Outermitochondrial membraneprotein porin 3) - Homosapiens (Human), 283 aa.Q60931Voltage-dependent1 . . . 247241/284 (84%)e−135anion-selective channel1 . . . 283245/284 (85%)protein 3 (VDAC-3)(mVDAC3) (Outermitochondrial membraneprotein porin 3) - Musmusculus (Mouse), 283 aa.Q9MZ13Voltage-dependent1 . . . 247240/284 (84%)e−135anion-selective channel1 . . . 283245/284 (85%)protein 3 (VDAC-3)(hVDAC3) (Outermitochondrial membraneprotein porin 3) - Bos taurus(Bovine), 283 aa.Q9TT13Voltage-dependent1 . . . 247240/284 (84%)e−134anion-selective channel1 . . . 283244/284 (85%)protein 3 (VDAC-3) (Outermitochondrial membraneprotein porin 3) - Oryctolaguscuniculus (Rabbit), 283 aa.


[0450] PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18E.
100TABLE 18EDomain Analysis of NOV18aIdentities/SimilaritiesNOV18afor thePfamMatchMatchedExpectDomainRegionRegionValueEuk_porin2 . . . 247143/290 (49%)1.1e−133242/290 (83%)



Example 19

[0451] The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.
101TABLE 19ANOV19 Sequence AnalysisSEQ ID NO: 1411914 bpNOV19a,AAGGAACCAACATAAAGAGAAATGCAGACGATATAACCAGTAATGACCATGGTGAAGATAAAGATATCG162855-01DNA SequenceTCATGAACAGAACAGTAAGAAGCCTGTTATGGTCTATATCCATGGGGGATCTTACATGGAGGGAACCGGTAACATGATTGATGGCAGCATTTTGGCCAGCTATGGGAACGTCATCGTTATCACCATTAACTACCGTCTGGGAATACTAGGTCTCTTCCAGAAGGCCATCATTCAGAGCGGCACTGCCCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACATGCTGGACACCACGGACATGGTAGAATGTCTGAAGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCCCGGCCACCTACCACATAGCCTTTGGGCCGGTGATCGACGGCGACGTCATCCCAGACGGCCCCCAGATCCTGATGGAGCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGAAGGCCTGAAGTTCGTGGACGGCATCGTGGATAACGAGGACGGTGTGACGCCCAACGACTTTGACTTCTCCGTGTCCAACTTCGTGGACAACCTTTACGGCTACCCTGAAGGGAAAGACACTTTGCGGGAGACTATCAAGTTCATGTACACAGACTGGGCCGATAAGGAAAACCCGGAGACGCGGCGGAAAACCCTGGTGGCTCTCTTTACTGACCATCAGTGGGTGGCCCCCGCCGTGGCCACCGCCGACCTGCACGCGCAGTACGGCTCCCCCACCTACTTCTATGCCTTCTATCATCACTGCCAAAGCGAAATGAAGCCCAGCTGGGCAGATTCGGCCCATGGCGATGAAGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCCCACAGAGCTCTTCAGTTGTAATTTCTCCAAGAACGACGTCATGCTCAGTGCCGTGGTGATGACCTACTGGACGAACTTCGCCAAAACTGGTGATCCAAACCAACCAGTTCCTCAGGATACCAAGTTCATTCATACAAAACCCAATCGCTTTGAAGAAGTGGCCTGGTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTACCGGGCAACGAAAGTGGCTTTCTGGTTGGAATTGGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTCAACAACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCCAACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCCGAGGACACAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTCGCTCCTCTTCCTCAACATCTTAGCCTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCATGAGACTCACAGGCACCCCAGTCCCCAGAGAAACACCACAAATGATATCACTCACATCCAGAACGAAGAGATCATGTCTCTGCAGATGAAGCAGCTGGAACACGATCACGAGTGTGAGTCGTTGCAGGCACACGACACGCTGAGGCTCACCTGCCCTCCAGACTACACCCTCACGCTGCGCCGGTCGCCGGATGACATCCCATTTATGACGCCAAACACCATCACCATGATTCCAAACACATTGATGGGGATGCAGCCTTTACACACTTTTAAAACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCACGGACATTCCACCACTAGAGTATAGCTTTTCCCTATTTCCCCTCCTATCCCTCTGCCCCTACTGCTCAGCAATGTAAAAGAGAORF Start: ATG at 96ORF Stop: TAG at 1854SEQ ID NO: 142586 aaMW at 66369.7 kDNOV19a,MVYIHGGSYMEGTGNMIDGSILASYGNVIVITINYRLGILGLFQKAIIQSGTALSSWAVNYQPAKYTCG162855-01Protein SequenceRILADKVGCNMLDTTDMVECLKNKNYKELIQQTITPATYHIAFGPVIDGDVIPDGPQILMEQGEFLNYDIMLGVNQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENPETRRKTLVALFTDHQWVAPAVATADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYVFGIPMIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVAWSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTSFPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVGASLLFLNILAFAALYYKKDKRRHETHRHPSPQRNTTNDITHIQNEEIMSLQMKQLEHDHECESLQAHDTLRLTCPPDYTLTLRRSPDDIPFMTPNTITMIPNTLMGMQPLHTFKTFSGGQNSTNLPHGHSTTRV


[0452] Further analysis of the NOV19a protein yielded the following properties shown in Table 19B.
102TABLE 19BProtein Sequence Properties NOV19aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 11; pos.chg 0; neg.chg 1H-region: length 6; peak value 0.00PSG score: −4.40GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −4.97possible cleavage site: between 58 and 59>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 2Number of TMS(s) for threshold 0.5: 1INTEGRALLikelihood =−6.05Transmembrane449-465PERIPHERALLikelihood =  5.09 (at 266)ALOM score: −6.05 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 456Charge difference: 7.5 C( 5.5)-N(−2.0)C > N: C-terminal side will be inside>>> membrane topology: type 1b (cytoplasmic tail449 to 586)MITDISC: discrimination of mitochondrial targeting seqR content:  0Hyd Moment(75):2.21Hyd Moment (95):  0.86G content:4  D/E content:  2S/T content:2  Score: −9.50Gavel: prediction of cleavage sites for mitochondrialpreseq cleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: KRRH (3) at 472pat7: PETRRKT (4) at 203bipartite: nonecontent of basic residues: 9.0%NLS Score: 0.06KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: too long tailDileucine motif in the tail: foundLL at 455checking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 70.6COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):34.8%: nuclear26.1%: cytoplasmic17.4%: mitochondrial 8.7%: vesicles of secretory system 4.3%: vacuolar 4.3%: peroxisomal 4.3%: endoplasmic reticulum>> prediction for CG162855-01 is nuc (k = 23)


[0453] A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.
103TABLE 19CGeneseq Results for NOV19aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV19a Residues/the MatchedExpectIdentifier[Patent #, Date)Match ResiduesRegionValueAAM48908Human neurolignin family41 . . . 586545/546 (99%)0.0member 46980 protein -271 . . . 816 545/546 (99%)Homo sapiens, 816 aa.[WO200194563-A2,13 DEC. 2001]AAB33427Human PRO701 protein41 . . . 586538/546 (98%)0.0UNQ365 SEQ ID NO: 67 -272 . . . 816 539/546 (98%)Homo sapiens, 816 aa.[WO200053758-A2,14 SEP. 2000]AAB44296Human PRO701 (UNQ365)41 . . . 586538/546 (98%)0.0protein sequence SEQ ID272 . . . 816 539/546 (98%)NO: 375 - Homo sapiens, 816aa. [WO200053756-A2,14 SEP. 2000]AAY41740Human PRO701 protein41 . . . 586538/546 (98%)0.0sequence - Homo sapiens,272 . . . 816 539/546 (98%)816 aa. [WO9946281-A2,16 SEP. 1999]AAB94127Human protein sequence78 . . . 586502/509 (98%)0.0SEQ ID NO: 14381 - Homo 1 . . . 509503/509 (98%)sapiens, 509 aa.[EP1074617-A2,07 FEB. 2001]


[0454] In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.
104TABLE 19DPublic BLASTP Results for NOV19aIdentities/ProteinSimilarities forAccessionNOV19a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ8NFZ3Neuroligin Y - Homo sapiens 41 . . . 586545/546 (99%)0.0(Human), 816 aa.271 . . . 816545/546 (99%)Q9Y2F8Hypothetical protein 41 . . . 586545/546 (99%)0.0KIAA0951 - Homo sapiens103 . . . 648545/546 (99%)(Human), 648 aa.Q8N0W4Neuroligin X - Homo sapiens 41 . . . 586539/546 (98%)0.0(Human), 816 aa.271 . . . 816540/546 (98%)Q9ULG0Hypothetical protein 41 . . . 586539/546 (98%)0.0KIAA1260 - Homo sapiens272 . . . 817540/546 (98%)(Human), 817 aa (fragment).Q9NZ94Neuroligin 3 isoform - Homo 41 . . . 586413/547 (75%)0.0sapiens (Human), 828 aa.285 . . . 828468/547 (85%)


[0455] PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.
105TABLE 19EDomain Analysis of NOV19aIdentities/NOV19aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValueCOesterase1 . . . 4126/47 (55%)2.7e−1134/47 (72%)COesterase42 . . . 36097/361 (27%) 4.8e−45233/361 (65%) 



Example 20

[0456] The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.
106TABLE 20ANOV20 Sequence AnalysisSEQ ID NO: 143994 bpNOV20a,ATTGAAAATGCGTAAATTGGAAGGCAAGTTCTGAAATTAAACGTTGTACTTTGGCCTGATGTTCTGACG163937-01DNA SequenceCCTTTAAGGAAGCAAGAGTTTGTAAACTTCCAAATATTTACTATTCTGAACTGCCGTGTAAACCTGACGTATTCCCAAGTCAACATACCAGTATACCAATAGGATGTGAATAATGTGTGTGTTGAGTTTAAAACCATAGCAGTTTTGCTCTGGCAAGTAATGAAAGCGTTCTCGCTTCCTGAGTGTGAGCTCCAGCAGACTGCAGAGTGGCCAGTCCACAGTTGTAGCCTGACTTCAGTGAGTTCTGATGTGTGCTTTTTGCAAATACATGTTCTCAGAACAGTGAGATCATCCAGCAGTGGCCTGGACTGCACTCACATAAAAATCATGAGACAGCCATGGCTACTTGTTTCTGTAATACATGCATGTGTGTTTTTTAAAACCTATGATAGGCCTCTGATTCTGCAGCTGCAACTTTTATGGAATGTTTTCCTTCTCCACATCTCATGTGATGCTCTTATTACAGGACACAGCATTGTTGGTTTTGCCATGTACTATTTTACCTATGACCCGTGGATTGGCAAGTTATTGTATCTTGAGGACTTCTTCGTGATGAGTGATTATAGAGGCTTTGGCATAGGATCAGAAATTCTGAAGAATCTAAGCCAGGTTGCAATGAGGTGTCGCTGCAGCAGCATGCACTTCTTGGTAGCAGAATGGAATGAACCATCCATCAACTTCTATAAAAGAAGAGGTGCTTCTGATCTGTCCAGTGAAGAGGGTTGGAGACTGTTCAAGATCGACAAGGAGTACTTGCTAAAAATGGCAACAGAGGAGTGAGGAGTGCTGCTGTAGATGACAACCTCCATTCTATTTTAGAATAAATTCCCAATTCTCTTGCTTTCTATGCTGTTGTAGTGAAATAATAGAATGAGCACCCATTCCATAGCTTTATTACCAGTGGGCGTTGTTGCATGTTTGAACATGORF Start: ATG at 227ORF Stop: TGA at 845SEQ ID NO: 144206 aaMW at 23873.5 kDNOV20a,MKAFSLPECELQQTAEWPVHSCSLTSVSSDVCFLQIHVLRTVRSSSSGLDCTHIKIMRQPWLLVSVICG163937-01Protein SequenceHACVFFKTYDRPLILQLQLLWNVFLLHISCDALITGHSIVGFAMYYFTYDPWIGKLLYLEDFFVMSDYRGFGIGSEILKNLSQVAMRCRCSSMHFLVAEWNEPSINFYKRRGASDLSSEEGWRLFKIDKEYLLKMATEE


[0457] Further analysis of the NOV20a protein yielded the following properties shown in Table 20B.
107TABLE 20BProtein Sequence Properties NOV20aSignalPanalysis:Cleavage site between residues 12 and 13PSORT IIPSG: a new signal peptide prediction methodanalysis:N-region: length 10; pos.chg 1; neg.chg 2H-region: length 5; peak value 0.00PSG score: −4.40GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −3.95possible cleavage site: between 29 and 30>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 0PERIPHERAL Likelihood = 1.70 (at 56)ALOM score: −0.16 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment (75):7.74Hyd Moment (95):1.81G content:0D/E content:2S/T content:1Score: −7.02Gavel: prediction of cleavage sites for mitochondrialpreseq cleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 9.2%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus:nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi:noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs:noneNNCN: Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):34.8%: cytoplasmic34.8%: mitochondrial30.4%: nuclear>> prediction for CG163937-01 is cyt (k = 23)


[0458] A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20C.
108TABLE 20CGeneseq Results for NOV20aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV20a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABB57094Mouse ischaemic condition103 . . . 206102/104(98%)2e−56related protein sequence SEQ 68 . . . 171103/104(98%)ID NO: 207 - Mus musculus,171 aa. [WO200188188-A2,22 NOV. 2001]AAU30048Novel human secreted103 . . . 19381/94(86%)6e−40protein #539 - Homo sapiens,102 . . . 19585/94(90%)218 aa. [WO200179449-A2,25 OCT. 2001]AAB44145Human cancer associated103 . . . 16260/60(100%)2e−30protein sequence SEQ ID 27 . . . 8660/60(100%)NO: 1590 - Homo sapiens, 92aa. [WO200055350-A1,21 SEP. 2000]ABP62823Human polypeptide SEQ ID101 . . . 20344/103(42%)2e−21NO 260 - Homo sapiens, 249145 . . . 24765/103(62%)aa. [WO200218424-A2,07 MAR. 2002]AAW58394Human spermidine/spermine101 . . . 20344/103(42%)2e−21N1-acetyltransferase - Homo 66 . . . 16865/103(62%)sapiens, 170 aa.[WO9818938-A1,07 MAY 1998]


[0459] In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.
109TABLE 20DPublic BLASTP Results for NOV20aProteinIdentities/AccessionNOV20a Residues/Similarities for theExpectNumberProtein/Organism/LengthMatch ResiduesMatched PortionValueJH0783diamine N-acetyltransferase103 . . . 206 104/104 (100%)5e−57(EC 2.3.1.57) - human, 171 68 . . . 171 104/104 (100%)aa.P21673Diamine acetyltransferase103 . . . 206 104/104 (100%)5e−57(EC 2.3.1.57) 68 . . . 171 104/104 (100%)(Spermidine/spermine N(1)-acetyltransferase) (SSAT)(Putrescine acetyltrans-ferase) - Homo sapiens(Human), 171 aa.Q9JHW6Spermidine/spermine103 . . . 206102/104 (98%)5e−56N1-acetyltransferase - 68 . . . 171103/104 (98%)Cricetulus griseus (Chinesehamster), 171 aa.Q28999Diamine acetyltransferase103 . . . 206102/104 (98%)5e−56(EC 2.3.1.57) 68 . . . 171103/104 (98%)(Spermidine/spermine N(1)-acetyltransferase) (SSAT)(Putrescine acetyltrans-ferase) - Sus scrofa (Pig),171 aa.P49431Spermidine/spermine103 . . . 206102/104 (98%)5e−56N(1)-acetyltransferase (EC 68 . . . 171103/104 (98%)2.3. 1.57) (Diamineacetyltransferase) (SSAT)(Putrescine acetyltrans-ferase) - Mus saxicola (Spinymouse), 171 aa.


[0460] PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20E.
110TABLE 20EDomain Analysis of NOV20aIdentities/Similaritiesfor theNOV20a MatchMatchedExpectPfam DomainRegionRegionValueAcetyltransf98 . . . 18122/85 (26%)9.6e−1659/85 (69%)



Example 21

[0461] The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
111TABLE 21ANOV21 Sequence AnalysisSEQ ID NO: 145744 bpNOV21a,AAATGCAGCCATTCCTCCTCCTGTTGGCCTTTCTTCTGACCCCTGGGGCTGGGACAGAGGAGATCATCG164449-02DNA SequenceCGGGGGCCATGAGGCCAAGCCCCACTCCCGCCCCTACATGGCCTTTGTTCAGTTTCTGCAAGAGAAGAGTCGGAAGAGGTGTGGCGGCATCCTAGTGAGAAAGGACTTTGTGCTGACAGCTGCTCACTGCCAGGGAAGCTCCATAAATGTCACCTTGGGGGCCCACAATATCAAGGAACAGGAGCGGACCCAGCAGTTTATCCCTGTGAAAAGACCCATCCCCCATCCAGCCTATAATCCTAAGAACTTCTCCAACGACATCATGCTACTGCAGCTGGAGAGAAAGGCCAAGTGGACCACAGCTGTGCGGCCTCTCAGGCTACCTAGCAGCAAGGCCCAGGTGAAGCCAGGGCAGCTGTGCAGTGTGGCTGGCTGGGGTTATGTCTCAATGAGCACTTTAGCAACCACACTGCAGGAAGTGTTGCTGACAGTGCAGAAGGACTGCCAGTGTGAACGTCTCTTCCATGGCAATTACAGCAGAGCCACTGAGATTTGTGTGGGGGATCCAAAGAAGACACAGACCGGTTTCAAGGGGGACTCCGGGGGGCCCCTCGTGTGTAAGGACGTAGCCCAAGGTATTCTCTCCTATGGAAACAAAAAAGGGACACCTCCAGGAGTCTACATCAAGGTCTCACACTTCCTGCCCTGGATAAAGAGAACAATGAAGCGCCTCTAACORF Start: ATG at 3ORF Stop: TAA at 741SEQ ID NO: 146246 aaMW at 27314.7 kDNOV21a,MQPFLLLLAFLLTPGAGTEEIIGGHEAKPHSRPYMAFVQFLQEKSRKRCGGILVRKDFVLTAAHCQGCG164449-02Protein SequenceSSINVTLGAHNIKEQERTQQFIPVKRPIPHPAYNPKNFSNDIMLLQLERKAKWTTAVRPLRLPSSKAQVKPGQLCSVAGWGYVSMSTLATTLQEVLLTVQKDCQCERLFHGNYSRATEICVGDPKKTQTGFKGDSGGPLVCKDVAQGILSYGNKKGTPPGVYIKVSHFLPWIKRTMKRLSEQ ID NO: 147576 bpNOV21b,CTGACCTGGGCAGCCTTCCTGAGAAAATGCAGCCATTCCTCCTCCTGTTGGCCTTTCTTCTCACCCCCG164449-01DNA SequenceTGGGGCTGGGACAGAGGAGATCATCGGGGGCCATGAGGCCAAGCCCCACTCCCGCCCCTACATGGCCTTTGTTCAGTTTCTGCAAGAGAAGAGTCGGAAGAGGTGTGGCGGCATCCTAGTGAGAAAGGACTTTGTGCTGACAGCTGCTCACTGCCAGGTAAGCTCCATAAATGTCACCTTGGGGGCCCACAATATCAAGGAACAGGAGCGGACCCAGCAGTTTATCCCTGTGAAAAGACCCATCCCCCATCCAGCCTATAATCCTAAGAACTTCTCCAACGACATCATGCTACTGCAGCTGGAGAGAAAGGCCAAGTGGACCACAGCTGTGCGGCCTCTCAGGCTACCTAGCAGCAAGGCCCAGGGGGACTCCGGGGGGCCCCTCGTGTGTAAGGACGTAGCCCAAGGTATTCTCTCCTATGGAAACAAAAAAGGGACACCTCCAGGAGTCTACATCAAGGTCTCACACTTCCTGCCCTGGATAAAGAGAACAATGAAGCGCCTCTAACORF Start: ATG at 27ORF Stop: TAA at 573SEQ ID NO: 148182 aaMW at 20350.7kDNOV21b,MQPFLLLLAFLLTPGAGTEEIIGGHEAKPHSRPYMAFVQFLQEKSRKRCGGILVRKDFVLTAAHCQVCG164449-01Protein SequenceSSINVTLGAHNIKEQERTQQFIPVKRPIPHPAYNPKNFSNDIMLLQLERKAKWTTAVRPLRLPSSKAQGDSGGPLVCKDVAQGILSYGNKKGTPPGVYIKVSHFLPWIKRTMKRL


[0462] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 21B.


[0463] Further analysis of the NOV21 a protein yielded the following properties shown in Table 21C.
112TABLE 21BComparison of NOV21a against NOV21b.NOV21a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV21b1 . . . 166141/168 (83%)1 . . . 168144/168 (84%)


[0464]

113





TABLE 21C










Protein Sequence Properties NOV21a








SignalP



analysis:
Cleavage site between residues 18 and 19












PSORT II
PSG:
a new signal peptide prediction method


analysis:

N-region: length 0; pos.chg 0; neg.chg 0




H-region: length 18; peak value 12.03




PSG score: 7.62



GvH:
von Heijne's method for signal seq. recognition




GvH score (threshold: -2.1): 3.30




possible cleavage site: between 18 and 19









>>> Seems to have a cleavable signal peptide (1 to 18)










ALOM:
Klein et al's method for TM region allocation




Init position for calculation: 19




Tentative number of TMS(s) for the threshold 0.5: 0




number of TMS(s) . . . fixed




PERIPHERAL Likelihood = 3.61 (at 150)




ALOM score: 3.61 (number of TMSs: 0)



MTOP:
Prediction of membrane topology (Hartmann et al.)




Center position for calculation: 9




Charge difference: −1.0 C(0.0) − N(1.0)




N >= C: N-terminal side will be inside









MITDISC: discrimination of mitochondrial targeting seq












R content:
0
Hyd Moment
2.63



Hyd Moment (95):
5.02
(75):



D/E content:
1
G content:
2



Score:
−5.96
S/T content:
2










Gavel:
prediction of cleavage sites for mitochondrial preseq




cleavage site motif not found









NUCDISC: discrimination of nuclear localization signals









pat4: none



pat7: none



bipartite: none



content of basic residues: 13.8%



NLS Score: −0.47










KDEL:
ER retention motif in the C-terminus: none









ER Membrane Retention Signals:









KKXX-like motif in the C-terminus: TMKR










SKL:
peroxisomal targeting signal in the C-terminus: none



PTS2:
2nd peroxisomal targeting signal: none



VAC:
possible vacuolar targeting motif: none









RNA-binding motif: none



Actinin-type actin-binding motif:









type 1: none



type 2: none










NMYR:
N-myristoylation pattern: none









Prenylation motif: none



memYQRL: transport motif from cell surface to Golgi: none



Tyrosines in the tail: none



Dileucine motif in the tail: none



checking 63 PROSITE DNA binding motifs: none



checking 71 PROSITE ribosomal protein motifs: none



checking 33 PROSITE prokaryotic DNA binding motifs: none










NNCN:
Reinhardt's method for Cytoplasmic/Nuclear









discrimination









Prediction: cytoplasmic



Reliability: 70.6










COIL:
Lupas's algorithm to detect coiled-coil regions




total: 0 residues









----------------------------------



Final Results (k = 9/23):









44.4%: endoplasmic reticulum



33.3%: extracellular, including cell wall



11.1%: mitochondrial



11.1%: vacuolar









>> prediction for CG164449-02 is end (k = 9)











[0465] A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21D.
114TABLE 21DGeneseq Results for NOV21aGeneseqProtein/Organism/LengthNOV21a Residues/Identities/SimilaritiesExpectIdentifier[Patent #, Date]Match Residuesfor the Matched RegionValueAAB58142Lung cancer associated1 . . . 246246/246 (100%)e−145polypeptide sequence SEQ33 . . . 278 246/246 (100%)ID 480 - Homo sapiens, 278aa. [WO200055180-A2,21-SEP-2000]AAR13253Human Cytotoxic Cell1 . . . 246246/246 (100%)e−145Protease-X - Homo sapiens,1 . . . 246246/246 (100%)246 aa. [WO9110685-A,25-JUL-1991]AAW84158A human serine protease1 . . . 245194/246 (78%)e−108precursor (HSPP) protein -1 . . . 246208/246 (83%)Homo sapiens, 247 aa.[WO9850424-A2,12-NOV-1998]AAE24317Human granzyme B (grB)1 . . . 245176/246 (71%)2e−97protein - Homo sapiens, 2471 . . . 246194/246 (78%)aa. [WO200234910-A2,02-MAY-2002]AAR27722Human Granzyme B in21 . . . 145 159/226 (70%)2e−87vector 3038 - Mus musculus,1 . . . 226177/226 (77%)227 aa. [WO9216644-A,01-OCT-1992]


[0466] In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21E.
115TABLE 21EPublic BLASTP Results for NOV21aProteinAccessionNOV21a Residues/Identities/SimilaritiesExpectNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionValueP20718Granzyme H precursor (EC 3.4.21.-)1 . . . 246246/246 (100%) e−144(Cytotoxic T-lymphocyte proteinase)1 . . . 246246/246 (100%)(Cathepsin G-like 2) (CTSGL2)(CCP-X) (Cytotoxic serine protease-C)(CSP-C) - Homo sapiens(Human), 246 aa.CAD48710Sequence 7 from Patent1 . . . 245176/246 (71%)5e−97WO0234910 - Homo sapiens1 . . . 246194/246 (78%)(Human), 247 aa.A61021granzyme B (EC 3.4.21.79) precursor1 . . . 245175/246 (71%)2e−96[validated] - human, 281 aa.35 . . . 280 194/246 (78%)Q8N1D2Granzyme B (Granzyme 2, cytotoxic1 . . . 245175/246 (71%)2e−96T-lymphocyte-associated serine1 . . . 246194/246 (78%)esterase 1) - Homosapiens (Human), 247 aa.P10144Granzyme B precursor (EC 3.4.21.79)1 . . . 245175/246 (71%)2e−96(T-cell serine protease 1-3E) (Cytotoxic1 . . . 246194/246 (78%)T-lymphocyte proteinase 2)(Lymphocyte protease) (SECT)(Granzyme 2) (Cathepsin G-like 1)(CTSGL1) (CTLA-1) (Fragmentin 2)(Human lymphocyte protein) (HLP)(C11) - Homo sapiens (Human), 247 aa.


[0467] PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21F.
116TABLE 21FDomain Analysis of NOV21aNOV21aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValuetrypsin21 . . . 239 91/262 (35%)3.4e−79184/262 (70%)



Example 22

[0468] The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
117TABLE 22ANOV22 Sequence AnalysisSEQ ID NO: 1492205 bpNOV22a,ATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGGGCGCCCACG54007-06DNA SequenceGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGTGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGAORF Start: ATG at 1ORF Stop: TGA at 2203SEQ ID NO: 150734 aaMW at 81666.8 kDNOV22a,MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRCG54007-06Protein SequenceVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMHGNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSNLAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHENELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDYWRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKDSEQ ID NO: 1511725 bpNOV22b,ATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGGGCGCCCACG54007-04DNA SequenceGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGAORF Start: ATG at 1ORF Stop: TGA at 1723SEQ ID NO: 152574 aaMW at 63683.0 kDNOV22b,MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRCG54007-04Protein SequenceVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMHGNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKDSEQ ID NO: 15320190 bpNOV22c,ATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGGGCGCCCACG54007-01DNA SequenceGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCACTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGANNANTNCANNTTNANNNTNGNNANNTCTCACTTATAAATGGAAGCTGGCGGGACACGGTGGCTCACTCCTGTAATCCCAACACTTTGGGAGGCTGAGGCGGGTGGATCACGAGGTCAGGAGATCGAGACCATCCTGACTAACACGGTGAAACCCGTCTCTACTAAAAACACAAAAAATTAGCTGGGCGTGGTGGCGGCACCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCATGAACCCAGGAGTCGGAGCTTGCAGTGAGCCGAGTTCACGCCACTGCATTCCAGCCTGGGCAACAGAGCGAGACTCTGTCTCAAAAAAAATAAATTAAATAAAAATAAATAAATGGAAACTAAGCTGTGGGTATGCAAAGGCATACAGAATGGTATAATGGACATTGGAGACTCAGAAGGAGGAGGGTAAGCGGGGGGTGACAGATAAAAAAAACTGCATGTTGCATACAATGTACACTACTCGGGTGATGGGCGCTCTAAGATTTCAAACTTCACCACTATACAGTTCTCCCCTGTAACCAAAAACCGCTGGTACCCCTAAAGCAATTGAAATAAAAATAGAAACTATGTTGTAGCCTGGATGACATAGCGAAAACTTGTCTCTTAAAAAAAAAAAAATGTGGCCGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCCAAGGCGGGCAGATCACAAGGTCAGGAGATTGAGACCGTCCTGGCTAACAAGGTGAAACTCCATCTCTACTAAAAATACAAAAAATTAGCCGGGTGTGGTGGCACACGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGAGGCGGAGGTTGCAGTGAGCCGAGATCGCACCACAGCACTCCAGCCTGGTGACAGAGTGAGATTTAGTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGTAGAAATTAGCTGAGCGTGGTGACACGTCCCAGATACTTGGGAGGCTGAGGTGGGAGGATCGCTTGAACCCAGGAGTTCCAGACTGCAGTGAGCTGTGATTACACTATTGCACTCCAGCCTAGGCTGTGGGAAAGAGAGTTTCTGGGGTGCCAGCTGAGTTAGTCTTCCCTGTGTGAGACACCCATGGGAAGCCATGCGCGGCCTCTGAGGAGAAAAGTCTCCTTATTGCCTTCATGTCTTTACGCCCGAGAGCAGAACCCCTCAGCGGCATTCCACAGGTTGCTCAGGCATATAACACTCCCTTGAAGCAGTGGAGTATAATCAAACATCTTGGCTCCTCCTGAAACCCACTCCCACCCGTTTCAGTCCCGATAAGTTAAAGATTTGTTTTGTTTTGTTTTTGTTTGAGACGGAGTCTCGCTCTGTCGCCCAGGCTGGAGTGCGGTGGCTCGATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCCGCCTCAGCCTCCCGAGTAGCTGGGACGACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCACGTTGGCCAGAGTGGTCTCGAACTCCTGACCTCAAGCGATCCACCCACCTCAGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAGTTAAAGATCTTAAGTAGTTTGACACTCCTCTTTGCTCAAGGAAATTCACAGAAACCGCCACTGCTATACATCTTACAGAATGACTCTCCAGTTCTCCTTCACTGATTAATCCTTTCCCTCATCCCTTCCTCCTCCTCCCATCTGCCCTAAGAACAAAGAGCTTGTAAACCAATAAATTGGGCGGAGCCTGAGAACTCTGGGCCGTGAGCAAGCCTCCGACGCTCCGGTCCCCTGGACCCGCCTTTTAAACGCTTATTCTGTCTCTTTCTAACTCCTTTGTCTCCGCCGGACTCGGGGTAACCGCTAGGCGTTATGGGGCTGTTTTCCCCAACATAGGCAACAGAGCAGGACAGTGTCTCTAAAAAAACAAAACCAAAACTATATTTTGTACTATTCTGATAAAAATGACTTAGTTACAAACAAAGAACAAATCAACAGATAGTCATGCTGTGGAGATCAGGAATATTCCTTCCCAGGGTAAATGAAAGACCAATTCCCTAACGTCATGTGGATATACGCTTGTGGCTTAAGATAAAATTACCCGTGACAGCATCAAATACCAGGGATAAAACTCAGTCTTCAACACGCATATGTATCTCCTGGGGTTGAATCCTCTGGAGGTCTTGTTAAAAATGCAGATTCTGGTCAAGAGTTCGAGACCAGCCTGGCCAATATGGTGAAACCCTGTCTCTACTAAAAACACAAAAATTAGCTGGGTGTGGTGGTGGACGCCTGTAGTCCCAGCTACTCAGGAGACTGAGGCAGGAGAATTGCTTGAACCCGGGAGGTGGCAGTTTAGTGAGCTGAGATCGGGCCACTGCACTCCAGCCTGGGAGACAGAGTGAGACTCTGTCAAAAAAAAAAAAAAAAAAAAATGCATATTCTGATTCAATAGGTCTGGGGCAGAGGTGTTTTTTTTGTTTGTTTGTTTTTTGTTTTTTGGTTTTTTTTTTGGTTTTTTTTTTTTGACAGAGTCTAGCTCTTTCACCTAGGCTGGAGTGCATGACACCATCCCAGCTCACTGCAACCTCCGCTTCTTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGAATAGCTGGGATTACAGGCGTGCACCACCACACCCAGCTAAGTTTTGTATTTGTAGTAGAGATGGGGTTTCACCGTGTTGGCCAGGTAAGTTTTGTATTTGTATTTGGTCTTGAACTCCTGACCTCAGGTGATCCGCCCGCCTCGGCCTCCCAAAGTTCTGGGATTACAGGCGTGAGCCACTGCACCCGGCCTGTTCTGCATTTCTAACAAGTTCCCAGGGGATGCTACTGCTGCTGGTCTTCAACCACACTTTGTGGAGCAAGGCTCTCAAAGACCTTGATGTATGTAGGAGAGAAAGCTGGGGTAGAGAGTGATGAGGGGAGAACGGGTGCGTGGGGAGATGCTCCCCTGTGCATCCTGGTCCCATGTGAGGCTCCAACAATGCTCACCTACATCACAGGGAGAGCACCTAGCAGGAAATGAGTTCTGCTTTAGCATCCAGGCACAGGAGATTAGAGGCACAGGCAGGCAGTAGATTCTACTTCATTATTTGTGCAGCTGGACACAGAGCTTCCTTTCTTTTCCTTGATACTGTTTTATTCCATCTAAGTATGTAGGAGTAAGAGGGCTGTGTTACACTGTTTTCCCCACCTTTAATGCATCTGATCAACCTAGGAGCCCCCTAAGACCCTATATTATCTCACTTTATCATCACAGCAAACCTGGGAGAAGGATATGGTTCCTGTTTTACAGATGAGGAAACTAAGTCTCAGGGAGGTGAAACTACTGCCCAAGGATAGCCAAACAAAATACACGTCAGAAGTGGGATGTGAAACGAAGCCTGTATGTCACCAGAGTCACCTATCCTCTCCCCCTCCAACCACCTAACCACACCAGGGAGTTGGCAGGAGATTCCTAGCCCACCCCTTACATTAAAATCCCTTTTAGGCGGGTGCCACTATCCAGTCCTTCTCAATTGCACCTAGTGAGACCACGAAAGATCTTCTACCTGGCTCCTGGTAGATGAGATCTGGCTATACAGGTACTTGGGTGCAAACCTGCCCCTCTGCCCCTGGAGCTATCACCTCCAGATCCTGCTACTTGTACCTTTGCAGCCCCAGGTAGCCAGTGGCAAGGGCCAGGGGTGGCAGCAGGGCTGGGAGTGGAGAAGAGTGTGAGAAAGTGCTGCGGGGCTCAGGAGACACAGCAGGGAACCAAGGGGTCCTAAGGGTTGCAATAGAGGACAGGGGCAGGGAGTGCAGAGTGGTGGGAAGGGGGATGGGAGCTGGGTGCAGGACACATAAGAGATGGAGCATCCCGGCCACACACGGTGGCTCACACCTGTTATCCCAGCACTTTGGGAGGCCGAGGTGGGTGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAACACAAAAAATTAGCCAGGCGAGGTGGTGTGCACCTGTAGTCCCAGCTTCTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCAGGAGGTGGAGCTTGCAGTCAGCTGAGATCCCGCCACTGCATTCCAGCCTGGGTGACAGAGTGAGACTCGTCTCAAAAAAAAAAAGAATAAAAGAAAAAAGAGGTGGAGCATCCTGCAGCCCTGGCCCCTAAAAGATTGGTGGGAGAGTGCCAGCTGCTCCACCCTAGTCACTTTGGGAACTGGTCTTTCAGTTCACGGCCTGCCATGTCCTCTCCTGCAAATCCTGGCACTGTTGAGGAGGTCCTTTCAGCCCTGGTTTGTCCACTCTAACCTTGAATATATTATACACACACTTTATGAGAGCTGACGAGGGACCAGGTGCTGTTCTAGGCTCTGAGGTGCAGCTGTGGACATTTGGGTACAAAGTTCTTCTGGCAGGGTACTTACCTCCTGCTGGGGGTGGGGGAACCTGAACAGCCAACACATAAGTAAAGCAAGATCATCTCGGTGTTGAGTGCCTTGAAGACAATAATTTAAACGGGTGGGAGGATAGAGTGTGTGAAGTGAAAAAGTTTGCTTTAGTCAGGGTAGTCAGGGAAAGCCTTTGGGAGCAGGTGATATTGAAAGGAAATCTGACTGAGAAGGCAAATTCCATGCACAAATTAAAAGGCCAGGAGGCTAGTTGGGCTGTTGCGTGGGAGGAGCAGCTAGAATGCCGGAGTGACTGGGGGGATGGGAGCCAGGGGATAGGGAGGCAGATGGAATGGGAAAGGCGTGGGCAGGAAGAACTTGGTCATGAAGACCTTGCAGGTGAACCCACTGGGGCCTTAAGCCTGGAGGAACTTGACAGAATTTGCCTACTGTGTGGGGAACGGCTTGGAGGGGGTGTGGGCTTCAGGAGGCTGAGATGTCCTGTTTCTTGTGCCCCCTCCTTTCTTCCCAACACCCGAGAAACCTGGATGGGTGTGGGGACCAGAGACCTGGAGGTGGCCAGATTGGGCTTTGGCGGGACGCTTAGCAGCCCTCGGGACCTGTTCAGACTGCGGCCTCCCACCTTCGGGAAGCATCGGCGCTGCCCATCTGCCCCTGCCTGGCGTCCAGGGAGTCCCGGCTGTGCAGCGCTTCCCTTGAAATGTCTCTCTGTCCTCCCATCCAGTGCCTGGGACCCGGCAGCGCCGTCGAGGCAGGGGGCTGCGAGGCGGGACCCAGTTGCACGTGGGCCCTGTGGGGTCACTCCCTTTCGGGGGTCCTCTAGCTCTTCACCCTGCGCGCGTGGGGCAGACCAGATGCCTCGAGGAGCTCCAGGACCAGTGCCTATGGGGTAGTCCCTGCCGGCGGTGGGCCCCAGTCCCAGACTGCGGCGCGCTATTTCTTTCTGGGGTTCGTGTGAGCGTGGGCTGCCAGAATGGTGCCCACAAGCTGCTTTTGGGTGATTCAAATCATTTATACAGATAGTGCCCCTGCAAAAAACATTTGCGCAGGGCCCCGCTTACGCCAGAGGATTGCGGGCCACTTCTGGGCATCGCTCCTCGTGGGGATGGGAGCATCTCCCTGGAGAGCCCTTTGCAAAGGCCAAGCGCCGGCCAAAGGCACACCGCTGGACGCGTTTCCTTCCTTCTGGAGAGATGACCAGGAATGCAGGATCCAAAGGGGGTCTTGGAGGGAGGGCGGGAAGGGCATCTCCGGATCTGGGCAGACCCAGGGCTGCCGGCTCCCCGAGGAGAATACGGGCTGGGGGCGAGGAGCCGGAGGGCAGGTCAGGCAGTGCATCAACCCTTGGCTCCTCCACCGCAGCCCCAGCCCGCAGGCTATCGCTCAGGCTTCTCTCTCCGGGTTATGTAACCCCGGGACGGGACGTGGCAGCCGGGTGAGTGAGCGAAGGAGTAGGGGAGGGAAGGGAAAGGAGAGGAGGGGCAGGGCCGGGCTTGGTGATGGTGGTGGTGGGAAGCGCCGCCGTGCCGCCTCTTCTTGGGCCCCTTGGGTTGTCTTTCTGGAGGATTCCGGGACCAGCCCTCTCCCCAGGCTCCGGGTCGCCCCCTAGCCCCCCGCCGCCTCATTTTCCCTTCACTCTTTTCCCCCTTCTGTCCCACCCGCCCTGCCAGGGGGCCTCTGGCTCTGGATAGCTTTTCCTCTCCGGTTGTAGTTTCCTTCCCAAAGTTCTCAGCTTTGCTACCTCGCCCAAGTCATTAGCCGCTCTGAGCCTCAGTTTATCAGTTTGTAAAATGAAGTTTGATTGAGCGGCCACGTGTAAAACTCCTGGCATAGTGCATGGTACAAAGTAGATGTCTGCTGCAGGCTAAGGGCCTCGAGGGGCTAAGTGAAATGTTGTGTGCCAGGCTGGGTGTCAGAGCCCCGGGAGCCGCAGCCACGAATGGTTGGCTCCCGGGTGGTAAAAGAATTTATCAACAACAGTATAGGTTTGAAAAGTTTTATTAGATGGAAAGAACTCCACAGCAGAGCGCAGCGGGATGCTTCGGCAAGAGAGGCCTGAGCTCACTTGCAGGGAACTGAAGGGTAATTTTGACCACATTAGTTTTGTAGGTCATAGTAAATGATTACATTTGTAGACATTTTGGCACCTTGATGACAGCAAAGGTTGCACAATGGGTTCCAACATGCGTGCATTCCGGAGATGTATAGAAATTCTAGGGAAAGAAGCCTGGTACCAGATGTGGCTTTAGATAATAGGAAAGTACCATTCTGAGTTCTTCAGATAAGGTGCTTTGCCTCCTGATGGTCTGCTTGATGGCCACCAGGTGATCCTTGCTCTCCTCATTTTCCCCCTGATAAATATTTTGGGCAAATCTTTGACCCTTTGTATTTCTCCATGCTCATGTCTACTTGTCTGTTAGGATCCCAAGAAAGGGAAAATGGCACAGTGAAGAGGGGTGTCCAGTCTATCTGGCTACTTCCTGCTGAAAAGGGGCATTGAAAGGATTCCTTTCTTGCTTTCTGTCATGAAGGGAATGAAGGGTCATGATAAACTTGTTCATGGAGGGAAGACCAGATTCCATCAAGAGGCCCCATGAAAATAGAAGTTGCTGTTGCAGGCTGGTATTGGGATTGCATAGTCATCTGTAGGTGGAATCATTGTAAGCTGGAAGATATAAGCATTAAAAGGCAGGAATTACCGGCATGCACCTCCATGCCCACAGATTTTTGTGTTTTTAGTAGAGACAGGTTCTCACCATGTTGGCCAGGCTGGTCTCCAACTCCTGACCTCAGGTGATCCGCCCGCCTCGCCTTGGTCTCCCAAAGTACTAGGATTACAGGTGTGAGCAACCACACCTGGCCCCTGGGGTCTCAATTTGTGTATTTATGCATGGCCTCCACCAGTCTAGCTTGGAAAAGGGCAGGGCTTTCAGATAGTTTCATACATACAAAATTATTATTTCTTTTTATTTTATTTTATTTGAGATGGAATTTCGCTCTTGTTGCCCAGGCTGGAGTGCAGTGGCGCAATCTCAGCTCACCACAACTTCCGCCTCCAAGGTTCAAACGATTCTCCTGCCTCAGCCTCTGGAGTAACTGGGATTACAGGCATGCACCACCATGCCCAGCTCATTTTGTATTTTTAGTAGAGATGGGGTTTCTCCGTGTTGGCTAGGCTGGTCTCAAACCTCAGGTGACCCGCTCGCCTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCGCGCCCAGCTATTATTTCTTATAATTTAGAAAAATTAACAGGTTTTATTATATATTTTTCATTCCCTCCAACAGAGAAGTTACCATATGATCCTGTCTGCCCTTACCTCTGTTTGGGCCAGAATTGGTGGCCTGGTATTGCCAATAGGTTCTATGTTGGGGACAGCTTCTGCCCAGCTCTGTTATTAGGACTGGGAGCATGAGCTTCATCTGCCCATGCTGAAGATCACACGTGTGATTTTTTGTGTGTGGGAACAGCAGGTAGTTAATACCACAAATACATCTTGCCAGGTTAAATCAAAGGCAACAGTTAAAGTCTGAAATTCTTGAATGAACTTAGAGGGATCCTGACTAAATGAACCCAACTTGGATTGAATTTGCAAAAGATCAGACATGATCAGAAAAGGGACATGAACTTGGCTTGTTCCCAAATCTTCATTAGCCACCTTAGGGAGAGGCAAAATATTTTGGGGATTTTTCTGAGGACTCTGTACTAGTAGCATATGTGACTCCCCTGAGAGTATGTGAAGGGGAGAAAGTATTTGGGTATGTGGGTGGGAGATTGACTAGGGAATGGAGCAGATGGAGAGGGTGTAGGTGAAGAGTGAGCAGGTTGAGGAGGATGTAATAGGCAAAAGGAAGGATCATCTAAGACATCAGAACCGGGAAGGGAGGACGTTCCTTGGAAGCATACATGACAATTTGTATGTAATTTTGGGTTTGGATTTGGGGATAAAGCAAAAAAGACCTGAACATATGGGACTTCTGAATCCTTTCCAAGGTTCCGGCAAAAAATCAGTTAAGTTGTAAAGTAGCATTGCAATCCCAAGTTTCATTAATTGGCCAAATTGATTGATTAGGGAGCTTGTATTGAACCCAAGCAATATTAGAAAAAAGGATATGCTTTTTAAACTCTTATTTATTTTTTATTTGTATTTTTTGAGACAGAGTCTTGCTGTGTCGCCCAGGCTGGAGTGCTGTGGCGCCATCTTGGCCCACTGCAACCTCCGCCCCCGGGGTACAAGTGATTCTCCTGCCTCAGCCTCCCTAGTAGCTGGGATTATATGTGCCCGCCACATATAATTAGCCCCCTGGCTGATTTTTTTTTTTTTTTTGTATTTTTAGTAGAGACAGGGTTTCGCCATGTTGGCCAGGCTGATCTCGAACTCCTGACCTCAGGTGATCCACTCGCCTCGGCCTCCCAAAGTGCTAGGATTACAGGTGTGAGTCACTGTGCCCGGCCAAGTTTTGCATTTTTAGTAGACTCCCGGTCTTTAACTCCGGACCTCAGGTGATCTGCCTGCCTTGGCCTCCCAAAGTGCTGGGGTTACAGGCATAAGCCATTGTGCTCAGCCTTATATGCTTATTTTTAAGAGTTTGTGGGTCAAAATGAGACCAATGGGACCATTTTTAAGGAGGCAATCCAAGGGCGAGTTGGATGGAACTGAATTAATTGAACCGAAGTTGGGTTTAGACAAGGAACTACAAGATCCCTGAGGCATCCCTGTGTAGAATTGAGATCCACCGCTTCCAGGACAAGGCTTATGGAGTGTTAAAATGAAAGTGCCCTGCCACTCTGACAGGCAATAGCTCTTTTGTCTTGGCCTTGGGGTAATACCGGGGGATGGCGCTTGGCCAGAAACTGTCAGTTGCCAACGAGAACTCAAGCTGGTTCACTGGCAGTCCGAAAACAGAAAAGAGCCCTGGCCAGTCCCTCACCCCTAAGGGCAAGGACAGCCAGGTATCCCTTCTCTAGGGCTTCAGGATCCCACAGAAGAGCTGCCTCCACCGGGACCGGCAGTTCCCCAAAGAGTAAAGAACCAGACCGTGGAAGGAAGCAGAGAGAAAAAGGAAGAGGGAAATCCCAGTGAAGTCCCCGTATGGGCCACCAAGATGCCAGGCGAGGTGTCAGAGCTCCGGAACCGGGAAGTGGTTGGCTCCCGGGTGGTAAAAGAACTTATCAACAACCGTGTAGGTCTGAAAAGGAAAGTTTTATTAGACGGAAAGGACGAGGCAGCAGAGCGCAGTAGGCGCTTCAGCAAGAGAGGACTGAGCTCCCTGCGGGGAACTGCAGGGTAATTTGGACCACATTAGTCACTTAGGTCATGGTAAATGGTTACATTTGTCGATATTTTGGTGCCTTGATGTCAGCAAAGTTTGCACAATGGGTCTTAACGTGCACTCATTCCGGAAACGTACAGAAATTCTAGTTACTTATAAATTCTTGGGACGGAAGCTTGGTACCAGATGTGGCTTTAGACAATAGGGAAGTGTCATTCTGAATTGCTCAGATAAGGGGCTTTGCCTCCTGTTGGTCGACTTGATGGCCACCAGGTGATCTCTGGTCTCTTCAGTGTGGCTTTGCAGACTATAAAGGCGCAGCGCGCCAACGAGGCGGGTTGGCCCCAGACGGCGGAGAGGAAGGGCAGAGTCGGCGGTCCTGAGACTTGGGGCGGCCCCTTGGAGGTCAGCCCCGCTCGCTCCTCCCGGCCCTCTCCTCCTCTCCGAGGTCCGAGGCGGGCAGCGGGCTGTGGGCGGGCAGGAGGCTGCGGAGGGGCGGGGGGCAGGAAGGGGCGGGGGGCTCGGCGCACTCGGCAGGAAGAGACCGACCCGCCACCCGCCGTAGCCCGCGCGCCCCTGGCACTCAATCCCCGCCATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGGGCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGTGAGTTCCCCGACCGACGGTCCGCTCCCCCGCAAGCCGACTGCCCGGCTCTCCTGCCCCGTGGGGCGATCCCTCCCTAACACGCGGGCACACGCACACCCACGCACACTCACAGTCATGCACACTCACCCCGCACGCACACTCGCACTCACGCGCACACACGCGCGCGCACTCACACACATTCACACACGCGCACACTTGCACTCACACGCGCGCGCATTCACACGCATGCACACACACGCACACTCACACGCGCGTGCGCGCACACACAGTGCACGCGCGCGCACACTCACACTCACAGTGCACACACACATATACACACTCACACTCCCTCAACTCCCTGCTGGGAGCAATGGCTGCTGACTCGGCAGCCCCAGTTCCCTGCCAGACCTAGTCAGCAGTCCCAGGACAGGCGCCAGTGGGATGCTGCCTCTTCCAAGCCCCAAACCTTCCCTTTTCACCAAAGACAAAACAGGCCAGAACTGGCAGGAGGGGAGACAGAGGGGCAGAAGCTCTCAAGGTGCAGAGCAAGACTGCGTAGGAGAGAGTTTGAAGGCGAGGGCTGGAGAGAAAGAACAAAAGGAAAGAAGGGAGAGCCCCTCGCTGAGGCTGCCGGGAGGATGGGGCAGAGCGGGAGAGGAAGGCAGCCCGACCTCCCAGCTTTCCAGATGTGGAATAGGAGAGGAGGAGCGCAAGCGGAGGGCACTCAGGGGCTTCTAGAGGAGGCAAGTGGAGGAGGGTCTTGAAGGGTGATGTCCCCGAGTCAGGGGAGTCTGGAGAGAGAGAGAGAGAGAGGGCTGCCAAGAAGGAAGCGGCGGGCAAAGGCACAGGGGCACCAGATGCGGAAATGGGCAGCCTGTTCTGGAGGCAGCTGTGGAGCTTCGATGGGTACCCCCAGCACCTGCCTGGGCAGAGCCTTGTGCTGAAGGGCCGGCGGGCAGGCCCAGCCCTGAAAGCCTCGACACCCAGGCAGACATGGATTCCAGGACAGGCCATCTGAGCCCAGAGAGCAGACACAACAATGGAAGCGGCACAGGGGTTTTGGGGCATGATGCTGAGTCTGGAGCTAAGAAAGCCTCCTTGGAAAGGCATCTGGGCTGAGATGCAAAGGAAGAATGGGAATTAGGTGAAAAAATCAGAGGCGAGGGGTAGCATTACAGGGGAGGGGATAGCTAGTGCAGAGGCCCGGAGGTAAAGTGCCAGACTCAGCTCTTTGGAGCAACCGAACAGTTTCTAGAGGCTGGGTGCAGCTCTCCATTGGATTAGAGGTTCACAGGGGAGGCTGGCCAAGCATGTAGTTACATCAGGGAGGAGAAGGAGGAGCCAAGGAAGTGACTGGAGAGGCAGGTTGGGGTCAGATTGCAGGCCTTTGATGTCCTGTGAAGGCTGTTAGATCCTGGTGGTGTGGCCTGCTGTGGGCTCACATGTCTTCTTGGGCTGGCAGACCTTTCCATCCGGGGTTTCACCATTCTTCCTTTCCCCCATGCTGTGCCTCTCGGACCCCAAGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGTACTTCCTCTCCAGGGGCCCAGCCCAGACTTGCAGCCCCTGGGGCACTTTACCAGCACAGCTCTTGGCCTCATGGGCACCGGCACGCCCCTTGCTTGCCTAGCGCAGGAGCAACCTTAGGCTCAGCTTCCCACCTGCCCTGGCTACCCTCCCTCTGGTCCTGTCTCACTGTTCTATCCCCGCCCCAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGGTCAGTAATCCTGGCTCGGAGCCATGGTCTCAGGGTAGGGAAGGCAGCCCCTGGGAGCTTCTCTCCTGCCTCCTCTCTGTCCTGGCCTGCCCCACTCTGTCCAACTGGGCCTGACCACCATGTCCTGTGTCTGCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTGAGGCAGACTAACCCTAGGTCAGGAGGTCACAGAAGGACTGGGGTGGGAGTCCTGGGGGCACCGATGATCTCTCTCCACCTCTCCTGCCAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTGAGTGGTCCCACTGTGGCTGGGGCCTCCATGCTGGGAGTTGGGCACCCAGTCCAGGCTAGGCTGAGGCTCCTCTGAGGACAAGGAATAGACGCCAGCTTAGGCTTCCCAGGGGGGTGTGGCTTGTTGTCAAGAGGGTGGCACACGGCAGGCACCATTGGGAGCCAGCTGCTTTGGGACATGCCCACATCCTCCCCAGATAATGCCACCACAGGGTGGGTGCTGCTTCACGGTACAGCTTCCTCCTGGCGTGCCCCTTCTGGCCCGGGGCCTCTGGTCCACATCACTTCTTGCCTTCTCGTGGTTCTGACTTCCGCATCTCATGGACCTCTTTTTACAGCAGGCTACAATGTGGAGTCCTGGCCAGCTCTAGGATTGGCTTCCCCCGAGTCATGTGGCCAAACTGGTCTAATGAACTGTGTCCAATCCAGAGAGCAAGGCTGCCTAGGGCTGCCCATTGGCAGGGGCTGTGGGCCGGGGTCTGTGTTTGATGCACAGTGCAAGTCTCTAGCTGAGCCCACTAGGGTGGGGAGACAGTAAGCTTGGAGGCCTGAGCTCCTTCCCTGGGTCCTGGGCCAGGCTTCTGGGGTTTGAGCAGCCACAACAGAGAACTTGCTGCCCCCAGGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGGTGGGCAGTCAGGCCAGGGTTGGTTGGGCAGGGCTTGGATGCAGGGTGCATCCTTCACTGTGGACACACCCTTTACCATAAACTCAACCTCCACCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGGTCAGATATAACCCCTATGACCTGGGAAGGAGGGCCCACCCATCTCAGGTCCCCTTCCCACCTTCCCACCGGGGCACAACCTGCTGTGACTGCGCTTGTATGCCCCTGCTGCCTCCTGATGTCTCAGCCTTCTCTCCTGTGGACCCCTAAGCTCCATCCCACTTTCCCTTATTATGGCGCCCCCCCAGTCCTACCCCTTCCTCCCGGCTCTGCTGCCGCTCCCCTCCTGTACCATGATGGGATGCCCCCTCTGTGTGGGCCATCGCTGACTTTTTAAGTCTTTCCATGGCACATGTGATCTGCCCCTGGGTGTACCCCTCCCATGCCTCATGCCACGCTACACTCTGCCCACCAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGTACTGGCATGGGGAGTGGGGAGAGGTAGGCACAGGGCAGGGCCCCAGGCATGAACCCGCTGCAAGCCCCCATGTGTCCCCAGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGTAGGCCACCCAGCATGAGGGCCACTCTGTCCTTCTGCCCTGGTGGCTGGACCTGCTCGACTTGAACAAGCCTCTTGCCCGGCAGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGAGTATTTTGAGGGCGGCAGTGGAGGTCTGTGGGGGGCGGACCTTGTCTCTGTCTCCTGCCCCTCCTGACCTGCCCCATCCAGGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGTATGTGCCTGAGGGTGGAGTTAGCCCTGGCCCCGTAACCCCCGCCCTGATAAGACAGCCTGCGGTTGCGTACAGTGCTGGCGTCTGTTCCCACTCTGAAGTGTCCCTCAGAGAAGGGAGGGTAGCGGGAGGATGGGACCGCATCCCGCCTGCTTAGGCAGCAGTGTCTGTGGTCCCCTTAGGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTCGGATCTGCGTCCCGGCCCCCAGCCTGCCTGAATCACTCCTGCTGTCCATTTAGGCTACAGCTCCTACCAGGGGTTCTTCTAAGGTCCAGCTGAGCATTCAGACTCACAAGATGCCATGGGCCATGCTTGGTATCAGATTGTCTTGGAAGCACACAGGACAGGAAGTGCAGTTTGCTGGCAGCGTGGCATCGTGTTAGAGCCGGTGGGAGGAGCCTCCATTGCAGTCTAGGTGGTGGTCCGTGGCGCTGCCCCAGAGCTATCCTCAGGAGAGACTCACGTGAGGCAGGTGCAGGAGCTGTCCTGGCATAGAAGCTTCATGTTCCATGGAGCTCATAACCCTTGTAATAGCTCCATAAGCAGAGCTTCCAAAGGGTCTACCAAAGACAAGCCCAATAACCTGGGAAAGCCCAAGGATAGATAAGCCTTCCTACCAGGTATTTATCATTTTCTTAGTCCAGATGTGATTTGTCAATCAGGATTTCTTTTTTTTTTTTCTTCCAGAAGTAGTGTCACCTAGGAACACAGTAGACCTACCACTTTGCTCAGGTTTGCAGGGCAACAGAGCCAGCAAGTTAGCTAAACAGCACATTATCCTGCCGAAGGGGAAGGGCTCTGATAACCTCTTCCCACACAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGGTGTGTTTGACCGGGAGGGCAAGGGAAGGGGCTGGAGGGCTGGAGGCTCGGGAAGAAGCAGAAGATCATTAATTGGGTCCTGATCGTGCCCTTCACTCTCCTCAGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGATACCTGCGGTTTAAGAGCCCTAGGGCAGGCTGGACCTGTCAAGACGGGAAGGGGAAGAGTAGAGAGGGAGGGACAAAGTGAGGAAAAGGTGCTCATTAAAGCTACCGGGCACCTTAGCTCATCTTCGTGTTGTCTCTGTGCCCCAGGTCCTCCCCCCGGGGGCGGGCCTCGGCCCAGCCCTCAGTTCCTATTCTGCACACTTGCACACTCTCATCAGTTGGCTTCTGGACACATTGTGTGAAAAGAGGATCCCACCTGGGCTCTTCTTGAACCAAGGGCCTGGCAGAGCAACTCATTTCTTCTGATCAGCTTCTGCTACAGGTACCATTACACTGCTGCCAGGCATTCTGTAAGCGCCTGCTCATTGCCAGGTGTGCAAGGAATCAGGATCAGCCGTGCCTGCACTCAAACTCCTGGGGCTCCTAGTCAAGGGAAAGGACAGTTCGGTACATTGTGAGACATGCTAGGGTGGAGGCCAGGTGCCGTGAGAGTGCAGGGGAGCTGCACACGTGAAATACAGCACTGCACATCAACAGGACTGGGGCAGTCAAGGATGCAATAGAAGTAGTGGCTCTAGAAGTTCAGGCGGGAGGTGGGCAGGGTGTGGAGTATGGACAGGGATGGCTCCAAGGAGGAGGGTCAGCCAAAGGTGGGTCAGCTGAGAACATTTGAATTTGCTTCAGCCATTCTCAGAGTATTGATAACTGATAGGCTTTGCTGAGTTTCTATCAGACTGAAGGGGAAGTTGTGTATCAGTCTGTGTCTTGCCAGGTAAACAACCCATTCTAGGCACTTAAAGTGGAGGGAAATTTAATGCTGGAAATTGGATAGGAAGGTGTTGGAAGAGCTGGATGAGGCCGGGTGTGGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGAGGATTGCTTGAGCCCAGGAGTTTGAGACCAGCCTGGATAACATAGCCAAACCCCGCCTCTACAAAAATAAGAAATAAGAAACATAGCCAGCTGTAGTGGCGCATCGCTAAGGGAGGCAGAGGCAGGAGGATCACTGGAGCCTGGGAGGTGGAGGCTGCAGAGGCAGCAGTGAGCCATGATGGCGCCACTATACTCCAACCTGGATGGTCATAACAAAATAAACAAAAAAORF Start: ATG at 1ORF Stop: TGA at 2203SEQ ID NO: 154734 aaMW at 81666.8 kDNOV22c,MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRCG54007-01Protein SequenceVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMHGNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSNLAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHENELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDYWRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKDSEQ ID NO: 1552202 bpNOV22d,ATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGGGCGCCCACG54007-02DNA SequenceGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATORF Start: ATG at 1ORF Stop: end of sequenceSEQ ID NO: 156734 aaMW at 81666.8 kDNOV22d,MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRCG54007-02Protein SequenceVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMHGNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSNLAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHENELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDYWRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKDSEQ ID NO: 1572142 bpNOV22e,GCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCG54007-03DNA SequenceCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 158714 aaMW at 79745.4 kDNOV22e,APRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRVIKKKKVIMKKRKKLTLTRPCG54007-03Protein SequenceTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMHGNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSNLAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHENELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDYWRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKDSEQ ID NO: 1591972 bpNOV22f,ATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGGGCGCCCACG54007-05DNA SequenceGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGAORF Start: ATG at 1ORF Stop: TGA at 607SEQ ID NO: 160202 aaMW at 21258.0 kDNOV22f,MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRCG54007-05ProteinVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSequenceSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRDPGLPSLRPQSEQ ID NO: 1612161 bpNOV22g,GCCAGATCTGCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCG54007-07DNA SequenceCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGTGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGGCATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGAGCATGAATGACTTCAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGCCCTCCTCACCTACCTGGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATCTCGAGGGTGORF Start: at 1ORF Stop: at 2161SEQ ID NO: 162720 aaMW at 80359.1 kDNOV22g,ARSAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTSEQHVRIRVIKKKKVIMKKRKKLTLCG54007-07Protein SequenceTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMHGNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSNLAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHENELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDYWRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKDLEG


[0469] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 22B.
118TABLE 22BComparison of NOV22a against NOV22b through NOV22g.NOV22a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV22b1 . . . 510510/510 (100%)1 . . . 510510/510 (100%)NOV22c1 . . . 734734/734 (100%)1 . . . 734734/734 (100%)NOV22d1 . . . 734734/734 (100%)1 . . . 734734/734 (100%)NOV22e21 . . . 734 714/714 (100%)1 . . . 714714/714 (100%)NOV22f1 . . . 193192/193 (99%)1 . . . 193193/193 (99%)NOV22g18 . . . 734 715/717 (99%)1 . . . 717715/717 (99%)


[0470] Further analysis of the NOV22a protein yielded the following properties shown in Table 22C.
119TABLE 22CProtein Sequence Properties NOV22aSignalPanalysis:Cleavage site between residues 21 and 22PSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 0; pos. chg 0; neg. chg 0H-region: length 22; peak value 10.30PSG score: 5.90GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): 0.86possible cleavage site: between 20 and 21>>> Seems to have a cleavable signal peptide (1 to 20)ALOM:Klein et al's method for TM region allocationInit position for calculation: 21Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 3.82 (at 613)ALOM score: 3.82 (number of TMSs: 0)MTOP:Prediction of membrane topology (Hartmann et al.)Center position for calculation: 10Charge difference: 1.0 C(2.0) − N(1.0)C > N: C-terminal side will be inside>>>Caution: Inconsistent mtop result with signal peptideMITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment1.37Hyd Moment (95):2.44(75):D/E content:1G content:6Score:−5.91S/T content:7Gavel:prediction of cleavage sites for mitochondrial preseqR-2 motif at 33 PRN|SVNUCDISC: discrimination of nuclear localization signalspat4: KKKK (5) at 70pat4: KKRK (5) at 77pat4: KRKK (5) at 78pat7: PPDLRRR (3) at 719pat7: PDLRRRL (4) at 720bipartite: nonecontent of basic residues: 9.9%NLS Score: 1.07KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: RGQKSKL:peroxisomal targeting signal in the C-terminus: nonePTS2:2nd peroxisomal targeting signal: noneVAC:possible vacuolar targeting motif: foundTLPN at 469RNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 70.6COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues---------------------------------Final Results (k = 9/23):22.2%: extracellular, including cell wall22.2%: mitochondrial22.2%: endoplasmic reticulum11.1%: cytoplasmic11.1%: vacuolar11.1%: nuclear>> prediction for CG54007-06 is exc (k = 9)


[0471] A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22D.
120TABLE 22DGeneseq Results for NOV22aGeneseqProtein/Organism/LengthNOV22a Residues/Identities/SimilaritiesExpectIdentifier[Patent #, Date]Match Residuesfor the Matched RegionValueAAB47184ACPLX protein sequence -1 . . . 734734/734 (100%)0.0Homo sapiens, 734 aa.1 . . . 734734/734 (100%)[WO200127290-A2,19-APR-2001]AAG65917Amino acid sequence of1 . . . 734734/734 (100%)0.0GSK gene Id 248602 - Homo1 . . . 734734/734 (100%)sapiens, 734 aa.[WO200172961-A2,04-OCT-2001]AAB36174Human APG04 protein -1 . . . 734733/734 (99%)0.0Homo sapiens, 734 aa.1 . . . 734734/734 (99%)[US6140098-A,31-OCT-2000]AAU29252Human PRO polypeptide1 . . . 734733/734 (99%)0.0sequence #229 - Homo1 . . . 734733/734 (99%)sapiens, 734 aa.[WO200168848-A2,20-SEP-2001]AAB74694Human protease and protease1 . . . 734733/734 (99%)0.0inhibitor PPIM-27 - Homo1 . . . 734733/734 (99%)sapiens, 734 aa.[WO200110903-A2,15-FEB-2001]


[0472] In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22E.
121TABLE 22EPublic BLASTP Results for NOV22aProteinAccessionNOV22a Residues/Identities/SimilaritiesExpectNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionValueQ96SM3Potential carboxypeptidase X1 . . . 734733/734 (99%)0.0precursor (EC 3.4.17.-)1 . . . 734733/734 (99%)(MetallocarboxypeptidaseCPX-1) - Homo sapiens(Human), 734 aa.Q9Z100Potential carboxypeptidase X1 . . . 733622/733 (84%)0.0precursor (EC 3.4.17.-)1 . . . 722661/733 (89%)(MetallocarboxypeptidaseCPX-1) - Mus musculus(Mouse), 722 aa.Q8N2E1Hypothetical protein1 . . . 465464/465 (99%)0.0HEMBA1005833 - Homo1 . . . 465464/465 (99%)sapiens (Human), 477 aa.Q8N2F1Hypothetical protein305 . . . 734 430/430 (100%)0.0HEMBA1002913 - Homo1 . . . 430430/430 (100%)sapiens (Human), 430 aa.Q8N436Hypothetical protein - Homo48 . . . 733 376/695 (54%)0.0sapiens (Human), 807 aa113 . . . 802 480/695 (68%)(fragment).


[0473] PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22F.
122TABLE 22FDomain Analysis of NOV22aNOV22a MatchIdentities/SimilaritiesExpectPfam DomainRegionfor the Matched RegionValueF5_F8_type_C117 . . . 271 73/168 (43%)2.4e−65133/168 (79%)Zn_carbOpept299 . . . 416 39/123 (32%)2.5e−19 89/123 (72%)Zn_carbOpept475 . . . 675 46/212 (22%)1.5e−27160/212 (75%)



Example 23

[0474] The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
123TABLE 23ANOV23 Sequence AnalysisSEQ ID NO: 1631371 bpNOV23a,ACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTGGCG55078-04DNA SequenceGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCCGCGGCGCORF Start: at 1ORF Stop: TAG at 1360SEQ ID NO: 164453 aaMW at 50931.3 kDNOV23a,TMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSCG55078-04ProteinELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKSequenceDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1651650 bpNOV23b,GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCCG55078-01DNA SequenceGGTGGTTGCTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGGATGGATGGGGCTGGAGATGAGCTGGTTTGGCCTTGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCTAACTGGGGCTGTGATCAAGAAGGTTCTGACCAGCTTCTGCAGAGGATAAAATCATTGTCTCTGGAGGCAATTTGGAAATTATTTCTGCTTCTTAAAAAAACCTAAGATTTTTTAAAAAATTGATTTGTTTTGATCAAAATAAAGGATGATAATAGATATTAAORF Start: ATG at 34ORF Stop: TAG at 1390SEQ ID NO: 166452 aaMW at 50830.2 kDNOV23b,MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSECG55078-01Protein SequenceLPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1671644 bpNOV23c,GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCCG55078-03DNA SequenceGGTGGTTGCTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGGATGGATGGGGCTGGAGATGAGCTGGTTTGGCCTTGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCTAACTGGGGCTGTGATCAAGAAGGTTCTGACCAGCTTCTGCAGAGGATAAAATCATTGTCTCTGGAGGCAATTTGGAAATTATTTCTGCTTCTTAAAAAAACCTAAGATTTTTTAAAAAATTGATTTGTTTTGATCAAAATAAAGGATGATAATAGAORF Start: ATG at 34Stop: TAG at 1390SEQ ID NO: 168452 aaMW at 50830.2 kDNOV23c,MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSECG55078-03ProteinLPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDSequenceLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1691381 bpNOV23d,CACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTG171094334 DNASequenceGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAACACCATCACCACCATCACTAGORF Start: at 2ORF Stop: TAG at 1379SEQ ID NO: 170459 aaMW at 51754.2 kDNOV23d,TMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFS171094334Protein SequenceELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQEHHHHHHSEQ ID NO: 1711267 bpNOV23e,CCACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCT171095197 DNASequenceGGGCCTGAACACAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGGGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAACACCATCACCACCATCACTAORF Start: at 3ORF Stop: end of sequenceSEQ ID NO: 172422 aaMW at 47261.9kD NOV23e,TMELALRRSPVPRWLLLLPLLLGLNTGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFS171095197ProteinELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKSequenceDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQGAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQEHHHHHHXSEQ ID NO: 1731733 bpNOV23f,ATCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAG214374121DNA SequenceCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCCCACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAACACCATCACCACCATCACTAGGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCACTCCCACTGTCCTTTCTAATAAATGAGGAAATTGATCGCAORF Start: at 169ORF Stop: TAG at 1570SEQ ID NO: 174467 aaMW at 52768.3 kDNOV23fAWYRARIPTMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYA214374121ProteinTNSCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVSequenceNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQEHHHHHHSEQ ID NO: 1751364 bpNOV23g,CACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTG171095146 DNASequenceGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCORF Start: at 2ORF Stop: TAG at 1361SEQ ID NO: 176453 aaMW at 50931.3 kDNOV23g,TMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFS171095146Protein SequenceELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1771364 bpNOV23h,CACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTG171095500 DNASequenceGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCORF Start: at 2ORF Stop: TAG at 1361SEQ ID NO: 178453 aaMW at 50931.3kDNOV23h,TMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFS171095500Protein SequenceELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1791364 bpNOV23i,CACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTG171095508DNA SequenceGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCORF Start: at 2ORF Stop: TAG at 1361SEQ ID NO: 180453 aaMW at 50931.3kDNOV23iTMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFS171095508ProteinELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKSequenceDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1811364 bpNOV23j,CACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTG171095572DNA SequenceGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCORF Start: at 2ORF Stop: TAG at 1361SEQ ID NO: 182453 aaMW at 50931.3kDNOV23j,TMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFS171095572ProteinELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKSequenceDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1831386 bpNOV23k,CCACCATGGGCCACCATCACCACCATCACGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTT171095162 DNASequenceGCTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCORF Start: at 3ORF Stop: TAG at 1383SEQ ID NO: 184460 aaMW at 51811.2 kDNOV23k,TMGHHHHHHELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYAT171095162Protein SequenceNSCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1851394 bpN0V23l,CCACCATGGGCCACCATCACCACCATCACGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTT171095169DNA SequenceGCTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGCGCGGCCGCORF Start: at 3ORF Stop: TAG at 1383SEQ ID NO: 186460 aaMW at 51811.2 kDN0V23l,TMGHHHHHHELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYAT171095169ProteinNSCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNSequenceGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1871344 bpNOV23m,ACCATGGTAAGCGCTATTGTTTTATATGTGCTTTTGGCGGCGGCGGCGCATTCTGCCTTTGCGGCT222681273 DNASequenceGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGORF Start: at 1ORF Stop: TAG at 1342SEQ ID NO: 188447 aaMW at 50037.2 kDNOV23m,TMVSAIVLYVLLAAAAHSAFAAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSELPLV222681273Protein SequenceMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWTSPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1891362 bpNOV23n,ACCATGGTAAGCGCTATTGTTTTATATGTGCTTTTCGCGGCGGCGGCGCATTCTGCCTTTGCGGCTG201536204 DNASequenceTCATTGACTCGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAACACCATCACCACCATCACTAGORF Start: at 1ORF Stop: TAG at 1360SEQ ID NO: 190453 aaMW at 50860.0kDNOV23n,TMVSAIVLYVLLAAAAHSAFAAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVM201536204Protein SequenceWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVA0 SDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPV0 DSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNIL0 TKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVN0 MEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPK0 SLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQEHHHHHH0 SEQ ID NO: 1911278 bpNOV23o,GCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCG55078-02DNA SequenceCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAAORF Start: at 1ORF Stop: end of sequenceSEQ ID NO: 192426 aaMW at 47935.7kDNOV23o,AVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPCG55078-02Protein SequenceLDSDLKPRKTTWLQAASLLFVDNPVGTGESYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1931719 bpNOV23p,TAACACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCG55078-05DNA SequenceCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCCCACCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAACACCATCACCACCATCACTAGGCGGCCGCTCGAGTCTAGAGGGCCCGTCTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCTGGAAGGTGCCACTCCCACTGTCCTTTCTAATAAAATGAGGAAORF Start: ATG at 191ORF Stop: at 1547SEQ ID NO: 194452 aaMW at 50830.2kDNOV23p,MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSECG55078-05Protein SequenceLPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1951344 bpNOV23q,ACCATGGTAAGCGCTATTGTTTTATATGTGCTTTTGGCGGCGGCGGCGCATTCTGCCTTTGCGGCTGCG55078-06DNA SequenceTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAATAGORF Start: at 1ORF Stop: TAG at 1342SEQ ID NO: 196447 aaMW at 50037.2kDNOV23q,TMVSAIVLYVLLAAAAHSAFAAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMCG55078-06Protein SequenceWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQESEQ ID NO: 1971362 bpNOV23r,ACCATGGTAAGCGCTATTGTTTTATATGTGCTTTTGGCGGCGGCGGCGCATTCTGCCTTTGCGGCTGCG55078-07DNA SequenceTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTAGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCATTGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTCCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGCAGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCAGAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGATGATGAGACTGGTGACTCAGCAAGAACACCATCACCACCATCACTAGORF Start: at 1ORF Stop: TAG at 1360SEQ ID NO: 198453 aaMW at 50860.0kDNOV23r,TMVSAIVLYVLLAAAAHSAFAAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMCG55078-07ProteinWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSGAYAKDLAMVASequenceSDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQEHHHHHH


[0475] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 23B.
124TABLE 23BComparison of NOV23a against NOV23b through NOV23r.NOV23a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV23b2 . . . 453452/452 (100%)1 . . . 452452/452 (100%)NOV23c2 . . . 453452/452 (100%)1 . . . 452452/452 (100%)NOV23d1 . . . 453453/453 (100%)1 . . . 453453/453 (100%)NOV23e1 . . . 453413/453 (91%) 1 . . . 415413/453 (91%) NOV23f1 . . . 453453/453 (100%)9 . . . 461453/453 (100%)NOV23g1 . . . 453453/453 (100%)1 . . . 453453/453 (100%)NOV23h1 . . . 453453/453 (100%)1 . . . 453453/453 (100%)NOV23i1 . . . 453453/453 (100%)1 . . . 453453/453 (100%)NOV23j1 . . . 453453/453 (100%)1 . . . 453453/453 (100%)NOV23k3 . . . 453451/451 (100%)10 . . . 460 451/451 (100%)NOV2313 . . . 453451/451 (100%)10 . . . 460 451/451 (100%)NOV23m28 . . . 453 426/426 (100%)22 . . . 447 426/426 (100%)NOV23n28 . . . 453 426/426 (100%)22 . . . 447 426/426 (100%)NOV23o28 . . . 453 426/426 (100%)1 . . . 426426/426 (100%)NOV23p2 . . . 453452/452 (100%)1 . . . 452452/452 (100%)NOV23q28 . . . 453 426/426 (100%)22 . . . 447 426/426 (100%)NOV23r28 . . . 453 426/426 (100%)22 . . . 447 426/426 (100%)


[0476] Further analysis of the NOV23a protein yielded the following properties shown in Table 23C.
125TABLE 23CProtein Sequence Properties NOV23aSignalP analysis:Cleavage site between residues 28 and 29PSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 8; pos.chg 2; neg.chg 1H-region: length 4; peak value −1.05PSG score: −5.45GvH: von Heijne's method for signal seq.recognitionGvH score (threshold: -2.1): 4.41possible cleavage site: between 26 and 27>>>Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM regionallocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −4.78Transmembrane 14 — 30PERIPHERAL Likelihood = 1.01 (at 136)ALOM score: −4.78 (number of TMSs: 1)MTOP: Prediction of membrane topology(Hartmamn et al.)Center position for calculation: 21Charge difference: −7.0 C(−4.0) - N( 3.0)N >=C: N-terminal side will be inside>>>membrane topology: type 2 (cytoplasmic tail1 to 14)MITDISC: discrimination of mitochondrialtargeting seqR content:3Hyd Momeat(75):15.42Hyd Moment(95):13.28G content:2D/E content:2S/T content:2Score:−2.53Gavel: prediction of cleavage sites formitochondrial presegR-2 motif at 23 PRW|LLNUCDISC: discrimination of nuclearlocalization signalspat4: KPRK (4) at 100pat7: PIRKKLK (5) at 317bipartite: nonecontent of basic residues: 9.5%NLS Score: 0.21KDEL: ER retention motif in theC-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in theC-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern : nonePrenylation motif: nonememYQRL: transport motif from cell surfaceto Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal proteinmotifs: nonechecking 33 PROSITE prokaryotic DNAbinding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detectcoiled-coil regionstotal: 0 residuesFinal Results (k = 9/23)33.3%: Colgi22.2%: cytoplasmic22.2%: mitochondrial11.1%: extracellular, including cell wall11.1%: endoplasmic reticulum>>prediction for CG55078-04 is gol (k = 9)


[0477] A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23D.
126TABLE 23D Geneseq Results for NOV23aNOV23aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABP65102Hypoxia-induced protein #28 -2 . . . 453452/452 (100%)0.0Homo sapiens, 452 aa.1 . . . 452452/452 (100%)[WO200246465-A2,13-JUN-2002]ABB84842Human PRO302 protein2 . . . 453452/452 (100%)0.0sequence SEQ ID NO:52 -1 . . . 452452/452 (100%)Homo sapiens, 452 aa.[WO200200690-A2,03-JAN-2002]ABB95448Human angiogenesis related2 . . . 453452/452 (100%)0.0protein PRO302 SEQ ID1 . . . 452452/452 (100%)NO: 52 - Homo sapiens, 452aa. [WO200208284-A2,31-JAN-2002]AAB80255Human PRO302 protein -2 . . . 453452/452 (100%)0.0Homo sapiens, 452 aa.1 . . . 452452/452 (100%)[WO200104311-A1,18-JAN-2001]AAB20341Human PRO302 - Homo2 . . . 453452/452 (100%)0.0sapiens, 452 aa.1 . . . 452452/452 (100%)[WO200119987-A1,22-MAR-2001]


[0478] In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23E.
127TABLE 23EPublic BLASTP Results for NOV23aNOV23aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9HB40Serine carboxypeptidase 12 . . . 453452/452 (100%)0.0precursor protein1 . . . 452452/452 (100%)(Hypothetical proteinFLJ14467) - Homo sapiens(Human), 452 aaQ9H3F0MSTP034 - Homo sapiens52 . . . 453 402/402 (100%)0.0(Human), 402 aa.1 . . . 402402/402 (100%)Q920A6Retinoid-inducible serine2 . . . 453374/452 (82%) 0.0carboxypeptidase precursor -1 . . . 452415/452 (91%) Rattus norvegicus (Rat), 452aa.Q9D6254833411K15Rik protein -2 . . . 453372/452 (82%) 0.0Mus musculus (Mouse), 4521 . . . 452411/452 (90%) aa.Q99J29RIKEN cDNA 4833411K152 . . . 453371/452 (82%) 0.0gene (Retinoid-inducible1 . . . 452410/452 (90%) serine caroboxypetidase) -Mus musculus (Mouse), 452aa.


[0479] PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23F.
128TABLE 23FDomain Analysis of NOV23aIdentities/SimilaritiesNOV23afor the MatchedPfam DomainMatch RegionRegionExpect Valueserine_carbpept 43 . . . 23757/212 (27%)1e−22138/212 (65%) serine_carbpept338 . . . 45240/119 (34%)9.7e−20  82/119 (69%)



Example 24

[0480] The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
129TABLE 24ANOV24 Sequence AnalysisSEQ ID NO: 1993482 bpNOV24a,TTATTTGACTATTTTATGGTAGGGGAGAAGGTTGAGTGTTGTTGTGAAAGCCCTGATATCAGTAATGCG56149-07DNA SequenceGGGATGATACAATCTGCCAGCAGAGGAGAGGTTGGCAGGTAGGTCAGCTGCATCACTTCACAAGAAGAATTTGAATCCTCACTAGAAGGGGTACCATCCTCTTCCAGTTCATACTTCCCATATCCAACAACATGAACGCTGAGCATTTTACTTCCTGGCCCTCTATGGGCCTTGAACCAGTTGACCAGGTCTGATTTTGAGAATGACTTCAGTGCTTCAATCTCGTGGGCAAGGCGGTCAAAGAGGTACTGCTGTGTAACCACTTCATTCCAGTTCCTATCCACCTCCTCCCCAAGGTGGGTATCCTCACACTCCTTCAGCTTGATGAGAGCTGTGACCTGGGTGTTGAATGCCTCTTCAGTGAGGTTCTCAATCTTCTCCTCAAAGCTAGAAAGAAACTCTTCTATCTTCTTATCAACAACTTCAGAATTGTATTTGGTTGCCTGAGTCCCCACAGTGACAGAAAATCCTAGAATCCCGGATGTGTTCCTACAGGTAGGGTAGACATGGTACCCAAGGGTCTGCTTGGTTCGAAGGAAGTCAAAACAAGGTTCTTCCATGTGCATCACAAGCAGCTCCATAAGCGTATATTCTCTTAGACTCCTGGTACCTGACTGGTAGTACACAGTGACTTCAGAGTTGGCATCACCCTTGTTCAGAGCTTTCACTTTGCATAGATGGTGGCCACTGGGCAGCTCTACCACCTGGAACTGCACAGGCATCTCCTGCTCCAGAGGCTTGAAGTTTAGTTTGTCAACAACATATTTCAGGAAATCCATAGATTCTGTGCTTGTGACATTCCCTTGTACCAGGCCCTCCACAAAGAGCTGGGATTTGAATTCTTTGACGAAGCTCAGCAGAGACTCAAGGGAAAGGCCGTCCATCAAAGCCTGGTACTTGTCAATCATAGACCAACGGGCATATTCCAGGATTAAAAGCCGTACATCTTTGGCCAAAGTCTCGGGCTTGATGAGGATGTTAAAGTAGGTCTTCTTCAACTGCTCAGTTATCATTGTAAAGACAGCTGGTGTGGAATTGAACTCAGCTAAGTAGTCAATAATGAGCTGAAACAGTAGAGGTAGTTTGTGGTTAAATCCTTTCACTCGAATAATTAAACCATGTTCTCCAGCTACCAGTTTATACTCCAGCTGTGCCACATCTGCTTCATAAGCTGGTTCCGCAAGGTTATGCGTAAGGATATTGACAAAGATATCAAAGAGGACCACATTTGCTGCAGATTTCTGTATCAACGGTGAAATTAGATGGAAACGTATATATGCTTTGGGGATTTTGAATTTGTTGTCTTTCTTATACCACAGGCAACCTTGTGGAGTATTCACAATTTTAACTGGGTATTCTGTTTCCGGGCAATCGAAAGCCTTCAACGTAAAGTCCGTGGCTATGTACTTGTTTTCAGCTGGAAGATGAAGATCTGGATTTAATTCGAAATTACTATTCCACAGTTCAGCCCAAGAGTTTTCAATATCTTCTATACTATATTGAGTTCCAAACCATTTCTCCTTGAGGTCACATTTTCCCTCATTAGCACCAGACAGTAAAACAAGATTTGCTTTTTGAGGAACTAGCTGATTCAAGGCTTCACCAATGACTTCTGGCTTGTATTCAAAAAGAAGCTGATCTCCAGTGAGAATGTCCTGCAATGGGTACAGCTGCATGTTCTCACACATGTTTTCCACATACTCAACTGGATCTGTCTGTTCTTGGTAATGAAATTCATTATCCTCAATTTTCCGAATCTCTTCAAAAATTCTTTTTTTTGGGCCTAGCTTCTGCAGCATTTTTAAATACTGAAAGACAGTGTAAGCAACCTCATAAAAATGTTCATAACCCTCATCAGTCAATGTAATAGAAATGCTGAACACTGAATAAGTAGAATTTTGCTCAAATCCTGTCTCACCATTTCCACCAAACAGTGCAAGAGCCCAGCATTTTTTCCTAAGGAAAGAAAGAATGCTGCCTTTGCCTTCATGTCCAACCAGCCAGGATATATAATGAAGTGGCTTCACCCTGTAATGTTGCTGTTGAGGAGGAAGTGCCCATGTGATGGTCAGAGCATGAATTTTTCTGATTGGAACAACTCTATAAAGTTTGTTAAATGCTGGTGTGTCAAATGGATCCGTTAAATGGCCAAAGTTTGGTCTGGGTAACCCATTGTTTGGTATCTGAGAGAAGATTTCAGTCACCCACTTTTCCAAAGTATCCAGTGTTTCTTTGGATTGAACCACTAAAGTCATGTAATGAGAAGAGTAGTAACGCATCCAGAATTCTCTCAATCTAGCATGTGTATCAATATTATTCTTTCTTGGCTCATGCTTGAGCGTCTCAGCATTTCCCCAAAAAAATTTTCCCATAGGATGTCCAGGTCTAGCAAGGCTTCCAAACAACATTTCCTTTCTGTTTGCATCAGAAGGCCTTGCAAGTTGATATTCACTATCAACAGCTTCAACTTCACCGTCAATTGCATCTCTGATCATTAGTGCGTGGATCAAGAACTGCGCCCATCTATCAAGAGCTTCCTTGAAGTACTTCCTCTGGACATCAAACTGAAAGACAGTGCGTTCACAATCAGTTGAGGCATTATCACTACCCCCATGCTTCTTCAGGAAGGCATCAAATCCATTCTCATCTGGATATTTCAAACTACCCATGAATACCATGTGCTCCAAAAAGTGTGCCAGCCCCGGCAGGTCATCTGGATCAGCGAAACTCCCAACTCCAACACAAAGAGCCGCTGCAGACTGTTTTTCAGTAGTTTTTTTTCTAGCTTCTGCTCTCTCTTCTAATTCTTCCAATTCATTATCCTCAGTATCAAGATCATCATCATGTTCATCATCAAACTCATCTTCATCATCAAAACCCTCTTCATCGTCATCTTCTATTTCAGCTCCAGAATCTTCATCATCATCTTCTTCTTCTTCCTCCACCTCCTCTTCTTCTTCATCATCTGTTGTATTTCCTGTTTTACCTTCCATATTACTTAGGTCTGAAATCAGAAGTGCCTGCAAGCCATTCTGTAATTTGATGTATCGGTATTGCTTGGGGTCGCTGGGAGACTTGACGATCTCAGGGTCCCCAGCATTACTGAGAGACCCCCTCCGTCCCTCTTCCTCAGATTCATCCGCTCCTAGACGGGCAACCCGGCTGTTCTCGCCCAGATCCTGTCCATTGGGCTGCAGGTCAGGGCAGCTGCAGGTAGACTTCGCCTTGTTCCTTCCAGGCATGGCCAGAATAGGAAAGGGTCTGGCAGCAGCAGAGTCTTCGCACCGACCCCGCGTTTCGATTCCCCAGAGCGCCGCGAGCTCCCGCCCGGCCTCACACAACTTCCTCCGGGTGGCACAGACTGCAGCAACAGTGACTCTCCTCAGGTGATGGTGGTGATGGTGGCCCATGGTGGORF Start: at 2636ORF Stop: end of sequenceSEQ ID NO: 2001159aaMW at 132665.4 kDNOV24a,TMGHHHHHHLRRVTVAAVCATRRKLCEAGRELAALWGIETRGRCEDSAAARPFPILAMPGRNKAKSTCG56149-07Protein SequenceCSCPDLQPNGQDLGENSRVARLGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLSDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDSGAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQSAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIFSQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKKCWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVFQYLKMLQKLGPKKRIFEEIRKIEDNEFHYQEQTDPVEYVENMCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSWAELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKFKIPKAYIRFHLISPLIQKSAANVVLFDIFVNILTHNLAEPAYEADVAQLEYKLVAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKKTYFNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDKLNFKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGYHVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNWNEVVTQQYLFDRLAHEIEALKSFSKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGTPSSEDSNSSCEVMQLTYLPTSPLVADCIIPITDIRAFTTTLNLLPYHKIVKSEQ ID NO: 2013647 bpNOV24b,AGACTCGGCTGGGGGAGGGGTTCAGGCCTGTTCCCCGCGGCTGCGGCAGCACCAGGCCCGGCCGCCACG56149-03DNA SequenceCCGCCTCTAGAACGCGGAGGAGGTGGGTCCTGGGAAGCGGGATGTCCATCGCTCCAGCTTGGTGGTGAATGCTGAGGAGAGTCACTGTTGCTGCAGTCTGTGCCACCCGGAGGAAGTTGTGTGAGGCCGGGCGGGACGTCGCGGCGCTCTGGGGAATCGAAACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGCCATGCCTGGAAGGAACAAGGCGAAGTCTACCTGCAGCTGCCCTGACCTGCAGCCCAATGGACAGGATCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCCTACAGGCACTTCTGATTTCAGACCTAAGTAATATGGAAGGTAAAACAGGAAATACAACAGATGATGAAGAAGAAGAGGAGGTGGAGGAAGAAGAAGAAGATGATGATGAAGATTCTGGAGCTGAAATAGAAGATGACGATGAAGAGGGTTTTGATGATGAAGATGAGTTTGATGATGAACATGATGATGATCTTGATACTGAGGATAATGAATTGGAAGAATTAGAAGAGAGAGCAGAAGCTAGAAAAAAAACTACTGAAAAACAGTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGCCATCCTATGGGAAAATTTTTTTGGGGAAATGCTGAGACGCTCAAGCATGAGCCAAGAAAGAATAATATTGATACACATGCTAGATTGAGAGAATTCTGGATGCGTTACTACTCTTCTCATTACATGACTTTAGTGGTTCAATCCAAAGAAACACTGGATACTTTGGAAAAGTGGGTGACTGAAATCTTCTCTCAGATACCAAACAATGGGTTACCCAGACCAAACTTTGGCCATTTAACGGATCCATTTGACACACCAGCATTTAACAAACTTTATAGAGTTGTTCCAATCAGAAAAATTCATGCTCTGACCATCACATGGGCACTTCCTCCTCAACAGCAACATTACAGGGTGAAGCCACTTCATTATATATCCTGGCTGGTTGGACATGAAGGCAAAGGCAGCATTCTTTCTTTCCTTAGGAAAAAATGCTGGGCTCTTGCACTGTTTGGTGGAAATGGTGAGACAGGATTTGAGCAAAATTCTACTTATTCAGTGTTCAGCATTTCTATTACATTGACTCATGAGGGTTATGAACATTTTTATGAGGTTGCTTACACTGTCTTTCTGTATTTAAAAATGCTGCAGAAGCTAGGCCCAGAAAAAAGAATTTTTGAAGAGATTCGGAAAATTGAGGATAATGAATTTCATTACCAAGAACAGACAGATCCAGTTGAGTATGTGGAAAACATGTGTGAGAACATGCAGCTGTACCCATTGCAGGACATTCTCACTGGAGATCAGCTTCTTTTTGAATACAAGCCAGAAGTCATTGGTGAAGCCTTGAATCAGCTAGTTCCTCAAAAAGCAAATCTTGTTTTACTGTCTGGTGCTAATGAGGGAAAATGTGACCTCAAGGAGAAATGGTTTGGAACTCAATATAGTATAGAAGATATTGAAAACTCTTGGGCTGAACTGTGGAATAGTAATTTCGAATTAAATCCAGATCTTCATCTTCCAGCTGAAAACAAGTACATAGCCACGGACTTTACGTTGAAGGCTTTCGATTGCCCGGAAACAGAATACCCAGTTAAAATTGTGAATACTCCACAAGGTTGCCTGTGGTATAAGAAAGACAACAAATTCAAAATCCCCAAAGCATATATACGTTTCCATCTAATTTCACCGTTGATACAGAAATCTGCAGCAAATGTGGTCCTCTTTGATATCTTTGTCAATATCCTTACGCATAACCTTGCGGAACCAGCTTATGAAGCAGATGTGGCACAGCTGGAGTATAAACTGGCAGCTGGAGAACATGGTTTAATTATTCGAGTGAAAGGATTTAACCACAAACTACCTCTACTGTTTCAGCTCATTATTGACTACTTAGCTGAGTTCAATTCCACACCAGCTGTCTTTACAATGATAACTGAGCAGTTGAAGAAGACCTACTTTAACATCCTCATCAAGCCTGAGACTTTGGCCAAAGATGTACGGCTTTTAATCTTGGAATATGCCCGTTGGTCTATGATTGACAAGTACCAGGCTTTGATGGACGGCCTTTCCCTTGAGTCTCTGCTGAGCTTCGTCAAAGAATTCAAATCCCAGCTCTTTGTGGAGGGCCTGGTACAAGGGAATGTCACAAGCACAGAATCTATGGATTTCCTGAAATATGTTGTTGACAAACTAAACTTCAAGCCTCTGGAGCAGGAGATGCCTGTGCAGTTCCAGGTGGTAGAGCTGCCCAGTGGCCACCATCTATGCAAAGTGAAAGCTCTGAACAAGGGTGATGCCAACTCTGAAGTCACTGTGTACTACCAGTCAGGTACCAGGAGTCTAAGAGAATATACGCTTATGGAGCTGCTTGTGATGCACATGGAAGAACCTTGTTTTGACTTCCTTCGAACCAAGCAGACCCTTGGGTACCATGTCTACCCTACCTGTAGGAACACATCCGGGATTCTAGGATTTTCTGTCACTGTGGGGACTCAGGCAACCAAATACAATTCTGAAGTTGTTGATAAGAAGATAGAAGAGTTTCTTTCTAGCTTTGAGGAGAAGATTGAGAACCTCACTGAAGAGGCATTCAACACCCAGGTCACAGCTCTCATCAAGCTGAAGGAGTGTGAGGATACCCACCTTGGGGAGGAGGTGGATAGGAACTGGAATGAAGTGGTTACACAGCAGTACCTCTTTGACCGCCTTGCCCACGAGATTGAAGCACTGAAGTCATTCTCAAAATCAGACCTGGTCAACTGGTTCAAGGCTCATAGAGGGCCAGGAAGTAAAATGCTCAGCGTTCATGTTGTTGGGTATGGGAAGTATGAACTGGAAGAGGATGGATCCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAATAAATAAACTGCAGTCACGTTGGCCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 136ORF Stop: TAA at 3589SEQ ID NO:2021151 aaMW at 131614.2 kDNOV24b,MLRRVTVAAVCATRRKLCEAGRDVAALWGIETRGRCEDSAAARPFPILAMPGRNKAKSTCSCPDLQPCG56149-03Protein SequenceNGQDLGENSRVARLGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDSGAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQSAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIFSQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKKCWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVFLYLKMLQKLGPEKRIFEEIRKIEDNEFHYQEQTDPVEYVENMCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSWAELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKFKIPKAYIRFHLISPLIQKSAANVVLFDIFVNILTHNLAEPAYEADVAQLEYKLAAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKKTYFNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDKLNFKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGYHVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNWNEVVTQQYLFDRLAHEIEALKSFSKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGSPSSEDSNSSCEVMQLTYLPTSPLLADCIIPITDIRAFTTTLNLLPYHKIVKSEQ ID NO: 2033851 bpNOV24c,AGACTGGGGTGGGGGAGGGGTTCAGGCCTGTTCCCCGCGGCTGCGGCAGCACCAGGGCCGGCCGCCACG56149-01DNA SequenceCCGCCTCTAGAACGCGGAGGAGGTGGGTCCTGGGAAGCGGGATGTCCATCGCTCCAGCTTGGTGGTGAATGCTGAGGAGAGTCACTGTTGCTGCAGTCTGTGCCACCCGGAGGAAGTTGTGTGAGGCCGGGCGGGACGTCGCGGCGCTCTGGGGAATCGAAACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGCCATGCCTGGAAGGAACAAGGCGAAGTCTACCTGCAGCTGCCCTGACCTGCAGCCCAATGGACAGGATCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCCTACAGGCACTTCTGATTTCAGACCTAAGTAATATGGAAGGTAAAACAGGAAATACAACAGATGATGAAGAAGAAGAGGAGGTGGAGGAAGAAGAAGAAGATGATGATGAAGATTCTGGAGCTGAAATAGAAGATGACGATGAAGAGGGTTTTGATGATGAAGATGAGTTTGATGATGAACATGATGATGATCTTGATACTGAGGATAATGAATTGGAAGAATTAGAAGAGAGAGCAGAAGCTAGAAAAAAAACTACTGAAAAACAGCAATTGCAGAGCCTGTTTTTGCTGTGGTCAAAGCTGACTGATAGACTGTGGTTTAAGTCAACTTATTCAAAAATGTCTTCAACCCTGCTGGTCGAGACAAGAAATCTTTATGGGGTAGTTGGAGCTGAAAGCAGGTCTGCACCTGTTCAGCATTTGGCAGGATGGCAAGCGGAGGAGCAGCAGGGTGAAACTGACACAGTTCTGTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGCCATCCTATGGGAAAATTTTTTTGGGGAAATGCTGAGACGCTCAAGCATGAGCCAAGAAAGAATAATATTGATACACATGCTAGATTGAGAGAATTCTGGATGCGTTACTACTCTTCTCATTACATGACTTTAGTGGTTCAATCCAAAGAAACACTGGATACTTTGGAAAAGTGGGTGACTGAAATCTTCTCTCAGATACCAAACAATGGGTTACCCAGACCAAACTTTGGCCATTTAACGGATCCATTTGACACACCAGCATTTAACAAACTTTATAGAGTTGTTCCAATCAGAAAAATTCATGCTCTGACCATCACATGGGCACTTCCTCCTCAACAGCAACATTACAGGGTGAAGCCACTTCATTATATATCCTGGCTGGTTGGACATGAAGGCAAAGGCAGCATTCTTTCTTTCCTTAGGAAAAAATGCTGGGCTCTTGCACTGTTTGGTGGAAATGGTGAGACAGGATTTGAGCAAAATTCTACTTATTCAGTGTTCAGCATTTCTATTACATTGACTGATGAGGGTTATGAACATTTTTATGAGGTTGCTTACACTGTCTTTCTGTATTTAAAAATGCTGCAGAAGCTAGGCCCAGAAAAAAGAATTTTTGAAGAGATTCGGAAAATTGAGGATAATGAATTTCATTACCAAGAACAGACAGATCCAGTTGAGTATGTGGAAAACATGTGTGAGAACATGCAGCTGTACCCATTGCAGGACATTCTCACTGGAGATCAGCTTCTTTTTGAATACAAGCCAGAAGTCATTGGTGAAGCCTTGAATCAGCTAGTTCCTCAAAAAGCAAATCTTGTTTTACTGTCTGGTGCTAATGAGGGAAAATGTGACCTCAAGGAGAAATGGTTTGGAACTCAATATAGTATAGAAGATATTGAAAACTCTTGGGCTGAACTGTGGAATAGTAATTTCGAATTAAATCCAGATCTTCATCTTCCAGCTGAAAACAAGTACATAGCCACGGACTTTACGTTGAAGGCTTTCGATTGCCCGGAAACAGAATACCCAGTTAAAATTGTGAATACTCCACAAGGTTGCCTGTGGTATAAGAAAGACAACAAATTCAAAATCCCCAAAGCATATATACGTTTCCATCTAATTTCACCGTTGATACAGAAATCTGCAGCAAATGTGGTCCTCTTTGATATCTTTGTCAATATCCTTACGCATAACCTTGCGGAACCAGCTTATGAAGCAGATGTGGCACAGCTGGAGTATAAACTGGCAGCTGGAGAACATGGTTTAATTATTCGAGTGAAAGGATTTAACCACAAACTACCTCTACTGTTTCAGCTCATTATTGACTACTTAGCTGAGTTCAATTCCACACCAGCTGTCTTTACAATGATAACTGAGCAGTTGAAGAAGACCTACTTTAACATCCTCATCAAGCCTGAGACTTTGGCCAAAGATGTACGGCTTTTAATCTTGGAATATGCCCGTTGGTCTATGATTGACAAGTACCAGGCTTTGATGGACGGCCTTTCCCTTGAGTCTCTGCTGAGCTTCGTCAAAGAATTCAAATCCCAGCTCTTTGTGGAGGGCCTGGTACAAGGGAATGTCACAAGCACAGAATCTATGGATTTCCTGAAATATGTTGTTGACAAACTAAACTTCAAGCCTCTGGAGCAGGAGATGCCTGTGCAGTTCCAGGTGGTAGAGCTGCCCAGTGGCCACCATCTATGCAAAGTGAAAGCTCTGAACAAGGGTGATGCCAACTCTGAAGTCACTGTGTACTACCAGTCAGGTACCAGGAGTCTAAGAGAATATACGCTTATGGAGCTGCTTGTGATGCACATGGAAGAACCTTGTTTTGACTTCCTTCGAACCAAGCAGACCCTTGGGTACCATGTCTACCCTACCTGTAGGAACACATCCGGGATTCTAGGATTTTCTGTCACTGTGGGGACTCAGGCAACCAAATACAATTCTGAAGTTGTTGATAAGAAGATAGAAGAGTTTCTTTCTAGCTTTGAGGAGAAGATTGAGAACCTCACTGAAGAGGCATTCAACACCCAGGTCACAGCTCTCATCAAGCTGAAGGAGTGTGAGGATACCCACCTTGGGGAGGAGGTGGATAGGAACTGGAATGAAGTGGTTACACAGCAGTACCTCTTTGACCGCCTTGCCCACGAGATTGAAGCACTGAAGTCATTCTCAAAATCAGACCTGGTCAACTGGTTCAAGGCTCATAGAGGGCCAGGAAGTAAAATGCTCAGCGTTCATGTTGTTGGGTATGGGAAGTATGAACTGGAAGAGGATGGATCCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAATAAATAAACTGCAGTCACGTTGGCCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 136ORF Stop: TAA at 3793SEQ ID NO: 2041219aaMW at 139326.8 kDNOV24c,MLRRVTVAAVCATRRKLCEAGRDVAALWGIETRGRCEDSAAARPFPILAMPGRNKAKSTCSCPDLQPCG56149-01Protein SequenceNGQDLGENSRVARLGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDSGAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQQLQSLFLLWSKLTDRLWFKSTYSKMSSTLLVETRNLYGVVGAESRSAPVQHLAGWQAEEQQGETDTVLSAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIFSQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKKCWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVPLYLKMLQKLGPEKRIFEEIREIEDNEFHYQEQTDPVEYVENNCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSWAELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKPKIPKAYIRFHLISPLIQKSAANVVLFDIFVNILTHNLAEPAYEADVAQLEYKLAAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKKTYPNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDKLNPKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGYHVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNWNEVVTQQYLPDPIAHEIEALKSFSKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGSPSSEDSNSSCEVMQLTYLPTSPLLADCIIPITDIRAFTTTLNLLPYHKIVKSEQ ID NO: 2054315 bpNOV24d,ACGCGTGAGGGAGACTGGGGTGGGGGAGGGGTTCAGGCCTGTTCCCCGCGGCTGCGGCAGCACCAGGCG56149-02DNA SequenceGCCGGCCGCCACCGCCTCTAGAACGCGGAGGAGGTGGGTCCTGGGAAGCGGGATGTCCATCGCTCCAGCTTGGTGGTGAATGCTGAGGAGAGTCACTGTTGCTGCAGTCTGTGCCACCCGGAGGAAGTTGTGTGAGGCCGGGCGGGAGCTCGCGGCGCTCTGGGGAATCGAAACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGCCATGCCTGGAAGGAACAAGGCGAAGTCTACCTGCAGCTGCCCTGACCTGCAGCCCAATGGACAGGATCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCTTGCAGGCACTTCTGATTTCAGACCTAAGTAATATGGAAGGTAAAACAGGAAATACAACAGATGATGAAGAAGAAGAGGAGGTGGAGGAAGAAGAAGAAGATGATGATGAAGATTCTGGAGCTGAAATAGAAGATGCTGAAATAGAAGATGACGATGAAGAGGGTTTTGATGATGAAGATGAGTTTGATGATGAACATGATGATGATCTTGATACTGAGGATAATGAATTGGAAGAATTAGAAGAGAGAGCAGAAGCTAGAAAAAAAACTACTGAAAAACAGTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGCCATCCTATGGGAAAATTTTTTTGGGGAAATGCTGAGACGCTCAAGCATGAGCCAAGAAAGAATAATATTGATACACATGCTAGATTGAGAGAATTCTGGATGCGTTACTACTCTTCTCATTACATGACTTTAGTGGTTCAATCCAAAGAAACACTGGATACTTTGGAAAAGTGGGTGACTGAAATCTTCTCTCAGATACCAAACAATGGGTTACCCAGACCAAACTTTGGCCATTTAACGGATCCATTTGACACACCAGCATTTAACAAACTTTATAGAGTTGTTCCAATCAGAAAAATTCATGCTCTGACCATCACATGGGCACTTCCTCCTCAACAGCAACATTACAGGGTGAAGCCACTTCATTATATATCCTGGCTGGTTGGACATGAAGGCAAAGGCAGCATTCTTTCTTTCCTTAGGAAAAAATGCTGGGCTCTTGCACTGTTTGGTGGAAATGGTGAGACAGGATTTGAGCAAAATTCTACTTATTCAGTGTTCAGCATTTCTATTACATTGACTGATGAGGGTTATGAACATTTTTATGAGGTTGCTTACACTGTCTTTCAGTATTTAAAAATGCTGCAGAAGCTAGGCCCAGAAAAAAGAATTTTTGAAGAGATTCGGAAAATTGAGGATAATGAATTTCATTACCAAGAACAGACAGATCCAGTTGAGTATGTGGAAAACATGTGTGAGAACATGCAGCTGTACCCATTGCAGGACATTCTCACTGGAGATCAGCTTCTTTTTGAATACAAGCCAGAAGTCATTGGTGAAGCCTTGAATCAGCTAGTTCCTCAAAAAGCAAATCTTGTTTTACTGTCTGGTGCTAATGAGGGAAAATGTGACCTCAAGGAGAAATGGTTTGGAACTCAATATAGTATAGAAGATATTGAAAACTCTTGGGCTGAACTGTGGAATAGTAATTTCGAATTAAATCCAGATCTTCATCTTCCAGCTGAAAACAAGTACATAGCCACGGACTTTACGTTGAAGGCTTTCGATTGCCCGGAAACAGAATACCCAGTTAAAATTGTGAATACTCCACAAGGTTGCCTGTGGTATAAGAAAGACAACAAATTCAAAATCCCCAAAGCATATATACGTTTCCATCTAATTTCACCGTTGATACAGAAATCTGCAGCAAATGTGGTCCTCTTTGATATCTTTGTCAATATCCTTACGCATAACCTTGCGGAACCAGCTTATGAAGCAGATGTGGCACAGCTGGAGTATAAACTGGTAGCTGGAGAACATGGTTTAATTATTCGAGTGAAAGGATTTAACCACAAACTACCTCTACTGTTTCAGCTCATTATTGACTACTTAGCTGAGTTCAATTCCACACCAGCTGTCTTTACAATGATAACTGAGCAGTTGAAGAAGACCTACTTTAACATCCTCATCAAGCCTGAGACTTTGGCCAAAGATGTACGGCTTTTAATCTTGGAATATGCCCGTTGGTCTATGATTGACAAGTACCAGGCTTTGATGGACGGCCTTTCCCTTGAGTCTCTGCTGAGCTTCGTCAAAGAATTCAAATCCCAGCTCTTTGTGGAGGGCCTGGTACAAGGGAATGTCACAAGCACAGAATCTATGGATTTCCTGAAATATGTTGTTGACAAACTAAACTTCAAGCCTCTGGAGCAGGAGATGCCTGTGCAGTTCCAGGTGGTAGAGCTGCCCAGTGGCCACCATCTATGCAAAGTGAAAGCTCTGAACAAGGGTGATGCCAACTCTGAAGTCACTGTGTACTACCAGTCAGGTACCAGGAGTCTAAGAGAATATACGCTTATGGAGCTGCTTGTGATGCACATGGAAGAACCTTGTTTTGACTTCCTTCGAACCAAGCAGACCCTTGGGTACCATGTCTACCCTACCTGTAGGAACACATCCGGGATTCTAGGATTTTCTGTCACTGTGGGGACTCAGGCAACCAAATACAATTCTGAAGTTGTTGATAAGAAGATAGAAGAGTTTCTTTCTAGCTTTGAGGAGAAGATTGAGAACCTCACTGAAGAGGCATTCAACACCCAGGTCACAGCTCTCATCAAGCTGAAGGAGTGTGAGGATACCCACCTTGGGGAGGAGGTGGATAGGAACTGGAATGAAGTGGTTACACAGCAGTACCTCTTTGACCGCCTTGCCCACGAGATTGAAGCACTGAAGTCAATCTCAAAATCAGACCTGGTCAACTGGTTCAAGGCCCATAGAGGGCCAGGAAGTAAAATGCTCAGCGTTCATGTTGTTGGATATGGGAAGTATGAACTGGAAGAGGATGGTACCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAATAAATAAACTGCAGTCACGTTGGCCTGAAGCAATGTGTATTTTAAAATGTGTGTGTTTGTATTTTATGGAGTTAGTTATACTACTGCCTTAGGGCTTCCATTGAAGTTTTGCACTGGCATCATAGCATTTGATTTACTTTTTATCCTTTGTTGAGACTAATAAACCCAGGGTTACTGTAGGAGCTGGCAAAGGAAAATTAGCAGAATGGGCCAAGCGAGACCAGAAAGCCTGCAGCAGCACTTTGAGAAGCCCTGGCCTGTGTCCTCTCAGACTGAGAATCTACTTCTTGAAAGGCCTTACGTGACCAGTATATTGAATAACTAACTAAATGCTAGGTACTAATACCTGTTTTTTTAATGTATTTTTAAATAAAAAAGATGATAGATAGATAGATAGATATAGTTCTGTATTTCCCTTCAGAATGAGCCATCTGCTGCTGTGGCATTCATTTTATTCTATCTATCTATCTATTTTTGTTCACTGTGGGGTGGGGATCTATAAATACACACTCTTCCCAAACCCTCTAAGGCAATAAAACATTTTTGGATAAAATGTTGGTAGGCAGCCCTACATGTGCAATATGAGTTAAGTGAAGATTCTGGGGAATTGCCTGGCAGGGGCTAAAGACAGAACATACAATCTGACAGAGGAAAAGAATGGATCCTCCATTATTTCAAGTGTCTTTCTTTGAAAAGCTAGCORF Start: ATG at 147ORF Stop: TAA at 3615SEQ ID NO: 2061156 aaMW at 132256.8 kDNOV24d,MLRRVTVAAVCATRRKLCEAGRELAALWGIETRGRCEDSAAARPFPILAMPGRNKAKSTCSCPDLQPCG56149-02Protein SequenceNGQDLGENSRVARLGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDSGAEIEDAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQSAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIFSQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKKCWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVFQYLKMLQKLGPEKRIFEEIRKIEDNEFHYQEQTDPVEYVENMCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSWAELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKFKIPKAYIRFHLISPLIQKSAANVVLFDIFVNILTHNLAEPAYEADVAQLEYKLVAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKKTYFNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDKLNFKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGYHVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNWNEVVTQQYLFDRLAHEIEALKSESKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGTPSSEDSNSSCEVMQLTYLPTSPLLADCIIPITDIRAFTTTLNLLPYHKIVKSEQ ID NO: 2073601bpNOV24e,GGAGGGGTTCAGGCCTGTTCCCCGCGGCTGCGGCAGCACCAGGGCCGGCCGCCACCGCCTCTAGAACCG56149-04DNA SequenceGCGGAGGAGGTGGGTCCTGGGAAGCGGGATGTCCATCGCTCCAGCTTGGTGGTGA+E,uns ATGCTGAGGAGAGTCACTGTTGCTCCAGTCTGTGCCACCCGGACGAAGTTGTGTGAGGCCGGGCGGGAGCTCGCGGCGCTCTGGGGAATCGAAACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGCCATGCCTGGAAGGAACAAGGCGAAGTCTACCTGCAGCTGCCCTGACCTGCAGCCCAATGGACAGGATCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCTTGCAGGCACTTCTGATTTCAGACCTAAGTAATATGGAAGGTAAAACAGGAAATACAACAGATGATGAAGAAGAAGAGGAGGTGGAGGAAGAAGAAGAAGATGATGATGAAGATTCTGGAGCTGAAATAGAAGATGACGATGAAGAGGGTTTTGATGATGAAGATGAGTTTGATGATGAACATGATGATGATCTTGATACTGAGGATAATGAATTGGAAGAATTAGAAGAGAGAGCAGAAGCTAGAAAAAAAACTACTGAAAAACAGTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGACATCCTATGGGAAAATTTTTTTGGGGAAATGCTGAGACGCTCAAGCATGAGCCAAGAAAGAATAATATTGATACACATGCTAGATTGAGAGAATTCTGGATGCGTTACTACTCTTCTCATTACATGACTTTAGTGGTTCAATCCAAAGAAACACTGGATACTTTGGAAAAGTGGGTGACTGAAATCTTCTCTCAGATACCAAACAATGGGTTACCCAGACCAAACTTTGGCCATTTAACGGATCCATTTGACACACCAGCATTTAACAAACTTTATAGAGTTGTTCCAATCAGAAAAATTCATGCTCTGACCATCACATGGGCACTTCCTCCTCAACAGCAACATTACAGGGTGAAGCCACTTCATTATATATCCTGGCTGGTTGGACATGAAGGCAAAGGCAGCATTCTTTCTTTCCTTAGGAAAAAATGCTGGGCTCTTGCACTGTTTGGTGGAAATGGTGAGACAGGATTTGAGCAAAATTCTACTTATTCAGTGTTCAGCATTTCTATTACATTGACTGATGAGGGTTATGAACATTTTTATGAGGTTGCTTACACTGTCTTTCAGTATTTAAAAATGCTGCAGAAGCTAGGCCCAAAAAAAAGAATTTTTGAAGAGATTCGGAAAATTGAGGATAATGAATTTCATTACCAAGAACAGACAGATCCAGTTGAGTATGTGGAAAACATGTGTGAGAACATGCAGCTGTACCCATTGCAGGACATTCTCACTGGAGATCAGCTTCTTTTTGAATACAAGCCAGAAGTCATTGGTGAAGCCTTGAATCAGCTAGTTCCTCAAAAAGCAAATCTTGTTTTACTGTCTGGTGCTAATGAGGGAAAATGTGACCTCAAGGAGAAATGGTTTGGAACTCAATATAGTATAGAAGATATTGAAAACTCTTGGGCTGAACTGTGGAATAGTAATTTCGAATTAAATCCAGATCTTCATCTTCCAGCTGAAAACAAGTACATAGCCACGGACTTTACGTTGAAGGCTTTCGATTGCCCGGAAACAGAATACCCAGTTAAAATTGTGAATACTCCACAAGGTTGCCTGTGGTATAAGAAAGACAACAAATTCAAAATCCCCAAAGCATATATACGTTTCCATCTAATTTCACCGTTGATACAGAAATCTGCAGCAAATGTGGTCCTCTTTGATATCTTTGTCAATATCCTTACGCATAACCTTGCGGAACCAGCTTATGAAGCAGATGTGGCACAGCTGGAGTATAAACTGGTAGCTGGAGAACATGGTTTAATTATTCGAGTGAAAGGATTTAACCACAAACTACCTCTACTGTTTCAGCTCATTATTGACTACTTAGCTGAGTTCAATTCCACACCAGCTGTCTTTACAATGATAACTGAGCAGTTGAAGAAGACCTACTTTAACATCCTCATCAAGCCCGAGACTTTGGCCAAAGATGTACGGCTTTTAATCCTGGAATATGCCCGTTGGTCTATGATTGACAAGTACCAGGCTTTGATGGACGGCCTTTCCCTTGAGTCTCTGCTGAGCTTCGTCAAAGAATTCAAATCCCAGCTCTTTGTGGAGGGCCTGGTACAAGGGAATGTCACAAGCACAGAATCTATGGATTTCCTGAAATATGTTGTTGACAAACTAAACTTCAAGCCTCTGGAGCAGGAGATGCCTGTGCAGTTCCAGGTGGTAGAGCTGCCCAGTGGCCACCATCTATGCAAAGTGAAAGCTCTGAACAAGGGTGATGCCAACTCTGAAGTCACTGTGTACTACCAGTCAGGTACCAGGAGTCTAAGAGAATATACGCTTATGGAGCTGCTTGTGATGCACATGGAAGAACCTTGTTTTGACTTCCTTCGAACCAAGCAGACCCTTGGGTACCATGTCTACCCTACCTGTAGGAACACATCCGGGATTCTAGGATTTTCTGTCACTGTGGGGACTCAGGCAACCAAATACAATTCTGAAGTTGTTGATAAGAAGATAGAAGAGTTTCTTTCTAGCTTTGAGGAGAAGATTGAGAACCTCACTGAAGAGGCATTCAACACCCAGGTCACAGCTCTCATCAAGCTGAAGGAGTGTGAGGATACCCACCTTGGGGAGGAGGTGGATAGGAACTGGAATGAAGTGGTTACACAGCAGTACCTCTTTGACCGCCTTGCCCACGAGATTGAAGCACTGAAGTCATTCTCAAAATCAGACCTGGTCAACTGGTTCAAGGCCCATAGAGGGCCAGGAAGTAAAATGCTCAGCGTTCATGTTGTTGGATATGGGAAGTATGAACTGGAAGAGGATGGTACCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAATAAATAAACTGCAGTCACGTTGGCCTORF Start: ATG at 123ORF Stop: TAA at 3576SEQ ID NO: 20811151 aaMW at 131698.4 kDNOV24e,MLRRVTVAAVCATRRKLCEAGRELAALWGIETRGRCEDSAAARPFPILAMPGRNKAKSTCSCPDLQPCG56149-04Protein SequenceNGQDLGENSRVARLGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDSGAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQSAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIFSQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKKCWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVFQYLKMLQKLGPKKRIFEEIRKIEDNEFHYQEQTDPVEYVENMCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSWAELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKFKIPKAYIRFHLISPLIQKSAANVVLFDIFVNILTHNLAEPAYEADVAQLEYKLVAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKKTYFNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDKLNFKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGYHVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNWNEVVTQQYLFDRLAHEIEALKSFSKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGTPSSEDSNSSCEVMQLTYLPTSPLLADCIIPITDIRAFTTTLNLLPYHKIVKSEQ ID NO:209388 bpNOV24f,GGATCCTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCCG56149-05DNA SequenceTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGCCORF Start: at 7ORF Stop: at 388SEQ ID NO: 210127 AAMW at 14262.8 kDNOV24f,SAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDCG56149-05ProteinVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGSequenceSEQ ID NO: 211742 bpNOV24g,GGCACGAGGGCGGCTGCGGCAGCACCAGGGCCGGCCGCCACCGCCTCTAGAACGCGGAGGAGGTGGGCG56149-06DNA SequenceTCCTGGGAAGCGGGATGTCCATCGCTCCAGCTTGGTGGTGAATGCTGAGGAGAGTCACTGTTGCTGCACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCTTGCAGGCACTTCTGATTTCAGACCTGGTCAACTGGTTCAAGGCCCATAGAGGGCCAGGAAGTGGAATGCTCAGCGTTCATGTTGTTGGATATGGGAAGTATGAACTGGAAGAGGATGGTACCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAATAAATAAACTGCAGTCACGTTGGCCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 109ORF Stop: TAA at 676SEQ ID NO: 212189 aaMW at 20804.4 kDNOV24g,MLRRVTVAAVCATRRKLCEAGRELAALWGIETRGRCEDSAAARPFPILGENSRVARLGADESEEEGRCG56149-06Protein SequenceRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGTPSSEDSNSSCEVMQLTYLPTSPLLADCIIPITDIRAFTTTLNLLPYHKIVKSEQ ID NO:2133479 bpNOV24h,CCACCATGCTGAGGAGAGTCACTGTTGCTGCAGTCTGTGCCACCCGGAGGAAGTTGTGTGAGGCCGGCG56149-08DNA SequenceGCGGGAGCTCGCGGCGCTCTGGGGAATCGAAACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGCCATGCCTGGAAGGAACAAGGCGAAGTCTACCTGCAGCTGCCCTGACCTGCAGCCCAATGGACAGGATCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCTTGCAGGCACTTCTGATTTCAGACCTAAGTAATATGGAAGGTAAAACAGGAAATACAACAGATGATGAAGAAGAAGAGGAGGTGGAGGAAGAAGAAGAAGATGATGATGAAGATTCTGGAGCTGAAATAGAAGATGACGATGAAGAGGGTTTTGATGATGAAGATGAGTTTGATGATGAACATGATGATGATCTTGATACTGAGGATAATGAATTGGAAGAATTAGAAGAGAGAGCAGAAGCTAGAAAAAAAACTACTGAAAAACAGTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGACATCCTATGGGAAAATTTTTTTGGGGAAATGCTGAGACGCTCAAGCATGAGCCAAGAAAGAATAATATTGATACACATGCTAGATTGAGAGAATTCTGGATGCGTTACTACTCTTCTCATTACATGACTTTAGTGGTTCAATCCAAAGAAACACTGGATACTTTGGAAAAGTGGGTGACTGAAATCTTCTCTCAGATACCAAACAATGGGTTACCCAGACCAAACTTTGGCCATTTAACGGATCCATTTGACACACCAGCATTTAACAAACTTTATAGAGTTGTTCCAATCAGAAAAATTCATGCTCTGACCATCACATGGGCACTTCCTCCTCAACAGCAACATTACAGGGTGAAGCCACTTCATTATATATCCTGGCTGGTTGGACATGAAGGCAAAGGCAGCATTCTTTCTTTCCTTAGGAAAAAATGCTGGGCTCTTGCACTGTTTGGTGGAAATGGTGAGACAGGATTTGAGCAAAATTCTACTTATTCAGTGTTCAGCATTTCTATTACATTGACTGATGAGGGTTATGAACATTTTTATGAGGTTGCTTACACTGTCTTTCAGTATTTAAAAATGCTGCAGAAGCTAGGCCCAAAAAAAAGAATTTTTGAAGAGATTCGGAAAATTGAGGATAATGAATTTCATTACCAAGAACAGACAGATCCAGTTGAGTATGTGGAAAACATGTGTGAGAACATGCAGCTGTACCCATTGCAGGACATTCTCACTGGAGATCAGCTTCTTTTTGAATACAAGCCAGAAGTCATTGGTGAAGCCTTGAATCAGCTAGTTCCTCAAAAAGCAAATCTTGTTTTACTGTCTGGTGCTAATGAGGGAAAATGTGACCTCAAGGAGAAATGGTTTGGAACTCAATATAGTATAGAAGATATTGAAAACTCTTGGGCTGAACTGTGGAATAGTAATTTCGAATTAAATCCAGATCTTCATCTTCCAGCTGAAAACAAGTACATAGCCACGGACTTTACGTTGAAGGCTTTCGATTGCCCGGAAACAGAATACCCAGTTAAAATTGTGAATACTCCACAAGGTTGCCTGTGGTATAAGAAAGACAACAAATTCAAAATCCCCAAAGCATATATACGTTTCCATCTAATTTCACCGTTGATACAGAAATCTGCAGCAAATGTGGTCCTCTTTGATATCTTTGTCAATATCCTTACGCATAACCTTGCGGAACCAGCTTATGAAGCAGATGTGGCACAGCTGGAGTATAAACTGGTAGCTGGAGAACATGGTTTAATTATTCGAGTGAAAGGATTTAACCACAAACTACCTCTACTGTTTCAGCTCATTATTGACTACTTAGCTGAGTTCAATTCCACACCAGCTGTCTTTACAATGATAACTGAGCAGTTGAAGAAGACCTACTTTAACATCCTCATCAAGCCCGAGACTTTGGCCAAAGATGTACGGCTTTTAATCCTGGAATATGCCCGTTGGTCTATGATTGACAAGTACCAGGCTTTGATGGACGGCCTTTCCCTTGAGTCTCTGCTGAGCTTCGTCAAAGAATTCAAATCCCAGCTCTTTGTGGAGGGCCTGGTACAAGGGAATGTCACAAGCACAGAATCTATGGATTTCCTGAAATATGTTGTTGACAAACTAAACTTCAAGCCTCTGGAGCAGGAGATGCCTGTGCAGTTCCAGGTGGTAGAGCTGCCCAGTGGCCACCATCTATGCAAAGTGAAAGCTCTGAACAAGGGTGATGCCAACTCTGAAGTCACTGTGTACTACCAGTCAGGTACCAGGAGTCTAAGAGAATATACGCTTATGGAGCTGCTTGTGATGCACATGGAAGAACCTTGTTTTGACTTCCTTCGAACCAAGCAGACCCTTGGGTACCATGTCTACCCTACCTGTAGGAACACATCCGGGATTCTAGGATTTTCTGTCACTGTGGGGACTCAGGCAACCAAATACAATTCTGAAGTTGTTGATAAGAAGATAGAAGAGTTTCTTTCTAGCTTTGAGGAGAAGATTGAGAACCTCACTGAAGAGGCATTCAACACCCAGGTCACAGCTCTCATCAAGCTGAAGGAGTGTGAGGATACCCACCTTGGGGAGGAGGTGGATAGGAACTGGAATGAAGTGGTTACACAGCAGTACCTCTTTGACCGCCTTGCCCACGAGATTGAAGCACTGAAGTCATTCTCAAAATCAGACCTGGTCAACTGGTTCAAGGCCCATAGAGGGCCAGGAAGTAAAATGCTCAGCGTTCATGTTGTTGGATATGGGAAGTATGAACTGGAAGAGGATGGTACCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAACACCATCACCACCATCACTAAORF Start: ATG at 6ORF Stop: at 3459SEQ ID NO: 2141151 aaMW at 131698.4 kDNOV24h,MLRRVTVAAVCATRRKLCEAGRELAALWGIETRGTCEDSAAARPFPILAMPGRNKAKSTCSCPDLQPCG56149-08Protein SequenceNGQDLGENSRVARLGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDSGAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQSAAALCVGVGSFADPDDLPGLAHFLEHMVFMGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARPSDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIFSQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKKCWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVFQYLKMLQKLGPKKRIFEEIFKIEDNEFHYQEQTDPVEYVENMCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSWAELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKFKIPKAYIRFHLISPLIQKSAANVVLFDIFVNILTHNLAEPAYEADVAQLEYKLVAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKKTYFNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDKLNFKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGYHVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNWNEVVTQQYLFDRLAHEIEALKSFSKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGTPSSEDSNSSCEVMQLTYLPTSPLLADCIIPITDIRAFTTTLNLLPYHKIVK


[0481] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 24B.
130TABLE 24BComparison of NOV24a against NOV24b through NOV24h.Identities/NOV24a Residues/Similarities for theProtein SequenceMatch ResiduesMatched RegionNOV24b10 . . . 11591143/1150 (99%) 2 . . . 11511148/1150 (99%)NOV24c10 . . . 11591123/1218 (92%) 2 . . . 12191136/1218 (93%)NOV24d10 . . . 11591148/1155 (99%) 2 . . . 11561150/1155 (99%)NOV24e10 . . . 11591149/1150 (99%) 2 . . . 11511150/1150 (99%)NOV24f219 . . . 345  127/127 (100%)1 . . . 127 127/127 (100%)NOV24g10 . . . 140  106/131 (80%)2 . . . 108 106/131 (80%)NOV24h10 . . . 11591149/1150 (99%) 2 . . . 11511150/1150 (99%)


[0482] Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.
131TABLE 24CProtein Sequence Properties NOV24aSignalP analysis:No Known Signal Sequence PredictedPSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 11; pos.chg 1; neg.chg 0H-region: length 0; peak value 1.00PSG score: −3.40GvE: von Heijne's method for signal seq.recognitionGvH score (threshold: −2.1): −6.59possible cleavage site: between 42 and 43>>>Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM regionallocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 1.96 (at 726)ALOM score: 1.96 (number of TMSs: 0)MITDISC: discrimination of mitochondrialtargeting seqR content:4Hyd Moment(75):2.28Hyd Moment(95):3.41G content:1D/E content:1S/T content:3Score:−1.76Gavel: prediction of cleavage sites formitochondrial preseqR-2 motif at 33 RRK|LCNUCDISC: discrimination of nuclearlocalization signalspat4: PKKR (4) at 545pat7: PKKRIFE (5) at 545bipartite: nonecontent of basic residues: 10.6%NLS Score: 0.21KDEL: ER retention motif in theC-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: HKIVSKL: peroxisomal targeting signal in theC-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern nonePrenylation motif: nonememYQRL: transport motif from cell surfaceto Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal proteinmotifs: nonechecking 33 PROSITE prokaryotic DNAbinding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 89COIL: Lupas's algorithm to detectcoiled-coil regions186D0.54187D0.87188E0.91189H0.91190D0.91191D0.96192D0.96193L0.96194D0.96195T0.96196E0.96197D0.96198N0.96199E0.96200L0.96201E0.96202E0.96203L0.96204E0.96205E0.96206R0.96207A0.96208E0.96209A0.96210R0.96211K0.96212K0.96213T0.96214T0.96215E0.96216K0.96217Q0.96218S0.96219A0.94220A0.88221A0.83222L0.82total: 37 residuesFinal Results (k = 9/23):47.8%: mitochondrial39.1%: cytoplasmic13.0%: nuclear>>prediction for CG56149-07 is mit (k = 23)


[0483] A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.
132TABLE 24DGeneseq Results for NOV24aNOV24aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAU28119Novel human secretory10 . . . 11591148/1150 (99%)0.0protein, Seq ID No 288- 2 . . . 11511150/1150 (99%)Homo sapiens, 1151 aa.[WO200166689-A2,13-SEP-2001]AAW95039Human N-arginine dibasic10 . . . 11591146/1150 (99%)0.0(h-NRD) convertase - Homo 2 . . . 11511149/1150 (99%)sapiens, 1151 aa.[WO9902664-A1,21-JAN-1999]AAU28120Novel human secretory10 . . . 11591128/1218 (92%)0.0protein, Seq ID No 289 - 2 . . . 12191138/1218 (92%)Homo sapiens, 1219 aa.[WO200166689-A2,13-SEP-2001]AAU28308Novel human secretory10 . . . 11591051/1176 (89%)0.0protein, Seq ID No 665- 2 . . . 11771070/1176 (90%)Homo sapiens, 1177 aa.[WO200166689-A2,13-SEP-2001]AAU28307Novel human secretory10 . . . 11591051/1176 (89%)0.0protein, Seq ID No 664 - 2 . . . 11771070/1176 (90%)Homo sapiens, 1177 aa.[WO20016668 9-A2,13-SEP-2001]


[0484] In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.
133TABLE 24EPublic BLASTP Results for NOV24aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ96HB2Nardilysin (N-arginine10 . . . 11591147/1150 (99%)0.0dibasic convertase) 2 . . . 11501149/1150 (99%)(DJ657D16.1) - Homosapiens (Human), 1150 aa.O15241NRD1 convertase (EC10 . . . 11591143/1150 (99%)0.03.4.24.61) - Homo sapiens 2 . . . l1511148/1150 (99%)(Human), 1151 aa.O43847Nardilysin precursor (EC10 . . . 11391120/1130 (99%)0.03.4.24.61) (N-arginine 2 . . . 11301123/1130 (99%)dibasic convertase) (NRDconvertase) - Homo sapiens(Human), 1147 aa.AAH36128Hypothetical protein10 . . . 11591071/1165 (91%)0.0MGC25477 - Mus musculus 2 . . . 11611106/1165 (94%)(Mouse), 1161 aa.Q8R320Similar to N-arginine dibasic10 . . . 11591070/1165 (91%)0.0convertase 1 - Mus musculus 2 . . . 11611106/1165 (94%)(Mouse), 1161 aa.


[0485] PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24F.
134TABLE 24FDomain Analysis of NOV24aIdentities/NOV24aSimilaritiesMatchfor the MatchedExpect Pfam DomainRegionRegionValuePeptidase_M16206 . . . 345 58/161 (36%)1.1e−59125/161 (78%)



Example 25

[0486] The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.
135TABLE 25ANOV25 Sequence AnalysisSEQ ID NO:2153147bpNOV25a,GCATGGAGGCGGCGCATCTGCTCCCGGCCGCCGACGTGCTGCGCCACTTCTCGGTGACAGCCGAGGGCG56216-01DNA SequenceCGGCCTGAGCCCGGCGCAGGTGACCGGCGCGCGGGAGCGCTACGGCCCCAACGAGCTCCCGAGTGAGGAAGGGAAGTCCCTGTGGGAGCTGGTGCTGGAACAGTTTGAGGACCTCCTGGTGCGCATCCTGCTGCTGGCTGCCCTTGTCTCCTTTGTCCTGGCCTGGTTCGAGGAGGGCGAGGAGACCACGACCGCCTTCGTGGAGCCCCTGGTCATCATGCTGATCCTCGTGGCCAACGCCATTGTGGGCGTGTGGCAGGAACGCAACGCCGAGAGTGCCATCGAGGCCCTGAAGGAGTATGAGCCTGAGATGGGCAAGGTGATCCGCTCGGACCGCAAGGGCGTGCAGAGGATCCGTGCCCGGGACATCGTCCCAGGGGACATTGTAGAAGTGGCAGTGGGGGACAAAGTGCCTGCTGACCTCCGCCTCATCGAGATCAAGTCCACCACGCTGCGAGTGGACCAGTCCATCCTGACGGGTGAATCTGTGTCCGTGACCAAGCACACAGAGGCCATCCCAGACCCCAGAGCTGTGAACCAGGACAAGAAGAACATGCTGTTTTCTGGCACCAATATCACATCGGGCAAAGCGGTGGGTGTGGCCGTGGCCACCGGCCTGCACACGGAGCTGGGCAAGATCCGGAGCCAGATGGCGGCAGTCGAGCCCGAGCGGACGCCGCTGCAGCGCAAGCTGGACGAGTTTGGACGGCAGCTGTCCCACGCCATCTCTGTGATCTGTGTGGCCGTGTGGGTCATCAACATCGGCCACTTCGCCGACCCGGCCCACGGTGGCTCCTGGCTGCGTGGCGCTGTCTACTACTTCAAGATCGCCGTGGCCCTGGCGGTGGCGGCCATCCCCGAGGGCCTCCCGGCTGTCATCACTACATGCCTGGCACTGGGCACGCGGCGCATGGCACGCAAGAACGCCATCGTGCGAAGCCTGCCGTCCGTGGAGACCCTGGGCTGCACCTCAGTCATCTGCTCCGACAAGACGGGCACGCTCACCACCAATCAGATGTCTGTCTGCCGGATGTTCGTGGTAGCCGAGGCCGATGCGGGCTCCTGCCTTTTGCACGAGTTCACCATCTCGGGTACCACGTATACCCCCGAGGGCGAAGTGCGGCAGGGGGATCAGCCTGTGCGCTGCGGCCAGTTCGACGGGCTGGTGGAGCTGGCGACCATCTGCGCCCTGTGCAACGACTCGGCTCTGGACTACAACGAGGCCAAGGGTGTGTATGAGAAGGTGGGAGAGGCCACGGAGACAGCTCTGACTTGCCTGGTGGAGAAGATGAACGTGTTCGACACCGACCTGCAGGCTCTGTCCCGGGTGGAGCGAGCTGGCGCCTGTAACACGGTCATCAAGCAGCTGATGCGGAAGGAGTTCACCCTGGAGTTCTCCCGAGACCGGAAATCCATGTCCGTGTACTGCACGCCCACCCGCCCTCACCCTACTGGCCAGGGCAGCAAGATGTTTGTGAAGGGGGCTCCTGAGAGTGTGATCGAGCGCTGTAGCTCAGTCCGCGTGGGGAGCCGCACAGCACCCCTGACCCCCACCTCCAGGGAGCAGATCCTGGCAAAGATCCGGGATTGGGGCTCAGGCTCAGACACGCTGCGCTGCCTGGCACTGGCCACCCGGGACGCGCCCCCAAGGAAGGAGGACATGGAGCTGGACGACTGCGGCAAGTTTGTGCAGTACGAGACGGACCTGACCTTCGTGGGCTGCGTAGGCATGCTGGACCCGCCGCGACCCGAGGTGGCTGCCTGCATCACACGCTGCTACCAGGCGGGCATCCGCGTGGTCATGATCACGGGGGATAACAAAGGCACTGCCGTGGCCATCTGCCGCAGGCTTGGCATCTTTGGGGACACGGAAGACGTGGCGGGCAAGGCCTACACGGGCCGCGAGTTTGATGACCTCAGCCCCGAGCAGCAGCGCCAGGCCTGCCGCACCGCCCGCTGCTTCGCCCGCGTGGAGCCCGCACACAAGTCCCGCATCGTGGAGAACCTGCAGTCCTTTAACGAGATCACTGCTATGACTGGTGATGGAGTGAACGACGCACCAGCCCTGAAGAAAGCAGAGATCGGCATCGCCATGGGCTCAGGCACGGCCGTGGCCAAGTCGGCGGCAGAGATGGTGCTGTCAGATGACAACTTTGCCTCCATCGTGGCTGCGGTGGAGGAGGGCCGGGCCATCTACAGCAACATGAAGCAATTCATCCGCTACCTCATCTCCTCCAATGTTGGCGAGGTCGTCTGCATCTTCCTCACGGCAATTCTGGGCCTGCCCGAAGCCCTGATCCCTGTGCAGCTGCTCTGGGTGAACCTGGTGACAGACGGCCTACCTGCCACGGCTCTGGGCTTCAACCCGCCAGACCTGGACATCATGGAGAAGCTGCCCCGGAGCCCCCGAGAAGCCCTCATCAGTGGCTGGCTCTTCTTCCGATACCTGGCTATCGGAGTGTACGTAGGCCTGGCCACAGTGGCTGCCGCCACCTGGTGGTTTGTGTATGACGCCGAGGGACCTCACATCAACTTCTACCAGCTGAGGAACTTCCTGAAGTGCTCCGAAGACAACCCGCTCTTTGCCGGCATCGACTGTGAGGTGTTCGAGTCACGCTTCCCCACCACCATGGCCTTGTCCGTGCTCGTGACCATTGAAATGTGCAATGCCCTCAACAGCGTCTCGGAGAACCAGTCGCTGCTGCGGATGCCGCCCTGGATGAACCCCTGGCTGCTGGTGGCTGTGGCCATGTCCATGGCCCTGCACTTCCTCATCCTGCTCGTGCCGCCCCTGCCTCTCATTTTCCAGGTGACCCCACTGAGCGGGCGCCAGTGGGTGGTGGTGCTCCAGATATCTCTGCCTGTCATCCTGCTGGATGAGGCCCTCAAGTACCTGTCCCGGAACCACATGCACGAAGAAATGAGCCAGAAGTGAGCGCTGGGAACAGAGTGGAGTCTCCGGTGTGTACCTCAGACTGATGGTGCCCATGTGTTCGCCTCCGCCCCCCACCCTTGCCACCACACTCGCCCACTTGCCCACCGGGTCCCGCCGGATAAATGACAGGCCCGAGGTCAGAATGORF Start: ATG at 3ORF Stop: TGA at 3000SEQ ID NO: 216999 aaMW at 109224.8 kDNOV25a,MEAAHLLPAADVLRHFSVTAEGGLSPAQVTGARERYGPNELPSEEGKSLWELVLEQFEDLLVRILLLCG56216-01Protein SequenceAALVSFVLAWFEEGEETTTAFVEPLVIMLILVANAIVGVWQERNAESAIEALKEYEPEMGKVIRSDRKGVQRIRARDIVPGDIVEVAVGDKVPADLRLIEIKSTTLRVDQSILTGESVSVTKHTEAIPDPRAVNQDKKNMLFSGTNITSGKAVGVAVATGLHTELGKIRSQMAAVEPERTPLQRKLDEFGRQLSHAISVICVAVWVINIGHFADPAHGGSWLRGAVYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMARKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCRMFVVAEADAGSCLLHEFTISGTTYTPEGEVRQGDQPVRCGQFDGLVELATICALCNDSALDYNEAKGVYEKVGEATETALTCLVEKMNVFDTDLQALSRVERAGACNTVIKQLMRKEFTLEFSRDRKSMSVYCTPTRPHPTGQGSKMFVKGAPESVIERCSSVRVGSRTAPLTPTSREQILAKIRDWGSGSDTLRCLALATRDAPPRKEDMELDDCGKFVQYETDLTFVGCVGMLDPPRPEVAACITRCYQAGIRVVMITGDNKGTAVAICRRLGIFGDTEDVAGKAYTGREFDDLSPEQQRQACRTARCFARVEPAHKSRIVENLQSFNEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKSAAEMVLSDDNFASIVAAVEEGRAIYSNMKQFIRYLISSNVGEVVCIFLTAILGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMEKLPRSPREALISGWLFFRYLAIGVYVGLATVAAATWWFVYDAEGPHINFYQLRNFLKCSEDNPLFAGIDCEVFESRFPTTMALSVLVTIEMCNALNSVSENQSLLRMPPWMNPWLLVAVAMSMALHFLILLVPPLPLIFQVTPLSGRQWVVVLQISLPVILLDEALKYLSRNHMHEEMSQKSEQ ID NO: 2173005 bpNOV25b,CCACCATGGAGGCGGCGCATCTGCTCCCGGCCGCCGACGTGCTGCGCCACTTCTCGGTGACAGCCGA222682222 DNASequenceGGGCGGCCTGAGCCCGGCGCAGGTGACCGGCGCGCGGGAGCGCTACGGCCCCAACGAGCTCCCGAGTGAGGAAGGGAAGTCCCTGTGGGAGCTGGTGCTGGAACAGTTTGAGGACCTCCTGGTGCGCATCCTGCTGCTGGCTGCCCTTGTCTCCTTTGTCCTGGCCTGGTTCGAGGAGGGCGAGGAGACCACGACCGCCTTCGTGGAGCCCCTGGTCATCATGCTGATCCTCGTGGCCAACGCCATTGTGGGCGTGTGGCAGGAACGCAACGCCGAGAGTGCCATCGAGGCCCTGAAGGAGTATGAGCCTGAGATGGGCAAGGTGATCCGCTCGGACCGCAAGGGCGTGCAGAGGATCCGTGCCCGGGACATCGTCCCAGGGGACATTGTAGAAGTGGCAGTGGGGGACAAAGTGCCTGCTGACCTCCGCCTCATCGAGATCAAGTCCACCACGCTGCGAGTGGACCAGTCCATCCTGACGGGTGAATCTGTGTCCGTGACCAAGCACACAGAGGCCATCCCAGACCCCAGAGCTGTGAACCAGGACAAGAAGAACATGCTGTTTTCTGGCACCAATATCACATCGGGCAAAGCGGTGGGTGTGGCCGTGGCCACCGGCCTGCACACGGAGCTGGGCAAGATCCGGAGCCAGATGGCGGCAGTCGAGCCCGAGCGGACGCCGCTGCAGCGCAAGCTGGACGAGTTTGGACGGCAGCTGTCCCACGCCATCTCTGTGATCTGTGTGGCCGTGTGGGTCATCAACATCGGCCACTTCGCCGACCCGGCCCACGGTGGCTCCTGGCTGCGTGGCGCTGTCTACTACTTCAAGATCGCCGTGGCCCTGGCGGTGGCGGCCATCCCCGAGGGCCTCCCGGCTGTCATCACTACATGCCTGGCACTGGGCACGCGGCGCATGGCACGCAAGAACGCCATCGTGCGAAGCCTGCCGTCCGTGGAGACCCTGGGCTGCACCTCAGTCATCTGCTCCGACAAGACGGGCACGCTCACCACCAATCAGATGTCTGTCTGCCGGATGTTCGTGGTAGCCGAGGCCGATGCGGGCTCCTGCCTTTTGCACGAGTTCACCATCTCGGGTACCACGTATACCCCCGAGGGCGAAGTGCGGCAGGGGGATCAGCCTGTGCGCTGCGGCCAGTTCGACGGGCTGGTGGAGCTGGCGACCATCTGCGCCCTGTGCAACGACTCGGCTCTGGACTACAACGAGGCCAAGGGTGTGTATGAGAAGGTGGGAGAGGCCACGGAGACAGCTCTGACTTGCCTGGTGGAGAAGATGAACGTGTTCGACACCGACCTGCAGGCTCTGTCCCGGGTGGAGCGAGCTGGCGCCTGTAACACGGTCATCAAGCAGCTGATGCGGAAGGAGTTCACCCTGGAGTTCTCCCGAGACCGGAAATCCATGTCCGTGTACTGCACGCCCACCCGCCCTCACCCTACTGGCCAGGGCAGCAAGATGTTTGTGAAGGGGGCTCCTGAGAGTGTGATCGAGCGCTGTAGCTCAGTCCGCGTGGGGAGCCGCACAGCACCCCTGACCCCCACCTCCAGGGAGCAGATCCTGGCAAAGATCCGGGATTGGGGCTCAGGCTCAGACACGCTGCGCTGCCTGGCACTGGCCACCCGGGACGCGCCCCCAAGGAAGGAGGACATGGAGCTGGACGACTGCGGCAAGTTTGTGCAGTACGAGACGGACCTGACCTTCGTGGGCTGCGTAGGCATGCTGGACCCGCCGCGACCCGAGGTGGCTGCCTGCATCACACGCTGCTACCAGGCGGGCATCCGCGTGGTCATGATCACGGGGGATAACAAAGGCACTGCCGTGGCCATCTGCCGCAGGCTTGGCATCTTTGGGGACACGGAAGACGTGGCGGGCAAGGCCTACACGGGCCGCGAGTTTGATGACCTCAGCCCCGAGCAGCAGCGCCAGGCCTGCCGCACCGCCCGCTGCTTCGCCCGCGTGGAGCCCGCACACAAGTCCCGCATCGTGGAGAACCTGCAGTCCTTTAACGAGATCACTGCTATGACTGGTGATGGAGTGAACGACGCACCAGCCCTGAAGAAAGCAGAGATCGGCATCGCCATGGGCTCAGGCACGGCCGTGGCCAAGTCGGCGGCAGAGATGGTGCTGTCAGATGACAACTTTGCCTCCATCGTGGCTGCGGTGGAGGAGGGCCGGGCCATCTACAGCAACATGAAGCAATTCATCCGCTACCTCATCTCCTCCAATGTTGGCGAGGTCGTCTGCATCTTCCTCACGGCAATTCTGGGCCTGCCCGAAGCCCTGATCCCTGTGCAGCTGCTCTGGGTGAACCTGGTGACAGACGGCCTACCTGCCACGGCTCTGGGCTTCAACCCGCCAGACCTGGACATCATGGAGAAGCTGCCCCGGAGCCCCCGAGAAGCCCTCATCAGTGGCTGGCTCTTCTTCCGATACCTGGCTATCGGAGTGTACGTAGGCCTGGCCACAGTGGCTGCCGCCACCTGGTGGTTTGTGTATGACGCCGAGGGACCTCACATCAACTTCTACCAGCTGAGGAACTTCCTGAAGTGCTCCGAAGACAACCCGCTCTTTGCCGGCATCGACTGTGAGGTGTTCGAGTCACGCTTCCCCACCACCATGGCCTTGTCCGTGCTCGTGACCATTGAAATGTGCAATGCCCTCAACAGCGTCTCGGAGAACCAGTCGCTGCTGCGGATGCCGCCCTGGATGAACCCCTGGCTGCTGGTGGCTGTGGCCATGTCCATGGCCCTGCACTTCCTCATCCTGCTCGTGCCGCCCCTGCCTCTCATTTTCCAGGTGACCCCACTGAGCGGGCGCCAGTGGGTGGTGGTGCTCCAGATATCTCTGCCTGTCATCCTGCTGGATGAGGCCCTCAAGTACCTGTCCCGGAACCACATGCACGAAGAAATGAGCCAGAAGTGAORF Start: at 3ORF Stop: TGA at 3003SEQ ID NO: 2181000 aaMW at 109325.9 kDNOV25b,TMEAAHLLPAADVLRHFSVTAEGGLSPAQVTGARERYGPNELPSEEGKSLWELVLEQFEDLLVRILL222682222Protein SequenceLAALVSFVLAWFEEGEETTTAFVEPLVIMLILVANAIVGVWQERNAESAIEALKEYEPEMGKVIRSDRKGVQRIRARDIVPGDIVEVAVGDKVPADLRLIEIKSTTLRVDQSILTGESVSVTKHTEAIPDPRAVNQDKKNMLFSGTNITSGKAVGVAVATGLHTELGKIRSQMAAVEPERTPLQRKLDEFGRQLSHAISVICVAVWVINIGHFADPAHGGSWLRGAVYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMARKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCRMFVVAEADAGSCLLHEFTISGTTYTPEGEVRQGDQPVRCGQFDGLVELATICALCNDSALDYNEAKGVYEKVGEATETALTCLVEKMNVFDTDLQALSRVERAGACNTVIKQLMRKEFTLEFSRDRKSMSVYCTPTRPHPTGQGSKMFVKGAPESVIERCSSVRVGSRTAPLTPTSREQILAKIRDWGSGSDTLRCLALATRDAPPRKEDMELDDCGKFVQYETDLTFVGCVGMLDPPRPEVAACITRCYQAGIRVVMITGDNKGTAVAICRRLGIFGDTEDVAGKAYTGREFDDLSPEQQRQACRTARCFARVEPAHKSRIVENLQSFNEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKSAAEMVLSDDNFASIVAAVEEGRAIYSNMKQFIRYLISSNVGEVVCIFLTAILGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMEKLPRSPREALISGWLFFRYLAIGVYVGLATVAAATWWFVYDAEGPHINFYQLRNFLKCSEDNPLFAGIDCEVFESRFPTTMALSVLVTIEMCNALNSVSENQSLLRMPPWMNPWLLVAVAMSMALHFLILLVPPLPLIFQVTPLSGRQWVVVLQISLPVILLDEALKYLSRNHMHEEMSQKSEQ ID NO: 2193004 bpNOV25c,CACCATGGAGGCGGCGCATCTGCTCCCGGCCGCCGACGTGCTGCGCCACTTCTCGGTGACAGCCGAG248851003 DNASequenceGGCGGCCTGAGCCCGGCGCAGGTGACCGGCGCGCGGGAGCGCTACGGCCCCAACGAGCTCCCGAGTGAGGAAGGGAAGTCCCTGTGGGAGCTGGTGCTGGAACAGTTTGAGGACCTCCTGGTGCGCATCCTGCTGCTGGCTGCCCTTGTCTCCTTTGTCCTGGCCTGGTTCGAGGAGGGCGAGGAGACCACGACCGCCTTCGTGGAGCCCCTGGTCATCATGCTGATCCTCGTGGCCAACGCCATTGTGGGCGTGTGGCAGGAACGCAACGCCGAGAGTGCCATCGAGGCCCTGAAGGAGTATGAGCCTGAGATGGGCAAGGTGATCCGCTCGGACCGCAAGGGCGTGCAGAGGATCCGTGCCCGGGACATCGTCCCAGGGGACATTGTAGAAGTGGCAGTGGGGGACAAAGTGCCTGCTGACCTCCGCCTCATCGAGATCAAGTCCACCACGCTGCGAGTGGACCAGTCCATCCTGACGGGTGAATCTGTGTCCGTGACCAAGCACACAGAGGCCATCCCAGACCCCAGAGCTGTGAACCAGGACAAGAAGAACATGCTGTTTTCTGGCACCAATATCACATCGGGCAAAGCGGTGGGTGTGGCCGTGGCCACCGGCCTGCACACGGAGCTGGGCAAGATCCGGAGCCAGATGGCGGCAGTCGAGCCCGAGCGGACGCCGCTGCAGCGCAAGCTGGACGAGTTTGGACGGCAGCTGTCCCACGCCATCTCTGTGATCTGTGTGGCCGTGTGGGTCATCAACATCGGCCACTTCGCCGACCCGGCCCACGGTGGCTCCTGGCTGCGTGGCGCTGTCTACTACTTCAAGATCGCCGTGGCCCTGGCGGTGGCGGCCATCCCCGAGGGCCTCCCGGCTGTCATCACTACATGCCTGGCACTGGGCACGCGGCGCATGGCACGCAAGAACGCCATCGTGCGAAGCCTGCCGTCCGTGGAGACCCTGGGCTGCACCTCAGTCATCTGCTCCGACAAGACGGGCACGCTCACCACCAATCAGATGTCTGTCTGCCGGATGTTCGTGGTAGCCGAGGCCGATGCGGGCTCCTGCCTTTTGCACGAGTTCACCATCTCGGGTACCACGTATACCCCCGAGGGCGAAGTGCGGCAGGGGGATCAGCCTGTGCGCTGCGGCCAGTTCGACGGGCTGGTGGAGCTGGCGACCATCTGCGCCCTGTGCAACGACTCGGCTCTGGACTACAACGAGGCCAAGGGTGTGTATGAGAAGGTGGGAGAGGCCACGGAGACAGCTCTGACTTGCCTGGTGGAGAAGATGAACGTGTTCGACACCGACCTGCAGGCTCTGTCCCGGGTGGAGCGAGCTGGCGCCTGTAACACGGTCATCAAGCAGCTGATGCGGAAGGAGTTCACCCTGGAGTTCTCCCGAGACCGGAAATCCATGTCCGTGTACTGCACGCCCACCCGCCCTCACCCTACTGGCCAGGGCAGCAAGATGTTTGTGAAGGGGGCTCCTGAGAGTGTGATCGAGCGCTGTAGCTCAGTCCGCGTGGGGAGCCGCACAGCACCCCTGACCCCCACCTCCAGGGAGCAGATCCTGGCAAAGATCCGGGATTGGGGCTCAGGCTCAGACACGCTGCGCTGCCTGGCACTGGCCACCCGGGACGCGCCCCCAAGGAAGGAGGACATGGAGCTGGACGACTGCGGCAAGTTTGTGCAGTACGAGACGGACCTGACCTTCGTGGGCTGCGTAGGCATGCTGGACCCGCCGCGACCCGAGGTGGCTGCCTGCATCACACGCTGCTACCAGGCGGGCATCCGCGTGGTCATGATCACGGGGGATAACAAAGGCACTGCCGTGGCCATCTGCCGCAGGCTTGGCATCTTTGGGGACACGGAAGACGTGGCGGGCAAGGCCTACACGGGCCGCGAGTTTGATGACCTCAGCCCCGAGCAGCAGCGCCAGGCCTGCCGCACCGCCCGCTGCTTCGCCCGCGTGGAGCCCGCACACAAGTCCCGCATCGTGGAGAACCTGCAGTCCTTTAACGAGATCACTGCTATGACTGGTGATGGAGTGAACGACGCACCAGCCCTGAAGAAAGCAGAGATCGGCATCGCCATGGGCTCAGGCACGGCCGTGGCCAAGTCGGCGGCAGAGATGGTGCTGTCAGATGACAACTTTGCCTCCATCGTGGCTGCGGTGGAGGAGGGCCGGGCCATCTACAGCAACATGAAGCAATTCATCCGCTACCTCATCTCCTCCAATGTTGGCGAGGTCGTCTGCATCTTCCTCACGGCAATTCTGGGCCTGCCCGAAGCCCTGATCCCTGTGCAGCTGCTCTGGGTGAACCTGGTGACAGACGGCCTACCTGCCACGGCTCTGGGCTTCAACCCGCCAGACCTGGACATCATGGAGAAGCTGCCCCGGAGCCCCCGAGAAGCCCTCATCAGTGGCTGGCTCTTCTTCCGATACCTGGCTATCGGAGTGTACGTAGGCCTGGCCACAGTGGCTGCCGCCACCTGGTGGTTTGTGTATGACGCCGAGGGACCTCACATCAACTTCTACCAGCTGAGGAACTTCCTGAAGTGCTCCGAAGACAACCCGCTCTTTGCCGGCATCGACTGTGAGGTGTTCGAGTCACGCTTCCCCACCACCATGGCCTTGTCCGTGCTCGTGACCATTGAAATGTGCAATGCCCTCAACAGCGTCTCGGAGAACCAGTCGCTGCTGCGGATGCCGCCCTGGATGAACCCCTGGCTGCTGGTGGCTGTGGCCATGTCCATGGCCCTGCACTTCCTCATCCTGCTCGTGCCGCCCCTGCCTCTCATTTTCCAGGTGACCCCACTGAGCGGGCGCCAGTGGGTGGTGGTGCTCCAGATATCTCTGCCTGTCATCCTGCTGGATGAGGCCCTCAAGTACCTGTCCCGGAACCACATGCACGAAGAAATGAGCCAGAAGTGAORF Start: at 2ORF Stop: TGA at 3002SEQ ID NO: 2201000 aaMW at 109325.9 kDNOV25c,TMEAAHLLPAADVLRHFSVTAEGGLSPAQVTGARERYGPNELPSEEGKSLWELVLEQFEDLLVRILL248851003Protein SequenceLAALVSFVLAWFEEGEETTTAFVEPLVIMLILVANAIVGVWQERNAESAIEALKEYEPEMGKVIRSDRKGVQRIRARDIVPGDIVEVAVGDKVPADLRLIEIKSTTLRVDQSILTGESVSVTKHTEAIPDPRAVNQDKKNMLFSGTNITSGKAVGVAVATGLHTELGKIRSQMAAVEPERTPLQRKLDEFGRQLSHAISVICVAVWVINIGHFADPAHGGSWLRGAVYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMARKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCRMFVVAEADAGSCLLHEFTISGTTYTPEGEVRQGDQPVRCGQFDGLVELATICALCNDSALDYNEAKGVYEKVGEATETALTCLVEKMNVFDTDLQALSRVERAGACNTVIKQLMRKEFTLEFSRDRKSMSVYCTPTRPHPTGQGSKMFVKGAPESVIERCSSVRVGSRTAPLTPTSREQILAKIRDWGSGSDTLRCLALATRDAPPRKEDMELDDCGKFVQYETDLTFVGCVGMLDPPRPEVAACITRCYQAGIRVVMITGDNKGTAVAICRRLGIFGDTEDVAGKAYTGREFDDLSPEQQRQACRTARCFARVEPAHKSRIVENLQSFNEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKSAAEMVLSDDNFASIVAAVEEGRAIYSNMKQFIRYLISSNVGEVVCIFLTAILGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMEKLPRSPREALISGWLFFRYLAIGVYVGLATVAAATWWFVYDAEGPHINFYQLRNFLKCSEDNPLFAGIDCEVFESRFPTTMALSVLVTIEMCNALNSVSENQSLLRMPPWMNPWLLVAVAMSMALHFLILLVPPLPLIFQVTPLSGRQWVVVLQISLPVILLDEALKYLSRNHMHEEMSQKSEQ ID NO: 2214553 bpNOV25d,GGCGGCATGGAGGCGGCGCATCTGCTCCCGGCCGCCGACGTGCTGCGCCACTTCTCGGTGACAGCCGCG56216-02DNA SequenceAGGGCGGCCTGAGCCCGGCGCAGGTGACCGGCGCGCGGGAGCGCTACGGCCCCAACGAGCTCCCGAGTGAGGAAGGGAAGTCCCTGTGGGAGCTGGTGCTGGAACAGTTTGAGGACCTCCTGGTGCGCATCCTGCTGCTGGCTGCCCTTGTCTCCTTTGTCCTGGCCTGGTTCGAGGAGGGCGAGGAGACCACGACCGCCTTCGTGGAGCCCCTGGTCATCATGCTGATCCTCGTGGCCAACGCCATTGTGGGCGTGTGGCAGGAACGCAACGCCGAGAGTGCCATCGAGGCCCTGAAGGAGTATGAGCCTGAGATGGGCAAGGTGATCCGCTCGGACCGCAAGGGCGTGCAGAGGATCCGTGCCCGGGACATCGTCCCAGGGGACATTGTAGAAGTGGCAGTGGGGGACAAAGTGCCTGCTGACCTCCGCCTCATCGAGATCAAGTCCACCACGCTGCGAGTGGACCAGTCCATCCTGACGGGTGAATCTGTGTCCGTGACCAAGCACACAGAGGCCATCCCAGACCCCAGAGCTGTGAACCAGGACAAGAAGAACATGCTGTTTTCTGGCACCAATATCACATCGGGCAAAGCGGTGGGTGTGGCCGTGGCCACCGGCCTGCACACGGAGCTGGGCAAGATCCGGAGCCAGATGGCGGCAGTCGAGCCCGAGCGGACGCCGCTGCAGCGCAAGCTGGACGAGTTTGGACGGCAGCTGTCCCACGCCATCTCTGTGATCTGCGTGGCCGTGTGGGTCATCAACATCGGCCACTTCGCCGACCCGGCCCACGGTGGCTCCTGGCTGCGTGGCGCTGTCTACTACTTCAAGATCGCCGTGGCCCTGGCGGTGGCGGCCATCCCCGAGGGCCTCCCGGCTGTCATCACTACATGCCTGGCACTGGGCACGCGGCGCATGGCACGCAAGAACGCCATCGTGCGAAGCCTGCCGTCCGTGGAGACCCTGGGCTGCACCTCAGTCATCTGCTCCGACAAGACGGGCACGCTCACCACCAATCAGATGTCTGTCTGCCGGATGTTCGTGGTAGCCGAGGCCGATGCGGGCTCCTGCCTTTTGCACGAGTTCACCATCTCGGGTACCACGTATACCCCCGAGGGCGAAGTGCGGCAGGGGGATCAGCCTGTGCGCTGCGGCCAGTTCGACGGGCTGGTGGAGCTGGCGACCATCTGCGCCCTGTGCAACGACTCGGCGCTGGACTACAACGAGGCCAAGGGTGTGTACGAGAAGGTGGGAGAGGCCACGGAGACAGCTCTGACTTGCCTGGTGGAGAAGATGAATGTGTTCGACACCGACCTGCAGGCTCTGTCCCGGGTGGAGCGAGCTGGCGCCTGTAACACGGTCATCAAGCAGCTGATGCGGAAGGAGTTCACCCTGGAGTTCTCCCGAGACCGGAAATCCATGTCCGTGTACTGCACGCCCACCCGCCCTCACCCTACCGGCCAGGGCAGCAAGATGTTTGTGAAGGGGGCTCCTGAGAGTGTGATCGAGCGCTGTAGCTCAGTCCGCGTGGGGAGCCGCACAGCACCCCTGACCCCCACCTCCAGGGAGCAGATCCTGGCAAAGATCCGGGATTGGGGCTCAGGCTCAGACACGCTGCGCTGCCTGGCACTGGCCACCCGGGACGCGCCCCCAAGGAAGGAGGACATGGAGCTGGAGCTGGCGCCTGTAACACGGTCATCAAGCAGCTGATGCGGAAGGAGTTCACCCTGGAGTTCTCCCGACACCGGAAATCCATGTCCGTGTACTGCACGCCCACCCGCCCTCACCCTACCGGCCAGGGCAGCAAGATGTTTGTGAAGGGGGCTCCTGAGAGTGTGATCGAGCGCTGTAGCTCAGTCCGCGTGGGGAGCCGCACAGCACCCCTGACCCCCACCTCCAGGGAGCAGATCCTGGCAAAGATCCGGGATTGGGGCTCAGGCTCAGACACGCTGCGCTGCCTGGCACTGGCCACCCGGGACGCGCCCCCAAGGAAGGAGGACATGGAGCTGGACGACTGCAGCAAGTTTGTGCAGTACGAGACGGACCTGACCTTCGTGGGCTGCGTAGGCATGCTGGACCCGCCGCGACCTGAGGTGGCTGCCTGCATCACACGCTGCTACCAGGCGGGCATCCGCGTGGTCATGATCACGGGGGATAACAAAGGCACTGCCGTGGCCATCTGCCGCAGGCTTGGCATCTTTGGGGACACGGAAGACGTGGCGGGCAAGGCCTACACGGGCCGCGAGTTTGATGACCTCAGCCCCGAGCAGCAGCGCCAGGCCTGCCGCACCGCCCGCTGCTTCGCCCGCGTGGAGCCCGCACACAAGTCCCGCATCGTGGAGAACCTGCAGTCCTTTAACGAGATCACTGCTATGACTGGCGATGGAGTGAACGACGCACCAGCCCTGAAGAAAGCAGAGATCGGCATCGCCATGGGCTCAGGCACGGCCGTGGCCAAGTCGGCGGCAGAGATGGTGCTGTCAGATGACAACTTTGCCTCCATCGTGGCTGCGGTGGAGGAGGGCCGGGCCATCTACAGCAACATGAAGCAATTCATCCGCTACCTCATCTCCTCCAATGTTGGCGAGGTCGTCTGCATCTTCCTCACGGCAATTCTGGGCCTGCCCGAAGCCCTGATCCCTGTGCAGCTGCTCTGGGTGAACCTGGTGACAGATGGCCTACCTGCCACGGCTCTGGGCTTCAACCCGCCAGACCTGGACATCATAGAGAAGCTGCCCCGGAGCCCCCGAGAAGCCCTCATCAGTGGCTGGCTCTTCTTCCGATACCTGGCTATCGGAGTGTACGTAGGCCTGGCCACAGTGGCTGCCGCCACCTGGTGGTTTGTGTATGACGCCGAGGGACCTCACATCAACTTCTACCAGCTGAGGAACTTCCTGAAGTGCTCCGAAGACAACCCGCTCTTTGCCGGCATCGACTGTGAGGTGTTCGAGTCACGCTTCCCCACCACCATGGCCTTGTCCGTGCTCGTGACCATTGAAATGTGCAATGCCCTCAACAGCGTCTCGGAGAACCAGTCGCTGCTGCGGATGCCGCCCTGGATGAACCCCTGGCTGCTGGTGGCTGTGGCCATGTCCATGGCCCTGCACTTCCTCATCCTGCTCGTGCCGCCCCTGCCTCTCATTTTCCAGGTGACCCCACTGAGCGGGCGCCAGTGGGTGGTGGTGCTCCAGATATCTCTGCCTGTCATCCTGCTGGATGAGGCCCTCAAGTACCTGTCCCGGAACCACATGCACGAAGAAATGAGCCAGAAGTGAGCGCTGGGAACAGGGTGGAGTCTCCGGTGTGTACCTCAGACTGATGGTGCCCATGTGTTCGCCTCCGCCCCCCACCCTTGCCACCACACTCGCCCACTTGCCCACCGGGTCCCGCCGGATAAATGACAGGCCCGAGGTCAGAATGGCCATCCCCGGGCCCCGTCCTGGGGTCTCTGTCCCCACTTCCTTCTGGCCTGGGAGGTCTGTAATTCCTGTCTCCTGGACTCTCCTGGGAAGTTCCCTGCTCTGCAGCTCTGGCCCAGGAGCTGCAGGCTGGGAGGGGGCAGCCAAGAAGCCGGAGCTGGCAGCATACCCAGAGATCCGGGGCCCCCCCACCCCCAAATCACGAGTGCAGCTGGAGCTTGCTCCCCCTTGTTCGGAAGCTGGACGTTCACTTGGTGACTGGTGCCTCTGCACTGACGGAGGACTCTGGGGGTCCTTCTTACCGGCTCTGACCTCTCTCTTCGTGCCTGGTCTGGGACTGGGTCAGCCCTGGGGGATCAGAAGGGGCCATCTGGGCCCAGCTGTGTACAGCGAGGGTGGGCAGCCCCCTCCACTCCACTCTGCTTCCACAAAGTCGGCTCCCGAGAGCTCGAGGCTGCTTCTGTTTATATGTGCAGGGCCCGGGCCGGTGAAGGGTCAGAGAGACGGACACAAGGAGCCGGCAGGAGGGCGGAGCGAGGATGTCCTTTCCCGGGAGACAAGTCGGGAAAGCCTGGCTGGACTGCCTCAGCCCCGCGCGCCTCCTGGACTCAGGGTTCCCCGTCCTGAGCTCGGGAGATGTTCAGAGTCACACTGCCGCCCGGTCTGCCACGCAGAGGTCCAACTTGCCACCCGCGTCCCTGGTACCTGAGACCACCGACATCCTCAGGTTCCTGACCGTGGCGCCCTTCTACCCAGCCCAGTGTGCGGCCGCCGCGCTGTCTGCACAGCTGGGGGCCTCTGAGCCTGGTGGGCTTCCTGGACTCTTGGCCTCACTCCTTGCCCCCTCCCCACGACACCCATGAGCCGAAAGGATGTCACTAAGGATGGCTGATTCCCCAAGGGCACCCGCTCTCCCTCCCTCCCTGCTGGAGGAACACGTCATATCAGATGAGAGGAAGATGGCCTCTGATGGACAGAATTTTTCTCTTAACTCAGCTTTTGCTACTTTGGCAAAAACTAGCGAGGGGTAGCAGAAACCTGCACCAAGGATTGTCCCTATGTCTTGGCCCCTCCTAGAGCGTGTGCAGACTGATGATTTTATATGTAAATCAAGACTCACATCCCTTTCCTAGTCCCCCACATCCAAAGCCCCTCAGCCTGCCTTGCAGACCAATGGGCTCCATGTTCTGTAGCCCCCTCCCCTACGCCTCACCCCTCCTCCCTCTCACAGGTTCTGGGCGGCCAGTGAGAGAAACGCAGTGGGGGAGGCAGGGAGTCTGGTGCCTGCAGAGATTCTCTGCTTCTTTCCTGGGGGGAGGTGGGGAGGTCTTAGCAGGAGCGGGCCCTGTACCCACCTGCTGACCTGCTGTTTGGTAGAGAAATAAAGGTTGTGTGACTGGGGGORF Start: ATG at 7ORF Stop: TGA at 3004SEQ ID NO: 222999 aaMW at 109236.8 kDNOV25d,MEAAHLLPAADVLRHFSVTAEGGLSPAQVTGARERYGPNELPSEEGKSLWELVLEQFEDLLVRILLLCG56216-02Protein SequenceAALVSFVLAWFEEGEETTTAFVEPLVIMLILVANAIVGVWQERNAESAIEALKEYEPEMGKVIRSDRKGVQRIRARDIVPGDIVEVAVGDKVPADLRLIEIKSTTLRVDQSILTGESVSVTKHTEAIPDPRAVNQDKKNMLFSGTNITSGKAVGVAVATGLHTELGKIRSQMAAVEPERTPLQRKLDEFGRQLSHAISVICVAVWVINIGHFADPAHGGSWLRGAVYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMARKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCRMFVVAEADAGSCLLHEFTISGTTYTPEGEVRQGDQPVRCGQFDGLVELATICALCNDSALDYNEAKGVYEKVGEATETALTCLVEKMNVFDTDLQALSRVERAGACNTVIKQLMRKEFTLEFSRDRKSMSVYCTPTRPHPTGQGSKMFVKGAPESVIERCSSVRVGSRTAPLTPTSREQILAKIRDWGSGSDTLRCLALATRDAPPRKEDMELDDCSKFVQYETDLTFVGCVGMLDPPRPEVAACITRCYQAGIRVVMITGDNKGTAVAICRRLGIFGDTEDVAGKAYTGREFDDLSPEQQRQACRTARCFARVEPAHKSRIVENLQSFNEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKSAAEMVLSDDNFASIVAAVEEGRAIYSNMKQFIRYLISSNVGEVVCIFLTAILGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIIEKLPRSPREALISGWLFFRYLAIGVYVGLATVAAATWWFVYDAEGPHINFYQLRNFLKCSEDNPLFAGIDCEVFESRFPTTMALSVIVTIEMCNALNSVSENQSLLRMPPWMNPWLLVAVAMSMALHFLILLVPPLPLIFQVTPLSGRQWVVVLQISLPVILLDEALKYLSRNHMHEEMSQK


[0487] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 25B.
136TABLE 25BComparison of NOV25a against NOV25b through NOV25d.NOV25a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV25b1 . . . 999999/999 (100%)2 . . . 1000999/999 (100%)NOV25c1 . . . 999999/999 (100%)2 . . . 1000999/999 (100%)NOV25d1 . . . 999997/999 (99%)1 . . . 999998/999 (99%)


[0488] Further analysis of the NOV25a protein yielded the following properties shown in Table 25C.
137TABLE 25CProtein Sequence Properties NOV25aSignalPanalysis:Cleavage site between residues 23 and 24PSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 11; pos. chg 0; neg. chg 2H-region: length 2; peak value 0.00PSG score: −4.40GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −8.71possible cleavage site: between 31 and 32>>> Seems to have no N-terminal signal peptideALOM:Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 8INTEGRALLikelihood =−10.46Transmembrane  60-76INTEGRALLikelihood =−7.70Transmembrane  88-104INTEGRALLikelihood =−4.57Transmembrane 260-276INTEGRALLikelihood =−3.19Transmembrane 298-314INTEGRALLikelihood =−6.85Transmembrane 772-788INTEGRALLikelihood =−1.28Transmembrane 838-854INTEGRALLikelihood =−9.13Transmembrane 934-950INTEGRALLikelihood =−3.61Transmembrane 968-984PERIPHERALLikelihood =1.38(at 897)ALOM score: −10.46 (number of TMSs: 8)MTOP:Prediction of membrane topology (Hartmann et al.)Center position for calculation: 67Charge difference: −2.0 C(−5.0) − N(−3.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment1.14Hyd Moment(95):5.42(75):D/E content:2G content:0Score:−7.82S/T content:0Gavel:prediction of cleavage sites for mitochondrial preseqR-10 motif at 24 LRH FSNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 9.7%NLS Score: −0.47KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signal in the C-terminus: nonePTS2:2nd peroxisomal targeting signal: foundKLDEFGRQL at 252VAC:possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues----------------------------------Final Results (k = 9/23):44.4%: endoplasmic reticulum22.2%: vesicles of secretory system11.1%: vacuolar11.1%: Golgi11.1%: mitochondrial>> prediction for CG56216-01 is end (k = 9)


[0489] A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25D.
138TABLE 25DGeneseq Results for NOV25aIdentities/NOV25aSimilaritiesProtein/Organism/Residues/for theGeneseqLengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB90764Human shear stress-1 . . . 992767/9920.0response protein(77%)SEQ ID NO:28 -1 . . . 991871/992Homo sapiens,(87%)997 aa.[WO200125427-A1,12-APR-2001]AAM78337Human protein SEQ1 . . . 999758/9990.0ID NO 999 - Homo(75%)sapiens, 1001 aa.1 . . . 999878/999[WO200157190-A2,(87%)09-AUG-2001]ABB09807Amino acid1 . . . 992758/9920.0sequence of human(76%)SERCA 1 - Homo1 . . . 992875/992sapiens, 994 aa.(87%)[WO200222777-A2,21-MAR-2002]AAM79321Human protein SEQ1 . . . 992757/9920.0ID NO 2967 -(76%)Homo sapiens,58 . . . 1049874/9921072 aa.(87%)[WO200157190-A2,09-AUG-2001]ABB66626Drosophila1 . . . 989673/9890.0melanogaster(68%)polypeptide1 . . . 989794/989SEQ ID NO 26670 -(80%)Drosophilamelanogaster,1020 aa.[WO200171042-A2,27-SEP-2001]


[0490] In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25E.
139TABLE 25EPublic BLASTP Results for NOV25aNOV25aIdentitiesProteinResidues/Similarities forAccessionProtein/Organism/Matchthe MatchedExpectNumberLengthResiduesPortionValueAAH35729Hypothetical1 . . . 999998/999 (99%)0.0protein - Homo1 . . . 999998/999 (99%)sapiens (Human),999 aa.S72267Ca2+-transporting1 . . . 999997/999 (99%)0.0ATPase1 . . . 999998/999 (99%)(EC 3.6.1.38)isoform SERCA3,sarcoplasmic/endoplasmicreticulum - human,999 aa.Q93084Sarcoplasmic/1 . . . 993992/993 (99%)0.0endoplasmic1 . . . 993992/993 (99%)reticulum calciumATPase 3(EC 3.6.3.8)(Calcium pump 3)(SERCA3) (SRCa(2+)-ATPase 3) -Homo sapiens(Human), 1043 aa.Q8R0X5Similar to ATPase,1 . . . 999947/999 (94%)0.0Ca++ transporting,1 . . . 999967/999 (96%)ubiquitous - Musmusculus (Mouse),999 aa.Q64518Sarcoplasmic/1 . . . 992946/992 (95%)0.0endoplasmic1 . . . 992965/992 (96%)reticulum calciumATPase 3(EC 3.6.3.8)(Calcium pump 3)(SERCA3) (SRCa(2+)-ATPase 3) -Mus musculus(Mouse), 1038 aa.


[0491] PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25F.
140TABLE 25FDomain Analysis of NOV25aIdentities/SimilaritiesNOV25a Matchfor the MatchedExpectPfam DomainRegionRegionValueCation_ATPase_N 2 . . . 77 28/87 (32%)  2e−14 56/87 (64%)E1-E2_ATPase 93 . . . 341120/250 (48%) 1.2e−124231/250 (92%)Hydrolase345 . . . 724 44/390 (11%)1.3e−17245/390 (63%)Cation_ATPase_C819 . . . 996 88/194 (45%)3.7e−77154/194 (79%)



Example 26

[0492] The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.
141TABLE 26ANOV26 Sequence AnalysisSEQ ID NO: 223911 bpNOV26a,AGAGTTCATTCTGCAAGGACTTTCAGGGTACCCAAGAGCTGAAAAATTCCTTTTCGTGATGTGCTTACG56230-01DNA SequenceGTGAGGTACCTGGTGATTCTCCTAGGGAATGGCACCTTGATCATTCTGACACTCCTGGATGCTCGTCTCCACACACCCATGTACTTCTTCCTTGGGAATCTCTCCTTCCTAGACATTTGGTACACATCCTCCTCCATCCCCTCAATGCTGATACACTTCCCATCAGAGAAGAAAACCATTTCCTTCACTAGATGTGTGATTCAAATGTCTGTCTCTTACACTATGGGATCCACCAAGTGTGTGCTTCTAGCAGTGATGGCATATGACCGTTATGTAGCCATCTGCAACCCTCTGAGATATCCCATCATCATGGGCAAGGCACTTTGTATTCAGATGGTGGCTGTCTCTTGGGGACTAGGCTTTCTCAACTCATTGACAGAAACTGTTCTTGCAATACGGTTACCCTTCTGTGGAAAAAATGTCATCAATCATTTTGTTTGTGAAATATTGGCCTTTGTCAAGCTGGCTTGCACAGATACTTCCTTGAATGAGATTATTATAATGTTGGGCAATGTAATATTTTTGTTTTCTCCATTACTGCTGATTTGTATCTCCTACATCTTTATCCTTTCTACTGTACTAAGAATCAATTCAGCTGAAGGAAGGAAAAAGGCCTTTTCCACCTGCTCAGCCCACATGACAGTGGTGATTGTGTTTTATGGGACAATCCTCTTCATGTACATGAAGGCAAAGTCCAAAGACTCTGCTTTTGACAAACTGATTGCCCTGTTCTATGGCATAGTCACCCCCATGCCCAATCCTATCATCTACAGCCTGAGGAATACAGAGGTGCATGGAGCTATGAGGAAATTAATGAGTAGACCCTGGTTCTGGAGGAAATGATORF Start: at 2ORF Stop: TGA at 908SEQ ID NO: 224302 aaMW at 34205.8 kDNOV26a,EFILQGLSGYPRAEKFLFVMCLVMYLVILLGNGTLIILTLLDARLHTPMYFFLGNLSFLDIWYTSSSCG56230-01Protein SequenceIPSMLIHFPSEKKTISFTRCVIQMSVSYTMGSTKCVLLAVMAYDRYVAICNPLRYPIIMGKALCIQMVAVSWGLGFLNSLTETVLAIRLPFCGKNVINHFVCEILAFVKLACTDTSLNEIIIMLGNVIFLFSPLLLICISYIFILSTVLRINSAEGRKKAFSTCSAHMTVVIVFYGTILFMYMKAKSKDSAFDKLIALFYGIVTPMPNPIIYSLRNTEVHGAMRKLMSRPWFWRK


[0493] Further analysis of the NOV26a protein yielded the following properties shown in Table 26B.
142TABLE 26BProtein Sequence Properties NOV26aSignalPanalysis:Cleavage site between residues 34 and 35PSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 1; pos. chg 0; neg. chg 1H-region: length 10; peak value 0.00PSG score: −4.40GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −5.65possible cleavage site: between 47 and 48>>> Seems to have no N-terminal signal peptideALOM:Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 4INTEGRALLikelihood =−8.44Transmembrane  16-32INTEGRALLikelihood =−1.28Transmembrane 163-179INTEGRALLikelihood =−9.13Transmembrane 195-211INTEGRALLikelihood =−1.70Transmembrane 231-247PERIPHERALLikelihood =0.63(at 124)ALOM score: −9.13 (number of TMSs: 4)MTOP:Prediction of membrane topology (Hartmann et al.)Center position for calculation: 23Charge difference: −0.5 C(0.5) − N(1.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment8.79Hyd Moment(95):9.06(75):D/E content:3G content:4Score:−8.47S/T content:3Gavel:prediction of cleavage sites for mitochondrial preseqR-2 motif at 165 IRL|PFNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 8.9%NLS Score: −0.47KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signal in the C-terminus: nonePTS2:2nd peroxisomal targeting signal: noneVAC:possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues----------------------------------Final Results (k = 9/23):52.2%: endoplasmic reticulum34.8%: mitochondrial 8.7%: nuclear 4.3%: vesicles of secretory system>> prediction for CG56230-01 is end (k = 23)


[0494] A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26C.
143TABLE 26CGeneseq Results for NOV26aIdentities/NOV26aSimilaritiesProtein/Organism/Residues/for theGeneseqLengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueABB06655G protein-coupled1 . . . 302302/302e−174receptor GPCR32b(100%)protein SEQ ID1 . . . 302302/302NO:120 - Homo(100%)sapiens, 302 aa.[WO200212343-A2,14-FEB-2002]ABB06656G protein-coupled1 . . . 302299/302e−171receptor GPCR33(99%)protein SEQ ID10 . . . 311 300/302NO:122 - Homo(99%)sapiens, 311 aa.[WO200212343-A2,14-FEB-2002]AAG71954Human olfactory1 . . . 296293/296e−166receptor(98%)polypeptide, SEQ10 . . . 305 294/296ID NO:1635 -(98%)Homo sapiens,333 aa.[WO200127158-A2,19-APR-2001]AAG72651Murine OR-like1 . . . 301196/311e−108polypeptide query(63%)sequence, SEQ28 . . . 338 240/311ID NO:2333 -(77%)Mus musculus,356 aa.[WO200127158-A2,19-APR-2001]AAG72652Murine OR-like1 . . . 296193/303e−108polypeptide query(63%)sequence, SEQ24 . . . 326 238/303ID NO:2334 -(77%)Mus musculus,331 aa.[WO200127158-A2,19-APR-2001]


[0495] In a BLAST search of public sequence datbases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26D.
144TABLE 26DPublic BLASTP Results for NOV26aIdentities/NOV26aSimilaritiesProteinResidues/for theAccessionProtein/Organism/MatchMatchedExpectNumberLengthResiduesPortionValueCAD42438Sequence 119 from1 . . . 302302/302e−174Patent(100%)WO0212343 -1 . . . 302302/302Homo sapiens(100%)(Human), 302 aa(fragment).CAD42439Sequence 121 from1 . . . 302299/302e−171Patent(99%)WO0212343 -10 . . . 311 300/302Homo sapiens(99%)(Human), 311 aa.Q8VFN0Olfactory receptor1 . . . 302198/303e−112MOR262-9 - Mus(65%)musculus (Mouse),9 . . . 311243/303312 aa.(79%)Q9QZ22Olfactory receptor2 . . . 296193/302e−109GA_x5J8B7W5BNN-(63%)979337-13 . . . 314 240/302980296 -(78%)Mus musculus(Mouse), 319 aa.Q9QZ20Olfactory receptor -1 . . . 295194/302e−108Mus musculus(64%)(Mouse), 318 aa.11 . . . 312 237/302(78%)


[0496] PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26E.
145TABLE 26EDomain Analysis of NOV26aNOV26a MatchIdentities/SimilaritiesExpectPfam DomainRegionfor the Matched RegionValue7tm_131 . . . 279 57/268 (21%)2.9e−44175/268 (65%)



Example 27

[0497] The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.
146TABLE 27ANOV27 Sequence AnalysisSEQ ID NO: 2251279 bpNOV27a,CCACCATGGGCCACCATCACCACCATCACAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCG56246-04DNA SequenceCTACTGTCTAGAAACATTTGTGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAORF Start: at 3ORF Stop: at 1278SEQ ID NO: 226425 aaMW at 47808.7 kDNOV27a,TMGHHHHHHRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPCG56246-04Protein SequenceGETAGVRVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRREFSGVFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYSEQ ID NO: 2271309 bpNOV27b,GGCCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGTGCG56246-02DNA SequenceGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTATCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAGGGCCCTGGGGAAGAAACAAGAGCCATTAAAATCTCTTTGGTTTGAAGCAAAORF Start: ATG at 5ORF Stop: TAG at 1256SEQ ID NO: 228417 aaMW at 46839.7 kDNOV27b,MRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVCG56246-02Protein SequencePFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFIILHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYSEQ ID NO: 2291258 bpNOV27c,CCACCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGT171092849 DNASequenceGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAORF Start: at 3ORF Stop: end of sequenceSEQ ID NO: 230419 aaMW at 46928.8 kDNOV27c,TMRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVR171092849Protein SequenceVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYXSEQ ID NO: 2311280 bpNOV27d,CCACCATGGGCCACCATCACCACCATCACAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATAT183852323 DNASequenceCTACTGTCTAGAAACATTTGTGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAGORF Start: at 3ORF Stop: TAG at 1278SEQ ID NO: 232425 aaMW at 47808.7 kDNOV27d,TMGHHHHHHRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTP183852323Protein SequenceGETAHVRVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYSEQ ID NO: 2331259bpNOV27e,CCACCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGT173229182 DNASequenceGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGACGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAGORF Start: at 3ORF Stop: TAG at 1257SEQ ID NO: 234418 aaMW at 46928.8 kDNOV27e,TMRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVR173229182Protein SequenceVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYSEQ ID NO: 2351277 bpNOV27f,CCACCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGT173172465DNA SequenceGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATCACCATCACCACCATCACTAGORF Start: at 3ORF Stop: TAG at 1275SEQ ID NO: 2364424 aaMW at 47751.6 kDNOV27f,TMRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVR173172465Protein SequenceVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYHHHHHHSEQ ID NO: 2371269 bpNOV27g,GGGCATATCTACTGTCTAGAAACATTTGTGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGCG56246-01DNA SequenceAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTCGAAATCACCCACCACCCCAGCGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGACCAAAGTGAATATTGGCTCTTCTTTTGAGAACCCGCCTATGAACGTCCTCAAGTTCAGCACCCGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATCGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTCGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACCGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATCGAAAAGTCAACGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATCGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCCCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAGGGCCCTGGGGAAGAAACAAGAGCCATTAAAATCTCTTTCGTTTGAAGCORF Start: at 1ORF Stop: TAG at 1219SEQ ID NO: 238406aaMW at 45518.0 kDNOV27g,GHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQAVKVFCG56246-01Protein SequenceLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYSEQ ID NO: 239253 bpNOV27h,CACCAGATCTCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTG274057795 DNASequenceGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 24084 aaMW at 9501.7 kDNOV27h,TRSQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQAVKVFLESQGIAYS274057795Protein SequenceIMIEDVQVLLDKENVDGSEQ ID NO: 2411243 bpNOV27i,CACCAGATCTCCCACCGGGCATATCTACTGTCTAGAAACATTTGTGGGAGACCAAGTTCTTGAGATT274057823DNA SequenceGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGACACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGAACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCCAGACCACCCCTATGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 242414 aaMW at 46361.9 kDNOV27i,TRSPTGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ274057823AVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGProteinSequenceLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYVDGSEQ ID NO: 2431243 bpNOV27j, CACCAGATCTCCCACCGGGCATATCTACTGTCTAGAAACATTTGTGGGAGACCAAGTTCTTGAGATT274057830DNA SequenceGTACCAAGCAATCAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTCAGCACCCTGGTCTAGTCAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTCCTCAAGTTCAGCACCCGAGGAGACAAGCCAGCTATCTGGCTGGATGCTCGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTCCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTCGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCACGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCACATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 244414 aaMW at 46331.9 kDNOV27j,TRSPTGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ274057830ProteinAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGSequenceLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYVDGSEQ ID NO: 245859 bpNOV27k,CACCAGATCTTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCT274057838 DNASequenceGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGACACTTTGGACAGCAAATAAOATTGTTTCTGATTATCGAAAGCACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGGTCGACGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 246286 aaMw at 31599.2 kDNOV27k,TRSYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQ274057838Protein SequenceATTLWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEEVDGSEQ ID NO: 2471258 bpNOV27l,CCACCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGTCG56246-03DNA SequenceGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTAORF Start: at 3ORF Stop: at 1257SEQ ID NO: 248418 aaMW at 46928.8 kDN0V27l,TMRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRCG56246-03ProteinVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNSequenceLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPYSEQ ID NO: 2491276 bpNOV27m,CCACCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGCG56246-05DNA SequenceTGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTCCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCCGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATCACCATCACCACCATCACTAORF Start: ATG at 6ORF Stop: at 1257SEQ ID NO: 250417 aaMW at 46827.6 kDNOV27m,MRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRCG56246-05Protein SequenceVPFVNVQAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRDHPY


[0498] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 27B.
147TABLE 27BComparison of NOV27a against NOV27b through NOV27m.NOV27a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV27b10 . . . 425415/416  (99%) 2 . . . 417415/416  (99%)NOV27c10 . . . 425416/416 (100%) 3 . . . 418416/416 (100%)NOV27d 1 . . . 425425/425 (100%) 1 . . . 425425/425 (100%)NOV27e10 . . . 425416/416 (100%) 3 . . . 418416/416 (100%)NOV27f10 . . . 425416/416 (100%) 3 . . . 418416/416 (100%)NOV27g20 . . . 425406/406 (100%) 1 . . . 406406/406 (100%)NOV27h32 . . . 109 78/78 (100%) 4 . . . 81 78/78 (100%)NOV27i20 . . . 425405/406  (99%) 6 . . . 411405/406  (99%)NOV27j20 . . . 425406/406 (100%) 6 . . . 411406/406 (100%)NOV27k128 . . . 408 279/281  (99%) 3 . . . 283280/281  (99%)NOV27l10 . . . 425416/416 (100%) 3 . . . 418416/416 (100%)NOV27m10 . . . 425416/416 (100%) 2 . . . 417416/416 (100%)


[0499] Further analysis of the NOV27a protein yielded the following properties shown in Table 27C.
148TABLE 27CProtein Sequence Properties NOV27aSignalPanalysis:Cleavage site between residues 25 and 26PSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 10; pos. chg 1; neg. chg 0H-region: length 15; peak value 11.73PSG score: 7.33GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −2.32possible cleavage site: between 24 and 25>>> Seems to have no N-terminal signal peptideALOM:Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 0PERIPHERAL Likelihood = 0.53 (at 211)ALOM score: −0.27 (number of TMSs: 0)MTOP:Prediction of membrane topology (Hartmann et al.)Center position for calculation: 6Charge difference: 0.0 C(3.0) - N(3.0)N >= C: N-terminal side will be insideMITDISC: discrimination of mitochondrial targeting seqR content:1Hyd Moment2.28Hyd Moment (95):3.41(75):D/E content:1G content:3Score:−6.06S/T content:1Gavel:prediction of cleavage sites for mitochondrial preseqR-2 motif at 20 HRL|ILNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 9.4%NLS Score: −0.47KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signal in the C-terminus: nonePTS2:2nd peroxisomal targeting signal: noneVAC:possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern : nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues-------------------------------------Final Results (k = 9/23):34.8%: mitochondrial26.1%: cytoplasmic13.0%: endoplasmic reticulum 8.7%: extracellular, including cell wall 8.7%: vacuolar 8.7%: nuclear>> prediction for CG56246-04 is mit (k = 23)


[0500] A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27D.
149TABLE 27DGeneseq Results for NOV27aGeneseqProtein/Organism/LengthNOV27a Residues/Identities/SimilaritiesExpectIdentifier[Patent #, Date]Match Residuesfor the Matched RegionValueAAU87689Human pancreatic tumour10 . . . 425415/416 (99%)0.0protein #1 - Homo sapiens, 2 . . . 417415/416 (99%)417 aa. [WO200212331-A2,14-FEB-2002]AAW01505Wild-type human pancreatic10 . . . 425415/416 (99%)0.0carboxypeptidase 2 - Homo 2 . . . 417415/416 (99%)sapiens, 417 aa.[WO9513095-A2,18-MAY-1995]AAW01507Human pancreatic10 . . . 425414/416 (99%)0.0carboxypeptidase 2 variant 2 . . . 417414/416 (99%)(T268G) - Synthetic, 417 aa.[WO9513095-A2,18-MAY-1995]AAW01506Human pancreatic10 . . . 425414/416 (99%)0.0carboxypeptidase 2 variant 2 . . . 417414/416 (99%)(A250G) - Synthetic, 417 aa.[WO9513095-A2,18-MAY-1995]AAB54076Human pancreatic cancer10 . . . 425412/416 (99%)0.0antigen protein sequence13 . . . 428412/416 (99%)SEQ ID NO:528 - Homosapiens, 428 aa.[WO200055320-A1,21-SEP-2000]


[0501] In a BLAST search of public sequence datbases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27E.
150TABLE 27EPublic BLASTP Results for NOV27aProteinAccessionNOV27a Residues/Identities/SimilaritiesExpectNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionValueP48052Carboxypeptidase A210 . . . 425416/416 (100%)0.0precursor (EC 3.4.17.15) - 2 . . . 417416/416 (100%)Homo sapiens (Human),417 aa.A56171carboxypeptidase A2 (EC10 . . . 425415/416 (99%)0.03.4.17.15) precursor - 2 . . . 417415/416 (99%)human, 417 aa.CAA02811SEQUENCE 3 FROM10 . . . 425415/416 (99%)0.0PATENT WO9513095 - 2 . . . 417415/416 (99%)unidentified, 417 aa(fragment).P19222Carboxypeptidase A210 . . . 425362/416 (87%)0.0precursor (EC 3.4.17.15) - 2 . . . 417384/416 (92%)Rattus norvegicus (Rat),417 aa.Q9TV85Carboxypeptidase A1 (EC12 . . . 425265/416 (63%)e−1583.4.17.1) - Sus scrofa (Pig), 4 . . . 419325/416 (77%)419 aa.


[0502] PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27F.
151TABLE 27FDomain Analysis of NOV27aNOV27a MatchIdentities/SimilaritiesExpectPfam DomainRegionfor the Matched RegionValuePropep_M14 32 . . . 109 41/82 (50%)1.6e−35 69/82 (84%)Zn_carbOpept129 . . . 408161/304 (53%)4.8e−161264/304 (87%)



Example 28

[0503] The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.
152TABLE 28ANOV28 Sequence AnalysisSEQ ID NO: 2513032 bpNOV28a,CCACCATGGGCCACCATCACCACCATCACGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCG57417-05DNA SequenceCTATTTTGGGGTGAGTGAGACCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGCGAAGACCCTGTCGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCACAGATGGGGAACGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCCCGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCAACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGAORF Start: at 3ORF Stop: TGA at 3030SEQ ID NO: 2521009 aaMW at 111232.1 kDNOV28a,TMGHHHHHHEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDCG57417-05Protein SequenceLLVRILLLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKSEQ ID NO: 2533040 bpNOV28b,ATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGACCACGGCG57417-03DNA SequenceGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACCGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGAGCATCCTTTTGCTCTGTCCTCCCCACCCCGATAGORF Start: ATG at 1ORF Stop: TGA at 3004SEQ ID NO: 2541001 aaMW at 110251.1 kDNOV28b,MEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILLLCG57417-03Protein SequenceAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKSEQ ID NO: 2553029 bpNOV28c,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGAC255169268 DNASequenceCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCAATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGCACCATCACCACCATCACTGAORF Start: at 3ORF Stop: TGA at 3027SEQ ID NO: 2561008 aaMW at 111175.1 kDNOV28e,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVTEQFEDLLVRILL255169268Protein SequenceLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKHHHHHHSEQ ID NO: 2573454 bpNOV28d,GAAAAAGAAGAAACCCAGGCAGACAGGCAGTTGGACACACTGAGGAAGACCCCCCACGAGTGGGAACCG57417-01DNA SequenceCCCCTGGAAGGAACACACCGGCCCCGGCCCCCAGGAAGGGAGCACAATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGACCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACTGAGCATAACCCTGAATTTGATGGCCTGGACTGCGAGGTCTTTGAAGCCCCCGAGCCCATGACCATGGCCTTGTCTGTGTTGGTGACCATCGAGATGTGCAACGCCCTCAACAGCCTGTCTGAGAACCAGTCCCTACTGCGGATGCCGCCCTGGGTGAACATCTGGCTTCTCGGTTCCATCTGCCTGTCCATGTCCCTCCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGGATAACTGTTCCCCCTCCTCCATCTCTGAGCCCGTGTCACAGATCCAGAAGATGAAAGAAGGAAGTGAGCATCCTTTTGCTCTGTCCTCCCCACCCCGATAGTGACACATCTTCAGGCAGAGCTGTGGCACAGACCCCCGTCCTGTCCCCCACACCCGTGTCATGTGTCTGTTTATAAACATGTCCCCTTCCCTTTCCTTCCCCCTCGGCCACCCGCCTCCCTCTCAACCTTGTAAATTCCCCTTCCCAACCCCGAGGGGCTTGCAGGGACAAGGCGACCGACTGCGCTGAGCTGCTTATTTATTGAAAATAAACGACGGAAAAGTCAAAAAAAAAAAATAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 114ORF Stop: TAA at 3096SEQ ID NO: 258994 aaMW at 109278.1 kDNOV28d,MEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILLLCG57417-01Protein SequenceAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEGSEQ ID NO: 2592999 bpNOV28e,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGAC181356924 DNASequenceCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGGATAATCTAGAGGGORF Start: at 3ORF Stop: TAA at 2988SEQ ID NO: 260995 aaMW at 109383.2 kDNOV28e,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILL181356924Protein SequenceLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEGSEQ ID NO: 2613029 bpNOV28f,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGAC255169268DNA SequenceCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGCACCATCACCACCATCACTGAORF Start: at 3ORF Stop: TGA at 3027SEQ ID NO: 2621008 aaMW at 111175.1 kDNOV28f,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILL255169268ProteinLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADSequenceRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKHHHHHHSEQ ID NO: 2633010 bpNOV28g,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGAC206977032 DNASequenceCACGGGCCTCACCCCGGACCAAGTTAAGCTTAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGORF Start: at 3ORF Stop: end of sequenceSEQ ID NO: 2641003 aaMW at 110352.2 kDNOV28g,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILL206977032Protein SequenceLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKXSEQ ID NO: 2653011 bpNOV28h,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGAC201190923 DNASequenceCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGAORF Start: at 3ORF Stop: TGA at 3009SEQ ID NO: 2661002 aaMW at 110352.2 kDNOV28h,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILL201190923Protein SequenceLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKSEQ ID NO: 2673040 bpNOV28i,ATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGACCACGGCG57417-02DNA SequenceGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACCGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTGGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGAGCATCCTTTTGCTCTGTCCTCCCCACCCCGATAGORF Start: ATG at 1ORF Stop: TGA at 3004SEQ ID NO: 2681001 aaMW at 110251.1 kDNOV28i,MEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILLLCG57417-02ProteinAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRSequenceKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKSEQ ID NO: 2693010 bpNOV28j,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGACCG57417-04DNA SequenceCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGORF Start: at 3ORF Stop: at 3009SEQ ID NO: 2701002aaMW at 110352.2 kDNOV28j,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILLCG57417-04ProteinLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADSequenceRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKSEQ ID NO: 2713029 bpNOV28k,CCACCATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGACCG57417-06DNA SequenceCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCTTTCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCCGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTTGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGCACCATCACCACCATCACTGAORF Start: at 3ORF Stop: TGA at 3027SEQ ID NO: 2721008 aaMW at 111175.1 kDNOV28k,TMEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILLCG57417-06Protein SequenceLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRKHHHHHHSEQ ID NO: 2733011 bpN0V28l,CCACCATGGGCCACCATCACCACCATCACGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCG57417-07DNA SequenceCTATTTTGGGGTGAGTGAGACCACGGGCCTCACCCCGGACCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAAGGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTGGCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCTGCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGTCATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACATTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACTGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCTGCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCATCTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCTACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCCCTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGTCATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATGGGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAGCCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTTCAACGAGGCCAAAGGTGTCTATGAGAAGGTCGGCGAGGCCACCGAGACAGCACTCACCACCCTGGTGGAGAAGATGAATGTGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAGAAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCCGGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGCTGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTATGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGTGCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGCATCTTTGGGGAGAACGAGGAGGTGGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCGGGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCTACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATGGGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCTGTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGACGGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCCCCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCTGGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAACACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCATCGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGGGCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGTTGCTCGGAACTACCTAGAGGGATAAORF Start: ATG at 6ORF Stop: TAA at 3009SEQ ID NO: 2741001 aaMW at 110162.0 kDNOV28l,MGHHHHHHEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLCG57417-05Protein SequenceLVRILLLAACISFVLAWFEEGEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVPADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMAATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDKPVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMKKEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLRCLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIGIFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAMGSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTDGLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDNTHFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLRALDLTQWLMVLKISLPVIGLDEILKFVARNYLEG


[0504] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 28B.
153TABLE 28BComparison of NOV28a against NOV28b through NOV28l.NOV28a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV28b10 . . . 10091000/1000 (100%) 2 . . . 10011000/1000 (100%)NOV28c10 . . . 10091000/1000 (100%) 3 . . . 10021000/1000 (100%)NOV28d10 . . . 1001 987/992 (99%) 2 . . . 993 989/992 (99%)NOV28e10 . . . 1001 992/992 (100%) 3 . . . 994 992/992 (100%)NOV28f10 . . . 10091000/1000 (100%) 3 . . . 10021000/1000 (100%)NOV28g10 . . . 10091000/1000 (100%) 3 . . . 10021000/1000 (100%)NOV28h10 . . . 10091000/1000 (100%) 3 . . . 10021000/1000 (100%)NOV28i10 . . . 10091000/1000 (100%) 2 . . . 10011000/1000 (100%)NOV28j10 . . . 10091000/1000 (100%) 3 . . . 10021000/1000 (100%)NOV28k10 . . . 10091000/1000 (100%) 3 . . . 10021000/1000 (100%)NOV28l 2 . . . 10011000/1000 (100%) 1 . . . 10001000/1000 (100%)


[0505] Further analysis of the NOV28a protein yielded the following properties shown in Table 28C.
154TABLE 28CProtein Sequence Properties NOV28aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 10; pos. chg 0; neg. chg 1H-region: length 4; peak value 0.00PSG Score: −4.40GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −8.08possible cleavage site: between 31 and 32>>> Seems to have no N-terminal signal peptideALOM:Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 8INTEGRAL Likelihood = −9.92Transmembrane 68—84INTEGRAL Likelihood = −8.33Transmembrane 96—112INTEGRAL Likelihood = −5.10Transmembrane 271—287INTEGRAL Likelihood = −3.19Transmembrane 306—322INTEGRAL Likelihood = −5.41Transmembrane 780—796INTEGRAL Likelihood = −0.00Tranemembrane 905—921INTEGRAL Likelihood = −3.13Transmembrane 939—955INTEGRAL Likelihood = −1.17Transmembrane 976—992PERIPHERAL Likelihood = 3.07 (at 846)ALOM score: −9.92 (number ofTMSs: 8)MTOP:Prediction of membrane topology (Hartmann et al.)Center position for calculation: 75Charge difference: −2.0 C(−5.0) - N(−3.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment2.28Hyd Moment (95):3.41(75):D/E content:2G content:1Score:−7.46S/T content:3Gavel:prediction of cleavage sites for mitochondrial preseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 10.3%NLS Score: −0.47KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signal in the C-terminus: nonePTS2:2nd peroxisomal targeting signal: foundKLDEFGEQL at 260VAC:possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues-----------------------------------Final Results (k = 9/23):44.4%: endoplasmic reticulum22.2%: mitochondrial11.1%: vacuolar11.1%: Golgi11.1%: vesicles of secretory system>> prediction for CG57417-05 is end (k = 9)


[0506] A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28D.
155TABLE 28DGeneseq Results for NOV28aGeneseqProtein/Organism/LengthNOV28a Residues/Identities/SimilaritiesExpectIdentifier[Patent #, Date]Match Residuesfor the Matched RegionValueAAM78337Human protein SEQ ID NO10 . . . 10091000/1000 (100%)0.0999 - Homo sapiens, 1001 2 . . . 10011000/1000 (100%)aa. [WO200157190-A2,09-AUG-2001]AAM79321Human protein SEQ ID NO10 . . . 1009999/1014 (98%)0.02967 - Homo sapiens, 107259 . . . 1072999/1014 (98%)aa. [WO200157190-A2,09-AUG-2001]ABB09807Amino acid sequence of10 . . . 1001992/992 (100%)0.0human SERCA 1 - Homo 2 . . . 993992/992 (100%)sapiens, 994 aa.[WO200222777-A2,21-MAR-2002]AAB90764Human shear stress-10 . . . 1001837/992 (84%)0.0response protein SEQ ID 2 . . . 992924/992 (92%)NO: 28 - Homo sapiens,997 aa.[WO200125427-A1,12-APR-2001]ABB60125Drosophila melanogaster10 . . . 1004711/995 (71%)0.0polypeptide SEQ ID NO 2 . . . 996829/995 (82%)7167 - Drosophilamelanogaster, 1002 aa.[WO200171042-A2,27-SEP-2001]


[0507] In a BLAST search of public sequence datbases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28E.
156TABLE 28EPublic BLASTP Results for NOV28aProteinAccessionNOV28a Residues/Identities/SimilaritiesExpectNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionValueO14983Sarcoplasmic/endoplasmic10 . . . 10091000/1000 (100%)0.0reticulum calcium ATPase 1 2 . . . 10011000/1000 (100%)(EC 3.6.3.8) (Calcium pump1) (SERCA1) (SRCa(2+)-ATPase 1)(Calcium-transportingATPase sarcoplasmicreticulum type, fast twitchskeletal muscle isoform)(Endoplasmic reticulumclass 1/2 Ca(2+) ATPase) -Homo sapiens (Human),1001 aa.CAD34608Sequence 25 from Patent10 . . . 1001 992/992 (100%)0.0WO0222777 - Homo2 . . . 993 992/992 (100%)sapiens (Human), 994 aa.P04191Sarcoplasmic/endoplasmic10 . . . 1009 967/1000 (96%)0.0reticulum calcium ATPase 1 2 . . . 1001 988/1000 (98%)(EC 3.6.3.8) (Calcium pump1) (SERCA1) (SRCa(2+)-ATPase 1)(Calcium-transportingATPase sarcoplasmicreticulum type, fast twitchskeletal muscle isoform)(Endoplasmic reticulumclass 1/2 Ca(2+) ATPase) -Oryctolagus cuniculus(Rabbit), 1001 aa.Q64578Sarcoplasmic/endoplasmic10 . . . 1001 961/992 (96%)0.0reticulum calcium ATPase 12 . . . 993 980/992 (97%)(EC 3.6.3.8) (Calcium pump1) (SERCA1) (SRCa(2+)-ATPase 1)(Calcium-transportingATPase sarcoplasmicreticulum type, fast twitchskeletal muscle isoform)(Endoplasmic reticulumclass 1/2 Ca(2+) ATPase) -Rattus norvegicus (Rat), 994aa.Q8R429Calcium-transporting10 . . . 1001 959/992 (96%)0.0ATPase - Mus musculus2 . . . 993 979/992 (98%)(Mouse), 994 aa.


[0508] PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28F.
157TABLE 28FDomain Analysis of NOV28aIdentities/NOV28a MatchSimilarities forExpectPfam DomainRegionthe Matched RegionValueCation_ATPase_N 11 . . . 85 26/87 (30%)2.9e—18 62/87 (71%)E1-E2_ATPase101 . . . 349119/250 (48%)1.4e—124225/250 (90%)Hydrolase353 . . . 732 45/385 (12%)1.5e—14251/385 (65%)Cation_ATPase_C826 . . . 999 86/197 (44%)5.3e—84161/197 (82%)



Example 29

[0509] The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29A.
158TABLE 29ANOV29 Sequence AnalysisSEQ ID NO: 2752617 bpNOV29a,CACCATGGGCCACCATCACCACCATCACGCAAGGAGGAGCTCGTTCCAGTCGTGTCAGATAATATCCCG93541-05DNA SequenceCTGTTCACTTTTGCCGTTGGAGTCAATATCTGCTTAGGATTCACTGCACATCGAATTAAGAGAGCAGAAGGATGGGAGGAAGGTCCTCCTACAGTGCTATCAGACTCCCCCTGGACCAACATCTCCGGATCTTGCAAGGGCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGCCATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGGCTGGGAGTGTACTAAGGACAGATGTGGAGAAGTCAGAAATGAAGAAAATGCCTGTCACTGCTCAGAGGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAGAGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATCATCTTCTCCGTGGATGGCTTCCGTGCATCATACATGAAGAAAGGCAGCAAAGTCATGCCTAATATTGAAAAACTAAGGTCTTGTGGCACACACTCTCCCTACATGAGGCCGGTGTACCCAACTAAAACCTTTCCTAACTTATACACTTTGGCCACTGGGCTATATCCAGAATCACATGGAATTGTTGGCAATTCAATGTATGATCCTGTATTTGATGCCACTTTTCATCTGCGAGGGCGAGAGAAATTTAATCATAGATGGTGGGGAGGTCAACCGCTATGGATTACAGCCACCAAGCAAGGGGTGAAAGCTGGAACATTCTTTTGGTCTGTTGTCATCCCTCACGAGCGGAGAATATTAACCATATTGCAGTGGCTCACCCTGCCAGATCATGAGAGGCCTTCGGTCTATGCCTTCTATTCTGAGCAACCTGATTTCTCTGGACACAAATATGGCCCTTTCGGCCCTGAGATGACAAATCCTCTGAGGGAAATCGACAAAATTGTGGGGCAATTAATGGATGGACTGAAACAACTAAAACTGCATCGGTGTGTCAACGTCATCTTTGTCGGAGACCATGGAATGGAAGATGTCACATGTGATAGAACTGAGTTCTTGAGTAATTACCTAACTAATGTGGATGATATTACTTTAGTGCCTGGAACTCTAGGAAGAATTCGATCCAAATTTAGCAACAATGCTAAATATGACCCCAAAGCCATTATTGCCAATCTCACGTGTAAAAAACCAGATCAGCACTTTAAGCCTTACTTGAAACAGCACCTTCCCAAACGTTTGCACTATGCCAACAACAGAAGAATTGAGGATATCCATTTATTGGTGGAACGCAGATGGCATGTTGCAAGGAAACCTTTGGATGTTTATAAGAAACCATCAGGAAAATGCTTTTTCCAGGGAGACCACGGATTTGATAACAAGGTCAACAGCATGCAGACTGTTTTTGTAGGTTATGGCCCAACATTTAAGTACAAGACTAAAGTGCCTCCATTTGAAAACATTGAACTTTACAATGTTATGTGTGATCTCCTGGGATTGAAGCCAGCTCCTAATAATGGGACCCACGGAAGTTTGAATCATCTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATCCAGGGATTATGTACCTTCAGTCTGATTTTGACCTGGGCTGCACTTGTGATGATAAGGTAGAGCCAAAGAACAAGTTGGATGAACTCAACAAACGGCTTCATACAAAAGGGTCTACAGAAGAGAGACACCTCCTCTATGGGCGACCTGCAGTGCTTTATCGGACTAGATATGATATCTTATATCACACTGACTTTGAAAGTGGTTATAGTGAAATATTCCTAATGCCACTCTGGACATCATATACTGTTTCCAAACAGGCTGAGGTTTCCAGCGTTCCTGACCATCTGACCAGTTGCGTCCGGCCTGATGTCCGTGTTTCTCCCAGTTTCAGTCAGAACTGTTTGGCCTACAAAAATGATAAGCAGATGTCCTACGGATTCCTCTTTCCTCCTTATCTGAGCTCTTCACCAGAGGCTAAATATGATGCATTCCTTGTAACCAATATGGTTCCAATGTATCCTGCTTTCAAACGGGTCTGGAATTATTTCCAAAGGGTATTGGTGAAGAAATATGCTTCGGAAAGAAATGGAGTTAACGTGATAAGTGGACCAATCTTCGACTATGACTATGATGGCTTACATGACACAGAAGACAAAATAAAACAGTACGTGGAAGGCAGTTCCATTCCTGTTCCAACTCACTACTACAGCATCATCACCAGCTGTCTGGATTTTACTCAGCCTGCCGACAAGTGTGACGGCCCTCTCTCTGTGTCCTCCTTCATCCTGCCTCACCGGCCTGACAACGAGGAGAGCTGCAATAGCTCAGAGGACGAATCAAAATGGGTAGAAGAACTCATGAAGATGCACACAGCTAGGGTGCGTGACATTGAACATCTCACCAGCCTGGACTTCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACTTGCATACATATGAGAGCGAGATTTAAORF Start: at 2ORF Stop: TAA at 2615SEQ ID NO: 276871 aaMW at 99983.6 kDNOV29a,TMGHHHHHHARRSSFQSCQIISLFTFAVGVNICLGFTAHRIKRAEGWEEGPPTVLSDSPWTNISGSCCG93541-05Protein SequenceKGRCFELQEAGPPDCRCDNLCKSYTSCCHDFDELCLKTARGWECTKDRCGEVRNEENACHCSEDCLARGDCCTNYQVVCKGESHWVDDDCEEIKAAECPAGFVRPPLIIFSVDGFRASYMKKGSKVMPNIEKLRSCGTHSPYMRPVYPTKTFPNLYTLATGLYPESHGIVGNSMYDPVFDATFHLRGREKFNHRWWGGQPLWITATKQGVKAGTFFWSVVIPHERRILTILQWLTLPDHERPSVYAFYSEQPDFSGHKYGPFGPEMTNPLREIDKIVGQLMDGLKQLKLHRCVNVIFVGDHGMEDVTCDRTEFLSNYLTNVDDITLVPGTLGRIRSKFSNNAKYDPKAIIANLTCKKPDQHFKPYLKQHLPKRLHYANNRRIEDIHLLVERRWHVARKPLDVYKKPSGKCFFQGDHGFDNKVNSMQTVFVGYGPTFKYKTKVPPFENIELYNVMCDLLGLKPAPNNGTHGSLNHLLRTNTFRPTMPEEVTRPNYPGIMYLQSDFDLGCTCDDKVEPKNKLDELNKRLHTKGSTEERHLLYGRPAVLYRTRYDILYHTDFESGYSEIFLMPLWTSYTVSKQAEVSSVPDHLTSCVRPDVRVSPSFSQNCLAYKNDKQMSYGFLFPPYLSSSPEAKYDAFLVTNMVPMYPAFKRVWNYFQRVLVKKYASERNGVNVISGPIFDYDYDGLHDTEDKIKQYVEGSSIPVPTHYYSIITSCLDFTQPADKCDGPLSVSSFILPHRPDNEESCNSSEDESKWVEELMKMHTARVRDIEHLTSLDFFRKTSRSYPEILTLKTYLHTYESEISEQ ID NO:2773110 bpNOV29b,AGTGCACTCCGTGAAGGCAAAGAGAACACGCTGCAAAAGGCTTTCCAATAATCCTCGACATGGCAAGCG93541-01DNA SequenceGAGGAGCTCGTTCCAGTCGTGTCAGATAATATCCCTGTTCACTTTTGCCGTTGGAGTCAATATCTGCTTAGGATTCACTGCACATCGAATTAAGAGAGCAGAAGGATGGGAGGAAGGTCCTCCTACAGTGCTATCAGACTCCCCCTGGACCAACATCTCCGGATCTTGCAAGGGCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGCCATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGCGTGGGAGTGTACTAAGGACAGATGTGGGGAAGTCAGAAATGAAGAAAATGCCTGTCACTGCTCAGAGGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAGAGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATCATCTTCTCCGTGGATGGCTTCCGTGCATCATACATGAAGAAAGGCAGCAAAGTCATGCCTAATATTGAAAAACTAAGGTCTTGTGGCACACACTCTCCCTACATGAGGCCGGTGTACCCAACTAAAACCTTTCCTAACTTATACACTTTGGCCACTGGGCTATATCCAGAATCACATGGAATTGTTGGCAATTCAATGTATGATCCTGTATTTGATGCCACTTTTCATCTGCGAGGGCGAGAGAAATTTAATCATAGATGGTGGGGAGGTCAACCGCTATGGATTACAGCCACCAAGCAAGGGGTGAAAGCTGGAACATTCTTTTGGTCTGTTGTCATCCCTCACGAGCGGAGAATATTAACCATATTGCAGTGGCTCACCCTGCCAGATCATGAGAGGCCTTCGGTCTATGCCTTCTATTCTGAGCAACCTGATTTCTCTGGACACAAATATGGCCCTTTCGGCCCTGAGATGACAAATCCTCTGAGGGAAATCGACAAAATTGTGGGGCAATTAATGGATGGACTGAAACAACTAAAACTGCATCGGTGTGTCAACGTCATCTTTGTCGGAGACCATGGAATGGAAGATGTCACATGTGATAGAACTGAGTTCTTGAGTAATTACCTAACTAATGTGGATGATATTACTTTAGTGCCTGGAACTCTAGGAAGAATTCGATCCAAATTTAGCAACAATGCTAAATATGACCCCAAAGCCATTATTGCCAATCTCACGTGTAAAAAACCAGATCAGCACTTTAAGCCTTACTTGAAACAGCACCTTCCCAAACGTTTGCACTATGCCAACAACAGAAGAATTGAGGATATCCATTTATTGGTGGAACGCAGATGGCATGTTGCAAGGAAACCTTTGGATGTTTATAAGAAACCATCAGGAAAATGCTTTTTCCAGGGAGACCACGGATTTGATAACAAGGTCAACAGCATGCAGACTGTTTTTGTAGGTTATGGCCCAACATTTAAGTACAAGACTAAAGTGCCTCCATTTGAAAACATTGAACTTTACAATGTTATGTGTGATCTCCTGGGATTGAAGCCAGCTCCTAATAATGGGACCCATGGAAGTTTGAATCATCTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATCCAGGGATTATGTACCTTCAGTCTGATTTTGACCTGGGCTGCACTTGTGATGATAAGGTAGAGCCAAAGAACAAGTTGGATGAACTCAACAAACGGCTTCATACAAAAGGGTCTACAGAAGAGAGACACCTCCTCTATGGGCGACCTGCAGTGCTTTATCGGACTAGATATGATATCTTATATCACACTGACTTTGAAAGTGGTTATAGTGAAATATTCCTAATGCCACTCTGGACATCATATACTGTTTCCAAACAGGCTGAGGTTTCCAGCGTTCCTGACCATCTGACCAGTTGCGTCCGGCCTGATGTCCGTGTTTCTCCGAGTTTCAGTCAGAACTGTTTGGCCTACAAAAATGATAAGCAGATGTCCTACGGATTCCTCTTTCCTCCTTATCTGAGCTCTTCACCAGAGGCTAAATATGATGCATTCCTTGTAACCAATATGGTTCCAATGTATCCTGCTTTCAAACGGGTCTGGAATTATTTCCAAAGGGTATTGGTGAAGAAATATGCTTCGGAAAGAAATGGAGTTAACGTGATAAGTGGACCAATCTTCGACTATGACTATGATGGCTTACATGACACAGAAGACAAAATAAAACAGTACGTGGAAGGCAGTTCCATTCCTGTTCCAACTCACTACTACAGCATCATCACCAGCTGTCTGGATTTCACTCAGCCTGCCGACAAGTGTGACGGCCCTCTCTCTGTGTCCTCCTTCATCCTGCCTCACCGGCCTGACAACGAGGAGAGCTGCAATAGCTCAGAGGACGAATCAAAATGGGTAGAAGAACTCATGAAGATGCACACAGCTAGGGTGCGTGACATTGAACATCTCACCAGCCTGGACTTCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACCTGCATACATATGAGAGCGAGATTTAACTTTCTGAGCATCTGCAGTACAGTCTTATCAACTGGTTGTATATTTTTATATTGTTTTTGTATTTATTAATTTGAAACCAGGACATTAAAAATGTTAGTATTTTAATCCTGTACCAAATCTGACATATTATGCCTGAATGACTCCACTGTTTTTCTCTAATGCTTGATTTAGGTAGCCTTGTGTTCTGAGTAGAGCTTGTAATAAATACTGCAGCTTGAGTTTTTAGTGGAAGCTTCTAAATGGTGCTGCAGATTTGATATTTGCATTGAGGAAATATTAATTTTCCAATGCACAGTTGCCACATTTAGTCCTGTACTGTATGGAAACACTGATTTTGTAAAGTTGCCTTTATTTGCTGTTAACTGTTAACTATGACAGATATATTTAAGCCTTATAAACCAATCTTAAACATAATAAATCACACATTCAGTTTTTTCTGGTAAAAAAAAAAAAAAAAAORF Start: ATG at 60ORF Stop: TAA at 2649SEQ ID NO: 278863 aaMW at 99016.6 kDNOV29b,MARRSSFQSCQIISLFTFAVGVNICLGFTAHRIKRAEGWEEGPPTVLSDSPWTNISGSCKGRCFELQCG93541-01Protein SequenceEAGPPDCRCDNLCKSYTSCCHDFDELCLKTARAWECTKDRCGEVRNEENACHCSEDCLARGDCCTNYQVVCKGESHWVDDDCEEIKAAECPAGFVRPPLIIFSVDGFRASYMKKGSKVMPNIEKLRSCGTHSPYMRPVYPTKTFPNLYTLATGLYPESHGIVGNSMYDPVFDATFHLRGREKFNHRWWGGQPLWITATKQGVKAGTFFWSVVIPHERRILTILQWLTLPDHERPSVYAFYSEQPDFSGHKYGPFGPEMTNPLREIDKIVGQLMDGLKQLKLHRCVNVIFVGDHGMEDVTCDRTEFLSNYLTNVDDITLVPGTLGRIRSKFSNNAKYDPKAIIANLTCKKPDQHFKPYLKQHLPKRLHYANNRRIEDIHLLVERRWHVARKPLDVYKKPSGKCFFQGDHGFDNKVNSMQTVFVGYGPTFKYKTKVPPFENIELYNVMCDLLGLKPAPNNGTHGSLNHLLRTNTFRPTMPEEVTRPNYPGIMYLQSDPDLGCTCDDKVEPKNKLDELNKRLHTKGSTEERHLLYGRPAVLYRTRYDILYHTDFESGYSEIFLMPLWTSYTVSKQAEVSSVPDHLTSCVRPDVRVSPSFSQNCLAYKNDKQMSYGFLFPPYLSSSPEAKYDAFLVTNMVPMYPAFKRVWNYFQRVLVKKYASERNGVNVISGPIFDYDYDGLHDTEDKIKQYVEGSSIPVPTHYYSIITSCLDFTQPADKCDGPLSVSSFILPHRPDNEESCNSSEDESKWVEELMKMHTARVRDIEHLTSLDFFRKTSRSYPEILTLKTYLHTYESEISEQ ID NO: 2791080 bpNOV29c,CGTGAAGGCAAAGAGAACACGCTGCAAAAGGCTTCCAAGAATCCTCGACATGGCAAGAAGGAGCTCGCG93541-02DNA SequenceTTCCAGTCGTGTCAGATAATATCCCTGTTCACTTTTGCCGTTGGAGTCAATATCTGCTTAGGATTCACTGCACATCGAATTAAGAGAGCAGAAGGATGGGAGGAAGGTCCTCCTACAGTGCTATCAGACTCCCCCTGGACCAACATCTCCGGATCTTGCAAGGGCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGCCATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGGCTGGGAGTGTACTAAGGACAGATGTGGAGAAGTCAGAAATGAAGAAAATGCCTGTCACTGCTCAGAGGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAGAGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATCATCTTCTCCGTGGATGGCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACCTGCATACATATGAGAGCGAGATTTAACTTTCTGAGCATCTGCAGTACAGTCTTATCAACTGGTTGTATATTTTTATATTGTTTTTGTATTTATTAATTTGAAACCAGGACATTAAAAATGTTAGTATTTTAATCCTGTACCAAATCTGACATATTATGCCTGAATGACTCCACTGTTTTTCTCTAATGCTTGATTTAGGTAGCCTTGTGTTCTGAGTAGAGCTTGTAATAAATACTGCAGCTTGAGAAAAAGTGGAAGCTTCTAAATGGTGCTGCAGATTTGATATTTGCATTGAGGAAATATTAATTTTCCAATGCACAGTTGCCACATTTAGTCCTGTACTGTATGGAAACACTGATTTTGTAAAGTTGCCTTTATTTGCTGTTAACTGTTAACTATGACAGATATATTTAAGCCTTATAAACCAATCTTAAACATAATAAATCACACATTCAGTTTTORF Start: ATG at 50ORF Stop: TAA at 644SEQ ID NO: 280198 aaMW at 22254.8 kDNOV29c,MARRSSFQSCQIISLFTFAVGVNICLGFTAHRIKRAEGWEEGPPTVLSDSPWTNISGSCKGRCFELQCG93541-02Protein SequenceEAGPPDCRCDNLCKSYTSCCHDFDELCLKTARGWECTKDRCGEVRNEENACHCSEDCLARGDCCTNYQVVCKGESHWVDDDCEEIKAAECPAGFVRPPLIIFSVDGFRKTSRSYPEILTLKTYLHTYESEISEQ ID NO: 2812511 bpNOV29d,ACCATGGTAAGCGCTATTGTTTTATATGTGCTTTTGGCGGCGGCGGCGCATTCTGCCTTTGCGGACTCG93541-03DNA SequenceCCCCCTGGACCAACATCTCCGGATCTTGCAAGGGCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGCCATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGGCTGGGAGTGTACTAAGGACAGATGTGGAGAAGTCAGAAATGAAGAAAATGCCTGTCACTGCTCAGACGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAGAGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATCATCTTCTCCGTGGATGGCTTCCGTGCATCATACATGAAGAAAGGCAGCAAAGTCATGCCTAATATTGAAAAACTAAGGTCTTGTGGCACACACTCTCCCTACATGAGGCCGGTGTACCCAACTAAAACCTTTCCTAACTTATACACTTTGGCCACTGGGCTATATCCAGAATCACATGGAATTGTTGGCAATTCAATGTATGATCCTGTATTTGATGCCACTTTTCATCTGCGAGGGCGAGAGAAATTTAATCATAGATGGTGGGGAGGTCAACCGCTATGGATTACAGCCACCAAGCAAGGGGTGAAAGCTGGAACATTCTTTTGGTCTGTTGTCATCCCTCACGAGCGGAGAATATTAACCATATTGCAGTGGCTCACCCTGCCAGATCATGAGAGGCCTTCGGTCTATGCCTTCTATTCTGAGCAACCTGATTTCTCTGGACACAAATATGGCCCTTTCGGCCCTGAGATGACAAATCCTCTGAGGGAAATCGACAAAATTGTGGGGCAATTAATGGATGGACTGAAACAACTAAAACTGCATCGGTGTGTCAACGTCATCTTTGTCGGAGACCATGGAATGGAAGATGTCACATGTGATAGAACTGAGTTCTTGAGTAATTACCTAACTAATGTGGATGATATTACTTTAGTGCCTGGAACTCTAGGAAGAATTCGATCCAAATTTAGCAACAATGCTAAATATGACCCCAAAGCCATTATTGCCAATCTCACGTGTAAAAAACCAGATCAGCACTTTAAGCCTTACTTGAAACAGCACCTTCCCAAACGTTTGCACTATGCCAACAACAGAAGAATTGAGGATATCCATTTATTGGTGGAACGCAGATGGCATGTTGCAAGGAAACCTTTGGATGTTTATAAGAAACCATCAGGAAAATGCTTTTTCCAGGGAGACCACGGATTTGATAACAAGGTCAACAGCATGCAGACTGTTTTTGTAGGTTATGGCCCAACATTTAAGTACAAGACTAAAGTGCCTCCATTTGAAAACATTGAACTTTACAATGTTATGTGTGATCTCCTGGGATTGAAGCCAGCTCCTAATAATGGGACCCACGGAAGTTTGAATCATCTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATCCAGGGATTATGTACCTTCAGTCTGATTTTGACCTGGGCTGCACTTGTGATGATAAGGTAGAGCCAAAGAACAAGTTGGATGAACTCAACAAACGGCTTCATACAAAAGGGTCTACAGAAGAGAGACACCTCCTCTATGGGCGACCTGCAGTGCTTTATCGGACTAGATATGATATCTTATATCACACTGACTTTGAAAGTGGTTATAGTGAAATATTCCTAATGCCACTCTGGACATCATATACTGTTTCCAAACAGGCTGAGGTTTCCAGCGTTCCTGACCATCTGACCAGTTGCGTCCGGCCTGATGTCCGTGTTTCTCCGAGTTTCAGTCAGAACTGTTTGGCCTACAAAAATGATAAGCAGATGTCCTACGGATTCCTCTTTCCTCCTTATCTGAGCTCTTCACCAGAGGCTAAATATGATGCATTCCTTGTAACCAATATGGTTCCAATGTATCCTGCTTTCAAACGGGTCTGGAATTATTTCCAAAGGGTATTGGTGAAGAAATATGCTTCGGAAAGAAATGGAGTTAACGTGATAAGTGGACCAATCTTCGACTATGACTATGATGGCTTACATGACACAGAAGACAAAATAAAACAGTACGTGGAAGGCAGTTCCATTCCTGTTCCAACTCACTACTACAGCATCATCACCAGCTGTCTGGATTTTACTCAGCCTGCCGACAAGTGTGACGGCCCTCTCTCTGTGTCCTCCTTCATCCTGCCTCACCGGCCTGACAACGAGGAGAGCTGCAATAGCTCAGAGGACGAATCAAAATGGGTAGAAGAACTCATGAAGATGCACACAGCTAGGGTGCGTGACATTGAACATCTCACCAGCCTGGACTTCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACTTGCATACATATGAGAGCGAGATTTAAORF Start: at 10ORF Stop: at 835SEQ ID NO: 282278 aaMW at 31297.3 kDNOV29d,TMVSAIVLYVLLAAAAHSAFADSPWTNISGSCKGRCFELQEAGPPDCRCDNLCKSYTSCCHDFDELCCG93541-03Protein SequenceLKTARGWECTKDRCGEVRNEENACHCSEDCLARGDCCTNYQVVCKGESHWVDDDCEEIKAAECPAGFVRPPLIIFSVDGFRASYMKKGSKVMPNIEKLRSCGTHSPYMRPVYPTKTFPNLYTLATGLYPESHGIVGNSMYDPVFDATFHLRGREKFNHRWWGGQPLWITATKQGVKAGTFFWSVVIPHERRILTILQWLTLPDHERPSVYASEQ ID NO: 2832596 bpNOV29e,CCACCATGGCAAGGAGGAGCTCGTTCCAGTCGTGTCAGATAATATCCCTGTTCACTTTTGCCGTTGGCG93541-04DNA SequenceAGTCAATATCTGCTTAGGATTCACTGCACATCGAATTAAGAGAGCAGAAGGATGGGAGGAAGGTCCTCCTACAGTGCTATCAGACTCCCCCTGGACCAACATCTCCGGATCTTGCAAGGGCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGCCATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGGCTGGGAGTGTACTAAGGACAGATGTGGAGAAGTCAGAAATGAAGAAAATGCCTGTCACTGCTCAGAGGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAGAGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATCATCTTCTCCGTGGATGGCTTCCGTGCATCATACATGAAGAAAGGCAGCAAAGTCATGCCTAATATTGAAAAACTAAGGTCTTGTGGCACACACTCTCCCTACATGAGGCCGGTGTACCCAACTAAAACCTTTCCTAACTTATACACTTTGGCCACTGGGCTATATCCAGAATCACATGGAATTGTTGGCAATTCAATGTATGATCCTGTATTTGATGCCACTTTTCATCTGCGAGGGCGAGAGAAATTTAATCATAGATGGTGGGGAGGTCAACCGCTATGGATTACAGCCACCAAGCAAGGGGTGAAAGCTGGAACATTCTTTTGGTCTGTTGTCATCCCTCACGAGCGGAGAATATTAACCATATTGCAGTGGCTCACCCTGCCAGATCATGAGAGGCCTTCGGTCTATGCCTTCTATTCTGAGCAACCTGATTTCTCTGGACACAAATATGGCCCTTTCGGCCCTGAGATGACAAATCCTCTGAGGGAAATCGACAAAATTGTGGGGCAATTAATGGATGGACTGAAACAACTAAAACTGCATCGGTGTGTCAACGTCATCTTTGTCGGAGACCATGGAATGGAAGATGTCACATGTGATAGAACTGAGTTCTTGAGTAATTACCTAACTAATGTGGATGATATTACTTTAGTGCCTGGAACTCTAGGAAGAATTCGATCCAAATTTAGCAACAATGCTAAATATGACCCCAAAGCCATTATTGCCAATCTCACGTGTAAAAAACCAGATCAGCACTTTAAGCCTTACTTGAAACAGCACCTTCCCAAACGTTTGCACTATGCCAACAACAGAAGAATTGAGGATATCCATTTATTGGTGGAACGCAGATGGCATGTTGCAAGGAAACCTTTGGATGTTTATAAGAAACCATCAGGAAAATGCTTTTTCCAGGGAGACCACGGATTTGATAACAAGGTCAACAGCATGCAGACTGTTTTTGTAGGTTATGGCCCAACATTTAAGTACAAGACTAAAGTGCCTCCATTTGAAAACATTGAACTTTACAATGTTATGTGTGATCTCCTGGGATTGAAGCCAGCTCCTAATAATGGGACCCACGGAAGTTTGAATCATCTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATCCAGGGATTATGTACCTTCAGTCTGATTTTGACCTGGGCTGCACTTGTGATGATAAGGTAGAGCCAAAGAACAAGTTGGATGAACTCAACAAACGGCTTCATACAAAAGGGTCTACAGAAGAGAGACACCTCCTCTATGGGCGACCTGCAGTGCTTTATCGGACTAGATATGATATCTTATATCACACTGACTTTGAAAGTGGTTATAGTGAAATATTCCTAATGCCACTCTGGACATCATATACTGTTTCCAAACAGGCTGAGGTTTCCAGCGTTCCTGACCATCTGACCAGTTGCGTCCGGCCTGATGTCCGTGTTTCTCCGAGTTTCAGTCAGAACTGTTTGCCCTACAAAAATGATAAGCAGATGTCCTACGGATTCCTCTTTCCTCCTTATCTGAGCTCTTCACCAGAGGCTAAATATGATGCATTCCTTGTAACCAATATGGTTCCAATGTATCCTGCTTTCAAACGGGTCTGGAATTATTTCCAAAGGGTATTGGTGAAGAAATATGCTTCGGAAAGAAATGGAGTTAACGTGATAAGTGGACCAATCTTCGACTATGACTATGATGGCTTACATGACACAGAAGACAAAATAAAACAGTACGTGGAAGGCAGTTCCATTCCTGTTCCAACTCACTACTACAGCATCATCACCAGCTGTCTGGATTTCACTCAGCCTGCCGACAAGTGTGACGGCCCTCTCTCTGTGTCCTCCTTCATCCTGCCTCACCGGCCTGACAACGAGGAGAGCTGCAATAGCTCAGAGGACGAATCAAAATGGGTAGAAGAACTCATGAAGATGCACACAGCTAGGGTGCGTGACATTGAACATCTCACCAGCCTGGACTTCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACTTGCATACATATGGAGCGAGATTTAAORF Start: at 3ORF Stop: at 2595SEQ ID NO: 284864 aaMW at 99076.7 kDNOV29e,TMARRSSFQSCQIISLFTFAVGVNICLGFTAHRIKRAEGWEEGPPTVLSDSPWTNISGSCKGRCFELCG93541-04Protein SequenceQEAGPPDCRCDNLCKSYTSCCHDFDELCLKTARGWECTKDRCGEVRNEENACHCSEDCLARGDCCTNYQVVCKGESHWVDDDCEEIKAAECPAGFVRPPLIIFSVDGFRASYMKKGSKVMPNIEKLRSCGTHSPYMRPVYPTKTFPNLYTLATGLYPESHGIVGNSMYDPVFDATFHLRGREKFNHRWWGGQPLWITATKQGVKAGTFFWSVVIPHERRILTILQWLTLPDHERPSVYAFYSEQPDFSGHKYGPFGPEMTNPLREIDKIVGQLMDGLKQLKLHRCVNVIFVGDHGMEDVTCDRTEFLSNYLTNVDDITLVPGTLGRIRSKFSNNAKYDPKAIIANLTCKKPDQHFKPYLKQHLPKRLHYANNRRIEDIHLLVERRWHVARKPLDVYKKPSGKCFFQGDHGFDNKVNSMQTVFVGYGPTFKYKTKVPPFENIELYNVMCDLLGLKPAPNNGTHGSLNHLLRTNTFRPTMPEEVTRPNYPGIMYLQSDFDLGCTCDDKVEPKNKLDELNKRLHTKGSTEERHLLYGRPAVLYRTRYDILYHTDFESGYSEIFLMPLWTSYTVSKQAEVSSVPDHLTSCVRPDVRVSPSFSQNCLAYKNDKQMSYGFLFPPYLSSSPEAKYDAFLVTNMVPMYPAFKRVWNYFQRVLVKKYASERNGVNVISGPIFDYDYDGLHDTEDKIKQYVEGSSIPVPTHYYSIITSCLDFTQPADKCDGPLSVSSFILPHRPDNEESCNSSEDESKWVEELMKMHTARVRDIEHLTSLDFFRKTSRSYPEILTLKTYLHTYGARFSEQ ID NO: 2852644 bpNOV29f,CCACCATGGCAAGGAGGAGCTCGTTCCAGTCGTGTCAGATAATATCCCTGTTCACTTTTGCCGTTGGCG93541-06DNA SequenceAGTCAATATCTGCTTAGGATTCACTGCACATCGAATTAAGAGAGCAGAAGGATGGGAGGAAGGTCCTCCTACAGTGCTATCAGACTCCCCCTGGACCAACATCTCCGGATCTTGCAAGGGCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGCCATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGGCTGGGAGTGTACTAAGGACAGATGTGGAGAAGTCAGAAATGAAGAAAATGCCTGTCACTGCTCAGAGGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAGAGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATCATCTTCTCCGTGGATGGCTTCCGTGCATCATACATGAAGAAAGGCAGCAAAGTCATGCCTAATATTGAAAAACTAAGGTCTTGTGGCACACACTCTCCCTACATGAGGCCGGTGTACCCAACTAAAACCTTTCCTAACTTATACACTTTGGCCACTGGGCTATATCCAGAATCACATGGAATTGTTGGCAATTCAATGTATGATCCTGTATTTGATGCCACTTTTCATCTGCGAGGGCGAGAGAAATTTAATCATAGATGGTGGGGAGGTCAACCGCTATGGATTACAGCCACCAAGCAAGGGGTGAAAGCTGGAACATTCTTTTGGTCTGTTGTCATCCCTCACGAGCGGAGAATATTAACCATATTGCAGTGGCTCACCCTGCCAGATCATGAGAGGCCTTCGGTCTATGCCTTCTATTCTGAGCAACCTGATTTCTCTGGACACAAATATGGCCCTTTCGGCCCTGAGATGACAAATCCTCTGAGGGAAATCGACAAAATTGTGGGGCAATTAATGGATGGACTGAAACAACTAAAACTGCATCGGTGTGTCAACGTCATCTTTGTCGGAGACCATGGAATGGAAGATGTCACATGTGATAGAACTGAGTTCTTGAGTAATTACCTAACTAATGTGGATGATATTACTTTAGTGCCTGGAACTCTAGGAAGAATTCGATCCAAATTTAGCAACAATGCTAAATATGACCCCAAAGCCATTATTGCCAATCTCACGTGTAAAAAACCAGATCAGCACTTTAAGCCTTACTTGAAACAGCACCTTCCCAAACGTTTGCACTATGCCAACAACAGAAGAATTGAGGATATCCATTTATTGGTGGAACGCAGATGGCATGTTGCAAGGAAACCTTTGGATGTTTATAAGAAACCATCAGGAAAATGCTTTTTCCAGGGAGACCACGGATTTGATAACAAGGTCAACAGCATGCAGACTGTTTTTGTAGGTTATGGCCCAACATTTAAGTACAAGACTAAAGTGCCTCCATTTGAAAACATTGAACTTTACAATGTTATGTGTGATCTCCTGGGATTGAAGCCAGCTCCTAATAATGGGACCCACGGAAGTTTGAATCATCTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATCCAGGGATTATGTACCTTCAGTCTGATTTTGACCTGGGCTGCACTTGTGATGATAAGGTAGAGCCAAAGAACAAGTTGGATGAACTCAACAAACGGCTTCATACAAAAGGGTCTACAGAAGAGAGACACCTCCTCTATGGGCGACCTGCAGTGCTTTATCGGACTAGATATGATATCTTATATCACACTGACTTTGAAAGTGGTTATAGTGAAATATTCCTAATGCCACTCTGGACATCATATACTGTTTCCAAACAGGCTGAGGTTTCCAGCGTTCCTGACCATCTGACCAGTTGCGTCCGGCCTGATGTCCGTGTTTCTCCGAGTTTCAGTCAGAACTGTTTGGCCTACAAAAATGATAAGCAGATGTCCTACGGATTCCTCTTTCCTCCTTATCTGAGCTCTTCACCAGAGGCTAAATATGATGCATTCCTTGTAACCAATATGGTTCCAATGTATCCTGCTTTCAAACGGGTCTGGAATTATTTCCAAAGGGTATTGGTGAAGAAATATGCTTCGGAAAGAAATGGAGTTAACGTGATAAGTGGACCAATCTTCGACTATGACTATGATGGCTTACATGACACAGAAGACAAAATAAAACAGTACGTGGAAGGCAGTTCCATTCCTGTTCCAACTCACTACTACAGCATCATCACCAGCTGTCTGGATTTTACTCAGCCTGCCGACAAGTGTGACGGCCCTCTCTCTGTGTCCTCCTTCATCCTGCCTCACCGGCCTGACAACGAGGAGAGCTGCAATAGCTCAGAGGACGAATCAAAATGGGTAGAAGAACTCATGAAGATGCACACAGCTAGGGTGCGTGACATTGAACATCTCACCAGCCTGGACTTCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACTTGCATACATATGAGAGCGAGATTCACCATCACCACCATCACTAAGCGGCGTCGAGTCTAGAGGGCCGTTTAACORF Start: at 3ORF Stop: TAA at 2613SEQ ID NO: 286870 aaMW at 99926.5 kDNOV29f,TMARRSSFQSCQIISLFTFAVGVNICLGFTAHRIKRAEGWEEGPPTVLSDSPWTNISGSCKGRCFELCG93541-06ProteinQEAGPPDCRCDNLCKSYTSCCHDFDELCLKTARGWECTKDRCGEVRNEENACHCSEDCLARGDCCTNSequenceYQVVCKGESHWVDDDCEEIKAAECPAGFVRPPLIIFSVDGFRASYMKKGSKVMPNIEKLRSCGTHSPYMRPVYPTKTFPNLYTLATGLYPESHGIVGNSMYDPVFDATFHLRGREKFNHRWWGGQPLWITATKQGVKAGTFFWSVVIPHERRILTILQWLTLPDHERPSVYAFYSEQPDFSGHKYGPFGPEMTNPLREIDKIVGQLMDGLKQLKLHRCVNVIFVGDHGMEDVTCDRTEFLSNYLTNVDDITLVPGTLGRIRSKFSNNAKYDPKAIIANLTCKKPDQHFKPYLKQHLPKRLHYANNRRIEDIHLLVERRWHVARKPLDVYKKPSGKCFFQGDHGFDNKVNSMQTVFVGYGPTFKYKTKVPPFENIELYNVMCDLLGLKPAPNNGTHGSLNHLLRTNTFRPTMPEEVTRPNYPGIMYLQSDFDLGCTCDDKVEPKNKLDELNKRLHTKGSTEERHLLYGRPAVLYRTRYDILYHTDFESGYSEIFLMPLWTSYTVSKQAEVSSVPDHLTSCVRPDVRVSPSFSQNCLAYKNDKQMSYGFLFPPYLSSSPEAKYDAFLVTNMVPMYPAFKRVWNYFQRVLVKKYASERNGVNVISGPIFDYDYDGLHDTEDKIKQYVEGSSIPVPTHYYSIITSCLDFTQPADKCDGPLSVSSFILPHRPDNEESCNSSEDESKWVEELMKMHTARVRDIEHLTSLDFFRKTSRSYPEILTLKTYLHTYESEIHHHHHH


[0510] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 29B.
159TABLE 29BComparison of NOV29a against NOV29b through NOV29f.NOV29a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV29b10 . . . 871861/862 (99%) 2 . . . 863861/862 (99%)NOV29c10 . . . 202179/193 (92%) 2 . . . 189182/193 (93%)NOV29d53 . . . 313257/261 (98%)18 . . . 278259/261 (98%)NOV29e10 . . . 867858/858 (100%) 3 . . . 860858/858 (100%)NOV29f10 . . . 871862/862 (100%) 3 . . . 864862/862 (100%)


[0511] Further analysis of the NOV29a protein yielded the following properties shown in Table 29C.
160TABLE 29CProtein Sequence Properties NOV29aSignalP analysis:Cleavage site between residues 36 and 37PSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 11; pos.chg 1; neg.chg 0H-region: length 0; peak value −6.81PSG score: −11.21GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −4.77possible cleavage site: between 35 and 36>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 1INTEGRAL Likelihood = −5.04 Transmembrane 20-36PERIPHERAL Likelihood = 4.24 (at 163)ALOM score: −5.04 (number of TMSs: 1)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 27Charge difference: −5.5 C(0.5) − N(6.0)N >= C: N-terminal side will be inside>>> membrane topology: type 2 (cytoplasmic tail 1 to 20)MITDISC: discrimination of mitochondrial targeting seqR content:4Hyd Moment(75):2.28Hyd Moment(95):3.41G content:3D/E content:1S/T content:7Score: −1.51Gavel: prediction of cleavage sites for mitochondrial preseqR-2 motif at 53 KRA|EGNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 11.9%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 55.5COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):34.8%: mitochondrial26.1%: cytoplasmic17.4%: Golgi 4.3%: vacuolar 4.3%: extracellular, including cell wall 4.3%: nuclear 4.3%: vesicles of secretory system 4.3%: endoplasmic reticulum>> prediction for CG93541-05 is mit (k = 23)


[0512] A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.
161TABLE 29DGeneseq Results for NOV29aNOV29aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAY71988Human teratocarcinoma10 . . . 871861/862 (99%)0.0autotaxin - Homo sapiens, 2 . . . 863861/862 (99%)863 aa. [WO200068386-A1,16-NOV-2000]AAY71991Human autotaxin protein -19 . . . 871852/853 (99%)0.0Homo sapiens, 859 aa. 7 . . . 859853/853 (99%)[WO200068386-A1,16-NOV-2000]ABG32516Rat lysophospholipase D -10 . . . 871810/862 (93%)0.0Rattus norvegicus, 862 aa. 2 . . . 862839/862 (96%)[WO200253569-A1,11-JUL-2002]AAY71999Rat autotaxin variant (S289T) -19 . . . 871807/853 (94%)0.0Rattus sp, 858 aa. 7 . . . 858835/853 (97%)[WO200068386-A1,16-NOV-2000]AAY71997Rat autotaxin variant (S236T) -19 . . . 871807/853 (94%)0.0Rattus sp, 858 aa. 7 . . . 858835/853 (97%)[WO200068386-A1,16-NOV-2000]


[0513] In a BLAST search of public sequence datbases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.
162TABLE 29EPublic BLASTP Results for NOV29aNOV29aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ13822Ectonucleotide10 . . . 871 862/862 (100%)0.0pyrophosphatase/ 2 . . . 863 862/862 (100%)phosphodiesterase 2 (E-NPP2) (Phosphodiesterase I/nucleotide pyrophosphatase2) (Phosphodiesterase Ialpha) (PD-Ialpha)(Autotaxin) [Includes:Alkaline phosphodiesterase I(EC 3.1.4.1); Nucleotidepyrophosphatase (EC 3.6.1.9)(NPPase)] - Homo sapiens(Human), 863 aa.CAC18956Sequence 8 from Patent19 . . . 871852/853 (99%)0.0WO0068386 - Homo sapiens 7 . . . 859853/853 (99%)(Human), 859 aa.Q9R1E6Ectonucleotide10 . . . 871813/862 (94%)0.0pyrophosphatase/ 2 . . . 862839/862 (97%)phosphodiesterase 2 (E-NPP2) (Phosphodiesterase I/nucleotide pyrophosphatase2) (Phosphodiesterase Ialpha) (PD-Ialpha) [Includes:Alkaline phosphodiesterase I(EC 3.1.4.1); Nucleotidepyrophosphatase (EC 3.6.1.9)(NPPase)] - Mus musculusMouse), 862 aa.CAC18955Sequence 1 from Patent19 . . . 871806/853 (94%)0.0WO0068386 - Rattus sp, 858 7 . . . 858835/853 (97%)Q64610Ectonucleotide10 . . . 871794/887 (89%)0.0pyrophosphatase/phosphodies 2 . . . 885825/887 (92%)terase 2 (E-NPP 2)(PhosphodiesteraseI/nucleotide pyrophosphatase2) (Phosphodiesterase Ialpha) (PD-Ialpha) [Includes:Alkaline phosphodiesterase I(EC 3.1.4.1); Nucleotidepyrophosphatase (EC 3.6.1.9)(NPPase)] - Rattusnorvegicus (Rat), 885 aa.


[0514] PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29F.
163TABLE 29FDomain Analysis of NOV29aIdentities/NOV29a MatchSimilarities forExpectPfam DomainRegionthe Matched RegionvalueSomatomedin_B 63 . . . 107 23/47 (49%)7.4e−19  40/47 (85%)Somatomedin_B108 . . . 151 21/47 (45%)7.6e−17  41/47 (87%)Phosphodiest153 . . . 510177/416 (43%)8.4e−199353/416 (85%)



Example 30

[0515] The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30A.
164TABLE 30ANOV30 Sequence AnalysisSEQ ID NO: 287904 bpNOV30a,CACCGGATCCACTTCCGGGAACGCCGGGGAACCGCAGTAGCCGCCTGCTAGTGGCGCTGCTAGCCGGCG93735-05DNA SequenceCCGGCGCAGGCTGCCGAGCGGGTGAGCGCGCAGGCCAGGCCAAAGCCCTGGTACCCGCGCGGTGCGGGCCTCAGTCTGCGGCCATGGGGGCGTCCGCGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAGGAGAAATGTGTGTAACTATTAATAGTAAGATGGGCAAACCTCCTAGTCCTTGCATTTAGGTCGACGCGTORF Start: at 64ORF Stop: TGA at 832SEQ ID NO: 288256 aaMW at 28269.2 kDNOV30a,PAGAGCRAGERAGQAKALVPARCGPQSAAMGASARLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSCG93735-05Protein SequenceGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 2891021 bpNOV30b,ACTTCCGGGAACGCCGGGGAACCGCAGTAGCCGCCTGCTAGTGGCGCTGCTAGCCGGCCGGCGCAGGCG93735-01DNA SequenceCTGCCGAGCGGGTGAGCGCGCAGGCCAGGCCAAAGCCCTGGTACCCGCGCGGTGCGGGCCTCAGTCTGCGGCCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCCCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCCGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCCAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATTATGTCACGACTCGGCTGGCCCTTCATGAGCTGAAAAACCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGTTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAGGAGAAATGTGTGTAACTATTAATAGTAAGATGGGCAAACCTCCTAGTCCTTGCATTTAGAAGCTGCTTTTCCTAAGACTTCTAGTATGTATGAATTCTTTGAAAATTATATTACTTTTATTTCTACTGATTTTATTTTGGATACTAAGGATGTGCCAAATGATTCGGATACTAAGATGCATCGTTTGAAATCATCTORF Start: ATG at 141ORF Stop: TGA at 822SEQ ID NO: 290227 aaMW at 25638.2 kDNOV30b,MGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSRGDLLRDNMLRGTEIGVLAQAFIDQGKLIPCG93735-01Protein SequenceDYVTTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 291707 bpNOV30c,CCACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGG171094650 DNASequenceCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCACACCATCACCACCATCACTGAORF Start: at 3ORF Stop: TGA at 705SEQ ID NO: 292234 aaMW at 26475.1 kDNOV30c,TMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLI171094650Protein SequencePDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPHHHHHHSEQ ID NO: 293706 bpNOV30d,CACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGC173172155 DNASequenceACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCACACCATCACCACCATCACTGAORF Start: at 2ORF Stop: TGA at 704SEQ ID NO: 294234 aaMW at 26475.1 kDNOV30d,TMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLI173172155PDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPAProtein SequenceSGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPHHHHHHSEQ ID NO: 295730 bpNOV30e,GGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCG195803542 DNASequenceTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCACACCATCACCACCATCACTGAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 2ORF Stop: TGA at 695SEQ ID NO: 296231 aaMW at 26185.7 kDNOV30e,ASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDD195803542Protein SequenceVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPHHHHHHSEQ ID NO: 297688 bpNOV30f,CACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGC171093359 DNASequenceACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAORF Start: at 2ORF Stop: TGA at 686SEQ ID NO: 298228 aaMW at 25652.2 kDNOV30f,TMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLI171093359ProteinPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASequenceSGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 299688 bpNOV30g,CACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGC171065502 DNASequenceACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAORF Start: at 2ORF Stop: TGA at 686SEQ ID NO: 300228 aaMW at 25652.2 kDNOV30g,TMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLI171065502Protein SequencePDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 301688 bpNOV30h,CACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGC171093533 DNASequenceACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAORF Start: at 2ORF Stop: TGA at 686SEQ ID NO: 302228 aaMW at 25652.2 kDNOV30h,TMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLI171093533Protein SequencePDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGAPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 303710 bpNOV30i,CCACCATGGGCCACCATCACCACCATCACGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGG171094630DNA SequenceGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAORF Start: at 3ORF Stop: TGA at 708SEQ ID NO: 304235 aaMW at 26532.1 kDNOV30i,TMGHHHHHHGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAF171094630ProteinIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTSequenceARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 305904 bpNOV30j,CACCGGATCCACTTCCGGGAACGCCGGGGAACCGCAGTAGCCGCCTGCTAGTGGCGCTGCTAGCCGG278391231DNA SequenceCCGGCGCAGGCTGCCGAGCGGGTGAGCGCGCAGGCCAGGCCAAAGCCCTGGTACCCGCGCGGTGCGGGCCTCAGTCTGCGGCCATGGGGGCGTCCGCGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAGGAGAAATGTGTGTAACTATTAATAGTAAGATGGGCAAACCTCCTAGTCCTTGCATTTAGGTCGACGCGTORF Start: at 64ORF Stop: TGA at 832SEQ ID NO: 306256 aaMW at 28269.2 kDNOV30j,PAGAGCRAGERAGQAKALVPARCGPQSAAMGASARLLRAVIMGAPGSGKGTVSSRITTHFELKHLSS278391231ProteinGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRASequenceYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 307904 bpNOV30k,CACCGGATCCACTTCCGGGAACGCCGGGGAACCGCAGTAGCCGCCTGCTAGTGGCGCTGCTAGCCGG283291704 DNASequenceCCGGCGCAGGCTGCCGAGCGGGTGAGCGCGCAGGCCAGGCCAAAGCCCTGGTACCCGCGCGGTGCGGGCCTCAGTCTGCGGCCATGGGGGCGTCCGCGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTCATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAGGAGAAATGTGTGTAACTATTAATAGTAAGATGGGCAAACCTCCTAGTCCTTGCATTTAGTCTAGACTAGORF Start: at 64ORF Stop: TGA at 832SEQ ID NO: 308256 aaMW at 28269.2 kDNOV30k,PAGAGCRAGERAGQAKALVPARCGPQSAAMGASARLLRAVIMGAPGSGKGTVSSRITTHFELKHLSS283291704Protein SequenceGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 309688 bpNOV30l,CACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCCG93735-02DNA SequenceACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAORF Start: ATG at 5ORF Stop: TGA at 686SEQ ID NO: 310227 aaMW at 25551.1 kDNOV30l,MGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLIPCG93735-02ProteinDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASSequenceGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO:311709 bpNOV30m,CCACCATGGGCCACCATCACCACCATCACGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGCG93735-03DNA SequenceGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATAORF Start: at 3ORF Stop: at 708SEQ ID NO: 312235 aaMW at 26532.1 kDNOV30m,TMGHHHHHHGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKACG93735-03Protein SequenceFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPSEQ ID NO: 313707 bpNOV30n,CCACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCG93735-04DNA SequenceCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCACACCATCACCACCATCACTGAORF Start: at 3ORF Stop: TGA at 705SEQ ID NO: 314234 aaMW at 26475.1 kDNOV30n,TMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLICG93735-04Protein SequencePDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPHHHHHHSEQ ID NO: 315904 bpNOV30o,CACCGGATCCACTTCCGGGAACGCCGGGGAACCGCAGTAGCCGCCTGCTAGTGGCGCTGCTAGCCGGCG93735-06DNA SequenceCCGGCGCAGGCTGCCGAGCGGGTGAGCGCGCAGGCCAGGCCAAAGCCCTGGTACCCGCGCGGTGCGGGCCTCAGTCTGCGGCCATGGGGGCGTCCGCGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGAGGAGAAATGTGTGTAACTATTAATAGTAAGATGGGCAAACCTCCTAGTCCTTGCATTTAGTCTAGACTAGORF Start: at 64ORF Stop: TGA at 832SEQ ID NO: 316256 aaMW at 28269.2 kDNOV30o,PAGAGCRAGERAGQAKALVPARCGPQSAAMGASARLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSCG93735-06Protein SequenceGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTP


[0516] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 30B.
165TABLE 30BComparison of NOV30a against NOV30b through NOV30o.ProteinNOV30a Residues/Identities/SequenceMatch ResiduesSimilarities for the Matched RegionNOV30b30 . . . 256222/227 (97%) 1 . . . 227223/227 (97%)NOV30c30 . . . 256226/227 (99%) 2 . . . 228226/227 (99%)NOV30d30 . . . 256226/227 (99%) 2 . . . 228226/227 (99%)NOV30e32 . . . 256224/225 (99%) 1 . . . 225224/225 (99%)NOV30f30 . . . 256226/227 (99%) 2 . . . 228226/227 (99%)NOV30g30 . . . 256226/227 (99%) 2 . . . 228226/227 (99%)NOV30h30 . . . 256226/227 (99%) 2 . . . 228226/227 (99%)NOV30i31 . . . 256225/226 (99%)10 . . . 235225/226 (99%)NOV30j 1 . . . 256 256/256 (100%) 1 . . . 256 256/256 (100%)NOV30k 1 . . . 256 256/256 (100%) 1 . . . 256 256/256 (100%)N0V30l30 . . . 256226/227 (99%) 1 . . . 227226/227 (99%)NOV30m31 . . . 256225/226 (99%)10 . . . 235225/226 (99%)NOV30n30 . . . 256226/227 (99%) 2 . . . 228226/227 (99%)NOV30o 1 . . . 256 256/256 (100%) 1 . . . 256 256/256 (100%)


[0517] Further analysis of the NOV30a protein yielded the following properties shown in Table 30C.
166TABLE 30CProtein Sequence Properties NOV30aSignalP analysis:No Known Signal Sequence PredictedPSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 11; pos.chg 2; neg.chg 1H-region: length 4; peak value −0.89PSG score: −5.29GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −6.09possible cleavage site: between 39 and 40>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 3.50 (at 28)ALOM score: 3.50 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targeting seqR content:6Hyd Moment(75):5.94Hyd Moment(95):6.68G content:10D/E content:2S/T content:8Score: −3.87Gavel: prediction of cleavage sites for mitochondrial preseqR-2 motif at 65 SRI|TTNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 13.3%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 76.7COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):43.5%: mitochondrial34.8%: cytoplasmic17.4%: nuclear 4.3%: vesicles of secretory system>> prediction for CG93735-05 is mit (k = 23)


[0518] A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30D.
167TABLE 30DGeneseq Results for NOV30aNOV30aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAG73865Human colon cancer antigen1 . . . 256256/256 (100%)e−147protein SEQ ID NO: 4629 -1 . . . 256256/256 (100%)Homo sapiens, 256 aa.[WO200122920-A2,05-APR-2001]AAM40685Human polypeptide SEQ ID22 . . . 256 235/235 (100%)e−134NO 5616 - Homo sapiens,5 . . . 239235/235 (100%)239 aa. [WO200153312-A1,26-JUL-2001]ABB12326Human secreted protein22 . . . 256 235/235 (100%)e−134homologue, SEQ ID5 . . . 239235/235 (100%)NO: 2696 - Homo sapiens,239 aa. [WO200157188-A2,09-AUG-2001]AAB85885Human adenylate kinase 330 . . . 256 227/227 (100%)e−129(AK3)-like protein - Homo1 . . . 227227/227 (100%)sapiens, 227 aa.[WO200109346-A1,08-FEB-2001]AAB93066Human protein sequence30 . . . 256 227/227 (100%)e−129SEQ ID NO: 11883 - Homo1 . . . 227227/227 (100%)sapiens, 227 aa.[EP1074617-A2,07-FEB-2001]


[0519] In a BLAST search of public sequence datbases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30E.
168TABLE 30EPublic BLASTP Results for NOV30aNOV30aProteinResidues/Identities/AccessionMatchSimilarities forExpectNumberProtein/Organism/LengthResiduesthe Matched PortionValueQ9UIJ7GTP: AMP phosphotransferase31 . . . 256 226/226 (100%)e−128mitochondrial (EC 2.7.4.10) 1 . . . 226 226/226 (100%)(AK3) (Adenylate kinase 3 alphalike) - Homo sapiens (Human),226 aa.A34442nucleoside-triphosphate--adenylate30 . . . 256210/227 (92%)e−121kinase (EC 2.7.4.10) 3, 1 . . . 227220/227 (96%)mitochondrial - bovine, 227 aa.P08760GTP: AMP phosphotransferase31 . . . 256209/226 (92%)e−120mitochondrial (EC 2.7.4.10) 1 . . . 226219/226 (96%)(AK3) - Bos taurus (Bovine), 226aa.Q9WTP7GTP: AMP phosphotransferase31 . . . 256209/226 (92%)e−118mitochondrial (EC 2.7.4.10) 1 . . . 226217/226 (95%)(AK3) (Adenylate kinase 3 alphalike) - Mus musculus (Mouse),226 aa.Q95J94Adenylate kinase 3 - Oryctolagus30 . . . 256209/227 (92%)e−116cuniculus (Rabbit), 227 aa. 1 . . . 227215/227 (94%)


[0520] PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30F.
169TABLE 30FDomain Analysis of NOV30aIdentities/SimilaritiesNOV30a Matchfor the MatchedExpectPfam DomainRegionRegionValueadenylatekinase41 . . . 221 98/189 (52%)2.1e−110170/189 (90%)



Example 31

[0521] The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 31A.
170TABLE 31ANOV31 Sequence AnalysisSEQ ID No: 317999 bpNOV31a,AGGTGAACATAACATAAAAAAATGTTCCCGGCAAATTGGACATCTGTAAAAGTATTTTTCTTCCTGGCG93817-01DNA SequenceGATTTTTTCACTACCCCAAAGTTCAGGTCATCATATTTGCGGTGTGCTTGCTGATGTACCTGATCACCTTGCTGGGCAACATTTTTCTGATCTCCATCACCATTCTAGATTCCCACCTGCACACCCCTATGTACCTCTTCCTCAGCAATCTCTCCTTTCTGGACATCTGGTACTCCTCTTCTGCCCTCTCTCCAATGCTGGCAAACTTTGTTTCAGGGAGAAACACTATTTCATTCTCAGGGTGCGCCACTCAGATGTACCTCTCCCTTGCCATGGGCTCCACTGAGTGTGTGCTCCTGCCCATGATGGCATATGACCGGTATGTGGCCATCTGCAACCCCCTGAGATACCCTGTCATCATGAATAGGAGAACCTGTGTGCAGATTGCAGCTGGCTCCTGGATGACAGGCTGTCTCACTGCCATGGTGGAAATGATGTCTGTGCTGCCACTGTCTCTCTGTGGTAATAGCATCATCAATCATTTCACTTGTGAAATTCTGGCCATCTTGAAATTGGTTTGTGTGGACACCTCCCTGGTGCAGTTAATCATGCTGGTGATCAGTGTACTTCTTCTCCCCATGCCAATGCTACTCATTTGTATCTCTTATGCATTTATCCTCGCCAGTATCCTGAGAATCAGCTCAGTGGAAGGTCGAAGTAAAGCCTTTTCAACGTGCACAGCCCACCTGATGGTGGTAGTTTTGTTCTATGGGACGGCTCTCTCCATGCACCTGAAGCCCTCCGCTGTAGATTCACAGGAAATAGACAAATTTATGGCTTTGGTGTATGCCGGACAAACCCCCATGTTGAATCCTATCATCTATAGTCTACGGAACAAAGAGGTGAAAGTGGCCTTGAAAAAATTGCTGATTAGAAATCATTTTAATACTGCCTTCATTTCCATCCTCAAATAACAATCACACTCATATAGAORF Start: ATG at 22ORF Stop: TAA at 979SEQ ID NO:318319aaMW at 35645.5 kDNOV31a,MFPANWTSVKVFFFLGFFHYPKVQVIIFAVCLLMYLITLLGNIFLISITILDSHLHTPMYLFLSNLSCG93817-01Protein SequenceFLDIWYSSSALSPMLANFVSGRNTISFSGCATQMYLSLAMGSTECVLLPMMAYDRYVAICNPLRYPVIMNRRTCVQIAAGSWMTGCLTAMVEMMSVLPLSLCGNSIINHFTCEILAILKLVCVDTSLVQLIMLVISVLLLPMPMLLICISYAFILASILRISSVEGRSKAFSTCTAHLMVVVLFYGTALSMHLKPSAVDSQEIDKFMALVYAGQTPMLNPIIYSLRNKEVKVALKKLLIRNHENTAFISILK


[0522] Further analysis of the NOV31 a protein yielded the following properties shown in Table 31B.
171TABLE 31BProtein Sequence Properties NOV31aSignalP analysis:Cleavage site between residues 42 and 43PSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 10; pos.chg 1; neg.chg 0H-region: length 11; peak value 13.04PSG score: 8.64GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −0.82possible cleavage site: between 41 and 42>>> Seems to have a cleavable signal peptide (1 to 41)ALOM: Klein et al's method for TM region allocationInit position for calculation: 42Tentative number of TMS(s) for the threshold 0.5: 4INTEGRAL Likelihood = −0.96 Transmembrane 153-169INTEGRAL Likelihood = −2.97 Transmembrane 181-197INTEGRAL Likelihood = −10.67 Transmembrane 200-216INTEGRAL Likelihood = −0.48 Transmembrane 240-256PERIPHERAL Likelihood = 1.85 (at 103)ALOM score: −10.67 (number of TMSs: 4)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 20Charge difference: −0.5 C(1.0) − N(1.5)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):4.52Hyd Moment(95):1.36G content:2D/E content:1S/T content:5Score: −5.22Gavel: prediction of cleavage sites for mitochondrial preseqR-2 motif at 99 GRN|TINUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 6.3%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):55.6%: endoplasmic reticulum44.4%: mitochondrial>> prediction for CG93817-01 is end (k = 9)


[0523] A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31C.
172TABLE 31CGeneseq Results for NOV31aIdentities/NOV31aSimilaritiesProtein/Organism/Residues/for theGeneseqLengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU85329G-coupled olfactory1 . . . 319319/3190.0receptor #190 - Homo(100%)sapiens, 319 aa.1 . . . 319319/319[WO200198526-A2,(100%)27-DEC-2001]ABB06654G protein-coupled1 . . . 319319/3190.0receptor GPCR32a(100%)protein SEQ ID1 . . . 319319/319NO:118 - Homo(100%)sapiens, 319 aa.[WO200212343-A2,14-FEB-2002]AAU95674Human olfactory and1 . . . 319319/3190.0pheromone G protein-(100%)coupled receptor1 . . . 319319/319#161 - Homo sapiens,(100%)319 aa.[WO200224726-A2,28-MAR-2002]AAG71465Human olfactory1 . . . 319319/3190.0receptor polypeptide,(100%)SEQ ID NO:1146 -1 . . . 319319/319Homo sapiens, 319 aa.(100%)[WO200127158-A2,19-APR-2001]AAU24709Human olfactory1 . . . 319319/3190.0receptor AOLFR208 -(100%)Homo sapiens, 319 aa.1 . . . 319319/319[WO200168805-A2,(100%)20-SEP-2001]


[0524] In a BLAST search of public sequence datbases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.
173TABLE 31DPublic BLASTP Results for NOV31aIdentities/NOV31aSimilaritiesProteinResidues/for theAccessionProtein/Organism/MatchMatchedExpectNumberLengthResiduesPortionValueQ8NGS4Seven1 . . . 319319/3190.0transmembrane(100%)helix receptor -1 . . . 319319/319Homo sapiens(100%)(Human), 319 aa.Q8VGB7Olfactory receptor1 . . . 319255/319e−148MOR262-2 - Mus(79%)musculus (Mouse),1 . . . 319287/319319 aa.(89%)Q8VGI0Olfactory receptor5 . . . 305200/301e−114MOR262-1 - Mus(66%)musculus (Mouse),5 . . . 304248/301313 aa.(81%)CAD37524Sequence 71 from5 . . . 305196/301e−110Patent(65%)WO0224726 -34 . . . 333 243/301Homo sapiens(80%)(Human), 345 aa.Q8NGT1Seven5 . . . 305196/301e−110transmembrane(65%)helix receptor -5 . . . 304243/301Homo sapiens(65%)(Human), 316 aa.


[0525] PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.
174TABLE 31EDomain Analysis of NOV31aNOV31a MatchIdentities/SimilaritiesExpectPfam DomainRegionfor the Matched RegionValue7tm_141 . . . 290 54/268 (20%)6e−37171/268 (64%)



Example 32

[0526] The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.
175TABLE 32ANOV32 Sequence AnalysisSEQ ID NO: 3191041 bpNOV32a,AAATTCCGGCCAAGATGGCAGCAATGAGGAAGGCGCTTCCGCGGCGACTGGTGGGCTTGGCGTCCCTCG96859-03DNA SequenceCCGGGCTGTCAGCACCTCATCTATGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAGCCCCTTGCCCACCTGAAGGCCTGGGGATGATGTGGAAATAAGGGGCATORF Start: ATG at 15ORF Stop: TGA at 990SEQ ID NO: 320325 aaMW at 34359.8 kDNOV32a,MAAMRKALPRRLVGLASLRAVSTSSMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGCG96859-03Protein SequenceLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPCIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 321969 bpNOV32b,TAACTTTATTATTAAAAATTAAAGAGGTATATATTAATGTATCGATTAAATAAGGAGGAATAAACCA223316960 DNASequenceTGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGACTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAORF Start: at 64ORF Stop: TGA at 967SEQ ID NO: 322301 aaMW at 31835.7 kDNOV32b,TMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMGDHTEV223316960Protein SequenceLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 323987 bpNOV32c,TAACTTTATTATTAAAAATTAAAGAGGTATATATTAATGTATCGATTAAATAAGGAGGAATAAACCA223316987 DNASequenceTGGGCCACCATCACCACCATCACACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAORF Start: at 64ORF Stop: TGA at 985SEQ ID NO: 324307 aaMW at 32658.6 kDNOV32c,TMGHHHHHHTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQM223316987Protein SequenceGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 3251568 bpNOV32d,GAATTCCGGCCAAGATGGCAGCAATGAGGAAGGCGCTTCCGCGGCGACTGGTGGGCTTGGCGTCCCTCG96859-01DNA SequenceCCGGGCTGTCAGCACCTCATCTATGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTATCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGACCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAGCCCCTTGCCCACCTGAAGCCCTGGGGATGATGTGGAAATAGGGGCACACACAGATGATTCATGGATGGGGACATGGAAATGAGAATAGGTTAAATGGTGCAGGTACCTCATAGCCAGCTCTACACAGAGGTCTCTCCTGGCAGAAAGCAGGCGAAGGGCAGGAGGAGCTGCTTGGCAGAAGGACCTCCTGCCCAGACCTGAGGAGTGAGAGGCTTTGAGGGCTGAAGTCTCCCTTTGTTACGGACCCTGGCCCAGGAGTTGAATGCCTGAGGACGTGTGGGAACCCCGTTCCCTACTTAGCATGATCCTTGAGTCTCCTCTCTGGATGGAATCCGCGAGCTGGCCACCTGGCCACCCTCTACACGGCTCCACCCTGCCATGGCCGTGGGGCCCTTGCTCTCTGACTTCTCAGGACACAGGTCATGGAGGTTCTTCCCAAGCTGGCAGAGGCCATTTGTGGAAAGTGGAGAGCTACGTGGTGGCCGTCTGCCAACTCCAGCATCTCTGGAAAATCTCCACGCTGAATGTGATTTTTGAAAACAGCTTATGTAATTAAAGGTTGAATGGCACATCATORF Start: ATG at 15ORF Stop: TGA at 990SEQ ID NO: 326325 aaMW at 34389.8 kDNOV32d,MAAMRKALPRRLVGLASLRAVSTSSMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGCG96859-01Protein SequenceLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALTNTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 3271355 bpNOV32e,GAATTCCGGCCAAGATGGCAGCAATGAGGAAGGCGCTTCCGCGGCGACTGGTGGGCTTGGCGTCCCTCG96859-02DNA SequenceCCGGGCTGTCAGCACCTCATCTATGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAGCCCCTTGCCCACCTGAAGCCCTGGGGATGATGTGGAAATAGGGGCACACACAGATGATTCATGGATGGGGACATGGAAATGAGAATAGGTTAAATGGTGCAGGTACCTCATAGCCAGCTCTACACAGAGGTCTCTCCTGGCAGAAAGCAGGCGAAGGGCAGGAGGAGCTGCTTGGCAGAAGGACCTCCTGCCCAGACCTGAGGAGTGAGAGGCTTTGAGGGCTGAAGTCTCCCTTTGTTACGGACCCTGGCCCAGGAGTTGAATGCCTGAGGACGTGTGGGAACCCCGTTCCCTACTTAGCATGATCCTTGAGTCTCCTCTCTGGATGGAATCCGCGAGCTGGCCACCTGGCCACCCTCTACACGGCTCCACCCTGCCATGGCCGTGGGGCCCTTGCTCTCTGACTTCTCAGGACACAGGTCATGGAGGTTCTTCCCAAGCTGGCAGAGGCCATTTGTGGAAAGTGGAGAGCTACGTGGTGGCCGTCTGCCAACTCCAGCATCTCTGGAAAATCTCCACGCTGAATGTGATTTTTGAAAACAGCTTATGTAATTAAAGGTTGAATGGCACATCATORF Start: ATG at 15ORF Stop: TGA at 777SEQ ID NO: 328254 aaMW at 26909.3 kDNOV32e,MAAMRKALPRRLVGLASLRAVSTSSMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGCG96859-02Protein SequenceLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 329788 bpNOV32f,GATGGCAGCAATGAGGAAGGCGCTTCCGCGGCGACTGGTGGGCTTGGCGTCCCTCCGGGCTGTCAGCCG96859-04DNA SequenceACCTCATCTATGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAGGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAGCCCCTTGCCCACCTGAAGCCCORF Start: ATG at 2ORF Stop: TGA at 764SEQ ID NO: 330254 aaMW at 26937.3 kDNOV32f,MAAMRKALPRRLVGLASLRAVSTSSMGTLPKRVKIVEVGPRDGLQNERNIVSTPVKIKLIDMLSEAGCG96859-04ProteinLSVIETTSFVSPKWVPQMGDHTEVLKGLQKFPGINYPVLTPNLKGFEAAVTKKFYSMGCYEISLGDTSequenceIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 331893 bpNOV32g,GATGGCAGCAATGAGGAAGGCGCTTCCGCGGCGACTGGTGGGCTTGGCGTCCCTCCGGGCTGTCAGCCG96859-05DNA SequenceACCTTATCTATGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAGCCCCTTGCCCACCTGAAGCCCORF Start: ATG at 2ORF Stop: TGA at 869SEQ ID NO: 332289 aaMW at 30531.3 kDNOV32g,MAAMRKALPRRLVGLASLRAVSTLSMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGCG96859-05Protein SequenceLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 3331353 bpNOV32h,CCCCAAAATTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCCG96859-06DNA SequenceTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGGCAGCAATGAGGAAGGCGCTTCCGCGGCGACTGGTGGGCTTGGCGTCCCTCCGGGCTGTCAGCACCTCATCTATGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCCACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGORF Start:ATG at 202ORF Stop: at 1171SEQ ID NO: 334323 aaMW at 34118.4 kDNOV32h,MAAMRKALPRRLVGLASLRAVSTSSMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGCG96859-06Protein SequenceLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCSEQ ID NO: 335969 bpNOV32i,TAACTTTATTATTAAAAATTAAAGAGGTATATATTAATGTATCGATTAAATAAGGAGGAATAAACCACG96859-07DNA SequenceTGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAORF Start: at 64ORF Stop: TGA at 967SEQ ID NO: 336301 aaMW at 31835.7 kDNOV32i,TMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMGDHTEVCG96859-07ProteinLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSequenceSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 337969 bpNOV32j,TAACTTTATTATTAAAAATTAAAGAGGTATATATTAATGTATCGATTAAATAAGGAGGAATAAACCACG96859-08DNA SequenceTGGGCACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAORF Start: at 64ORF Stop: TGA at 967SEQ ID NO: 338301 aaMW at 31835.7 kDNOV32j,TMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMGDHTEVCG96859-08ProteinLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSequenceSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKLSEQ ID NO: 339987 bpNOV32k,TAACTTTATTATTAAAAATTAAAGAGGTATATATTAATGTATCGATTAAATAAGGAGGAATAAACCAGG96859-09DNA SequenceTGGGCCACCATCACCACCATCACACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGAORF Start: at 64ORF Stop: TGA at 985SEQ ID NO: 340307 aaMW at 32658.6 kDNOV32k,TMGHHHHHHTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMCG96859-09Protein Sequence GDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKL


[0527] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 32B.
176TABLE 32BComparison of NOV32a against NOV32b through NOV32k.NOV32a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV32b25 . . . 325 300/301  (99%)1 . . . 301301/301  (99%)NOV32c28 . . . 325 298/298 (100%)10 . . . 307 298/298 (100%)NOV32d1 . . . 325324/325  (99%)1 . . . 325324/325  (99%)NOV32e186 . . . 325 139/140  (99%)115 . . . 254 139/140  (99%)NOV32f186 . . . 325 139/140  (99%)115 . . . 254 139/140  (99%)NOV32g1 . . . 325288/325  (88%)1 . . . 289288/325  (88%)NOV32h1 . . . 323323/323 (100%)1 . . . 323323/323 (100%)NOV32i25 . . . 325 300/301  (99%)1 . . . 301301/301  (99%)NOV32j25 . . . 325 300/301  (99%)1 . . . 301301/301  (99%)NOV32k28 . . . 325 298/298 (100%)10 . . . 307 298/298 (100%)


[0528] Further analysis of the NOV32a protein yielded the following properties shown in Table 32C.
177TABLE 32CProtein Sequence Properties NOV32aSignalPanalysis:Cleavage site between residues 25 and 26PSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 11; pos. chg 4; neg. chg 0H-region: length 7; peak value 0.99PSG score: −3.41GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −2.69possible cleavage site: between 23 and 24>>> Seems to have no N-terminal signal peptideALOM:Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 0number of TMS(s) . . . fixedPERIPHERAL Likelihood = 1.80 (at 115)ALOM score: 1.80 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targeting seqR content:5Hyd Moment10.64Hyd Moment (95):9.40(75):D/E content:1G content: 2Score:1.44S/T content: 6Gavel:prediction of cleavage sites for mitochondrial preseqR-2 motif at 42 KRV|KINUCDISC: discrimination of nuclear localization signalspat4: nonepat7: PKRVKIV (5) at 30bipartite: nonecontent of basic residues: 9.8%NLS Score: −0.04KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals:XXRR-like motif in the N-terminus: AAMRKKXX-like motif in the C-terminus: ATCKSKL:peroxisomal targeting signal in the C-terminus: CKLPTS2:2nd peroxisomal targeting signal: noneVAC:possible vacuolar targeting motif: foundTLPK at 28RNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: cytoplasmicReliability: 94.1COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues----------------------------------Final Results (k = 9/23):87.0%: mitochondrial 4.3%: Golgi 4.3%: cytoplasmic 4.3%: nuclear>> prediction for CG96859-03 is mit (k = 23)


[0529] A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32D.
178TABLE 32DGeneseq Results for NOV32aIdentities/NOV32aSimilaritiesProtein/Organism/Residues/for theGeneseqLengthMatchMatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU75774Human 3-hydroxy- 1 . . . 325324/3250.03-methylglutaryl(99%)coenzyme A lyase 1 . . . 325324/325(HMGCL) protein -(99%)Homo sapiens,325 aa.[WO200198315-A2,27-DEC-2001]AAU01613Gene #24 human 30 . . . 321234/292e−138secreted protein(80%)homologous amino 1 . . . 292266/292acid sequence -(90%)Homo sapiens,293 aa.[WO200123547-A1,05-APR-2001]AAU01614Human secreted 30 . . . 322212/293e−125protein encoded by(72%)gene #24 - Homo 1 . . . 293254/293sapiens, 293 aa.(86%)[WO200123547-A1,05-APR-2001]AAE19936Soybean HMG-CoA 26 . . . 321195/296e−108lyase #1 - Glycine(65%)max, 310 aa. 15 . . . 310231/296[US6348339-B1,(77%)19-FEB-2002]AAE19935Rice HMG-CoA 29 . . . 321192/293e−108lyase #2 - Oryza(65%)sativa, 459 aa.154 . . . 446231/293[US6348339-B1,(78%)19-FEB-2002]


[0530] In a BLAST search of public sequence datbases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32E.
179TABLE 32EPublic BLASTP Results for NOV32aIdentities/NOV32aSimilaritiesProteinResidues/for theAccessionProtein/Organism/MatchMatchedExpectNumberLengthResiduesPortionValueP35914Hydroxymethyl-1 . . . 325325/3250.0glutaryl-CoA lyase,(100%)mitochondrial1 . . . 325325/325precursor(100%)(EC 4.1.3.4)(HMG-CoA lyase)(HL) (3-hydroxy-3-methylglutarate-CoA lyase) -Homo sapiens(Human), 325 aa.A45470hydroxymethyl-1 . . . 325324/3250.0glutaryl-CoA lyase(99%)(EC 4.1.3.4) -1 . . . 325324/325human, 325 aa.(99%)BAC205953-hydroxymethyl-3-1 . . . 325313/325e−176methylglutaryl-(96%)Coenzyme A lyase -1 . . . 325315/325Macaca fascicularis(96%)(Crab eatingmacaque)(Cynomolgusmonkey), 325 aa.Q96TG6DJ886K2.221 . . . 325 305/305e−172(EC 4.1.3.4)(100%)(HMGCL(hydroxy-1 . . . 305305/305methylglutaryl-CoA(100%)lyase)) (HMG-CoAlyase) (HL)(3-hydroxy-3-methylglutarate-CoA lyase) - Homosapiens (Human),305 aa (fragment).P97519Hydroxymethyl-1 . . . 325289/325e−167glutaryl-CoA lyase,(88%)mitochondrial1 . . . 325311/325precursor(94%)(EC 4.1.3.4)(HMG-CoA lyase)(HL) (3-hydroxy-3-methylglutarate-CoA lyase) -Rattus norvegicus(Rat), 325 aa.


[0531] PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32F.
180TABLE 32FDomain Analysis of NOV32aNOV32a MatchIdentities/SimilaritiesExpectPfam DomainRegionfor the Matched RegionValueHMGL-like41 . . . 318103/307 (34%)2e−118250/307 (81%)



Example 33

[0532] The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33A.
181TABLE 33ANOV33 Sequence AnalysisSEQ ID NO: 3412551 bpNOV33a,CACCATGAACAGCAGCAGCGCCAACATCACCTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAAACG105355-03DNA SequenceCAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGGCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGGCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAAORF Start: at 2ORF Stop: TAA at 2549SEQ ID NO: 342849 aaMW at 96247.6 kDNOV33a,TMNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDKLCG105355-03ProteinSVLRLSVSYLRAKSFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVSequenceFYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGCDAKGRIVLGYTEAELCTRGSGYQFIHAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFFNESMNECRNWQDNTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQKMKHMQVNGMFENWNSNQFVPFNCPQQDPQQYNVFTDLHGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLNKFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFLSEQ ID NO: 3435864 bpNOV33b,CAGTGGCTGGGGAGTCCCGTCGACGCTCTGTTCCGAGAGCGTGCCCCGGACCGCCAGCTCAGAACAGGCG105355-01DNA SequenceGGCAGCCGTGTAGCCGAACGGAAGCTGGGAGCAGCCGGGACTGGTGGCCCGCGCCCGAGCTCCGCAGGCGGGAAGCACCCTGGATTTGGGAAGTCCCGGGAGCAGCGCGGCGGCACCTCCCTCACCCAAGGGGCCGCGGCGACGGTCACGGGGCGCGGCGCCACCGTGAGCGACCCAGGCCAGGATTCTAAATAGACGGCCCAGGCTCCTCCTCCGCCCGGGCCGCCTCACCTGCGGGCATTGCCGCGCCGCCTCCGCCGGTGTAGACGGCACCTGCGCCGCCTTGCTCGCGGGTCTCCGCCCCTCGCCCACCCTCACTGCGCCAGGCCCAGGCAGCTCACCTGTACTGGCGCGGGCTGCGGAAGCCTGCGTGAGCCGAGGCGTTGAGGCGCGGCGCCCACGCCACTGTCCCGAGAGGACGCAGGTGGAGCGGGCGCGGCTTCGCGGAACCCGGCGCCGGCCGCCGCAGTGGTCCCAGCCTACACCGGGTTCCGGGGACCCGGCCGCCAGTGCCCGGGGAGTAGCCGCCGCCGTCGGCTGGGCACCATGAACAGCAGCAGCGCCAACATCACCTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAAACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGGCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGGCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAATTCCAAGCCCAATTTTGACCCTGGTTTTTGGATTAAATTAGTTTGTGAAGGATTATGGAAAAATAAAACTGTCACTGTTGGACGTCAGCAAGTTCACATGGAGGCATTGATGCATGCTATTCACAATTATTCCAAACCAAATTTTAATTTTTGCTTTTAGAAAAGGGAGTTTAAAAATGGTATCAAAATTACATATACTACAGTCAAGATAGAAAGGGTGCTGCCACGGAGTGGTGAGGTACCGTCTACATTTCACATTATTCTGGGCACCACAAAATATACAAAACTTTATCAGGGAAACTAAGATTCTTTTAAATTAGAAAATATTCTCTATTTGAATTATTTCTGTCACAGTAAAAATAAAATACTTTGAGTTTTGAGCTACTGGATTCTTATTAGTTCCCCAAATACAAAGTTAGAGAACTAAACTAGTTTTTCCTATCATGTTAACCTCTGCTTTTATCTCAGATGTTAAAATAAATGGTTTGGTGCTTTTTATAAAAAGATAATCTCAGTGCTTTCCTCCTTCACTGTTTCATCTAAGTGCCTCACATTTTTTTCTACCTATAACACTCTAGGATGTATATTTTATATAAAGTATTCTTTTTCTTTTTTAAATTAATATCTTTCTGCACACAAATATTATTTGTGTTTCCTAAATCCAACCATTTTCATTAATTCAGGCATATTTTAACTCCACTGCTTACCTACTTTCTTCAGGTAAAGGGCAAATAATGATCGAAAAAATAATTATTTATTACATAATTTAGTTGTTTCTAGACTATAAATGTTGCTATGTGCCTTATGTTGAAAAAATTTAAAAGTAAAATGTCTTTCCAAATTATTTCTTAATTATTATAAAAATATTAAGACAATAGCACTTAAATTCCTCAACAGTGTTTTCAGAAGAAATAAATATACCACTCTTTACCTTTATTGATATCTCCATGATGATAGTTGAATGTTGCAATGTGAAAAATCTGCTGTTAACTGCAACCTTGTGTATTAAATTGCAAGAAGCTTTATTTCTAGCTTTTTAATTAAGCAAAGCACCCATTTCAATGTGTATAAATTGTCTTTAAAAACTGTTTTAGACCTATAATCCTTGATAATATATTGTGTTGACTTTATAAATTTCGCTTCTTAGAACAGTGGAAACTATGTGTTTTTCTCATATTTGAGGAGTGTTAAGATTGCAGATAGCAAGGTTTGGTGCAAAGTATTGTAATGAGTGAATTGAATGGTGCATTGTATAGATATAATGAACAAAATTATTTGTAAGATATTTGCAGTTTTTCATTTTAAAAAGTCCATACCTTATATATGCACTTAATTTGTTGGGGCTTTACATACTTTATCAATGTGTCTTTCTAAGAAATCAAGTAATGAATCCAACTGCTTAAAGTTGGTATTAATAAAAAGACAACCACATAGTTCGTTTACCTTCAAACTTTAGGTTTTTTTAATGATATACTGATCTTCATTACCAATAGGCAAATTAATCACCCTACCAACTTTACTGTCCTAACATGGTTTAAAAGAAAAAATGACACCATCTTTTATTCTTTTTTTTTTTTTTTTTGAGAGAGAGTCTTACTCTGCCGCCCAAACTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAACCTCTACCTCCTGGGTTCAAGTGATTCTCTTGCCTCAGCCTCCCGAGTTGCTGGGATTGCGGGCATGGTGGCGTGAGCCTGTAGTCCTAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCCTGAACCTGGGAATCGGAGGTTGCAGGGCCAAGATCGCCCCACTGCACTCCAGCCTGGCAATAGACCGAGACTCCGTCTCCAAAAAAAAAAAAAATACAATTTTTATTTCTTTTACTTTTTTTAGTAAGTTAATGTATATAAAAATGGCTTCGGACAAAATATCTCTGAGTTCTGTGTATTTTCAGTCAAAACTTTAAACCTGTAGAATCAATTTAAGTGTTGGAAAAAATTTGTCTGAAACATTTCATAATTTGTTTCCAGCATGAGGTATCTAAGGATTTAGACCAGAGGTCTAGATTAATACTCTATTTTTACATTTAAACCTTTTATTATAAGTCTTACATAAACCATTTTTGTTACTCTCTTCCACATGTTACTGGATAAATTGTTTAGTGGAAAATAGGCTTTTTAATCATGAATATGATGACAATCAGTTATACAGTTATAAAATTAAAAGTTTGAAAAGCAATATTGTATATTTTTATCTATATAAAATAACTAAAATGTATCTAAGAATAATAAAATCACGTTAAACCAAATACACGTTTGTCTGTATTGTTAAGTGCCAAACAAAGGATACTTAGTGCACTGCTACATTGTGGGATTTATTTCTAGATGATGTGCACATCTAAGGATATGGATGTGTCTAATTTTAGTCTTTTCCTGTACCAGGTTTTTCTTACAATACCTGAAGACTTACCAGTATTCTAGTGTATTATGAAGCTTTCAACATTACTATGCACAAACTAGTGTTTTTCGATGTTACTAAATTTTAGGTAAATGCTTTCATGGCTTTTTTCTTCAAAATGTTACTGCTTACATATATCATGCATAGATTTTTGCTTAAAGTATGATTTATAATATCCTCATTATCAAAGTTGTATACAATAATATATAATAAAATAACAAATATGAATAATAAAAAAAAAAAAAAAAAORF Start: ATG at 615ORF Stop: TAA at 3159SEQ ID NO: 344848 aaMW at 96146.5 kDNOV33b,MNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDLKSCG105355-01ProteinVLRLSVSYLRAKSFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVFSequenceYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGCDAKGRIVLGYTEAELCTRGSGYQFIHAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFFNESMNECRNWQDNTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQKMKHMQVNGMFENWNSNQFVPFNCPQQDPQQYNVFTDLHGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLNKFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFLSEQ ID NO: 3452677 bpNOV33c,CCAGTGCCCGGGGAGTAGCCGCCGCCGTCGGCTGGGCACCATGAACAGCAGCAGCGCCAACATCACCTCG105355-02DNA SequenceACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAAACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGGCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGGCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAATTCCAAGCCCAATTTTGAGCCTGGTTTTTGGATTAAATTAGTTTGTGAAGGATTATGGAAAAATAAAACTGTCACTGTTGGACGTCAGCAStart: ATG at 41ORF Stop: TAA at 2585SEQ ID NO: 346848 aaMW at 96146.5 kDNOV33c,MNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDKLSCG105355-02ProteinVLRLSVSYLRAKSFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVFSequenceYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGCDAKGRIVLGYTEAELCTRGSGYQFIHAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFENESMNECRNWQDNTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQKMKHMQVNGMFENWNSNQFVPFNCPQQDPQQYNVFTDLHGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLNKFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFLSEQ ID NO: 347579 bpNOV33d,ATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAAGATGGATCAATACTCG105355-04DNA SequenceTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTTATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCATAAORF Start: ATG at 1ORF Stop: TAA at 577SEQ ID NO: 348192 aaMW at 21913.3 kDNOV33d,MNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGCDAKGCG105355-04ProteinRIVLGYTEAELCTRGSGYQFIYAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKSequenceNGRPDYIIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLP


[0533] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 33B.
182TABLE 33BComparison of NOV33a against NOV33b through NOV33d.NOV33a Residues/Identities/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV33b2 . . . 849848/848 (100%)1 . . . 848848/848 (100%)NOV33c2 . . . 849848/848 (100%)1 . . . 848848/848 (100%)NOV33d238 . . . 429 191/192 (99%)1 . . . 192192/192 (99%)


[0534] Further analysis of the NOV33a protein yielded the following properties shown in Table 33C.
183TABLE 33CProtein Sequence Properties NOV33aSignalPanalysis:No Known Signal Sequence PredictedPSORT IIPSG:a new signal peptide prediction methodanalysis:N-region: length 0; pos. chg 0; neg. chg 0H-region: length 13; peak value 1.67PSG score: −2.73GvH:von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −10.76possible cleavage site: between 56 and 57>>> Seems to have no N-terminal signal peptideALOM:Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 0PERIPHERAL Likelihood = 2.49 (at 257)ALOM score: −0.22 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targeting seqR content:3Hyd Moment5.93Hyd Moment (95):4.06(75):D/E content:1G content:0Score:−0.41S/T content:7Gavel:prediction of cleavage sites for mitochondrial preseqR-2 motif at 27 RRK|PVNUCDISC: discrimination of nuclear localization signalspat4: RKRR (5) at 14pat4: KRRK (5) at 15pat4: RRKP (4) at 16pat4: KRHR (3) at 38pat7: PSKRHRD (4) at 36bipartite: nonecontent of basic residues: 8.8%NLS Score: 0.94KDEL:ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL:peroxisomal targeting signal in the C-terminus: nonePTS2:2nd peroxisomal targeting signal: noneVAC:possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR:N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN:Reinhardt's method for Cytoplasmic/NucleardiscriminationPrediction: nuclearReliability: 94.1COIL:Lupas's algorithm to detect coiled-coil regionstotal: 0 residues----------------------------------Final Results (k = 9/23):60.9%: nuclear26.1%: mitochondrial 8.7%: peroxisomal 4.3%: cytoplasmic>> prediction for CG105355-03 is nuc (k = 23)


[0535] A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33D.
184TABLE 33DGeneseq Results for NOV33aNOV33aIdentities/Residues/Similarities forGeneseqProtein/Organism/Length [PatentMatchthe MatchedExpectIdentifier#, Date]ResiduesRegionValueAAW25668Human Ah-receptor - Homo sapiens,2 . . . 849847/848 (99%)0.0848 aa. [US5650283-A,1 . . . 848847/848 (99%)22-JUL-1997]AAR80551Human Ah receptor protein - Homo2 . . . 849847/848 (99%)0.0sapiens, 848 aa. [US5378822-A,1 . . . 848847/848 (99%)03-JAN-1995]AAB73957Guinea pig dioxin receptor - Cavia2 . . . 849661/852 (77%)0.0porcellus, 846 aa. [JP2000354494-A,1 . . . 846734/852 (85%)26-DEC-2000]AAR80561Murine Ah receptor protein - Mus4 . . . 805590/814 (72%)0.0musculus, 805 aa. [US5378822-A,2 . . . 805675/814 (82%)03-JAN-1995]ABB08868Cricetulus griseus dioxin receptor4 . . . 849573/960 (59%)0.0SEQ ID NO 1 - Cricetulus griseus,2 . . . 941663/960 (68%)941 aa. [JP2002045188-A,12-FEB-2002]


[0536] In a BLAST search of public sequence datbases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33E.
185TABLE 33EPublic BLASTP Results for NOV33aNOV33aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP35869Ah receptor (Aryl hydrocarbon2 . . . 849 848/848 (100%)0.0receptor) (AhR) - Homo sapiens1 . . . 848 848/848 (100%)(Human), 848 aa.Q95LD9Aryl hydrocarbon receptor -2 . . . 849713/854 (83%)0.0Delphinapterus leucas (Beluga1 . . . 845767/854 (89%)whale), 845 aa.Q8MKI7Aryl hydrocarbon receptor - Phoca2 . . . 849679/851 (79%)0.0sibirica (Baikal seal), 843 aa.1 . . . 843740/851 (86%)O02747Ah receptor (Aryl hydrocarbon2 . . . 849669/852 (78%)0.0receptor) (AhR) - Oryctolagus1 . . . 847734/852 (85%)cuniculus (Rabbit), 847 aa.Q95M15Aryl hydrocarbon receptor - Phoca2 . . . 849676/851 (79%)0.0vitulina (Harbor seal), 843 aa.1 . . . 843740/851 (86%)


[0537] PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33F.
186TABLE 33FDomain Analysis of NOV33aIdentities/SimilaritiesPfamNOV33afor the MatchedExpectDomainMatch RegionRegionValuePAS114 . . . 17820/69 (29%)1.6e−1354/69 (78%)PAC349 . . . 39010/43 (23%)1.3e−0837/43 (86%)



Example 34

[0538] The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.
187TABLE 34ANOV34 Sequence AnalysisSEQ ID NO: 3492017 bpNOV34a,CGTACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCG96736-02DNACTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGASequenceCCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAATTCCACCATGGTGGCCGATCCTCCTCGAGACTCCAAGGGGCTCGCAGCGGCGGAGCCCACCGCCAACGGGGGCCTGGCGCTGGCCTCCATCGAGGACCAAGGCGCGGCAGCAGGCGGCTACTGCGGTTCCCGGGACCAGGTGCGCCGCTGCCTTCGAGCCAACCTGCTTGTGCTGCTGACAGTGGTGGCCGTGGTGGCCGGCGTGGCGCTGGGACTGGGGGTGTCGGGGGCCGGGGGTGCGCTGGCGTTGGGCCCGGAGCGCTTGAGCGCCTTCGTCTTCCCGGGCGAGCTGCTGCTGCGTCTGCTGCGGATGATCATCTTGCCGCTGGTGGTGTGCAGCTTGATCGGCGGCGCCGCCAGCCTGGACCCCGGCGCGCTCGGCCGTCTGGGCGCCTGGGCGCTGCTCTTTTTCCTGGTCACCACGCTGCTGGCGTCGGCGCTCGGAGTGGGCTTGGCGCTGGCTCTGCAGCCGGGCGCCGCCTCCGCCGCCATCAACGCCTCCGTGGGAGCCGCGGGCAGTGCCGAAAATGCCCCCAGCAAGGAGGTGCTCGATTCGTTCCTGGATCTTGCGAGAAATATCTTCCCTTCCAACCTGGTGTCAGCAGCCTTTCGCTCATACTCTACCACCTATGAAGAGAGGAATATCACCGGAACCAGGGTGAAGGTGCCCGTGGGGCAGGAGGTGGAGGGGATGAACATCCTGGGCTTGGTAGTGTTTGCCATCGTCTTTGGTGTGGCGCTGCGGAAGCTGGGGCCTGAAGGGGAGCTGCTTATCCGCTTCTTCAACTCCTTCAATGAGGCCACCATGGTTCTGGTCTCCTGGATCATGTGGTATGCCCCTGTGGGCATCATGTTCCTGGTGGCTGGCAAGATCGTGGAGATGGAGGATGTGGGTTTACTCTTTGCCCGCCTTGGCAAGTACATTCTGTGCTGCCTGCTGGGTCACGCCATCCATGGGCTCCTGGTACTGCCCCTCATCTACTTCCTCTTCACCCGCAAAAACCCCTACCGCTTCCTGTGGGGCATCGTGACGCCGCTGGCCACTGCCTTTGGGACCTCTTCCAGTTCCGCCACGCTGCCGCTGATGATGAAGTGCGTGGAGGAGAATAATGGCGTGGCCAAGCACATCAGCCGTTTCATCCTGCCCATCGGCGCCACCGTCAACATGGACGGTGCCGCGCTCTTCCAGTGCGTGGCCGCAGTGTTCATTGCACAGCTCAGCCAGCAGTCCTTGGACTTCGTAAAGATCATCACCATCCTGGTCACGGCCACAGCGTCCAGCGTGGGGGCAGCGGGCATCCCTGCTGGAGGTGTCCTCACTCTGGCCATCATCCTCGAAGCAGTCAACCTCCCGGTCGACCATATCTCCTTGATCCTGGCTGTGGACTGGCTAGTCGACCGGTCCTGTACCGTCCTCAATGTAGAAGGTGACGCTCTGGGGGCAGGACTCCTCCAAAATTACGTGGACCGTACGGAGTCGAGAAGCACAGAGCCTGAGTTGATACAAGTGAAGAGTGAGCTGCCCCTGGATCCGCTGCCAGTCCCCACTGAGGAAGGAAACCCCCTCCTCAAACACTATCGGGGGCCCGCAGGGGATGCCACGGTCGCCTCTGAGAAGGAATCAGTCATGTAAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGORF Start: at 134ORF Stop: TAA at 1838SEQ ID NO: 350568 aaMW at 59557.8 kDNOV34a,GDPSWLAFKLKLGTELGSTSPVWWNSTMVADPPRDSKGLAAAEPTANGGLALASIEDQGAAAGGYCGSRCG96736-02ProteinDQVRRCLRANLLVLLTVVAVVAGVALGLGVSGAGGALALGPERLSAFVFPGELLLRLLRMIILPLVVCSSequenceLIGGAASLDPGALGRLGAWALLFFLVTTLLASALGVGLALALQPGAASAAINASVGAAGSAENAPSKEVLDSFLDLARNIFPSNLVSAAFRSYSTTYEERNITGTRVKVPVGQEVEGMNILGLVVFAIVFGVALRKLGPEGELLIRFFNSFNEATMVLVSWIMWYAPVGIMFLVAGKIVEMEDVGLLFARLGKYILCCLLGHAIHGLLVLPLIYFLFTRKNPYRFLWGIVTPLATAFGTSSSSATLPLMMKCVEENNGVAKHISRFILPIGATVNMDGAALFQCVAAVFIAQLSQQSLDFVKIITILVTATASSVGAAGIPAGGVLTLAIILEAVNLPVDHISLILAVDWLVDRSCTVLNVEGDALGAGLLQNYVDRTESRSTEPELIQVKSELPLDPLPVPTEEGNPLLKHYRGPAGDATVASEKESVMSEQ ID NO: 3512885 bpNOV34b,CGGCACGCCCGGGAGGCTTTCTCTGGCTGGTAACCGCTACTCCCGGACACCAGACCACCGCCTTCCGTACG96736-01DNACACAGGGGCCCGCATCCCACCCTCCCGGACCTAAGAGCCTGGGTCCCCTGTTTCCGGAGTCCGCTTCCCSequenceGGCCCCCAGATTCTGGCATCCCAGCCCTCAGTGTCCAAGACCCAGGCAGCCCGGGTCCCCGCCTCCCGGATCCAGGCGTCCGGGATCTGCGCCACCAGAACCTAGCCTCCTGCAGACCTCCGCCATCTGGGGGCACTCAACCTCCTGGAGCCAAGGGCCCCACGTCCCACCCAGAGAAACTCTCGTATTCCCAGCTCCTAGGGCCAAGGAACCCGGGCGCTCCGAACTCCCAGCTTTCGGACATCTGGCACACGGGGCAGAGCAGAGAAGCCTCAGCGCCCAGCCTGGGGAATTTAAACACTCCAGCTTCCAAGAGCCAAGGAACTTCAGTGCTGTGAACTCACAACTCTAAGGAGCCCTCCAAAGTTCCAGTCTCCAGGTGCTGTTACTCAACTCAGTCCTAGGAACGTCGGGTCCTGGGAAGGAGCCCAAGCGCTCCCAGCCAGCTTCCAGGCGCTAAGAAACCCCGGTGCTTCCCATCATGGTGGCCGATCCTCCTCGAGACTCCAAGGGGCTCGCAGCGGCGGAGCCACCGCCAACGGGGGCCTGGCAGCTGGCCTCCATCGAGGACCAAGGCGCGGCAGCAGGCGGCTACTGCGGTTCCCGGGACCTGGTGCGCCGCTGCCTTCGAGCCAACCTGCTTGTGCTGCTGACAGTGGTGGCCGTGGTGGCCGGCGTGGCGCTGGGACTGGGGGTGTCGGGGGCCGGGGGTGCGCTGGCGTTGGGCCCGGGAGCGCTTGAGGCCTTCGTCTTCCCGGGCGAGCTGCTGCTGCGTCTGCTGCGGATGATCATCTTGCCGCTGGTGGTGTGCAGCTTGATCGGCGGCGCCGCCAGCCTGGACCCCGGCGCGCTCGGCCGTCTGGGCGCCTGGGCGCTGCTCTTTTTCCTGGTCACCACGCTGCTGGCGTCGGCGCTCGGAGTGGGCTTGGCGCTGGCTCTGCAGCCGGGCGCCGCCTCCGCCGCCATCAACGCCTCCGTGGGAGCCGCGGGCAGTGCCGAAAATGCCCCCAGCAAGGAGGTGCTCGATTCGTTCCTGGATCTTGCGAGAAATATCTTCCCTTCCAACCTGGTGTCAGCAGCCTTTCGCTCATACTCTACCACCTATGAAGAGAGGAATATCACCGGAACCAGGGTGAAGGTGCCCGTGGGGCAGGAGGTGGAGGGGATGAACATCCTGGGCTTGGTAGTGTTTGCCATCGTCTTTGGTGTGGCGCTGCGGAAGCTGGGGCCTGAAGGGGAGCTGCTTATCCGCTTCTTCAACTCCTTCAATGAGGCCACCATGGTTCTGGTCTCCTGGATCATGTGGTACGCCCCTGTGGGCATCATGTTCCTGGTGGCTGGCAAGATCGTGGAGATGGAGGATGTGGGTTTACTCTTTGCCCGCCTTGGCAAGTACATTCTGTGCTGCCTGCTGGGTCACGCCATCCATGGGCTCCTGGTACTGCCCCTCATCTACTTCCTCTTCACCCGCAAAAACCCCTACCGCTTCCTGTGGGGCATCGTGACGCCGCTGGCCACTGCCTTTGGGACCTCTTCCAGTTCCGCCACGCTGCCGCTGATGATGAAGTGCGTGGAGGAGAATAATGGCGTGGCCAAGCACATCAGCCGTTTCATCCTGCCCATCGGCGCCACCGTCAACATGGACGGTGCCGCGCTCTTCCAGTGCGTGGCCGCAGTGTTCATTGCACAGCTCAGCCAGCAGTCCTTGGACTTCGTAAAGATCATCACCATCCTGGTCACGGCCACAGCGTCCAGCGTGGGGGCAGCGGGCATCCCTGCTGGAGGTGTCCTCACTCTGGCCATCATCCTCGAAGCAGTCAACCTCCCGGTCGACCATATCTCCTTGATCCTGGCTGTGGACTGGCTAGTCGACCGGTCCTGTACCGTCCTCAATGTAGAAGGTGACGCTCTGGGGGCAGGACTCCTCCAAAATTATGTGGACCGTACGGAGTCGAGAAGCACAGAGCCTGAGTTGATACAAGTGAAGAGTGAGCTGCCCCTGGATCCGCTGCCAGTCCCCACTGAGGAAGGAAACCCCCTCCTCAAACACTATCGGGGGCCCGCAGGGGATGCCACGGTCGCCTCTGAGAAGGAATCAGTCATGTAAACCCCGGGAGGGACCTTCCCTGCCCTGCTGGGGGTGCTCTTTGGACACTGGATTATGAGGAATGGATAAATGGATGAGCTAGGGCTCTGGGGGTCTGCCTGCACACTCTGGGGAGCCAGGGGCCCCAGCACCCTCCAGGACAGGAGATCTGGGATGCCTGGCTGCTGGAGTACATGTGTTCACAAGGGTTACTCCTCAAAACCCCCAGTTCTCACTCATGTCCCCAACTCAAGGCTAGAAAACAGCAAGATGGAGAAATAATGTTCTGCTGCGTCCCCACCGTGACCTGCCTGGCCTCCCCTGTCTCAGGGAGCAGGTCACAGGTCACCATGGGGAATTCTAGCCCCCACTGGGGGGATGTTACAACACCATGCTGGTTATTTTGGCGGCTGTAGTTGTGGGGGGATGTGTGTGTGCACGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCTGTGACCTCCTGTCCCCATGGTACGTCCCACCCTGTCCCCAGATCCCCTATTCCCTCCACAATAACAGAAACACTCCCAGGGACTCTGGGGAGAGGCTGAGGACAAATACCTGCTGTCACTCCAGAGGACATTTTTTTTAGCAATAAAATTGAGTGTCAACTATTAAAAAAAAAAAAAAAAAAORF Start: ATG at 620ORF Stop: TAA at 2243SEQ ID NO: 352541 aaMW at 56620.6 kDNOV34b,MVADPPRDSKGLAAAEPPPTGAWQLASIEDQGAAAGGYCGSRDLVRRCLRANLLVLLTVVAVVAGVALGCG96736-01ProteinLGVSGAGGALALGPGALEAFVFPGELLLRLLRMIILPLVVCSLIGGAASLDPGALGRLGAWALLFFLVTSequenceTLLASALGVGLALALQPGAASAAINASVGAAGSAENAPSKEVLDSFLDLARNIFPSNLVSAAFRSYSTTYEERNITGTRVKVPVGQEVEGMNILGLVVFAIVFGVALRKLGPEGELLIRFFNSFNEATMVLVSWIMWYAPVGIMFLVAGKIVEMEDVGLLFARLGKYILCCLLGHAIHGLLVLPLIYFLFTRKNPYRFLWGIVTPLATAFGTSSSSATLPLMMKCVEENNGVAKHISRFILPIGATVNMDGAALFQCVAAVFIAQLSQQSLDFVKIITILVTATASSVGAAGIPAGGVLTLAIILEAVNLPVDHISLILAVDWLVDRSCTVLNVEGDALGAGLLQNYVDRTESRSTEPELIQVKSELPLDPLPVPTEEGNPLLKHYRGPAGDATVASEKESVMSEQ ID NO: 3532017 bpNOV34c,CGTACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAG210203253DNACTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGASequenceCCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAATTCCACCATGGTGGCCGATCCTCCTCGAGACTCCAAGGGGCTCGCAGCGGCGGAGCCCACCGCCAACGGGGGCCTGGCGCTGGCCTCCATCGAGGACCAAGGCGCGGCAGCAGGCGGCTACTGCGGTTCCCGGGACCAGGTGCGCCGCTGCCTTCGAGCCAACCTGCTTGTGCTGCTGACAGTGGTGGCCGTGGTGGCCGGCGTGGCGCTGGGACTGGGGGTGTCGGGGGCCGGGGGTGCGCTGGCGTTGGGCCCGGAGCGCTTGAGCGCCTTCGTCTTCCCGGGCGAGCTGCTGCTGCGTCTGCTGCGGATGATCATCTTGCCGCTGGTGGTGTGCAGCTTGATCGGCGGCGCCGCCAGCCTGGACCCCGGCGCGCTCGGCCGTCTGGGCGCCTGGGCGCTGCTCTTTTTCCTGGTCACCACGCTGCTGGCGTCGGCGCTCGGAGTGGGCTTGGCGCTGGCTCTGCAGCCGGGCGCCGCCTCCGCCGCCATCAACGCCTCCGTGGGAGCCGCGGGCAGTGCCGAAAATGCCCCCAGCAAGGAGGTGCTCGATTCGTTCCTGGATCTTGCGAGAAATATCTTCCCTTCCAACCTGGTGTCAGCAGCCTTTCGCTCATACTCTACCACCTATGAAGAGAGGAATATCACCGGAACCAGGGTGAAGGTGCCCGTGGGGCAGGAGGTGGAGGGGATGAACATCCTGGGCTTGGTAGTGTTTGCCATCGTCTTTGGTGTGGCGCTGCGGAAGCTGGGGCCTGAAGGGGAGCTGCTTATCCGCTTCTTCAACTCCTTCAATGAGGCCACCATGGTTCTGGTCTCCTGGATCATGTGGTATGCCCCTGTGGGCATCATGTTCCTGGTGGCTGGCAAGATCGTGGAGATGGAGGATGTGGGTTTACTCTTTGCCCGCCTTGGCAAGTACATTCTGTGCTGCCTGCTGGGTCACGCCATCCATGGGCTCCTGGTACTGCCCCTCATCTACTTCCTCTTCACCCGCAAAAACCCCTACCGCTTCCTGTGGGGCATCGTGACGCCGCTGGCCACTGCCTTTGGGACCTCTTCCAGTTCCGCCACGCTGCCGCTGATGATGAAGTGCGTGGAGGAGAATAATGGCGTGGCCAAGCACATCAGCCGTTTCATCCTGCCCATCGGCGCCACCGTCAACATGGACGGTGCCGCGCTCTTCCAGTGCGTGGCCGCAGTGTTCATTGCACAGCTCAGCCAGCAGTCCTTGGACTTCGTAAAGATCATCACCATCCTGGTCACGGCCACAGCGTCCAGCGTGGGGGCAGCGGGCATCCCTGCTGGAGGTGTCCTCACTCTGGCCATCATCCTCGAAGCAGTCAACCTCCCGGTCGACCATATCTCCTTGATCCTGGCTGTGGACTGGCTAGTCGACCGGTCCTGTACCGTCCTCAATGTAGAAGGTGACGCTCTGGGGGCAGGACTCCTCCAAAATTACGTGGACCGTACGGAGTCGAGAAGCACAGAGCCTGAGTTGATACAAGTGAAGAGTGAGCTGCCCCTGGATCCGCTGCCAGTCCCCACTGAGGAAGGAAACCCCCTCCTCAAACACTATCGGGGGCCCGCAGGGGATGCCACGGTCGCCTCTGAGAAGGAATCAGTCATGTAAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGORF Start: at 134ORF Stop: TAA at 1838SEQ ID NO: 354568 aaMW at 59557.8 kDNOV34c,GDPSWLAFKLKLGTELGSTSPVWWNSTMVADPPRDSKGLAAAEPTANGGLALASIEDQGAAAGGYCGSR210203253ProteinDQVRRCLRANLLVLLTVVAVVAGVALGLGVSGAGGALALGPERLSAFVFPGELLLRLLRMIILPLVVCSSequenceLIGGAASLDPGALGRLGAWALLFFLVTTLLASALGVGLALALQPGAASAAINASVGAAGSAENAPSKEVLDSFLDLARNIFPSNLVSAAFRSYSTTYEERNITGTRVKVPVGQEVEGMNILGLVVFAIVFGVALRKLGPEGELLIRFFNSFNEATMVLVSWIMWYAPVGIMFLVAGKIVEMEDVGLLFARLGKYILCCLLGHAIHGLLVLPLIYFLFTRKNPYRFLWGIVTPLATAFGTSSSSATLPLMMKCVEENNGVAKHISRFILPIGATVNMDGAALFQCVAAVFIAQLSQQSLDFVKIITILVTATASSVGAAGIPAGGVLTLAIILEAVNLPVDHISLILAVDWLVDRSCTVLNVEGDALGAGLLQNYVDRTESRSTEPELIQVKSELPLDPLPVPTEEGNPLLKHYRGPAGDATVASEKESVMSEQ ID NO: 3552022 bpNOV34d,ATGTGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGC210203261DNAAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGSequenceGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAATTCCACCATGGTGGCCGATCCTCCTCGAGACTCCAAGGGGCTCGCAGCGGCGGAGCCCACCGCCAACGGGGGCCTGGCGCTGGCCTCCATCGAGGACCAAGGCGCGGCAGCAGGCGGCTACTGCGGTTCCCGGGACCAGGTGCGCCGCTGCCTTCGAGCCAACCTGCTTGTGCTGCTGACAGTGGTGGCCGTGGTGGCCGGCGTGGCGCTGGGACTGGGGGTGTCGGGGGCCGGGGGTGCGCTGGCGTTGGGCCCGGAGCGCTTGAGCGCCTTCGTCTTCCCGGGCGAGCTGCTGCTGCGTCTGCTGCGGATGATCATCTTGCCGCTGGTGGTGTGCAGCTTGATCGGCGGCGCCGCCAGCCTGGACCCCGGCGCGCTCGGCCGTCTGGGCGCCTGGGCGCTGCTCTTTTTCCTGGTCACCACGCTGCTGGCGTCGGCGCTCGGAGTGGGCTTGGCGCTGGCTCTGCAGCCGGGCGCCGCCTCCGCCGCCATCAACGCCTCCGTGGGAGCCGCGGGCAGTGCCGAAAATGCCCCCAGCAAGGAGGTGCTCGATTCGTTCCTGGATCTTGCGAGAAATATCTTCCCTTCCAACCTGGTGTCAGCAGCCTTTCGCTCATACTCTACCACCTATGAAGAGAGGAATATCACCGGAACCAGGGTGAAGGTGCCCGTGGGGCAGGAGGTGGAGGGGATGAACATCCTGGGCTTGGTAGTGTTTGCCATCGTCTTTGGTGTGGCGCTGCGGAAGCTGGGGCCTGAAGGGGAGCTGCTTATCCGCTTCTTCAACTCCTTCAATGAGGCCACCATGGTTCTGGTCTCCTGGATCATGTGGTACGCCCCTGTGGGCATCATGTTCCTGGTGGCTGGCAAGATCGTGGAGATGGAGGATGTGGGTTTACTCTTTGCCCGCCTTGGCAAGTACATTCTGTGCTGCCTGCTGGGTCACGCCATCCATGGGCTCCTGGTACTGCCCCTCATCTACTTCCTCTTCACCCGCAAAAACCCCTACCGCTTCCTGTGGGGCATCGTGACGCCGCTGGCCACTGCCTTTGGGACCTCTTCCAGTTCCGCCACGCTGCCGCTGATGATGAAGTGCGTGGAGGAGAATAATGGCGTGGCCAAGCACATCAGCCGTTTCATCCTGCCCATCGGCGCCACCGTCAACATGGACGGTGCCGCGCTCTTCCAGTGCGTGGCCGCAGTGTTCATTGCACAGCTCAGCCAGCAGTCCTTGGACTTCGTAAAGATCATCACCATCCTGGTCACGGCCACAGCGTCCAGCGTGGGGGCAGCGGGCATCCCTGCTGGAGGTGTCCTCACTCTGGCCATCATCCTCGAAGCAGTCAACCTCCCGGTCGACCATATCTCCTTGATCCTGGCTGTGGACTGGCTAGTCGACCGGTCCTGTACCGTCCTCAATGTAGAAGGTGACGCTCTGGGGGCAGGACTCCTCCAAAATTACGTGGACCGTACGGAGTCGAGAAGCACAGAGCCTGAGTTGATACAAGTGAAGAGTGAGCTGCCCCTGGATCCGCTGCCACTCCCCACTGAGGAAGGAAACCCCCTCCTCAAACACTATCGGGGGCCCGCAGGGGATGCCACGGTCGCCTCTGAGAAGGAATCAGTCATGTAAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGORF Start: at 138ORF Stop: TAA at 1842SEQ ID NO: 356568 aaMW at 59571.8 kDNOV34d,GDPSWLAFKLKLGTELGSTSPVWWNSTMVADPPRDSKGLAAAEPTANGGLALASIEDQGAAAGGYCGSR210203261ProteinDQVRRCLRANLLVLLTVVAVVAGVALGLGVSGAGGALALGPERLSAFVFPGELLLRLLRMIILPLVVCSSequenceLIGGAASLDPGALGRLGAWALLFFLVTTLLASALGVGLALALQPGAASAAINASVGAAGSAENAPSKEVLDSFLDLARNIFPSNLVSAAFRSYSTTYEERNITGTRVKVPVGQEVEGMNILGLVVFAIVFGVALRKLGPEGELLIRFFNSFNEATMVLVSWIMWYAPVGIMFLVAGKIVEMEDVGLLFARLGKYILCCLLGHAIHGLLVLPLIYFLFTRKNPYRFLWGIVTPLATAFGTSSSSATLPLMMKCVEENNGVAKHISRFILPIGATVNMDGAALFQCVAAVFIAQLSQQSLDFVKIITILVTATASSVGAAGIPAGGVLTLAIILEAVNLPVDHISLILAVDWLVDRSCTVLNVEGDALGAGLLQNYVDRTESRSTEPELIQVKSELPLDPLPLPTEEGNPLLKHYRGPAGDATVASEKESVM


[0539] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 34B.
188TABLE 34BComparison of NOV34a against NOV34b through NOV34d.Identities/NOV34a Residues/Similarities for theProtein SequenceMatch ResiduesMatched RegionNOV34b28 . . . 568 531/541 (98%)1 . . . 541531/541 (98%)NOV34c1 . . . 568 568/568 (100%)1 . . . 568 568/568 (100%)NOV34d1 . . . 568567/568 (99%)1 . . . 568568/568 (99%)


[0540] Further analysis of the NOV34a protein yielded the following properties shown in Table 34C.
189TABLE 34CProtein Sequence Properties NOV34aSignalP analysis:No Known Signal Sequence PredictedPSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 11; pos.chg 2; neg.chg 1H-region: length 3; peak value 1.25PSG score: −3.15GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −8.49possible cleavage site: between 61 and 62>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 8INTEGRAL Likelihood = −11.25 Transmembrane 80-96INTEGRAL Likelihood = −6.53 Transmembrane 130-146INTEGRAL Likelihood = −6.74 Transmembrane 158-174INTEGRAL Likelihood = −9.08 Transmembrane 256-272INTEGRAL Likelihood = −2.55 Transmembrane 295-311INTEGRAL Likelihood = −3.93 Transmembrane 332-348INTEGRAL Likelihood = −1.33 Transmembrane 416-432INTEGRAL Likelihood = −3.13 Transmembrane 453-469PERIPHERAL Likelihood = 1.11 (at 435)ALOM score: −11.25 (number of TMSs: 8)MTOP: Prediction of membrane topology (Hartmann et al.)Center position for calculation: 87Charge difference: −3.0 C(0.0) − N(3.0)N >= C: N-terminal side will be inside>>> membrane topology: type 3aMITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):4.14Hyd Moment(95):5.72G content:2D/E content:2S/T content:2Score:−7.71Gavel: prediction of cleavage sites for mitochondrial preseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: nonepat7: nonebipartite: nonecontent of basic residues: 6.7%NLS Score: −0.47KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals:KKXX-like motif in the C-terminus: KESVSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: noneVAC: possible vacuolar targeting motif: foundILPI at 405RNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 94.1COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):66.7%: endoplasmic reticulum22.2%: mitochondrial11.1%: vesicles of secretory system>> prediction for CG96736-02 is end (k = 9)


[0541] A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34D.
190TABLE 34DGeneseq Results for NOV34aNOV34aResidues/Identities/GeneseqProtein/Organism/Length [PatentMatchSimilarities for theExpectIdentifier#, Date]ResiduesMatched RegionValueABG61858Prostate cancer-associated protein28 . . . 568 541/541 (100%)0.0#59 - Mammalia, 541 aa. 1 . . . 541 541/541 (100%)[WO200230268-A2, 18-APR-2002]AAR95044Apoptosis participating protein -28 . . . 540509/513 (99%)0.0Homo sapiens, 514 aa. 1 . . . 513509/513 (99%)[JP08089257-A, 09-APR-1996]AAU80097Human solute carrier family 1,59 . . . 568315/521 (60%)e−162SLC1A4 - Homo sapiens, 532 aa.26 . . . 532382/521 (72%)[WO200244198-A2, 06-JUN-2002]AAY78144Human neutral amino acid61 . . . 568311/516 (60%)e−161transporter ASCT1 - Homo sapiens,24 . . . 532378/516 (72%)532 aa. [US6020479-A,01-FEB-2000]AAY99961Human amino acid transporter61 . . . 568311/516 (60%)e−161ASCT1 protein - Homo sapiens, 53224 . . . 532378/516 (72%)aa. [US6074828-A, 13-JUN-2000]


[0542] In a BLAST search of public sequence datbases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34E.
191TABLE 34E Public BLASTP Results for NOV34aNOV34aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ15758Neutral amino acid transporter B(0)28 . . . 568 541/541 (100%)0.0(ATB(0)) (Sodium-dependent neutral 1 . . . 541 541/541 (100%)amino acid transporter type 2)(RD114/simian type D retrovirusreceptor) (Baboon M7 virus receptor) -Homo sapiens (Human), 541 aa.AAD09814Neutral amino acid transporter -28 . . . 568540/541 (99%)0.0Homo sapiens (Human), 541 aa. 1 . . . 541540/541 (99%)O19105Neutral amino acid transporter B(0)28 . . . 568464/542 (85%)0.0(ATB(0)) (Sodium-dependent neutral 1 . . . 541490/542 (89%)amino acid transporter type 2) -Oryctolagus cuniculus (Rabbit), 541aa.Q95JC7Neutral amino acid transporter B(0)28 . . . 568469/542 (86%)0.0(ATB(0)) (Sodium-dependent neutral 1 . . . 539490/542 (89%)amino acid transporter type 2) - Bostaurus (Bovine), 539 aa.Q8K3F0Na+-dependent amino acid28 . . . 568451/553 (81%)0.0transporter ASCT2 - Rattus 1 . . . 551478/553 (85%)norvegicus (Rat), 551 aa.


[0543] PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34F.
192TABLE 34FDomain Analysis of NOV34aIdentities/SimilaritiesPfamNOV34a Matchfor the MatchedExpectDomainRegionRegionValueSDF81 . . . 512194/465 (42%)2e−178371/465 (80%)



Example 35

[0544] The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.
193TABLE 35ANOV35 Sequence AnalysisSEQ ID NO: 3571612 bpNOV35a,ACATCATCACCACCATCACCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGCG97025-04DNAAATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGSequenceTGTAGATGCTGGAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 2ORF Stop: TAA at 1577SEQ ID NO: 358525 aaMW at 57984.6kDNOV35a,HHHHHHPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDCG97025-04ProteinINSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTSequenceAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 3591650 bpNOV35b,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATCG97025-01DNAGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATSequenceGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATCCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTCGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 3601520 aaMW at 57293.0kDNOV35b,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCCG97025-01ProteinMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNSequenceAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 3611593 bpNOV35c,CCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTTGAGATC254869578DNATATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATSequenceACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTCTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAACACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TAA at 1558SEQ ID NO: 362519 aaMW at 57161.8kDNOV35c,PGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCM254869578ProteinTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNASequenceVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 3631601 bpNOV35d,CACCGGTCTCACATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATT253174237DNAGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTASequenceGATGCTGGAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTCCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTCGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAACATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTCGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATCATCACCACCATCACTAAGCGGCCGGAAGORF Start: at 1ORF Stop: TAA at 1588SEQ ID NO: 364529 aaMW at 58496.2kDNOV35d,HRSHMPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDI253174237ProteinNSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTASequenceAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHHHHHHSEQ ID NO: 3651608 bpNOV35e,CCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGCGAATTCTTCCCCTTGAGATC256420363DNATATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATSequenceACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTCGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATCATCACCACCATCACTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TAA at 1573SEQ ID NO: 366524 aaMW at 57847.5kDNOV35e,PGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCM256420363ProteinTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNASequenceVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHHHHHHSEQ ID NO: 3671612 bpNOV35f,ACATCATCACCACCATCACCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGG255667064DNAAATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGSequenceTGTAGATGCTGGAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTCTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 2ORF Stop: TAA at 1577SEQ ID NO: 368525 aaMW at 57984.6kDNOV35f,HHHHHHPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDRED255667064ProteinINSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTSequenceAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLEFGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 3691564 bpNOV35g,CATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCCAAAAGATGTGGGAATTGTTGCCCTTGA228832739DNAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAASequenceGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAAATATCCTATAGTAGATGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAORF Start: ATG at 2ORF Stop: TAA at 1562SEQ ID NO: 370520 aaMW at 57293.0kDNOV35g,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLC228832739ProteinMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNSequenceAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 3711650 bpNOV35h,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATCG97025-02DNAGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATSequenceGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGACATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 372520 aaMW at 57293.0kDNOV35h,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCCG97025-02ProteinMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNSequenceAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNCHNYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO:3731564 bpNOV35i,CATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTTGACG97025-03DNAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAASequenceGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAORF Start: ATG at 2ORF Stop: TAA at 1562SEQ ID NO: 374520 aaMW at 57293.0kDNOV35iMPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCCG97025-03ProteinMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNSequenceAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLEFGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO:3751608 bpNOV35j,CCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTTGAGATCCG97025-05DNATATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATSequenceACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGCCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCCGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCACAGAOGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATACATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATCATCACCACCATCACTAAGCGGCCGCACTCGACCACCACCACCACCACCACORF Start: at 1ORF Stop: TAA at 1573SEQ ID NO: 376524 aaMW at 57847.5kDNOV35j,PGSLPLNAEACWPKDVGIVALEIYPPSQYVDQAELEKYDGVDACKYTIGLGQAKMGFCTDREDINSLCMCG97025-05ProteinTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNASequenceVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDPYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKSGNOKDFTLNDPGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNQNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHHHHH


[0545] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 35B.
194TABLE 35BComparison of NOV35a against NOV35b through NOV35j.Identities/NOV35a Residues/Similarities for theProtein SequenceMatch ResiduesMatched RegionNOV35b7 . . . 525519/519 (100%)2 . . . 520519/519 (100%)NOV35c7 . . . 525519/519 (100%)1 . . . 519519/519 (100%)NOV35d2 . . . 525521/524 (99%) 1 . . . 524521/524 (99%) NOV35e7 . . . 525519/519 (100%)1 . . . 519519/519 (100%)NOV35f1 . . . 525525/525 (100%)1 . . . 525525/525 (100%)NOV35g7 . . . 525519/519 (100%)2 . . . 520519/519 (100%)NOV35h7 . . . 525519/519 (100%)2 . . . 520519/519 (100%)NOV35i7 . . . 525519/519 (100%)2 . . . 520519/519 (100%)NOV35j7 . . . 525519/519 (100%)1 . . . 519519/519 (100%)


[0546] Further analysis of the NOV35a protein yielded the following properties shown in Table 35C.
195TABLE 35CProtein Sequence Properties NOV35aSignalP analysis:No Known Signal Sequence PredictedPSORT II analysis:PSG: a new signal peptide prediction methodN-region: length 0; pos.chg 0; neg.chg 0H-region: length 14; peak value 1.89PSG score: −2.51GvH: von Heijne's method for signal seq. recognitionGvH score (threshold: −2.1): −9.72possible cleavage site: between 19 and 20>>> Seems to have no N-terminal signal peptideALOM: Klein et al's method for TM region allocationInit position for calculation: 1Tentative number of TMS(s) for the threshold 0.5: 1Number of TMS(s) for threshold 0.5: 0PERIPHERAL Likelihood = 3.87 (at 375)ALOM score: −1.17 (number of TMSs: 0)MITDISC: discrimination of mitochondrial targeting seqR content:0Hyd Moment(75):2.33Hyd Moment(95):2.24G content:1D/E content:2S/T content:1Score:−8.20Gavel: prediction of cleavage sites for mitochondrial preseqcleavage site motif not foundNUCDISC: discrimination of nuclear localization signalspat4: KHRR (3) at 466pat7: nonebipartite: nonecontent of basic residues: 9.5%NLS Score: −0.29KDEL: ER retention motif in the C-terminus: noneER Membrane Retention Signals: noneSKL: peroxisomal targeting signal in the C-terminus: nonePTS2: 2nd peroxisomal targeting signal: foundKLREDTHHL at 433VAC: possible vacuolar targeting motif: noneRNA-binding motif: noneActinin-type actin-binding motif:type 1: nonetype 2: noneNMYR: N-myristoylation pattern: nonePrenylation motif: nonememYQRL: transport motif from cell surface to Golgi: noneTyrosines in the tail: noneDileucine motif in the tail: nonechecking 63 PROSITE DNA binding motifs: nonechecking 71 PROSITE ribosomal protein motifs: nonechecking 33 PROSITE prokaryotic DNA binding motifs: noneNNCN: Reinhardt's method for Cytoplasmic/Nuclear discriminationPrediction: cytoplasmicReliability: 76.7COIL: Lupas's algorithm to detect coiled-coil regionstotal: 0 residuesFinal Results (k = 9/23):47.8%: cytoplasmic34.8%: nuclear17.4%: mitochondrial>> prediction for CG97025-04 is cyt (k = 23)


[0547] A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35D.
196TABLE 35DGeneseq Results for NOV35aGeneseqProtein/Organism/LengthNOV35a Residues/Identities SimilaritiesExpectIdentifier[Patent #, Date]Match Residuesfor the Matched RegionValueAAW32222Avian7 . . . 525437/521 (83%)0.03-hydroxy-2-methylglutaryl-CoA2 . . . 522475/521 (90%)synthase - Aves, 522 aa.[US5668001-A, 16-SEP-1997]AAM79853Human protein SEQ ID NO 3499 -1 . . . 475316/475 (66%)0.0Homo sapiens, 518 aa.43 . . . 517 388/475 (81%)[WO200157190-A2, 09-AUG-2001]AAM78869Human protein SEQ ID NO 1531 -1 . . . 475316/475 (66%)0.0Homo sapiens, 508 aa.33 . . . 507 388/475 (81%)[WO200157190-A2, 09-AUG-2001]ABB66034Drosophila melanogaster polypeptide18 . . . 476 294/459 (64%)e−170SEQ ID NO 24894 - Drosophila5 . . . 459353/459 (76%)melanogaster, 465 aa.[WO200171042-A2, 27-SEP-2001]ABB60545Drosophila melanogaster polypeptide18 . . . 476 294/459 (64%)e−170SEQ ID NO 8427 - Drosophila5 . . . 459353/459 (76%)melanogaster, 465 aa.[WO200171042-A2, 27-SEP-2001]


[0548] In a BLAST search of public sequence datbases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35E.
197TABLE 35EPublic BLASTP Results for NOV35aProteinAccessionNOV35a Residues/Identities/SimilaritiesExpectNumberProtein/Organism/LengthMatch Residuesfor the Matched PortionValueQ01581Hydroxymethylglutaryl-CoA synthase,7 . . . 525519/519 (100%)0.0cytoplasmic (EC 4.1.3.5) (HMG-CoA2 . . . 520519/519 (100%)synthase) (3-hydroxy-3-methylglutarylcoenzyme A synthase) - Homo sapiens(Human), 520 aaS27197hydroxymethylglutaryl-CoA synthase7 . . . 523512/517 (99%)0.0(EC 4.1.3.5), cytosolic, fibroblast2 . . . 518513/517 (99%)isoform - human, 520 aa.Q8N995Hypothetical protein FLJ38173 -7 . . . 525508/519 (97%)0.0Homo sapiens (Human), 509 aa.2 . . . 509508/519 (97%)P17425Hydroxymethylglutaryl-CoA synthase,7 . . . 525492/519 (94%)0.0cytoplasmic (EC 4.1.3.5) (HMG-CoA2 . . . 520507/519 (96%)synthase) (3-hydroxy-3-methylglutarylcoenzyme A synthase) - Rattusnorvegicus (Rat), 520 aa.P13704Hydroxymethylglutaryl-CoA synthase,7 . . . 525494/519 (95%)0.0cytoplasmic (EC 4.1.3.5) (HMG-CoA2 . . . 520505/519 (97%)synthase) (3-hydroxy-3-methylglutarylcoenzyme A synthase) - Cricetulusgriseus (Chinese hamster), 520 aa.


[0549] PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35F.
198TABLE 35FDomain Analysis of NOV35aNOV35aIdentities/SimilaritiesExpectPfam DomainMatch Regionfor the Matched RegionValueHMG_CoA_synt18 . . . 474334/461 (72%)0434/461 (94%)



Example B: Sequencing Methodology and Identification of NOVX Clones

[0550] 1. GeneCalling™ Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., “Gene expression analysis by transcript profiling coupled to a gene database query” Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.


[0551] 2. SeqCalling™ Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0552] 3. PathCalling™ Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.


[0553] The laboratory screening was performed using the methods summarized below:


[0554] cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, Calif.) were then transferred from E.coli into a CuraGen Corporation proprietary yeast strain (disclosed in U.S. Pat. Nos. 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).


[0555] Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0556] Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106′ and YULH (U.S. Pat. Nos. 6,057,101 and 6,083,693).


[0557] 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.


[0558] 5. Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain—amygdala, brain—cerebellum, brain—hippocampus, brain—substantia nigra, brain—thalamus, brain—whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma—Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.


[0559] 6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.


[0560] The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.



Example C: Quantitative Expression Analysis of Clones in Various Cells and Tissues

[0561] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoimmune/autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[0562] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0563] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.


[0564] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1× TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.


[0565] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range=58°-60° C., primer optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[0566] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[0567] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1× TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.


[0568] Panels 1, 1.1, 1.2, and 1.3D


[0569] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[0570] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[0571] ca.=carcinoma,


[0572] *=established from metastasis,


[0573] met=metastasis,


[0574] s cell var=small cell variant,


[0575] non-s=non-sm=non-small,


[0576] squam=squamous,


[0577] pl. eff=pl effusion=pleural effusion,


[0578] glio=glioma,


[0579] astro=astrocytoma, and


[0580] neuro=neuroblastoma.


[0581] General_screening_panel_v1.4, v1.5 and v1.6


[0582] The plates for Panels 1.4, v1.5 and v1.6 include two control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4, v1.5 and v1.6 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, v1.5 and v1.6 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, v1.5 and v1.6 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.


[0583] Panels 2D, 2.2, 2.3 and 2.4


[0584] The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include two control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics. The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen. General oncology screening panel_v2.4 is an updated version of Panel 2D.


[0585] HASS Panel v 1.0


[0586] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.


[0587] ARDAIS Panel v 1.0


[0588] The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have “matched margins” obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue) in the results below. The tumor tissue and the “matched margins” are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.


[0589] Panels 3D and 3.1


[0590] The plates of Panels 3D and 3.1 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D and 1.3D are of the most common cell lines used in the scientific literature.


[0591] Oncology_cell_line_screening_panel_v3.2 is an updated version of Panel 3. The cell lines in panel 3D, 3.1, 1.3D and oncology_cell_line_screening_panel_v3.2 are of the most common cell lines used in the scientific literature.


[0592] Panels 4D, 4R, and 4.1D


[0593] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[0594] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[0595] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-2 μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10−5M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.


[0596] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[0597] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and plated at 106 cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3 ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[0598] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24, 48 and 72 hours.


[0599] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th1, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[0600] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×105 cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×105 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[0601] For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, {fraction (1/10)} volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8 μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with {fraction (1/10)} volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at −80° C.


[0602] AI_comprehensive panel_v1.0


[0603] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0604] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0605] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0606] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0607] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-1anti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0608] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0609] AI=Autoimmunity


[0610] Syn=Synovial


[0611] Normal=No apparent disease


[0612] Rep22/Rep20=individual patients


[0613] RA=Rheumatoid arthritis


[0614] Backus=From Backus Hospital


[0615] OA=Osteoarthritis


[0616] (SS) (BA) (MF)=Individual patients


[0617] Adj=Adjacent tissue


[0618] Match control=adjacent tissues


[0619] -M=Male


[0620] -F=Female


[0621] COPD=Chronic obstructive pulmonary disease


[0622] Panels 5D and 5I


[0623] The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[0624] In the Gestational Diabetes study subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:
199Patient 2Diabetic Hispanic, overweight, not on insulinPatient 7-9Nondiabetic Caucasian and obese (BMI>30)Patient 10Diabetic Hispanic, overweight, on insulinPatient 11Nondiabetic African American and overweightPatient 12Diabetic Hispanic on insulin


[0625] Adipocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2, 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[0626] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[0627] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[0628] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[0629] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures.


[0630] All samples were processed at CuraGen to produce single stranded cDNA. RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0631] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[0632] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[0633] GO Adipose=Greater Omentum Adipose


[0634] SK=Skeletal Muscle


[0635] UT=Uterus


[0636] PL=Placenta


[0637] AD=Adipose Differentiated


[0638] AM=Adipose Midway Differentiated


[0639] U=Undifferentiated Stem Cells


[0640] Panel CNSD.01


[0641] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0642] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[0643] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0644] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[0645] PSP=Progressive supranuclear palsy


[0646] Sub Nigra=Substantia nigra


[0647] Glob Palladus=Globus palladus


[0648] Temp Pole=Temporal pole


[0649] Cing Gyr=Cingulate gyrus


[0650] BA 4=Brodman Area 4


[0651] Panel CNS_Neurodegeneration_V1.0


[0652] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0653] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3=severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[0654] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[0655] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[0656] Control=Control brains; patient not demented, showing no neuropathology


[0657] Control (Path)=Control brains; pateint not demented but showing sever AD-like pathology


[0658] SupTemporal Ctx=Superior Temporal Cortex


[0659] Inf Temporal Ctx=Inferior Temporal Cortex


[0660] A. CG101719-04 and CG101719-05: Fibroblast Growth Factor Receptor 1 IIIb-Like Protein.


[0661] Expression of gene CG101719-04 was assessed using the primer-probe sets Ag4049 and Ag5848, described in Tables AA and AB. Results of the RTQ-PCR runs are shown in Tables AC, AD, AE, AF, AG, AH, AI, AJ and AK.
200TABLE AAProbe Name Ag4049StartSEQ IDPrimersLengthPositionNoForward5′-gccaagacagtgaagttcaaat-3′22626482ProbeTET-5′-agtgggaccccaaaccccacact-3′-TAMRA23656483Reverse5′-aggtttgaattctttgccattt-3′22691484


[0662]

201






TABLE AB










Probe Name Ag5848
















Start
SEQ ID



Primers
Sequence
Length
Position
No















Forward
5′-ctaaagcacatcgaggtgaatg-3′
22
983
485






Probe
TET-5′-agattggcccagacaacctgccttat-3′-TAMRA
26
1011
486





Reverse
5′-agctattaatccccgaatgct-3′
21
1050
487










[0663]

202





TABLE AC










AI.05 chondrosarcoma











Rel. Exp.(%)




Ag5848, Run



Tissue Name
306518773














138353_PMA (18hrs)
21.5



138352_IL-1beta + Oncostatin M
41.8



138351_IL-1beta+TNFa (18hrs)
93.3



138350_IL-1beta (18hrs)
86.5



138354_Untreated-complete
7.7



medium (18hrs)



138347_PMA (6hrs)
39.8



138346_IL-1beta + Oncostatin M
76.3



138345_IL-1beta+TNFa (6hrs)
62.0



138344_IL-1beta (6hrs)
40.3



138348_Untreated-complete
36.1



medium (6hrs)



138349_Untreated-serum starved
100.0



(6hrs)











[0664]

203





TABLE AD










AI_comprehensive_panel_v1.0










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag4049,
Ag5848,



Run
Run


Tissue Name
257315370
257315389












110967 COPD-F
27.7
2.2


110980 COPD-F
17.2
1.0


110968 COPD-M
14.1
0.0


110977 COPD-M
44.4
6.3


110989 Emphysema-F
22.1
6.8


110992 Emphysema-F
7.2
3.7


110993 Emphysema-F
21.6
0.9


110994 Emphysema-F
12.7
2.3


110995 Emphysema-F
15.5
5.8


110996 Emphysema-F
3.2
1.1


110997 Asthma-M
6.7
1.0


111001 Asthma-F
17.9
0.0


111002 Asthma-F
16.7
5.6


111003 Atopic Asthma-F
12.7
0.0


111004 Atopic Asthma-F
13.0
0.0


111005 Atopic Asthma-F
7.9
1.1


111006 Atopic Asthma-F
2.4
0.0


111417 Allergy-M
9.7
1.5


112347 Allergy-M
0.4
0.0


112349 Normal Lung-F
0.2
0.0


112357 Normal Lung-F
28.9
5.4


112354 Normal Lung-M
12.9
1.6


112374 Crohns-F
31.9
5.3


112389 Match Control Crohns-F
25.0
2.3


112375 Crohns-F
28.9
5.4


112732 Match Control Crohns-F
3.1
1.1


112725 Crohns-M
3.7
1.0


112387 Match Control Crohns-M
25.0
2.3


112378 Crohns-M
0.2
0.0


112390 Match Control Crohns-M
28.3
6.6


112726 Crohns-M
12.1
1.3


112731 Match Control Crohns-M
10.7
3.5


112380 Ulcer Col-F
13.3
2.0


112734 Match Control Ulcer Col-F
8.3
6.2


112384 Ulcer Col-F
27.9
6.0


112737 Match Control Ulcer Col-F
6.4
0.0


112386 Ulcer Col-F
16.2
1.5


112738 Match Control Ulcer Col-F
3.6
0.0


112381 Ulcer Col-M
1.6
0.0


112735 Match Control Ulcer Col-M
16.4
0.0


112382 Ulcer Col-M
16.6
2.1


112394 Match Control Ulcer Col-M
6.8
0.0


112383 Ulcer Col-M
7.7
3.2


112736 Match Control Ulcer Col-M
10.5
1.3


112423 Psoriasis-F
13.2
0.0


112427 Match Control Psoriasis-F
38.4
6.7


112418 Psoriasis-M
16.5
1.8


112723 Match Control Psoriasis-M
13.1
0.0


112419 Psoriasis-M
31.4
3.3


112424 Match Control Psoriasis-M
13.0
1.4


112420 Psoriasis-M
30.6
3.2


112425 Match Control Psoriasis-M
30.1
5.6


104689 (MF) OA Bone-Backus
79.6
31.6


104690 (MF) Adj “Normal” Bone-Backus
53.2
5.1


104691 (MF) OA Synovium-Backus
43.8
10.2


104692 (BA) OA Cartilage-Backus
63.3
9.4


104694 (BA) OA Bone-Backus
64.6
20.7


104695 (BA) Adj “Normal” Bone-Backus
87.1
18.7


104696 (BA) OA Synovium-Backus
36.9
7.0


104700 (SS) OA Bone-Backus
56.3
14.4


104701 (SS) Adj “Normal” Bone-Backus
100.0
25.0


104702 (SS) OA Synovium-Backus
62.9
13.2


117093 OA Cartilage Rep7
12.6
3.2


112672 OA Bone5
27.9
5.0


112673 OA Synovium5
8.4
2.0


112674 OA Synovial Fluid cells5
8.8
0.0


117100 OA Cartilage Rep14
7.2
0.0


112756 OA Bone9
51.1
100.0


112757 OA Synovium9
4.3
1.4


112758 OA Synovial Fluid Cells9
10.8
0.0


117125 RA Cartilage Rep2
45.4
2.1


113492 Bone2 RA
10.8
2.9


113493 Synovium2 RA
2.7
2.0


113494 Syn Fluid Cells RA
7.0
2.4


113499 Cartilage4 RA
7.0
4.2


113500 Bone4 RA
7.1
1.9


113501 Synovium4 RA
4.2
3.2


113502 Syn Fluid Cells4 RA
2.5
2.3


113495 Cartilage3 RA
5.7
4.9


113496 Bone3 RA
7.7
3.7


113497 Synovium3 RA
3.7
3.0


113498 Syn Fluid Cells3 RA
9.0
4.9


117106 Normal Cartilage Rep20
14.4
0.0


113663 Bone3 Normal
1.3
0.0


113664 Synovium3 Normal
0.1
0.0


113665 Syn Fluid Cells3 Normal
1.0
0.0


117107 Normal Cartilage Rep22
8.9
1.3


113667 Bone4 Normal
7.1
2.7


113668 Synovium4 Normal
7.7
2.5


113669 Syn Fluid Cells4 Normal
13.8
1.3










[0665]

204





TABLE AE










CNS neurodegeneration v1.0











Rel. Exp.(%)




Ag4049, Run



Tissue Name
214292263














AD 1 Hippo
16.5



AD 2 Hippo
25.5



AD 3 Hippo
10.3



AD 4 Hippo
13.0



AD 5 hippo
54.3



AD 6 Hippo
100.0



Control 2 Hippo
25.9



Control 4 Hippo
22.7



Control (Path) 3 Hippo
13.4



AD 1 Temporal Ctx
15.1



AD 2 Temporal Ctx
25.3



AD 3 Temporal Ctx
8.4



AD 4 Temporal Ctx
18.9



AD 5 Inf Temporal Ctx
58.6



AD 5 Sup Temporal Ctx
57.4



AD 6 Inf Temporal Ctx
82.9



AD 6 Sup Temporal Ctx
56.6



Control 1 Temporal Ctx
10.4



Control 2 Temporal Ctx
16.4



Control 3 Temporal Ctx
10.8



Control 4 Temporal Ctx
14.1



Control (Path) 1 Temporal Ctx
33.0



Control (Path) 2 Temporal Ctx
23.5



Control (Path) 3 Temporal Ctx
8.0



Control (Path) 4 Temporal Ctx
19.9



AD 1 Occipital Ctx
12.4



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
9.9



AD 4 Occipital Ctx
16.2



AD 5 Occipital Ctx
29.3



AD 6 Occipital Ctx
27.0



Control 1 Occipital Ctx
7.6



Control 2 Occipital Ctx
29.5



Control 3 Occipital Ctx
17.6



Control 4 Occipital Ctx
12.7



Control (Path) 1 Occipital Ctx
33.7



Control (Path) 2 Occipital Ctx
8.3



Control (Path) 3 Occipital Ctx
4.5



Control (Path) 4 Occipital Ctx
11.6



Control 1 Parietal Ctx
8.4



Control 2 Parietal Ctx
33.2



Control 3 Parietal Ctx
13.7



Control (Path) 1 Parietal Ctx
37.6



Control (Path) 2 Parietal Ctx
19.5



Control (Path) 3 Parietal Ctx
8.2



Control (Path) 4 Parietal Ctx
26.1











[0666]

205





TABLE AF










General screening panel v1.4











Rel. Exp.(%)




Ag4049, Run



Tissue Name
218535058














Adipose
12.2



Melanoma* Hs688(A).T
27.0



Melanoma* Hs688(B).T
29.5



Melanoma* M14
21.0



Melanoma* LOXIMVI
17.4



Melanoma* SK-MEL-5
8.8



Squamous cell carcinoma SCC-4
0.1



Testis Pool
10.5



Prostate ca.* (bone met) PC-3
10.4



Prostate Pool
7.9



Placenta
12.6



Uterus Pool
5.6



Ovarian ca. OVCAR-3
5.8



Ovarian ca. SK-OV-3
19.3



Ovarian ca. OVCAR-4
4.0



Ovarian ca. OVCAR-5
5.4



Ovarian ca. IGROV-1
8.2



Ovarian ca. OVCAR-8
9.3



Ovary
10.7



Breast ca. MCF-7
1.5



Breast ca. MDA-MB-231
29.1



Breast ca. BT 549
52.5



Breast ca. T47D
12.7



Breast ca. MDA-N
0.0



Breast Pool
12.1



Trachea
12.7



Lung
3.2



Fetal Lung
38.7



Lung ca. NCI-N417
0.1



Lung ca. LX-1
10.4



Lung ca. NCI-H146
9.1



Lung ca. SHP-77
0.2



Lung ca. A549
16.8



Lung ca. NCI-H526
0.2



Lung ca. NCI-H23
6.6



Lung ca. NCI-H460
2.3



Lung ca. HOP-62
7.9



Lung ca. NCI-H522
9.5



Liver
0.3



Fetal Liver
2.0



Liver ca. HepG2
3.3



Kidney Pool
23.3



Fetal Kidney
20.2



Renal ca. 786-0
5.9



Renal ca. A498
9.1



Renal ca. ACHN
27.9



Renal ca. UO-31
3.4



Renal ca. TK-10
9.7



Bladder
12.0



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
8.2



Colon ca.* (SW480 met) SW620
10.5



Colon ca. HT29
0.0



Colon ca. HCT-116
13.4



Colon ca. CaCo-2
5.7



Colon cancer tissue
5.6



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.6



Colon Pool
12.8



Small Intestine Pool
15.9



Stomach Pool
6.9



Bone Marrow Pool
10.9



Fetal Heart
12.0



Heart Pool
7.5



Lymph Node Pool
17.3



Fetal Skeletal Muscle
19.1



Skeletal Muscle Pool
6.7



Spleen Pool
1.9



Thymus Pool
9.1



CNS cancer (glio/astro) U87-MG
31.6



CNS cancer (glio/astro) U-118-MG
63.7



CNS cancer (neuro;met) SK-N-AS
17.3



CNS cancer (astro) SF-539
33.9



CNS cancer (astro) SNB-75
51.1



GNS cancer (glio) SNB-19
7.6



CNS cancer (glio) SF-295
100.0



Brain (Amygdala) Pool
3.4



Brain (cerebellum)
82.4



Brain (fetal)
6.1



Brain (Hippocampus) Pool
6.5



Cerebral Cortex Pool
5.4



Brain (Substantia nigra) Pool
5.0



Brain (Thalamus) Pool
6.7



Brain (whole)
6.7



Spinal Cord Pool
8.7



Adrenal Gland
5.0



Pituitary gland Pool
4.1



Salivary Gland
3.3



Thyroid (female)
2.0



Pancreatic ca CAPAN2
0.8



Pancreas Pool
15.6











[0667]

206





TABLE AG










General screening panel v1.5











Rel. Exp.(%)




Ag5848, Run



Tissue Name
246273485














Adipose
1.4



Melanoma* Hs688(A).T
4.5



Melanoma* Hs688(B).T
3.6



Melanoma* M14
4.1



Melanoma* LOXIMVI
9.9



Melanoma* SK-MEL-5
5.5



Squamous cell carcinoma SCC-4
1.4



Testis Pool
0.6



Prostate ca.* (bone met) PC-3
2.5



Prostate Pool
4.0



Placenta
2.6



Uterus Pool
0.1



Ovarian ca. OVCAR-3
11.8



Ovarian ca. SK-OV-3
11.3



Ovarian ca. OVCAR-4
2.2



Ovarian ca. OVCAR-5
23.5



Ovarian ca. IGROV-1
8.0



Ovarian ca. OVCAR-8
3.6



Ovary
2.0



Breast ca. MCF-7
3.6



Breast ca. MDA-MB-231
14.0



Breast ca. BT 549
4.0



Breast ca. T47D
8.8



Breast ca. MDA-N
0.0



Breast Pool
1.3



Trachea
1.6



Lung
0.3



Fetal Lung
8.2



Lung ca. NCI-N417
0.0



Lung ca. LX-1
15.4



Lung ca. NCI-H146
6.4



Lung ca. SHP-77
0.4



Lung ca. A549
13.7



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.9



Lung ca. NCI-H460
0.6



Lung ca. HOP-62
2.7



Lung ca. NCI-H522
26.8



Liver
0.0



Fetal Liver
0.3



Liver ca. HepG2
6.3



Kidney Pool
3.8



Fetal Kidney
3.4



Renal ca. 786-0
2.0



Renal ca. A498
4.5



Renal ca. ACHN
12.6



Renal ca. UO-31
0.8



Renal ca. TK-10
27.9



Bladder
6.0



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
71.2



Colon ca.* (SW480 met) SW620
11.2



Colon ca. HT29
0.0



Colon ca. HCT-116
53.6



Colon ca. CaCo-2
6.9



Colon cancer tissue
1.1



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.1



Colon Pool
1.4



Small Intestine Pool
0.8



Stomach Pool
2.0



Bone Marrow Pool
1.1



Fetal Heart
0.8



Heart Pool
0.6



Lymph Node Pool
2.2



Fetal Skeletal Muscle
1.5



Skeletal Muscle Pool
6.7



Spleen Pool
0.1



Thymus Pool
4.9



CNS cancer (glio/astro) U87-MG
18.4



CNS cancer (glio/astro) U-118-MG
88.9



CNS cancer (neuro;met) SK-N-AS
15.5



CNS cancer (astro) SF-539
5.9



CNS cancer (astro) SNB-75
17.4



CNS cancer (glio) SNB-19
4.9



CNS cancer (glio) SF-295
100.0



Brain (Amygdala) Pool
0.2



Brain (cerebellum)
22.2



Brain (fetal)
1.4



Brain (Hippocampus) Pool
0.2



Cerebral Cortex Pool
0.1



Brain (Substantia nigra) Pool
1.0



Brain (Thalamus) Pool
0.8



Brain (whole)
0.8



Spinal Cord Pool
1.3



Adrenal Gland
1.4



Pituitary gland Pool
1.3



Salivary Gland
2.9



Thyroid (female)
0.5



Pancreatic ca. CAPAN2
0.6



Pancreas Pool
6.5











[0668]

207





TABLE AH










Oncology cell line screening panel v3.2









Rel. Exp.(%)



Ag4049, Run


Tissue Name
258170122











94905_Daoy_Medulloblastoma/Cerebellum_sscDNA
2.2


94906_TE671_Medulloblastom/Cerebellum_sscDNA
11.8


94907_D283
2.6


Med_Medulloblastoma/Cerebellum_sscDNA


94908_PFSK-1_Primitive
33.0


Neuroectodermal/Cerebellum_sscDNA


94909_XF-498_CNS_sscDNA
3.3


94910_SNB-78_CNS/glioma_sscDNA
21.2


94911_SF-268_CNS/glioblastoma_sscDNA
19.2


94912_T98G_Glioblastoma_sscDNA
9.5


96776_SK-N-SH_Neuroblastoma
5.6


(metastasis)_sscDNA


94913_SF-295_CNS/glioblastoma_sscDNA
13.4


132565_NT2 pool_sscDNA
45.1


94914_Cerebellum_sscDNA
25.3


96777_Cerebellum_sscDNA
27.9


94916_NCI-H292_Mucoepidermoid lung
0.4


carcinoma_sscDNA


94917_DMS-114_Small cell lung cancer_sscDNA
16.8


94918_DMS-79_Small cell lung
1.4


cancer/neuroendocrine_sscDNA


94919_NCI-H146_Small cell lung
22.8


cancer/neuroendocrine_sscDNA


94920_NCI-H526_Small cell lung
0.9


cancer/neuroendocrine_sscDNA


94921_NCI-N417_Small cell lung
0.5


cancer/neuroendocrine_sscDNA


94923_NCI-H82_Small cell lung
6.0


cancer/neuroendocrine_sscDNA


94924_NCI-H157_Squamous cell lung
4.4


cancer (metastasis)_sscDNA


94925_NCI-H1155_Large cell lung
3.2


cancer/neuroendocrine_sscDNA


94926_NCI-H1299_Large cell lung
13.5


cancer/neuroendocrine_sscDNA


94927_NCI-H727_Lung carcinoid_sscDNA
4.9


94928_NCI-UMC-11_Lung carcinoid_sscDNA
22.1


94929_LX-1_Small cell lung cancer_sscDNA
6.3


94930_Colo-205_Colon cancer_sscDNA
0.0


94931_KM12_Colon cancer_sscDNA
0.0


94932_KM20L2_Colon cancer_sscDNA
0.0


94933_NCI-H716_Colon cancer_sscDNA
0.1


94935_SW-48_Colon adenocarcinoma_sscDNA
1.3


94936_SW1116_Colon adenocarcinoma_sscDNA
0.0


94937_LS 174T_Colon adenocarcinoma_sscDNA
0.5


94938_SW-948_Colon adenocarcinoma_sscDNA
0.0


94939_SW-480_Colon adenocarcinoma_sscDNA
0.0


94940_NCI-SNU-5_Gastric carcinoma_sscDNA
7.6


112197_KATO III_Stomach_sscDNA
0.0


94943_NCI-SNU-16_Gastric carcinoma_sscDNA
11.0


94944_NCI-SNU-1_Gastric carcinoma_sscDNA
0.0


94946_RF-1_Gastric adenocarcinoma_sscDNA
1.8


94947_RF-48_Gastric adenocarcinoma_sscDNA
2.1


96778_MKN-45_Gastric carcinoma_sscDNA
4.4


94949_NCI-N87_Gastric carcinoma_sscDNA
0.0


94951_OVCAR-5_Ovarian carcinoma_sscDNA
3.4


94952_RL95-2_Uterine carcinoma_sscDNA
0.0


94953_HelaS3_Cervical adenocarcinoma_sscDNA
5.0


94954_Ca Ski_Cervical epidermoid
3.1


carcinoma (metastasis)_sscDNA


94955_ES-2_Ovarian clear cell carcinoma_sscDNA
9.2


94957_Ramos/6h stim_Stimulated
0.0


with PMA/ionomycin 6h_sscDNA


94958_Ramos/14h stim_Stimulated
0.2


with PMA/ionomycin 14h_sscDNA


94962_MEG-01_Chronic myelogenous leukemia
6.3


(megokaryoblast)_sscDNA


94963_Raji_Burkitt's lymphoma_sscDNA
0.0


94964_Daudi_Burkitt's lymphoma_sscDNA
0.6


94965_U266_B-cell plasmacytoma/myeloma_sscDNA
0.3


94968_CA46_Burkitt's lymphoma_sscDNA
0.0


94970_RL_non-Hodgkin's B-cell lymphoma_sscDNA
0.0


94972_JM1_pre-B-cell lymphoma/leukemia_sscDNA
0.2


94973_Jurkat_T cell leukemia_sscDNA
3.7


94974_TF-1_Erythroleukemia_sscDNA
1.8


94975_HUT 78_T-cell lymphoma_sscDNA
11.7


94977_U937_Histiocytic lymphoma_sscDNA
0.4


94980_KU-812_Myelogenous leukemia_sscDNA
0.0


94981_769-P_Clear cell renal carcinoma_sscDNA
18.7


94983_Caki-2_Clear cell renal carcinoma_sscDNA
6.0


94984_SW 839_Clear cell renal carcinoma_sscDNA
34.4


94986_G401_Wilms′ tumor_sscDNA
11.4


126768_293 cells_sscDNA
2.9


94987_Hs766T_Pancreatic
13.0


carcinoma (LN metastasis)_sscDNA


94988_CAPAN-1_Pancreatic adenocarcinoma
0.0


(liver metastasis)_sscDNA


94989_SU86.86_Pancreatic carcinoma (liver
1.4


metastasis)_sscDNA


94990_BxPC-3_Pancreatic adenocarcinoma_sscDNA
0.0


94991_HPAC_Pancreatic adenocarcinoma_sscDNA
0.4


94992_MIA PaCa-2_Pancreatic carcinoma_sscDNA
0.8


94993_CFPAC-1_Pancreatic ductal
4.5


adenocarcinoma_sscDNA


94994_PANC-1_Pancreatic epithelioid ductal
7.0


carcinoma_sscDNA


94996_T24_Bladder carcinma
1.8


(transitional cell)_sscDNA


94997_5637_Bladder carcinoma_sscDNA
1.7


94998_HT-1197_Bladder carcinoma_sscDNA
4.6


94999_UM-UC-3_Bladder carcinma
6.1


(transitional cell)_sscDNA


95000_A204_Rhabdomyosarcoma_sscDNA
100.0


95001_HT-1080_Fibrosarcoma_sscDNA
9.2


95002_MG-63_Osteosarcoma (bone)_sscDNA
22.7


95003_SK-LMS-1_Leiomyosarcom a (vulva)_sscDNA
23.5


95004_SJRH30_Rhabdomyosarcom
2.7


a (met to bone marrow)_sscDNA


95005_A431_Epidermoid carcinoma_sscDNA
0.0


95007_WM266-4_Melanoma_sscDNA
4.0


112195_DU 145_Prostate_sscDNA
11.3


95012_MDA-MB-468_Breast
1.5


adenocarcinoma_sscDNA


112196_SSC-4_Tongue_sscDNA
0.4


112194_SSC-9_Tongue_sscDNA
0.1


112191_SSC-15_Tongue_sscDNA
0.0


95017_CAL 27_Squamous cell
0.0


carcinoma of tongue_sscDNA










[0669]

208





TABLE AI










Panel 4.1D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag4049,
Ag5848,



Run
Run


Tissue Name
171619851
246921472












Secondary Th1 act
8.2
39.8


Secondary Th2 act
4.7
19.5


Secondary Tr1 act
4.0
2.8


Secondary Th1 rest
2.0
0.0


Secondary Th2 rest
3.4
7.1


Secondary Tr1 rest
5.9
0.0


Primary Th1 act
5.8
0.0


Primary Th2 act
3.5
19.9


Primary Tr1 act
4.7
14.2


Primary Th1 rest
5.3
1.5


Primary Th2 rest
3.9
8.1


Primary Tr1 rest
2.0
0.0


CD45RA CD4 lymphocyte act
28.1
31.0


CD45RO CD4 lymphocyte act
3.5
6.6


CD8 lymphocyte act
5.4
3.1


Secondary CD8 lymphocyte rest
0.5
0.0


Secondary CD8 lymphocyte act
6.7
6.0


CD4 lymphocyte none
0.8
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
6.3
0.0


LAK cells rest
2.7
3.5


LAK cells IL-2
2.5
6.8


LAK cells IL-2 + IL-12
2.1
0.0


LAK cells IL-2 + IFN gamma
1.9
0.0


LAK cells IL-2 + IL-18
3.2
0.0


LAK cells PMA/ionomycin
10.6
46.0


NK Cells IL-2 rest
4.7
18.0


Two Way MLR 3 day
0.9
0.0


Two Way MLR 5 day
4.5
3.7


Two Way MLR 7 day
15.1
0.0


PBMC rest
0.8
2.0


PBMC PWM
1.7
3.9


PBMC PHA-L
6.6
6.4


Ramos (B cell) none
0.0
0.0


Ramos (B cell) ionomycin
0.0
0.0


B lymphocytes PWM
2.9
6.4


B lymphocytes CD40L and IL-4
2.0
9.9


EOL-1 dbcAMP
1.8
2.3


EOL-1 dbcAMP PMA/ionomycin
1.6
0.0


Dendritic cells none
2.5
1.6


Dendritic cells LPS
1.9
0.0


Dendritic cells anti-CD40
6.5
0.0


Monocytes rest
0.2
0.0


Monocytes LPS
0.8
4.3


Macrophages rest
12.6
5.8


Macrophages LPS
1.9
4.4


HUVEC none
13.3
7.0


HUVEC starved
21.6
29.1


HUVEC IL-1beta
13.2
8.1


HUVEC IFN gamma
16.4
39.0


HUVEC TNF alpha + IFN gamma
8.2
0.0


HUVEC TNF alpha + IL4
8.1
0.0


HUVEC IL-11
12.9
7.9


Lung Microvascular EC none
14.7
22.5


Lung Microvascular EC TNFalpha +
5.4
3.1


IL-1beta


Microvascular Dermal EC none
12.3
0.0


Microsvasular Dermal EC TNFalpha +
4.3
6.7


IL-1beta


Bronchial epithelium TNFalpha +
0.9
29.1


IL1beta


Small airway epithelium none
1.3
13.6


Small airway epithelium TNFalpha +
0.3
10.3


IL-1beta


Coronery artery SMC rest
9.7
10.8


Coronery artery SMC TNFalpha +
11.0
4.3


IL-1beta


Astrocytes rest
26.4
19.1


Astrocytes TNFalpha + IL-1beta
28.5
25.9


KU-812 (Basophil) rest
0.0
2.6


KU-812 (Basophil) PMA/ionomycin
0.3
1.7


CCD1106 (Keratinocytes) none
1.1
12.1


CCD1106 (Keratinocytes) TNFalpha +
0.2
6.7


IL-1beta


Liver cirrhosis
7.2
0.0


NCI-H292 none
0.1
0.0


NCI-H292 IL-4
0.3
0.0


NCI-H292 IL-9
0.4
0.0


NCI-H292 IL-13
1.1
0.0


NCI-H292 IFN gamma
0.4
2.1


HPAEC none
18.0
5.2


HPAEC TNF alpha + IL-1 beta
9.9
25.5


Lung fibroblast none
64.2
48.6


Lung fibroblast TNF alpha + IL-1
62.9
69.3


beta


Lung fibroblast IL-4
52.5
16.8


Lung fibroblast IL-9
100.0
39.2


Lung fibroblast IL-13
57.8
5.9


Lung fibroblast IFN gamma
76.3
51.8


Dermal fibroblast CCD1070 rest
42.3
51.4


Dermal fibroblast CCD1070 TNF alpha
49.3
94.6


Dermal fibroblast CCD1070 IL-1 beta
34.6
27.4


Dermal fibroblast IFN gamma
46.3
47.6


Dermal fibroblast IL-4
63.3
100.0


Dermal Fibroblasts rest
43.2
30.4


Neutrophils TNFa + LPS
3.3
0.0


Neutrophils rest
6.0
0.0


Colon
6.3
0.0


Lung
9.5
0.0


Thymus
12.0
1.9


Kidney
8.7
12.1










[0670]

209





TABLE AJ










Panel 5D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag449,
Ag5848,



Run
Run


Tissue Name
257488285
257488388












97457_Patient-02go_adipose
29.9
17.1


97476_Patient-07sk_skeletal muscle
17.3
19.5


97477_Patient-07ut_uterus
33.7
5.2


97478_Patient-07pl_placenta
18.8
0.0


97481_Patient-08sk_skeletal muscle
18.0
15.8


97482_Patient-08ut_uterus
22.5
0.0


97483_Patient-08pl_placenta
10.2
0.0


97486_Patient-09sk_skeletal muscle
4.1
4.7


97487_Patient-09ut_uterus
36.3
8.7


97488_Patient-09pl_placenta
12.4
13.5


97492_Patient-10ut_uterus
42.9
19.9


97493_Patient-10pl_placenta
16.8
17.0


97495_Patient-11go_adipose
22.5
16.5


97496_Patient-11sk_skeletal muscle
11.6
0.0


97497_Patient-11ut_uterus
67.4
8.8


97498_Patient-11pl_placenta
13.3
9.5


97500_Patient-12go_adipose
33.0
16.5


97501_Patient-12sk_skeletal muscle
29.3
12.3


97502_Patient-12ut_uterus
59.0
18.8


97503_Patient-12pl_placenta
7.8
0.0


94721_Donor 2 U - A_Mesenchymal Stem
39.0
12.3


Cells


94722_Donor 2 U - B_Mesenchymal Stem
33.7
21.6


Cells


94723_Donor 2 U - C_Mesenchymal Stem
33.2
19.9


Cells


94709_Donor 2 AM - A_adipose
53.2
30.8


94710_Donor 2 AM - B_adipose
33.4
3.2


94711_Donor 2 AM - C_adipose
26.8
21.2


94712_Donor 2 AD - A_adipose
66.4
88.9


94713_Donor 2 AD - B_adipose
100.0
87.7


94714_Donor 2 AD - C_adipose
88.9
50.3


94742_Donor 3 U - A_Mesenchymal Stem
26.2
19.6


Cells


94743_Donor 3 U - B_Mesenchymal Stem
24.1
19.8


Cells


94730_Donor 3 AM - A_adipose
62.9
35.4


94731_Donor 3 AM - B_adipose
32.5
25.7


94732_Donor 3 AM - C_adipose
33.7
41.2


94733_Donor 3 AD - A_adipose
77.9
49.7


94734_Donor 3 AD - B_adipose
49.0
45.1


94735_Donor 3 AD - C_adipose
58.2
64.6


77138_Liver_HepG2 untreated
12.2
16.2


73556_Heart_Cardiac stromal cells
14.8
0.0


(primary)


81735_Small Intestine
29.3
6.2


72409_Kidney_Proximal Convoluted
11.4
23.0


Tubule


82685_Small intestine_Duodenum
2.2
0.0


90650_Adrenal_Adrenocortical adenoma
1.7
0.0


72410_Kidney_HRCE
75.8
100.0


72411_Kidney_HRE
27.4
31.2


73139_Uterus_Uterine smooth muscle
17.3
0.0


cells










[0671]

210





TABLE AK










general oncology screening panel v 2.4











Rel. Exp.(%)




Ag4049, Run



Tissue Name
268362940














Colon cancer 1
6.7



Colon NAT 1
11.1



Colon cancer 2
6.7



Colon NAT 2
3.5



Colon cancer 3
8.5



Colon NAT 3
14.8



Colon malignant cancer 4
10.5



Colon NAT 4
3.4



Lung cancer 1
9.0



Lung NAT 1
1.7



Lung cancer 2
47.3



Lung NAT 2
3.0



Squamous cell carcinoma 3
16.6



Lung NAT 3
1.3



Metastatic melanoma 1
23.7



Melanoma 2
7.5



Melanoma 3
4.4



Metastatic melanoma 4
59.9



Metastatic melanoma 5
80.7



Bladder cancer 1
2.4



Bladder NAT 1
0.0



Bladder cancer 2
3.0



Bladder NAT 2
1.6



Bladder NAT 3
0.7



Bladder NAT 4
12.9



Prostate adenocarcinoma 1
43.5



Prostate adenocarcinoma 2
3.4



Prostate adenocarcinoma 3
6.0



Prostate adenocarcinoma 4
6.7



Prostate NAT 5
7.1



Prostate adenocarcinoma 6
1.7



Prostate adenocarcinoma 7
5.7



Prostate adenocarcinoma 8
1.5



Prostate adenocarcinoma 9
25.5



Prostate NAT 10
2.6



Kidney cancer 1
12.9



Kidney NAT 1
9.4



Kidney cancer 2
100.0



Kidney NAT 2
10.3



Kidney cancer 3
12.8



Kidney NAT 3
3.7



Kidney cancer 4
14.2



Kidney NAT 4
2.9











[0672] AI.05 chondrosarcoma Summary: Ag5848 Highest expression of this gene is detected in untreated serum starved chondrosarcoma cell line (SW1353) (CT=31.9). Interestingly, expression of this gene appears to be somewhat down regulated upon PMA treatment for 18 hrs. Moderate to low levels of expression of this gene is seen in untreated and IL-1 treated chondrosarcoma cells. Modulation of the expression of this transcript in chondrocytes by either small molecules or antisense might be important for preventing the degeneration of cartilage observed in OA.


[0673] In addition, repair of osteoarthritis and rheumatoid arthritis tissue is envisioned by the application of FGF's that activate this receptor splice variant. Furthermore, small molecule ligands or agonist therapeutic antibodies may also result in beneficial effects in patients expressing this FGF-receptor splice variant on cells in arthritic lesions.


[0674] AI_Comprehensive panel_v1.0 Summary: Ag4049 This gene shows a ubiquitous expression with highest expression in normal bone. Moderate to high expression of this gene are detected in samples derived from normal and orthoarthitis/rheumatoid arthritis bone and adjacent bone, cartilage, synovium and synovial fluid samples, from normal lung, COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis (normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis.


[0675] Ag5848 Low expression of this gene is seen exclusively in OA bone (CT=33). Therefore, expression of this gene may be used as diagnostic marker to detect OA bone and furthermore, therapeutic modulation of this gene may be useful in the treatment of orthoarthritis.


[0676] CNS_neurodegeneration_v1.0 Summary: Ag4049 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of this gene in treatment of central nervous system disorders.


[0677] General_screening_panel_v1.4 Summary: Ag4049 Highest expression of this gene is detected in CNS cancer (glio) SF-295 cell line (CT=23). High to moderate expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0678] Among tissues with metabolic or endocrine function, this gene is expressed at moderate to high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0679] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0680] General_screening_panel_v1.5 Summary: Ag5848 Highest expression of this gene is detected in CNS cancer (glio) SF-295 cell line (CT=28.9). Moderate to low expression of this gene is also seen in number of cancer cell lines derived from colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.


[0681] In addition, moderate to low expression of this gene is also seen in pancreas, salivary gland, cerebellum, bladder, kidney, thymus, skeletal muscle, fetal lung, prostate and placenta. Therefore, therapeutic modulation of this gene may be useful in the treatment of diseases related to these tissues.


[0682] Interestingly, this gene is expressed at much higher levels in fetal (CT=32.5) when compared to adult lung (CT=37). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung related diseases.


[0683] Oncology cell_line_screening_panel_v3.2 Summary: Ag4049 Highest expression of this gene is detected in rhabdomyosarcoma sample (CT=26.1). Significant expression of this gene is detected in cerebellum and number of cancer cell lines derived from prostate, melanoma, bone, vulva, bladder, pancreatic, renal, T cell lymphoma and leukemia, erythroleukemia, cervical, ovarian, gastric, colon, lung and brain cancers. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0684] Panel 4.1D Summary: Ag4049 Highest expression of this gene is detected in IL-9 treated lung fibroblasts (CT=25.4). This gene shows ubiquitous expression with higher expression in resting and activated lung and dermal fibroblasts. Moderate to low expression of this gene is seen in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0685] In another experiment using probe-primer set Ag5848, this gene shows low expression in resting and activated lung and dermal fibroblasts (CTs=33.5-34.5).


[0686] Panel 5D Summary: Ag4049 This gene shows ubiquitous expression with highest expression seen in differentiated adipose (CT=27.5). This gene is not differentially expressed when comparing tissue (adipose and skeletal muscle) from gestationally diabetic women with varying BMI. Please see panel 1.4 for further discussion of this gene.


[0687] In another experiment using probe-primer set Ag5848, this gene shows low expression in kidney and differentiated adipose tissue (CTs=33.9-34).


[0688] general oncology screening panel_v2.4 Summary: Ag4049 Highest expression of this gene is detected in kidney cancer (CT=25.2). High to moderate expression of this gene is seen in normal adjacent and cancer samples derived from kidney, prostate, bladder, melanoma, lung and colon. Expression of this gene is higher in metastic melanoma, lung and kidney cancer compared to corresponding normal tissue. Therefore, expression of this gene may be used as diagnostic marker to detect the presence of metastatic melanoma, kidney and lung cancer. Furthermore, therapeutic modulation of this gene or its protein product may be useful in the treatment of melanoma, kidney, prostate, bladder, lung and colon cancers.


[0689] B. CG102006-02: Human Peroxiredoxin 2-Like Protein.


[0690] Expression of gene CG102006-02 was assessed using the primer-probe set Ag6536, described in Table BA.
211TABLE BAProbe Name Ag6536StartSEQ IDPrimersSequencsLengthPositionNoForward5′-gttgcctggtatatagagttgca-3′23513488ProbeTET-5′-tgcaactcagatgcaactctatctactc-3′-TAMRA28538489Reverse5′-ccctcctgggaactaagtaca-3′21568490


[0691] C. CG127322-01, CG127322-02, CG127322-03 and CG127322-04:Human Kynurenine Hydroxylase-Like Protein.


[0692] Expression of gene CG127322-01, CG127322-02, CG127322-03 and CG127322-04 was assessed using the primer-probe sets Ag4744, Ag6981 and Ag6998, described in Tables CA, CB and CC. Results of the RTQ-PCR runs are shown in Tables CD and CE. Please note that CG127322-02 represents a full-length physical clone of the CG127322-01 gene, validating the prediction of the gene sequence. In addition, CG127322-03 and CG127322-04 also represents a full-length physical clones. Also, Ag6998 is specific for CG127322-03 and CG127322-04, while Ag6981 is specific for CG127322-04.
212TABLE CAProbe Name Ag4744StartSEQ IDPrimersSequencsLengthPositionNoForward5′-cagtgcttggatctgacaaagt-3′22452491ProbeTET-5′-tcccaaagatgtcacttgtgacctca-3′-TAMRA26474492Reverse5′-gacagttgaataggctccatca-3′22510493


[0693]

213






TABLE CB










Probe Name Ag6981
















Start
SEQ ID



Primers
Sequencs
Length
Position
No





Forward
5′-ctttgattacagtcagcagtacattc-3′
26
558
494






Probe
TET-5′-tggaatagtcaactccatgtacccatga-3′-TAMRA
28
585
495





Reverse
5′-gaatgatttgttatctccgttcttag-3′
26
614
496










[0694]

214






TABLE CC










Probe Name Ag6998
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-tacatagagaagaacatggagaga-3′
24
1030
497






Probe
TET-5′-tgcgattatgccatcgacctttatccc-3′-TAMRA
27
1062
498





Reverse
5′-cctcatggtatcttattctgga-3
22
1111
499










[0695]

215





TABLE CD










General_screening_panel_v1.4











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4744,

Ag4744,



Run

Run


Tissue Name
213829150
Tissue Name
213829150













Adipose
2.0
Renal ca. TK-10
0.2


Melanoma* Hs688(A).T
0.0
Bladder
2.1


Melanoma* Hs688(B).T
0.0
Gastric ca. (liver met.) NCI-N87
0.4


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma* LOXIMVI
0.0
Colon ca. SW-948
0.0


Melanoma* SK-MEL-5
1.0
Colon ca. SW480
0.0


Squamous cell carcinoma SCC-4
1.1
Colon ca.* (SW480 met) SW620
0.0


Testis Pool
0.8
Colon ca. HT29
0.0


Prostate ca.* (bone met) PC-3
1.0
Colon ca. HCT-116
0.0


Prostate Pool
0.3
Colon ca. CaCo-2
0.1


Placenta
6.3
Colon cancer tissue
3.0


Uterus Pool
0.0
Colon ca. SW1116
0.0


Ovarian ca. OVCAR-3
2.1
Colon ca. Colo-205
0.0


Ovarian ca. SK-OV-3
0.2
Colon ca. SW-48
0.0


Ovarian ca. OVCAR-4
0.0
Colon Pool
4.4


Ovarian ca. OVCAR-5
2.8
Small Intestine Pool
0.4


Ovarian ca. IGROV-1
0.9
Stomach Pool
4.9


Ovarian ca. OVCAR-8
0.0
Bone Marrow Pool
0.4


Ovary
0.5
Fetal Heart
0.1


Breast ca. MCF-7
1.2
Heart Pool
0.0


Breast ca. MDA-MB-231
0.0
Lymph Node Pool
13.6


Breast ca. BT 549
52.9
Fetal Skeletal Muscle
0.0


Breast ca. T47D
6.1
Skeletal Muscle Pool
0.3


Breast ca. MDA-N
0.1
Spleen Pool
7.1


Breast Pool
21.2
Thymus Pool
21.5


Trachea
0.6
CNS cancer (glio/astro) U87-MG
0.0


Lung
0.0
CNS cancer (glio/astro) U-118-MG
0.2


Fetal Lung
1.8
CNS cancer (neuro; met) SK-N-AS
0.0


Lung ca. NCI-N417
0.0
CNS cancer (astro) SF-539
0.1


Lung ca. LX-1
0.0
CNS cancer (astro) SNB-75
0.0


Lung ca. NCI-H146
0.2
CNS cancer (glio) SNB-19
0.1


Lung ca. SHP-77
0.0
CNS cancer (glio) SF-295
0.9


Lung ca. A549
0.7
Brain (Amygdala) Pool
0.3


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.1
Brain (fetal)
0.4


Lung ca. NCI-H460
0.6
Brain (Hippocampus) Pool
0.4


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
0.2


Lung ca. NCI-H522
0.0
Brain (Substantia nigra) Pool
0.0


Liver
9.3
Brain (Thalamus) Pool
0.0


Fetal Liver
47.3
Brain (whole)
0.5


Liver ca. HepG2
0.0
Spinal Cord Pool
0.5


Kidney Pool
0.5
Adrenal Gland
0.3


Fetal Kidney
9.9
Pituitary gland Pool
0.0


Renal ca. 786-0
100.0
Salivary Gland
0.2


Renal ca. A498
11.0
Thyroid (female)
0.7


Renal ca. ACHN
1.4
Pancreatic ca. CAPAN2
0.0


Renal ca UO-31
1.5
Pancreas Pool
18.7










[0696]

216





TABLE CE










Panel 5 Islet










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag4744
Ag6998,



Run
Run


Tissue Name
204244613
284710396












97457_Patient-02go_adipose
3.5
0.6


97476_Patient-07sk_skeletal muscle
0.0
0.0


97477_Patient-07ut_uterus
0.0
0.0


97478_Patient-07pl_placenta
43.2
43.5


99167_Bayer Patient 1
6.2
0.0


97482_Patient-08ut_uterus
1.0
0.6


97483_Patient-08pl_placenta
60.7
40.6


97486_Patient-09sk_skeletal muscle
0.0
0.0


97487_Patient-09ut_uterus
1.9
0.0


97488_Patient-09pl_placenta
47.3
27.4


97492_Patient-10ut_uterus
0.0
0.0


97493_Patient-10pl_placenta
71.7
66.0


97495_Patient-11go_adipose
2.5
0.0


97496_Patient-11sk_skeletal muscle
0.0
0.0


97497_Patient-11ut_uterus
1.8
0.7


97498_Patient-11pl_placenta
17.9
9.7


97500_Patient-12go_adipose
4.4
1.2


97501_Patient-12sk_skeletal muscle
0.0
0.0


97502_Patient-12ut_uterus
1.2
1.7


97503_Patient-12pl_placenta
100.0
100.0


94721_Donor 2 U - A_Mesenchymal Stem
0.0
0.0


Cells


94722_Donor 2 U - B_Mesenchymal Stem
0.0
0.0


Cells


94723_Donor 2 U - C_Mesenchymal Stem
0.0
0.0


Cells


94709_Donor 2 AM - A_adipose
0.0
0.0


94710_Donor 2 AM - B_adipose
0.0
0.0


94711_Donor 2 AM - C_adipose
0.0
0.7


94712_Donor 2 AD - A_adipose
0.0
0.0


94713_Donor 2 AD - B_adipose
0.0
0.0


94714_Donor 2 AD - C_adipose
0.0
0.0


94742_Donor 3 U - A_Mesenchymal Stem
0.0
0.0


Cells


94743_Donor 3 U - B_Mesenchymal Stem
0.0
0.0


Cells


94730_Donor 3 AM - A_adipose
0.0
0.0


94731_Donor 3 AM - B_adipose
0.0
0.0


94732_Donor 3 AM - C_adipose
0.0
0.0


94733_Donor 3 AD - A_adipose
0.0
0.0


94734_Donor 3 AD - B_adipose
0.0
0.0


94735_Donor 3 AD - C_adipose
0.0
0.0


77138_Liver_HepG2 untreated
0.0
0.0


73556_Heart_Cardiac stromal cells
0.0
0.0


(primary)


81735_Small Intestine
2.5
1.3


72409_Kidney_Proximal Convoluted
1.2
4.0


Tubule


82685_Small intestine Duodenum
0.0
1.1


90650_Adrenal_Adrenocortical adenoma
4.6
1.2


72410_Kidney_HRCE
2.3
1.4


72411_Kidney_HRE
0.0
0.6


73139_Uterus_Uterine smooth muscle
0.0
0.0


cells










[0697] General_screening_panel_v1.4 Summary: Ag4744 Highest expression of this gene is detected in a renal cancer 786-0 cell line (CT=30.5). Moderate to low expression of this gene is also seen in renal cancer A498 cell line, breast cancer BT 549 and T47D cell lines. Therefore, expression of this gene may be used as diagnostic marker to detect the presence of these cancers and also therapeutic modulation of this gene may be useful in the treatment of renal and breast cancers.


[0698] In addition, moderate to low levels of expression of this gene is also seen in fetal and adult liver, colon, stomach, pancreas, thymus, spleen, lymph node, and placenta. This gene codes for kynurenine hydroxylase, an enzyme in the tryptophan catabolism pathway. Tryptophan dioxygenase catalyzes the first step in the oxidative degradation of tryptophan, the dominant pathway for tryptophan catabolism. At Curagen, using GeneCalling studies it has been found that tryptophan dioxygenase was up-regulated in insulin-resistant (pre-diabetic) SHR vs normal WKY liver suggests Catabolic cleavage of the side chain of tryptophan yields the major gluconeogenic amino acid alanine. Increased intracellular levels of alanine could promote gluconeogenesis, increasing hepatic glucose production and blood glucose levels. Therefore, therapeutic inhibition of Kynurenine Hydroxylase, an enzyme in tryptophan catabolism pathway, would lead to 1) inhibit the excess production of glucose, thus ameliorating hyperglycemia in Type 2 diabetes, and 2) inhibit the synthesis of triglycerides, thus preventing excess weight gain.


[0699] Panel 5 Islet Summary: Ag4744/Ag6998 Low expression of this gene is restricted to placenta from diabetic and obese patients (CTs=32-33.9). Please see panel 1.4 for further discussion of this gene.


[0700] D. CG140122-03 and CG140122-04:Human Polyamine Oxidase-Like Protein.


[0701] Expression of gene CG140122-03 and CG140122-04 was assessed using the primer-probe sets Ag4986 and Ag5031, described in Tables DA and DB. Results of the RTQ-PCR runs are shown in Tables DC, DD and DE. Please note that probe-primer set is specific for CG140122-03. Also, CG140122-03 and CG140122-04 represent full length physical clone.
217TABLE DAProbe Name Ag4986StartSEQ IDPrimersLengthPositionNoForward5′-gtgcagagtgtgaaacttgga-3′21194500ProbeTET-5′-catggctcccatgggaaccctat-3′-TAMRA23248501Reverse5′-cgttggcttctgctagatgata-3′22272502


[0702]

218






TABLE DB










Probe Name Ag5031
















Start
SEQ ID



Primers

Length
Position
No





Forward
5′-cggggtgtgctaaagag-3′
17
845
503






Probe
TET-5′-cagtacaccagtttcttccggcca-3′-TAMRA
24
863
504





Reverse
5′-accttctctgtgggcag-3′
17
890
505










[0703]

219





TABLE DC










CNS_neurodegeneration_v1.0











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag5031,

Ag5031,



Run

Run


Tissue Name
249286337
Tissue Name
249286337













AD 1 Hippo
37.1
Control (Path) 3 Temporal Ctx
21.9


AD 2 Hippo
53.2
Control (Path) 4 Temporal Ctx
24.7


AD 3 Hippo
15.0
AD 1 Occipital Ctx
27.7


AD 4 Hippo
24.5
AD 2 Occipital Ctx (Missing)
0.0


AD 5 hippo
59.5
AD 3 Occipital Ctx
24.0


AD 6 Hippo
100.0
AD 4 Occipital Ctx
18.6


Control 2 Hippo
31.0
AD 5 Occipital Ctx
20.7


Control 4 Hippo
42.3
AD 6 Occipital Ctx
24.1


Control (Path) 3 Hippo
12.5
Control 1 Occipital Ctx
12.5


AD 1 Temporal Ctx
35.4
Control 2 Occipital Ctx
39.2


AD 2 Temporal Ctx
36.9
Control 3 Occipital Ctx
26.2


AD 3 Temporal Ctx
22.5
Control 4 Occipital Ctx
19.8


AD 4 Temporal Ctx
24.3
Control (Path) 1 Occipital Ctx
40.9


AD 5 Inf Temporal Ctx
66.9
Control (Path) 2 Occipital Ctx
11.3


AD 5 SupTemporal Ctx
58.6
Control (Path) 3 Occipital Ctx
16.2


AD 6 Inf Temporal Ctx
75.3
Control (Path) 4 Occipital Ctx
12.7


AD 6 Sup Temporal Ctx
41.5
Control 1 Parietal Ctx
14.3


Control 1 Temporal Ctx
18.2
Control 2 Parietal Ctx
62.9


Control 2 Temporal Ctx
31.4
Control 3 Parietal Ctx
18.2


Control 3 Temporal Ctx
19.5
Control (Path) 1 Parietal Ctx
32.3


Control 4 Temporal Ctx
18.2
Control (Path) 2 Parietal Ctx
18.0


Control (Path) 1 Temporal Ctx
26.6
Control (Path) 3 Parietal Ctx
17.6


Control (Path) 2 Temporal Ctx
22.8
Control (Path) 4 Parietal Ctx
31.4










[0704]

220





TABLE DD










General_screening_panel_v1.5










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag5031,
Ag5031,



Run
Run


Tissue Name
228727243
228959437












Adipose
1.4
1.2


Melanoma* Hs688(A).T
3.0
3.1


Melanoma* Hs688(B).T
2.6
2.5


Melanoma* M14
2.5
2.4


Melanoma* LOXIMVI
9.6
7.5


Melanoma* SK-MEL-5
5.1
6.0


Squamous cell carcinoma SCC-4
2.9
2.8


Testis Pool
1.3
1.3


Prostate ca.* (bone met) PC-3
50.0
43.2


Prostate Pool
1.4
2.1


Placenta
0.4
0.8


Uterus Pool
1.0
0.7


Ovarian ca. OVCAR-3
2.4
2.0


Ovarian ca. SK-OV-3
7.1
9.5


Ovarian ca. OVCAR-4
2.2
1.7


Ovarian ca. OVCAR-5
14.8
14.8


Ovarian ca. IGROV-1
7.3
0.9


Ovarian ca. OVCAR-8
5.8
5.5


Ovary
1.0
1.6


Breast ca. MCF-7
1.8
2.3


Breast ca. MDA-MB-231
5.8
3.9


Breast ca. BT 549
15.8
17.6


Breast ca. T47D
0.1
0.0


Breast ca. MDA-N
1.8
2.3


Breast Pool
2.0
2.1


Trachea
2.2
1.6


Lung
0.4
0.4


Fetal Lung
2.9
3.8


Lung ca. NCI-N417
0.2
0.1


Lung ca. LX-1
17.0
21.0


Lung ca. NCI-H146
0.0
0.0


Lung ca. SHP-77
1.2
0.6


Lung ca. A549
46.0
29.1


Lung ca. NCI-H526
1.9
1.9


Lung ca. NCI-H23
2.8
3.3


Lung ca. NCI-H460
100.0
100.0


Lung ca. HOP-62
8.1
5.5


Lung ca. NCI-H522
5.0
4.5


Liver
0.1
0.2


Fetal Liver
3.4
3.2


Liver ca. HepG2
6.3
6.6


Kidney Pool
2.6
3.0


Fetal Kidney
1.7
2.8


Renal ca. 786-0
12.9
14.5


Renal ca. A498
2.0
2.7


Renal ca. ACHN
5.3
5.3


Renal ca. UO-31
5.5
5.3


Renal ca. TK-10
26.2
34.4


Bladder
3.1
2.9


Gastric ca. (liver met.) NCI-N87
12.9
13.8


Gastric ca. KATO III
12.0
16.2


Colon ca. SW-948
4.0
3.5


Colon ca. SW480
12.7
11.0


Colon ca.* (SW480 met) SW620
21.9
21.3


Colon ca. HT29
2.4
5.8


Colon ca. HCT-116
9.5
10.9


Colon ca. CaCo-2
11.1
18.9


Colon cancer tissue
9.2
9.5


Colon ca. SW1116
0.9
1.5


Colon ca. Colo-205
5.5
5.8


Colon ca. SW-48
4.8
4.6


Colon Pool
2.1
1.5


Small Intestine Pool
1.8
3.1


Stomach Pool
2.5
2.2


Bone Marrow Pool
1.0
1.1


Fetal Heart
1.1
1.0


Heart Pool
0.6
0.6


Lymph Node Pool
3.3
2.6


Fetal Skeletal Muscle
0.9
0.8


Skeletal Muscle Pool
1.2
1.5


Spleen Pool
0.9
0.9


Thymus Pool
2.3
2.7


CNS cancer (glio/astro) U87-MG
4.6
6.2


CNS cancer (glio/astro) U-118-MG
11.2
11.4


CNS cancer (neuro; met) SK-N-AS
1.4
1.8


CNS cancer (astro) SF-539
1.8
1.8


CNS cancer (astro) SNB-75
18.6
17.3


CNS cancer (glio) SNB-19
11.8
16.3


CNS cancer (glio) SF-295
16.5
18.0


Brain (Amygdala) Pool
6.1
5.6


Brain (cerebellum)
9.4
7.7


Brain (fetal)
5.8
6.2


Brain (Hippocampus) Pool
6.7
8.4


Cerebral Cortex Pool
7.1
6.2


Brain (Substantia nigra) Pool
7.2
8.6


Brain (Thalamus) Pool
8.9
7.9


Brain (whole)
5.7
5.8


Spinal Cord Pool
13.8
17.3


Adrenal Gland
1.1
0.8


Pituitary gland Pool
0.6
0.4


Salivary Gland
1.2
1.5


Thyroid (female)
0.7
0.7


Pancreatic ca. CAPAN2
13.4
12.9


Pancreas Pool
2.8
2.9










[0705]

221





TABLE DE










Panel 5D











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag031,

Ag5031,



Run

Run


Tissue Name
223784820
Tissue Name
223784820













97457_Patient-02go_adipose
24.5
94709_Donor 2 AM - A_adipose
9.9


97476_Patient-07sk_skeletal
2.1
94710_Donor 2 AM - B_adipose
9.2


muscle


97477_Patient-07ut_uterus
3.5
94711_Donor 2 AM - C_adipose
9.3


97478_Patient-07pl_placenta
4.2
94712_Donor 2 AD - A_adipose
12.2


97481_Patient-08sk_skeletal
2.4
94713_Donor 2 AD - B_adipose
16.0


muscle


97482_Patient-08ut_uterus
4.4
94714_Donor 2 AD - C_adipose
18.6


97483_Patient-08pl_placenta
1.4
94742_Donor 3 U - A_Mesenchymal
14.6




Stem Cells


97486_Patient-09sk_skeletal
2.1
94743_Donor 3 U - B_Mesenchymal
9.9


muscle

Stem Cells


97487_Patient-09ut_uterus
3.6
94730_Donor 3 AM - A_adipose
40.6


97488_Patient-09pl_placenta
2.2
94731_Donor 3 AM - B_adipose
24.1


97492_Patient-10ut_uterus
10.0
94732_Donor 3 AM - C_adipose
23.8


97493_Patient-10pl_placenta
2.3
94733_Donor 3 AD - A_adipose
31.0


97495_Patient-11go_adipose
10.1
94734_Donor 3 AD - B_adipose
16.5


97496_Patient-11sk_skeletal
2.1
94735_Donor 3 AD - C_adipose
24.5


muscle


97497_Patient-11ut_uterus
8.8
77138_Liver_HepG2untreated
34.9


97498_Patient-11pl_placenta
2.1
73556_Heart_Cardiac stromal cells
4.8




(primary)


97500_Patient-12go_adipose
21.3
81735_Small Intestine
3.1


97501_Patient-12sk_skeletal
4.3
72409_Kidney_Proximal Convoluted
17.6


muscle

Tubule


97502_Patient-12ut_uterus
8.1
82685_Small intestine_Duodenum
9.0


97503_Patient-12pl_placenta
1.4
90650_Adrenal_Adrenocortical
1.3




adenoma


94721_Donor 2 U -
21.2
72410_Kidney_HRCE
100.0


A_Mesenchymal Stem Cells


94722_Donor 2 U -
18.3
72411_Kidney_HRE
63.3


B_Mesenchymal Stem Cells


94723_Donor 2 U -
17.7
73139_Uterus_Uterine smooth
8.7


C_Mesenchymal Stem Cells

muscle cells










[0706] CNS_neurodegeneration_v1.0 Summary: Ag5031 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be slighltly upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[0707] General_screening_panel_v1.5 Summary: Ag5031 Two experiments with same probe-primer sets are in good agreement with highest expression of this gene seen in a lung cancer NCI-H460 cell line (CTs=24-26). Moderate to high expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0708] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes. This gene codes for polyamine oxidase (PAO, CG140122-01; BP24 obesity: CT021), an enzyme in the polyamine pathway. At Curagen, multiple enzymes in this pathway have been found to be up-regulated in GeneCalling studies upon adipose differentiation and are induced in obese mice versus obesity resistant mice on a high fat diet. Inhibiting polyamine catabolism and the synthesis of H2O2 through an inhibitor of PAO may abolish the insulin-like antilipolytic effects of polyamines and therefore be beneficial in the treatment of obesity.


[0709] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0710] Interestingly, this gene is expressed at much higher levels in fetal (CTs=31) when compared to adult lung and liver (CTs=34-35). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung and liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung and liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung and liver related diseases.


[0711] Panel 5D Summary: Ag5031 Highest expression of this gene is detected in kidney (CT=29.8). Moderate to low expression of this gene is seen mainly in undifferentiated and differentiated adipose, kidney, uterus and small intestine. Please see panel 1.5 for further discussion of this gene.


[0712] E. CG141051-01:Human Glyceraldehyde-Phosphate Deydrogenase-Like Protein.


[0713] Expression of gene CG141051-01 was assessed using the primer-probe set Ag5040, described in Table EA. Results of the RTQ-PCR runs are shown in Tables EB, EC, ED and EE.
222TABLE EAProbe Name AG5040StartSEQ IDPrimersSequenceLengthPositionNoForward5′-cactcttccaccttcaatgct-3′21928506ProbeTET-5′-ttgccctcaacaaccactttgtgaag-3′-TAMRA26959507Reverse5′-ctgttgctgtagccaaattca-3′211005508


[0714]

223





TABLE EB










CNS_neurodegeneration_v1.0











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag5040,

Ag5040,



Run

Run


Tissue Name
224062762
Tissue Name
224062762













AD 1 Hippo
22.1
Control (Path) 3 Temporal Ctx
8.7


AD 2 Hippo
44.8
Control (Path) 4 Temporal Ctx
87.7


AD 3 Hippo
9.2
AD 1 Occipital Ctx
24.3


AD 4 Hippo
20.2
AD 2 Occipital Ctx (Missing)
0.0


AD 5 hippo
81.2
AD 3 Occipital Ctx
3.1


AD 6 Hippo
90.8
AD 4 Occipital Ctx
29.9


Control 2 Hippo
31.6
AD 5 Occipital Ctx
10.4


Control 4 Hippo
16.8
AD 6 Occipital Ctx
29.7


Control (Path) 3 Hippo
9.8
Control 1 Occipital Ctx
1.7


AD 1 Temporal Ctx
28.1
Control 2 Occipital Ctx
34.2


AD 2 Temporal Ctx
53.2
Control 3 Occipital Ctx
40.1


AD 3 Temporal Ctx
13.1
Control 4 Occipital Ctx
5.4


AD 4 Temporal Ctx
43.8
Control (Path) 1 Occipital Ctx
82.4


AD 5 Inf Temporal Ctx
100.0
Control (Path) 2 Occipital Ctx
20.3


AD 5 SupTemporal Ctx
82.9
Control (Path) 3 Occipital Ctx
0.0


AD 6 Inf Temporal Ctx
71.7
Control (Path) 4 Occipital Ctx
45.7


AD 6 Sup Temporal Ctx
79.6
Control 1 Parietal Ctx
13.1


Control 1 Temporal Ctx
16.2
Control 2 Parietal Ctx
77.9


Control 2 Temporal Ctx
46.0
Control 3 Parietal Ctx
28.3


Control 3 Temporal Ctx
44.8
Control (Path) 1 Parietal Ctx
82.4


Control 4 Temporal Ctx
15.7
Control (Path) 2 Parietal Ctx
36.9


Control (Path) 1 Temporal Ctx
78.5
Control (Path) 3 Parietal Ctx
8.9


Control (Path) 2 Temporal Ctx
62.9
Control (Path) 4 Parietal Ctx
57.4










[0715]

224





TABLE EC










General_screening_panel_v1.5











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag5040,

Ag5040,



Run

Run


Tissue Name
228967325
Tissue Name
228967325













Adipose
1.8
Renal ca. TK-10
16.3


Melanoma* Hs688(A).T
3.5
Bladder
9.6


Melanoma* Hs688(B).T
1.9
Gastric ca. (liver met.) NCI-N87
18.4


Melanoma* M14
10.6
Gastric ca. KATO III
10.2


Melanoma* LOXIMVI
2.4
Colon ca. SW-948
3.8


Melanoma* SK-MEL-5
50.3
Colon ca. SW480
17.8


Squamous cell carcinoma SCC-4
3.9
Colon ca.* (SW480 met) SW620
28.3


Testis Pool
8.8
Colon ca. HT29
5.6


Prostate ca.* (bone met) PC-3
6.3
Colon ca. HCT-116
19.8


Prostate Pool
24.0
Colon ca. CaCo-2
26.2


Placenta
2.4
Colon cancer tissue
7.9


Uterus Pool
4.9
Colon ca. SW1116
5.6


Ovarian ca. OVCAR-3
9.2
Colon ca. Colo-205
4.0


Ovarian ca. SK-OV-3
19.5
Colon ca. SW-48
1.8


Ovarian ca. OVCAR-4
2.6
Colon Pool
16.6


Ovarian ca. OVCAR-5
21.5
Small Intestine Pool
12.5


Ovarian ca. IGROV-1
6.0
Stomach Pool
14.7


Ovarian ca. OVCAR-8
3.1
Bone Marrow Pool
6.1


Ovary
5.8
Fetal Heart
1.8


Breast ca. MCF-7
9.8
Heart Pool
6.0


Breast ca. MDA-MB-231
12.5
Lymph Node Pool
24.5


Breast ca. BT 549
9.5
Fetal Skeletal Muscle
3.8


Breast ca. T47D
3.4
Skeletal Muscle Pool
26.1


Breast ca. MDA-N
9.2
Spleen Pool
6.6


Breast Pool
16.6
Thymus Pool
16.5


Trachea
12.7
CNS cancer (glio/astro) U87-MG
34.9


Lung
6.1
CNS cancer (glio/astro) U-118-MG
21.3


Fetal Lung
28.5
CNS cancer (neuro; met) SK-N-AS
19.6


Lung ca. NCI-N417
10.4
CNS cancer (astro) SF-539
4.8


Lung ca. LX-1
15.6
CNS cancer (astro) SNB-75
21.3


Lung ca. NCI-H146
1.5
CNS cancer (glio) SNB-19
6.3


Lung ca. SHP-77
13.5
CNS cancer (glio) SF-295
22.8


Lung ca. A549
11.2
Brain (Amygdala) Pool
6.4


Lung ca. NCI-H526
2.4
Brain (cerebellum)
51.1


Lung ca. NCI-H23
39.2
Brain (fetal)
100.0


Lung ca. NCI-H460
22.4
Brain (Hippocampus) Pool
13.5


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
13.7


Lung ca. NCI-H522
9.0
Brain (Substantia nigra) Pool
19.5


Liver
0.0
Brain (Thalamus) Pool
21.3


Fetal Liver
6.0
Brain (whole)
10.2


Liver ca. HepG2
11.9
Spinal Cord Pool
5.4


Kidney Pool
18.7
Adrenal Gland
10.5


Fetal Kidney
20.3
Pituitary gland Pool
2.5


Renal ca. 786-0
14.0
Salivary Gland
3.6


Renal ca. A498
5.6
Thyroid (female)
3.0


Renal ca. ACHN
5.9
Pancreatic ca. CAPAN2
8.5


Renal ca. UO-31
14.8
Pancreas Pool
18.8










[0716]

225





TABLE ED










Panel 4.1D











Rel.

Rel.



Exp. ()

Exp. (%)



Ag5040,

Ag5040,



Run

Run


Tissue Name
223743486
Tissue Name
223743486













Secondary Th1 act
77.9
HUVEC IL-1beta
13.8


Secondary Th2 act
92.7
HUVEC IFN gamma
35.6


Secondary Tr1 act
54.0
HUVEC TNF alpha + IFN gamma
11.0


Secondary Th1 rest
6.2
HUVEC TNF alpha + IL4
22.7


Secondary Th2 rest
27.2
HUVEC IL-11
22.5


Secondary Tr1 rest
25.3
Lung Microvascular EC none
94.6


Primary Th1 act
38.4
Lung Microvascular EC TNF alpha + IL-1beta
40.6


Primary Th2 act
65.1
Microvascular Dermal EC none
15.5


Primary Tr1 act
62.4
Microsvasular Dermal EC
25.5




TNF alpha + IL-1beta


Primary Th1 rest
23.3
Bronchial epithelium TNF alpha + IL1beta
27.5


Primary Th2 rest
15.9
Small airway epithelium none
8.0


Primary Tr1 rest
19.9
Small airway epithelium TNF alpha + IL-1beta
17.0


CD45RA CD4 lymphocyte act
31.0
Coronery artery SMC rest
11.0


CD45RO CD4 lymphocyte act
59.9
Coronery artery SMC TNF alpha + IL-1beta
10.8


CD8 lymphocyte act
50.0
Astrocytes rest
10.4


Secondary CD8 lymphocyte rest
30.8
Astrocytes TNF alpha + IL-1beta
18.4


Secondary CD8 lymphocyte act
15.4
KU-812 (Basophil) rest
56.3


CD4 lymphocyte none
14.7
KU-812 (Basophil)
57.4




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
16.0
CCD1106 (Keratinocytes) none
24.7


CH11


LAK cells rest
24.8
CCD1106 (Keratinocytes)
21.3




TNF alpha + IL-1beta


LAK cells IL-2
40.6
Liver cirrhosis
5.1


LAK cells IL-2 + IL-12
29.7
NCI-H292 none
35.4


LAK cells IL-2 + IFN gamma
23.8
NCI-H292 IL-4
31.9


LAK cells IL-2 + IL-18
56.6
NCI-H292 IL-9
61.6


LAK cells PMA/ionomycin
18.7
NCI-H292 IL-13
24.7


NK Cells IL-2 rest
71.7
NCI-H292 IFN gamma
25.0


Two Way MLR 3 day
51.8
HPAEC none
14.8


Two Way MLR 5 day
25.3
HPAEC TNF alpha + IL-1beta
32.5


Two Way MLR 7 day
25.9
Lung fibroblast none
20.7


PBMC rest
8.6
Lung fibroblast TNF alpha +
7.2




IL-1beta


PBMC PWM
25.3
Lung fibroblast IL-4
14.1


PBMC PHA-L
28.1
Lung fibroblast IL-9
13.9


Ramos (B cell) none
57.0
Lung fibroblast IL-13
17.6


Ramos (B cell) ionomycin
61.1
Lung fibroblast IFN gamma
15.8


B lymphocytes PWM
22.1
Dermal fibroblast CCD1070 rest
71.2


B lymphocytes CD40L and IL-4
47.3
Dermal fibroblast CCD1070
60.3




TNF alpha


EOL-1 dbcAMP
100.0
Dermal fibroblast CCD1070
15.3




IL-1beta


EOL-1 dbcAMP
69.7
Dermal fibroblast IFN gamma
10.2


PMA/ionomycin


Dendritic cells none
46.3
Dermal fibroblast IL-4
23.0


Dendritic cells LPS
16.4
Dermal Fibroblasts rest
9.9


Dendritic cells anti-CD40
24.7
Neutrophils TNF a + LPS
0.0


Monocytes rest
31.2
Neutrophils rest
16.6


Monocytes LPS
45.1
Colon
4.2


Macrophages rest
41.8
Lung
12.0


Macrophages LPS
10.4
Thymus
52.9


HUVEC none
29.3
Kidney
57.0


HUVEC starved
21.2










[0717]

226





TABLE EE










Panel 5 Islet











Rel.

Rel.



Exp. ()

Exp. (%)



Ag5040,

Ag5040,



Run

Run


Tissue Name
240189534
Tissue Name
240189534













97457_Patient-02go_adipose
11.6
94709_Donor 2 AM - A_adipose
0.0


97476_Patient-07sk_skeletal
16.3
94710_Donor 2 AM - B_adipose
4.1


muscle


97477_Patient-07ut_uterus
5.7
94711_Donor 2 AM - C_adipose
0.0


97478_Patient-07pl_placenta
17.6
94712_Donor 2 AD - A_adipose
6.5


99167_Bayer Patient 1
100.0
94713_Donor 2 AD - B_adipose
6.8


97482_Patient-08ut_uterus
0.0
94714_Donor 2 AD - C_adipose
2.5


97483_Patient-08pl_placenta
23.5
94742_Donor 3 U - A_Mesenchymal
0.0




Stem Cells


97486_Patient-09sk_skeletal
2.8
94743_Donor 3 U - B_Mesenchymal
0.0


muscle

Stem Cells


97487_Patient-09ut_uterus
9.2
94730_Donor 3 AM - A_adipose
3.1


97488_Patient-09pl_placenta
6.9
94731_Donor 3 AM - B_adipose
6.5


97492_Patient-10ut_uterus
11.4
94732_Donor 3 AM - C_adipose
0.0


97493_Patient-10pl_placenta
12.2
94733_Donor 3 AD - A_adipose
0.0


97495_Patient-11go_adipose
15.2
94734_Donor 3 AD - B_adipose
3.6


97496_Patient-11sk_skeletal
4.4
94735_Donor 3 AD - C_adipose
7.7


muscle


97497_Patient-11ut_uterus
10.1
77138_Liver_HepG2untreated
12.7


97498_Patient-11pl_placenta
0.0
73556_Heart_Cardiac stromal cells
6.8




(primary)


97500_Patient-12go_adipose
10.7
81735_Small Intestine
13.4


97501_Patient-12sk_skeletal
21.6
72409_Kidney_Proximal Convoluted
9.9


muscle

Tubule


97502_Patient-12ut_uterus
0.0
82685_Small intestine_Duodenum
0.0


97503_Patient-12pl_placenta
2.4
90650_Adrenal_Adrenocortical
0.0




adenoma


94721_Donor 2 U -
3.7
72410_Kidney_HRCE
20.2


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
72411_Kidney_HRE
0.0


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
73139_Uterus_Uterine smooth
4.6


C_Mesenchymal Stem Cells

muscle cells










[0718] CNS_neurodegeneration_v1.0 Summary: Ag5040 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of this gene in treatment of central nervous system disorders.


[0719] General_screening_panel_v1.5 Summary: Ag5040 Highest expression of this gene is detected in fetal brain (CT=30.8). This gene is expressed at low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0720] Among tissues with metabolic or endocrine function, this gene is expressed at low levels in pancreas, adrenal gland, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0721] In addition, low expression of this gene is also seen in a number of cancer cell lines derived from brain, pancreatic, colon, renal, liver, lung, melanoma, breast, ovarian and prostate cancers. Therefore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.


[0722] Panel 4.1D Summary: Ag5040 Highest expression of this gene is detected in eosinophils (CT=33.4). Low expression of this gene is detected in activated polarized T cells, memory T cells, activated LAK cells, IL-2 treated resting NK cells, monocytes, macrophage, lung microvascular endothelial cells, basophils, dermal fibroblast and normal tissues represented by thymus and kidney. Therefore, therapeutic modulation of this gene may be useful in the treatment of inflammatory and autoimmune diseases including asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0723] Panel 5 Islet Summary: Ag5040 Low expression of this gene is restricted to islet cells. Therefore, therapeutic modulation of this gene may be useful in the treatment of obesity and diabetes especially Type II diabetes.


[0724] F. CG142427-03 and CG142427-04: Human ATP-Citrate (pro-S-)-Lyase-Like Protein


[0725] Expression of gene CG142427-03 and CG142427-04 was assessed using the primer-probe sets Ag6008, Ag6980 and Ag7002, described in Tables FA, FB and FC. Results of the RTQ-PCR runs are shown in Tables FD, FE and FF. Please note that Ag6980 is specific for CG142427-03. Also, CG142427-03 and CG142427-04 represent full length physical clone.
227TABLE FAProbe Name Ag6008StartSEQ IDPrimersSequenceLengthPositionNoForward5′-agattacgtcaggcagcactt-3′211939509ProbeTET-5′-cactcctctgctcgattatgcactgg-+-TAMRA261966510Reverse5′-gcttcttcgaggtggtaatctt-3′222000511


[0726]

228






TABLE FB










Probe Name Ag6980
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-aagatgaacgtgtgtggtaacag-3′
23
314
512






Probe
TET-5′-ccttgccaacctgaaggtgaccatat-3′-TAMRA
26
343
513





Reverse
5′-cgatcagaaagttcttgaggaa-3′
22
377
514










[0727]

229






TABLE FC










Probe Name Ag7002
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-ccatgccacaaggaaagag-3′
19
1494
515






Probe
TET-5′-tcaaagtccagcatgccttgcacgg-3′-TAMRA
25
1569
516





Reverse
5′-cgtctcgggagcagacata-3′
19
1595
517










[0728]

230





TABLE FD










General_screening_panel_v1.5











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag6008,

Ag6008,



Run

Run


Tissue Name
228763479
Tissue Name
228763479













Adipose
6.2
Renal ca. TK-10
64.2


Melanoma* Hs688(A).T
37.6
Bladder
12.4


Melanoma* Hs688(B).T
59.0
Gastric ca. (liver met.) NCI-N87
65.1


Melanoma* M14
55.9
Gastric ca. KATO III
59.5


Melanoma* LOXIMVI
59.0
Colon ca. SW-948
14.5


Melanoma* SK-MEL-5
41.8
Colon ca. SW480
62.4


Squamous cell carcinoma SCC-4
24.1
Colon ca.* (SW480 met) SW620
32.3


Testis Pool
6.0
Colon ca. HT29
27.4


Prostate ca.* (bone met) PC-3
32.8
Colon ca. HCT-116
45.7


Prostate Pool
13.0
Colon ca. CaCo-2
66.0


Placenta
6.1
Colon cancer tissue
8.3


Uterus Pool
6.6
Colon ca. SW1116
4.0


Ovarian ca. OVCAR-3
12.9
Colon ca. Colo-205
11.1


Ovarian ca. SK-OV-3
47.3
Colon ca. SW-48
14.9


Ovarian ca. OVCAR-4
17.2
Colon Pool
13.3


Ovarian ca. OVCAR-5
35.1
Small Intestine Pool
5.6


Ovarian ca. IGROV-1
22.2
Stomach Pool
4.0


Ovarian ca. OVCAR-8
8.2
Bone Marrow Pool
3.8


Ovary
8.0
Fetal Heart
3.5


Breast ca. MCF-7
23.7
Heart Pool
2.5


Breast ca. MDA-MB-231
46.7
Lymph Node Pool
8.4


Breast ca. BT 549
60.7
Fetal Skeletal Muscle
3.7


Breast ca. T47D
29.1
Skeletal Muscle Pool
3.4


Breast ca. MDA-N
12.9
Spleen Pool
5.3


Breast Pool
8.0
Thymus Pool
6.8


Trachea
9.3
CNS cancer (glio/astro) U87-MG
60.7


Lung
1.4
CNS cancer (glio/astro) U-118-MG
59.0


Fetal Lung
16.3
CNS cancer (neuro; met) SK-N-AS
60.7


Lung ca. NCI-N417
30.1
CNS cancer (astro) SF-539
24.8


Lung ca. LX-1
28.1
CNS cancer (astro) SNB-75
32.5


Lung ca. NCI-H146
23.5
CNS cancer (glio) SNB-19
25.2


Lung ca. SHP-77
46.7
CNS cancer (glio) SF-295
76.8


Lung ca. A549
100.0
Brain (Amygdala) Pool
4.8


Lung ca. NCI-H526
10.0
Brain (cerebellum)
28.3


Lung ca. NCI-H23
23.5
Brain (fetal)
16.5


Lung ca. NCI-H460
25.5
Brain (Hippocampus) Pool
8.6


Lung ca. HOP-62
29.5
Cerebral Cortex Pool
10.5


Lung ca. NCI-H522
57.4
Brain (Substantia nigra) Pool
6.3


Liver
0.8
Brain (Thalamus) Pool
10.7


Fetal Liver
22.4
Brain (whole)
12.2


Liver ca. HepG2
23.0
Spinal Cord Pool
7.4


Kidney Pool
7.5
Adrenal Gland
13.2


Fetal Kidney
5.4
Pituitary gland Pool
1.9


Renal ca. 786-0
36.3
Salivary Gland
4.0


Renal ca. A498
33.0
Thyroid (female)
2.7


Renal ca. ACHN
80.7
Pancreatic ca. CAPAN2
36.3


Renal ca. UO-31
31.9
Pancreas Pool
11.2










[0729]

231





TABLE FE










General_screening_panel_v1.6










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag6980,
Ag7002,



Run
Run


Tissue Name
279065836
279066491












Adipose
3.7
1.4


Melanoma* Hs688(A).T
4.3
42.9


Melanoma* Hs688(B).T
16.3
56.3


Melanoma* M14
5.6
29.1


Melanoma* LOXIMVI
21.3
29.3


Melanoma* SK-MEL-5
26.1
13.7


Squamous cell carcinoma SCC-4
4.5
15.5


Testis Pool
4.0
3.0


Prostate ca.* (bone met) PC-3
8.4
11.0


Prostate Pool
0.7
10.7


Placenta
0.8
6.8


Uterus Pool
0.0
0.9


Ovarian ca. OVCAR-3
0.9
4.2


Ovarian ca. SK-OV-3
41.5
43.8


Ovarian ca. OVCAR-4
7.7
1.8


Ovarian ca. OVCAR-5
52.9
9.0


Ovarian ca. IGROV-1
19.3
22.4


Ovarian ca. OVCAR-8
0.9
7.6


Ovary
6.0
5.3


Breast ca. MCF-7
13.7
6.4


Breast ca. MDA-MB-231
27.5
24.7


Breast ca. BT 549
15.1
51.4


Breast ca. T47D
13.6
2.3


Breast ca. MDA-N
2.6
10.1


Breast Pool
2.8
5.3


Trachea
3.9
6.2


Lung
0.0
0.2


Fetal Lung
4.4
6.3


Lung ca. NCI-N417
3.4
13.3


Lung ca. LX-1
19.1
6.1


Lung ca. NCI-H146
6.0
3.9


Lung ca. SHP-77
62.4
25.9


Lung ca. A549
100.0
100.0


Lung ca. NCI-H526
8.8
1.8


Lung ca. NCI-H23
2.5
18.4


Lung ca. NCI-H460
8.8
4.9


Lung ca. HOP-62
3.8
24.7


Lung ca. NCI-H522
8.2
14.4


Liver
0.0
0.7


Fetal Liver
7.5
13.8


Liver ca. HepG2
20.0
10.7


Kidney Pool
0.5
5.2


Fetal Kidney
1.3
1.9


Renal ca. 786-0
6.7
31.0


Renal ca. A498
6.3
21.3


Renal ca. ACHN
55.9
27.9


Renal ca. UO-31
18.4
31.0


Renal ca. TK-10
52.1
33.9


Bladder
1.6
6.0


Gastric ca. (liver met.) NCI-N87
9.4
16.6


Gastric ca. KATO III
25.3
25.9


Colon ca. SW-948
5.3
7.9


Colon ca. SW480
43.2
20.3


Colon ca.* (SW480 met) SW620
21.3
9.3


Colon ca. HT29
14.5
9.3


Colon ca. HCT-116
34.9
43.8


Colon ca. CaCo-2
40.6
28.9


Colon cancer tissue
1.1
6.2


Colon ca. SW1116
5.2
0.9


Colon ca. Colo-205
14.1
2.0


Colon ca. SW-48
7.9
6.4


Colon Pool
2.2
4.5


Small Intestine Pool
0.8
1.9


Stomach Pool
2.3
2.4


Bone Marrow Pool
0.0
1.3


Fetal Heart
0.0
1.4


Heart Pool
3.2
1.5


Lymph Node Pool
3.2
5.5


Fetal Skeletal Muscle
2.5
0.9


Skeletal Muscle Pool
0.0
0.2


Spleen Pool
2.7
3.3


Thymus Pool
0.5
2.7


CNS cancer (glio/ astro) U87-MG
13.7
29.9


CNS cancer (glio/ astro) U-118-MG
34.9
31.2


CNS cancer (neuro; met) SK-N-AS
57.0
48.6


CNS cancer (astro) SF-539
18.0
20.2


CNS cancer (astro) SNB-75
22.4
40.9


CNS cancer (glio) SNB-19
10.7
22.4


CNS cancer (glio) SF-295
30.1
38.2


Brain (Amygdala) Pool
1.0
4.7


Brain (cerebellum)
18.6
13.3


Brain (fetal)
18.0
12.2


Brain (Hippocampus) Pool
0.5
3.6


Cerebral Cortex Pool
3.8
4.0


Brain (Substantia nigra) Pool
3.9
3.9


Brain (Thalamus) Pool
4.3
5.5


Brain (whole)
5.9
4.9


Spinal Cord Pool
4.4
13.8


Adrenal Gland
3.9
9.3


Pituitary gland Pool
0.3
0.8


Salivary Gland
2.1
3.4


Thyroid (female)
0.0
3.0


Pancreatic ca. CAPAN2
15.5
12.0


Pancreas Pool
3.6
3.0










[0730]

232





TABLE FF










Panel 5 Islet











Rel.
Rel.
Rel.



Exp. (%)
Exp. (%)
Exp. (%)



Ag6008,
Ag6980,
Ag7002,



Run
Run
Run


Tissue Name
245239907
284710391
284710397













97457_Patient-02go
12.6
9.2
1.4


adipose


97476_Patient-07sk
9.5
0.0
0.0


skeletal muscle


97477_Patient-07ut
8.4
0.0
3.5


uterus


97478_Patient-07pl
16.4
0.0
2.5


placenta


99167_Bayer Patient 1
70.7
0.0
0.0


97482_Patient-08ut
7.9
0.0
1.1


uterus


97483_Patient-08pl
15.6
2.4
0.6


placenta


97486_Patient-09sk
0.6
0.0
0.9


skeletal muscle


97487_Patient-09ut
3.6
0.0
1.2


uterus


97488_Patient-09pl
9.6
0.0
1.5


placenta


97492_Patient-10ut
9.9
0.0
2.2


uterus


97493_Patient-10pl
18.3
0.0
2.4


placenta


97495_Patient-11go
5.5
0.0
1.2


adipose


97496_Patient-11sk
0.4
0.0
0.7


skeletal muscle


97497_Patient-11ut
3.5
2.5
2.3


uterus


97498_Patient-11pl
11.0
4.5
1.4


placenta


97500_Patient-12go
7.4
0.0
3.3


adipose


97501_Patient-12sk
6.9
4.1
1.3


skeletal muscle


97502_Patient-12ut
9.3
0.0
4.5


uterus


97503_Patient-12pl
6.1
6.7
4.9


placenta


94721_Donor 2 U - A
6.7
2.6
25.5


Mesenchymal Stem Cells


94722_Donor 2 U - B
13.6
0.0
21.5


Mesenchymal Stem Cells


94723_Donor 2 U - C
8.9
11.9
29.1


Mesenchymal Stem Cells


94709_Donor 2 AM - A
26.8
3.9
25.7


adipose


94710_Donor 2 AM - B
26.4
0.0
23.2


adipose


94711_Donor 2 AM - C
8.4
3.4
14.4


adipose


94712_Donor 2 AD - A
37.6
4.6
36.6


adipose


94713_Donor 2 AD - B
31.0
19.8
68.3


adipose


94714_Donor 2 AD - C
59.0
7.3
35.4


adipose


94742_Donor 3 U - A
11.0
5.6
10.9


Mesenchymal Stem Cells


94743_Donor 3 U - B
34.2
9.3
11.3


Mesenchymal Stem Cells


94730_Donor 3 AM - A
60.3
37.6
43.2


adipose


94731_Donor 3 AM - B
27.4
38.4
71.7


adipose


94732_Donor 3 AM - C
42.3
22.7
50.7


adipose


94733_Donor 3 AD - A
100.0
100.0
100.0


adipose


94734_Donor 3 AD - B
44.1
54.3
90.8


adipose


94735_Donor 3 AD - C
84.1
25.3
30.1


adipose


77138_Liver_HepG2
0.0
61.1
20.9


untreated


73556_Heart_Cardiac
14.8
4.9
3.2


stromal cells (primary)


81735_Small Intestine
9.5
0.0
2.8


72409_Kidney_Proximal
24.5
4.8
8.1


Convoluted Tubule


82685_Small intestine
7.1
0.0
2.9


Duodenum


90650_Adrenal_Adreno
2.4
0.0
0.6


cortical adenoma


72410_Kidney_HRCE
65.5
16.7
20.3


72411_Kidney_HRE
46.0
4.8
9.4


73139_Uterus_Uterine
30.4
3.5
11.6


smooth muscle cells










[0731] General_screening_panel_v1.5 Summary: Ag6008 Highest expression of this gene is detected in a lung cancer A549 cell line (CT=22.4). High expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0732] Among tissues with metabolic or endocrine function, this gene is expressed at high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene through the use of small molecule drug may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0733] Interestingly, this gene is expressed at much higher levels in fetal (CTs=24-25), when compared to adult liver and lung (CTs=28-29). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung and liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung and liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung and liver related diseases.


[0734] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0735] General_screening_panel_v1.6 Summary: Ag6980/Ag7002 Highest expression of this gene is detected in a lung cancer A549 cell line (CT=24.3). The expression profile in this panel correlates with the pattern seen in panel 1.5. Please see panel 1.5 for further discussion of this gene.


[0736] Panel 5 Islet Summary: Ag6008/Ag6980/Ag7002 Highest expression of this gene is detected in differentiated adipose (CTs=27-33.7). Expression of this gene is higher in undifferentiated, midway differentiated and differentiated adipose tissue. Moderate to low expression of this gene is detected in the tissues with metabolic/endocrine functions including islet cells, adipose, skeletal muscle, and gastrointestinal tracts.


[0737] This gene codes for ATP-citrate lyase. It is a major source of acetyl CoA that is the building block of lipid biosynthesis and provides substrate for the production of cholesterol. Reduced flux of acetyl CoA through the cholesterol biosynthetic pathway will prevent excess production of LXR alpha ligands. LXR alpha is a nuclear hormone receptor that is abundantly expressed in tissues associated with lipid metabolism. Activation of LXR alpha leads to the up-regulation of fatty acid synthesis. Thus, ATP-citrate lyase may be a target for the treatment and/or prevention of obesity because its inhibition will decrease the availability of acetyl CoA for the synthesis of LXR alpha ligands, fatty acids, and triglycerides.


[0738] Chawla A, Repa J J, Evans R M, Mangelsdorf D J. Nuclear receptors and lipid physiology: opening the X-files. Science. Nov. 30, 2001;294(5548):1866-70. Review. PMID: 11729302; Moon Y A, Lee J J, Park S W, Ahn Y H, Kim K S. The roles of sterol regulatory element-binding proteins in the transactivation of the rat ATP citrate-lyase promoter. J Biol Chem. Sep. 29, 2000;275(39):30280-6. PMID: 10801800; Sato R, Okamoto A, Inoue J, Miyamoto W, Sakai Y, Emoto N, Shimano H, Maeda M. Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins. J Biol Chem. Apr. 28, 2000;275(17): 12497-502. PMID: 10777536.


[0739] G. CG148010-01: Human Dacylglycerol Acyltransferase 2-Like Protein.


[0740] Expression of gene CG148010-01 was assessed using the primer-probe set Ag6056, described in Table GA. Results of the RTQ-PCR runs are shown in Tables GB and GC.
233TABLE GAProbe Name Ag6056StartSEQ IDPrimersSequenceLengthPositionNoForward5′-ccagaagaagttccagaaataca-3′240377ProbeTET-5′-atcttccatggtcgaggcctcttctcc-3′-TAMRA280378Reverse5′-gtggtgatgggcttggagta-3′210379


[0741]

234





TABLE GB










General_screening_panel_v1.5











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag6056,

Ag6056,



Run

Run


Tissue Name
229514475
Tissue Name
229514475













Adipose
40.1
Renal ca. TK-10
19.6


Melanoma* Hs688(A).T
0.7
Bladder
2.9


Melanoma* Hs688(B).T
3.2
Gastric ca. (liver met.) NCI-N87
28.9


Melanoma* M14
3.1
Gastric ca. KATO III
37.1


Melanoma* LOXIMVI
0.2
Colon ca. SW-948
12.2


Melanoma* SK-MEL-5
4.7
Colon ca. SW480
6.2


Squamous cell carcinoma SCC-4
0.2
Colon ca.* (SW480 met) SW620
10.4


Testis Pool
7.7
Colon ca. HT29
11.0


Prostate ca.* (bone met) PC-3
6.8
Colon ca. HCT-116
3.3


Prostate Pool
0.9
Colon ca. CaCo-2
100.0


Placenta
0.3
Colon cancer tissue
12.8


Uterus Pool
0.3
Colon ca. SW1116
3.3


Ovarian ca. OVCAR-3
16.3
Colon ca. Colo-205
9.5


Ovarian ca. SK-OV-3
3.5
Colon ca. SW-48
23.3


Ovarian ca. OVCAR-4
3.0
Colon Pool
0.3


Ovarian ca. OVCAR-5
6.1
Small Intestine Pool
0.8


Ovarian ca. IGROV-1
4.5
Stomach Pool
0.6


Ovarian ca. OVCAR-8
8.4
Bone Marrow Pool
0.9


Ovary
1.7
Fetal Heart
3.1


Breast ca. MCF-7
20.4
Heart Pool
1.1


Breast ca. MDA-MB-231
9.7
Lymph Node Pool
0.1


Breast ca. BT 549
18.7
Fetal Skeletal Muscle
7.0


Breast ca. T47D
0.8
Skeletal Muscle Pool
2.3


Breast ca. MDA-N
7.2
Spleen Pool
1.0


Breast Pool
0.4
Thymus pool
3.0


Trachea
7.3
CNS cancer (glio/astro) U87-MG
6.2


Lung
0.2
CNS cancer (glio/astro) U-118-MG
12.9


Fetal Lung
2.4
CNS cancer (neuro; met) SK-N-AS
0.4


Lung ca. NCI-N417
6.0
CNS cancer (astro) SF-539
0.2


Lung ca. LX-1
10.6
CNS cancer (astro) SNB-75
15.2


Lung ca. NCI-H146
3.2
CNS cancer (glio) SNB-19
6.3


Lung ca. SHP-77
0.3
CNS cancer (glio) SF-295
15.8


Lung ca. A549
0.8
Brain (Amygdala) Pool
3.2


Lung ca. NCI-H526
7.1
Brain (cerebellum)
1.5


Lung ca. NCI-H23
48.6
Brain (fetal)
3.1


Lung ca. NCI-H460
2.8
Brain (Hippocampus) Pool
3.2


Lung ca. HOP-62
1.0
Cerebral Cortex Pool
4.2


Lung ca. NCI-H522
9.2
Brain (Substantia nigra) Pool
3.5


Liver
42.6
Brain (Thalamus) Pool
4.4


Fetal Liver
71.7
Brain (whole)
6.1


Liver ca. HepG2
34.2
Spinal Cord Pool
1.5


Kidney Pool
0.9
Adrenal Gland
7.6


Fetal Kidney
1.0
Pituitary gland Pool
0.2


Renal ca. 786-0
0.7
Salivary Gland
2.9


Renal ca. A498
1.6
Thyroid (female)
4.1


Renal ca. ACHN
0.6
Pancreatic ca. CAPAN2
7.6


Renal ca. UO-31
0.6
Pancreas Pool
0.7










[0742]

235





TABLE GC










Panel 5 Islet











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag6056,

Ag6056,



Run

Run


Tissue Name
230294205
Tissue Name
230294205













97457_Patient-02go_adipose
11.5
94709_Donor 2 AM - A_adipose
24.5


97476_Patient-07sk_skeletal
3.8
94710_Donor 2 AM - B_adipose
12.8


muscle


97477_Patient-07ut_uterus
0.2
94711_Donor 2 AM - C_adipose
6.9


97478_Patient-07pl_placenta
0.1
94712_Donor 2 AD - A_adipose
100.0


99167_Bayer Patient 1
4.7
94713_Donor 2 AD - B_adipose
79.6


97482_Patient-08ut_uterus
0.1
94714_Donor 2 AD - C_adipose
92.7


97483_Patient-08pl_placenta
0.1
94742_Donor 3 U - A_Mesenchymal
0.4




Stem Cells


97486_Patient-09sk_skeletal
0.4
94743_Donor 3 U - B_Mesenchymal
0.4


muscle

Stem Cells


97487_Patient-09ut_uterus
0.2
94730_Donor 3 AM - A_adipose
8.9


97488_Patient-09pl_placenta
0.2
94731_Donor 3 AM - B_adipose
5.4


97492_Patient-10ut_uterus
0.3
94732_Donor 3 AM - C_adipose
3.6


97493_Patient-10pl_placenta
0.2
94733_Donor 3 AD - A_adipose
66.4


97495_Patient-11go_adipose
7.6
94734_Donor 3 AD - B_adipose
21.6


97496_Patient-11sk_skeletal
0.7
94735_Donor 3 AD - C_adipose
8.3


muscle


97497_Patient-11ut_uterus
0.3
77138_Liver_HepG2untreated
14.8


97498_Patient-11pl_placenta
0.2
73556_Heart_Cardiac stromal cells
0.1




(primary)


97500_Patient-12go_adipose
21.0
81735_Small Intestine
1.7


97501_Patient-12sk_skeletal
1.8
72409_Kidney_Proximal Convoluted
0.2


muscle

Tubule


97502_Patient-12ut_uterus
0.3
82685_Small intestine_Duodenum
1.5


97503_Patient-12pl_placenta
0.7
90650_Adrenal_Adrenocortical
0.0




adenoma


94721_Donor 2 U -
0.1
72410_Kidney_HRCE
0.6


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.4
72411_Kidney_HRE
0.0


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.1
73139_Uterus_Uterine smooth
0.0


C_Mesenchymal Stem Cells

muscle cells










[0743] General_screening_panel_v1.5 Summary: Ag6056 Highest expression of this gene is detected in colon cancer CaCo-2 cell line (CT=26.3). Moderate to high expression of this gene is also seen in number of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.


[0744] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0745] This gene codes for Diacylglycerol acyltransferase 2 (DGAT2). DGAT2 catalyzes a reaction in which diacylglycerol is covalently joined to long chain fatty acyl-CoAs. At Curagen using GeneCalling studies expression of DGAT2 was found to be dysregulated in two distinct models of obesity. In a model of genetic obesity DGAT2 expression was increased 2.1 fold in AKR/J (obese) versus C57L/J (normal) mice. DGAT2 expression was also found to be decreased 1.5 fold in a model diet-induced obesity when comparing brown adipose between obese hyperglycemic versus control chow fed mice. These studies indicate that DGAT2 is an excellent molecule for small molecule therapy for the treatment of obesity and prevention of type II diabetes.


[0746] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0747] Panel 5 Islet Summary: Ag6056 Highest expression of this gene is detected in differentiated adipose tissue (CT=26.4). Moderate to high expression of this gene is also seen in adipose, skeletal muscle, small intestine and pancreatic islet cells from diabetic and obese patient. Interestingly, expression of this gene is higher in differentiated adipose compared to undifferentiated and midway differentiated tissue. Thus therapeutic modulation of this gene through the use of small molecule drug may be useful in the treatment of obesity and diabetes, especially type II diabetes.


[0748] H. CG148278-01: Human Longchain Acyl CoA Synthetase 1-Like Protein.


[0749] Expression of gene CG148278-01 was assessed using the primer-probe sets Ag5215 and Ag5820, described in Tables HA and HB.
236TABLE HAProbe Name Ag5215StartSEQ IDPrimersSequenceLengthPositionNoForward5′-ccagacgactcaccaccttctg-3′22180380ProbeTET-5′-cggccacgccacccaaaaccc-3′-TAMRA21203381Reverse5′-actgcatggagaggtgccat-3′20235382


[0750]

237






TABLE HR










Probe Name Ag5820
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-ctgccttacagtcacctcag-3′
22
0
383






Probe
TET-5′-tgttcagaccatgtttatggtaatacacacttcc-3′-TAMRA
34
2362
384





Reverse
5′-tctcaaataattagcacatttatagtat-3′
28
2423
385










[0751] I. CG152981-01 and CG152981-02: Corticosteroid 11-Beta Dehydrogenase, Isozyme 1-Like Protein.


[0752] Expression of gene CG152981-01 and CG152981-02 was assessed using the primer-probe sets Ag3951 and Ag5951, described in Table IA and IB. Results of the RTQ-PCR runs are shown in Tables IC and ID. Please note that probe-primer set Ag3951 is specific for CG152981-01 and Ag5951 is specific for CG152981-02.
238TABLE IAProbe Name Ag3951StartSEQ IDPrimersSequenceLengthPositionNoForward5′-cttcggagcttttgcagca-3′19108386ProbeTET-5′-ctcaccaccttctggtacgccacgaga-3′-TAMRA27127387Reverse5′-agaggtcgcatggcggctt-3′19166388


[0753]

239






TABLE TB










Probe Name Ag5951
















Start
SEQ ID



Primers
Sequence
Length
Position
No





Forward
5′-aagcagagcaatggaagcatt-3′
21
557
389






Probe
TET-5′-ctctggctgaaacagccatgaaggca-3′-TAMRA
26
591
390





Reverse
5′-ggagctgcttgcatatggact-3′
21
628
391










[0754]

240





TABLE IC










General_screening_panel_v1.6











Rel.




Exp. (%)




Ag3951,




Run



Tissue Name
277231320














Adipose
38.7



Melanoma* Hs688(A).T
6.8



Melanoma* Hs688(B).T
5.9



Melanoma* M14
66.4



Melanoma* LOXIMVI
0.5



Melanoma* SK-MEL-5
47.6



Squamous cell carcinoma SCC-4
2.1



Testis Pool
9.0



Prostate ca.* (bone met) PC-3
3.1



Prostate Pool
17.6



Placenta
2.3



Uterus Pool
2.3



Ovarian ca. OVCAR-3
4.8



Ovarian ca. SK-OV-3
12.2



Ovarian ca. OVCAR-4
7.5



Ovarian ca. OVCAR-5
6.2



Ovarian ca. IGROV-1
5.7



Ovarian ca. OVCAR-8
0.6



Ovary
1.9



Breast ca. MCF-7
2.1



Breast ca. MDA-MB-231
6.8



Breast ca. BT 549
8.0



Breast ca. T47D
5.4



Breast ca. MDA-N
10.7



Breast Pool
4.8



Trachea
12.6



Lung
0.4



Fetal Lung
8.9



Lung ca. NCI-N417
5.9



Lung ca. LX-1
1.4



Lung ca. NCI-H146
1.7



Lung ca. SHP-77
8.5



Lung ca. A549
3.3



Lung ca. NCI-H526
2.6



Lung ca. NCI-H23
2.7



Lung ca. NCI-H460
4.2



Lung ca. HOP-62
1.3



Lung ca. NCI-H522
2.9



Liver
85.3



Fetal Liver
49.3



Liver ca. HepG2
0.4



Kidney Pool
7.6



Fetal Kidney
4.2



Renal ca. 786-0
8.4



Renal ca. A498
5.0



Renal ca. ACHN
50.7



Renal ca. UO-11
10.7



Renal ca. TK-10
1.6



Bladder
13.7



Gastric ca. (liver met.) NCI-N87
100.0



Gastric ca. KATO III
48.3



Colon ca. SW-948
6.5



Colon ca. SW480
17.2



Colon ca.* (SW480 met) SW620
2.0



Colon ca. HT29
4.4



Colon ca. HCT-116
4.5



Colon ca. CaCo-2
9.2



Colon cancer tissue
11.5



Colon ca. SW1116
3.6



Colon ca. Colo-205
8.4



Colon ca. SW-48
4.4



Colon Pool
5.8



Small Intestine Pool
3.9



Stomach Pool
6.2



Bone Marrow Pool
3.1



Fetal Heart
4.0



Heart Pool
12.9



Lymph Node Pool
7.1



Fetal Skeletal Muscle
7.8



Skeletal Muscle Pool
16.8



Spleen Pool
10.4



Thymus Pool
9.3



CNS cancer (glio/astro) U87-MG
17.4



CNS cancer (glio/astro) U-118-MG
8.7



CNS cancer (neuro; met) SK-N-AS
3.1



CNS cancer (astro) SF-539
4.3



CNS cancer (astro) SNB-75
14.8



CNS cancer (glio) SNB-19
5.3



CNS cancer (glio) SF-295
8.6



Brain (Amygdala) Pool
7.1



Brain (cerebellum)
7.8



Brain (fetal)
5.9



Brain (Hippocampus) Pool
8.4



Cerebral Cortex Pool
6.6



Brain (Substantia nigra) Pool
6.5



Brain (Thalamus) Pool
10.5



Brain (whole)
10.4



Spinal Cord Pool
15.1



Adrenal Gland
13.9



Pituitary gland Pool
2.0



Salivary Gland
12.9



Thyroid (female)
4.2



Pancreatic ca. CAPAN2
1.2



Pancreas Pool
3.3











[0755]

241





TABLE ID










Panel 5 Islet











Rel.




Exp. (%)




Ag395,




Run



Tissue Name
304686272














97457_Patient-02go_adipose
12.9



97476_Patient-07sk_skeletal muscle
0.0



97477_Patient-07ut_uterus
1.6



97478_Patient-07pl_placenta
0.9



99167_Bayer Patient 1
0.0



97482_Patient-08ut_uterus
2.1



97483_Patient-08pl_placenta
0.7



97486_Patient-09sk_skeletal muscle
14.0



97487_Patient-09ut_uterus
3.0



97488_Patient-09pl_placenta
0.4



97492_Patient-10ut_uterus
3.9



97493_Patient-10pl_placenta
1.8



97495_Patient-11go_adipose
6.7



97496_Patient-11sk_skeletal muscle
17.0



97497_Patient-11ut_uterus
3.7



97498_Patient-11pl_placenta
0.5



97500_Patient-12go_adipose
17.4



97501_Patient-12sk_skeletal muscle
43.8



97502_Patient-12ut_uterus
4.9



97503_Patient-12pl_placenta
1.6



94721_Donor 2 U - A_Mesenchymal Stem Cells
3.6



94722_Donor 2 U - B_Mesenchymal Stem Cells
2.9



94723_Donor 2 U - C_Mesenchymal Stem Cells
3.6



94709_Donor 2 AM - A_adipose
18.0



94710_Donor 2 AM - B_adipose
14.1



94711_Donor 2 AM - C_adipose
12.0



94712_Donor 2 AD - A_adipose
74.2



94713_Donor 2 AD - B_adipose
94.0



94714_Donor 2 AD - C_adipose
80.7



94742_Donor 3 U - A_Mesenchymal Stem Cells
1.6



94743_Donor 3 U - B_Mesenchymal Stem Cells
1.4



94730_Donor 3 AM - A adipose
23.2



94731_Donor 3 AM - B_adipose
27.5



94732_Donor 3 AM - C_adipose
24.3



94733_Donor 3 AD - A_adipose
100.0



94734_Donor 3 AD - B_adipose
67.8



94735_Donor 3 AD - C_adipose
19.8



77138_Liver_HepG2untreated
6.2



73556_Heart_Cardiac stromal cells (primary)
0.2



81735 Small Intestine
5.8



72409_Kidney_Proximal Convoluted Tubule
40.3



82685_Small intestine_Duodenum
1.6



90650_Adrenal_Adrenocortical adenoma
1.7



72410_Kidney_HRCE
16.7



72411_Kidney_HRE
5.7



73139_Uterus_Uterine smooth muscle cells
3.7











[0756] General_screening_panel_v1.6 Summary: Ag3951 Highest expression of this gene is seen in gastric cancer NCI-N87 cell line (CTs=23.5). High expression of this gene is detected in number of cancer cell lines derived from melanoma, pancreatic, brain, colon, lung, breast, renal, ovarian and prostate cancer. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0757] High levels of expression of this gene is also seen in tissues with metabolic/endocrine functions including adipose, and liver. Moderate to low expression are also seen in pancreas, thyroid, adrenal gland, pituitary, smooth muscle, heart and gastrointestinal tract. This gene codes for a variant of long chain acyl-CoA synthetase 2 (LACS2). It is a microsomal enzyme involved in fatty acid esterification. Using CuraGen's GeneCalling™ method of differential gene expression, the rat orthologue of LACS2 was found to be up-regulated in liver in response to troglitazone (TZD) treatment; the mouse orthologue LACS2 was found to be down-regulated in brown adipose tissue, but not in white adipose tissue of obese mice on a high fat diet as compared to chow-fed mice. These data suggest that human LACS2 may contribute to the obese phenotype induced by TZD treatment and may become selectively down-regulated in brown adipose tissue to inhibit fatty acid esterification and promote beta-oxidation. Therefore, an antagonist for LACS2 may be beneficial in the treatment of obesity. In addition, therapeutic modulation of LACS2 encoded by this gene through the use of small molecule drug may be beneficial in the treatment of other metabolic related diseases such as diabetes.


[0758] Panel 5 Islet Summary: Ag3951 Highest expression of this gene is detected in differentiated adipose tissue (CT=25.2). This gene shows ubiquitous expression with high expression in adipose tissue. Expression of this gene is higher in differentiated adipose tissues as compared to the mesenchymal stem cells and midway differentiated adipose tissues. Thus, LACS2 protein encoded by this gene may play a role in adipose differentiation. Please see panel 1.6 for further discussion of this gene.


[0759] J. CGI59035-01: Glucuronosyltransferase-Like Protein.


[0760] Expression of gene CG159035-01 was assessed using the primer-probe set Ag5541, described in Table JA.
242TABLE JAProbe Name Ag5541StartSEQ IDPrimersSequenceLengthPositionNoForward5′-tccacttctggattcaggatt-3′21683392ProbeTET-5′-aaggcattaggaagacccactacctt-3′-TAMRA26736393Reverse5′-gctttccccattgtctcaa-3′19764394


[0761] K. CG159232-01: Human cAMP-Specific Phosphodiesterase 8 B1-Like Protein.


[0762] Expression of gene CG159232-01 was assessed using the primer-probe set Ag5542, described in Table KA. Results of the RTQ-PCR runs are shown in Tables KB, KC and KD.
243TABLE KAProbe Name Ag5542StartSEQ IDPrimersSequenceLengthPositionNoForward5′-agcgtgaagcaggtgtctt-3′19376395ProbeTET-5′-ccatgagactgacgcaggaccctatt-3′TAMRA26416396Reverse5′-ttgcaaagatcagcaaaacct-3′21443397


[0763]

244





TABLE KB










AI_comprehensive_panel_v1.0











Rel.




Exp. (%)




Ag5542,




Run



Tissue Name
245062270














110967 COPD-F
38.7



110980 COPD-F
11.2



110968 COPD-M
25.5



110977 COPD-M
18.8



110989 Emphysema-F
47.6



110992 Emphysema-F
4.9



110993 Emphysema-F
36.3



110994 Emphysema-F
42.0



110995 Emphysema-F
12.3



110996 Emphysema-F
0.8



110997 Asthma-M
2.9



111001 Asthma-F
0.7



111002 Asthma-F
51.1



111003 Atopic Asthma-F
36.6



111004 Atopic Asthma-F
20.6



111005 Atopic Asthma-F
21.8



111006 Atopic Asthma-F
6.0



111417 Allergy-M
22.1



112347 Allergy-M
3.2



112349 Normal Lung-F
2.5



112357 Normal Lung-F
2.4



112354 Normal Lung-M
6.4



112374 Crohns-F
76.8



112389 Match Control Crohns-F
2.9



112375 Crohns-F
61.6



112732 Match Control Crohns-F
1.0



112725 Crohns-M
17.8



112387 Match Control Crohns-M
36.9



112378 Crohns-M
0.0



112390 Match Control Crohns-M
55.5



112726 Crohns-M
37.4



112731 Match Control Crohns-M
17.4



112380 Ulcer Col-F
46.0



112734 Match Control Ulcer Col-F
1.9



112384 Ulcer Col-F
22.7



112737 Match Control Ulcer Col-F
14.6



112386 Ulcer Col-F
14.5



112738 Match Control Ulcer Col-F
0.9



112381 Ulcer Col-M
2.3



112735 Match Control Ulcer Col-M
40.3



112382 Ulcer Col-M
4.2



112394 Match Control Ulcer Col-M
23.3



112383 Ulcer Col-M
2.7



112736 Match Control Ulcer Col-M
2.6



112423 Psoriasis-F
17.6



112427 Match Control Psoriasis-F
89.5



112418 Psoriasis-M
48.0



112723 Match Control Psoriasis-M
0.5



112419 Psoriasis-M
55.5



112424 Match Control Psoriasis-M
26.6



112420 Psoriasis-M
100.0



112425 Match Control Psoriasis-M
72.7



104689 (MF) OA Bone-Backus
5.6



104690 (MF) Adj “Normal” Bone-Backus
14.0



104691 (MF) OA Synovium-Backus
3.3



104692 (BA) OA Cartilage-Backus
0.0



104694 (BA) OA Bone-Backus
1.7



104695 (BA) Adj “Normal” Bone-Backus
11.2



104696 (BA) OA Synovium-Backus
1.2



104700 (SS) OA Bone-Backus
1.7



104701 (SS) Adj “Normal” Bone-Backus
4.4



104702 (SS) OA Synovium-Backus
12.4



117093 OA Cartilage Rep7
24.3



112672 OA Bone5
15.6



112673 OA Synovium5
8.1



112674 OA Synovial Fluid cellsS
8.1



117100 OA Cartilage Rep14
9.9



112756 OA Bone9
1.2



112757 OA Synovium9
0.0



112758 OA Synovial Fluid Cells9
18.6



117125 RA Cartilage Rep2
45.1



113492 Bone2 RA
5.3



113493 Synovium2 RA
0.3



113494 Syn Fluid Cells RA
3.7



113499 Cartilage4 RA
0.7



113500 Bone4 RA
3.5



113501 Synovium4 RA
3.0



113502 Syn Fluid Cells4 RA
2.4



113495 Cartilage3 RA
2.0



113496 Bone3 RA
1.8



113497 Synovium3 RA
1.9



113498 Syn Fluid Cells3 RA
2.8



117106 Normal Cartilage Rep20
8.7



113663 Bone3 Normal
4.3



113664 Synovium3 Normal
1.2



113665 Syn Fluid Cells3 Normal
2.0



117107 Normal Cartilage Rep22
12.2



113667 Bone4 Normal
26.6



113668 Synovium4 Normal
23.3



113669 Syn Fluid Cells4 Normal
21.0











[0764]

245





TABLE KC










Panel 5 Islet











Rel.




Exp. (%)




Ag5542,




Run



Tissue Name
277224359














97457_Patient-02go_adipose
40.3



97476_Patient-07sk_skeletal muscle
1.9



97477_Patient-07ut_uterus
19.6



97478_Patient-07pl_placenta
18.8



99167_Bayer Patient 1
2.7



97482_Patient-08ut_uterus
31.6



97483_Patient-08pl_placenta
18.0



97486_Patient-09sk_skeletal muscle
0.0



97487_Patient-09ut_uterus
100.0



97488_Patient-09pl_placenta
8.4



97492_Patient-10ut_uterus
18.7



97493_Patient-10pl_placenta
8.2



97495_Patient-11go_adipose
30.6



97496_Patient-11sk_skeletal muscle
0.0



97497_Patient-11ut_uterus
92.7



97498_Patient-11pl_placenta
9.5



97500_Patient-12go_adipose
20.6



97501_Patient-12sk_skeletal muscle
0.0



97502_Patient-12ut_uterus
68.8



97503_Patient-12pl_placenta
6.6



94721_Donor 2 U - A_Mesenchymal Stem Cells
0.0



94722_Donor 2 U - B_Mesenchymal Stem Cells
0.0



94723_Donor 2 U - C_Mesenchymal Stem Cells
0.0



94709_Donor 2 AM - A_adipose
0.3



94710_Donor 2 AM - B_adipose
0.0



94711_Donor 2 AM - C_adipose
0.0



94712_Donor 2 AD - A_adipose
0.0



94713_Donor 2 AD - B_adipose
0.0



94714_Donor 2 AD - C_adipose
0.9



94742_Donor 3 U - A_Mesenchymal Stem Cells
0.0



94743_Donor 3 U - B_Mesenchymal Stem Cells
0.0



94730_Donor 3 AM - A_adipose
0.0



94731_Donor 3 AM - B_adipose
0.0



94732_Donor 3 AM - C_adipose
0.9



94733_Donor 3 AD - A_adipose
0.0



94734_Donor 3 AD - B_adipose
0.0



94735_Donor 3 AD - C_adipose
0.0



77138_Liver_HepG2untreated
0.0



73556_Heart_Cardiac stromal cells (primary)
0.0



81735_Small Intestine
13.6



72409_Kidney_Proximal Convoluted Tubule
0.0



82685_Small intestine Duodenum
0.8



90650_Adrenal_Adrenocortical adenoma
2.2



72410_Kidney_HRCE
0.0



72411_Kidney_HRE
0.0



73139_Uterus_Uterine smooth muscle cells
0.0











[0765]

246





TABLE KD










general_oncology_screening_panel_v_2.4











Rel. Exp. (%)




Ag5542,




Run



Tissue Name
260268947














Colon cancer 1
4.5



Colon NAT 1
4.0



Colon cancer 2
0.6



Colon NAT 2
2.3



Colon cancer 3
3.8



Colon NAT 3
6.6



Colon malignant cancer 4
0.0



Colon NAT 4
1.5



Lung cancer 1
0.4



Lung NAT 1
2.3



Lung cancer 2
6.0



Lung NAT 2
7.6



Squamous cell carcinoma 3
2.3



Lung NAT 3
1.0



Metastatic melanoma 1
30.8



Melanoma 2
0.5



Melanoma 3
0.3



Metastatic melanoma 4
11.9



Metastatic melanoma 5
15.8



Bladder cancer 1
0.3



Bladder NAT 1
0.0



Bladder cancer 2
2.0



Bladder NAT 2
0.0



Bladder NAT 3
0.6



Bladder NAT 4
1.7



Prostate adenocarcinoma 1
100.0



Prostate adenocarcinoma 2
9.2



Prostate adenocarcinoma 3
81.2



Prostate adenocarcinoma 4
8.6



Prostate NAT 5
11.7



Prostate adenocarcinoma 6
28.9



Prostate adenocarcinoma 7
24.7



Prostate adenocarcinoma 8
7.4



Prostate adenocarcinoma 9
77.4



Prostate NAT 10
8.5



Kidney cancer 1
1.5



Kidney NAT 1
3.9



Kidney cancer 2
12.4



Kidney NAT 2
52.9



Kidney cancer 3
1.4



Kidney NAT 3
7.5



Kidney cancer 4
0.6



Kidney NAT 4
3.4











[0766] AI_comprehensive panel_v1.0 Summary: Ag5542 Highest expression of this gene is detected in psoriasis sample (CT=30). Moderate to low expression of this gene is also seen in samples derived from normal and orthoarthitis arthritis bone, cartilage, synovium and synovial fluid samples, from COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis (normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease including Crohns and ulcerative colitis and osteoarthritis.


[0767] Panel 5 Islet Summary: Ag5542 Highest expression of this gene is detected in uterus of non-diabetic but obese patient (CT=31.6). Moderate to low expression of this gene is detected in adipose, uterus, and small intestine. Therefore, therapeutic modulation of this gene may be useful in the treatment of metabolic/endocrine diseases including diabetes and obesity.


[0768] general oncology screening panel_v2.4 Summary: Ag5542 Highest expression of this gene is detected in prostate adenocarcinoma sample (CT=30.3). Moderate to low expression of this gene is also seen in metastatic melanoma, normal and cancer sample from lung and kidney. Interestingly, expression of this gene is higher in metastatic melanoma and prostate cancer. Therefore, expression of this gene can used as diagnostic marker to detect the presence of metastic melanoma and prostate cancer. In addition, therapeutic modulation of this gene may be useful in the treatment of metastatic melanoma, prostate cancer, lung and kidney cancers.


[0769] L. CG160563-01: Monocarboxylate Transporter 7-Like Protein.


[0770] Expression of gene CG160563-01 was assessed using the primer-probe set Ag3575, described in Table LA. Results of the RTQ-PCR runs are shown in Tables LB, LC, LD, LE, LF and LG. Please note that CG160563-01 represents a full length physical clone.
247TABLE LAProbe Name Ag3575SEQ IDPrimersSequenceLengthStart PositionNoForward5′-tgctttagttttctcccaactg-3′221209398ProbeTET-5′-ccatcctatcacaatattttggcaaa-3′-TAMRA261180399Reverse5′-aactgcagtgactatggaacgt-3′221156400


[0771]

248





TABLE LB










CNS_neurodegeneration_v1.0











Rel.




Exp. (%)




Ag3575,




Run



Tissue Name
210629744














AD 1 Hippo
3.8



AD 2 Hippo
12.0



AD 3 Hippo
2.8



AD 4 Hippo
2.2



AD 5 hippo
82.4



AD 6 Hippo
32.3



Control 2 Hippo
20.6



Control 4 Hippo
74.7



Control (Path) 3 Hippo
90.1



AD 1 Temporal Ctx
2.6



AD 2 Temporal Ctx
19.1



AD 3 Temporal Ctx
1.4



AD 4 Temporal Ctx
9.0



AD 5 Inf Temporal Ctx
41.2



AD 5 Sup Temporal Ctx
100.0



AD 6 Inf Temporal Ctx
50.3



AD 6 Sup Temporal Ctx
49.3



Control 1 Temporal Ctx
6.9



Control 2 Temporal Ctx
25.9



Control 3 Temporal Ctx
12.8



Control 4 Temporal Ctx
5.8



Control (Path) 1 Temporal Ctx
42.9



Control (Path) 2 Temporal Ctx
32.1



Control (Path) 3 Temporal Ctx
5.8



Control (Path) 4 Temporal Ctx
27.2



AD 1 Occipital Ctx
6.0



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
2.4



AD 4 Occipital Ctx
15.1



AD 5 Occipital Ctx
28.3



AD 6 Occipital Ctx
54.7



Control 1 Occipital Ctx
9.4



Control 2 Occipital Ctx
72.2



Control 3 Occipital Ctx
23.8



Control 4 Occipital Ctx
12.4



Control (Path) 1 Occipital Ctx
65.5



Control (Path) 2 Occipital Ctx
11.7



Control (Path) 3 Occipital Ctx
5.9



Control (Path) 4 Occipital Ctx
17.8



Control 1 Parietal Ctx
6.8



Control 2 Parietal Ctx
13.4



Control 3 Parietal Ctx
33.4



Control (Path) 1 Parietal Ctx
76.8



Control (Path) 2 Parietal Ctx
25.3



Control (Path) 3 Parietal Ctx
9.8



Control (Path) 4 Parietal Ctx
42.9











[0772]

249





TABLE LC










General_screening_panel_v1.4











Rel.




Exp. (%)




Ag3575,




Run



Tissue Name
217343280














Adipose
0.1



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
17.4



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
100.0



Squamous cell carcinoma SCC-4
0.1



Testis Pool
0.8



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.4



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.5



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.1



Breast ca. MCF-7
3.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.3



Breast ca. T47D
1.2



Breast ca. MDA-N
0.0



Breast Pool
0.1



Trachea
0.2



Lung
0.0



Fetal Lung
0.2



Lung ca. NCI-N417
0.1



Lung ca. LX-1
2.7



Lung ca. NCI-H146
0.1



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.1



Lung ca. NCI-H23
0.2



Lung ca. NCI-H460
6.3



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.6



Liver
0.0



Fetal Liver
0.1



Liver ca. HepG2
0.5



Kidney Pool
0.1



Fetal Kidney
0.1



Renal ca. 786-0
0.1



Renal ca. A498
0.0



Renal ca. ACHN
0.1



Renal ca. UO-31
0.3



Renal ca. TK-10
0.4



Bladder
0.2



Gastric ca. (liver met.) NCI-N87
1.1



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
1.8



Colon ca.* (SW480 met) SW620
2.6



Colon ca. HT29
0.0



Colon ca. HCT-116
0.7



Colon ca. CaCo-2
0.1



Colon cancer tissue
0.2



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.1



Stomach Pool
0.1



Bone Marrow Pool
0.1



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.1



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.2



Spleen Pool
0.3



Thymus Pool
0.2



CNS cancer (glio/astro) U87-MG
2.5



CNS cancer (glio/astro) U-118-MG
1.3



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.1



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.1



Brain (Amygdala) Pool
0.1



Brain (cerebellum)
0.2



Brain (fetal)
0.2



Brain (Hippocampus) Pool
0.2



Cerebral Cortex Pool
0.3



Brain (Substantia nigra) Pool
0.2



Brain (Thalamus) Pool
0.4



Brain (whole)
0.2



Spinal Cord Pool
0.1



Adrenal Gland
0.7



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.1



Pancreatic ca. CAPAN2
0.1



Pancreas Pool
0.2











[0773]

250





TABLE LD










General_screening_panel_v1.6











Rel.




Exp. (%)




Ag3575,




Run



Tissue Name
277230936














Adipose
0.1



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
14.7



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
100.0



Squamous cell carcinoma SCC-4
0.1



Testis Pool
0.9



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.1



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.6



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.1



Breast ca. MCF-7
2.2



Breast ca. MDA-MB-231
0.1



Breast ca. BT 549
0.2



Breast ca. T47D
0.7



Breast ca. MDA-N
0.0



Breast Pool
0.1



Trachea
0.1



Lung
0.0



Fetal Lung
0.1



Lung ca. NCI-N417
0.1



Lung ca. LX-1
2.0



Lung ca. NCI-H146
0.1



Lung ca. SHP-77
0.0



Lung ca. A549
0.2



Lung ca. NCI-H526
0.1



Lung ca. NCI-H23
0.2



Lung ca. NCI-H460
6.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.4



Liver
0.0



Fetal Liver
0.1



Liver ca. HepG2
0.4



Kidney Pool
0.1



Fetal Kidney
0.1



Renal ca. 786-0
0.1



Renal ca. A498
0.0



Renal ca. ACHN
0.1



Renal ca. UO-31
0.2



Renal ca. TK-10
0.3



Bladder
0.2



Gastric ca. (liver met.) NCI-N87
0.8



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
1.5



Colon ca.* (SW480 met) SW620
1.4



Colon ca. HT29
0.0



Colon ca. HCT-116
0.6



Colon ca. CaCo-2
0.1



Colon cancer tissue
0.1



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.1



Small Intestine Pool
0.1



Stomach Pool
0.0



Bone Marrow Pool
0.1



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.1



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.1



Spleen Pool
0.2



Thymus Pool
0.2



CNS cancer (glio/astro) U87-MG
2.2



CNS cancer (glio/astro) U-118-MG
1.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.1



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.1



Brain (Amygdala) Pool
0.1



Brain (cerebellum)
0.4



Brain (fetal)
0.2



Brain (Hippocampus) Pool
0.2



Cerebral Cortex Pool
0.3



Brain (Substantia nigra) Pool
0.2



Brain (Thalamus) Pool
0.3



Brain (whole)
0.2



Spinal Cord Pool
0.1



Adrenal Gland
0.6



Pituitary gland Pool
0.1



Salivary Gland
0.0



Thyroid (female)
0.1



Pancreatic ca. CAPAN2
0.1



Pancreas Pool
0.0











[0774]

251





TABLE LE










General_screening_panel_v1.7











Rel.




Exp. (%)




Ag3575,




Run



Tissue Name
318345840














Adipose
0.8



HUVEC
0.3



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.1



Melanoma (met) SK-MEL-5
100.0



Testis
2.0



Prostate ca. (bone met) PC-3
0.0



Prostate ca. DU145
0.1



Prostate pool
0.1



Uterus pool
0.0



Ovarian ca. OVCAR-3
0.1



Ovarian ca. (ascites) SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.4



Ovarian ca. OVCAR-5
1.1



Ovarian ca. IGROV-1
0.2



Ovarian ca. OVCAR-8
0.3



Ovary
0.2



Breast ca. MCF-7
3.8



Breast ca. MDA-MB-231
0.1



Breast ca. BT-549
0.3



Breast ca. T47D
3.3



Breast pool
0.1



Trachea
0.8



Lung
1.9



Fetal Lung
0.5



Lung ca. NCI-N417
0.3



Lung ca. LX-1
0.7



Lung ca. NCI-H146
0.6



Lung ca. SHP-77
0.1



Lung ca. NCI-H23
0.6



Lung ca. NCI-H460
2.3



Lung ca. HOP-62
0.3



Lung ca. NCI-H522
0.3



Lung ca. DMS-114
0.1



Liver
0.0



Fetal Liver
0.2



Kidney pool
0.3



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.3



Renal ca. UO-31
0.7



Renal ca. TK-10
0.3



Bladder
0.1



Gastric ca. (liver met.) NCI-N87
0.1



Stomach
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.1



Colon ca. (SW480 met) SW620
9.5



Colon ca. HT29
0.8



Colon ca. HCT-116
1.9



Colon cancer tissue
0.0



Colon ca. SW1116
0.1



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon
0.1



Small Intestine
0.1



Fetal Heart
0.2



Heart
0.0



Lymph Node pool 1
0.0



Lymph Node pool 2
2.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle pool
0.1



Skeletal Muscle
0.2



Spleen
0.7



Thymus
0.3



CNS cancer (glio/astro) SF-268
0.0



CNS cancer (glio/astro) T98G
0.8



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.2



CNS cancer (astro) SNB-75
0.2



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.1



Brain (Amygdala)
2.0



Brain (Cerebellum)
1.0



Brain (Fetal)
0.7



Brain (Hippocampus)
1.4



Cerebral Cortex pool
0.7



Brain (Substantia nigra)
0.1



Brain (Thalamus)
0.9



Brain (Whole)
3.2



Spinal Cord
0.2



Adrenal Gland
3.8



Pituitary Gland
0.4



Salivary Gland
0.1



Thyroid
1.1



Pancreatic ca. PANC-1
0.0



Pancreas pool
0.0











[0775]

252





TABLE LF










Panel 4.1D











Rel.




Exp. (%)




Ag3575,




Run



Tissue Name
169851846














Secondary Th1 act
3.1



Secondary Th2 act
7.3



Secondary Tr1 act
9.3



Secondary Th1 rest
1.4



Secondary Th2 rest
5.0



Secondary Tr1 rest
2.5



Primary Th1 act
2.9



Primary Th2 act
3.0



Primary Tr1 act
3.0



Primary Th1 rest
1.5



Primary Th2 rest
2.5



Primary Tr1 rest
2.5



CD45RA CD4 lymphocyte act
3.8



CD45RO CD4 lymphocyte act
9.0



CD8 lymphocyte act
6.3



Secondary CD8 lymphocyte rest
6.3



Secondary CD8 lymphocyte act
6.2



CD4 lymphocyte none
2.5



2ry Th1/Th2/Tr1_anti-CD95 CH11
4.0



LAK cells rest
20.7



LAK cells IL-2
11.1



LAK cells IL-2 + IL-12
9.9



LAK cells IL-2 + IFN gamma
9.7



LAK cells IL-2 + IL-18
8.7



LAK cells PMA/ionomycin
69.3



NK Cells IL-2 rest
16.7



Two Way MLR 3 day
12.3



Two Way MLR 5 day
6.0



Two Way MLR 7 day
2.6



PBMC rest
7.7



PBMC PWM
3.8



PBMC PHA-L
3.7



Ramos (B cell) none
11.2



Ramos (B cell) ionomycin
7.3



B lymphocytes PWM
3.9



B lymphocytes CD40L and IL-4
5.4



EOL-1 dbcAMP
9.7



EOL-1 dbcAMP PMA/ionomycin
26.1



Dendritic cells none
28.1



Dendritic cells LPS
8.6



Dendritic cells anti-CD40
22.2



Monocytes rest
26.6



Monocytes LPS
9.9



Macrophages rest
11.7



Macrophages LPS
8.3



HUVEC none
0.7



HUVEC starved
0.2



HUVEC IL-1beta
1.2



HUVEC IFN gamma
1.3



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.5



HUVEC IL-11
0.8



Lung Microvascular EC none
2.2



Lung Microvascular EC TNFalpha + IL-1beta
1.2



Microvascular Dermal EC none
0.6



Microsvasular Dermal EC TNFalpha + IL-1beta
0.6



Bronchial epithelium TNFalpha + IL1beta
0.3



Small airway epithelium none
6.5



Small airway epithelium TNFalpha + IL-1beta
0.7



Coronery artery SMC rest
0.3



Coronery artery SMC TNFalpha + IL-1beta
0.8



Astrocytes rest
0.7



Astrocytes TNFalpha + IL-1beta
1.0



KU-812 (Basophil) rest
0.3



KU-812 (Basophil) PMA/ionomycin
0.5



CCD1106 (Keratinocytes) none
0.8



CCD1106 (Keratinocytes) TNFalpha + IL-1beta
1.1



Liver cirrhosis
6.2



NCI-H292 none
1.3



NCI-H292 IL-4
17.6



NCI-H292 IL-9
4.7



NCI-H292 IL-13
13.1



NCI-H292 IFN gamma
6.1



HPAEC none
1.0



HPAEC TNF alpha + IL-1 beta
1.7



Lung fibroblast none
20.6



Lung fibroblast TNF alpha + IL-1 beta
100.0



Lung fibroblast IL-4
39.0



Lung fibroblast IL-9
89.5



Lung fibroblast IL-13
40.6



Lung fibroblast IFN gamma
60.7



Dermal fibroblast CCD1070 rest
2.3



Dermal fibroblast CCD1070 TNF alpha
10.7



Dermal fibroblast CCD1070 IL-1 beta
4.5



Dermal fibroblast IFN gamma
2.5



Dermal fibroblast IL-4
3.1



Dermal Fibroblasts rest
1.4



Neutrophils TNFa + LPS
6.2



Neutrophils rest
17.3



Colon
0.7



Lung
6.2



Thymus
4.7



Kidney
1.5











[0776]

253





TABLE LG










Panel 5 Islet











Rel.




Exp. (%)




Ag357,




Run



Tissue Name
279370904














97457_Patient-02go_adipose
4.4



97476_Patient-07sk_skeletal muscle
0.0



97477_Patient-07ut_uterus
6.6



97478_Patient-07pl_placenta
16.0



99167_Bayer Patient 1
45.1



97482_Patient-08ut_uterus
6.5



97483_Patient-08pl_placenta
6.8



97486_Patient-09sk_skeletal muscle
3.3



97487_Patient-09ut_uterus
5.9



97488_Patient-09pl_placenta
12.9



97492_Patient-10ut_uterus
5.3



97493_Patient-10pl_placenta
27.4



97495_Patient-11go_adipose
5.3



97496_Patient-11sk_skeletal muscle
3.2



97497_Patient-11ut_uterus
12.7



97498_Patient-11pl_placenta
13.2



97500_Patient-12go_adipose
6.3



97501_Patient-12sk_skeletal muscle
6.1



97502_Patient-12ut_uterus
7.5



97503_Patient-12pl_placenta
33.9



94721_Donor 2 U - A_Mesenchymal Stem Cells
84.7



94722_Donor 2 U - B_Mesenchymal Stem Cells
72.2



94723_Donor 2 U - C_Mesenchymal Stem Cells
81.8



94709_Donor 2 AM - A_adipose
49.0



94710_Donor 2 AM - B_adipose
38.4



94711_Donor 2 AM - C_adipose
25.7



94712_Donor 2 AD - A_adipose
58.2



94713_Donor 2 AD - B_adipose
86.5



94714_Donor 2 AD - C_adipose
54.0



94742_Donor 3 U - A_Mesenchymal Stem Cells
21.9



94743_Donor 3 U - B_Mesenchymal Stem Cells
26.8



94730_Donor 3 AM - A_adipose
44.1



94731_Donor 3 AM - B_adipose
67.8



94732_Donor 3 AM - C_adipose
61.1



94733_Donor 3 AD - A_adipose
100.0



94734_Donor 3 AD - B_adipose
92.7



94735_Donor 3 AD - C_adipose
34.4



77138_Liver_HepG2untreated
51.8



73556_Heart_Cardiac stromal cells (primary)
5.9



81735_Small Intestine
9.2



72409_Kidney_Proximal Convoluted Tubule
12.3



82685_Small_intestine_Duodenum
13.6



90650_Adrenal_Adrenocortical adenoma
6.0



72410_Kidney_HRCE
17.7



72411_Kidney_HRE
9.9



73139_Uterus_Uterine smooth muscle cells
33.0











[0777] CNS_neurodegeneration_v1.0 Summary: Ag3575 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of this gene in treatment of central nervous system disorders.


[0778] General_screening_panel_v1.4 Summary: Ag3575 Highest expression of this gene is detected in melanoma SK-MEL-5 cell line (CT=24.3). Therefore, expression of this gene may be used to distinguish this cell line from other samples in this panel. In addition, expression of this gene can be used as marker for melanoma.


[0779] Moderate to low expression of this gene is also seen in number of cancer cell line derived from melanoma, ovarian, breast, lung, renal, gastric, colon and pancreatic cancer. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of melanoma, ovarian, breast, lung, renal, gastric, colon and pancreatic cancers.


[0780] Among tissues with metabolic or endocrine function, this gene is expressed at low levels in pancreas, adipose, adrenal gland, thyroid, skeletal muscle, and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0781] In addition, this gene is expressed at low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0782] General_screening_panel_v1.6 Summary: Ag3575 Highest expression of this gene is detected in melanoma SK-MEL-5 cell line (CT=23.7). The expression profile in this panel correlates with that of panel 1.4. Please see panel 1.4 for further discussion on the utility of this gene.


[0783] General_screening_panel_v1.7 Summary: Ag3575 Highest expression of this gene is detected in melanoma SK-MEL-5 cell line (CT=23.9). The expression profile in this panel correlates with that of panel 1.4. Please see panel 1.4 for further discussion on the utility of this gene.


[0784] Panel 4.1D Summary: Ag3575 Highest expression of this gene is detected in TNF alpha+IL-1 beta activated lung fibroblasts (CT=28). Expression of this gene is higher in cytokine activated compared to resting lung fibroblasts and other samples used in this panel. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of pathological and inflammatory lung disorders that include chronic obstructive pulmonary disease, asthma, allergy and emphysema.


[0785] This gene is also expressed at moderate to low levels in cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0786] Panel 5 Islet Summary: Ag3575 Highest expression of this gene is detected in differentiated adipose tissue (CT=25.2). High expression of this gene is seen in undifferentiated, midway differentiated and differentiated adipose. Moderate expression of this gene is also seen in other tissues with metabolic/endocrine functions including pancreatic islet cells, adipose, skeletal muscle, small intestine, uterus, placenta, heart and kidney. Please see panel 1.4 for further discussion on the utility of this gene.


[0787] M. CG161527-01: Sodium/Potassium-Transporting ATPase Alpha-4 Chain-Like Protein.


[0788] Expression of gene CG161527-01 was assessed using the primer-probe set Ag5740, described in Table MA.
254TABLE MAProbe Name Ag5740SEQ IDPrimersSequenesLengthStart PositionNoForward5′-ctctgctttgtggcctacag-3′20829401ProbeTET-5′-tccagatatatttcaatgaggagcctacca-3′-TAMRA30851402Reverse5′-cgatgctcaggtagaggttgt-3′21884403


[0789] N. CG161579-01: Dimethylaniline Monooxygenase (N-Oxide-Forming)-Like Protein.


[0790] Expression of gene CG161579-01 was assessed using the primer-probe set Ag5741, described in Table NA.
255TABLE NAProbe Name Ag5741SEQ IDPrimersSequenesLengthStart PositionNoForward5′-gttcacagaaacagatgccatt-3′22970 404ProbeTET-5′-tcaatattctcctctacagtgctgtcttca-3′-TAMRA30994405Reverse5′-tcctgtagcaaagatgacaaca-3′221024406


[0791] O. CG161650-01: Cytochrome c Oxidase Polypeptide VIc-Like Protein.


[0792] Expression of gene CG161650-01 was assessed using the primer-probe set Ag5744, described in Table OA.
256TABLE OAProbe Name Ag5744SEQ IDPrimersSequencsLengthStart PositionNoForward5′-aggttgacatacctataaaggacagtaac-3′2928407ProbeTET-5′-ccatggcttccaccgctttgg-3′-TAMRA2159408Reverse5′-tttgtattctgaaagataccagcctt-3′26259409


[0793] P. CG161733-01: Axonemal Dynein Heavy Chain-Like Protein.


[0794] Expression of gene CG161733-01 was assessed using the primer-probe set Ag5755, described in Table PA. Results of the RTQ-PCR runs are shown in Tables PB, PC and PD.
257TABLE PAProbe Name Ag5755SEQ IDPrimersSequenesLengthStart PositionNoForward5′-tcatttcaaccatcagaacatg-3′222814410ProbeTET-5′-tggcctctagtgtattccttgtaactttca-3′-TAMRA302846411Reverse5′-tgagaggaatgaatacgtttgc-3′222879412


[0795]

258





TABLE PB










CNS_neurodegeneration_v1.0











Rel.




Exp. (%)




Ag5755,




Run



Tissue Name
247026782














AD 1 Hippo
7.4



AD 2 Hippo
54.7



AD 3 Hippo
16.3



AD 4 Hippo
21.0



AD 5 hippo
51.1



AD 6 Hippo
42.9



Control 2 Hippo
40.9



Control 4 Hippo
98.6



Control (Path) 3 Hippo
75.3



AD 1 Temporal Ctx
18.6



AD 2 Temporal Ctx
37.6



AD 3 Temporal Ctx
4.3



AD 4 Temporal Ctx
43.5



AD 5 Inf Temporal Ctx
27.4



AD 5 Sup Temporal Ctx
80.1



AD 6 Inf Temporal Ctx
0.0



AD 6 Sup Temporal Ctx
29.5



Control 1 Temporal Ctx
14.0



Control 2 Temporal Ctx
29.5



Control 3 Temporal Ctx
20.0



Control 4 Temporal Ctx
19.9



Control (Path) 1 Temporal Ctx
81.8



Control (Path) 2 Temporal Ctx
40.6



Control (Path) 3 Temporal Ctx
14.9



Control (Path) 4 Temporal Ctx
40.3



AD 1 Occipital Ctx
9.4



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
7.0



AD 4 Occipital Ctx
24.5



AD 5 Occipital Ctx
10.4



AD 6 Occipital Ctx
33.4



Control 1 Occipital Ctx
2.9



Control 2 Occipital Ctx
20.3



Control 3 Occipital Ctx
17.2



Control 4 Occipital Ctx
24.5



Control (Path) 1 Occipital Ctx
100.0



Control (Path) 2 Occipital Ctx
15.6



Control (Path) 3 Occipital Ctx
4.8



Control (Path) 4 Occipital Ctx
18.8



Control 1 Parietal Ctx
3.8



Control 2 Parietal Ctx
30.6



Control 3 Parietal Ctx
8.2



Control (Path) 1 Parietal Ctx
84.1



Control (Path) 2 Parietal Ctx
28.3



Control (Path) 3 Parietal Ctx
7.2



Control (Path) 4 Parietal Ctx
35.4











[0796]

259





TABLE PC










General_screening_panel_v1.5











Rel.




Exp. (%)




Ag5755,




Run



Tissue Name
246263907














Adipose
0.0



Melanoma* Hs688(A).T
3.6



Melanoma* Hs688(B).T
3.2



Melanoma* M14
0.0



Melanoma* LOXIMVI
4.6



Melanoma* SK-MEL-5
0.2



Squamous cell carcinoma SCC-4
2.7



Testis Pool
5.0



Prostate ca.* (bone met) PC-3
1.5



Prostate Pool
9.0



Placenta
0.0



Uterus Pool
0.3



Ovarian ca. OVCAR-3
6.5



Ovarian ca. SK-OV-3
2.5



Ovarian ca. OVCAR-4
0.3



Ovarian ca. OVCAR-5
24.7



Ovarian ca. IGROV-1
48.6



Ovarian ca. OVCAR-8
3.3



Ovary
0.6



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
9.3



Breast ca. BT 549
16.3



Breast ca. T47D
0.8



Breast ca. MDA-N
0.0



Breast Pool
1.0



Trachea
47.3



Lung
0.0



Fetal Lung
72.2



Lung ca. NCI-N417
0.0



Lung ca. LX-1
2.2



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
18.0



Lung ca. A549
6.6



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
2.7



Lung ca. NCI-H460
3.3



Lung ca. HOP-62
23.2



Lung ca. NCI-H522
1.8



Liver
0.0



Fetal Liver
0.0



Liver ca. HepG2
0.0



Kidney Pool
1.6



Fetal Kidney
14.9



Renal ca. 786-0
5.3



Renal ca. A498
5.7



Renal ca. ACHN
13.0



Renal ca. UO-31
8.2



Renal ca. TK-10
17.0



Bladder
30.4



Gastric ca. (liver met.) NCI-N87
23.8



Gastric ca. KATO III
0.3



Colon ca. SW-948
1.3



Colon ca. SW480
0.3



Colon ca.* (SW480 met) SW620
0.2



Colon ca. HT29
1.9



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.3



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
1.5



Small Intestine Pool
2.1



Stomach Pool
0.3



Bone Marrow Pool
0.5



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.8



Fetal Skeletal Muscle
0.7



Skeletal Muscle Pool
0.6



Spleen Pool
0.9



Thymus Pool
2.2



CNS cancer (glio/astro) U87-MG
4.2



CNS cancer (glio/astro) U-118-MG
6.1



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
1.0



CNS cancer (glio) SNB-19
55.9



CNS cancer (glio) SF-295
100.0



Brain (Amygdala) Pool
2.1



Brain (cerebellum)
2.2



Brain (fetal)
9.2



Brain (Hippocampus) Pool
0.7



Cerebral Cortex Pool
2.0



Brain (Substantia nigra) Pool
3.1



Brain (Thalamus) Pool
2.9



Brain (whole)
0.9



Spinal Cord Pool
2.8



Adrenal Gland
0.8



Pituitary gland Pool
13.1



Salivary Gland
0.0



Thyroid (female)
0.7



Pancreatic ca. CAPAN2
10.4



Pancreas Pool
14.8











[0797]

260





TABLE PD










Panel 4.1D











Rel.




Exp. (%)




Ag5755,




Run



Tissue Name
247283915














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
10.9



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
2.3



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
2.6



HUVEC starved
0.0



HUVEC IL-1beta
6.4



HUVEC IFN gamma
1.4



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
7.1



Lung Microvascular EC none
46.7



Lung Microvascular EC TNFalpha + IL-1beta
5.8



Microvascular Dermal EC none
1.1



Microsvasular Dermal EC TNFalpha + IL-1beta
4.4



Bronchial epithelium TNFalpha + IL1beta
1.6



Small airway epithelium none
12.9



Small airway epithelium TNFalpha + IL-1beta
11.3



Coronery artery SMC rest
8.5



Coronery artery SMC TNFalpha + IL-1beta
10.3



Astrocytes rest
5.8



Astrocytes TNFalpha + IL-1beta
6.3



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
1.1



CCD1106 (Keratinocytes) none
20.6



CCD1106 (Keratinocytes) TNFalpha + IL-1beta
7.5



Liver cirrhosis
19.3



NCI-H292 none
8.8



NCI-H292 IL-4
9.6



NCI-H292 IL-9
17.2



NCI-H292 IL-13
5.4



NCI-H292 IFN gamma
12.6



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
15.4



Lung fibroblast none
73.2



Lung fibroblast TNF alpha + IL-1 beta
90.1



Lung fibroblast IL-4
30.1



Lung fibroblast IL-9
100.0



Lung fibroblast IL-13
9.5



Lung fibroblast IFN gamma
72.2



Dermal fibroblast CCD1070 rest
9.7



Dermal fibroblast CCD1070 TNF alpha
15.6



Dermal fibroblast CCD1070 IL-1 beta
10.7



Dermal fibroblast IFN gamma
12.1



Dermal fibroblast IL-4
1.3



Dermal Fibroblasts rest
6.6



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.0



Lung
0.0



Thymus
0.0



Kidney
20.4











[0798] CNS_neurodegeneration_v1.0 Summary: Ag5755 No differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. However, this panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0799] General_screening_panel_v1.5 Summary: Ag5755 Highest expression of this gene is detected in a brain cancer SF-295 cell line (CT=30.6). Moderate to low expression of this gene is also seen in number of cell lines derived from brain, pancreatic, gastric, renal, lung, breast, and ovarian cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of brain, pancreatic, gastric, renal, lung, breast, and ovarian cancers.


[0800] Low expression of this gene is also detected in pituatary gland and pancreas. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0801] Moderate to low expression of this gene is also seen in fetal lung and kidney. Interestingly, this gene is expressed at much higher levels in fetal (CTs=31-33) when compared to adult lung and kidney (CTs=36-40). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung and kidney. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance lung and kidney growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung and kidney related diseases.


[0802] Panel 4.1D Summary: Ag5755 Highest expression of this gene is detected in IL-9 activated lung fibroblast (CT=33). Low expression of this gene is restricted to resting and activated lung fibroblasts and resting lung microvascular endothelial cells. The expression of this gene in cells derived from or within the lung suggests that this gene may be involved in normal conditions as well as pathological and inflammatory lung disorders that include chronic obstructive pulmonary disease, asthma, allergy and emphysema. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of chronic obstructive pulmonary disease, asthma, allergy and emphysema.


[0803] Q. CG161762-01: Voltage-Dependent Anion-Selective Channel Protein 3-Like Protein.


[0804] Expression of gene CG161762-01 was assessed using the primer-probe set Ag7848, described in Table QA. Results of the RTQ-PCR runs are shown in Tables QB, QC and QD. Please note that CG161762-01 represents a full length physical clone.
261TABLE QAProbe Name Ag7848SEQ IDPrimersSequecesLengthStart PositionNoForward5′-acttccagctgcacacacat-3′20548413ProbeTET-5′-ctccaaattcagtgccatcgttcac-3′-TAMRA25568414Reverse5′-attatttactttagccttctggtagatagaac-4′32593415


[0805]

262





TABLE QB










CNS_neurodegeneration_v1.0











Rel.




Exp. (%)




Ag7848,




Run



Tissue Name
316264622














AD 1 Hippo
13.5



AD 2 Hippo
31.0



AD 3 Hippo
6.1



AD 4 Hippo
5.8



AD 5 Hippo
98.6



AD 6 Hippo
62.9



Control 2 Hippo
31.2



Control 4 Hippo
9.5



Control (Path) 3 Hippo
8.4



AD 1 Temporal Ctx
8.8



AD 2 Temporal Ctx
30.4



AD 3 Temporal Ctx
3.9



AD 4 Temporal Ctx
12.1



AD 5 Inf Temporal Ctx
100.0



AD 5 Sup Temporal Ctx
38.2



AD 6 Inf Temporal Ctx
55.1



AD 6 Sup Temporal Ctx
58.2



Control 1 Temporal Ctx
5.6



Control 2 Temporal Ctx
57.8



Control 3 Temporal Ctx
13.7



Control 3 Temporal Ctx
7.0



Control (Path) 1 Temporal Ctx
68.3



Control (Path) 2 Temporal Ctx
37.9



Control (Path) 3 Temporal Ctx
5.1



Control (Path) 4 Temporal Ctx
30.1



AD 1 Occipital Ctx
14.6



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
6.4



AD 4 Occipital Ctx
16.4



AD 5 Occipital Ctx
61.1



AD 6 Occipital Ctx
28.9



Control 1 Occipital Ctx
4.3



Control 2 Occipital Ctx
84.1



Control 3 Occipital Ctx
12.2



Control 4 Occipital Ctx
4.1



Control (Path) 1 Occipital Ctx
98.6



Control (Path) 2 Occipital Ctx
9.8



Control (Path) 3 Occipital Ctx
4.2



Control (Path) 4 Occipital Ctx
9.4



Control 1 Parietal Ctx
5.0



Control 2 Parietal Ctx
36.9



Control 3 Parietal Ctx
22.1



Control (Path) 1 Parietal Ctx
34.6



Control (Path) 2 Parietal Ctx
22.8



Control (Path) 3 Parietal Ctx
4.9



Control (Path) 4 Parietal Ctx
37.4











[0806]

263





TABLE QC










General_screening_panel_v1.7











Rel.




Exp. (%)




Ag7848,




Run



Tissue Name
318010160














Adipose
19.8



HUVEC
17.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
11.4



Melanoma (met) SK-MEL-5
32.3



Testis
9.2



Prostate ca. (bone met) PC-3
0.5



Prostate ca. DU145
18.3



Prostate pool
1.9



Uterus pool
0.5



Ovarian ca. OVCAR-3
16.7



Ovarian ca. (ascites) SK-OV-3
9.3



Ovarian ca. OVCAR-4
27.5



Ovarian ca. OVCAR-5
31.0



Ovarian ca. IGROV-1
93.3



Ovarian ca. OVCAR-8
100.0



Ovary
7.2



Breast ca. MCF-7
7.8



Breast ca. MDA-MB-231
32.1



Breast ca. BT-549
42.6



Breast ca. T47D
25.3



Breast pool
0.8



Trachea
8.4



Lung
11.0



Fetal Lung
15.2



Lung ca. NCI-N417
5.8



Lung ca. LX-1
6.6



Lung ca. NCI-H146
17.6



Lung ca. SHP-77
64.6



Lung ca. NCI-H23
41.2



Lung ca. NCI-H460
37.6



Lung ca. HOP-62
40.1



Lung ca. NCI-H522
24.0



Lung ca. DMS-114
26.8



Liver
2.9



Fetal Liver
6.0



Kidney pool
24.5



Fetal Kidney
7.7



Renal ca. 786-0
70.7



Renal ca. A498
3.3



Renal ca. ACHN
14.8



Renal ca. UO-31
16.4



Renal ca. TK-10
22.5



Bladder
10.3



Gastric ca. (liver met.) NCI-N87
40.3



Stomach
0.3



Colon ca. SW-948
51.8



Colon ca. SW480
46.3



Colon ca. (SW480 met) SW620
35.1



Colon ca. HT29
37.9



Colon ca. HCT-116
69.7



Colon cancer tissue
0.5



Colon ca. SW1116
8.3



Colon ca. Colo-205
5.8



Colon ca. SW-48
11.0



Colon
11.3



Small Intestine
0.8



Fetal Heart
16.4



Heart
3.8



Lymph Node pool 1
0.7



Lymph Node pool 2
14.1



Fetal Skeletal Muscle
12.6



Skeletal Muscle pool
4.6



Skeletal Muscle
80.1



Spleen
2.7



Thymus
2.0



CNS cancer (glio/astro) SF-268
8.2



CNS cancer (glio/astro) T98G
11.1



CNS cancer (neuro; met) SK-N-AS
18.3



CNS cancer (astro) SF-539
37.4



CNS cancer (astro) SNB-75
13.7



CNS cancer (glio) SNB-19
23.0



CNS cancer (glio) SF-295
8.0



Brain (Amygdala)
10.9



Brain (Cerebellum)
22.7



Brain (Fetal)
25.7



Brain (Hippocampus)
8.0



Cerebral Cortex pool
8.8



Brain (Substantia nigra)
3.7



Brain (Thalamus)
8.8



Brain (Whole)
26.2



Spinal Cord
4.4



Adrenal Gland
5.3



Pituitary Gland
6.6



Salivary Gland
3.2



Thyroid
24.3



Pancreatic ca. PANC-1
4.2



Pancreas pool
1.6











[0807]

264





TABLE QD










Panel 4.1D











Rel.




Exp. (%)




Ag7848,




Run



Tissue Name
313918253














Secondary Th1 act
58.6



Secondary Th2 act
100.0



Secondary Tr1 act
27.4



Secondary Th1 rest
2.9



Secondary Th2 rest
4.4



Secondary Tr1 rest
2.7



Primary Th1 act
11.8



Primary Th2 act
49.0



Primary Tr1 act
57.4



Primary Th1 rest
4.0



Primary Th2 rest
3.3



Primary Tr1 rest
2.3



CD45RA CD4 lymphocyte act
41.2



CD45RO CD4 lymphocyte act
60.3



CD8 lymphocyte act
20.6



Secondary CD8 lymphocyte rest
13.5



Secondary CD8 lymphocyte act
6.3



CD4 lymphocyte none
1.8



2ry Th1/Th2/Tr1_anti-CD95 CH11
6.6



LAK cells rest
14.7



LAK cells IL-2
12.7



LAK cells IL-2 + IL-12
2.1



LAK cells IL-2 + IFN gamma
8.5



LAK cells IL-2 + IL-18
10.9



LAK cells PMA/ionomycin
16.2



NK Cells IL-2 rest
37.1



Two Way MLR 3 day
9.2



Two Way MLR 5 day
6.9



Two Way MLR 7 day
7.9



PBMC rest
2.4



PBMC PWM
14.7



PBMC PHA-L
28.9



Ramos (B cell) none
7.4



Ramos (B cell) ionomycin
25.7



B lymphocytes PWM
23.0



B lymphocytes CD40L and IL-4
34.4



EOL-1 dbcAMP
65.5



EOL-1 dbcAMP PMA/ionomycin
8.6



Dendritic cells none
16.5



Dendritic cells LPS
16.3



Dendritic cells anti-CD40
8.8



Monocytes rest
2.9



Monocytes LPS
13.9



Macrophages rest
7.4



Macrophages LPS
7.3



HUVEC none
28.7



HUVEC starved
42.0



HUVEC IL-1beta
48.3



HUVEC IFN gamma
28.1



HUVEC TNF alpha + IFN gamma
9.5



HUVEC TNF alpha + IL4
22.8



HUVEC IL-11
15.0



Lung Microvascular EC none
45.7



Lung Microvascular EC TNFalpha + IL-1beta
8.9



Microvascular Dermal EC none
9.7



Microsvasular Dermal EC TNFalpha + IL-1beta
4.5



Bronchial epithelium TNFalpha + IL1beta
8.0



Small airway epithelium none
10.7



Small airway epithelium TNFalpha + IL-1beta
29.7



Coronery artery SMC rest
20.7



Coronery artery SMC TNFalpha + IL-1beta
14.3



Astrocytes rest
7.7



Astrocytes TNFalpha + IL-1beta
1.8



KU-812 (Basophil) rest
42.0



KU-812 (Basophil) PMA/ionomycin
59.0



CCD1106 (Keratinocytes) none
27.2



CCD1106 (Keratinocytes) TNFalpha + IL-1beta
7.1



Liver cirrhosis
3.4



NCI-H292 none
33.7



NCI-H292 IL-4
33.4



NCI-H292 IL-9
68.8



NCI-H292 IL-13
35.6



NCI-H292 IFN gamma
15.5



HPAEC none
11.7



HPAEC TNF alpha + IL-1 beta
25.2



Lung fibroblast none
11.0



Lung fibroblast TNF alpha + IL-1 beta
11.4



Lung fibroblast IL-4
10.9



Lung fibroblast IL-9
11.9



Lung fibroblast IL-13
6.8



Lung fibroblast IFN gamma
22.5



Dermal fibroblast CCD1070 rest
40.1



Dermal fibroblast CCD1070 TNF alpha
75.8



Dermal fibroblast CCD1070 IL-1 beta
23.8



Dermal fibroblast IFN gamma
15.0



Dermal fibroblast IL-4
21.6



Dermal Fibroblasts rest
16.7



Neutrophils TNFa + LPS
0.7



Neutrophils rest
4.3



Colon
2.7



Lung
1.8



Thymus
2.5



Kidney
15.3











[0808] CNS_neurodegeneration_v1.0 Summary: Ag7848 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.7 for a discussion of this gene in treatment of central nervous system disorders.


[0809] General_screening_panel_v1.7 Summary: Ag7848 Highest expression of this gene is detected in OVCAR-8 (CT=23.4). High expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, melanoma and brain cancers.


[0810] Among tissues with metabolic or endocrine function, this gene is expressed at high levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0811] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0812] Panel 4.1D Summary: Ag7848 Highest expression of this gene is detected in activated secondary Th2 cells (CT=28.4). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.7 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0813] R. CG163937-01: Diamine N-acetyltransferase Like Protein.


[0814] Expression of gene CG163937-01 was assessed using the primer-probe sets Ag4716 and Ag5877, described in Tables RA and RB. Results of the RTQ-PCR runs are shown in Tables RC, RD, RE, RF and RG.
265TABLE RAProbe Name Ag4716SEQ IDPrimersSequenceLengthStart PositionNoForward5′-tgccaaagcctctataatcact-3′22623416ProbeTET-5′-catcacgaagaagtcctcaagatacaa-3′-TAMRA27596417Reverse5′-attttacctatgacccgtggat-3′22564418


[0815]

266






TABLE RB










Probe Name Ag5877

















SEQ ID



Primers
Sequenes
Length
Start Position
No















Forward
5′-aagaggtgcttctgatctgtcc-3′
22
757
419



Probe
TET-5′-tgaagagggttggagactgttcaagatcg-3′-TAMRA
29
781
420


Reverse
5′-catctacagcagcactcctcac-3′
22
844
421










[0816]

267





TABLE RC










AI_comprehensive_panel_v1.0











Rel.




Exp. (%)




Ag4716,




Run



Tissue Name
244333632














110967 COPD-F
12.1



110980 COPD-F
2.6



110968 COPD-M
22.8



110977 COPD-M
8.7



110989 Emphysema-F
36.9



110992 Emphysema-F
20.9



110993 Emphysema-F
16.3



110994 Emphysema-F
4.7



110995 Emphysema-F
57.8



110996 Emphysema-F
9.4



110997 Asthma-M
6.0



111001 Asthma-F
5.4



111002 Asthma-F
19.3



111003 Atopic Asthma-F
11.5



111004 Atopic Asthma-F
31.0



111005 Atopic Asthma-F
17.1



111006 Atopic Asthma-F
2.2



111417 Allergy-M
9.3



112347 Allergy-M
0.7



112349 Normal Lung-F
0.3



112357 Normal Lung-F
15.4



112354 Normal Lung-M
9.0



112374 Crohns-F
16.3



112389 Match Control Crohns-F
2.1



112375 Crohns-F
9.7



112732 Match Control Crohns-F
25.9



112725 Crohns-M
6.4



112387 Match Control Crohns-M
7.6



112378 Crohns-M
0.5



112390 Match Control Crohns-M
10.6



112726 Crohns-M
14.2



112731 Match Control Crohns-M
7.4



112380 Ulcer Col-F
7.1



112734 Match Control Ulcer Col-F
71.2



112384 Ulcer Col-F
44.1



112737 Match Control Ulcer Col-F
15.5



112386 Ulcer Col-F
6.6



112738 Match Control Ulcer Col-F
11.1



112381 Ulcer Col-M
0.5



112735 Match Control Ulcer Col-M
10.2



112382 Ulcer Col-M
6.6



112394 Match Control Ulcer Col-M
6.6



112383 Ulcer Col-M
30.1



112736 Match Control Ulcer Col-M
2.9



112423 Psoriasis-F
11.2



112427 Match Control Psoriasis-F
31.2



112418 Psoriasis-M
25.9



112723 Match Control Psoriasis-M
1.4



112419 Psoriasis-M
37.6



112424 Match Control Psoriasis-M
21.9



112420 Psoriasis-M
60.3



112425 Match Control Psoriasis-M
10.7



104689 (MF) OA Bone-Backus
23.8



104690 (MF) Adj “Normal” Bone-Backus
8.4



104691 (MF) OA Synovium-Backus
27.9



104692 (BA) OA Cartilage-Backus
15.2



104694 (BA) OA Bone-Backus
27.7



104695 (BA) Adj “Normal” Bone-Backus
20.3



104696 (BA) OA Synovium-Backus
34.2



104700 (SS) OA Bone-Backus
12.9



104701 (SS) Adj “Normal” Bone-Backus
15.8



104702 (SS) OA Synovium-Backus
25.5



117093 OA Cartilage Rep7
8.7



112672 OA Bone5
64.6



112673 OA Synovium5
31.4



112674 OA Synovial Fluid cells5
37.1



117100 OA Cartilage Rep14
8.1



112756 OA Bone9
100.0



112757 OA Synovium9
1.8



112758 OA Synovial Fluid Cells9
8.3



117125 RA Cartilage Rep2
5.8



113492 Bone2 RA
37.9



113493 Synovium2 RA
15.7



113494 Syn Fluid Cells RA
26.1



113499 Cartilage4 RA
58.2



113500 Bone4 RA
63.7



113501 Synovium4 RA
57.0



113502 Syn Fluid Cells4 RA
33.4



113495 Cartilage3 RA
22.4



113496 Bone3 RA
19.6



113497 Synovium3 RA
11.8



113498 Syn Fluid Cells3 RA
30.8



117106 Normal Cartilage Rep20
1.1



113663 Bone3 Normal
1.2



113664 Synovium3 Normal
0.2



113665 Syn Fluid Cells3 Normal
1.1



117107 Normal Cartilage Rep22
3.2



113667 Bone4 Normal
27.9



113668 Synovium4 Normal
42.3



113669 Syn Fluid Cells4 Normal
39.2











[0817]

268





TABLE RD










General_screening_panel_v1.4











Rel.




Exp. (%)




Ag4716,




Run



Tissue Name
214237609














Adipose
28.5



Melanoma* Hs688(A).T
3.1



Melanoma* Hs688(B).T
4.5



Melanoma* M14
36.9



Melanoma* LOXIMVI
1.3



Melanoma* SK-MEL-5
19.5



Squamous cell carcinoma SCC-4
5.1



Testis Pool
13.8



Prostate ca.* (bone met) PC-3
16.4



Prostate Pool
4.6



Placenta
30.6



Uterus Pool
2.2



Ovarian ca. OVCAR-3
6.2



Ovarian ca. SK-OV-3
7.8



Ovarian ca. OVCAR-4
5.7



Ovarian ca. OVCAR-5
31.9



Ovarian ca. IGROV-1
63.7



Ovarian ca. OVCAR-8
25.3



Ovary
5.8



Breast ca. MCF-7
2.8



Breast ca. MDA-MB-231
6.2



Breast ca. BT 549
21.2



Breast ca. T47D
47.3



Breast ca. MDA-N
41.8



Breast Pool
7.1



Trachea
30.8



Lung
3.0



Fetal Lung
56.6



Lung ca. NCI-N417
0.3



Lung ca. LX-1
100.0



Lung ca. NCI-H146
0.4



Lung ca. SHP-77
1.4



Lung ca. A549
54.0



Lung ca. NCI-H526
0.8



Lung ca. NCI-H23
84.7



Lung ca. NCI-H460
9.5



Lung ca. HOP-62
6.3



Lung ca. NCI-H522
6.9



Liver
3.1



Fetal Liver
21.2



Liver ca. HepG2
27.4



Kidney Pool
8.7



Fetal Kidney
4.8



Renal ca. 786-0
7.9



Renal ca. A498
5.3



Renal ca. ACHN
4.0



Renal ca. UO-31
31.0



Renal ca. TK-10
13.6



Bladder
74.7



Gastric ca. (liver met.) NCI-N87
15.2



Gastric ca. KATO III
76.8



Colon ca. SW-948
5.0



Colon ca. SW480
28.9



Colon ca.* (SW480 met) SW620
51.8



Colon ca. HT29
4.5



Colon ca. HCT-116
28.7



Colon ca. CaCo-2
14.0



Colon cancer tissue
52.1



Colon ca. SW1116
1.2



Colon ca. Colo-205
9.3



Colon ca. SW-48
3.5



Colon Pool
4.8



Small Intestine Pool
3.3



Stomach Pool
14.3



Bone Marrow Pool
3.8



Fetal Heart
1.6



Heart Pool
2.6



Lymph Node Pool
7.4



Fetal Skeletal Muscle
1.4



Skeletal Muscle Pool
1.6



Spleen Pool
13.9



Thymus Pool
12.9



CNS cancer (glio/astro) U87-MG
24.8



CNS cancer (glio/astro) U-118-MG
19.5



CNS cancer (neuro; met) SK-N-AS
2.2



CNS cancer (astro) SF-539
2.7



CNS cancer (astro) SNB-75
57.8



CNS cancer (glio) SNB-19
62.0



CNS cancer (glio) SF-295
72.2



Brain (Amygdala) Pool
2.9



Brain (cerebellum)
1.7



Brain (fetal)
5.1



Brain (Hippocampus) Pool
6.3



Cerebral Cortex Pool
5.8



Brain (Substantia nigra) Pool
6.6



Brain (Thalamus) Pool
6.1



Brain (whole)
4.7



Spinal Cord Pool
6.7



Adrenal Gland
11.7



Pituitary gland Pool
2.6



Salivary Gland
5.0



Thyroid (female)
23.8



Pancreatic ca. CAPAN2
10.8



Pancreas Pool
13.4











[0818]

269





TABLE RE










General_screening_panel_v1.5











Rel.




Exp. (%)




Ag5877,




Run



Tissue Name
248204736














Adipose
41.2



Melanoma* Hs688(A).T
3.9



Melanoma* Hs688(B).T
5.5



Melanoma* M14
40.3



Melanoma* LOXIMVI
1.8



Melanoma* SK-MEL-5
20.6



Squamous cell carcinoma SCC-4
7.1



Testis Pool
7.5



Prostate ca.* (bone met) PC-3
16.4



Prostate Pool
17.0



Placenta
38.2



Uterus Pool
7.4



Ovarian ca. OVCAR-3
6.0



Ovarian ca. SK-OV-3
8.8



Ovarian ca. OVCAR-4
3.2



Ovarian ca. OVCAR-5
22.5



Ovarian ca. IGROV-1
67.8



Ovarian ca. OVCAR-8
22.1



Ovary
10.7



Breast ca. MCF-7
3.3



Breast ca. MDA-MB-231
9.0



Breast ca. BT 549
18.3



Breast ca. T47D
14.2



Breast ca. MDA-N
33.0



Breast Pool
13.8



Trachea
38.2



Lung
4.1



Fetal Lung
95.9



Lung ca. NCI-N417
0.3



Lung ca. LX-1
84.1



Lung ca. NCI-H146
0.5



Lung ca. SHP-77
1.9



Lung ca. A549
43.8



Lung ca. NCI-H526
0.7



Lung ca. NCI-H23
77.9



Lung ca. NCI-H460
9.9



Lung ca. HOP-62
5.8



Lung ca. NCI-H522
8.6



Liver
3.3



Fetal Liver
17.0



Liver ca. HepG2
21.3



Kidney Pool
15.3



Fetal Kidney
8.5



Renal ca. 786-0
8.1



Renal ca. A498
6.3



Renal ca. ACHN
2.6



Renal ca. UO-31
32.1



Renal ca. TK-10
15.7



Bladder
100.0



Gastric ca. (liver met.) NCI-N87
17.1



Gastric ca. KATO III
58.2



Colon ca. SW-948
6.6



Colon ca. SW480
30.8



Colon ca.* (SW480 met) SW620
62.4



Colon ca. HT29
4.3



Colon ca. HCT-116
34.9



Colon ca. CaCo-2
12.4



Colon cancer tissue
59.0



Colon ca. SW1116
1.5



Colon ca. Colo-205
6.3



Colon ca. SW-48
4.2



Colon Pool
8.4



Small Intestine Pool
2.4



Stomach Pool
22.1



Bone Marrow Pool
6.4



Fetal Heart
3.4



Heart Pool
4.5



Lymph Node Pool
12.7



Fetal Skeletal Muscle
1.5



Skeletal Muscle Pool
2.7



Spleen Pool
20.6



Thymus Pool
21.0



CNS cancer (glio/astro) U87-MG
20.9



CNS cancer (glio/astro) U-118-MG
15.5



CNS cancer (neuro; met) SK-N-AS
1.5



CNS cancer (astro) SF-539
0.9



CNS cancer (astro) SNB-75
74.2



CNS cancer (glio) SNB-19
80.7



CNS cancer (glio) SF-295
66.0



Brain (Amygdala) Pool
4.9



Brain (cerebellum)
3.4



Brain (fetal)
6.4



Brain (Hippocampus) Pool
8.3



Cerebral Cortex Pool
6.0



Brain (Substantia nigra) Pool
5.4



Brain (Thalamus) Pool
7.5



Brain (whole)
5.8



Spinal Cord Pool
9.2



Adrenal Gland
15.9



Pituitary gland Pool
5.6



Salivary Gland
4.3



Thyroid (female)
28.1



Pancreatic ca. CAPAN2
13.7



Pancreas Pool
22.8











[0819]

270





TABLE RF










Panel 4.1D











Rel.




Exp. (%)




Ag4716,




Run



Tissue Name
244337062














Secondary Th1 act
0.2



Secondary Th2 act
4.7



Secondary Tr1 act
1.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.2



Secondary Tr1 rest
0.1



Primary Th1 act
0.0



Primary Th2 act
2.1



Primary Tr1 act
1.3



Primary Th1 rest
0.1



Primary Th2 rest
0.5



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
4.0



CD45RO CD4 lymphocyte act
6.3



CD8 lymphocyte act
0.3



Secondary CD8 lymphocyte rest
2.1



Secondary CD8 lymphocyte act
0.3



CD4 lymphocyte none
0.1



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.3



LAK cells rest
5.8



LAK cells IL-2
0.8



LAK cells IL-2 + IL-12
0.4



LAK cells IL-2 + IFN gamma
1.3



LAK cells IL-2 + IL-18
0.4



LAK cells PMA/ionomycin
58.6



NK Cells IL-2 rest
3.8



Two Way MLR 3 day
5.3



Two Way MLR 5 day
0.7



Two Way MLR 7 day
2.0



PBMC rest
1.6



PBMC PWM
1.0



PBMC PHA-L
1.3



Ramos (B cell) none
0.2



Ramos (B cell) ionomycin
1.5



B lymphocytes PWM
2.6



B lymphocytes CD40L and IL-4
4.2



EOL-1 dbcAMP
6.6



EOL-1 dbcAMP PMA/ionomycin
0.9



Dendritic cells none
6.7



Dendritic cells LPS
7.5



Dendritic cells anti-CD40
0.8



Monocytes rest
2.0



Monocytes LPS
100.0



Macrophages rest
27.5



Macrophages LPS
20.2



HUVEC none
1.4



HUVEC starved
3.1



HUVEC IL-1beta
16.7



HUVEC IFN gamma
13.0



HUVEC TNF alpha + IFN gamma
3.5



HUVEC TNF alpha + IL4
2.1



HUVEC IL-11
3.6



Lung Microvascular EC none
4.0



Lung Microvascular EC TNFalpha + IL-1beta
4.9



Microvascular Dermal EC none
0.3



Microsvasular Dermal EC TNFalpha + IL-1beta
6.3



Bronchial epithelium TNFalpha + IL1beta
53.2



Small airway epithelium none
19.6



Small airway epithelium TNFalpha + IL-1beta
53.6



Coronery artery SMC rest
2.8



Coronery artery SMC TNFalpha + IL-1beta
10.0



Astrocytes rest
1.2



Astrocytes TNFalpha + IL-1beta
2.0



KU-812 (Basophil) rest
3.0



KU-812 (Basophil) PMA/ionomycin
5.0



CCD1106 (Keratinocytes) none
20.4



CCD1106 (Keratinocytes) TNFalpha + IL-1beta
14.0



Liver cirrhosis
6.0



NCI-H292 none
73.7



NCI-H292 IL-4
71.2



NCI-H292 IL-9
67.8



NCI-H292 IL-13
74.2



NCI-H292 IFN gamma
20.6



HPAEC none
1.8



HPAEC TNF alpha + IL-1 beta
80.7



Lung fibroblast none
2.9



Lung fibroblast TNF alpha + IL-1 beta
17.2



Lung fibroblast IL-4
1.1



Lung fibroblast IL-9
2.1



Lung fibroblast IL-13
0.2



Lung fibroblast IFN gamma
9.0



Dermal fibroblast CCD1070 rest
1.2



Dermal fibroblast CCD1070 TNF alpha
4.6



Dermal fibroblast CCD1070 IL-1 beta
4.4



Dermal fibroblast IFN gamma
2.9



Dermal fibroblast IL-4
1.1



Dermal Fibroblasts rest
1.2



Neutrophils TNFa + LPS
95.3



Neutrophils rest
26.4



Colon
0.7



Lung
0.9



Thymus
1.1



Kidney
18.3











[0820]

271





TABLE RG










Panel 5D











Rel.




Exp. (%)




Ag4716,




Run



Tissue Name
204245093














97457_Patient-02go_adipose
33.7



97476_Patient-07sk_skeletal muscle
12.7



97477_Patient-07ut_uterus
11.6



97478_Patient-07pl_placenta
54.3



97481_Patient-08sk_skeletal muscle
4.2



97482_Patient-08ut_uterus
8.2



97483_Patient-08pl_placenta
41.2



97486_Patient-09sk_skeletal muscle
1.3



97487_Patient-09ut_uterus
6.7



97488_Patient-09pl_placenta
49.3



97492_Patient-10ut_uterus
12.8



97493_Patient-10pl_placenta
100.0



97495_Patient-11go_adipose
17.7



97496_Patient-11sk_skeletal muscle
1.8



97497_Patient-11ut_uterus
15.0



97498_Patient-11pl_placenta
73.7



97500_Patient-12go_adipose
27.5



97501_Patient-12sk_skeletal muscle
8.4



97502_Patient-12ut_uterus
27.7



97503_Patient-12pl_placenta
75.8



94721_Donor 2 U - A_Mesenchymal Stem Cells
5.1



94722_Donor 2 U - B_Mesenchymal Stem Cells
3.5



94723_Donor 2 U - C_Mesenchymal Stem Cells
3.7



94709_Donor 2 AM - A_adipose
9.9



94710_Donor 2 AM - B_adipose
8.7



94711_Donor 2 AM - C_adipose
4.0



94712_Donor 2 AD - A_adipose
11.6



94713_Donor 2 AD - B_adipose
17.9



94714_Donor 2 AD - C_adipose
12.5



94742_Donor 3 U - A_Mesenchymal Stem Cells
2.3



94743_Donor 3 U - B_Mesenchymal Stem Cells
2.0



94730_Donor 3 AM - A_adipose
13.9



94731_Donor 3 AM - B_adipose
8.1



94732_Donor 3 AM - C_adipose
8.8



94733_Donor 3 AD - A_adipose
19.1



94734_Donor 3 AD - B_adipose
10.6



94735_Donor 3 AD - C_adipose
13.5



77138_Liver_HepG2untreated
20.9



73556_Heart_Cardiac stromal cells (primary)
4.4



81735_Small Intestine
23.0



72409_Kidney_Proximal Convoluted Tubule
8.1



82685_Small intestine_Duodenum
28.3



90650_Adrenal_Adrenocortical adenoma
8.0



72410_Kidney_HRCE
28.1



72411_Kidney_HRE
26.1



73139_Uterus_Uterine smooth muscle cells
1.8











[0821] AI_comprehensive panel_v1.0 Summary: Ag4716 This gene is expressed at moderate to high levels in the majority of tissues on this panel, with highest expression in an osteoarthritic bone sample (CT=26.6). Clusters of higher expression of this gene are associated with samples from osteoarthritis and rheumatoid arthritis patients. Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, might be beneficial in the treatment of arthritis. Please see Panel 4.1D for additional discussion of the potential relevance of this gene in immune response.


[0822] General_screening_panel_v1.4 Summary: Ag4716 This gene is expressed at moderate to high levels in all of the tissues on this panel, with highest expression in a lung cancer cell line (CT=24.2). Interestingly, expression of this gene is higher in fetal lung and lung cancer cell lines when compared to adult lung. Expression of this gene is also upregulated in colon, brain, breast and ovarian cancer cell lines when compared to normal colon, brain, breast and ovary. Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, might be beneficial in the treatment of lung, colon, brain, ovarian and breast cancers.


[0823] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0824] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0825] General_screening_panel_v1.5 Summary: Ag5877 Expression of this gene is highest in bladder (CT=23.6). This gene is expressed at moderate to high levels in all of the tissues on this panel, consistent with what is observed in Panel 1.4. Interestingly, expression of this gene is higher in fetal lung (CT=23.7)and a subset of lung cancer cell lines (CTs=24) when compared to adult lung (CT=28.2). Expression of this gene is also upregulated in colon cancer cell lines (CTs=24) when compared to normal colon (CT=27.2). Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, might be beneficial in the treatment of lung and colon cancer. Please see Panel 1.4 for additional discussion of the potential relevance of this gene in human disease.


[0826] Panel 4.1D Summary: Ag4716 Expression of this gene is highest in LPS-treated monocytes (CT=25.8), with lower expression in resting monocytes (CT=31.4). Therefore, expression of this gene could be used to distinguish resting and activated monocytes. The expression of this transcript in LPS-treated monocytes, cells that play a crucial role in linking innate immunity to adaptive immunity, suggests a role for this gene product in initiating inflammatory reactions. Thus, therapeutic modulation of the activity of this gene or its protein product may reduce or prevent early stages of inflammation and reduce the severity of inflammatory diseases such as psoriasis, asthma, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis and other lung inflammatory diseases.


[0827] Expression of this gene is also upregulated in TNF-alpha/LPS-treated neutrophils (CT=25.8) compared to resting neutrophils (CT=27.7). Thus, the gene product may increase activation of these inflammatory cells and therapeutic modulation of the activity of this gene may be of benefit in the treatment of Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis.


[0828] This gene is also highly expressed in a cluster of treated and untreated samples derived from the NCI-H292 cell line, a human airway epithelial cell line that produces mucins. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease. The transcript is also expressed at lower but still significant levels in small airway epithelium treated with IL-1 beta and TNF-alpha. The expression of the transcript in this mucoepidermoid cell line that is often used as a model for airway epithelium (NCI-H292 cells) suggests that this transcript may be important in the proliferation or activation of airway epithelium. Therefore, therapeutics designed with the protein encoded by the transcript may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.


[0829] This gene encodes a splice variant of diamine acetyltransferase, also known as spermidine/spermine N(1)-acetyltransferase (SPD/SPM acetyltransferase). Diamine acetyltransferase is a rate-limiting enzyme in the catabolic pathway of polyamine metabolism. It catalyzes the N(1)-acetylation of spermidine and spermine and, by the successive activity of polyamine oxidase, spermine can be converted to spermidine and spermidine to putrescine. The role of spermine in inflammation was reviewed by Zhang et al. [Crit Care Med. April 2000;28(4 Suppl):N60-6, PMID: 10807317]. Regenerating tissues produce higher levels of spermine, and injured or dying cells release spermine into the extracellular milieu, so that tissue levels increase significantly at inflammatory sites of infection or injury. Recent research has focused on delineating the significance of spermine accumulation in the inflammatory process. The discovery that spermine is a negative regulator of macrophage activation provided a mechanism by which spermine influences the biology of inflammation. Mechanistic studies indicate that spermine is incorporated into macrophages and restrains the innate immune response.


[0830] Panel 5D Summary: Ag4716 This gene is expressed at moderate to high levels in the majority of metabolic tissues on this panel, with highest expression in a placenta sample from a diabetic patient (CTs=23-25).


[0831] Spermine has been demonstrated to enhance insulin receptor binding in a dose dependent manner [Pedersen et al., Mol Cell Endocrinol., April 1989;62(2): 161-6]. Thus, it was proposed that polyamines may act as intracellular or intercellular (autocrine) regulators to modulate insulin binding. It has also been shown that the insulin-like effects elicited by polyamines in fat cells (e.g. enhancement of glucose transport and inhibition of cAMP-mediated lipolysis) are dependent on H2O2 production (Livingston et al., J. Biol. Chem., Jan. 25, 1977;252(2):560-2). Inhibiting polyamine catabolism through an inhibitor of this rate-limiting enzyme may abolish the insulin-like antilipolytic effects of polyamines. Therefore, therapeutic inhibition of the activity of this gene using small molecule drugs may be beneficial in the treatment of obesity.


[0832] S. CG164449-01: Granzyme H Precursor-Like Protein.


[0833] Expression of gene CG164449-01 was assessed using the primer-probe set Ag7846, described in Table SA. Results of the RTQ-PCR runs are shown in Table SB.
272TABLE SAProbe Name Ag7846SEQ IDPrimersLengthStart PositionNoForward5′-aggccaagtggaccacag-3′18376422ProbeTET-5′-ctacctagcagcaaggcccagg-3′-TAMRA22411423Reverse5′-ggctacgtccttacacacga-3′20451424


[0834]

273





TABLE SB










General_screening_panel_v1.7











Rel.




Exp. (%)




Ag7846,




Run



Tissue Name
318010064














Adipose
6.9



HUVEC
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma (met) SK-MEL-5
0.0



Testis
0.0



Prostate ca. (bone met) PC-3
0.0



Prostate ca. DU145
0.0



Prostate pool
0.3



Uterus pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. (ascites) SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
1.5



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
3.7



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT-549
0.0



Breast ca. T47D
0.0



Breast pool
0.0



Trachea
13.9



Lung
100.0



Fetal Lung
2.6



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
2.8



Lung ca. NCI-H522
0.0



Lung ca. DMS-114
0.0



Liver
0.5



Fetal Liver
0.4



Kidney pool
3.3



Fetal Kidney
1.7



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
4.7



Gastric ca. (liver met.) NCI-N87
0.0



Stomach
0.0



Colon ca. SW-948
0.2



Colon ca. SW480
0.0



Colon ca. (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon cancer tissue
0.1



Colon ca. SW1116
0.0



Colon ca. Colo-205
1.9



Colon ca. SW-48
0.0



Colon
0.7



Small Intestine
0.0



Fetal Heart
0.0



Heart
2.4



Lymph Node pool 1
0.0



Lymph Node pool 2
21.3



Fetal Skeletal Muscle
0.3



Skeletal Muscle pool
0.0



Skeletal Muscle
0.0



Spleen
7.1



Thymus
0.5



CNS cancer (glio/astro) SF-268
0.0



CNS cancer (glio/astro) T98G
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala)
0.3



Brain (Cerebellum)
0.3



Brain (Fetal)
0.0



Brain (Hippocampus)
0.6



Cerebral Cortex pool
0.2



Brain (Substantia nigra)
0.0



Brain (Thalamus)
0.1



Brain (Whole)
0.7



Spinal Cord
0.2



Adrenal Gland
6.2



Pituitary Gland
1.4



Salivary Gland
4.0



Thyroid
6.4



Pancreatic ca. PANC-1
0.0



Pancreas pool
0.0











[0835] General_screening_panel_v1.7 Summary: Ag7846 Highest expression of this gene is detected in lung (CT=30.2). Therefore, expression of this gene may be used to distinguish lung from other samples in the is panel. Furthermore, therapeutic modulation of this gene or its protein product may be useful in the treatment of lung related disorders.


[0836] In addition, low expression of this gene is also seen in Lymph Node pool 2 and trachea. Therefore, expression of this gene may be used as marker to detect lymph node and trachea and also therapeutic modulation of this gene may be useful in the treatment of lymph node related or trachea related disorders.


[0837] T. CG54007-04 and CG54007-06: Carboxypeptidase X Precursor-Like Protein.


[0838] Expression of gene CG54007-04 and CG54007-06 were assessed using the primer-probe sets Ag874, Ag86, Ag544 and Ag5121, described in Tables TA, TB, TC and TD. Results of the RTQ-PCR runs are shown in Tables TE, TF, TG, TH, TI, TJ, TK and TL. Please note that probe-primer set Ag5121 is specific for Cg CG54007-04. Also, please note that CG54007-06 represents a full length physical clone.
274TABLE TAProbe Name Ag874SEQ IDPrimersSequenesLengthStart PositionNoForward5′-acagggcaggaactctgtct-3′20567425ProbeTET-5′-tgactgggtcacatcatacaaggtcca-3′-TAMRA27594426Reverse5′-gtccgactgtcattgctgaa-3′20622427


[0839]

275






TABLE TB










Probe Name Ag86

















SEQ ID



Primers
Sequenes
Length
Start Position
No















Forward
5′-gtctggagtccctgcgagttt-3′
21
356
428






Probe
TET-5′-cttgaggcatccagcagccagtcc-3′-TAMRA
24
388
429





Reverse
5′-cggtgtggtccaagaccaa-3′
19
413
430










[0840]

276






TABLE TC










Probe Name Ag544

















SEQ ID



Primers
Seqences
Length
Start Position
No















Forward
5′-cctgcgtcgggatcctct-3′
18
859
431






Probe
TET-5′-cctctagactttcagcatcacaattacaaggcc-3′-TAMRA
33
880
432





Reverse
5′-cctgcttcatcagcttcctca-3′
21
914
433










[0841]

277






TABLE TD










Probe Name Ag5121

















SEQ ID



Primers
Sequencs
Length
Start Position
No















Forward
5′-acccattcgacatggtga-3′
18
1517
434






Probe
TET-5′-ctaccattcagtgacacggaactgtcg-3′-TAMRA
27
1551
435





Reverse
5′-ggccctcttcaaaggtga-3′
18
1580
436










[0842]

278





TABLE TE










AI_comprehensive_panel_v1.0










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag5121,
Ag874,



Run
Run


Tissue Name
275481195
220260120












110967 COPD-F
7.0
20.0


110980 COPD-F
0.0
0.9


110968 COPD-M
11.0
19.1


110977 COPD-M
1.2
0.0


110989 Emphysema-F
31.0
88.9


110992 Emphysema-F
20.0
39.5


110993 Emphysema-F
6.4
14.8


110994 Emphysema-F
2.0
5.7


110995 Emphysema-F
28.7
42.3


110996 Emphysema-F
15.6
20.6


110997 Asthma-M
0.0
1.5


111001 Asthma-F
2.7
9.5


111002 Asthma-F
12.2
31.2


111003 Atopic Asthma-F
20.9
59.0


111004 Atopic Asthma-F
43.8
79.0


111005 Atopic Asthma-F
34.4
53.2


111006 Atopic Asthma-F
10.5
11.9


111417 Allergy-M
9.9
31.0


112347 Allergy-M
0.0
0.4


112349 Normal Lung-F
0.0
0.7


112357 Normal Lung-F
20.0
8.7


112354 Normal Lung-M
3.7
3.8


112374 Crohns-F
36.1
7.6


112389 Match Control Crohns-F
0.0
1.9


112375 Crohns-F
38.2
23.7


112732 Match Control Crohns-F
0.0
0.4


112725 Crohns-M
2.8
1.2


112387 Match Control Crohns-M
3.8
16.7


112378 Crohns-M
0.0
0.8


112390 Match Control Crohns-M
12.4
22.8


112726 Crohns-M
27.4
16.7


112731 Match Control Crohns-M
8.0
5.5


112380 Ulcer Col-F
25.3
21.3


112734 Match Control Ulcer Col-F
0.0
0.4


112384 Ulcer Col-F
19.9
15.0


112737 Match Control Ulcer Col-F
10.8
5.0


112386 Ulcer Col-F
0.0
7.6


112738 Match Control Ulcer Col-F
0.0
1.3


112381 Ulcer Col-M
0.0
3.0


112735 Match Control Ulcer Col-M
0.0
8.5


112382 Ulcer Col-M
0.0
3.3


112394 Match Control Ulcer Col-M
0.0
2.3


112383 Ulcer Col-M
100.0
100.0


112736 Match Control Ulcer Col-M
3.5
3.1


112423 Psoriasis-F
3.4
3.7


112427 Match Control Psoriasis-F
10.5
10.4


112418 Psoriasis-M
1.7
4.6


112723 Match Control Psoriasis-M
60.7
40.9


112419 Psoriasis-M
0.0
14.4


112424 Match Control Psoriasis-M
3.7
6.9


112420 Psoriasis-M
27.7
77.9


112425 Match Control Psoriasis-M
4.2
26.1


104689 (MF) OA Bone-Backus
12.6
13.0


104690 (MF) Adj “Normal” Bone-Backus
0.0
0.2


104691 (MF) OA Synovium-Backus
0.0
0.4


104692 (BA) OA Cartilage-Backus
0.0
0.1


104694 (BA) OA Bone-Backus
6.1
8.5


104695 (BA) Adj “Normal” Bone-Backus
0.0
0.5


104696 (BA) OA Synovium-Backus
3.0
3.9


104700 (SS) OA Bone-Backus
1.2
1.8


104701 (SS) Adj “Normal” Bone-Backus
0.0
7.4


104702 (SS) OA Synovium-Backus
5.8
7.6


117093 OA Cartilage Rep7
4.9
59.5


112672 OA Bone5
3.3
35.1


112673 OA Synovium5
4.7
16.4


112674 OA Synovial Fluid cells5
2.0
15.8


117100 OA Cartilage Rep14
10.2
11.4


112756 OA Bone9
0.0
1.2


112757 OA Synovium9
0.0
0.1


112758 OA Synovial Fluid Cells9
3.7
4.5


117125 RA Cartilage Rep2
2.1
9.9


113492 Bone2 RA
1.0
0.2


113493 Synovium2 RA
0.0
0.0


113494 Syn Fluid Cells RA
0.0
0.1


113499 Cartilage4 RA
0.0
0.2


113500 Bone4 RA
0.0
0.4


113501 Synovium4 RA
0.0
0.4


113502 Syn Fluid Cells4 RA
0.0
0.2


113495 Cartilage3 RA
0.0
0.2


113496 Bone3 RA
0.0
0.1


113497 Synovium3 RA
0.0
0.0


113498 Syn Fluid Cells3 RA
0.0
0.1


117106 Normal Cartilage Rep20
3.5
15.6


113663 Bone3 Normal
0.0
0.5


113664 Synovium3 Normal
0.0
0.8


113665 Syn Fluid Cells3 Normal
0.0
0.3


117107 Normal Cartilage Rep22
0.0
8.1


113667 Bone4 Normal
4.2
23.7


113668 Synovium4 Normal
4.5
27.4


113669 Syn Fluid Cells4 Normal
17.3
37.4










[0843]

279





TABLE TF










CNS_neurodegeneration_v1.0











Rel.




Exp. (%)




Ag874,




Run



Tissue Name
271695187














AD 1 Hippo
10.1



AD 2 Hippo
54.0



AD 3 Hippo
9.3



AD 4 Hippo
13.4



AD 5 hippo
25.5



AD 6 Hippo
100.0



Control 2 Hippo
18.8



Control 4 Hippo
28.3



Control (Path) 3 Hippo
12.9



AD 1 Temporal Ctx
5.0



AD 2 Temporal Ctx
32.3



AD 3 Temporal Ctx
0.0



AD 4 Temporal Ctx
7.8



AD 5 Inf Temporal Ctx
8.3



AD 5 Sup Temporal Ctx
39.8



AD 6 Inf Temporal Ctx
27.9



AD 6 Sup Temporal Ctx
28.1



Control 1 Temporal Ctx
68.3



Control 2 Temporal Ctx
28.5



Control 3 Temporal Ctx
24.7



Control 4 Temporal Ctx
13.5



Control (Path) 1 Temporal Ctx
31.6



Control (Path) 2 Temporal Ctx
30.1



Control (Path) 3 Temporal Ctx
4.6



Control (Path) 4 Temporal Ctx
9.9



AD 1 Occipital Ctx
12.2



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
1.8



AD 4 Occipital Ctx
13.6



AD 5 Occipital Ctx
36.6



AD 6 Occipital Ctx
55.9



Control 1 Occipital Ctx
40.1



Control 2 Occipital Ctx
27.0



Control 3 Occipital Ctx
12.2



Control 4 Occipital Ctx
4.6



Control (Path) 1 Occipital Ctx
31.6



Control (Path) 2 Occipital Ctx
0.0



Control (Path) 3 Occipital Ctx
0.0



Control (Path) 4 Occipital Ctx
7.9



Control 1 Parietal Ctx
48.3



Control 2 Parietal Ctx
23.0



Control 3 Parietal Ctx
17.8



Control (Path) 1 Parietal Ctx
34.6



Control (Path) 2 Parietal Ctx
49.0



Control (Path) 3 Parietal Ctx
0.0



Control (Path) 4 Parietal Ctx
18.6











[0844]

280





TABLE TG










Panel 1












Rel.
Rel.




Exp. (%)
Exp. (%)




Ag86,
Ag86,




Run
Run



Tissue Name
87584059
87589776















Endothelial cells
0.2
0.0



Endothelial cells (treated)
0.9
0.0



Pancreas
1.1
0.1



Pancreatic ca. CAPAN2
0.0
0.0



Adrenal gland
3.4
3.2



Thyroid
22.1
27.7



Salivary gland
3.0
1.9



Pituitary gland
16.2
27.7



Brain (fetal)
4.1
4.8



Brain (whole)
0.8
0.0



Brain (amygdala)
0.7
0.1



Brain (cerebellum)
1.0
0.1



Brain (hippocampus)
2.0
0.2



Brain (substantia nigra)
0.2
0.0



Brain (thalamus)
0.3
0.0



Brain (hypothalamus)
1.8
0.9



Spinal cord
4.4
6.1



glio/astro U87-MG
0.0
0.0



glio/astro U-118-MG
0.0
0.0



astrocytoma SW1783
0.1
0.0



neuro*; met SK-N-AS
6.7
17.2



astrocytoma SF-539
0.1
0.0



astrocytoma SNB-75
0.1
0.0



glioma SNB-19
0.1
0.0



glioma U251
0.0
0.0



glioma SF-295
0.0
0.0



Heart
2.5
2.4



Skeletal muscle
0.1
0.0



Bone marrow
3.9
0.0



Thymus
14.6
24.7



Spleen
0.5
0.1



Lymph node
3.5
5.2



Colon (ascending)
0.9
0.6



Stomach
3.0
3.8



Small intestine
1.8
1.8



Colon ca. SW480
0.6
0.0



Colon ca.* SW620 (SW480 met)
0.0
0.0



Colon ca. HT29
0.1
0.0



Colon ca. HCT-116
0.0
0.0



Colon ca. CaCo-2
0.0
0.0



Colon ca. HCT-15
0.2
0.1



Colon ca. HCC-2998
0.0
0.0



Gastric ca.* (liver met) NCI-N87
0.0
0.0



Bladder
4.2
15.5



Trachea
2.5
4.6



Kidney
3.5
4.2



Kidney (fetal)
90.8
92.7



Renal ca. 786-0
0.0
0.0



Renal ca. A498
0.1
0.0



Renal ca. RXF 393
0.0
0.0



Renal ca. ACHN
0.0
0.0



Renal ca. UO-31
0.1
0.0



Renal ca. TK-10
0.0
0.0



Liver
0.7
0.1



Liver (fetal)
3.0
3.0



Liver ca. (hepatoblast) HepG2
0.0
0.0



Lung
0.5
2.8



Lung (fetal)
19.2
17.3



Lung ca. (small cell) LX-1
0.0
0.0



Lung ca. (small cell) NCI-H69
0.3
0.0



Lung ca. (s. cell var.) SHP-77
0.0
0.0



Lung ca. (large cell) NCI-H460
0.0
0.0



Lung ca. (non-sm. cell) A549
0.1
0.0



Lung ca. (non-s. cell) NCI-H23
1.8
2.4



Lung ca. (non-s. cell) HOP-62
1.8
1.2



Lung ca. (non-s. cl) NCI-H522
0.1
0.0



Lung ca. (squam.) SW 900
0.0
0.0



Lung ca. (squam.) NCI-H596
0.5
0.1



Mammary gland
46.3
55.9



Breast ca.* (pl. ef) MCF-7
0.0
0.0



Breast ca.* (pl. ef) MDA-MB-231
0.0
0.0



Breast ca.* (pl. ef) T47D
0.1
0.0



Breast ca. BT-549
0.0
11.4



Breast ca. MDA-N
0.1
0.0



Ovary
100.0
100.0



Ovarian ca. OVCAR-3
0.2
0.0



Ovarian ca. OVCAR-4
0.0
0.0



Ovarian ca. OVCAR-5
0.2
0.0



Ovarian ca. OVCAR-8
1.7
0.8



Ovarian ca. IGROV-1
0.0
0.0



Ovarian ca. (ascites) SK-OV-3
0.1
0.0



Uterus
4.2
8.4



Placenta
55.1
64.2



Prostate
4.7
8.5



Prostate ca.* (bone met) PC-3
0.0
0.0



Testis
13.2
15.4



Melanoma Hs688(A).T
0.3
0.0



Melanoma* (met) Hs688(B).T
0.0
0.0



Melanoma UACC-62
0.0
0.0



Melanoma M14
0.1
0.0



Melanoma LOX IMVI
0.0
0.0



Melanoma* (met) SK-MEL-5
0.1
0.0



Melanoma SK-MEL-28
0.0
0.0











[0845]

281





TABLE TH










Panel 1.1











Rel.




Exp. (%)




Ag544,




Run



Tissue Name
111164655














Adrenal gland
4.8



Bladder
24.3



Brain (amygdala)
0.3



Brain (cerebellum)
0.3



Brain (hippocampus)
0.6



Brain (substantia nigra)
0.9



Brain (thalamus)
0.2



Cerebral Cortex
0.1



Brain (fetal)
3.8



Brain (whole)
0.3



glio/astro U-118-MG
0.0



astrocytoma SF-539
0.0



astrocytoma SNB-75
0.0



astrocytoma SW1783
0.1



glioma U251
0.0



glioma SF-295
0.0



glioma SNB-19
0.0



glio/astro U87-MG
0.0



neuro*; met SK-N-AS
26.2



Mammary gland
39.5



Breast ca. BT-549
4.0



Breast ca. MDA-N
0.0



Breast ca.* (pl. ef) T47D
0.0



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
0.0



Small intestine
2.5



Colorectal
1.0



Colon ca. HT29
0.0



Colon ca. CaCo-2
0.0



Colon ca. HCT-15
0.0



Colon ca. HCT-116
0.0



Colon ca. HCC-2998
0.0



Colon ca. SW480
0.9



Colon ca.* SW620 (SW480 met)
0.0



Stomach
3.3



Gastric ca. (liver met) NCI-N87
0.0



Heart
11.4



Skeletal muscle (Fetal)
18.2



Skeletal muscle
0.9



Endothelial cells
2.0



Heart (Fetal)
17.7



Kidney
5.4



Kidney (fetal)
55.5



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. TK-10
0.0



Renal ca. UO-31
0.0



Renal ca. RXF 393
0.0



Liver
2.3



Liver (fetal)
1.2



Liver ca. (hepatoblast) HepG2
0.0



Lung
0.7



Lung (fetal)
15.1



Lung ca. (non-s. cell) HOP-62
15.9



Lung ca. (large cell) NCI-H460
0.0



Lung ca. (non-s. cell) NCI-H23
4.0



Lung ca. (non-s. cl) NCI-H522
0.4



Lung ca. (non-sm. cell) A549
0.0



Lung ca. (s. cell var.) SHP-77
0.0



Lung ca. (small cell) LX-1
0.0



Lung ca. (small cell) NCI-H69
0.0



Lung ca. (squam.) SW 900
0.0



Lung ca. (squam.) NCI-H596
0.4



Lymph node
2.5



Spleen
0.1



Thymus
4.5



Ovary
100.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-3
0.5



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. OVCAR-8
1.9



Ovarian ca.* (ascites) SK-OV-3
0.0



Pancreas
2.5



Pancreatic ca. CAPAN 2
0.0



Pituitary gland
2.5



Placenta
29.5



Prostate
4.5



Prostate ca.* (bone met) PC-3
0.0



Salivary gland
8.5



Trachea
1.7



Spinal cord
4.0



Testis
1.8



Thyroid
22.7



Uterus
17.4



Melanoma M14
0.0



Melanoma LOX IMVI
0.0



Melanoma UACC-62
0.0



Melanoma SK-MEL-28
0.0



Melanoma* (met) SK-MEL-5
0.0



Melanoma Hs688(A).T
0.4



Melanoma* (met) Hs688(B).T
0.1











[0846]

282





TABLE TI










Panel 1.3D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag544,
Ag874,



Run
Run


Tissue Name
165702011
152932054












Liver adenocarcinoma
0.0
0.0


Pancreas
0.3
0.1


Pancreatic ca. CAPAN2
0.0
0.0


Adrenal gland
3.2
1.1


Thyroid
16.3
4.2


Salivary gland
3.6
0.5


Pituitary gland
2.5
0.3


Brain (fetal)
5.1
0.7


Brain (whole)
1.2
0.2


Brain (amygdala)
1.1
0.2


Brain (cerebellum)
0.3
0.0


Brain (hippocampus)
1.3
0.8


Brain (substantia nigra)
1.2
0.1


Brain (thalamus)
0.3
0.0


Cerebral Cortex
0.4
0.3


Spinal cord
6.7
0.7


glio/astro U87-MG
0.0
0.0


glio/astro U-118-MG
0.0
0.0


astrocytoma SW1783
0.8
0.1


neuro*; met SK-N-AS
43.2
7.1


astrocytoma SF-539
0.0
0.0


astrocytoma SNB-75
0.7
0.1


glioma SNB-19
0.0
0.0


glioma U251
0.0
0.0


glioma SF-295
0.0
0.0


Heart (fetal)
11.3
10.2


Heart
1.8
0.3


Skeletal muscle (fetal)
26.4
43.2


Skeletal muscle
1.2
0.1


Bone marrow
10.6
1.4


Thymus
5.1
1.3


Spleen
1.2
0.2


Lymph node
8.4
1.0


Colorectal
0.5
0.5


Stomach
4.2
0.7


Small intestine
4.7
0.6


Colon ca. SW480
1.4
0.8


Colon ca.* SW620 (SW480 met)
0.0
0.0


Colon ca. HT29
0.0
0.1


Colon ca. HCT-116
0.0
0.0


Colon ca. CaCo-2
0.0
0.0


Colon ca. tissue (ODO3866)
17.2
2.3


Colon ca. HCC-2998
0.0
0.0


Gastric ca.* (liver met) NCI-N87
0.2
0.0


Bladder
5.8
0.7


Trachea
3.0
0.7


Kidney
0.9
0.2


Kidney (fetal)
44.1
9.8


Renal ca. 786-0
0.0
0.0


Renal ca. A498
0.7
0.0


Renal ca. RXF 393
0.8
0.0


Renal ca. ACHN
0.0
0.0


Renal ca. UO-31
0.0
0.0


Renal ca. TK-10
0.0
0.0


Liver
0.0
0.0


Liver (fetal)
9.1
1.9


Liver ca. (hepatoblast) HepG2
0.0
0.0


Lung
1.7
0.2


Lung (fetal)
37.6
9.3


Lung ca. (small cell) LX-1
0.0
0.0


Lung ca. (small cell) NCI-H69
0.0
0.0


Lung ca. (s. cell var.) SHP-77
0.0
0.0


Lung ca. (large cell) NCI-H460
0.2
0.0


Lung ca. (non-sm. cell) A549
0.0
0.0


Lung ca. (non-s. cell) NCI-H23
2.6
1.4


Lung ca. (non-s. cell) HOP-62
2.1
0.6


Lung ca. (non-s. cl) NCI-H522
0.0
0.1


Lung ca. (squam.) SW 900
0.0
0.0


Lung ca. (squam.) NCI-H596
0.7
0.1


Mammary gland
50.7
13.1


Breast ca.* (pl. ef) MCF-7
0.0
0.0


Breast ca.* (pl. ef) MDA-MB-231
0.0
0.0


Breast ca.* (pl. ef) T47D
0.0
0.0


Breast ca. BT-549
12.2
1.7


Breast ca. MDA-N
0.0
0.0


Ovary
100.0
100.0


Ovarian ca. OVCAR-3
1.6
0.1


Ovarian ca. OVCAR-4
0.0
0.0


Ovarian ca. OVCAR-5
0.0
0.0


Ovarian ca. OVCAR-8
3.6
0.3


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca.* (ascites) SK-OV-3
0.0
0.0


Uterus
80.1
9.5


Placenta
28.5
7.6


Prostate
5.3
1.3


Prostate ca.* (bone met) PC-3
0.0
0.0


Testis
6.2
1.1


Melanoma Hs688(A).T
0.7
0.1


Melanoma* (met) Hs688(B).T
0.0
0.0


Melanoma UACC-62
0.0
0.0


Melanoma M14
0.0
0.0


Melanoma LOX IMVI
0.0
0.0


Melanoma* (met) SK-MEL-5
0.0
0.0


Adipose
32.1
7.6










[0847]

283





TABLE TJ










Panel 2D











Rel.




Exp. (%)




Ag874,




Run



Tissue Name
152932207














Normal Colon
16.0



CC Well to Mod Diff (ODO3866)
8.1



CC Margin (ODO3866)
0.6



CC Gr. 2 rectosigmoid (ODO3868)
3.7



CC Margin (ODO3868)
1.3



CC Mod Diff (ODO3920)
2.3



CC Margin (ODO3920)
1.7



CC Gr. 2 ascend colon (ODO3921)
9.9



CC Margin (ODO3921)
2.4



CC from Partial Hepatectomy (ODO4309) Mets
2.8



Liver Margin (ODO4309)
0.3



Colon mets to lung (OD04451-01)
2.4



Lung Margin (OD04451-02)
0.2



Normal Prostate 6546-1
10.0



Prostate Cancer (OD04410)
9.7



Prostate Margin (OD04410)
10.2



Prostate Cancer (OD04720-01)
5.4



Prostate Margin (OD04720-02)
15.7



Normal Lung 061010
3.2



Lung Met to Muscle (ODO4286)
1.8



Muscle Margin (ODO4286)
8.1



Lung Malignant Cancer (OD03126)
6.9



Lung Margin (OD03126)
1.0



Lung Cancer (OD04404)
18.2



Lung Margin (OD04404)
12.4



Lung Cancer (OD04565)
7.1



Lung Margin (OD04565)
0.2



Lung Cancer (OD04237-01)
6.2



Lung Margin (OD04237-02)
2.8



Ocular Mel Met to Liver (ODO4310)
0.0



Liver Margin (ODO4310)
0.2



Melanoma Mets to Lung (OD04321)
4.6



Lung Margin (OD04321)
0.4



Normal Kidney
5.1



Kidney Ca, Nuclear grade 2 (OD04338)
1.0



Kidney Margin (OD04338)
1.8



Kidney Ca Nuclear grade 1/2 (OD04339)
0.1



Kidney Margin (OD04339)
2.6



Kidney Ca, Clear cell type (OD04340)
0.4



Kidney Margin (OD04340)
4.5



Kidney Ca, Nuclear grade 3 (OD04348)
10.9



Kidney Margin (OD04348)
3.2



Kidney Cancer (OD04622-01)
6.3



Kidney Margin (OD04622-03)
1.3



Kidney Cancer (OD04450-01)
0.0



Kidney Margin (OD04450-03)
3.5



Kidney Cancer 8120607
1.8



Kidney Margin 8120608
0.9



Kidney Cancer 8120613
0.3



Kidney Margin 8120614
2.8



Kidney Cancer 9010320
32.5



Kidney Margin 9010321
5.2



Normal Uterus
13.0



Uterus Cancer 064011
11.7



Normal Thyroid
18.7



Thyroid Cancer 064010
0.9



Thyroid Cancer A302152
1.4



Thyroid Margin A302153
20.0



Normal Breast
22.4



Breast Cancer (OD04566)
1.7



Breast Cancer (OD04590-01)
8.4



Breast Cancer Mets (OD04590-03)
5.6



Breast Cancer Metastasis (OD04655-05)
2.1



Breast Cancer 064006
10.2



Breast Cancer 1024
38.4



Breast Cancer 9100266
13.4



Breast Margin 9100265
36.3



Breast Cancer A209073
21.6



Breast Margin A209073
16.7



Normal Liver
0.0



Liver Cancer 064003
0.3



Liver Cancer 1025
0.2



Liver Cancer 1026
4.9



Liver Cancer 6004-T
0.1



Liver Tissue 6004-N
1.5



Liver Cancer 6005-T
5.2



Liver Tissue 6005-N
0.4



Normal Bladder
12.5



Bladder Cancer 1023
8.9



Bladder Cancer A302173
3.4



Bladder Cancer (OD04718-01)
13.0



Bladder Normal Adjacent (OD04718-03)
87.7



Normal Ovary
100.0



Ovarian Cancer 064008
61.6



Ovarian Cancer (OD04768-07)
1.2



Ovary Margin (OD04768-08)
24.3



Normal Stomach
1.4



Gastric Cancer 9060358
3.2



Stomach Margin 9060359
3.1



Gastric Cancer 9060395
7.0



Stomach Margin 9060394
11.2



Gastric Cancer 9060397
12.0



Stomach Margin 9060396
1.1



Gastric Cancer 064005
7.3











[0848]

284





TABLE TK










Panel 4D











Rel.
Rel.
Rel.



Exp. (%)
Exp. (%)
Exp. (%)



Ag544,
Ag874,
Ag874,



Run
Run
Run


Tissue Name
145644930
138642062
144170545













Secondary Th1 act
0.0
0.7
1.1


Secondary Th2 act
0.5
25.2
0.4


Secondary Tr1 act
0.3
1.5
1.7


Secondary Th1 rest
0.0
0.0
0.0


Secondary Th2 rest
0.0
3.7
0.5


Secondary Tr1 rest
0.0
0.0
0.0


Primary Th1 act
0.9
1.0
0.6


Primary Th2 act
1.1
2.5
2.8


Primary Tr1 act
3.4
2.5
0.0


Primary Th1 rest
5.8
6.4
5.2


Primary Th2 rest
2.5
6.5
2.9


Primary Tr1 rest
0.7
1.0
1.4


CD45RA CD4 lymphocyte
4.2
6.8
7.6


act


CD45RO CD4 lymphocyte
2.3
2.4
4.1


act


CD8 lymphocyte act
1.2
1.3
0.7


Secondary CD8
5.4
6.7
11.2


lymphocyte rest


Secondary CD8
2.5
3.2
1.7


lymphocyte act


CD4 lymphocyte none
0.0
0.0
0.0


2ry Th1/Th2/Tr1_anti-
1.0
0.7
0.0


CD95 CH11


LAK cells rest
0.8
0.0
0.4


LAK cells IL-2
0.0
3.0
1.2


LAK cells IL-2 + IL-12
6.6
15.9
10.5


LAK cells IL-2 + IFN
5.1
7.6
3.8


gamma


LAK cells IL-2 + IL-18
7.3
8.4
4.3


LAK cells PMA/ionomycin
3.9
3.4
3.1


NK Cells IL-2 rest
2.1
0.5
0.5


Two Way MLR 3 day
0.6
0.3
1.2


Two Way MLR 5 day
0.7
2.5
1.1


Two Way MLR 7 day
10.3
8.4
9.9


PBMC rest
0.5
0.0
0.0


PBMC PWM
15.9
25.9
14.8


PBMC PHA-L
32.5
44.4
26.1


Ramos (B cell) none
0.0
0.0
0.0


Ramos (B cell)
0.0
0.0
0.0


ionomycin


B lymphocytes PWM
20.3
33.2
13.7


B lymphocytes CD40L
20.4
34.2
12.6


and IL-4


EOL-1 dbcAMP
0.6
0.3
1.7


EOL-1 dbcAMP
1.4
2.1
0.5


PMA/ionomycin


Dendritic cells none
0.0
0.0
0.0


Dendritic cells LPS
0.9
0.6
0.3


Dendritic cells anti-
0.0
0.3
0.0


CD40


Monocytes rest
0.0
0.0
0.4


Monocytes LPS
1.9
4.3
6.0


Macrophages rest
1.0
0.6
0.0


Macrophages LPS
4.9
5.6
2.9


HUVEC none
5.9
6.2
5.2


HUVEC starved
10.9
14.1
10.9


HUVEC IL-1beta
3.3
6.5
4.2


HUVEC IFN gamma
20.7
18.6
18.9


HUVEC TNF alpha + IFN
2.0
2.2
2.1


gamma


HUVEC TNF alpha + IL4
7.1
4.3
4.6


HUVEC IL-11
7.7
4.3
3.6


Lung Microvascular
4.6
1.5
2.5


EC none


Lung Microvascular
1.0
3.0
1.7


EC TNFalpha + IL-


1beta


Microvascular Dermal
0.4
1.5
0.3


EC none


Microsvasular Dermal
1.5
1.0
3.6


EC TNFalpha + IL-


1beta


Bronchial epithelium
0.0
0.2
0.0


TNFalpha + IL1beta


Small airway
0.0
0.0
0.0


epithelium none


Small airway
0.6
0.8
0.0


epithelium TNFalpha +


IL-1beta


Coronery artery SMC
1.8
0.8
1.5


rest


Coronery artery SMC
1.0
0.3
0.7


TNFalpha + IL-1beta


Astrocytes rest
7.1
10.2
9.9


Astrocytes TNFalpha +
3.2
2.7
5.8


IL-1beta


KU-812 (Basophil) rest
16.0
24.5
23.7


KU-812 (Basophil)
30.4
35.6
44.4


PMA/ionomycin


CCD1106 (Keratinocytes)
0.0
0.0
0.0


none


CCD1106 (Keratinocytes)
0.0
1.8
0.0


TNFalpha + IL-1beta


Liver cirrhosis
10.9
8.8
6.8


Lupus kidney
8.9
7.7
4.1


NCI-H292 none
0.0
0.0
0.0


NCI-H292 IL-4
0.7
0.0
0.0


NCI-H292 IL-9
0.0
0.0
0.0


NCI-H292 IL-13
0.0
0.0
0.0


NCI-H292 IFN gamma
0.0
0.3
0.4


HPAEC none
2.3
2.8
1.6


HPAEC TNF alpha +
4.7
10.0
7.5


IL-1 beta


Lung fibroblast none
0.0
0.6
1.3


Lung fibroblast TNF
1.7
4.5
2.4


alpha + IL-1 beta


Lung fibroblast IL-4
0.6
0.3
0.6


Lung fibroblast IL-9
0.0
0.0
0.4


Lung fibroblast IL-13
1.4
1.8
0.0


Lung fibroblast IFN
2.7
2.5
1.7


gamma


Dermal fibroblast
20.9
27.2
13.7


CCD1070 rest


Dermal fibroblast
7.6
10.9
10.7


CCD1070 TNF alpha


Dermal fibroblast
20.6
15.4
20.0


CCD1070 IL-1 beta


Dermal fibroblast IFN
47.3
48.6
35.6


gamma


Dermal fibroblast IL-4
40.3
39.5
43.2


IBD Colitis 2
1.0
1.2
1.2


IBD Crohn's
4.9
4.3
4.5


Colon
2.9
7.0
5.9


Lung
100.0
100.0
100.0


Thymus
24.0
15.2
18.0


Kidney
27.2
53.2
42.6










[0849]

285





TABLE TL










Panel 5D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag544,
Ag874,



Run
Run


Tissue Name
247855022
166667617












97457_Patient-02go_adipose
100.0
100.0


97476_Patient-07sk_skeletal
10.2
12.7


muscle


97477_Patient-07ut_uterus
6.0
4.4


97478_Patient-07pl_placenta
8.9
4.4


97481_Patient-08sk_skeletal
6.4
2.7


muscle


97482_Patient-08ut_uterus
3.7
2.4


97483_Patient-08pl_placenta
2.0
4.7


97486_Patient-09sk_skeletal
0.1
0.2


muscle


97487_Patient-09ut_uterus
6.3
3.0


97488_Patient-09pl_placenta
3.4
1.7


97492_Patient-10ut_uterus
9.9
5.7


97493_Patient-10pl_placenta
6.4
10.8


97495_Patient-11go_adipose
0.0
12.9


97496_Patient-11sk_skeletal
0.1
0.1


muscle


97497_Patient-11ut_uterus
2.9
1.9


97498_Patient-11pl_placenta
0.4
1.8


97500_Patient-12go_adipose
41.5
26.8


97501_Patient-12sk_skeletal
0.7
0.4


muscle


97502_Patient-12ut_uterus
1.8
3.4


97503_Patient-12pl_placenta
1.0
1.4


94721_Donor 2 U - A_Mesenchymal
0.0
0.0


Stem Cells


94722_Donor 2 U - B_Mesenchymal
0.0
0.2


Stem Cells


94723_Donor 2 U - C_Mesenchymal
0.0
0.0


Stem Cells


94709_Donor 2 AM - A_adipose
0.0
0.0


94710_Donor 2 AM - B_adipose
0.0
0.0


94711_Donor 2 AM - C_adipose
0.0
0.0


94712_Donor 2 AD - A_adipose
0.0
0.0


94713_Donor 2 AD - B_adipose
0.0
0.0


94714_Donor 2 AD - C_adipose
0.0
0.0


94742_Donor 3 U - A_Mesenchymal
0.0
0.0


Stem Cells


94743_Donor 3 U - B_Mesenchymal
0.0
0.0


Stem Cells


94730_Donor 3 AM - A_adipose
0.0
0.2


94731_Donor 3 AM - B_adipose
0.0
0.0


94732_Donor 3 AM - C_adipose
0.0
0.0


94733_Donor 3 AD - A_adipose
0.0
0.0


94734_Donor 3 AD - B_adipose
0.1
0.0


94735_Donor 3 AD - C_adipose
0.1
0.0


77138_Liver_HepG2untreated
0.1
0.0


73556_Heart_Cardiac stromal
0.0
0.3


cells (primary)


81735_Small Intestine
0.7
0.8


72409_Kidney_Proximal Convoluted
0.2
0.3


Tubule


82685_Small intestine_Duodenum
0.0
0.3


90650_Adrenal_Adrenocortical
0.3
0.7


adenoma


72410_Kidney_HRCE
0.2
0.2


72411_Kidney_HRE
2.2
2.1


73139_Uterus_Uterine smooth
0.5
0.4


muscle cells










[0850] AI_comprehensive panel_v1.0 Summary: Ag5121/Ag874 Two experiments with different probe-primer sets are in good agreement. Highest expression of this gene is detected in ulcerative colitis sample (CT=28-33). Interestingly, expression of this gene is higher in colitis compared the matched control sample. Therefore, expression of this may be used as marker for ulcerative colitis and therapeutic modulation of this gene may be useful in the treatment of ulcerative colitis.


[0851] In addition, moderate to low expression of this gene is also seen in in samples derived from normal and orthoarthitis bone, cartilage, synovium and synovial fluid samples, RA cartilage REP2, from normal lung, COPD lung, emphysema, atopic asthma, asthma, allergy, Crohn's disease (normal matched control and diseased), ulcerative colitis (normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis


[0852] CNS_neurodegeneration_v1.0 Summary: Ag874 Low expression of this gene is restricted to hippocampus from an Alzheimer's patient (CT=33.99). Therefore, therapeutic modulation of this gene may be useful in the treatment of seizure.


[0853] Panel 1 Summary: Ag86 Two experiments with same probe-primer sets are in good agreement. Highest expression of this gene is detected in ovary (CT=21-24). High expression of this gene is detected in normal tissues including testis, placenta, prostate, uterus, mammary gland, kidney, trachea, bladder, brain, and tissues with metabolic/endocrine functions including pancreas, heart and gastrointestinal tract.


[0854] This gene codes for metallocarboxypeptidase CPX-1. It is a member of a family of enzymatically inactive carboxypeptidases including CPX-2 and AEBP-1/ACLP [1]. These enzymes lack several putative active site residues but retain binding activity to substrate proteins. They also contain a domain related to discoidin. Carboxypeptidases can act as binding proteins, perhaps blocking the function of other carboxypeptidases or mediating cell-cell interactions. Carboxypeptidases have been shown to play important roles in metabolic disorders including obesity and diabetes. Several of these enzymes are involved in propeptide processing of prohormone peptides to active hormones. Mutation of carboxypeptidase E in mice results in the fat/fat phenotype, demonstrating hyperproinsulinemia, and late onset diabetes and obesity [2]. ACLP has been shown to associate with the extracellular matrix and deficiency of ACLP results in impaired wound healing and abdominal wall development [3]. In addition, ACLP protein and mRNA are downregulated during adipocyte differentiation [4]. Therefore, CPX-1 encoded by this gene can be used as potential protein therapeutic for obesity.


[0855] Interestingly, this gene is expressed at much higher levels in fetal (CTs=21-29.4) when compared to adult liver, lung and kidney (CTs=26.8-32.5). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver, lung, and kidney growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver, lung and kidney related diseases.


[0856] Moderate to low expression of this gene is also seen in number of cell lines derived from ovarian, breast, lung, and brain cancers. Therefore, therapeutic modulation of this gene may be useful in the treatment of, breast, lung, and brain cancers.


[0857] Fricker L D, Leiter E H. Peptides, enzymes and obesity: new insights from a ‘dead’ enzyme. Trends Biochem Sci October 1999;24(10):390-3; Naggert J K, Fricker L D, Varlamov O, Nishina P M, Rouille Y, Steiner D F, Carroll R J, Paigen B J, Leiter E H. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet June 1995;10(2):135-42; Layne M D, Yet S F, Maemura K, Hsieh C M, Bernfield M, Perrella M A, Lee M E. Impaired abdominal wall development and deficient wound healing in mice lacking aortic carboxypeptidase-like protein. Mol Cell Biol August 2001;21(15):5256-61; Gagnon A, Abaiian K J, Crapper T, Layne M D, Sorisky A. Down-Regulation of Aortic Carboxypeptidase-Like Protein during the Early Phase of 3T3-L1 Adipogenesis. Endocrinology July 2002;143(7):2478-85.


[0858] Panel 1.1 Summary: Ag544 Highest expression of this gene is detected in ovary (CT=22.5). This gene shows high expression in normal tissues, which correlates with the expression seen in panel 1. Please see panel 1 for further discussion of this gene.


[0859] Panel 1.3D Summary: Ag544/Ag874 Two experiments with different probe-primer sets are in good agreement. Highest expression of this gene is detected in ovary (CTs=27-29). This gene shows significant expression in normal tissues and number of cancer cell lines, which correlates with the expression seen in panel 1. Please see panel 1 for further discussion on the utility of this gene.


[0860] Panel 2D Summary: Ag874 Highest expression of this gene is seen in normal ovary (CT=27.9). Moderate to low expression of this gene is seen in normal and cancer samples derived from stomach, ovary, bladder, liver, breast, thyroid, uterus, kidney, lung, prostate and colon. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of stomach, ovary, bladder, liver, breast, thyroid, uterus, kidney, lung, prostate and colon cancers.


[0861] Panel 4D Summary: Ag544/Ag874 Three experiments with two different probe-primer sets are in good agreement. Highest expression of this gene is detected in lung (CTs=30-31.4). Moderate to low expression of this gene is also seen in resting and activated dermal fibroblasts, basophils, HUVEC, activated PBMC and B lymphocytes and normal tissues represented by thymus and kidney. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0862] Panel 5D Summary: Ag544/Ag874 Two experiments with two different probe-primer sets are in good agreement. Highest expression of this gene is detected in adipose from a diabetic patient not on insulin (CTs=28-29). Moderate to low expression of this gene is also seen in adipose, skeletal muscle, uterus, and placenta from diabetic anc non-diabetic patients. Therefore, therapeutic modulation of this gene through the use of small molecule drug could be useful in the treatment of obesity and diabetes including Type II diabetes.


[0863] U. CG55078-01 and CG55078-03: Serine Carboxypeptidase 1 Precursor-Like Protein.


[0864] Expression of gene CG55078-01 and CG55078-01 was assessed using the primer-probe set Ag3450, described in Table UA. Results of the RTQ-PCR runs are shown in Tables UB, UC, UD, UE and UF.
286TABLE UAProbe Name Ag3450SEQ IDPrimersSequenceLengthStart PositionNoForward5′-ctttggaaacatctgcttttgt-3′221256437ProbeTET-5′-tcctacaagaaccttgctttctactgg-3′-TAMRA271282438Reverse5′-ccatatgaccagctttcagaat-3′221309439


[0865]

287





TABLE UB










CNS_neurodegeneration_v1.0











Rel.




Exp. (%)




Ag3450,




Run



Tissue Name
269217277














AD 1 Hippo
24.0



AD 2 Hippo
70.2



AD 3 Hippo
9.4



AD 4 Hippo
23.0



AD 5 hippo
79.0



AD 6 Hippo
95.3



Control 2 Hippo
62.9



Control 4 Hippo
34.9



Control (Path) 3 Hippo
13.2



AD 1 Temporal Ctx
21.9



AD 2 Temporal Ctx
53.6



AD 3 Temporal Ctx
1.3



AD 4 Temporal Ctx
32.1



AD 5 Inf Temporal Ctx
95.9



AD 5 Sup Temporal Ctx
74.2



AD 6 Inf Temporal Ctx
41.5



AD 6 Sup Temporal Ctx
67.4



Control 1 Temporal Ctx
8.4



Control 2 Temporal Ctx
55.5



Control 3 Temporal Ctx
20.9



Control 4 Temporal Ctx
15.6



Control (Path) 1 Temporal Ctx
85.3



Control (Path) 2 Temporal Ctx
92.0



Control (Path) 3 Temporal Ctx
8.3



Control (Path) 4 Temporal Ctx
47.0



AD 1 Occipital Ctx
27.0



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
7.1



AD 4 Occipital Ctx
27.4



AD 5 Occipital Ctx
18.8



AD 6 Occipital Ctx
57.4



Control 1 Occipital Ctx
5.7



Control 2 Occipital Ctx
47.3



Control 3 Occipital Ctx
24.1



Control 4 Occipital Ctx
84.1



Control (Path) 1 Occipital Ctx
84.1



Control (Path) 2 Occipital Ctx
14.2



Control (Path) 3 Occipital Ctx
2.7



Control (Path) 4 Occipital Ctx
45.1



Control 1 Parietal Ctx
11.2



Control 2 Parietal Ctx
63.7



Control 3 Parietal Ctx
27.5



Control (Path) 1 Parietal Ctx
100.0



Control (Path) 2 Parietal Ctx
30.8



Control (Path) 3 Parietal Ctx
5.7



Control (Path) 4 Parietal Ctx
54.3











[0866]

288





TABLE UC










Panel 1.3D











Rel.




Exp (%)




Ag3450,




Run



Tissue Name
167819116














Liver adenocarcinoma
11.3



Pancreas
6.7



Pancreatic ca. CAPAN 2
6.8



Adrenal gland
58.2



Thyroid
64.2



Salivary gland
14.2



Pituitary gland
22.1



Brain (fetal)
3.4



Brain (whole)
28.9



Brain (amygdala)
31.2



Brain (cerebellum)
11.1



Brain (hippocampus)
23.7



Brain (substantia nigra)
46.7



Brain (thalamus)
13.1



Cerebral Cortex
12.8



Spinal cord
23.2



glio/astro U87-MG
19.8



glio/astro U-118-MG
24.5



astrocytoma SW1783
17.7



neuro*; met SK-N-AS
15.4



astrocytoma SF-539
32.1



astrocytoma SNB-75
77.4



glioma SNB-19
7.2



glioma U251
52.1



glioma SF-295
71.7



Heart (fetal)
8.7



Heart
27.7



Skeletal muscle (fetal)
3.0



Skeletal muscle
18.6



Bone marrow
23.5



Thymus
10.4



Spleen
22.4



Lymph node
22.5



Colorectal
5.6



Stomach
16.8



Small intestine
14.4



Colon ca. SW480
8.1



Colon ca.* SW620 (SW480 met)
23.0



Colon ca. HT29
1.7



Colon ca. HCT-116
6.0



Colon ca. CaCo-2
25.3



Colon ca. tissue (ODO3866)
9.4



Colon ca. HCC-2998
8.6



Gastric ca.* (liver met) NCI-N87
8.8



Bladder
11.7



Trachea
22.1



Kidney
93.3



Kidney (fetal)
89.5



Renal ca. 786-0
7.2



Renal ca. A498
42.3



Renal ca. RXF 393
19.2



Renal ca. ACHN
6.8



Renal ca. UO-31
9.0



Renal ca. TK-10
2.1



Liver
18.9



Liver (fetal)
9.8



Liver ca. (hepatoblast) HepG2
1.5



Lung
30.4



Lung (fetal)
36.9



Lung ca. (small cell) LX-1
4.2



Lung ca. (small cell) NCI-H69
6.0



Lung ca. (s. cell var.) SHP-77
30.8



Lung ca. (large cell) NCI-H460
6.1



Lung ca. (non-sm. cell) A549
18.6



Lung ca. (non-s. cell) NCI-H23
13.0



Lung ca. (non-s. cell) HOP-62
42.0



Lung ca. (non-s. cl) NCI-H522
14.6



Lung ca. (squam.) SW 900
68.8



Lung ca. (squam.) NCI-H596
22.2



Mammary gland
100.0



Breast ca.* (pl. ef) MCF-7
14.2



Breast ca.* (pl. ef) MDA-MB-231
6.6



Breast ca.* (pl. ef) T47D
74.2



Breast ca. BT-549
13.5



Breast ca. MDA-N
9.7



Ovary
29.9



Ovarian ca. OVCAR-3
20.3



Ovarian ca. OVCAR-4
26.1



Ovarian ca. OVCAR-5
98.6



Ovarian ca. OVCAR-8
3.3



Ovarian ca. IGROV-1
1.1



Ovarian ca.* (ascites) SK-OV-3
19.1



Uterus
26.1



Placenta
1.1



Prostate
34.6



Prostate ca.* (bone met) PC-3
22.4



Testis
4.2



Melanoma Hs688(A).T
11.0



Melanoma* (met) Hs688(B).T
13.4



Melanoma UACC-62
20.0



Melanoma M14
12.0



Melanoma LOX IMVI
10.4



Melanoma* (met) SK-MEL-5
22.5



Adipose
53.6











[0867]

289





TABLE UP










Panel 4.1D











Rel.




Exp. (%)




Ag3450,




Run



Tissue Name
268719219














Secondary Th1 act
8.7



Secondary Th2 act
7.0



Secondary Tr1 act
4.1



Secondary Th1 rest
0.9



Secondary Th2 rest
2.5



Secondary Tr1 rest
1.6



Primary Th1 act
0.5



Primary Th2 act
4.2



Primary Tr1 act
3.0



Primary Th1 rest
0.0



Primary Th2 rest
0.4



Primary Tr1 rest
0.1



CD45RA CD4 lymphocyte act
7.3



CD45RO CD4 lymphocyte act
11.2



CD8 lymphocyte act
1.8



Secondary CD8 lymphocyte rest
4.5



Secondary CD8 lymphocyte act
3.8



CD4 lymphocyte none
0.6



2ry Th1/Th2/Tr1_anti-CD95 CH11
2.2



LAK cells rest
40.9



LAK cells IL-2
4.5



LAK cells IL-2 + IL-12
0.1



LAK cells IL-2 + IFN gamma
3.0



LAK cells IL-2 + IL-18
1.6



LAK cells PMA/ionomycin
94.0



NK Cells IL-2 rest
12.9



Two Way MLR 3 day
23.8



Two Way MLR 5 day
6.2



Two Way MLR 7 day
7.7



PBMC rest
4.9



PBMC PWM
1.8



PBMC PHA-L
3.1



Ramos (B cell) none
4.9



Ramos (B cell) ionomycin
6.3



B lymphocytes PWM
3.2



B lymphocytes CD40L and IL-4
24.0



EOL-1 dbcAMP
10.2



EOL-1 dbcAMP PMA/ionomycin
12.3



Dendritic cells none
65.5



Dendritic cells LPS
27.4



Dendritic cells anti-CD40
27.4



Monocytes rest
31.0



Monocytes LPS
48.0



Macrophages rest
28.7



Macrophages LPS
58.6



HUVEC none
12.2



HUVEC starved
19.2



HUVEC IL-1beta
14.6



HUVEC IFN gamma
15.7



HUVEC TNF alpha + IFN gamma
5.1



HUVEC TNF alpha + IL4
3.1



HUVEC IL-11
3.0



Lung Microvascular EC none
24.7



Lung Microvascular EC TNFalpha + IL-1beta
8.1



Microvascular Dermal EC none
4.4



Microsvasular Dermal EC TNFalpha + IL-1beta
2.8



Bronchial epithelium TNFalpha + IL1beta
14.1



Small airway epithelium none
13.6



Small airway epithelium TNFalpha + IL-1beta
25.3



Coronery artery SMC rest
25.9



Coronery artery SMC TNFalpha + IL-1beta
15.4



Astrocytes rest
2.8



Astrocytes TNFalpha + IL-1beta
2.6



KU-812 (Basophil) rest
26.1



KU-812 (Basophil) PMA/ionomycin
16.3



CCD1106 (Keratinocytes) none
25.5



CCD1106 (Keratinocytes) TNFalpha + IL-1beta
8.3



Liver cirrhosis
4.3



NCI-H292 none
100.0



NCI-H292 IL-4
84.1



NCI-H292 IL-9
97.9



NCI-H292 IL-13
82.4



NCI-H292 IFN gamma
25.9



HPAEC none
8.7



HPAEC TNF alpha + IL-1 beta
18.8



Lung fibroblast none
25.5



Lung fibroblast TNF alpha + IL-1 beta
32.3



Lung fibroblast IL-4
13.3



Lung fibroblast IL-9
28.5



Lung fibroblast IL-13
6.7



Lung fibroblast IFN gamma
34.9



Dermal fibroblast CCD1070 rest
13.9



Dermal fibroblast CCD1070 TNF alpha
33.2



Dermal fibroblast CCD1070 IL-1 beta
9.6



Dermal fibroblast IFN gamma
44.8



Dermal fibroblast IL-4
32.3



Dermal Fibroblasts rest
32.5



Neutrophils TNFa + LPS
3.4



Neutrophils rest
14.6



Colon
4.3



Lung
4.9



Thymus
1.2



Kidney
29.1











[0868]

290





TABLE UE










Panel 5D











Rel.




Exp. (%)




Ag450,




Run



Tissue Name
168095531














97457_Patient-02go_adipose
42.3



97476_Patient-07sk_skeletal muscle
45.4



97477_Patient-07ut_uterus
51.1



97478_Patient-07pl_placenta
11.1



97481_Patient-08sk_skeletal muscle
33.9



97482_Patient-08ut_uterus
24.7



97483_Patient-08pl_placenta
5.4



97486_Patient-09sk_skeletal muscle
11.7



97487_Patient-09ut_uterus
15.8



97488_Patient-09pl_placenta
5.3



97492_Patient-10ut_uterus
28.9



97493_Patient-10pl_placenta
15.6



97495_Patient-11go_adipose
17.2



97496_Patient-11sk_skeletal muscle
13.3



97497_Patient-11ut_uterus
51.8



97498_Patient-11pl_placenta
6.3



97500_Patient-12go_adipose
57.4



97501_Patient-12sk_skeletal muscle
37.1



97502_Patient-12ut_uterus
54.3



97503_Patient-12pl_placenta
11.2



94721_Donor 2 U - A_Mesenchymal Stem Cells
84.7



94722_Donor 2 U - B_Mesenchymal Stem Cells
55.5



94723_Donor 2 U- C_Mesenchymal Stem Cells
52.5



94709_Donor 2 AM - A_adipose
77.9



94710_Donor 2 AM - B_adipose
44.4



94711_Donor 2 AM - C_adipose
37.4



94712_Donor 2 AD - A_adipose
74.7



94713_Donor 2 AD - B_adipose
83.5



94714_Donor 2 AD - C_adipose
85.3



94742_Donor 3 U - A_Mesenchymal Stem Cells
40.1



94743_Donor 3 U - B_Mesenchymal Stem Cells
84.7



94730_Donor 3 AM - A_adipose
85.3



94731_Donor 3 AM - B_adipose
56.3



94732_Donor 3 AM - C_adipose
54.7



94733_Donor 3 AD - A_adipose
81.8



94734_Donor 3 AD - B_adipose
52.9



94735_Donor 3 AD - C_adipose
51.8



77138_Liver HepG2untreated
9.9



73556_Heart_Cardiac stromal cells (primary)
15.5



81735_Small Intestine
91.4



72409_Kidney_Proximal Convoluted Tubule
4.1



82685_Small intestine_Duodenum
39.8



90650_Adrenal_Adrenocortical adenoma
100.0



72410_Kidney_HRCE
24.1



72411_Kidney_HRE
17.3



73139_Uterus_Uterine smooth muscle cells
37.4











[0869]

291





TABLE UF










general_oncology_screening_panel_v2.4











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag3450,

Ag3450,



Run

Run


Tissue Name
267145071
Tissue Name
267145071













Colon cancer 1
16.8
Bladder cancer NAT 2
2.3


Colon cancer
12.1
Bladder cancer NAT 3
0.5


NAT 1


Colon cancer 2
15.3
Bladder cancer NAT 4
4.7


Colon cancer
8.5
Prostate adenocarcinoma
34.6


NAT 2

1


Colon cancer 3
26.2
Prostate adenocarcinoma
3.9




2


Colon cancer
22.5
Prostate adenocarcinoma
27.2


NAT 3

3


Colon
31.2
Prostate adenocarcinoma
12.1


malignant

4


cancer 4


Colon normal
5.6
Prostate cancer NAT 5
17.9


adjacent


tissue 4


Lung cancer 1
20.7
Prostate adenocarcinoma
9.3




6


Lung NAT 1
4.0
Prostate adenocarcinoma
12.9




7


Lung cancer 2
59.0
Prostate adenocarcinoma
3.3




8


Lung NAT 2
5.6
Prostate adenocarcinoma
29.7




9


Squamous cell
72.2
Prostate cancer NAT 10
2.8


carcinoma 3


Lung NAT 3
6.3
Kidney cancer 1
27.4


metastatic
24.3
KidneyNAT 1
15.9


melanoma 1


Melanoma 2
12.2
Kidney cancer 2
100.0


Melanoma 3
16.3
Kidney NAT 2
50.0


metastatic
42.0
Kidney cancer 3
13.2


melanoma 4


metastatic
69.7
Kidney NAT 3
10.8


melanoma 5


Bladder cancer
10.7
Kidney cancer 4
12.4


1


Bladder cancer
0.0
Kidney NAT 4
25.0


NAT 1


Bladder cancer
11.4


2










[0870] CNS_neurodegeneration_v1.0 Summary: Ag3450 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain. Please see Panel 1.3D for discussion of this gene in the central nervous system.


[0871] Panel 1.3D Summary: Ag3450 Highest expression of this gene is seen in mammary gland (CT=28). This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0872] Among tissues with metabolic function, this gene is expressed at moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0873] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0874] Panel 4.1D Summary: Ag3450 Highest expression of this gene is seen in untreated NCI-H292 cells (CT=29.3). The gene is also expressed in a cluster of cytokine activated samples derived from the NCI-H292 cell line, a human airway epithelial cell line that produces mucins. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease samples. The transcript is also expressed at lower but still significant levels in small airway epithelium, bronchial epithelium, and lung microvascular endothelial cells. The expression of the transcript in this mucoepidermoid cell line that is often used as a model for airway epithelium (NCI-H292 cells) suggests that this transcript may be important in the proliferation or activation of airway epithelium. Therefore, therapeutics designed with the protein encoded by the transcript may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.


[0875] Panel 5D Summary: Ag3450 Panel 5I shows that the target is widely expressed in metabolic tissues, specifically in adipose, which is in line with the data from panel 1.3.


[0876] general oncology screening panel_v2.4 Summary: Ag3450 Highest expression is seen in a kidney cancer (CT=28). In addition, this gene is more highly expressed in lung cancer than in the corresponding normal adjacent tissue, with prominent expression also detected in melanoma and prostate cancers. Thus, expression of this gene could be used as a marker of these cancers. Furthemore, therapeutic modulation of the expression or function of this gene product may be useful in the treatment of lung cancer.


[0877] W. CG56149-03: Nardilysin 1-Like Protein.


[0878] Expression of gene CG56149-03 was assessed using the primer-probe sets Ag1672 and Ag1673, described in Tables WA and WB. Results of the RTQ-PCR runs are shown in Table WC.
292TABLE WAProbe Name Ag1672SEQ IDPrimersLengthStart PositionNoForward5′-gaccaaactttggccatttaa-3′211364446ProbeTET-5′-cggatccatttgacacaccagcattt-3′-TAMRA261385447Reverse5′-gtgatggtcagagcatgaattt-3′221442448


[0879]

293






TABLE WB










Probe Name Ag1673

















SEQ ID



Primers

Length
Start Position
No















Forward
5′-gaccaaactttggccatttaa-3′
21
1364
449






Probe
TET-5′-cggatccatttgacacaccagcattt-3′-TAMRA
26
1385
450





Reverse
5′-gtgatggtcagagcatgaattt-3′
22
1442
451










[0880]

294





TABLE WC










Panel 1.3D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag1672,
Ag1673,



Run
Run


Tissue Name
147227540
146581465












Liver adenocarcinoma
41.8
36.6


Pancreas
5.3
7.4


Pancreatic ca. CAPAN 2
9.5
9.1


Adrenal gland
13.3
16.6


Thyroid
16.8
18.6


Salivary gland
12.3
10.7


Pituitary gland
24.5
31.6


Brain (fetal)
8.2
9.7


Brain (whole)
25.7
26.8


Brain (amygdala)
20.0
21.5


Brain (cerebellum)
8.7
9.2


Brain (hippocampus)
41.2
37.4


Brain (substantia nigra)
7.2
9.0


Brain (thalamus)
9.3
20.7


Cerebral Cortex
33.7
39.2


Spinal cord
15.5
19.2


glio/astro U87-MG
44.8
52.1


glio/astro U-118-MG
100.0
89.5


astrocytoma SW1783
29.5
45.1


neuro*; met SK-N-AS
64.6
67.4


astrocytoma SF-539
33.2
34.4


astrocytoma SNB-75
84.7
80.7


glioma SNB-19
30.1
43.2


glioma U251
32.8
41.5


glioma SF-295
35.8
43.5


Heart (fetal)
17.0
18.3


Heart
10.7
11.6


Skeletal muscle (fetal)
49.0
44.4


Skeletal muscle
55.1
57.8


Bone marrow
18.3
23.5


Thymus
21.3
21.0


Spleen
14.8
20.0


Lymph node
18.7
21.2


Colorectal
7.0
10.4


Stomach
25.9
28.9


Small intestine
13.5
15.7


Colon ca. SW480
52.5
50.0


Colon ca.* SW620(SW480 met)
19.3
21.8


Colon ca. HT29
21.9
33.2


Colon ca. HCT-116
35.4
29.9


Colon ca. CaCo-2
32.3
35.4


Colon ca. tissue(ODO3866)
25.7
29.3


Colon ca. HCC-2998
44.1
44.8


Gastric ca.* (liver met) NCI-N87
95.3
100.0


Bladder
9.9
11.8


Trachea
23.5
30.8


Kidney
5.6
3.8


Kidney (fetal)
12.2
14.9


Renal ca. 786-0
18.2
18.3


Renal ca. A498
47.6
55.1


Renal ca. RXF 393
6.8
9.9


Renal ca. ACHN
37.1
41.2


Renal ca. UO-31
37.1
39.0


Renal ca. TK-10
27.7
43.8


Liver
0.0
5.6


Liver (fetal)
24.7
31.2


Liver ca. (hepatoblast) HepG2
27.9
31.6


Lung
12.2
14.6


Lung (fetal)
32.3
32.3


Lung ca. (small cell) LX-1
21.5
34.6


Lung ca. (small cell) NCI-H69
29.5
35.6


Lung ca. (s. cell var.) SHP-77
61.6
61.6


Lung ca. (large cell) NCI-H460
29.9
33.9


Lung ca. (non-sm. cell) A549
16.8
15.2


Lung ca. (non-s. cell) NCI-H23
79.0
92.7


Lung ca. (non-s. cell) HOP-62
36.6
41.2


Lung ca. (non-s. cl) NCI-H522
30.8
37.9


Lung ca. (squam.) SW900
15.7
19.5


Lung ca. (squam.) NCI-H596
15.0
15.8


Mammary gland
27.5
40.6


Breast ca.* (pl. ef) MCF-7
46.7
42.9


Breast ca.* (pl. ef) MDA-MB-231
84.7
86.5


Breast ca.* (pl. ef) T47D
36.3
34.4


Breast ca. BT-549
94.0
80.1


Breast ca. MDA-N
27.7
29.5


Ovary
9.6
11.2


Ovarian ca. OVCAR-3
21.6
23.0


Ovarian ca. OVCAR-4
9.3
9.2


Ovarian ca. OVCAR-5
37.1
34.6


Ovarian ca. OVCAR-8
45.4
44.8


Ovarian ca. IGROV-1
13.2
16.4


Ovarian ca.* (ascites) SK-OV-3
66.4
63.7


Uterus
17.3
18.6


Placenta
37.9
37.1


Prostate
9.3
11.5


Prostate ca.* (bone met)PC-3
23.8
35.8


Testis
87.1
84.1


Melanoma Hs688(A).T
55.5
57.8


Melanoma* (met) Hs688(B).T
74.7
88.9


Melanoma UACC-62
3.0
3.8


Melanoma M14
7.4
11.9


Melanoma LOX IMVI
3.3
4.4


Melanoma* (met) SK-MEL-5
13.4
18.8


Adipose
12.4
13.8










[0881] Panel 1.3D Summary: Ag1672/Ag1673 Two experiments with the same probe and primer set produce results that are in excellent agreement with highest expression of the CG56149-01 gene in a gastric cancer cell line (NCI-N87) or a brain cancer cell line (U-118-MG)(CTs=26-27). Thus, the expression of this gene could be used to distinguish these samples from other samples in the panel.


[0882] This gene encodes a protein that is homologous to nardilysin, an N-arginine (R) dibasic (NRD) convertase metalloendopeptidase of the M16 family, that specifically cleaves peptide substrates at the N-terminus of arginines in dibasic motifs in vitro. The peptidase M16 family is also known as the insulinase family and nardilysin is the closest homolog of the insulin degrading enzyme, insulinase. The ability of nardilysin to degrade insulin has not been proven. However, the high levels of expression in metabolic tissues in this panel, including adipose, fetal and adult skeletal muscle, pancreas, adrenal, thyroid and pituitary glands suggest that this gene product may have a profound effect on limiting the degradation of insulin in tissues relevant to type II diabetes (e.g. adipose, skeletal muscle).


[0883] There is also a significant level of difference between expression in adult(CTs=31-40) and fetal liver tissue(CTs=28), making this gene and/or gene-product a good candidate for distinguishing both forms. A putative role for this gene-product is in the post-translational processing of bioactive peptides from their inactive precursors.


[0884] This gene is also highly expressed in the testis. Nardilysis has been implicated in spermiogenesis. Thus, expression of this gene could be used as a marker for testis tissue. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of male reproductive disorders.


[0885] Hospital V, Chesneau V, Balogh A, Joulie C, Seidah N G, Cohen P, Prat A. N-arginine dibasic convertase (nardilysin) isoforms are soluble dibasic-specific metalloendopeptidases that localize in the cytoplasm and at the cell surface. Biochem J Jul. 15, 2000;349(Pt 2):587-97, PMID: 10880358; Hospital V, Prat A, Joulie C, Cherif D, Day R, Cohen P. Human and rat testis express two mRNA species encoding variants of NRD convertase, a metalloendopeptidase of the insulinase family. Biochem J Nov. 1, 1997;327 (Pt 3):773-9. PMID: 9581555; Chesneau V, Prat A, Segretain D, Hospital V, Dupaix A, Foulon T, Jegou B, Cohen P. NRD convertase: a putative processing endoprotease associated with the axoneme and the manchette in late spermatids. J Cell Sci November 1996;109 (Pt 11):273745, PMID: 8937991.


[0886] X. CG56216-01 and CG56216-02: SERCA3-Like Protein.


[0887] Expression of gene CG56216-01 and CG56216-02 was assessed using the primer-probe sets Ag1800 and Ag3265, described in Tables XA and XB. Results of the RTQ-PCR runs are shown in Tables XC, XD, XE, XF, XG, XH, XI, XJ, XK, XL and XM.
295TABLE XAProbe Name Ag1800SEQ IDPrimersLengthStart PositionNoForward5′-atcaagactcacatccctttcc-3′224259452ProbeTET-5′-cacatccaaagcccctcagcctg-3′-TAMRA234289453Reverse5′-ctacagaacatggagcccatt-3′214323454


[0888]

296






TABLE XB










Probe Name Ag3265

















SEQ ID



Primers

Length
Start Position
No















Forward
5′-cccaaatcacgagtgcagct-3′
20
3344
455






Probe
TET-5′-agcttgctcccccttgttcggaag-3′-TAMRA
24
3366
456





Reverse
5′-agaggcaccagtcagtcaccaagtg-3′
21
3399
457










[0889]

297





TABLE XC










CNS neurodegeneration v1.0












Rel.
Rel.




Exp. (%)
Exp. (%)




Ag1800,
Ag3265,




Run
Run



Tissue Name
207742286
210038341















AD 1 Hippo
20.0
8.1



AD 2 Hippo
17.2
11.0



AD 3 Hippo
0.0
0.0



AD 4 Hippo
39.0
15.8



AD 5 Hippo
55.9
11.4



AD 6 Hippo
94.0
12.4



Control 2 Hippo
37.4
10.3



Control 4 Hippo
40.9
35.4



Control (Path) 3 Hippo
65.1
18.8



AD 1 Temporal Ctx
10.4
0.0



AD 2 Temporal Ctx
22.7
63.3



AD 3 Temporal Ctx
10.8
0.0



AD 4 Temporal Ctx
14.4
24.0



AD 5 Inf Temporal Ctx
69.7
10.0



AD 5 Sup Temporal Ctx
85.3
24.0



AD 6 Inf Temporal Ctx
67.4
50.7



AD 6 Sup Temporal Ctx
30.8
11.4



Control 1 Temporal Ctx
41.8
31.9



Control 2 Temporal Ctx
23.5
25.7



Control 3 Temporal Ctx
20.9
0.0



Control 3 Temporal Ctx
17.7
0.0



Control (Path) 1 Temporal Ctx
29.1
100.0



Control (Path) 2 Temporal Ctx
21.8
19.1



Control (Path) 3 Temporal Ctx
19.2
0.0



Control (Path) 4 Temporal Ctx
23.8
16.4



AD 1 Occipital Ctx
15.5
9.9



AD 2 Occipital Ctx (Missing)
0.0
0.0



AD 3 Occipital Ctx
13.4
0.0



AD 4 Occipital Ctx
24.3
0.0



AD 5 Occipital Ctx
62.9
8.8



AD 6 Occipital Ctx
50.0
26.4



Control 1 Occipital Ctx
62.4
31.6



Control 2 Occipital Ctx
7.7
31.4



Control 3 Occipital Ctx
33.9
0.0



Control 4 Occipital Ctx
27.7
8.7



Control (Path) 1 Occipital Ctx
100.0
18.0



Control (Path) 2 Occipital Ctx
29.5
24.8



Control (Path) 3 Occipital Ctx
14.6
0.0



Control (Path) 4 Occipital Ctx
42.9
87.1



Control 1 Parietal Ctx
42.0
4.1



Control 2 Parietal Ctx
42.9
21.2



Control 3 Parietal Ctx
8.2
0.0



Control (Path) 1 Parietal Ctx
67.8
22.5



Control (Path) 2 Parietal Ctx
43.8
11.2



Control (Path) 3 Parietal Ctx
11.9
4.6



Control (Path) 4 Parietal Ctx
58.2
31.6











[0890]

298





TABLE XD










General_screening_panel_v1.4











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag1800,

Ag1800,



Run

Run


Tissue Name
212650191
Tissue Name
212650191













Adipose
1.9
Renal ca. TK-10
1.4


Melanoma* Hs688(A).T
0.2
Bladder
11.5


Melanoma* Hs688(B).T
0.0
Gastric ca. (liver met.) NCI-N87
2.5


Melanoma* M14
0.8
Gastric ca. KATO III
0.0


Melanoma* LOXIMVI
0.0
Colon ca. SW-948
0.6


Melanoma* SK-MEL-5
1.4
Colon ca. SW480
2.1


Squamous cell carcinoma SCC-4
0.0
Colon ca.* (SW480 met) SW620
0.1


Testis Pool
0.8
Colon ca. HT29
2.8


Prostate ca.* (bone met) PC-3
0.1
Colon ca. HCT-116
5.2


Prostate Pool
5.0
Colon ca. CaCo-2
2.9


Placenta
0.4
Colon cancer tissue
4.2


Uterus Pool
2.3
Colon ca. SW1116
0.5


Ovarian ca. OVCAR-3
1.3
Colon ca. Colo-205
11.9


Ovarian ca. SK-OV-3
1.0
Colon ca. SW-48
5.0


Ovarian ca. OVCAR-4
0.2
Colon Pool
6.9


Ovarian ca. OVCAR-5
10.1
Small Intestine Pool
5.7


Ovarian ca. IGROV-1
0.9
Stomach Pool
3.5


Ovarian ca. OVCAR-8
14.9
Bone Marrow Pool
4.0


Ovary
1.4
Fetal Heart
2.2


Breast ca. MCF-7
64.2
Heart Pool
2.6


Breast ca. MDA-MB-231
0.2
Lymph Node Pool
6.3


Breast ca. BT 549
0.0
Fetal Skeletal Muscle
0.2


Breast ca. T47D
31.0
Skeletal Muscle Pool
1.1


Breast ca. MDA-N
0.1
Spleen Pool
17.3


Breast Pool
5.6
Thymus Pool
34.6


Trachea
44.8
CNS cancer (glio/astro) U87-MG
1.3


Lung
4.0
CNS cancer (glio/astro) U-118-MG
0.0


Fetal Lung
3.1
CNS cancer (neuro; met) SK-N-AS
0.4


Lung ca. NCI-N417
0.7
CNS cancer (astro) SF-539
0.1


Lung ca. LX-1
1.8
CNS cancer (astro) SNB-75
0.2


Lung ca. NCI-H146
100.0
CNS cancer (glio) SNB-19
1.6


Lung ca. SHP-77
23.7
CNS cancer (glio) SF-295
0.1


Lung ca. A549
1.9
Brain (Amygdala) Pool
0.6


Lung ca. NCI-H526
33.4
Brain (cerebellum)
33.2


Lung ca. NCI-H23
4.4
Brain (fetal)
1.3


Lung ca. NCI-H460
2.6
Brain (Hippocampus) Pool
1.1


Lung ca. HOP-62
4.0
Cerebral Cortex Pool
0.8


Lung ca. NCI-H522
0.2
Brain (Substantia nigra) Pool
1.3


Liver
0.1
Brain (Thalamus) Pool
4.9


Fetal Liver
2.8
Brain (whole)
0.9


Liver ca. HepG2
0.0
Spinal Cord Pool
0.9


Kidney Pool
8.3
Adrenal Gland
2.2


Fetal Kidney
0.3
Pituitary gland Pool
0.4


Renal ca. 786-0
0.0
Salivary Gland
29.5


Renal ca. A498
0.4
Thyroid (female)
0.8


Renal ca. ACHN
0.5
Pancreatic ca. CAPAN2
0.1


Renal ca. UO-31
0.1
Pancreas Pool
4.4










[0891]

299





TABLE XE










Oncology_cell_line_screening_panel_v3.1











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag1800,

Ag1800,



Run

Run


Tissue Name
223128987
Tissue Name
223128987













Daoy Medulloblastoma/Cerebellum
0.3
Ca Ski_Cervical epidermoid
0.0




carcinoma (metastasis)


TE671 Medulloblastom/Cerebellum
0.8
ES-2_Ovarian clear cell carcinoma
0.0


D283 Med
1.6
Ramos/6 h stim_Stimulated with
9.4


Medulloblastoma/Cerebellum

PMA/ionomycin 6 h


PFSK-1 Primitive
0.2
Ramos/14 h stim_Stimulated with
11.1


Neuroectodermal/Cerebellum

PMA/ionomycin 14 h


XF-498_CNS
1.3
MEG-01_Chronic myelogenous
16.8




leukemia (megokaryoblast)


SNB-78_CNS/glioma
0.7
Raji_Burkitt's lymphoma
13.5


SF-268_CNS/glioblastoma
0.0
Daudi_Burkitt's lymphoma
38.2


T98G_Glioblastoma
0.0
U266_B-cell
4.3




plasmacytoma/myeloma


SK-N-SH_Neuroblastoma
0.3
CA46_Burkitt's lymphoma
16.7


(metastasis)


SF-295_CNS/glioblastoma
0.0
RL_non-Hodgkin's B-cell lymphoma
9.2


Cerebellum
4.6
JM1_pre-B-cell lymphoma/leukemia
23.2


Cerebellum
8.8
Jurkat_T cell leukemia
27.2


NCI-H292_Mucoepidermoid lung
0.3
TF-1_Erythroleukemia
24.8


ca.


DMS-114_Small cell lung cancer
1.1
HUT 78_T-cell lymphoma
32.5


DMS-79_Small cell lung
15.7
U937_Histiocytic lymphoma
26.2


cancer/neuroendocrine


NCI-H146_Small cell lung
71.2
KU-812_Myelogenous leukemia
4.7


cancer/neuroendocrine


NCI-H526_Small cell lung
39.0
769-P_Clear cell renal ca.
0.0


cancer/neuroendocrine


NCI-N417_Small cell lung
0.8
Caki-2_Clear cell renal ca.
1.1


cancer/neuroendocrine


NCI-H82_Small cell lung
0.2
SW 839_Clear cell renal ca.
0.4


cancer/neuroendocrine


NCI-H157_Squamous cell lung
1.0
G401_Wilms' tumor
0.4


cancer (metastasis)


NCI-H1155_Large cell lung
0.2
Hs766T_Pancreatic ca. (LN
0.3


cancer/neuroendocrine

metastasis)


NCI-H1299_Large cell lung
0.1
CAPAN-1_Pancreatic
0.7


cancer/neuroendocrine

adenocarcinoma (liver metastasis)


NCI-H727_Lung carcinoid
50.0
SU86.86_Pancreatic carcinoma
2.8




(liver metastasis)


NCI-UMC-11_Lung carcinoid
100.0
BxPC-3_Pancreatic adenocarcinoma
0.0


LX-1_Small cell lung cancer
1.2
HPAC_Pancreatic adenocarcinoma
0.3


Colo-205_Colon cancer
9.0
MIA PaCa-2_Pancreatic ca.
0.5


KM12_Colon cancer
0.1
CFPAC-1_Pancreatic ductal
2.8




adenocarcinoma


KM20L2_Colon cancer
2.2
PANC-1_Pancreatic epithelioid
1.2




ductal ca.


NCI-H716_Colon cancer
5.7
T24_Bladder ca. (transitional cell)
0.0


SW-48_Colon adenocarcinoma
5.8
5637_Bladder ca.
0.0


SW1116_Colon adenocarcinoma
0.1
HT-1197_Bladder ca.
0.0


LS 174T_Colon adenocarcinoma
1.4
UM-UC-3_Bladder ca. (transitional
0.1




cell)


SW-948_Colon adenocarcinoma
0.4
A204_Rhabdomyosarcoma
0.2


SW-480_Colon adenocarcinoma
2.2
HT-1080_Fibrosarcoma
0.1


NCI-SNU-5_Gastric ca.
0.8
MG-63_Osteosarcoma (bone)
0.4


KATO III_Stomach
0.2
SK-LMS-1_Leiomyosarcoma
0.0




(vulva)


NCI-SNU-16_Gastric ca.
0.0
SJRH30_Rhabdomyosarcoma (met
0.3




to bone marrow)


NCI-SNU-1_Gastric ca.
7.1
A431_Epidermoid ca.
6.6


RF-1_Gastric adenocarcinoma
6.0
WM266-4_Melanoma
0.1


RF-48_Gastric adenocarcinoma
5.3
DU 145_Prostate
0.4


MKN-45_Gastric ca.
2.3
MDA-MB-468_Breast
0.3




adenocarcinoma


NCI-N87_Gastric ca.
0.7
SSC-4_Tongue
0.1


OVCAR-5_Ovarian ca.
0.7
SSC-9_Tongue
0.0


RL95-2_Uterine carcinoma
0.0
SSC-15_Tongue
0.0


HelaS3_Cervical adenocarcinoma
0.3
CAL 27_Squamous cell ca. of
0.0




tongue










[0892]

300





TABLE XF










Panel 1.3D










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag1800,
Ag3265,



Run
Run


Tissue Name
156420145
165296299












Liver adenocarcinoma
0.1
0.2


Pancreas
10.4
17.4


Pancreatic ca. CAPAN 2
0.0
0.8


Adrenal gland
4.4
6.9


Thyroid
5.0
4.8


Salivary gland
24.8
57.8


Pituitary gland
0.6
1.6


Brain (fetal)
0.5
2.3


Brain (whole)
0.7
5.6


Brain (amygdala)
0.9
2.3


Brain (cerebellum)
3.4
97.3


Brain (hippocampus)
4.3
5.4


Brain (substantia nigra)
7.3
5.9


Brain (thalamus)
5.6
19.6


Cerebral Cortex
0.5
0.2


Spinal cord
0.1
1.4


glio/astro U87-MG
0.4
0.2


glio/astro U-118-MG
0.0
0.0


astrocytoma SW1783
0.0
0.0


neuro*; met SK-N-AS
0.1
0.0


astrocytoma SF-539
0.1
0.0


astrocytoma SNB-75
0.4
1.5


glioma SNB-19
0.2
0.2


glioma U251
0.1
0.2


glioma SF-295
0.2
0.0


Heart (fetal)
5.3
2.9


Heart
0.2
2.3


Skeletal muscle (fetal)
3.2
0.4


Skeletal muscle
0.1
1.2


Bone marrow
19.9
52.1


Thymus
100.0
100.0


Spleen
51.4
46.7


Lymph node
17.4
86.5


Colorectal
26.2
11.5


Stomach
21.6
27.2


Small intestine
16.7
54.7


Colon ca. SW480
1.5
0.4


Colon ca.* SW620(SW480 met)
0.0
0.0


Colon ca. HT29
0.5
0.0


Colon ca. HCT-116
0.3
1.4


Colon ca. CaCo-2
0.4
1.9


Colon ca. tissue(ODO3866)
1.5
1.1


Colon ca. HCC-2998
2.5
2.6


Gastric ca.* (liver met) NCI-N87
1.6
3.1


Bladder
0.7
1.5


Trachea
98.6
85.3


Kidney
1.0
3.3


Kidney (fetal)
2.2
1.2


Renal ca. 786-0
0.0
0.0


Renal ca. A498
2.1
1.7


Renal ca. RXF 393
0.1
0.0


Renal ca. ACHN
0.2
0.7


Renal ca. UO-31
0.0
0.0


Renal ca. TK-10
0.1
0.2


Liver
0.7
1.8


Liver (fetal)
3.3
12.5


Liver ca. (hepatoblast) HepG2
0.0
0.0


Lung
7.7
13.5


Lung (fetal)
1.6
3.1


Lung ca. (small cell) LX-1
0.3
0.7


Lung ca. (small cell) NCI-H69
9.5
9.7


Lung ca. (s. cell var.) SHP-77
5.0
9.7


Lung ca. (large cell) NCI-H460
0.8
5.1


Lung ca. (non-sm. cell) A549
1.1
2.9


Lung ca. (non-s. cell) NCI-H23
0.7
1.9


Lung ca. (non-s. cell) HOP-62
0.5
4.8


Lung ca. (non-s. cl) NCI-H522
0.2
0.0


Lung ca. (squam.) SW 900
0.3
1.6


Lung ca. (squam.) NCI-H596
2.0
9.9


Mammary gland
2.0
3.9


Breast ca.* (pl. ef) MCF-7
5.9
15.5


Breast ca.* (pl. ef) MDA-MB-231
0.2
0.0


Breast ca.* (pl. ef) T47D
0.5
0.5


Breast ca. BT-549
0.0
0.0


Breast ca. MDA-N
0.0
0.0


Ovary
2.4
1.3


Ovarian ca. OVCAR-3
0.1
1.1


Ovarian ca. OVCAR-4
0.0
0.0


Ovarian ca. OVCAR-5
1.6
1.0


Ovarian ca. OVCAR-8
2.1
2.0


Ovarian ca. IGROV-1
0.2
0.0


Ovarian ca.* (ascites) SK-OV-3
0.1
0.6


Uterus
2.4
7.6


Placenta
1.5
2.2


Prostate
6.5
24.8


Prostate ca.* (bone met)PC-3
0.0
0.2


Testis
1.7
3.5


Melanoma Hs688(A).T
0.0
0.0


Melanoma* (met) Hs688(B).T
0.0
0.3


Melanoma UACC-62
0.0
0.0


Melanoma M14
0.0
0.0


Melanoma LOX IMVI
0.0
0.0


Melanoma* (met) SK-MEL-5
0.1
1.3


Adipose
1.8
1.6










[0893]

301





TABLE XG










Panel 2.2











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag3265,

Ag3265,



Run

Run


Tissue Name
173762634
Tissue Name
173762634













Normal Colon
49.0
Kidney Margin (OD04348)
12.9


Colon cancer (OD06064)
18.2
Kidney malignant cancer
6.4




(OD06204B)


Colon Margin (OD06064)
55.5
Kidney normal adjacent tissue
1.8




(OD06204E)


Colon cancer (OD06159)
10.7
Kidney Cancer (OD04450-01)
1.3


Colon Margin (OD06159)
31.0
Kidney Margin (OD04450-03)
2.2


Colon cancer (OD06297-04)
7.9
Kidney Cancer 8120613
1.2


Colon Margin (OD06297-05)
42.9
Kidney Margin 8120614
4.9


CC Gr.2 ascend colon (ODO3921)
26.1
Kidney Cancer 9010320
14.2


CC Margin (ODO3921)
31.0
Kidney Margin 9010321
4.2


Colon cancer metastasis
10.0
Kidney Cancer 8120607
4.0


(OD06104)


Lung Margin (OD06104)
13.0
Kidney Margin 8120608
8.9


Colon mets to lung (OD04451-01)
35.1
Normal Uterus
6.3


Lung Margin (OD04451-02)
15.5
Uterine Cancer 064011
3.6


Normal Prostate
19.1
Normal Thyroid
0.0


Prostate Cancer (OD04410)
4.9
Thyroid Cancer 064010
2.2


Prostate Margin (OD04410)
2.8
Thyroid Cancer A302152
4.5


Normal Ovary
10.3
Thyroid Margin A302153
0.0


Ovarian cancer (OD06283-03)
3.9
Normal Breast
5.3


Ovarian Margin (OD06283-07)
11.3
Breast Cancer (OD04566)
1.8


Ovarian Cancer 064008
19.5
Breast Cancer 1024
17.0


Ovarian cancer (OD06145)
9.3
Breast Cancer (OD04590-01)
21.6


Ovarian Margin (OD06145)
9.4
Breast Cancer Mets
52.9




(OD04590-03)


Ovarian cancer (OD06455-03)
0.0
Breast Cancer Metastasis
84.7




(OD04655-05)


Ovarian Margin (OD06455-07)
2.6
Breast Cancer 064006
13.1


Normal Lung
18.2
Breast Cancer 9100266
26.6


Invasive poor diff. lung adeno
19.3
Breast Margin 9100265
5.4


(ODO4945-01


Lung Margin (ODO4945-03)
18.2
Breast Cancer A209073
4.8


Lung Malignant Cancer
66.0
Breast Margin A2090734
13.4


(OD03126)


Lung Margin (OD03126)
12.3
Breast cancer (OD06083)
32.8


Lung Cancer (OD05014A)
20.4
Breast cancer node metastasis
21.9




(OD06083)


Lung Margin (OD05014B)
8.4
Normal Liver
5.7


Lung cancer (OD06081)
3.2
Liver Cancer 1026
6.9


Lung Margin (OD06081)
9.0
Liver Cancer 1025
8.7


Lung Cancer (OD04237-01)
17.1
Liver Cancer 6004-T
10.3


Lung Margin (OD04237-02)
19.9
Liver Tissue 6004-N
8.1


Ocular Melanoma Metastasis
2.3
Liver Cancer 6005-T
8.2


Ocular Melanoma Margin (Liver)
0.9
Liver Tissue 6005-N
14.3


Melanoma Metastasis
1.2
Liver Cancer 064003
7.2


Melanoma Margin (Lung)
6.5
Normal Bladder
17.8


Normal Kidney
6.8
Bladder Cancer 1023
12.9


Kidney Ca, Nuclear grade 2
9.0
Bladder Cancer A302173
12.8


(OD04338)


Kidney Margin (OD04338)
2.8
Normal Stomach
100.0


Kidney Ca Nuclear grade 1/2
11.3
Gastric Cancer 9060397
36.9


(OD04339)


Kidney Margin (OD04339)
3.1
Stomach Margin 9060396
62.4


Kidney Ca, Clear cell type
4.5
Gastric Cancer 9060395
59.0


(OD04340)


Kidney Margin (OD04340)
9.1
Stomach Margin 9060394
99.3


Kidney Ca, Nuclear grade 3
2.8
Gastric Cancer 064005
43.2


(OD04348)










[0894]

302





TABLE XH










Panel 2D











Rel.

Rel.



Ep. (%)

Exp. (%)



Ag1800,

Ag1800,



Run

Run


Tissue Name
156420700
Tissue Name
156420700













Normal Colon
26.6
Kidney Margin 8120608
2.9


CC Well to Mod Diff (ODO3866)
2.8
Kidney Cancer 8120613
1.4


CC Margin (ODO3866)
20.7
Kidney Margin 8120614
3.6


CC Gr.2 rectosigmoid (ODO3868)
6.3
Kidney Cancer 9010320
7.6


CC Margin (ODO3868)
4.2
Kidney Margin 9010321
2.2


CC Mod Diff (ODO3920)
20.2
Normal Uterus
1.8


CC Margin (ODO3920)
20.4
Uterus Cancer 064011
2.4


CC Gr.2 ascend colon (ODO3921)
14.8
Normal Thyroid
2.5


CC Margin (ODO3921)
9.0
Thyroid Cancer 064010
2.7


CC from Partial Hepatectomy
10.6
Thyroid Cancer A302152
3.1


(ODO4309) Mets


Liver Margin (ODO4309)
1.7
Thyroid Margin A302153
4.1


Colon mets to lung (OD04451-01)
7.5
Normal Breast
11.6


Lung Margin (OD04451-02)
5.8
Breast Cancer (OD04566)
7.3


Normal Prostate 6546-1
1.5
Breast Cancer (OD04590-01)
9.7


Prostate Cancer (OD04410)
13.7
Breast Cancer Mets
85.9




(OD04590-03)


Prostate Margin (OD04410)
10.0
Breast Cancer Metastasis
32.5




(OD04655-05)


Prostate Cancer (OD04720-01)
5.7
Breast Cancer 064006
11.3


Prostate Margin (OD04720-02)
5.2
Breast Cancer 1024
12.1


Normal Lung 061010
21.3
Breast Cancer 9100266
25.9


Lung Met to Muscle (ODO4286)
1.9
Breast Margin 9100265
4.3


Muscle Margin (ODO4286)
0.5
Breast Cancer A209073
7.5


Lung Malignant Cancer (OD03126)
100.0
Breast Margin A209073
4.3


Lung Margin (OD03126)
16.5
Normal Liver
1.4


Lung Cancer (OD04404)
6.4
Liver Cancer 064003
0.6


Lung Margin (OD04404)
7.1
Liver Cancer 1025
1.7


Lung Cancer (OD04565)
1.8
Liver Cancer 1026
2.0


Lung Margin (OD04565)
7.4
Liver Cancer 6004-T
1.8


Lung Cancer (OD04237-01)
17.2
Liver Tissue 6004-N
2.0


Lung Margin (OD04237-02)
9.0
Liver Cancer 6005-T
1.9


Ocular Mel Met to Liver
0.3
Liver Tissue 6005-N
0.7


(ODO4310)


Liver Margin (ODO4310)
0.6
Normal Bladder
11.6


Melanoma Mets to Lung (OD04321)
0.5
Bladder Cancer 1023
2.0


Lung Margin (OD04321)
12.1
Bladder Cancer A302173
2.2


Normal Kidney
2.0
Bladder Cancer (OD04718-01)
2.5


Kidney Ca, Nuclear grade 2
6.3
Bladder Normal Adjacent
6.6


(OD04338)

(OD04718-03)


Kidney Margin (OD04338)
6.4
Normal Ovary
1.9


Kidney Ca Nuclear grade 1/2
3.7
Ovarian Cancer 064008
9.3


(OD04339)


Kidney Margin (OD04339)
2.5
Ovarian Cancer (OD04768-07)
0.8


Kidney Ca, Clear cell type
8.0
Ovary Margin (OD04768-08)
2.9


(OD04340)


Kidney Margin (OD04340)
3.0
Normal Stomach
17.0


Kidney Ca, Nuclear grade 3
1.5
Gastric Cancer 9060358
2.8


(OD04348)


Kidney Margin (OD04348)
1.9
Stomach Margin 9060359
19.2


Kidney Cancer (OD04622-01)
6.5
Gastric Cancer 9060395
8.4


Kidney Margin (OD04622-03)
2.8
Stomach Margin 9060394
28.7


Kidney Cancer (OD04450-01)
0.2
Gastric Cancer 9060397
56.6


Kidney Margin (OD04450-03)
3.1
Stomach Margin 9060396
44.8


Kidney Cancer 8120607
0.7
Gastric Cancer 064005
16.0










[0895]

303





TABLE XI










Panel 3D











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag3265,

Ag3265,



Run

Run


Tissue Name
165468234
Tissue Name
165468234













Daoy-Medulloblastoma
0.5
Ca Ski-Cervical epidermoid
0.5




carcinoma (metastasis)


TE671-Medulloblastoma
0.3
ES-2-Ovarian clear cell carcinoma
0.0


D283 Med-Medulloblastoma
0.3
Ramos-Stimulated with
7.0




PMA/ionomycin 6 h


PFSK-1-Primitive
0.0
Ramos-Stimulated with
15.9


Neuroectodermal

PMA/ionomycin 14 h


XF-498-CNS
0.9
MEG-01-Chronic myelogenous
30.4




leukemia (megokaryoblast)


SNB-78-Glioma
0.2
Raji-Burkitt's lymphoma
11.8


SF-268-Glioblastoma
0.0
Daudi-Burkitt's lymphoma
45.4


T98G-Glioblastoma
0.0
U266-B-cell plasmacytoma
10.5


SK-N-SH-Neuroblastoma
0.9
CA46-Burkitt's lymphoma
9.7


(metastasis)


SF-295-Glioblastoma
0.0
RL-non-Hodgkin's B-cell
2.4




lymphoma


Cerebellum
7.2
JM1-pre-B-cell lymphoma
17.3


Cerebellum
16.0
Jurkat-T cell leukemia
47.0


NCI-H292-Mucoepidermoid
0.5
TF-1-Erythroleukemia
18.8


lung carcinoma


DMS-114-Small cell lung
1.8
HUT 78-T-cell lymphoma
12.8


cancer


DMS-79-Small cell lung cancer
97.3
U937-Histiocytic lymphoma
17.2


NCI-H146-Small cell lung
97.9
KU-812-Myelogenous leukemia
7.8


cancer


NCI-H526-Small cell lung
50.3
769-P-Clear cell renal carcinoma
0.0


cancer


NCI-N417-Small cell lung
0.5
Caki-2-Clear cell renal carcinoma
1.2


cancer


NCI-H82-Small cell lung cancer
0.4
SW 839-Clear cell renal carcinoma
0.0


NCI-H157-Squamous cell lung
0.0
Rhabdoid kidney tumor
0.1


cancer (metastasis)


NCI-H1155-Large cell lung
0.4
Hs766T-Pancreatic carcinoma (LN
0.7


cancer

metastasis)


NCI-H1299-Large cell lung
0.2
CAPAN-1-Pancreatic
0.6


cancer

adenocarcinoma (liver metastasis)


NCI-H727-Lung carcinoid
100.0
SU86.86-Pancreatic carcinoma
0.9




(liver metastasis)


NCI-UMC-11-Lung carcinoid
78.5
BxPC-3-Pancreatic
0.0




adenocarcinoma


LX-1-Small cell lung cancer
2.7
HPAC-Pancreatic adenocarcinoma
0.2


Colo-205-Colon cancer
12.6
MIA PaCa-2-Pancreatic carcinoma
0.4


KM12-Colon cancer
0.1
CFPAC-1-Pancreatic ductal
0.6




adenocarcinoma


KM20L2-Colon cancer
2.6
PANC-1-Pancreatic epithelioid
2.6




ductal carcinoma


NCI-H716-Colon cancer
1.5
T24-Bladder carcinma (transitional
0.1




cell)


SW-48-Colon adenocarcinoma
7.3
5637-Bladder carcinoma
0.1


SW1116-Colon adenocarcinoma
1.1
HT-1197-Bladder carcinoma
0.0


LS 174T-Colon adenocarcinoma
1.8
UM-UC-3-Bladder carcinma
0.0




(transitional cell)


SW-948-Colon adenocarcinoma
0.0
A204-Rhabdomyosarcoma
0.1


SW-480-Colon adenocarcnioma
2.8
HT-1080-Fibrosarcoma
0.2


NCI-SNU-5-Gastric carcinoma
1.0
MG-63-Osteosarcoma
0.3


KATO III-Gastric carcinoma
0.0
SK-LMS-1-Leiomyosarcoma
0.1




(vulva)


NCI-SNU-16-Gastric carcinoma
0.0
SJRH30-Rhabdomyosarcoma (met
0.1




to bone marrow)


NCI-SNU-1-Gastric carcinoma
10.3
A431-Epidermoid carcinoma
0.4


RF-1-Gastric adenocarcinoma
10.3
WM266-4-Melanoma
0.0


RF-48-Gastric adenocarcinoma
5.6
DU 145-Prostate carcinoma (brain
0.0




metastasis)


MKN-45-Gastric carcinoma
2.6
MDA-MB-468-Breast
0.2




adenocarcinoma


NCI-N87-Gastric carcinoma
0.2
SCC-4-Squamous cell carcinoma of
0.0




tongue


OVCAR-5-Ovarian carcinoma
0.6
SCC-9-Squamous cell carcinoma of
0.0




tongue


RL95-2-Uterine carcinoma
0.0
SCC-15-Squamous cell carcinoma
0.0




of tongue


HelaS3-Cervical
0.0
CAL 27-Squamous cell carcinoma
0.0


adenocarcinoma

of tongue










[0896]

304





TABLE XJ










Panel 4.1D











Rel.

Rel.



Exp. ()

Exp. (%)



Ag3265,

Ag3265,



Run

Run


Tissue Name
169827303
Tissue Name
169827303













Secondary Th1 act
50.3
HUVEC IL-1beta
0.4


Secondary Th2 act
83.5
HUVEC IFN gamma
0.0


Secondary Tr1 act
96.6
HUVEC TNF alpha + IFN gamma
0.0


Secondary Th1 rest
47.0
HUVEC TNF alpha + IL4
0.0


Secondary Th2 rest
100.0
HUVEC IL-11
0.7


Secondary Tr1 rest
76.8
Lung Microvascular EC none
0.4


Primary Th1 act
36.1
Lung Microvascular EC TNF alpha + IL-1beta
0.0


Primary Th2 act
66.4
Microvascular Dermal EC none
1.6


Primary Tr1 act
55.9
Microsvasular Dermal EC
1.0




TNF alpha + IL-1beta


Primary Th1 rest
56.6
Bronchial epithelium TNF alpha + IL1beta
0.0


Primary Th2 rest
56.6
Small airway epithelium none
0.7


Primary Tr1 rest
79.6
Small airway epithelium TNF alpha + IL-1beta
0.4


CD45RA CD4 lymphocyte act
24.7
Coronery artery SMC rest
0.0


CD45RO CD4 lymphocyte act
55.9
Coronery artery SMC TNF alpha + IL-1beta
0.7


CD8 lymphocyte act
88.3
Astrocytes rest
0.0


Secondary CD8 lymphocyte rest
54.3
Astrocytes TNF alpha + IL-1beta
0.0


Secondary CD8 lymphocyte act
48.3
KU-812 (Basophil) rest
16.2


CD4 lymphocyte none
42.9
KU-812 (Basophil)
23.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
71.2
CCD1106 (Keratinocytes) none
0.5


CH11


LAK cells rest
49.3
CCD1106 (Keratinocytes)
1.3




TNF alpha + IL-1beta


LAK cells IL-2
68.3
Liver cirrhosis
6.2


LAK cells IL-2 + IL-12
34.9
NCI-H292 none
0.4


LAK cells IL-2 + IFN gamma
62.0
NCI-H292 IL-4
0.0


LAK cells IL-2 + IL-18
40.9
NCI-H292 IL-9
0.6


LAK cells PMA/ionomycin
17.9
NCI-H292 IL-13
0.5


NK Cells IL-2 rest
98.6
NCI-H292 IFN gamma
0.0


Two Way MLR 3 day
46.0
HPAEC none
0.0


Two Way MLR 5 day
55.1
HPAEC TNF alpha + IL-1beta
0.4


Two Way MLR 7 day
55.5
Lung fibroblast none
2.0


PBMC rest
45.7
Lung fibroblast TNF alpha + IL-1beta
4.3


PBMC PWM
49.3
Lung fibroblast IL-4
3.2


PBMC PHA-L
63.3
Lung fibroblast IL-9
4.1


Ramos (B cell) none
48.3
Lung fibroblast IL-13
2.2


Ramos (B cell) ionomycin
42.9
Lung fibroblast IFN gamma
1.4


B lymphocytes PWM
29.5
Dermal fibroblast CCD1070 rest
0.0


B lymphocytes CD40L and IL-4
85.9
Dermal fibroblast CCD1070 TNF
69.3




alpha
0.0


EOL-1 dbcAMP
67.4
Dermal fibroblast CCD1070 IL-1beta
0.3


EOL-1 dbcAMP
51.8
Dermal fibroblast IFN gamma
12.0


PMA/ionomycin


Dendritic cells none
54.3
Dermal fibroblast IL-4
20.2


Dendritic cells LPS
17.3
Dermal Fibroblast rest
10.4


Dendritic cells anti-CD40
55.9
Neutrophils TNFa + LPS
12.9


Monocytes rest
19.8
Neutrophils rest
73.2


Monocytes LPS
25.9
Colon
21.6


Macrophages rest
43.5
Lung
6.1


Macrophages LPS
13.8
Thymus
88.3


HUVEC none
0.0
Kidney
4.2


HUVEC starved
2.0










[0897]

305





TABLE XK










Panel 4D











Rel.

Rel.



Exp (%)

Exp. (%)



Ag1800,

Ag1800,



Run

Run


Tissue Name
156420767
Tissue Name
156420767













Secondary Th1 act
23.0
HUVEC IL-1beta
0.0


Secondary Th2 act
38.2
HUVEC IFN gamma
0.1


Secondary Tr1 act
59.0
HUVEC TNF alpha + IFN gamma
0.0


Secondary Th1 rest
14.0
HUVEC TNF alpha + IL4
0.0


Secondary Th2 rest
30.1
HUVEC IL-11
0.1


Secondary Tr1 rest
23.5
Lung Microvascular EC none
0.0


Primary Th1 act
8.8
Lung Microvascular EC TNF alpha + IL-1beta
0.1


Primary Th2 act
15.6
Microvascular Dermal EC none
0.5


Primary Tr1 act
18.0
Microsvasular Dermal EC
0.1




TNF alpha + IL-1beta


Primary Th1 rest
57.8
Bronchial epithelium TNF alpha + IL1beta
0.0


Primary Th2 rest
29.1
Small airway epithelium none
0.0


Primary Tr1 rest
34.4
Small airway epithelium TNF alpha + IL-1beta
0.0


CD45RA CD4 lymphocyte act
15.2
Coronery artery SMC rest
0.4


CD45RO CD4 lymphocyte act
24.1
Coronery artery SMC TNF alpha + IL-1beta
0.0


CD8 lymphocyte act
13.5
Astrocytes rest
0.0


Secondary CD8 lymphocyte rest
18.9
Astrocytes TNF alpha + IL-1beta
0.0


Secondary CD8 lymphocyte act
12.1
KU-812 (Basophil) rest
9.8


CD4 lymphocyte none
16.6
KU-812 (Basophil)
11.7




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
35.6
CCD1106 (Keratinocytes) none
0.2


CH11


LAK cells rest
12.9
CCD1106 (Keratinocytes)
0.0




TNF alpha + IL-1beta


LAK cells IL-2
15.7
Liver cirrhosis
3.0


LAK cells IL-2 + IL-12
13.5
Lupus kidney
0.1


LAK cells IL-2 + IFN gamma
25.3
NCI-H292 none
0.1


LAK cells IL-2 + IL-18
23.7
NCI-H292 IL-4
0.3


LAK cells PMA/ionomycin
8.9
NCI-H292 IL-9
0.3


NK Cells IL-2 rest
37.4
NCI-H292 IL-13
0.2


Two Way MLR 3 day
19.8
NCI-H292 IFN gamma
0.3


Two Way MLR 5 day
15.1
HPAEC none
0.3


Two Way MLR 7 day
17.8
HPAEC TNF alpha + IL-1beta
0.0


PBMC rest
12.8
Lung fibroblast none
1.8


PBMC PWM
17.0
Lung fibroblast TNF alpha + IL-1beta
0.5


PBMC PHA-L
19.6
Lung fibroblast IL-4
0.9


Ramos (B cell) none
13.4
Lung fibroblast IL-9
1.7


Ramos (B cell) ionomycin
12.9
Lung fibroblast IL-13
1.2


B lymphocytes PWM
55.5
Lung fibroblast IFN gamma
0.3


B lymphocytes CD40L and IL-4
100.0
Dermal fibroblast CCD1070 rest
1.0


EOL-1 dbcAMP
40.6
Dermal fibroblast CCD1070 TNF
55.1




alpha


EOL-1 dbcAMP
25.5
Dermal fibroblast CCD1070 IL-1beta
0.1


PMA/ionomycin



Dendritic cells none
18.2
Dermal fibroblast IFN gamma
3.3


Dendritic cells LPS
3.2
Dermal fibroblast IL-4
6.4


Dendritic cells anti-CD40
14.2
IBD Colitis 2
4.2


Monocytes rest
3.4
IBD Crohn's
0.9


Monocytes LPS
5.5
Colon
11.8


Macrophages rest
14.5
Lung
3.6


Macrophages LPS
5.1
Thymus
1.1


HUVEC none
0.0
Kidney
64.2


HUVEC starved
0.1










[0898]

306





TABLE XL










Panel 5 Islet










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag1800
Ag3265,



Run
Run


Tissue Name
279370792
172203502












97457_Patient-02go_adipose
11.3
4.2


97476_Patient-07sk_skeletal
0.0
6.5


muscle


97477_Patient-07ut_uterus
4.1
5.2


97478_Patient-07pl_placenta
2.1
1.5


99167_Bayer Patient 1
100.0
100.0


97482_Patient-08ut_uterus
0.7
0.0


97483_Patient-08pl_placenta
3.9
0.0


97486_Patient-09sk_skeletal
3.3
0.0


muscle


97487_Patient-09ut_uterus
2.8
2.0


97488_Patient-09pl_placenta
0.0
0.0


97492_Patient-10ut_uterus
0.0
3.6


97493_Patient-10pl_placenta
0.9
1.1


97495_Patient-11go_adipose
0.7
3.1


97496_Patient-11sk_skeletal
2.8
1.1


muscle


97497_Patient-11ut_uterus
3.9
3.1


97498_Patient-11pl_placenta
1.4
0.0


97500_Patient-12go_adipose
5.0
2.4


97501_Patient-12sk_skeletal
9.0
0.7


muscle


97502_Patient-12ut_uterus
5.8
5.6


97503_Patient-12pl_placenta
0.8
1.6


94721_Donor 2 U - A_Mesenchymal
0.0
0.6


Stem Cells


94722_Donor 2 U - B_Mesenchymal
1.0
0.4


Stem Cells


94723_Donor 2 U - C_Mesenchymal
0.0
0.0


Stem Cells


94709_Donor 2 AM - A_adipose
0.0
1.6


94710_Donor 2 AM - B_adipose
0.0
0.0


94711_Donor 2 AM - C_adipose
0.0
0.0


94712_Donor 2 AD - A_adipose
0.0
0.0


94713_Donor 2 AD - B_adipose
0.0
0.0


94714_Donor 2 AD - C_adipose
0.0
0.0


94742_Donor 3 U - A_Mesenchymal
0.9
0.0


Stem Cells


94743_Donor 3 U - B_Mesenchymal
0.8
0.0


Stem Cells


94730_Donor 3 AM - A_adipose
0.0
0.0


94731_Donor 3 AM - B_adipose
0.0
0.0


94732_Donor 3 AM - C_adipose
0.0
0.0


94733_Donor 3 AD - A_adipose
1.0
0.0


94734_Donor 3 AD - B_adipose
0.9
0.0


94735_Donor 3 AD - C_adipose
0.0
0.7


77138_Liver_HepG2untreated
0.0
0.0


73556_Heart_Cardiac stromal
0.0
0.0


cells (primary)


81735_Small Intestine
61.6
14.0


72409_Kidney_Proximal Convoluted
0.0
0.0


Tubule


82685_Small intestine_Duodenum
7.4
6.7


90650_Adrenal_Adrenocortical
1.1
1.0


adenoma


72410_Kidney_HRCE
0.0
0.0


72411_Kidney_HRE
0.0
0.0


73139_Uterus_Uterine smooth
0.0
0.6


muscle cells










[0899]

307





TABLE XM










Panel 5D











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag365,

Ag3265,



Run

Run


Tissue Name
166510703
Tissue Name
166510703













97457_Patient-02go_adipose
20.3
94709_Donor 2 AM - A_adipose
0.0


97476_Patient-07sk_skeletal
15.2
94710_Donor 2 AM - B_adipose
0.0


muscle


97477_Patient-07ut_uterus
14.8
94711_Donor 2 AM - C_adipose
0.0


97478_Patient-07pl_placenta
0.0
94712_Donor 2 AD - A_adipose
0.0


97481_Patient-08sk_skeletal
7.3
94713_Donor 2 AD - B_adipose
0.0


muscle


97482_Patient-08ut_uterus
15.2
94714_Donor 2 AD - C_adipose
0.0


97483_Patient-08pl_placenta
5.0
94742_Donor 3 U - A_Mesenchymal
0.0




Stem Cells


97486_Patient-09sk_skeletal
8.3
94743_Donor 3 U - B_Mesenchymal
0.0


muscle

Stem Cells


97487_Patient-09ut_uterus
0.0
94730_Donor 3 AM - A_adipose
0.0


97488_Patient-09pl_placenta
7.5
94731_Donor 3 AM - B_adipose
0.0


97492_Patient-10ut_uterus
0.0
94732_Donor 3 AM - C_adipose
0.0


97493_Patient-10pl_placenta
5.0
94733_Donor 3 AD - A_adipose
0.0


97495_Patient-11go_adipose
6.8
94734_Donor 3 AD - B_adipose
0.0


97496_Patient-11sk_skeletal
6.7
94735_Donor 3 AD - C_adipose
5.2


muscle


97497_Patient-11ut_uterus
0.0
77138_Liver_HepG2untreated
0.0


97498_Patient-11pl_placenta
14.6
73556_Heart_Cardiac stromal cells
0.0




(primary)


97500_Patient-12go_adipose
15.5
81735_Small Intestine
100.0


97501_Patient-12sk_skeletal
14.0
72409_Kidney_Proximal Convoluted
0.0


muscle

Tubule


97502_Patient-12ut_uterus
12.7
82685_Small intestine_Duodenum
63.3


97503_Patient-12pl_placenta
5.6
90650_Adrenal_Adrenocortical
22.7




adenoma


94721_Donor 2 U -
0.0
72410_Kidney_HRCE
0.0


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
72411_Kidney_HRE
0.0


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
73139_Uterus_Uterine smooth
18.3


C_Mesenchymal Stem Cells

muscle cells










[0900] CNS_neurodegeneration_v1.0 Summary: Ag1800 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of this gene in treatment of central nervous system disorders.


[0901] General_screening_panel_v1.4 Summary: Ag1800 Highest expression of this gene is detected in lung cancer NCI-H146 cell line (CT=27.5). Moderate to low expression of this gene is also seen in number of cancer cell lines derived from melanoma, brain, colon, renal, lung, breast and ovarian cancers. Therefore, expression of this gene may be used as diagnostic marker to detect the presence of these cancers and also, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0902] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate to low levels in pancreas, adipose, adrenal gland, thyroid, skeletal muscle, heart, fetal liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0903] In addition, this gene is expressed at moderate to low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0904] Interestingly, this gene is expressed at much higher levels in fetal (CT=32.7) when compared to adult liver (CT=37.8). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver related diseases.


[0905] Oncology_cell_line_screening_panel_v3.1 Summary: Ag1800 Highest expression of this gene is detected in lung cancer NCI-UMC-11 cell line (CT=27.2). Moderate to low expression of this gene is seen in number of cancer cell lines derived from epidermoid carcinoma, T and B cells lymphoma/leukemia, pancreatic, lung, brain and colon cancers. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0906] Panel 1.3D Summary: Ag1800/Ag3265 Two experiment with different probe-primer sets are in good agreement. Highest expression of this gene is detected in thymus (CT=27-29). Moderate to low expression of this gene is also seen in all the regions of brain, tissues with metabolic/endocrine functions and number of cancer cell lines derived from ovarian, breast, renal, and lung cancers, which is consistent with the expression profile seen in panel 1.4. Please panel 1.4 for further discussion on the utility of this gene.


[0907] Panel 2.2 Summary: Ag3265 Highest expression of this gene is detected in normal stomach (CT=30.7). Moderate to low expression of this gene is seen in normal and cancer samples derived from stomach, bladder, liver, breast, kidney, lung, ovary, and colon. Therefore, therapeutic modulation of this gene may be useful in the treatment of stomach, bladder, liver, breast, kidney, lung, ovary, and colon cancers.


[0908] Panel 2D Summary: Ag1800 Highest expression of this gene is detected in malignant lung cancer (CT=26.3). Interestingly, expression of this gene is higher in lung cancer compared to the adjacent normal sample. Therefore, expression of this gene may be used as a diagnostic marker to detect the presence of malignant lung cancer. Similar to expression seen in panel 2.2, expression of this gene is seen in both normal and cancer samples derived from stomach, bladder, liver, breast, kidney, lung, ovary, prostate and colon. Therefore, therapeutic modulation of this gene may be useful in the treatment of stomach, bladder, liver, breast, kidney, lung, ovary, prostate and colon cancers.


[0909] Panel 3D Summary: Ag3265 Highest expression of this gene is detected in lung carcinoid (CT=27.4). Moderate to low expression of this gene is seen in number of cancer cell lines derived from T and B cells lymphoma/leukemia, pancreatic, lung, gastric and colon cancers. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers.


[0910] Panel 4.1D Summary: Ag3265 Highest expression of this gene is detected in resting secondary Th2 cells (CT=30.2). This gene is expressed at moderate to low levels in T lymphocytes prepared under a number of conditions, treated and untreated dendritic cells, monocytes, macrophages, LAK cells, B cells, basophils, activated dermal fibroblasts and normal tissues represented by colon, lung, thymus and kidney. Dendritic cells and macrophages are powerful antigen-presenting cells (APC) whose function is pivotal in the initiation and maintenance of normal immune responses. Autoimmunity and inflammation may also be reduced by suppression of this function. Therefore, small molecule drugs that antagonzie the function of this gene product may reduce or eliminate the symptoms in patients with several types of autoimmune and inflammatory diseases, such as lupus erythematosus, Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, or psoriasis.


[0911] Panel 4D Summary: Ag1800 Highest expression of this gene is detected in CD40L and IL-4 treated B lymphocytes (CT=27.6). Moderate to low expression of this gene is detected in T lymphocytes prepared under a number of conditions, treated and untreated dendritic cells, monocytes, macrophages, LAK cells, B cells, basophils, activated dermal fibroblasts and normal tissues represented by colon, lung, thymus and kidney. Expression profile of this gene in this panel is similar to that in panel 4.1D. Please see panel 4.1D for further discussion of this gene.


[0912] Panel 5 Islet Summary: Ag1800/Ag3265 Two experiments with different probe primer sets are in good agreement. Highest expression of this gene is seen in pancreatic islet cells (CTs=30.9-32). Low expression of this gene is also seen in small intestine. This gene codes for SERCA3. SERCA3 is a magnesium dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of the calcium. This enzyme transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum and has a central role in intracellular calcium signaling. Using Curagen GeneCalling studies SERCA3 was found to be up-regulated 7-fold in good insulin-secreting insulinoma cell lines vs poor insulin-secreting insulinoma cell lines. It is known that insulin secretagogues that stimulate intracellular calcium influx also elevate calcium levels in the ER. Thus, SERCA3-mediated calcium uptake into the ER may optimize both beta cell calcium homeostasis and the insulin secretory process. Moreover, literature data have shown that SERCA3 is down-regulated in islet tissue of the diabetic GK rat, further supporting an important role for SERCA3 in insulin secretion The combined data suggest that activation of SERCA3 through the use of small molecule drug may promote beta cell insulin secretion and be an effective treatment for the beta cell secretory defect in Type 2 diabetes.


[0913] Varadi A, Lebel L, Hashim Y, Mehta Z, Ashcroft S J, Turner R. Sequence variants of the sarco(endo)plasmic reticulum Ca(2+)-transport ATPase 3 gene SERCA3) in Caucasian type II diabetic patients (UK Prospective Diabetes Study 48).Diabetologia. October 1999;42(10):1240-3. PMID: 10525666; Poch E, Leach S, Snape S, Cacic T, MacLennan D H, Lytton J. Functional characterization of alternatively spliced human SERCA3 transcripts.Am J Physiol. December 1998;275(6 Pt 1):C1449-58. PMID: 9843705; Maechler P, Kennedy E D, Sebo E, Valeva A, Pozzan T, Wollheim C B. Secretagogues modulate the calcium concentration in the endoplasmic reticulum of insulin-secreting cells. Studies in aequorin-expressing intact and permeabilized ins-1 cells.J Biol Chem. Apr. 30, 1999;274(18):12583-92. PMID: 10212237; Varadi A, Molnar E, Ostenson C G, Ashcroft S J. Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J. Oct. 15, 1996;319 (Pt 2):521-7. PMID: 8912690.


[0914] Panel 5D Summary: Ag3265 Low expression of this gene is restricted to small intestine. Please see panel 5I and panel 1.4 for further discussion of this gene.


[0915] Y. CG56246-01 and CG56246-02: Human Carboxypeptidase A2-Like Protein.


[0916] Expression of gene CG56246-01 and CG56246-02 was assessed using the primer-probe set Ag1757, described in Table YA. Results of the RTQ-PCR runs are shown in Tables YB, YC, YD and YE.
308TABLE YAProbe Name Ag1757SEQ IDPrimersSequenceLengthStart PositionNoForward5′-aggagaagagaacggagtggta-3′22960458ProbeTET-5′-ttcaattttggggcctaccataccct-3′-TAMRA26932459Reverse5′-aggttatccatttcttgggaaa-3′22902460


[0917]

309





TABLE YB










Panel 1.3D











Rel.

Rel.



Exp. %)

Exp. (%)



Ag1757,

Ag1757,



Run

Run


Tissue Name
156016239
Tissue Name
156016239













Liver adenocarcinoma
0.0
Kidney (fetal)
0.0


Pancreas
100.0
Renal ca. 786-0
0.0


Pancreatic ca. CAPAN 2
0.0
Renal ca. A498
0.0


Adrenal gland
0.0
Renal ca. RXF 393
0.0


Thyroid
0.0
Renal ca. ACHN
0.0


Salivary gland
0.0
Renal ca. UO-31
0.0


Pituitary gland
0.0
Renal ca. TK-10
0.0


Brain (fetal)
0.0
Liver
0.0


Brain (whole)
0.0
Liver (fetal)
0.0


Brain (amygdala)
0.0
Liver ca. (hepatoblast) HepG2
0.0


Brain (cerebellum)
0.0
Lung
0.1


Brain (hippocampus)
0.0
Lung (fetal)
0.0


Brain (substantia nigra)
0.0
Lung ca. (small cell) LX-1
0.0


Brain (thalamus)
0.0
Lung ca. (small cell) NCI-H69
0.0


Cerebral Cortex
0.0
Lung ca. (s.cell var.) SHP-77
0.0


Spinal cord
0.1
Lung ca. (large cell)NCI-H460
0.0


glio/astro U87-MG
0.0
Lung ca. (non-sm.cell) A549
0.0


glio/astro U-118-MG
0.0
Lung ca. (non-s.cell) NCI-H23
0.0


astrocytoma SW1783
0.0
Lung ca. (non-s.cell) HOP-62
0.0


neuro*; met SK-N-AS
0.0
Lung ca. (non-s.cl) NCI-H522
0.0


astrocytoma SF-539
0.0
Lung ca. (squam.) SW 900
0.0


astrocytoma SNB-75
0.0
Lung ca. (squam.) NCI-H596
0.0


glioma SNB-19
0.0
Mammary gland
0.0


glioma U251
0.0
Breast ca.* (pl.ef) MCF-7
0.0


glioma SF-295
0.0
Breast ca.* (pl.ef) MDA-MB-231
0.0


Heart (fetal)
0.0
Breast ca.* (pl.ef) T47D
0.0


Heart
0.0
Breast ca. BT-549
0.0


Skeletal muscle (fetal)
0.1
Breast ca. MDA-N
0.0


Skeletal muscle
0.0
Ovary
0.0


Bone marrow
0.0
Ovarian ca. OVCAR-3
0.0


Thymus
0.0
Ovarian ca. OVCAR-4
0.0


Spleen
0.0
Ovarian ca. OVCAR-5
0.0


Lymph node
0.0
Ovarian ca. OVCAR-8
0.0


Colorectal
0.0
Ovarian ca. IGROV-1
0.0


Stomach
2.5
Ovarian ca.* (ascites) SK-OV-3
0.0


Small intestine
0.1
Uterus
0.0


Colon ca. SW480
0.0
Placenta
0.0


Colon ca.* SW620(SW480 met)
0.0
Prostate
0.0


Colon ca. HT29
0.0
Prostate ca.* (bone met)PC-3
0.0


Colon ca. HCT-116
0.0
Testis
0.0


Colon ca. CaCo-2
0.2
Melanoma Hs688(A).T
0.0


Colon ca. tissue(ODO3866)
0.0
Melanoma* (met) Hs688(B).T
0.0


Colon ca. HCC-2998
0.0
Melanoma UACC-62
0.0


Gastric ca.* (liver met) NCI-N87
0.0
Melanoma M14
0.0


Bladder
14.9
Melanoma LOX IMVI
0.0


Trachea
0.0
Melanoma* (met) SK-MEL-5
0.0


Kidney
0.0
Adipose
0.0










[0918]

310





TABLE YC










Panel 2D











Rel.

Rel.



Ep. (%)

Exp. (%)



Ag1757,

Ag1757,



Run

Run


Tissue Name
156016293
Tissue Name
156016293













Normal Colon
0.0
Kidney Margin 8120608
0.0


CC Well to Mod Diff (ODO3866)
0.1
Kidney Cancer 8120613
0.0


CC Margin (ODO3866)
0.0
Kidney Margin 8120614
0.0


CC Gr.2 rectosigmoid (ODO3868)
0.0
Kidney Cancer 9010320
0.0


CC Margin (ODO3868)
0.0
Kidney Margin 9010321
0.0


CC Mod Diff (ODO3920)
0.0
Normal Uterus
0.0


CC Margin (ODO3920)
0.0
Uterus Cancer 064011
0.0


CC Gr.2 ascend colon (ODO3921)
0.0
Normal Thyroid
0.0


CC Margin (ODO3921)
0.0
Thyroid Cancer 064010
0.0


CC from Partial Hepatectomy
0.1
Thyroid Cancer A302152
0.0


(ODO4309) Mets


Liver Margin (ODO4309)
0.0
Thyroid Margin A302153
0.0


Colon mets to lung (OD04451-01)
0.0
Normal Breast
0.0


Lung Margin (OD04451-02)
0.0
Breast Cancer (OD04566)
0.0


Normal Prostate 6546-1
0.0
Breast Cancer (OD04590-01)
0.0


Prostate Cancer (OD04410)
0.0
Breast Cancer Mets
0.0




(OD04590-03)


Prostate Margin (OD04410)
0.0
Breast Cancer Metastasis
0.0




(OD04655-05)


Prostate Cancer (OD04720-01)
0.0
Breast Cancer 064006
0.0


Prostate Margin (OD04720-02)
0.0
Breast Cancer 1024
0.0


Normal Lung 061010
0.0
Breast Cancer 9100266
0.0


Lung Met to Muscle (ODO4286)
0.0
Breast Margin 9100265
0.0


Muscle Margin (ODO4286)
0.0
Breast Cancer A209073
0.0


Lung Malignant Cancer (OD03126)
0.0
Breast Margin A209073
0.0


Lung Margin (OD03126)
0.0
Normal Liver
0.0


Lung Cancer (OD04404)
0.0
Liver Cancer 064003
0.0


Lung Margin (OD04404)
0.0
Liver Cancer 1025
0.0


Lung Cancer (OD04565)
0.0
Liver Cancer 1026
0.0


Lung Margin (OD04565)
0.0
Liver Cancer 6004-T
0.0


Lung Cancer (OD04237-01)
0.0
Liver Tissue 6004-N
0.0


Lung Margin (OD04237-02)
0.0
Liver Cancer 6005-T
0.0


Ocular Mel Met to Liver
0.0
Liver Tissue 6005-N
0.0


(ODO4310)


Liver Margin (ODO4310)
0.0
Normal Bladder
100.0


Melanoma Mets to Lung
0.0
Bladder Cancer 1023
0.0


(OD04321)


Lung Margin (OD04321)
0.0
Bladder Cancer A302173
0.0


Normal Kidney
0.0
Bladder Cancer (OD04718-01)
0.0


Kidney Ca, Nuclear grade 2
0.0
Bladder Normal Adjacent
0.0


(OD04338)

(OD04718-03)


Kidney Margin (OD04338)
0.0
Normal Ovary
0.0


Kidney Ca Nuclear grade 1/2
0.0
Ovarian Cancer 064008
0.0


(OD04339)


Kidney Margin (OD04339)
0.0
Ovarian Cancer (OD04768-07)
0.0


Kidney Ca, Clear cell type
0.0
Ovary Margin (OD04768-08)
0.0


(OD04340)


Kidney Margin (OD04340)
0.0
Normal Stomach
3.6


Kidney Ca, Nuclear grade 3
0.0
Gastric Cancer 9060358
0.0


(OD04348)


Kidney Margin (OD04348)
0.0
Stomach Margin 9060359
6.6


Kidney Cancer (OD04622-01)
0.0
Gastric Cancer 9060395
0.0


Kidney Margin (OD04622-03)
0.0
Stomach Margin 9060394
1.1


Kidney Cancer (OD04450-01)
0.0
Gastric Cancer 9060397
0.0


Kidney Margin (OD04450-03)
0.0
Stomach Margin 9060396
1.3


Kidney Cancer 8120607
0.0
Gastric Cancer 064005
0.3










[0919]

311





TABLE YD










Panel 4D











Rel.

Rel.



xp. (%)

Exp. (%)



Ag1757,

Ag1757,



Run

Run


Tissue Name
156016294
Tissue Name
156016294













Secondary Th1 act
5.2
HUVEC IL-1beta
0.0


Secondary Th2 act
0.0
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.0
HUVEC TNF alpha + IFN gamma
0.0


Secondary Th1 rest
0.0
HUVEC TNF alpha + IL4
0.0


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular EC none
0.0


Primary Th1 act
0.0
Lung Microvascular EC TNF alpha +
0.0




IL-1beta


Primary Th2 act
0.0
Microvascular Dermal EC none
0.0


Primary Tr1 act
0.0
Microsvasular Dermal EC
0.0




TNF alpha + IL-1beta


Primary Th1 rest
0.0
Bronchial epithelium TNF alpha +
0.0




IL-1beta


Primary Th2 rest
0.0
Small airway epithelium none
0.0


Primary Tr1 rest
0.0
Small airway epithelium TNF alpha +
0.0




IL-1beta


CD45RA CD4 lymphocyte act
0.0
Coronery artery SMC rest
2.6


CD45RO CD4 lymphocyte act
0.0
Coronery artery SMC TNF alpha +
0.0




IL-1beta


CD8 lymphocyte act
0.0
Astrocytes rest
0.0


Secondary CD8 lymphocyte rest
0.0
Astrocytes TNF alpha + IL-1beta
0.0


Secondary CD8 lymphocyte act
0.0
KU-812 (Basophil) rest
0.0


CD4 lymphocyte none
0.0
KU-812 (Basophil)
0.0




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
0.0
CCD1106 (Keratinocytes) none
0.0


CH11


LAK cells rest
0.0
CCD1106 (Keratinocytes)
0.0




TNF alpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
0.0


LAK cells IL-2 + IL-12
0.0
Lupus kidney
0.0


LAK cells IL-2 + IFN gamma
0.0
NCI-H292 none
0.0


LAK cells IL-2 + IL-18
0.0
NCI-H292 IL-4
0.0


LAK cells PMA/ionomycin
0.0
NCI-H292 IL-9
0.0


NK Cells IL-2 rest
0.0
NCI-H292 IL-13
4.8


Two Way MLR 3 day
0.0
NCI-H292 IFN gamma
6.9


Two Way MLR 5 day
0.0
HPAEC none
0.0


Two Way MLR 7 day
0.0
HPAEC TNF alpha + IL-1beta
0.0


PBMC rest
0.0
Lung fibroblast none
0.0


PBMC PWM
0.0
Lung fibroblast TNF alpha +
0.0




IL-1beta


PBMC PHA-L
0.0
Lung fibroblast IL-4
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-9
0.0


Ramos (B cell) ionomycin
0.0
Lung fibroblast IL-13
0.0


B lymphocytes PWM
0.0
Lung fibroblast IFN gamma
0.0


B lymphocytes CD40L and IL-4
0.0
Dermal fibroblast CCD1070 rest
0.0


EOL-1 dbcAMP
0.0
Dermal fibroblast CCD1070 TNF
0.0




alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast CCD1070
0.0


PMA/ionomycin

IL-1beta


Dendritic cells none
0.0
Dermal fibroblast IFN gamma
0.0


Dendritic cells LPS
0.0
Dermal fibroblast IL-4
0.0


Dendritic cells anti-CD40
0.0
IBD Colitis 2
0.0


Monocytes rest
0.0
IBD Crohn's
100.0


Monocytes LPS
0.0
Colon
96.6


Macrophages rest
0.0
Lung
0.0


Macrophages LPS
0.0
Thymus
0.0


HUVEC none
0.0
Kidney
54.0


HUVEC starved
0.0










[0920]

312





TABLE YE










Panel 5 Islet










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag1757
Ag1757,



Run
Run


Tissue Name
172213986
242726292












97457_Patient-02go_adipose
0.0
0.0


97476_Patient-07sk_skeletal
0.0
0.0


muscle


97477_Patient-07ut_uterus
0.0
0.0


97478_Patient-07pl_placenta
0.0
0.0


99167_Bayer Patient 1
100.0
100.0


97482_Patient-08ut_uterus
0.0
0.0


97483_Patient-08pl_placenta
0.0
0.0


97486_Patient-09sk_skeletal
0.0
0.0


muscle


97487_Patient-09ut_uterus
0.0
0.0


97488_Patient-09pl_placenta
0.0
0.0


97492_Patient-10ut_uterus
0.0
0.0


97493_Patient-10pl_placenta
0.0
0.0


97495_Patient-11go_adipose
0.0
0.0


97496_Patient-11sk_skeletal
0.0
0.0


muscle


97497_Patient-11ut_uterus
0.0
0.0


97498_Patient-11pl_placenta
0.0
0.0


97500_Patient-12go_adipose
0.0
0.0


97501_Patient-12sk_skeletal
0.0
0.0


muscle


97502_Patient-12ut_uterus
0.0
0.0


97503_Patient-12pl_placenta
0.0
0.0


94721_Donor 2 U - A_Mesenchymal
0.0
0.0


Stem Cells


94722_Donor 2 U - B_Mesenchymal
0.0
0.0


Stem Cells


94723_Donor 2 U - C_Mesenchymal
0.0
0.0


Stem Cells


94709_Donor 2 AM - A_adipose
0.0
0.0


94710_Donor 2 AM - B_adipose
0.0
0.0


94711_Donor 2 AM - C_adipose
0.0
0.0


94712_Donor 2 AD - A_adipose
0.0
0.0


94713_Donor 2 AD - B_adipose
0.0
0.0


94714_Donor 2 AD - C_adipose
0.0
0.0


94742_Donor 3 U - A_Mesenchymal
0.0
0.0


Stem Cells


94743_Donor 3 U - B_Mesenchymal
0.0
0.0


Stem Cells


94730_Donor 3 AM - A_adipose
0.0
0.0


94731_Donor 3 AM - B_adipose
0.0
0.0


94732_Donor 3 AM - C_adipose
0.0
0.0


94733_Donor 3 AD - A_adipose
0.0
0.0


94734_Donor 3 AD - B_adipose
0.0
0.0


94735_Donor 3 AD - C_adipose
0.0
0.0


77138_Liver_HepG2untreated
0.0
0.0


73556_Heart_Cardiac stromal cells
0.0
0.0


(primary)


81735_Small Intestine
0.0
0.0


72409_Kidney_Proximal Convoluted
0.0
0.0


Tubule


82685_Small intestine_Duodenum
0.0
0.1


90650_Adrenal_Adrenocortical
0.0
0.0


adenoma


72410_Kidney_HRCE
0.0
0.0


72411_Kidney_HRE
0.0
0.0


73139_Uterus_Uterine smooth muscle
0.0
0.0


cells










[0921] Panel 1.3D Summary: Ag1757 Highest expression of this gene is detected in pancrease (CT=22.5). High expression of this gene is also seen in bladder and stomach, while low expression was detected in lung, and fetal skeletal muscle. This gene codes for carboxypeptidase A2 (CPA2). CPA2 was found to be up-regulated in the GeneCalling studies in the spontaneous hypertensive rat, a model for hyperlipidemia, diabetes, and cardiovascular disease, and was down-regulated after treatment with troglitazone. These data suggest that down-regulation of CPA2 and decreased proteolysis may be beneficial for insulin sensitivity. At the same time, down-regulation of enzymes involved in hormone maturation have been implicated in the development of the obese phenotype, suggesting that down-regulation of CPA2 via small molecule drug may be an effective treatment for obesity.


[0922] Panel 2D Summary: Ag1757 High expression of this gene is seen only normal bladder. Hence expression of this gene may be used to distinguish bladder from other samples in this panel.


[0923] Panel 4D Summary: Ag1757 Low expression of this gene is seen exclusively in IBD Crohn's and colon sample. Therefore, therapeutic modulation of this gene may be useful in the treatment of Crohn's disease.


[0924] Panel 5 Islet Summary: Ag1757 Two experiments with same probe-primer sets are in good agreement. High expression of this gene is restricted to pancreatic islet cells (CTs=25.9-26.7), which supports the finding on panel 1.3. This gene product may be related to the fed state and may thus be a satiety signal. Therapeutic modulation of this gene or its protein product produced by islet cells may induce satiety and be a treatment for obesity.


[0925] Z. CG57417-01: Human SERCA 1-Like Protein.


[0926] Expression of gene CG57417-01 was assessed using the primer-probe set Ag3267, described in Table ZA. Results of the RTQ-PCR runs are shown in Tables ZB, ZC, ZD, ZE, ZF, ZG, ZH, ZI and ZJ.
313TABLE ZAProbe Name Ag3267SEQ IDPrimersLengthStart PositionNoForward5′-ccctctcaaccttgtaaattccc-3′233313461ProbeTET-5′-ttgcagggacaaggcgaccga-3′-TAMRA213355462Reverse5′-aataaataagcagctcagcgca-3′223377463


[0927]

314





TABLE ZB










CNS_neurodegeneration_v1.0











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
210038490
Tissue Name
210038490













AD 1 Hippo
16.0
Control (Path) 3 Temporal Ctx
10.4


AD 2 Hippo
10.8
Control (Path) 4 Temporal Ctx
43.8


AD 3 Hippo
59.0
AD 1 Occipital Ctx
17.6


AD 4 Hippo
5.8
AD 2 Occipital Ctx (Missing)
0.0


AD 5 Hippo
29.3
AD 3 Occipital Ctx
16.3


AD 6 Hippo
66.0
AD 4 Occipital Ctx
17.4


Control 2 Hippo
23.8
AD 5 Occipital Ctx
10.3


Control 4 Hippo
16.2
AD 6 Occipital Ctx
5.7


Control (Path) 3 Hippo
4.8
Control 1 Occipital Ctx
0.0


AD 1 Temporal Ctx
56.3
Control 2 Occipital Ctx
21.9


AD 2 Temporal Ctx
24.7
Control 3 Occipital Ctx
50.0


AD 3 Temporal Ctx
43.8
Control 4 Occipital Ctx
0.0


AD 4 Temporal Ctx
30.1
Control (Path) 1 Occipital Ctx
100.0


AD 5 Inf Temporal Ctx
74.7
Control (Path) 2 Occipital Ctx
36.1


AD 5 Sup Temporal Ctx
83.5
Control (Path) 3 Occipital Ctx
11.2


AD 6 Inf Temporal Ctx
58.2
Control (Path) 4 Occipital Ctx
80.7


AD 6 Sup Temporal Ctx
65.5
Control 1 Parietal Ctx
10.5


Control 1 Temporal Ctx
8.4
Control 2 Parietal Ctx
62.9


Control 2 Temporal Ctx
22.5
Control 3 Parietal Ctx
11.0


Control 3 Temporal Ctx
33.7
Control (Path) 1 Parietal Ctx
39.2


Control 3 Temporal Ctx
17.8
Control (Path) 2 Parietal Ctx
53.6


Control (Path) 1 Temporal Ctx
62.0
Control (Path) 3 Parietal Ctx
2.8


Control (Path) 2 Temporal Ctx
31.2
Control (Path) 4 Parietal Ctx
42.6










[0928]

315





TABLE ZC










General screening panel v1.4










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag3267,
Ag3267,



Run
Run


Tissue Name
208010012
212650192












Adipose
2.5
0.3


Melanoma* Hs688(A).T
0.0
0.1


Melanoma* Hs688(B).T
0.0
0.0


Melanoma* M14
0.1
0.1


Melanoma* LOXIMVI
0.0
0.0


Melanoma* SK-MEL-5
0.1
0.1


Squamous cell carcinoma SCC-4
0.0
0.0


Testis Pool
0.2
0.1


Prostate ca.* (bone met) PC-3
0.1
0.1


Prostate Pool
0.1
0.2


Placenta
0.1
0.1


Uterus Pool
0.0
0.0


Ovarian ca. OVCAR-3
0.1
0.2


Ovarian ca. SK-OV-3
0.2
0.3


Ovarian ca. OVCAR-4
0.0
0.1


Ovarian ca. OVCAR-5
0.3
0.3


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca. OVCAR-8
0.0
0.1


Ovary
0.0
0.1


Breast ca. MCF-7
0.1
0.2


Breast ca. MDA-MB-231
0.1
0.2


Breast ca. BT 549
0.1
0.2


Breast ca. T47D
0.2
0.4


Breast ca. MDA-N
0.1
0.1


Breast Pool
0.1
0.1


Trachea
0.2
0.2


Lung
0.1
0.1


Fetal Lung
0.1
0.2


Lung ca. NCI-N417
0.0
0.0


Lung ca. LX-1
0.4
0.4


Lung ca. NCI-H146
0.1
0.1


Lung ca. SHP-77
0.2
0.3


Lung ca. A549
0.1
0.2


Lung ca. NCI-H526
0.0
0.0


Lung ca. NCI-H23
0.2
0.3


Lung ca. NCI-H460
0.1
0.1


Lung ca. HOP-62
0.1
0.1


Lung ca. NCI-H522
0.3
0.3


Liver
0.0
0.0


Fetal Liver
0.0
0.1


Liver ca. HepG2
0.4
0.4


Kidney Pool
0.1
0.2


Fetal Kidney
0.3
0.2


Renal ca. 786-0
0.1
0.1


Renal ca. A498
0.1
0.1


Renal ca. ACHN
0.1
0.2


Renal ca. UO-31
0.1
0.1


Renal ca. TK-10
0.5
0.7


Bladder
0.3
0.3


Gastric ca. (liver met.) NCI-N87
1.4
1.4


Gastric ca. KATO III
0.3
0.3


Colon ca. SW-948
0.0
0.0


Colon ca. SW480
0.1
0.2


Colon ca.* (SW480 met) SW620
0.1
0.2


Colon ca. HT29
0.1
0.1


Colon ca. HCT-116
0.3
0.4


Colon ca. CaCo-2
0.2
0.2


Colon cancer tissue
0.1
0.1


Colon ca. SW1116
0.1
0.1


Colon ca. Colo-205
0.0
0.1


Colon ca. SW-48
0.0
0.1


Colon Pool
0.1
0.6


Small Intestine Pool
0.2
0.2


Stomach Pool
0.1
0.2


Bone Marrow Pool
0.0
0.0


Fetal Heart
0.1
0.1


Heart Pool
0.0
0.0


Lymph Node Pool
0.1
0.2


Fetal Skeletal Muscle
16.7
17.0


Skeletal Muscle Pool
100.0
100.0


Spleen Pool
0.2
0.2


Thymus Pool
0.1
0.2


CNS cancer (glio/astro) U87-MG
0.2
0.2


CNS cancer (glio/astro) U-118-MG
0.2
0.3


CNS cancer (neuro; met) SK-N-AS
0.2
0.4


CNS cancer (astro) SF-539
0.1
0.1


CNS cancer (astro) SNB-75
0.1
0.1


CNS cancer (glio) SNB-19
0.0
0.0


CNS cancer (glio) SF-295
0.3
0.6


Brain (Amygdala) Pool
0.0
0.0


Brain (cerebellum)
0.1
0.1


Brain (fetal)
0.2
0.2


Brain (Hippocampus) Pool
0.0
0.1


Cerebral Cortex Pool
0.0
0.1


Brain (Substantia nigra) Pool
0.0
0.0


Brain (Thalamus) Pool
0.1
0.1


Brain (whole)
0.1
0.1


Spinal Cord Pool
0.2
0.3


Adrenal Gland
0.1
0.1


Pituitary gland Pool
0.0
0.1


Salivary Gland
0.2
0.3


Thyroid (female)
0.0
0.0


Pancreatic ca. CAPAN2
0.1
0.1


Pancreas Pool
0.2
0.1










[0929]

316





TABLE ZD










General_screening_panel_v1.7











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
317617205
Tissue Name
317617205













Adipose
6.9
Gastric ca. (liver met.) NCI-N87
0.0


HUVEC
0.0
Stomach
0.0


Melanoma* Hs688(A).T
0.0
Colon ca. SW-948
0.0


Melanoma* Hs688(B).T
0.0
Colon ca. SW480
0.0


Melanoma (met) SK-MEL-5
0.0
Colon ca. (SW480 met) SW620
0.0


Testis
0.1
Colon ca. HT29
0.1


Prostate ca. (bone met) PC-3
0.0
Colon ca. HCT-116
0.1


Prostate ca. DU145
0.0
Colon cancer tissue
0.0


Prostate pool
0.0
Colon ca. SW1116
0.1


Uterus pool
0.0
Colon ca. Colo-205
0.0


Ovarian ca. OVCAR-3
0.0
Colon ca. SW-48
0.0


Ovarian ca. (ascites) SK-OV-3
0.0
Colon
0.1


Ovarian ca. OVCAR-4
0.0
Small Intestine
0.0


Ovarian ca. OVCAR-5
0.0
Fetal Heart
0.0


Ovarian ca. IGROV-1
0.0
Heart
0.0


Ovarian ca. OVCAR-8
0.0
Lymph Node pool 1
0.0


Ovary
0.0
Lymph Node pool 2
0.3


Breast ca. MCF-7
0.0
Fetal Skeletal Muscle
8.5


Breast ca. MDA-MB-231
0.1
Skeletal Muscle pool
7.2


Breast ca. BT-549
0.0
Skeletal Muscle
100.0


Breast ca. T47D
0.1
Spleen
0.1


Breast pool
0.0
Thymus
0.0


Trachea
0.3
CNS cancer (glio/astro) SF-268
0.0


Lung
0.1
CNS cancer (glio/astro) T98G
0.0


Fetal Lung
0.1
CNS cancer (neuro; met) SK-N-AS
0.0


Lung ca. NCI-N417
0.0
CNS cancer (astro) SF-539
0.1


Lung ca. LX-1
0.0
CNS cancer (astro) SNB-75
0.0


Lung ca. NCI-H146
0.0
CNS cancer (glio) SNB-19
0.0


Lung ca. SHP-77
0.1
CNS cancer (glio) SF-295
0.0


Lung ca. NCI-H23
0.0
Brain (Amygdala)
0.0


Lung ca. NCI-H460
0.1
Brain (Cerebellum)
0.0


Lung ca. HOP-62
0.0
Brain (Fetal)
0.2


Lung ca. NCI-H522
0.1
Brain (Hippocampus)
0.0


Lung ca. DMS-114
0.0
Cerebral Cortex pool
0.0


Liver
0.0
Brain (Substantia nigra)
0.0


Fetal Liver
0.0
Brain (Thalamus)
0.0


Kidney pool
0.1
Brain (Whole)
0.2


Fetal Kidney
0.0
Spinal Cord
0.0


Renal ca. 786-0
0.1
Adrenal Gland
0.1


Renal ca. A498
0.0
Pituitary Gland
0.1


Renal ca. ACHN
0.1
Salivary Gland
0.2


Renal ca. UO-31
0.0
Thyroid
1.2


Renal ca. TK-10
0.1
Pancreatic ca. PANC-1
0.0


Bladder
0.0
Pancreas pool
0.0










[0930]

317





TABLE ZE










Panel 1.3D











Rel.

Rel.



Exp. %)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
165296240
Tissue Name
165296240













Liver adenocarcinoma
0.0
Kidney (fetal)
0.0


Pancreas
0.0
Renal ca. 786-0
0.0


Pancreatic ca. CAPAN 2
0.0
Renal ca. A498
0.0


Adrenal gland
0.0
Renal ca. RXF 393
0.0


Thyroid
1.4
Renal ca. ACHN
0.0


Salivary gland
0.3
Renal ca. UO-31
0.0


Pituitary gland
0.0
Renal ca. TK-10
0.0


Brain (fetal)
0.1
Liver
0.0


Brain (whole)
0.0
Liver (fetal)
0.0


Brain (amygdala)
0.0
Liver ca. (hepatoblast) HepG2
0.0


Brain (cerebellum)
0.1
Lung
0.0


Brain (hippocampus)
0.1
Lung (fetal)
0.0


Brain (substantia nigra)
0.0
Lung ca. (small cell) LX-1
0.0


Brain (thalamus)
0.1
Lung ca. (small cell) NCI-H69
0.0


Cerebral Cortex
0.0
Lung ca. (s.cell var.) SHP-77
0.0


Spinal cord
0.1
Lung ca. (large cell) NCI-H460
0.0


glio/astro U87-MG
0.0
Lung ca. (non-sm. cell) A549
0.0


glio/astro U-118-MG
0.0
Lung ca. (non-s.cell) NCI-H23
0.0


astrocytoma SW1783
0.0
Lung ca. (non-s.cell) HOP-62
0.0


neuro*; met SK-N-AS
0.0
Lung ca. (non-s.cl) NCI-H522
0.0


astrocytoma SF-539
0.0
Lung ca. (squam.) SW 900
0.0


astrocytoma SNB-75
0.0
Lung ca. (squam.) NCI-H596
0.0


glioma SNB-19
0.0
Mammary gland
0.0


glioma U251
0.0
Breast ca.* (pl.ef) MCF-7
0.0


glioma SF-295
0.0
Breast ca.* (pl.ef) MDA-MB-231
0.0


Heart (fetal)
0.0
Breast ca.* (pl.ef) T47D
0.0


Heart
0.0
Breast ca. BT-549
0.0


Skeletal muscle (fetal)
18.6
Breast ca. MDA-N
0.0


Skeletal muscle
100.0
Ovary
0.0


Bone marrow
0.3
Ovarian ca. OVCAR-3
0.0


Thymus
0.0
Ovarian ca. OVCAR-4
0.0


Spleen
0.1
Ovarian ca. OVCAR-5
0.0


Lymph node
0.2
Ovarian ca. OVCAR-8
0.0


Colorectal
0.0
Ovarian ca. IGROV-1
0.0


Stomach
0.1
Ovarian ca.* (ascites) SK-OV-3
0.0


Small intestine
0.0
Uterus
0.0


Colon ca. SW480
0.0
Placenta
0.0


Colon ca.* SW620 (SW480 met)
0.0
Prostate
0.2


Colon ca. HT29
0.0
Prostate ca.* (bone met) PC-3
0.0


Colon ca. HCT-116
0.0
Testis
0.5


Colon ca. CaCo-2
0.0
Melanoma Hs688(A).T
0.0


Colon ca. tissue (ODO3866)
0.0
Melanoma* (met) Hs688(B).T
0.0


Colon ca. HCC-2998
0.0
Melanoma UACC-62
0.0


Gastric ca.* (liver met) NCI-N87
0.1
Melanoma M14
0.0


Bladder
0.0
Melanoma LOX IMVI
0.0


Trachea
0.1
Melanoma* (met) SK-MEL-5
0.0


Kidney
0.0
Adipose
0.4










[0931]

318





TABLE ZF










Panel 2.2











Rel.

Rel.



Ep. (%)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
173762691
Tissue Name
173762691













Normal Colon
4.7
Kidney Margin (OD04348)
7.3


Colon cancer (OD06064)
0.0
Kidney malignant cancer
6.8




(OD06204B)


Colon Margin (OD06064)
0.0
Kidney normal adjacent tissue
1.5




(OD06204E)


Colon cancer (OD06159)
0.0
Kidney Cancer (OD04450-01)
8.5






Colon Margin (OD06159)
3.2
Kidney Margin (OD04450-03)
4.6






Colon cancer (OD06297-04)
0.0
Kidney Cancer 8120613
5.4


Colon Margin (OD06297-05)
4.4
Kidney Margin 8120614
2.0


CC Gr.2 ascend colon (ODO3921)
1.8
Kidney Cancer 9010320
3.3


CC Margin (ODO3921)
0.0
Kidney Margin 9010321
2.7


Colon cancer metastasis
1.6
Kidney Cancer 8120607
7.6


(OD06104)


Lung Margin (OD06104)
1.6
Kidney Margin 8120608
0.0


Colon mets to lung (OD04451-01)
4.1
Normal Uterus
3.4


Lung Margin (OD04451-02)
0.0
Uterine Cancer 064011
0.0


Normal Prostate
9.2
Normal Thyroid
100.0


Prostate Cancer (OD04410)
2.1
Thyroid Cancer 064010
0.0


Prostate Margin (OD04410)
3.7
Thyroid Cancer A302152
7.3


Normal Ovary
3.8
Thyroid Margin A302153
0.0


Ovarian cancer (OD06283-03)
3.4
Normal Breast
2.6


Ovarian Margin (OD06283-07)
3.3
Breast Cancer (OD04566)
8.5


Ovarian Cancer 064008
17.4
Breast Cancer 1024
36.3


Ovarian cancer (OD06145)
1.4
Breast Cancer (OD04590-01)
10.2


Ovarian Margin (OD06145)
0.0
Breast Cancer Mets
3.1




(OD04590-03)


Ovarian cancer (OD06455-03)
2.3
Breast Cancer Metastasis
10.6




(OD04655-05)


Ovarian Margin (OD06455-07)
3.0
Breast Cancer 064006
12.3


Normal Lung
1.6
Breast Cancer 9100266
7.4


Invasive poor diff. lung adeno
8.8
Breast Margin 9100265
4.9


(ODO4945-01


Lung Margin (ODO4945-03)
4.5
Breast Cancer A209073
0.0


Lung Malignant Cancer
0.0
Breast Margin A2090734
8.0


(OD03126)


Lung Margin (OD03126)
0.0
Breast cancer (OD06083)
16.2


Lung Cancer (OD05014A)
1.6
Breast cancer node metastasis
15.7




(OD06083)


Lung Margin (OD05014B)
1.5
Normal Liver
5.1


Lung cancer (OD06081)
1.4
Liver Cancer 1026
1.4


Lung Margin (OD06081)
1.6
Liver Cancer 1025
4.7


Lung Cancer (OD04237-01)
0.2
Liver Cancer 6004-T
2.1


Lung Margin (OD04237-02)
1.7
Liver Tissue 6004-N
11.8


Ocular Melanoma Metastasis
1.4
Liver Cancer 6005-T
0.0


Ocular Melanoma Margin (Liver)
0.0
Liver Tissue 6005-N
0.0


Melanoma Metastasis
0.0
Liver Cancer 064003
0.0


Melanoma Margin (Lung)
0.0
Normal Bladder
6.7


Normal Kidney
4.6
Bladder Cancer 1023
6.4


Kidney Ca, Nuclear grade 2
10.9
Bladder Cancer A302173
3.0


(OD04338)


Kidney Margin (OD04338)
1.4
Normal Stomach
9.3


Kidney Ca Nuclear grade 1/2
11.0
Gastric Cancer 9060397
0.0


(OD04339)


Kidney Margin (OD04339)
3.8
Stomach Margin 9060396
0.7


Kidney Ca, Clear cell type
0.0
Gastric Cancer 9060395
7.4


(OD04340)


Kidney Margin (OD04340)
3.9
Stomach Margin 9060394
3.5


Kidney Ca, Nuclear grade 3
0.0
Gastric Cancer 064005
3.5


(OD04348)










[0932]

319





TABLE ZG










Panel 3D











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
165465032
Tissue Name
165465032













Daoy- Medulloblastoma
0.0
Ca Ski- Cervical epidermoid
0.0




carcinoma (metastasis)


TE671-Medulloblastoma
100.0
ES-2- Ovarian clear cell carcinoma
0.0


D283 Med- Medulloblastoma
4.8
Ramos- Stimulated with
0.0




PMA/ionomycin 6 h


PFSK-1- Primitive
1.7
Ramos- Stimulated with
2.7


Neuroectodermal

PMA/ionomycin 14 h


XF-498- CNS
0.6
MEG-01- Chronic myelogenous
1.8




leukemia (megokaryoblast)


SNB-78- Glioma
1.5
Raji- Burkitt's lymphoma
8.5


SF-268- Glioblastoma
0.0
Daudi- Burkitt's lymphoma
7.3


T98G- Glioblastoma
0.0
U266- B-cell plasmacytoma
8.3


SK-N-SH- Neuroblastoma
1.8
CA46- Burkitt's lymphoma
1.7


(metastasis)


SF-295- Glioblastoma
3.7
RL-non-Hodgkin's B-cell
0.6




lymphoma


Cerebellum
0.7
JM1- pre-B-cell lymphoma
2.7


Cerebellum
2.7
Jurkat- T cell leukemia
2.2


NCI-H292- Mucoepidermoid
1.8
TF-1- Erythroleukemia
1.2


lung carcinoma


DMS-114- Small cell lung
1.8
HUT 78- T-cell lymphoma
2.0


cancer


DMS-79- Small cell lung cancer
6.6
U937- Histiocytic lymphoma
0.0


NCI-H146- Small cell lung
9.0
KU-812- Myelogenous leukemia
0.6


cancer


NCI-H526- Small cell lung
2.1
769-P- Clear cell renal carcinoma
0.0


cancer


NCI-N417- Small cell lung
0.0
Caki-2- Clear cell renal carcinoma
2.2


cancer


NCI-H82- Small cell lung cancer
5.3
SW 839- Clear cell renal carcinoma
0.5


NCI-H157- Squamous cell lung
0.0
Rhabdoid kidney tumor
4.0


cancer (metastasis)


NCI-H1155- Large cell lung
7.2
Hs766T- Pancreatic carcinoma(LN
0.5


cancer

metastasis)


NCI-H1299- Large cell lung
1.3
CAPAN-1- Pancreatic
1.4


cancer

adenocarcinoma (liver metastasis)


NCI-H727- Lung carcinoid
4.6
SU86.86- Pancreatic carcinoma
1.5




(liver metastasis)


NCI-UMC-11- Lung carcinoid
7.0
BxPC-3- Pancreatic
1.7




adenocarcinoma


LX-1- Small cell lung cancer
1.6
HPAC- Pancreatic adenocarcinoma
0.6


Colo-205- Colon cancer
5.0
MIA PaCa-2- Pancreatic carcinoma
0.0


KM12- Colon cancer
0.0
CFPAC-1- Pancreatic ductal
5.7




adenocarcinoma


KM20L2- Colon cancer
1.1
PANC-1- Pancreatic epithelioid
0.1




ductal carcinoma


NCI-H716- Colon cancer
1.7
T24- Bladder carcinma (transitional
1.7




cell)


SW-48- Colon adenocarcinoma
2.0
5637- Bladder carcinoma
0.0


SW1116- Colon adenocarcinoma
3.1
HT-1197- Bladder carcinoma
1.4


LS 174T- Colon adenocarcinoma
1.3
UM-UC-3- Bladder carcinma
0.6




(transitional cell)


SW-948- Colon adenocarcinoma
0.0
A204- Rhabdomyosarcoma
0.4


SW-480- Colon adenocarcinoma
1.6
HT-1080- Fibrosarcoma
2.7


NCI-SNU-5- Gastric carcinoma
0.3
MG-63- Osteosarcoma
0.0


KATO III- Gastric carcinoma
1.4
SK-LMS-1- Leiomyosarcoma
4.6




(vulva)


NCI-SNU-16- Gastric carcinoma
4.1
SJRH30- Rhabdomyosarcoma (met
22.8




to bone marrow)


NCI-SNU-1- Gastric carcinoma
2.3
A431- Epidermoid carcinoma
0.8


RF-1- Gastric adenocarcinoma
3.1
WM266-4- Melanoma
0.0


RF-48- Gastric adenocarcinoma
3.8
DU 145- Prostate carcinoma (brain
0.0




metastasis)


MKN-45- Gastric carcinoma
6.3
MDA-MB-468- Breast
1.1




adenocarcinoma


NCI-N87- Gastric carcinoma
2.0
SCC-4- Squamous cell carcinoma of
0.0




tongue


OVCAR-5- Ovarian carcinoma
0.0
SCC-9- Squamous cell carcinoma of
0.0




tongue


RL95-2- Uterine carcinoma
0.6
SCC-15- Squamous cell carcinoma
0.0




of tongue


HelaS3- Cervical
1.3
CAL 27- Squamous cell carcinoma
3.1


adenocarcinoma

of tongue










[0933]

320





TABLE ZH










Panel 4.1D











Rel.

Rel.



Exp. ()

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
169828983
Tissue Name
169828983













Secondary Th1 act
20.0
HUVEC IL-1beta
9.0


Secondary Th2 act
70.7
HUVEC IFN gamma
19.5


Secondary Tr1 act
53.2
HUVEC TNF alpha + IFN gamma
9.3


Secondary Th1 rest
8.0
HUVEC TNF alpha + IL4
28.1


Secondary Th2 rest
27.9
HUVEC IL-11
13.0


Secondary Tr1 rest
20.9
Lung Microvascular EC none
41.8


PrimaryTh1 act
33.4
Lung Microvascular EC TNF alpha +
16.0




IL-1beta


Primary Th2 act
20.7
Microvascular Dermal EC none
13.8


Primary Tr1 act
22.5
Microsvasular Dermal EC
10.7




TNF alpha + IL-1beta


Primary Th1 rest
14.2
Bronchial epithelium TNF alpha +
21.9




IL-1beta


Primary Th2 rest
17.2
Small airway epithelium none
3.9


Primary Tr1 rest
23.0
Small airway epithelium TNF alpha +
8.7




IL-1beta


CD45RA CD4 lymphocyte act
38.7
Coronery artery SMC rest
16.6


CD45RO CD4 lymphocyte act
42.6
Coronery artery SMC TNF alpha +
0.0




IL-1beta


CD8 lymphocyte act
77.4
Astrocytes rest
5.6


Secondary CD8 lymphocyte rest
46.7
Astrocytes TNF alpha + IL-1beta
9.9


Secondary CD8 lymphocyte act
37.4
KU-812 (Basophil) rest
19.5


CD4 lymphocyte none
7.3
KU-812 (Basophil)
19.3




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
23.8
CCD1106 (Keratinocytes) none
41.2


CH11


LAK cells rest
41.2
CCD1106 (Keratinocytes)
0.0




TNF alpha + IL-1beta


LAK cells IL-2
46.0
Liver cirrhosis
16.3


LAK cells IL-2 + IL-12
29.9
NCI-H292 none
41.8


LAK cells IL-2 + IFN gamma
45.4
NCI-H292 IL-4
33.7


LAK cells IL-2 + IL-18
52.5
NCI-H292 IL-9
59.0


LAK cells PMA/ionomycin
37.6
NCI-H292 IL-13
17.8


NK Cells IL-2 rest
31.2
NCI-H292 IFN gamma
41.5


Two Way MLR 3 day
36.6
HPAEC none
21.2


Two Way MLR 5 day
10.6
HPAEC TNF alpha + IL-1beta
14.7


Two Way MLR 7 day
25.7
Lung fibroblast none
19.2


PBMC rest
3.7
Lung fibroblast TNF alpha +
19.8




IL-1beta


PBMC PWM
38.7
Lung fibroblast IL-4
17.9


PBMC PHA-L
38.7
Lung fibroblast IL-9
17.0


Ramos (B cell) none
49.7
Lung fibroblast IL-13
14.0


Ramos (B cell) ionomycin
38.7
Lung fibroblast IFN gamma
0.0


B lymphocytes PWM
16.6
Dermal fibroblast CCD1070 rest
24.7


B lymphocytes CD40L and IL-4
100.0
Dermal fibroblast CCD1070 TNF
44.4




alpha


EOL-1 dbcAMP
40.6
Dermal fibroblast CCD1070
9.2




IL-1beta


EOL-1 dbcAMP
19.3
Dermal fibroblast IFN gamma
6.7


PMA/ionomycin


Dendritic cells none
31.6
Dermal fibroblast IL-4
17.2


Dendritic cells LPS
15.0
Dermal Fibroblasts rest
12.3


Dendritic cells anti-CD40
34.2
Neutrophils TNF a + LPS
3.1


Monocytes rest
23.5
Neutrophils rest
0.0


Monocytes LPS
20.9
Colon
46.0


Macrophages rest
18.4
Lung
5.3


Macrophages LPS
0.0
Thymus
62.0


HUVEC none
12.5
Kidney
48.3


HUVEC starved
18.3










[0934]

321





TABLE ZI










Panel 5 Islet











Rel.

Rel.



Exp. ()

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
172203503
Tissue Name
172203503













97457_Patient-02go_adipose
0.0
94709_Donor 2 AM - A_adipose
0.0


97476_Patient-07sk_skeletal
6.9
94710_Donor 2 AM - B_adipose
0.0


muscle


97477_Patient-07ut_uterus
0.0
94711_Donor 2 AM - C_adipose
0.0


97478_Patient-07pl_placenta
0.0
94712_Donor 2 AD - A_adipose
0.0


99167_Bayer Patient 1
0.0
94713_Donor 2 AD - B_adipose
0.0


97482_Patient-08ut_uterus
0.0
94714_Donor 2 AD - C_adipose
0.0


97483_Patient-08pl_placenta
0.0
94742_Donor 3 U - A_Mesenchymal
0.0




Stem Cells


97486_Patient-09sk_skeletal
6.2
94743_Donor 3 U - B_Mesenchymal
0.0


muscle

Stem Cells


97487_Patient-09ut_uterus
0.0
94730_Donor 3 AM - A_adipose
0.0


97488_Patient-09pl_placenta
0.0
94731_Donor 3 AM - B_adipose
0.0


97492_Patient-10ut_uterus
0.0
94732_Donor 3 AM - C_adipose
0.0


97493_Patient-10pl_placenta
0.0
94733_Donor 3 AD - A_adipose
0.0


97495_Patient-11go_adipose
0.0
94734_Donor 3 AD - B_adipose
0.0


97496_Patient-11sk_skeletal
21.0
94735_Donor 3 AD - C_adipose
0.0


muscle


97497_Patient-11ut_uterus
0.0
77138_Liver_HepG2untreated
0.1


97498_Patient-11pl_placenta
0.0
73556_Heart_Cardiac stromal cells
0.0




(primary)


97500_Patient-12go_adipose
0.1
81735_Small Intestine
0.0


97501_Patient-12sk_skeletal
100.0
72409_Kidney_Proximal Convoluted
0.0


muscle

Tubule


97502_Patient-12ut_uterus
0.0
82685_Small intestine_Duodenum
0.0


97503_Patient-12pl_placenta
0.0
90650_Adrenal_Adrenocortical
0.0




adenoma


94721_Donor 2 U -
0.0
72410_Kidney_HRCE
0.1


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
72411_Kidney_HRE
0.0


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
73139_Uterus_Uterine smooth
0.0


C_Mesenchymal Stem Cells

muscle cells










[0935]

322





TABLE ZJ










Panel 5D











Rel.

Rel.



Ex. (%)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
166510707
Tissue Name
166510707













97457_Patient-02go_adipose
0.0
94709_Donor 2 AM - A_adipose
0.0


97476_Patient-07sk_skeletal
6.1
94710_Donor 2 AM - B_adipose
0.0


muscle


97477_Patient-07ut_uterus
0.0
94711_Donor 2 AM - C_adipose
0.0


97478_Patient-07pl_placenta
0.0
94712_Donor 2 AD - A_adipose
0.0


97481_Patient-08sk_skeletal
5.3
94713_Donor 2 AD - B_adipose
0.0


muscle


97482_Patient-08ut_uterus
0.0
94714_Donor 2 AD - C_adipose
0.0


97483_Patient-08pl_placenta
0.0
94742_Donor 3 U - A_Mesenchymal
0.0




Stem Cells


97486_Patient-09sk_skeletal
7.4
94743_Donor 3 U - B_Mesenchymal
0.1


muscle

Stem Cells


97487_Patient-09ut_uterus
0.0
94730_Donor 3 AM - A_adipose
0.0


97488_Patient-09pl_placenta
0.1
94731_Donor 3 AM - B_adipose
0.1


97492_Patient-10ut_uterus
0.0
94732_Donor 3 AM - C_adipose
0.1


97493_Patient-10pl_placenta
0.0
94733_Donor 3 AD - A_adipose
0.0


97495_Patient-11go_adipose
0.0
94734_Donor 3 AD - B_adipose
0.0


97496_Patient-11sk_skeletal
20.6
94735_Donor 3 AD - C_adipose
0.0


muscle


97497_Patient-11ut_uterus
0.2
77138_Liver_HepG2untreated
0.2


97498_Patient-11pl_placenta
0.0
73556_Heart_Cardiac stromal cells
0.0




(primary)


97500_Patient-12go_adipose
0.0
81735_Small Intestine
0.1


97501_Patient-12sk_skeletal
100.0
72409_Kidney_Proximal Convoluted
0.0


muscle

Tubule


97502_Patient-12ut_uterus
0.0
82685_Small intestine_Duodenum
0.0


97503_Patient-12pl_placenta
0.0
90650_Adrenal_Adrenocortical
0.0




adenoma


94721_Donor 2 U -
0.0
72410_Kidney_HRCE
0.0


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
72411_Kidney_HRE
0.1


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
73139_Uterus_Uterine smooth
0.0


C_Mesenchymal Stem Cells

muscle cells










[0936] CNS_neurodegeneration_v1.0 Summary: Ag3267 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Please see Panel 1.4 for a discussion of this gene in treatment of central nervous system disorders.


[0937] General_screening_panel_v1.4 Summary: Ag3267 Two experiments with same probe-primer sets are in excellent agreement. Highest expression of this gene is detected in skeletal muscle (CTs=21-22.7). Interestingly, expression of this gene is higher in adult compared to to fetal skeletal muscle. Therefore, expression of this gene may be used to distinguish adult skeletal muscle from fetal tissue and also other samples used in this panel.


[0938] This gene codes for SERCA1, a magnesium dependent enzyme that catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. It contributes to calcium sequestration involved in muscular excitation/contraction. SERCA 1 is an integral membrane protein of the sarcoplasmic and endoplasmic reticulum and has 2 alternative spliced isoforms, serca1a/atp2a1a/adult and serca1b/atp2a1b/neonatal. The SERCA1 adult isoform accounts for more than 99% of serca1 expressed in adult, while isoform serca1b predominates in neo-natal fibers. Defects in atp2a1 are associated with some forms of the autosomal recessive inheritance of the Brody disease (bd), characterized by increasing impairment of relaxation of fast twist skeletal muscle during exercise. In addition, at Curagen it was found that in the muscle of the lean Cast/Ei mouse there was a mutation in SERCA1 which ablates its ATPase activity. The presence of a nonfunctional SERCA1 may lead to increased futile cycling of calcium, which may result in a leaner phenotype of these animals. Thus, an antagonist for SERCA1 may increase futile cycling and energy expenditure and could be beneficial in the treatment of obesity. On the other hand, increased activity of SERCA1 will replenish the calcium pool for adequate excitation-contraction coupling, leading to a better exercise-dependent insulin sensitivity of the muscle. Therefore, an agonist of SERCA1 could be beneficial for the treatment of diabetes.


[0939] This gene also shows low but ubiquitous expression in this panel, with moderate to low expression also seen in all the regions of brain, including including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0940] Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys J B, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium. July 2000;28(1):1-21. Review.PMID: 10942700; Odermatt A, Barton K, Khanna V K, Mathieu J, Escolar D, Kuntzer T, Karpati G, MacLennan D H. The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. HumGenet.May 2000;106(5):482-91. PMID: 10914677; Algenstaedt P, Antonetti D A, Yaffe M B, Kahn C R. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart. J Biol Chem. Sep. 19, 1997;272(38):23696-702. PMID: 9295312; Thelen M H, Muller A, Zuidwijk M J, van der Linden G C, Simonides W S, van Hardeveld C. Differential regulation of the expression of fast-type sarcoplasmic-reticulum Ca(2+)-ATPase by thyroid hormone and insulin-like growth factor-I in the L6 muscle cell line.Biochem J. Oct. 15, 1994;303 (Pt 2):467-74. PMID: 7980406.


[0941] General_screening_panel_v1.7 Summary: Ag3267 Highest expression of this gene is detected in skeletal muscle (CTs=20). The expression profile in this panel correlates with that seen in panel 1.4. Please see panel 1.4 for further discussion of this gene.


[0942] Panel 1.3D Summary: Ag3267 Highest expression of this gene is detected in skeletal muscle (CTs=21.4). The expression profile in this panel correlates with that seen in panel 1.4. Please see panel 1.4 for further discussion on the utility of this gene.


[0943] Panel 2.2 Summary: Ag3267 Highest expression of this gene is detected in normal thyroid (CT=30.6). Low expression of this gene is also seen in gastric, bladder, breast, thyroid, kidney and ovarian cancers. Therefore, therapeutic modulation of this gene may be useful in the treatment of gastric, bladder, breast, thyroid, kidney and ovarian cancers.


[0944] Panel 3D Summary: Ag3267 Highest expression of this gene is detected in medulloblastoma cell line (CT=29). Moderate to low expression of this gene is seen in number of cell lines derived from tongue, bone, pancreatic, lymphoma, renal, gastric, colon, lung and brain cancers. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of tongue, bone, pancreatic, lymphoma, renal, gastric, colon, lung and brain cancers.


[0945] Panel 4.1D Summary: Ag3267 Highest expression of this gene is detected in CD40L and IL-4 treated B lymphocytes (CT=32.8). This gene show low expression in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, monocyte, and activated peripheral blood mononuclear cell family, as well as normal tissues represented by colon, thymus and kidney. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0946] Panel 5 Islet Summary: Ag3267 Moderate to high expression of this gene is restricted to skeletal muscle from diabetic and non-diabetic patients (CTs=26-30.3). Please see panel 1.4 for further discussion of this gene.


[0947] Panel 5D Summary: Ag3267 Moderate to high expression of this gene is restricted to skeletal muscle from diabetic and non-diabetic patients (CTs=25-29.3). Please see panel 1.4 for further discussion of this gene.


[0948] AA. CG93541-01: Human Autotaxin-t-Like (atx-t) Protein.


[0949] Expression of gene CG93541-01 was assessed using the primer-probe set Ag3857, described in Table AAA. Results of the RTQ-PCR runs are shown in Tables AAB, AAC, AAD, AAE, AAF and AAG.
323TABLE AAAProbe Name AG3857SEQ IDPrimersLengthStart PositionNoForward5′-tgcctggaactctaggaagaat-3′221216464ProbeTET-5′-tcgatccaaatttagcaacaatgcta-3′-TAMRA261238465Reverse5′-agattggcaataatggctttg-3′211274466


[0950]

324





TABLE AAB










CNS neurodegeneration v1.0











Rel. Exp.(%)




Ag3857, Run



Tissue Name
212187599














AD 1 Hippo
16.8



AD 2 Hippo
28.3



AD 3 Hippo
9.5



AD 4 Hippo
8.1



AD 5 hippo
36.9



AD 6 Hippo
59.5



Control 2 Hippo
49.3



Control 4 Hippo
33.9



Control (Path) 3 Hippo
46.3



AD 1 Temporal Ctx
31.2



AD 2 Temporal Ctx
26.4



AD 3 Temporal Ctx
5.1



AD 4 Temporal Ctx
26.4



AD 5 Inf Temporal Ctx
81.8



AD 5 Sup Temporal Ctx
90.1



AD 6 Inf Temporal Ctx
59.0



AD 6 Sup Temporal Ctx
36.6



Control 1 Temporal Ctx
3.9



Control 2 Temporal Ctx
40.1



Control 3 Temporal Ctx
11.6



Control 4 Temporal Ctx
6.4



Control (Path) 1 Temporal Ctx
30.6



Control (Path) 2 Temporal Ctx
12.9



Control (Path) 3 Temporal Ctx
1.6



Control (Path) 4 Temporal Ctx
11.3



AD 1 Occipital Ctx
19.1



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
8.7



AD 4 Occipital Ctx
26.1



AD 5 Occipital Ctx
14.7



AD 6 Occipital Ctx
47.3



Control 1 Occipital Ctx
4.1



Control 2 Occipital Ctx
62.9



Control 3 Occipital Ctx
10.4



Control 4 Occipital Ctx
13.7



Control (Path) 1 Occipital Ctx
100.0



Control (Path) 2 Occipital Ctx
15.1



Control (Path) 3 Occipital Ctx
4.0



Control (Path) 4 Occipital Ctx
10.4



Control 1 Parietal Ctx
10.2



Control 2 Parietal Ctx
38.4



Control 3 Parietal Ctx
19.6



Control (Path) 1 Parietal Ctx
38.4



Control (Path) 2 Parietal Ctx
20.3



Control (Path) 3 Parietal Ctx
1.5



Control (Path) 4 Parietal Ctx
21.0











[0951]

325





TABLE AAC










General screening panel v1.5











Rel. Exp.(%)




Ag3857, Run



Tissue Name
244371052














Adipose
15.5



Melanoma* Hs688(A).T
44.4



Melanoma* Hs688(B).T
8.7



Melanoma* M14
5.9



Melanoma* LOXIMVI
0.2



Melanoma* SK-MEL-5
0.1



Squamous Cell carcinoma SCC-4
0.0



Testis Pool
6.4



Prostate ca.* (bone met) PC-3
0.2



Prostate Pool
8.5



Placenta
9.6



Uterus Pool
28.3



Ovarian ca. OVCAR-3
0.1



Ovarian ca. SK-OV-3
4.2



Ovarian ca. OVCAR-4
0.1



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
12.3



Breast ca. MCF-7
0.1



Breast ca. MDA-MB-231
0.2



Breast ca. BT 549
3.5



Breast ca. T47D
0.0



Breast ca. MDA-N
6.7



Breast Pool
40.1



Trachea
2.4



Lung
1.7



Fetal Lung
41.8



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.6



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.1



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.1



Lung ca. NCI-H460
0.2



Lung ca. HOP-62
0.7



Lung ca. NCI-H522
0.1



Liver
0.4



Fetal Liver
17.6



Liver ca. HepG2
0.2



Kidney Pool
21.0



Fetal Kidney
8.8



Renal ca. 786-0
0.0



Renal ca. A498
1.5



Renal ca. ACHN
0.3



Renal ca. UO-31
0.0



Renal ca. TK-10
0.2



Bladder
7.0



Gastric ca. (liver met.) NCI-N87
0.2



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.1



Colon ca* (SW480 met) SW620
0.0



Colon ca. HT29
0.1



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.1



Colon cancer tissue
7.9



Colon ca. SDW1116
0.1



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
39.0



Small Intestine Pool
20.7



Stomach Pool
20.9



Bone Marrow Pool
4.4



Fetal Heart
0.8



Heart Pool
6.2



Lymph Node Pool
15.7



Fetal Skeletal Muscle
3.6



Skeletal Muscle Pool
3.7



Spleen Pool
6.4



Thymus Pool
15.0



CNS cancer (glio/astro) U87-MG
26.2



CNS cancer (glio/astro) U-118-MG
12.2



CNS cancer (neuro;met) SK-N-AS
0.6



CNS cancer (astro) SF-539
3.0



CNS cancer (astro) SNB-75
57.4



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
8.1



Brain (Amygdala) Pool
53.6



Brain (cerebellum)
31.0



Brain (fetal)
1.2



Brain (Hippocampus) Pool
51.4



Cerebral Cortex Pool
51.8



Brain (Substantia nigra) Pool
47.0



Brain (Thalamus) Pool
87.7



Brain (whole)
44.4



Spinal Cord Pool
100.0



Adrenal Gland
15.7



Pituitary gland Pool
5.4



Salivary Gland
0.7



Thyroid (female)
2.4



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
28.1











[0952]

326





TABLE AAD










Panel 2.2











Rel. Exp.(%)




Ag3857, Run



Tissue Name
173762112














Normal Colon
5.8



Colon cancer (OD06064)
7.9



Colon Margin (OD06064)
12.2



Colon cancer (OD06159)
0.7



Colon Margin (OD06159)
6.3



Colon cancer (OD06297-04)
0.9



Colon Margin (OD06297-05)
7.2



CC Gr.2 ascend colon (ODO3921)
3.6



CC Margin (ODO3921)
2.4



Colon cancer metastasis
2.7



(OD06104)



Lung Margin (OD06104)
9.9



Colon mets to lung (OD04451-01)
0.8



Lung Margin (OD04451-02)
7.9



Normal Prostate
3.1



Prostate Cancer (OD04410)
0.8



Prostate Margin (OD04410)
3.8



Normal Ovary
3.5



Ovarian cancer (OD06283-03)
0.3



Ovarian Margin (OD06283-07)
16.3



Ovarian Cancer 064008
1.8



Ovarian cancer (OD06145)
11.7



Ovarian Margin (OD06145)
12.8



Ovarian cancer (OD06455-03)
0.1



Ovarian Margin (OD06455-07)
6.7



Normal Lung
7.1



Invasive poor diff. lung adeno
3.2



(ODO4945-01



Lung Margin (ODO4945-03)
5.7



Lung Malignant Cancer
6.8



(OD03126)



Lung Margin (OD03126)
3.5



Lung Cancer (OD05014A)
6.4



Lung Margin (OD05014B)
33.9



Lung cancer (OD06081)
0.7



Lung Margin (OD06081)
2.9



Lung Cancer (OD04237-01)
2.8



Lung Margin (OD04237-02)
29.1



Ocular Melanoma Metastasis
34.2



Ocular Melanoma Margin (Liver)
10.2



Melanoma Metastasis
12.7



Melanoma Margin (Lung)
13.6



Normal Kidney
3.7



Kidney Ca, Nuclear grade 2
16.6



(OD04338)



Kidney Margin (OD04338)
6.7



Kidney Ca Nuclear grade 1/2
24.0



(OD04339)



Kidney Margin (OD04339)
14.6



Kidney Ca, Clear cell type
100.0



(OD04340)



Kidney Margin (OD04340)
8.1



Kidney Ca, Nuclear grade 3
13.0



(OD04348)



Kidney Margin (OD04348)
47.6



Kidney malignant cancer
1.9



(OD06204B)



Kidney normal adjacent tissue
12.4



(OD06204E)



Kidney Cancer (OD04450-01)
5.2



Kidney Margin (OD04450-03)
8.0



Kidney Cancer 8120613
0.6



Kidney Margin 8120614
3.4



Kidney Cancer 9010320
2.6



Kidney Margin 9010321
4.1



Kidney Cancer 8120607
7.2



Kidney Margin 8120608
6.5



Normal Uterus
23.8



Uterine Cancer 064011
8.5



Normal Thyroid
0.4



Thyroid Cancer 064010
1.6



Thyroid Cancer A302152
13.8



Thyroid Margin A302153
0.8



Normal Breast
18.8



Breast Cancer (OD04566)
1.1



Breast Cancer 1024
1.3



Breast Cancer (OD04590-01)
0.8



Breast Cancer Mets
7.4



(OD04590-03)



Breast Cancer Metastasis
7.4



(0D04655-05)



Breast Cancer 064006
2.3



Breast Cancer 9100266
1.5



Breast Margin 9100265
6.9



Breast Cancer A209073
1.8



Breast Margin A2090734
6.3



Breast cancer (OD06083)
6.1



Breast cancer node metastasis
6.3



(OD06083)



Normal Liver
1.6



Liver Cancer 1026
5.5



Liver Cancer 1025
2.1



Liver Cancer 6004-T
3.7



Liver Tissue 6004-N
3.6



Liver Cancer 6005-T
10.9



Liver Tissue 6005-N
4.1



Liver Cancer 064003
5.7



Normal Bladder
3.2



Bladder Cancer 1023
2.2



Bladder Cancer A302173
15.2



Normal Stomach
14.1



Gastric Cancer 9060397
0.8



Stomach Margin 9060396
3.1



Gastric Cancer 9060395
2.5



Stomach Margin 9060394
8.2



Gastric Cancer 064005
3.8











[0953]

327





TABLE AAE










Panel 4.1D











Rel. Ex.(%)




Ag3857, Run



Tissue Name
170120945














Secondary Th1 act
1.9



Secondary Th2 act
0.4



Secondary Tr1 act
0.2



Secondary Th1 rest
1.0



Secondary Th2 rest
0.1



Secondary Tr1 rest
0.2



Primary Th1 act
0.9



Primary Th2 act
0.1



Primary Tr1 act
0.3



Primary Th1 rest
0.3



Primary Th2 rest
0.1



Primary Tr1 rest
0.1



CD45RA CD4 lymphocyte act
9.3



CD45RO CD4 lymphocyte act
0.4



CD8 lymphocyte act
0.1



Secondary CD8 lymphocyte rest
0.4



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.1



2ry Th1/Th2/Tr1_anti-CD95
0.4



CH11



LAK cells rest
6.0



LAK cells IL-2
0.2



LAK cells IL-2 + IL-12
0.2



LAK cells IL-2 + IFN gamma
0.4



LAK cells IL-2 + IL-18
0.4



LAK cells PMA/ionomycin
4.1



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
2.1



Two Way MLR 5 day
0.5



Two Way MLR 7 day
0.4



PBMC rest
0.1



PBMC PWM
0.4



PBMC PHA-L
0.3



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.2



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
3.2



EOL-1 dbcAMP
0.7



PMA/ionomycin



Dendritic cells none
19.6



Dendritic cells LPS
9.3



Dendritic cells anti-CD40
13.5



Monocytes rest
0.1



Monocytes LPS
8.9



Macrophages rest
0.0



Macrophages LPS
0.6



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.1



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.1



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC
0.0



TNFalpha + IL-1beta



Bronchial epithelium TNFalpha +
0.0



IL1beta



Small airway epithelium none
0.1



Small airway epithelium TNFalpha +
0.0



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMG TNFalpha +
0.0



IL-1beta



Astrocytes rest
0.6



Astrocytes TNFalpha + IL-1beta
1.6



KU-812 (Basophil) rest
0.0



KU-812 (Basophil)
0.1



PMA/ionomycin



CCD1106 (Keratinocytes) none
0.0



CCD1106 (Keratinocytes)
0.0



TNFalpha + IL-1beta



Liver cirrhosis
2.2



NCI-H292 none
0.0



NCI-H292 IL-4
0.0



NCI-H292 IL-9
0.0



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.0



HPAEC TNF alpha + IL-1beta
0.0



Lung fibroblast none
1.9



Lung fibroblast TNF alpha +
1.2



IL-1beta



Lung fibroblast IL-4
1.3



Lung fibroblast IL-9
1.8



Lung fibroblast IL-13
0.9



Lung fibroblast IFN gamma
1.0



Dermal fibroblast CCD1070 rest
26.1



Dermal fibroblast CCD1070 TNF
17.7



alpha



Dermal fibroblast CCD1070
18.0



IL-1beta



Dermal fibroblast IFN gamma
62.4



Dermal fibroblast IL-4
100.0



Dermal Fibroblasts rest
49.0



Neutrophils TNFa + LPS
0.1



Neutrophils rest
0.1



Colon
2.7



Lung
50.7



Thymus
3.2



Kidney
13.0











[0954]

328





TABLE AAF










Panel 5 Islet











Rel. Exp.(%)




Ag3857, Run



Tissue Name
172213998














97457_Patient-02go_adipose
59.5



97476_Patient-07sk_skeletal muscle
18.0



97477_Patient-07ut_uterus
25.5



97478_Patient-07pl_placenta
52.1



99167_Bayer Patient 1
53.2



97482_Patient-08ut_uterus
21.5



97483_Patient-08pl_placenta
34.4



97486_Patient-09sk_skeletal muscle
1.9



97487_Patient-09ut_uterus
22 2



97488_Patient-09pl_placenta
27.9



97492_Patient-10ut_uterus
41.2



97493_Patient-10pl_placenta
75.8



97495_Patient-11go_adipose
13.8



97496_Patient-11sk_skeletal muscle
2.8



97497_Patient-11ut_uterus
36.9



97498_Patient-11pl_placenta
13.4



97500_Patient-12go_adipose
42.0



97501_Patient-12sk_skeletal muscle
8.8



97502_Patient-12ut_uterus
38.2



97503_Patient-12pl_placenta
22.7



94721_Donor 2 U -
22.5



A_Mesenchymal Stem Cells



94722_Donor 2 U -
12.9



A_Mesenchymal Stem Cells



94723_Donor 2 U -
25.5



C_Mesenchymal Stem Cells



94709_Donor 2 AM - A_adipose
46.0



94710_Donor 2 AM - B_adipose
22.1



94711_Donor 2 AM - C_adipose
17.6



94712_Donor 2 AD - A_adipose
78.5



94713_Donor 2 AD - B_adipose
80.1



94714_Donor 2 AD - C_adipose
100.0



94742_Donor 3 U - A_Mesenchymal
12.9



Stem Cells



94743_Donor 3 U - B_Mesenchymal
30.1



Stem Cells



94730_Donor 3 AM - A_adipose
50.7



94731_Donor 3 AM - B_adipose
25.2



94732_Donor 3 AM - C_adipose
23.5



94733_Donor 3 AD - A_adipose
90.8



94734_Donor 3 AD - B_adipose
27.2



94735_Donor 3 AD - C_adipose
77.9



77138_Liver_HepG2untreated
3.9



73556_Heart_Cardiac stromal cells
0.1



(primary)



81735_Small Intestine
11.4



72409_Kidney_Proximal Convoluted
1.4



82685_Small intestine_Duodenum
4.1



90650_Adrenal_Adrenocortical
5.1



adenoma



72410_Kidney_HRCE
1.7



72411_Kidney_HRE
0.2



73139_Uterus_Uterine smooth
2.5



muscle cells











[0955]

329





TABLE AAG










Panel 5D











Rel. Exp.(%)




Ag3857, Run



Tissue Name
170222682














97457_Patient-02go_adipose
54.7



97476_Patient-07sk_skeletal muscle
16.7



97477_Patient-07ut_uterus
21.6



97478_Patient-07pl_placenta
52.1



97481_Patient-08sk_skeletal muscle
22.5



97482_Patient-08ut_uterus
21.8



97483_Patient-08pl_placenta
39.5



97486_Patient-09sk_skeletal muscle
2.9



97487_Patient-09ut_uterus
14.6



97488_Patient-09pl_placenta
29.3



97492_Patient-10ut_uterus
31.2



97493_Patient-10pl_placenta
62.4



97495_Patient-11go_adipose
16.3



97496_Patient-11sk_skeletal muscle
1.9



97497_Patient-11ut_uterus
33.7



97498_Patient-11pl_placenta
20.2



97500_Patient-12go_adipose
32.1



97501_Patient-12sk_skeletal muscle
6.7



97502_Patient-12ut_uterus
35.6



97503_Patient-12pl_placenta
25.0



94721_Donor 2 U -
27.2



A_Mesenchymal Stem Cells



94722_Donor 2 U -
15.7



B_Mesenchymal Stem Cells



94723_Donor 2 U -
18.3



C_Mesenchymal Stem Cells



94709_Donor 2 AM - A_adipose
39.8



94710_Donor 2 AM - B_adipose
29.9



94711_Donor 2 AM - C_adipose
19.9



94712_Donor 2 AD - A_adipose
76.3



94713_Donor 2 AD - B_adipose
100.0



94714_Donor 2 AD - C_adipose
93.3



94742_Donor 3 U - A_Mesenchymal
18.7



Stem Cells



94743_Donor 3 U - B_Mesenchymal
27.9



Stem Cells



94730_Donor 3 AM - A_adipose
52.9



94731_Donor 3 AM - B_adipose
28.1



94732_Donor 3 AM - C_adipose
32.1



94733_Donor 3 AD - A_adipose
77.9



94734_Donor 3 AD - B_adipose
41.2



94735_Donor 3 AD - C_adipose
67.8



77138_Liver_HepG2untreated
4.6



73556_Heart_Cardiac stromal cells
0.2



(primary)



81735_Small Intestine
9.4



72409_Kidney_Proximal Convoluted
2.2



Tubule



82685_Small intestine_Duodenum
25.0



90650_Adrenal_Adrenocortical
3.8



adenoma



72410_Kidney_HRCE
2.2



72411_Kidney_HRE
0.3



73139_Uterus_Uterine smooth
2.6



muscle cells











[0956] CNS_neurodegeneration_v1.0 Summary: Ag3857 This panel does not show differential expression of this gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.5 for discussion of this gene in the central nervous system.


[0957] General_screening_panel_v1.5 Summary: Ag3857 Highest expression of the CG93541-01 gene is seen in spinal cord (CT=25.1). This gene is also expressed at high regions throughout the CNS. Thus, expression of this gene may be used to differentiate between brain derived samples and other samples on this panel and as a marker of brain tissue. This gene is homologous to autotaxin, a gene that is enriched in the spinal cord and brain of rats and may be involved in oligodendrocyte function (Fuss B. J Neurosci Dec. 1, 1997;17(23):9095-103). Therefore, the strong association of this gene with the CNS and its homology to autotaxin suggest that therapeutic modulation of this gene or gene product may be useful in the treatment of neurologic disease and specifically demyelinating diseases such as multiple sclerosis.


[0958] In addition, this gene is expressed at much higher levels in fetal lung and liver tissue (CTs=26.5-27.5) when compared to expression in the adult counterpart (CTs=31-33). Thus, expression of this gene may be used to differentiate between the fetal and adult sources of these tissues. The relative overexpression of this gene in these fetal tissues also suggests that the protein product may enhance growth or development of these organs in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene may be useful in the treatment of diseases that affect these organs.


[0959] Among metabolic tissues, this gene is highly expressed in pancreas, adrenal, fetal liver, and adipose. It is expressed at moderate levels in pituitary, thyroid, heart and fetal and adult skeletal muscle, with low but significant expression in liver and fetal heart. Please see panel 5I for further discussion of this gene.


[0960] Panel 2.2 Summary: Ag3857 Highest expression is seen in kidney cancer (CT=28.2). In addition, this gene is more highly expressed in kidney cancer than in the corresponding normal adjacent tissue. Thus, expression of this gene could be used as a marker of this cancer. Furthemore, therapeutic modulation of the expression or function of this gene product may be useful in the treatment of kidney cancer.


[0961] Panel 4.1D Summary: Ag3857 Highest expression of this gene is seen in dermal fibroblasts treated with IL-4 (CT=25.3). In addition, high levels of expression are seen in a cluster of samples derived from dermal fibroblasts. Thus, expression of this gene may be used as a marker of this cell. In addition, therapeutic modulation of the expression or function of this gene may be useful in the treatment of skin disorders, including psoriasis.


[0962] Panel 5 Islet Summary: Ag3857 Highest expression of this gene is detected in differentiated adipose (CT=29.2). This gene shows widespread expression in this panel, with signifacant expression in human islets (CT=30). This gene codes for Autotaxin-t (ATX). ATX is a bifunctional enzyme with phosphodiesterase I and nucleotide pyrophosphatase activities. ATX is expressed in pancreatic islets and at CuraGen using GeneCalling studies it was found that the rat orthologue (PDE1) is down-regulated in good insulin-secreting versus poor-secreting cell lines. Therefore, inhibition of ATX would lead to elevation of extracellular ATP resulting in activation of purinergic receptors, thus increasing insulin secretion. Therefore, an antagonist of ATX can improve insulin secretion in Type 2 diabetes.


[0963] Kawagoe, H.; Soma, O.; Goji, J.; Nishimura, N.; Narita, M.; Inazawa, J.; Nakamura, H.; Sano, K. Molecular cloning and chromosomal assignment of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2). Genomics 30: 380-384, 1995. PubMed ID: 8586446; Murata, J.; Lee, H. Y.; Clair, T.; Krutzsch, H. C.; Arestad, A. A.; Sobel, M. E.; Liotta, L. A.; Stracke, M. L. cDNA cloning of human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem. 269: 30479-30484, 1994. PubMed ID: 7982964; Narita, M.; Goji, J.; Nakamura, H.; Sano, K. Molecular cloning, expression, and localization of a brain-specific phosphodiesterase I/nucleotide (PD-I-alpha) from rat brain. J. Biol. Chem. 269: 28235-28242, 1994. PubMed ID: 7961762; Piao, J.-H.; Matsuda, Y.; Nakamura, H.; Sano, K. Assignment of Pdnp2, the gene encoding phosphodiesterase I/nucleotide pyrophosphatase 2, to mouse chromosome 15D2. Cytogenet. Cell Genet. 87: 172-174, 1999. PubMed ID: 10702660


[0964] Panel 5D Summary: Ag 3857 Highest expression of this gene is seen in adipose (CT=28.7). Moderate levels of expression are seen in other metabolic tissues on this panel, including skeletal muscle. Overall, these results are in agreement with the results in Panel 5I. Please see that panel for further discussion of the role of this gene in metabolic disease.


[0965] AC. CG93735-01: Human Adenylate Kinase 3 Alpha-Like Protein.


[0966] Expression of gene CG93735-01 was assessed using the primer-probe set Ag3926, described in Table ACA. Results of the RTQ-PCR runs are shown in Tables ACB, ACC and ACD.
330TABLE ACAProbe Name Ag3926SEQ IDPrimersLengthStart PositionNoForward5′-gtatagctggctgttggatg-3′20392473ProbeTET-5′-ttttccaaggacacttccacaggcagaa-3′-TAMRA290474Reverse5′-cgatctgataagctctatctag-3′22444475


[0967]

331





TABLE ACB










General screening panel v1.5











Rel. Exp.(%)




Ag3926, Run



Tissue Name
244371054














Adipose
15.5



Melanoma* Hs688(A).T
25.3



Melanoma* Hs688(B).T
23.8



Melanoma* M14
18.9



Melanoma* LOXIMVI
15.1



Melanoma* SK-MEL-5
19.9



Squamous cell carcinoma SCC-4
11.2



Testis Pool
7.5



Prostate ca.* (bone met) PC-3
18.6



Prostate Pool
16.7



Placenta
6.9



Uterus Pool
8.5



Ovarian ca. OVCAR-3
36.9



Ovarian ca. SK-OV-3
13.8



Ovarian ca. OVCAR-4
2.6



Ovarian ca. OVCAR-5
43.8



Ovarian ca. IGROV-1
16.6



Ovarian ca. OVCAR-8
11.4



Ovary
20.0



Breast ca. MCF-7
24.1



Breast ca. MDA-MB-231
17.0



Breast ca. BT 549
42.3



Breast ca. T47D
6.5



Breast ca. MDA-N
11.3



Breast Pool
21.2



Trachea
12.6



Lung
7.1



Fetal Lung
31.6



Lung ca. NCI-N417
6.9



Lung ca. LX-1
23.2



Lung ca. NCI-H146
7.3



Lung ca. SHP-77
5.7



Lung ca. A549
27.2



Lung ca. NCI-H526
10.7



Lung ca. NCI-H23
14.6



Lung ca. NCI-H460
11.6



Lung ca. HOP-62
32.5



Lung ca. NCI-H522
23.7



Liver
8.7



Fetal Liver
40.6



Liver ca. HepG2
31.4



Kidney Pool
27.2



Fetal Kidney
35.4



Renal ca. 786-0
26.4



Renal ca. A498
9.3



Renal ca. ACHN
18.3



Renal ca. UO-31
25.7



Renal ca. TK-10
27.2



Bladder
20.6



Gastric ca. (liver met.) NCI-N87
37.9



Gastric ca. KATO III
66.4



Colon ca. SW-948
12.5



Colon ca. SW480
53.6



Colon ca.* (SW480 met) SW620
22.5



Colon ca. HT29
16.5



Colon ca. HCT-116
21.2



Colon ca. CaCo-2
27.0



Colon cancer tissue
24.3



Colon ca. SW1116
4.8



Colon ca. Colo-205
5.1



Colon ca. SW-48
10.9



Colon Pool
22.5



Small Intestine Pool
19.2



Stomach Pool
11.3



Bone Marrow Pool
11.7



Fetal Heart
13.7



Heart Pool
21.6



Lymph Node Pool
25.3



Fetal Skeletal Muscle
7.7



Skeletal Muscle Pool
100.0



Spleen Pool
11.0



Thymus Pool
19.8



CNS cancer (glio/astro) U87-MG
24.1



CNS cancer (glio/astro) U-118-MG
27.5



CNS cancer (neuro;met) SK-N-AS
13.3



CNS cancer (astro) SF-539
10.7



CNS cancer (astro) SNB-75
43.5



CNS cancer (glio) SNB-19
14.2



CNS cancer (glio) SF-295
54.0



Brain (Amygdala) Pool
8.3



Brain (cerebellum)
19.9



Brain (fetal)
9.9



Brain (Hippocampus) Pool
12.2



Cerebral Cortex Pool
11.0



Brain (Substantia nigra) Pool
11.7



Brain (Thalamus) Pool
16.4



Brain (whole)
8.2



Spinal Cord Pool
12.9



Adrenal Gland
26.1



Pituitary gland Pool
2.9



Salivary Gland
6.7



Thyroid (female)
5.9



Pancreatic ca. CAPAN2
17.4



Pancreas Pool
18.2











[0968]

332





TABLE ACC










General screening panel v1.6











Rel. Exp.(%)




Ag3926, Run



Tissue Name
277230942














Adipose
24.1



Melanoma* Hs688(A).T
42.3



Melanoma* Hs688(B).T
31.2



Melanoma* M14
41.2



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
41.2



Squamous cell carcinoma SCC-4
14.4



Testis Pool
14.3



Prostate ca.* (bone met) PC-3
26.6



Prostate Pool
23.0



Placenta
13.1



Uterus Pool
8.5



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
26.1



Ovarian ca. OVCAR-4
25.9



Ovarian ca. OVCAR-5
84.1



Ovarian ca. IGROV-1
26.2



Ovarian ca. OVCAR-8
22.1



Ovary
25.7



Breast ca. MCF-7
30.6



Breast ca. MDA-MB-231
24.7



Breast ca. BT 549
72.2



Breast ca. T47D
12.6



Breast ca. MDA-N
14.8



Breast Pool
36.1



Trachea
18.6



Lung
11.0



Fetal Lung
43.8



Lung ca. NCI-N417
12.8



Lung ca. LX-1
31.4



Lung ca. NCI-H146
12.2



Lung ca. SHP-77
10.7



Lung ca. A549
50.3



Lung ca. NCI-H526
21.0



Lung ca. NCI-H23
17.4



Lung ca. NCI-H460
14.9



Lung ca. HOP-62
48.6



Lung ca. NCI-H522
30.6



Liver
0.0



Fetal Liver
57.4



Liver ca. HepG2
39.8



Kidney Pool
45.7



Fetal Kidney
46.3



Renal ca. 786-0
25.0



Renal ca. A498
20.6



Renal ca. ACHN
27.5



Renal ca. UO-31
43.5



Renal ca. TK-10
60.7



Bladder
39.2



Gastric ca. (liver met.) NCI-N87
76.8



Gastric ca. KATO III
95.9



Colon ca. SW-948
20.3



Colon ca. SW480
7.8



Colon ca.* (SW480 met) SW620
30.6



Colon ca. HT29
26.6



Colon ca. HCT-116
46.0



Colon ca. CaCo-2
47.6



Colon cancer tissue
34.6



Colon ca. SW1116
7.4



Colon ca. Colo-205
10.1



Colon ca. SW-48
14.3



Colon Pool
35.8



Small Intestine Pool
25.0



Stomach Pool
18.0



Bone Marrow Pool
21.0



Fetal Heart
26.6



Heart Pool
29.5



Lymph Node Pool
46.0



Fetal Skeletal Muscle
13.7



Skeletal Muscle Pool
28.5



Spleen Pool
14.9



Thymus Pool
26.4



CNS cancer (glio/astro) U87-MG
51.1



CNS cancer (glio/astro) U-118-MG
40.3



CNs cancer (neuro;met) SK-N-AS
22.5



CNS cancer (astro) SF-539
18.0



CNS cancer (astro) SNB-75
56.3



CNS cancer (glio) SNB-19
24.7



CNS cancer (glio) SF-295
100.0



Brain (Amygdala) Pool
12.6



Brain (cerebellum)
34.4



Brain (fetal)
15.1



Brain (Hippocampus) Pool
20.0



Cerebral Cortex Pool
18.9



Brain (Substantia nigra) Pool
13.2



Brain (Thalamus) Pool
22.1



Brain (whole)
11.8



Spinal Cord Pool
20.9



Adrenal Gland
50.3



Pituitary gland Pool
5.4



Salivary Gland
8.2



Thyroid (female)
10.2



Pancreatic ca. CAPAN2
27.0



Pancreas Pool
23.5











[0969]

333





TABLE ACD










Panel 5 Islet











Rel. Exp.(%)




Ag3926, Run



Tissue Name
227742519














97457_Patient-02go_adipose
29.7



97476_Patient-07sk_skeletal muscle
22.1



97477_Patient-07ut_uterus
16.3



97478_Patient-07pl_placenta
29.3



99167_Bayer Patient 1
18.4



97482_Patient-08ut_uterus
12.5



97483_Patient-08pl_placenta
38.2



97486_Patient-09sk_skeletal muscle
16.5



97487_Patient-09ut_uterus
36.1



97488_Patient-09pl_placenta
13.0



97492_Patient-10ut_uterus
25.0



97493_Patient-10pl_placenta
39.5



97495_Patient-11go_adipose
28.5



97496_Patient-11sk_skeletal muscle



97497_Patient-11ut_uterus
31.4



97498_Patient-11pl_placenta
17.7



97500_Patient-12go_adipose
24.1



97501_Patient-12sk_skeletal muscle
78.5



97502_Patient-12ut_uterus
26.8



97503_Patient-12pl_placenta
18.7



94721_Donor 2 U -
17.6



A_Mesenchymal Stem Cells



94722_Donor 2 U -
12.1



B_Mesenchymal Stem Cells



94723_Donor 2 U -
18.6



C_Mesenchymal Stem Cells



94709_Donor 2 AM - A_adipose
26.4



94710_Donor 2 AM - B_adipose
17.4



94711_Donor 2 AM - C_adipose
14.4



94712_Donor 2 AD - A_adipose
40.1



94713_Donor 2 AD - B_adipose
42.3



94714_Donor 2 AD - C_adipose
36.3



94742_Donor 3 U - A_Mesenchymal
4.7



Stem Cells



94743_Donor 3 U - B_Mesenchymal
12.0



Stem Cells



94730_Donor 3 AM - A_adipose
24.7



94731_Donor 3 AM - B_adipose
10.8



94732_Donor 3 AM - C_adipose
14.2



94733_Donor 3 AD - A_adipose
36.1



94734_Donor 3 AD - B_adipose
13.0



94735_Donor 3 AD - C_adipose
33.2



77138_Liver_HepG2untreated
100.0



73556_Heart_Cardiac stromal cells
15.7



(primary)



81735_Small Intestine
41.5



72409_Kidney_Proximal Convoluted
21.3



Tubule



82685_Small intestine_Duodenum
29.1



90650_Adrenal_Adrenocortical
15.3



adenoma



72410_Kidney_HRCE
40.6



72411_Kidney_HRE
39.8



73139_Uterus_Uterine smooth
19.3



muscle cells











[0970] General_screening_panel_v1.5 Summary: Ag3926 Highest expression of this gene is detected in skeletal muscle (CT=24.1). High expression of this gene is also seen tissues with metabolic/endocrine function including pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. This gene codes for adenylate kinase 3 alpha (AK3 alpha). In the GeneCalling studies at Curagen AK3 alpha was found to be up-regulated in adipose of diabetic GK rats. The over-expression of the phosphotransferase AK3 alpha in the adipocytes of the diabetic GK rat suggests a shift in mitochondrial energy production, and is suggestive for lower levels of cAMP in the diabetic state. cAMP levels have an impact on the insulin responsiveness of tissues, since it activates one of the important mediators of the insulin signaling pathway, AMP kinase. Therefore, inhibition of AK3 alpha may be an effective way to enhance insulin sensitivity in the metabolic tissues and may be used for therapy against diabetes. In addition, AMP kinase can also phosphorylate and inactivate acetyl-CoA carboxylase (ACC), which results in a decrease in malonyl-CoA production and, as a consequence, causes an increase in fatty acid oxidation in adipose tissue. Knock-outs of ACC2, for example, have decreased body weight even though they have increased food intake (Abu-Elheiga et al., Science 291: 2613-2626; 2001). Therefore, inhibitors of AK3 alpha may be effective therapeutics against obesity.


[0971] Moderate to high expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0972] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0973] General_screening_panel_v1.6 Summary: Ag3926 Highest expression of this gene is detected in brain cancer SF-295 cell line (CT=25.3). This gene shows ubiquitous expression which correlates with expression seen in panel 1.5. Please see panel 1.5 for further discussion of this gene.


[0974] Panel 5 Islet Summary: Ag3926 Highest expression of this gene is detected in a liver cancer HepG2 cell line (CT=28.9). This panel confirms the findings of panel 1.5 that the target is highly expressed in metabolic tissues including muscle and adipose.


[0975] AD. CG93817-01: GPCR Olfacotry Receptor-Like Protein.


[0976] Expression of gene CG93817-01 was assessed using the primer-probe set Ag1653, described in Table ADA. Results of the RTQ-PCR runs are shown in Tables ADB and ADC.
334TABLE ADAProbe Name Ag1653SEQ IDPrimersLengthStart PositionNoForward5′-tctcctttctggacatctggta-3′22218476ProbeTET-5′-tccaatgctggcaaactttgtttcag-3′-TAMRA26258477Reverse5′gcaccctgagaatgaaatagtg-3′22291478


[0977]

335





TABLE ADB










General screening panel v1.6











Rel. Exp.(%)




Ag1653, Run



Tissue Name
277227134














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
1.9



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
5.9



Prostate ca.* (bone met) PC-3
6.9



Prostate Pool
1.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
28.9



Ovarian ca. SK-OV-3
1.5



Ovarian ca. OVCAR-4
2.7



Ovarian ca. OVCAR-5
5.3



Ovarian ca. IGROV-1
3.5



Ovarian ca. OVCAR-8
11.1



Ovary
20.7



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
1.0



Lung
0.0



Fetal Lung
1.5



Lung ca. NCI-N417
2.2



Lung ca. LX-1
0.0



Lung ca. NCI-H146
1.7



Lung ca. SHP-77
0.0



Lung ca. A549
1.1



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
9.5



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
1.2



Liver ca. HepG2
40.1



Kidney Pool
0.9



Fetal Kidney
2.5



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
43.8



Renal ca. TK-10
44.8



Bladder
16.0



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
3.2



Colon ca. SW-948
0.0



Colon ca. SW480
13.3



Colon ca.* (SW480 met) SW620
35.6



Colon ca. HT29
15.0



Colon ca. HCT-1116
0.0



Colon ca. CaCo-2
5.7



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
3.6



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
1.8



Fetal Heart
9.3



Heart Pool
6.6



Lymph Node Pool
0.0



Fetal Skeletal Muscle
2.4



Skeletal Muscle Pool
0.0



Spleen Pool
5.3



Thymus Pool
11.4



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro;met) SK-N-AS
2.4



CNS cancer (astro) SF-539
1.9



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
11.3



Brain (Amygdala) Pool
4.4



Brain (cerebellum)
0.0



Brain (fetal)
5.3



Brain (Hippocampus) Pool
4.1



Cerebral Cortex Pool
4.7



Brain (Substantia nigra) Pool
4.5



Brain (Thalamus) Pool
4.6



Brain (whole)
1.5



spinal Cord Pool
7.5



Adrenal Gland
1.7



Pituitary gland Pool
11.3



Salivary Gland
0.0



Thyroid (female)
2.0



Pancreatic ca. CAPAN2
100.0



Pancreas Pool
27.4











[0978]

336





TABLE ADC










Panel 4D











Rel.

Rel.



Ep. (%)

Exp. (%)



Ag1653,

Ag1653,



Run

Run


Tissue Name
165762957
Tissue Name
165762957













Secondary Th1 act
0.0
HUVEC IL-1beta
0.0


Secondary Th2 act
10.8
HUVEC IFN gamma
0.0


Secondary Tr1 act
0.0
HUVEC TNF alpha + IFN gamma
0.0


Secondary Th1 rest
0.0
HUVEC TNF alpha + IL4
0.0


Secondary Th2 rest
0.0
HUVEC IL-11
0.0


Secondary Tr1 rest
0.0
Lung Microvascular EC none
5.7


Primary Th1 act
0.0
Lung Microvascular EC TNF alpha + IL-1beta
4.0


Primary Th2 act
0.0
Microvascular Dermal EC none
0.0


Primary Tr1 act
0.0
Microsvasular Dermal EC
0.0




TNF alpha + IL-1beta


Primary Th1 rest
3.6
Bronchial epithelium TNF alpha + IL1beta
0.0


Primary Th2 rest
0.0
Small airway epithelium none
3.7


Primary Tr1 rest
0.0
Small airway epithelium TNF alpha + IL-1beta
11.3


CD45RA CD4 lymphocyte act
0.0
Coronery artery SMC rest
0.0


CD45RO CD4 lymphocyte act
0.0
Coronery artery SMC TNF alpha + IL-1beta
0.0


CD8 lymphocyte act
0.0
Astrocytes rest
0.0


Secondary CD8 lymphocyte rest
0.0
Astrocytes TNF alpha + IL-1beta
6.3


Secondary CD8 lymphocyte act
0.0
KU-812 (Basophil) rest
3.0


CD4 lymphocyte none
0.0
KU-812 (Basophil)
4.2




PMA/ionomycin


2ry Th1/Th2/Tr1_anti-CD95
0.0
CCD1106 (Keratinocytes) none
0.0


CH11


LAK cells rest
0.0
CCD1106 (Keratinocytes)
5.2




TNF alpha + IL-1beta


LAK cells IL-2
0.0
Liver cirrhosis
100.0


LAK cells IL-2 + IL-12
0.0
Lupus kidney
8.3


LAK cells IL-2 + IFN gamma
11.6
NCI-H292 none
0.0


LAK cells IL-2 + IL-18
3.8
NCI-H292 IL-4
0.0


LAK cells PMA/ionomycin
0.0
NCI-H292 IL-9
0.0


NK Cells IL-2 rest
0.0
NCI-H292 IL-13
0.0


Two Way MLR 3 day
0.0
NCI-H292 IFN gamma
0.0


Two Way MLR 5 day
0.0
HPAEC none
0.0


Two Way MLR 7 day
0.0
HPAEC TNF alpha + IL-1beta
0.0


PBMC rest
0.0
Lung fibroblast none
0.0


PBMC PWM
0.0
Lung fibroblast TNF alpha + IL-1beta
0.0


PBMC PHA-L
0.0
Lung fibroblast IL-4
0.0


Ramos (B cell) none
0.0
Lung fibroblast IL-9
0.0


Ramos (B cell) ionomycin
0.0
Lung fibroblast IL-13
0.0


B lymphocytes PWM
0.0
Lung fibroblast IFN gamma
0.0


B lymphocytes CD40L and IL-4
6.2
Dermal fibroblast CCD1070 rest
0.0


EOL-1 dbcAMP
0.0
Dermal fibroblast CCD1070 TNF
0.0




alpha


EOL-1 dbcAMP
0.0
Dermal fibroblast CCD1070 IL-1beta
0.0


PMA/ionomycin


Dendritic cells none
0.0
Dermal fibroblast IFN gamma
0.0


Dendritic cells LPS
0.0
Dermal fibroblast IL-4
0.0


Dendritic cells anti-CD40
0.0
IBD Colitis 2
17.4


Monocytes rest
0.0
IBD Crohn's
7.1


Monocytes LPS
2.8
Colon
6.9


Macrophages rest
0.0
Lung
0.0


Macrophages LPS
0.0
Thymus
4.2


HUVEC none
0.0
Kidney
0.0


HUVEC starved
0.0










[0979] General_screening_panel_v1.6 Summary: Ag1653 Highest expression of this gene is seen in a pancreatic cancer CAPAN2 cell line (CT=32.9). Low expression of this gene is also seen in a few cancer cell line derived from colon, renal, liver and ovarian cancers. Therefore, expression of this gene may be used as diagnostic marker to dectect the presence of these cancers and also therapeutic modulation of this gene or the GPCR encoded by this gene via antibodies or small molecule drug may be useful in the treatment of pancreatic, colon, renal, liver and ovarian cancers.


[0980] Panel 4D Summary: Ag1653 Expression of this gene is detected in IBD colitis 1 (CT=29.1) and in liver cirrhosis (CT=32.7). Therefore, antibodies that block the function of the putative GPCR encoded by this gene may be useful therapeutics in the treatment of colitis or cirrhosis.


[0981] AE. CG96859-03: HMG-COA Lyase Precursor-Like Protein.


[0982] Expression of gene CG96859-03 was assessed using the primer-probe set Ag4080, described in Table AEA.
337TABLE AEAProbe Name Ag4O8OSEQ IDPrimersLengthStart PositionNoForward5′-gccaaggaagtagtcatctttg-3′22646479ProbeTET-5′-tgcctcagagctcttcaccaagaaga-3′-TAMRA26616480Reverse5′-gcgtcaaacctctgaaaactct-3′22573481



Example D: Identification of Single Nucleotide Polymorphisms in NOVX Nucleic Acid Sequences

[0983] Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.


[0984] SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.


[0985] Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.


[0986] The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).


[0987] Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.


[0988] NOV1b SNP Data (CG101719-04)


[0989] Twenty-four polymorphic variants of NOV1b have been identified and are shown in Table 33A
338TABLE 33AVariants of NOV1bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13379547264TC50LeuPro13375003554AG147AsnAsp13374994748CT211AlaAla13374995752TC213TrpArg13374996765TC217MetThr13379549788AG225LysGlu13378470877GC254ArgArg13374549999TC295ValAla133749911026AG304AsnSer133784031128TC338ValAla133749981232TC373SerPro133745471285CA390SerSer133779921293TC393ValAla133749971353AG413GlnArg133816111462AG449SerSer133815611512AG466GluGly133816101550AG479ArgGly133750061728AG538LysArg133750071730AG539MetVal133757842030AG639MetVal133816092034AG640LysArg133745462269TC718GlyGly133745312383GA756LeuLeu133786182478CA788SerTyr


[0990] NOV3b SNP Data (CG127322-01)


[0991] One polymorphic variants of NOV3b have been identified and is shown in Table 33B.
339TABLE 33BVariant of NOV3bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381583106CT20GlyGly


[0992] NOV8b SNP Data (CG148278-01)


[0993] Four polymorphic variants of NOV8b have been identified and are shown in Table 33C. Variant 13375589 is a C to T SNP at 1642 bp of the nucleotide sequence that results in no change in the protein sequence (silent), variant 13380083 is a C to T SNP at 2785 bp of the nucleotide sequence that results in no change in the protein sequence since the SNP is not in the amino acid coding region, variant 13380084 is a G to A SNP at 2794 bp of the nucleotide sequence that results in no change in the protein sequence since the SNP is not in the amino acid coding region, and variant 13380085 is a G to A SNP at 2803 bp of the nucleotide sequence that results in no change in the protein sequence since the SNP is not in the amino acid coding region.
340TABLE 33CVariants of NOV8bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133755891642CT523AspAsp133800832785CT0133800842794GA0133800852803GA0


[0994] NOV19a SNP Data (CG162855-01)


[0995] One polymorphic variants of NOV19a has been identified and is shown in Table 33D.
341TABLE 33DVariant of NOV19aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133815801549GA485ArgLys


[0996] NOV20a SNP Data (CG163937-01)


[0997] Two polymorphic variants of NOV20a have been identified and are shown in Table 33E.
342TABLE 33EVariants of NOV20aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381480570CT115ThrIle13381481621TC132MetThr


[0998] NOV22b SNP Data (CG54007-04)


[0999] Seven polymorphic variants of NOV22b have been identified and are shown in Table 33F.
343TABLE 33FVariants of NOV22bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13377622201AT67ArgArg13375239503AG168GlnArg13379751737CT246ProLeu133752421075AG359MetVal133752431079AG360HisArg133752441126TC376PheLeu133752451187GA396ArgHis


[1000] NOV23b SNP Data (CG55078-01)


[1001] Four polymorphic variants of NOV23b have been identified and are shown in Table 33G.
344TABLE 33GVariants of NOV23bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133796041208CT392ProLeu133796031218TC395SerSer133749751258TC409LeuLeu133796021276GT415ValPhe


[1002] NOV24b SNP Data (CG56149-03)


[1003] One polymorphic variant of NOV24b have been identified and is shown in Table 33H.
345TABLE 33HVariant of NOV24bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133815862562TC809ProPro


[1004] NOV25a SNP Data (CG56216-01)


[1005] Twelve polymorphic variants of NOV25a have been identified and are shown in Table 33I.
346TABLE 33IVariants of NOV25aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13376204806TC268CysCys133815881040AT346SerSer133815941581TC527SerPro133762031746GA582GlySer133762021817CT605ProPro133755611984TC661LeuPro133762012108TC702GlyGly133815902182CT727AlaVal133754122193GA731AlaThr133755632668AG889GluGly133755622685TC895PheLeu133762252935TC978IleThr


[1006] NOV26a SNP Data (CG56246-01)


[1007] Thirteen polymorphic variants of NOV26a have been identified and are shown in Table 33J.
347TABLE 33JVariants of NOV26aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13375372140CT47ThrIle13375373144AT48ProPro13375374547AG183IleVal13375375594CT198AspAsp13374775733GA245AspAsn13375376738AG246AlaAla13375377763AG255SerGly13375378777TC259SerSer13375379830TC277ValAla13375380925AG309LysGlu13375381935AG312AspGly133753821171TA391TrpArg133747791201GA401ValMet


[1008] NOV28d SNP Data (CG57417-01)


[1009] Nine polymorphic variants of NOV28d have been identified and are shown in Table 33K.
348TABLE 33KVariants of NOV28dNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133750961371TC420CysArg133750981738AG542LysArg133750972056TC648ValAla133749862312GA733MetIle133749872326AG738AspGly133815952345AG744ValVal133749882382AG757MetVal133749892397CT762ArgCys133815983162GA0


[1010] NOV29b SNP Data (CG93541-01)


[1011] Two polymorphic variants of NOV29b have been identified and are shown in Table 33L.
349TABLE 33LVariants of NOV29bNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified133796912393CT778PhePhe133792612535AC826ArgArg


[1012] NOV30a SNP Data (CG93735-01)


[1013] Six polymorphic variants of NOV30a have been identified and are shown in Table 33M.
350TABLE 33MVariants of NOV30aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13376144332AG64LysLys13376142436CT99AlaVal13376141443CT101AlaAla13376140522CT128ArgCys13376139616TC159IleThr13374782625AG162GluGly


[1014] NOV31a SNP Data (CG93817-01)


[1015] Three polymorphic variants of NOV31a have been identified and are shown in Table 33N.
351TABLE 33NVariants of NOV31aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified1337939474TC18PheSer13379395322AG101MetVal13379396830TC270IleThr


[1016] NOV32a SNP Data (CG96859-03)


[1017] Four polymorphic variants of NOV32a have been identified and are shown in Table 33O.
352TABLE 33OVariants of NOV32aNucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13381592668GA218LeuLeu13381591725CT237ThrThr



Example E: SAGE Data NOV22e CarboxypeptidaseX Precursor-Like Protein

[1018] Construction of the mammalian expression vector pCEP4/Sec. The oligonucleotide primers, pSec-V5-His Forward (5′-CTCGT CCTCG AGGGT AAGCC TATCC CTAAC-3′; SEQ ID NO:518) and the pSec-V5-His Reverse (5′-CTCGT CGGGC CCCTG ATCAG CGGGT TTAAA C-3′: SEQ ID NO:519), were designed to amplify a fragment from the pcDNA3.1-V5His (Invitrogen, Carlsbad, Calif.) expression vector. The PCR product was digested with XhoI and ApaI and ligated into the XhoI/ApaI digested pSecTag2 B vector (Invitrogen, Carlsbad Calif.). The correct structure of the resulting vector, pSecV5His, was verified by DNA sequence analysis. The vector pSecV5His was digested with PmeI and NheI, and the PmeI-NheI fragment was ligated into the BamHI/Klenow and NheI treated vector pCEP4 (Invitrogen, Carlsbad, Calif.). The resulting vector was named as pCEP4/Sec.


[1019] Expression of CG54007-03 in human embryonic kidney 293 cells. A 2.1 kb BgIII-XhoI fragment containing the CG57004-03 sequence was subcloned into BglII-XhoI digested pCEP4/Sec to generate plasmid 356. The resulting plasmid 356 was transfected into 293 cells using the LipofectaminePlus reagent following the manufacturer's instructions (Gibco/BRL). The cell pellet and supernatant were harvested 72 h post transfection and examined for CG57004-03 expression by Western blot (reducing conditions) using an anti-V5 antibody. Table EI shows that CG57004-03 is expressed as about 95 kDa protein secreted by 293 cells.



Example F. Method of Use

[1020] The present invention is based on the identification of biological macromolecules differentially modulated in a pathologic state, disease, or an abnormal condition or state. Among the pathologies or diseases of present interest include metabolic diseases including those related to endocrinologic disorders, cancers, various tumors and neoplasias, inflammatory disorders, central nervous system disorders, and similar abnormal conditions or states. Important metabolic disorders with which the biological macromolecules are associated include obesity and diabetes mellitus, especially obesity and Type II diabetes. It is believed that obesity predisposes a subject to Type II diabetes. In very significant embodiments of the present invention, the biological macromolecules implicated in these pathologies and conditions are proteins and polypeptides, and in such cases the present invention is related as well to the nucleic acids that encode them. Methods that may be employed to identify relevant biological macromolecules include any procedures that detect differential expression of nucleic acids encoding proteins and polypeptides associated with the disorder, as well as procedures that detect the respective proteins and polypeptides themselves. Significant methods that have been employed by the present inventors, include GeneCalling® technology and SeqCalling™ technology, disclosed respectively, in U.S. Pat. No. 5,871,697, and in U.S. Ser. No. 09/417,386, filed Oct. 13, 1999, each of which is incorporated herein by reference in its entirety. GeneCalling® is also described in Shimkets, et al., “Gene expression analysis by transcript profiling coupled to a gene database query” Nature Biotechnology 17:198-803 (1999).


[1021] The invention provides polypeptides and nucleotides encoded thereby that have been identified as having novel associations with a disease or pathology, or an abnormal state or condition, in a mammal. Included in the invention are nucleic acid sequences and their encoded polypeptides. The sequences are collectively referred to as “INDICATION nucleic acids” or “INDICATION polynucleotides” and the corresponding encoded polypeptide is referred to as a “diabetes and/or obesity polypeptide” or “diabetes and/or obesity protein”. For example, a diabetes and/or obesity nucleic acid according to the invention is a nucleic acid including a diabetes and/or obesity nucleic acid, and a diabetes and/or obesity polypeptide according to the invention is a polypeptide that includes the amino acid sequence of a diabetes and/or obesity polypeptide. Unless indicated otherwise, “diabetes and/or obesity” is meant to refer to any of the sequences having novel associations disclosed herein.


[1022] As used herein, “identical” residues correspond to those residues in a comparison between two sequences where the equivalent nucleotide base or amino acid residue in an alignment of two sequences is the same residue. Residues are alternatively described as “similar” or “positive” when the comparisons between two sequences in an alignment show that residues in an equivalent position in a comparison are either the same amino acid or a conserved amino acid as defined below.


[1023] As used herein, a “chemical composition” relates to a composition including at least one compound that is either synthesized or extracted from a natural source. A chemical compound may be the product of a defined synthetic procedure. Such a synthesized compound is understood herein to have defined properties in terms of molecular formula, molecular structure relating the association of bonded atoms to each other, physical properties such as electropherogramatic or spectroscopic characterizations, and the like. A compound extracted from a natural source is advantageously analyzed by chemical and physical methods in order to provide a representation of its defined properties, including its molecular formula, molecular structure relating the association of bonded atoms to each other, physical properties such as electropherogramatic or spectroscopic characterizations, and the like.


[1024] As used herein, a “candidate therapeutic agent” is a chemical compound that includes at least one substance shown to bind to a target biopolymer. In important embodiments of the invention, the target biopolymer is a protein or polypeptide, a nucleic acid, a polysaccharide or proteoglycan, or a lipid such as a complex lipid. The method of identifying compounds that bind to the target effectively eliminates compounds with little or no binding affinity, thereby increasing the potential that the identified chemical compound may have beneficial therapeutic applications. In cases where the “candidate therapeutic agent” is a mixture of more than one chemical compound, subsequent screening procedures may be carried out to identify the particular substance in the mixture that is the binding compound, and that is to be identified as a candidate therapeutic agent.


[1025] As used herein, a “pharmaceutical agent” is provided by screening a candidate therapeutic agent using models for a disease state or pathology in order to identify a candidate exerting a desired or beneficial therapeutic effect with relation to the disease or pathology. Such a candidate that successfully provides such an effect is termed a pharmaceutical agent herein. Nonlimiting examples of model systems that may be used in such screens include particular cell lines, cultured cells, tissue preparations, whole tissues, organ preparations, intact organs, and nonhuman mammals. Screens employing at least one system, and preferably more than one system, may be employed in order to identify a pharmaceutical agent. Any pharmaceutical agent so identified may be pursued in further investigation using human subjects.


[1026] Methods of Use of the Compositions of the Invention


[1027] The protein similarity information, expression pattern, cellular localization, and map location for the protein and nucleic acid disclosed herein suggest that this protein may have important structural and/or physiological functions characteristic of each designated protein family. Therefore, the nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed. These also include potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), (v) an agent promoting tissue regeneration in vitro and in vivo, and (vi) a biological defense weapon.


[1028] The nucleic acids and proteins of the invention have applications in the diagnosis and/or treatment of various diseases and disorders. For example, the compositions of the present invention will have efficacy for the treatment of patients suffering from: obesity and/or diabetes.


[1029] These materials are further useful in the generation of antibodies that bind immunospecifically to the substances of the invention for use in diagnostic and/or therapeutic methods.


[1030] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed as described in Example C. Collections of samples in additional to those listed in Example C were assembled on plates, referred to as panels, and are described below.


[1031] Panel 1.4


[1032] The plates for panel 1.4 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in panel 1.4 are broken into 2 classes; samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in panel 1.4 are widely available through the American Type Culture Collection, a repository for cultured cell lines. The normal tissues found on panel 1.4 are comprised of pools of samples from 2 to 5 different adult individuals derived from all major organ systems. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[1033] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[1034] Panel 2


[1035] The plates for Panel 2 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologists at NDRI or CHTN). This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissue were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen.


[1036] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[1037] A. NOV3b—Human Kynurenine Hydroxlase-Like Proteins—CG12732-01


[1038] Discovery Process—The following sections describe the study design(s) and the techniques used to identify the Kynurenine Hydroxylase-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.
353Studies:MB.04 Genetic Models of Body Weight RegulationMB.01 SHR Rat Model of Insulin Resistance and CD36


[1039] Mutation


[1040] Study Statements: MB.04—A number of genetic models of obesity have been studied, most prominently in mouse and rat, but only a few causative genes have been identified. Polygenic mouse models of obesity have been evaluated by GeneCalling in order to identify the set of genes differentially expressed in obese vs. lean animals. This strategy should lead to the discovery of drug targets for the prevention and/or treatment of obesity.


[1041] MB.01—The spontaneously hypertensive rat (SHR) is a strain exhibiting features of the human Metabolic Syndrome X. The phenotypic features include visceral obesity, hypertension, increased circulating free fatty acids, hyperinsulinemia and insulin resistance. SHR rats have a mutated form of the CD36 fatty acid transporter. Decreased fatty acid transport into cells underlies the increase in circulating free fatty acids and insulin resistance. The pathophysiologic basis for hypertension is unknown but appears to be unrelated to CD36 function. Tissues were removed from adult male rats and a control strain (WKY) to identify the gene expression differences that underlie the pathologic state in the SHR rat. Tissues included subcutaneous and visceral adipose and liver.


[1042] Species #1 MB.04—C57BL (normal levels of body fat (˜18%)) and Cast/Ei (very low levels of body fat (˜8%))mouse strains


[1043] Species #2 MB.01—SHR and WKY (control) strains of rat


[1044] Kynurenine Hydroxylase: This NADPH-dependent flavin monooxygenase is a part of the pathway for oxidative degradation of tryptophan. It is the third enzyme of 4 on the dominant catabolic pathway from tryptophan to alanine (Table ##). A role for this enzyme in obesity or diabetes has not been previously reported.


[1045] In this invention, tryptophan 2,3-dioxygenase, the first enzyme in the tryptophan catabolic pathway, is dysregulated. However, the dioxygenase is not an enzyme that is amenable to high throughput screening for identification of potential inhibitors. We have therefore chosen to focus on the most screenable enzyme in the pathway, kynurenine hydroxylase.


[1046] SPECIES #1: As shown in Tables A11a, A11b, A12a and A12b, this mouse tryptophan 2,3-dioxygenase differentially expressed gene fragment from Discovery Study MB.04 was initially found to be up-regulated by 18 fold in the liver tissue of mice with normal levels of body fat (C57BL) relative to mice with very low levels of body fat (˜8%)(Cast/Ei) using CuraGen's GeneCalling™ method of differential gene expression (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). A differentially expressed mouse gene fragment migrating, at approximately 173 nucleotides in length (Table A11a—vertical line) was definitively identified as a component of the mouse tryptophan 2,3-dioxygenase cDNA. A second mouse gene fragment migrating, at approximately 331 nucleotides in length (Table A11b—vertical line) was definitively identified as a component of the mouse tryptophan 2,3-dioxygenase cDNA. The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the mouse tryptophan 2,3-dioxygenase are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 173 nt and 331 nt in length are ablated (gray trace) in the sample from both the C57BL and Cast/Ei mice.


[1047] SPECIES #2: As shown in Tables A13a and A13b, rat differentially expressed gene fragment from Discovery Study MB.01 was found to be up-regulated by 100 fold in the liver tissue SHR rats (exhibit features of human metabolic syndrome X) relative to WKY (control strain of rat) using CuraGen's GeneCalling™ method of differential gene expression (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). A differentially expressed rat gene fragment migrating at approximately 270.6 nucleotides in length (Table A13a—vertical line) was definitively identified as a component of the tryptophan 2,3-dioxygenase cDNA. The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat tryptophan 2,3-dioxygenase are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 270.6 nt in length are ablated (gray trace) in the sample from both the SHR and WKY rats.


[1048] The direct sequences of the above mouse and rat gene fragments and the gene-specific primers used for competitive PCR are indicated on the cDNA sequence of tryptophan 2,3-dioxygenase and shown below in bold. The gene-specific primers at the 5′ and 3′ ends of the fragment are in bold italics.
354TABLE A1SEQ ID NO:520 Gene Sequence(mouse fragment from 1459 to 1631 in bold. band size: 173)(SEQ ID NO:520)978TACAGGGAGG AGCCTCGATT CCAGGTCCCT TTCCAGCTGC TGACCTCACT TATGGACATT1038GACACGCTCA TGACCAAATG GAGATATAAT CATGTGTGCA TGGTGCACAG AATGCTGGGC1098ACCAAGGCTG GCACTGGGGG ATCCTCAGGC TATCATTACC TGCGTTCAAC TGTGAGCGAC1158AGGTACAAGG TTTTTGTGGA TTTATTTAAC CTCTCAACAT ATCTGGTTCC CAGACACTGG1218GTACCAAAGA TGAATCCGAT CATTCACAAA TTCCTTTACA CAGCCGAGTA CAGTGACAGC1278TCTTACTTCA GCAGCGATGA ATCGGATTGA GTTCTTCTGA ACATCAGTGA AAACTACAGG1338ATTCTCAGTC GGCTTTTTAT AAATTTTTAT GAATACATGA TTGGTGTAAT CTATTTATAT1398GTGTAGTTCA GTGTTATGAT GTTTTGGTCC AATCCTGGAA AAAAGTTTAT GATCTTGCAT1458ATCATGATGG TGAGCGATTA GGAGGATTAA GCATTATGAT AACTGATATA GTAAAATGTT1518AGCATCATCG TACATATGAT AAATTCTTGC TACAACTCAA TTTACCCTGA CATTTACCTC1578TGTAGAACCA TTTCATATAA TTATTACCTT ATTGCTTCAT ACTTTATAAA GCTTGTTGAG1638CAGTTACTTT GTATTATAGA TACAATAAAT ACTACCCTTC TGTACAAAAT TTATTGAAAC1698AAATGTTTGA GTAATAAATT TAGTGGTTGG CTGTTCATTG CTTGTAAAAA CTCGGGAATC1758TTATATTTTA TGGGCGTCTT GATGAGCAGA AATCTGTCTG AAGCTTAGCC TGAGGGATAC1818TATAATATTA TTGCACCTGC TCCCAGAACT CAAAGGCACT TAAGAAATAT ATCACAGCAA1878CCCAGTTCAG CTCCCAGAAT ATTTTAACCC TGATACATTT TGAAGATGCT CTTCTTTCTT1938CTGTGTCAGT GTTGGCTGTC GTAAAGCATT TTGTTCCTTA CACTGTGGAC TCTGACACTT1998TTTCCTGCTC AAATGCTAAA GACGTGGTCA GTGCTAACAC AGGGGAATGC TGCAGAAATA2058AGTAGCGCTT CTATTGGAAA TTAAAAAAAA AAAAAAAAGA TCTTCCCAAC CCAA(gene length is 3021, only region from 978 to 2111 shown)


[1049]

355






TABLE A2








SEQ ID NO:521 Gene Sequence



(mouse fragment from 2434 to 2764 in bold. band size: 331)
















(SEQ ID NO:521)










1953
CTGTCGTAAA GCATTTTGTT CCTTACACTG TGGACTCTGA CACTTTTTCC TGCTCAAATG






2013
CTAAAGACGT GGTCAGTGCT AACACAGGGG AATGCTGCAG AAATAAGTAG CGCTTCTATT





2073
GGAAATTAAA AAAAAAAAAA AAAGATCTTC CCAACCCAAT AAACAGGTCA ACTGATTAAA





2133
CAGAAACCAT GTCCATTTGC AACAAGTACA TGATGCCTAC AGTTTATATC AGATTTGAGT





2193
CTTAGTCTTT GTTTTCTAGC TTGTTTTTTG GCTGTTGACA GCATTTAGCT GAGTTGCTGA





2253
TATGGGAAAG ACTACAAAAT ACTGGTAAAT TTTCTAAAGA TTCAAAATTA GAATTAAGAA





2313
GTTATTTTGA AGAAACAGGA AGTTCTTGAA AGAAGCACAC TATAAATCAG TCTCAACGAA





2373
ACACCATAAG TATCAGTCTT CGCTGCACTG TAATACGCAT GTAAAGTGGG ACCATCTGTT





2433
CGCTAGCTTC CACATCTTGG ATCTATCGAC TTTCCAATGT TTAATATGTA AAGGAAGAAA







2493




TACAGTATTT TTTGCAGACT TTTTGTCAGT ATTCTCTACA CAATAATAGC ATACATTGTG









2553




TTATTTTATC ACAGCTAACC TAGAAATGAC TTAAGAGTAT AAAGATGCCA GATTATATCA









2613




AAATAAATGA CACCTCACAT GTAAGAACTG ATCGTCCATG GATTTTTGGA CCTTTGGTGC









2673




TCCTGGAACT GGTATTACAG TGTTATAGAA GGAAGATGAC CATGGATTTC AACTGCACCA









2733




CTTGTGTGTA TGTAA


GGTGT GCATATGTGC AC
ACTCACAC ATGTACTTAC ATAACACACA






2793
GTGAGGGTTA AACAGATATA AATACAGAGG AAAATACCAT GGGCTAACAG CAAAATCTCA





2853
GAAATCAGTA GGCTAAATGG TAAATGCTGA AATGGTCCTT TGTAACTATC TGTGTGGTAC





2913
ACTTCTAAGC AAACACCAGT TCCTATTTAA ATGGGGAATA CCTATTTTGT AAGCTTCATT





2973
TTCTCTCATC ATATAATAAA AAAGGCTTGT AAATAAAAAA AAAAAAAAA






(gene length is 3021, only region from 1953 to 3021 shown)










[1050]

356






TABLE A3








SEQ ID NO:522 Gene Sequence



(rat fragment from 1 to 271 in bold. band size: 271)
















(SEQ ID NO:522)










1
GTGCACAGGA TGCTACGCAG CAAGGCTGGC ACTGGGGGAT CCTCAGGCTA TTATTATCTG






61
CGCTCAACTG TGAGCGACAG GTACAAGGTG TTCGTGGATT TATTTAACCT CTCATCGTAC





121
CTGGTTCCCC GACACTGGAT ACCAAAGATG AATCCAATCA TTCACAAGTT CCTTTACACA





181
GCTGAGTACA GCGACAGCTC CTACTTCAGC AGCGATGAAT CAGATTGAGT TTTTCTGAAC





241
ATCAGTCCAG GCTACAGGAT TCCCAGTCCA C






(gene length is 271, only region from 1 to 271 shown)










[1051]

357





TABLE A4








Human Kynurenine Hydroxylase Gene Sequence
















>CG127322-01      5000









(SEQ ID NO:523)









ntGGCACGAGCAGAAGCAACAATAATTGTGAAAAATACTTCAGCAGTTATGGACTCATCTGTCATTCAAAGGAAAAAAGT






AGCTGTCATTGGTGGTGGCTTGGTTGGCTCATTACAAGCATGCTTTCTTGCAAAGAGGAATTTCCAGATTGATGTATATG





AAGCTAGGGAAGATACTCGAGTGGCTACCTTCACACGTGGAAGAAGCATTAACTTAGCCCTTTCTCATAGAGGACGACAA





GCCTTGAAAGCTGTTGGCCTGGAAGATCAGATTGTATCCCAAGGTATTCCCATGAGAGCAAGAATGATCCACTCTCTTTC





AGGAAAAAAGTCTGCAATTCCCTATGGGACAAAGTCTCAGTATATTCTTTCTGTAAGCAGAGAAAATCTAAACAAGGATC





TATTGACTGCTGCTGAGAAATACCCCAATGTGAAAATGCACTTTAACCACAGGCTGTTGAAATGTAATCCAGAGGAAGGA





ATGATCACAGTGCTTGGATCTGACAAAGTTCCCAAAGATGTCACTTGTGACCTCATTGTAGGATGTGATGGAGCCTATTC





AACTGTCAGATCTCACCTGATGAAGAAACCTCGCTTTGATTACAGTCAGCAGTACATTCCTCATGGGTACATGGAGTTGA





CTATTCCACCTAAGAACGGAGATTATGCCATGGAACCTAATTATCTGCATATTTGGCCTAGAAATACCTTTATGATGATT





GCACTTCCTAACATGAACAAATCATTCACATGTACTTTGTTCATGCCCTTTGAAGAGTTTGAAAAACTTCTAACCAGTAA





TGATGTGGTAGATTTCTTCCAGAAATACTTTCCGGATGCCATCCCTCTAATTGGAGAGAAACTCCTAGTGCAAGATTTCT





TCCTGTTGCCTGCCCAGCCCATGATATCTGTAAAGTGCTCTTCATTTCACTTTAAATCTCACTGTGTACTGCTGGGAGAT





GCAGCTCATGCTATAGTGCCGTTTTTTGGGCAAGGAATGAATGCGGGCTTTGAAGACTGCTTGGTATTTGATCAGTTAAT





GGATAAATTCAGTAACGACCTTAGTTTGTGTCTTCCTGTGTTCTCAAGATTGAGAATCCCAGATGATCACGCCATTTCAG





ACCTATCCATGTACAATTACATAGAGATGCGAGCACATGTCAACTCAAGCTGGTTCATTTTTCAGAAGAACATGGAGAGA





TTTCTTCATGCGATTATGCCATCGACCTTTATCCCTCTCTATACAATGGTCACTTTTTCCAGAATAAGATACCATGAGGC





TGTGCAGCGTTGGCATTGGCAAAAAAAGGTGATAAACAAAGGACTCTTTTTCTTGGGATCACTGATAGCCATCAGCAGTA





CCTACCTACTTATACACTACATGTCACCACGATCTTTCCTCTGCTTGAGAAGACCATGGAACTGGATAGCTCACTTCCGG





AATACAACATGTTTCCCCGCAAAGGCCGTGGACTCCCTAGAACAAATTTCCAATCTCATTAGCAGGTGATAGAAAGGTTT





TGTGGTAGCAAATGCATGATTTCTCTGTGACCAAAATTAAGCATGAAAAAAATGTTTCCATTGCCATATTTGATTCACTA





GTGGAAGATAGTGTTCTGCTTATAATTAAACTGAATGTAGAGTATCTCTGTATGTTAATTGCAATTACTGGTTGGGGGGT





GCATTTTAAAAGATGAAACATGCAGCTTCCCTACATTACACACACTCAGGTTGAGTCATTCTAACTATAAAAGTGCAATG





ACTAAGATCCTTCACTTCTCTGAAAGTAAGGCCCTAGATGCCTCAGGGAAGACAGTAATCATGCCTTTTCTTTAAAAGAC





ACAATAGGACTCGCAACAGCATTGACTCAACACCTAGGACTAAAAATCACAACTTAACTAGCATGTTAACTGCACTTTTC





ATTACGTGAATGGAACTTACCTAACCACAGGGCTCAGACTTACTAGATAAAACCAGAAATGGAAATAAGGAATTCAGGGG





AGTTCCAGAGACTTACAAAATGAACTCATTTTATTTTCCCACCTTCAAATATAAGTATTATCATCTATCTGTTTATCGTC





TATCTATCTATCATCTATCTATCTATCTATCATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTA





TCTCTATTTATTTATGTATTTAGAGATCAGGTCTCACTCTGTTGACCAGGCTGGAGTGCAGTGGTGAGATCTGGGTTCAC





TGCAACCTCTGCCTCCTGGGCTCAAGCAATCCTCCCACTTCAGCCTCCCAAATAGCTGGGGCTACCATGGTATTTTTCAG





TAGAGACCGGGTCTTGCCATGCTGCCCAGGCCAGTCTCAAACTCCTGGCCTCATGATGATCTGCCCACCTCAGCCTCCAA





AGTACAGGGATTAGAGTTGTGAGCCACCGCTGCCAGCCCAGAGTTACCCTCTAAAGATAAGAAAAAGGCTATTAATATCA





TACTAAGTGAAGGACAGGAAAGGGTTTTATTCATAAATTAAATGTCTACATGTGCCAGAATGGAAAGGAAACAAGGGGAG





ACAACTTTTATAGAAATACAAAGCCATTACTTTATTCAATTTCAGACCCTCAGAAGCAATTTACTAATTTATTCTTCGAC





TACATACTGCAGCAGAACCAGCAATACACTTGATTTTTAAAAGCACATTTAGTGAAATGTTTTCTTTGCTTCATCCTTCT





TTAACAGGCTGCTGAGTCACTCAGAAATCCTTCAAACATGATTAATTATGAAGATGAAACACTAGAGTCATATAAGAAAT





AAAAATTGGGCAATAAAATAAAATGATTCAGTGTTTCTTTTCTATATTGTCAATGAAAACCTTGAGTTCTAATAATCCAT





GTTCAGTTTGTAGGGAAAGAAAAAATAATTTTTTCCTTCTACCACTTTAGGTTCCTTGGCTGGGGCCCCTATAACAAAAG





ACAGATTGACAAGAGAAAAACAAACATAAATTTATTAGCGGGTATATGTAATATATATGTGGGAAATACAGGGGAATGAG





CAAATCTCAAAGAGCTGGCGTCTTAGAACTCCCTGGCTTATATAGCATCGACAAAGAACAGTAAATTTTTAGAGAAACAA





CAAAACAAAGAAAAAGAGCTTTGAGTCTGTAGGGGCAGCAATTTGGGGGAAGCAAATATATGGGAGTTTGCCTTGTAGAT





TCCTCTGGTGGTGGTCTCCAGGCTGACAAGGATTCAAAGTTGTCTCTGAAACTCCTCTTTGTCATACTGCACATATAAAA





CGTCTTTTGTTTCCAACAAGAGGATTTCTTTTTCATTCTAGAATTATCTCCTTGATAACTTGATCAGATATAGGACATGA





CACTGAATAGAGTCCAACAGTACAAAAAAAATTCAGTATGTTCTAGCTACTTCACACATGTGTACGCGACAGTTATTTTT





ACAGTAAGGTATTTTCGAGAAAAATGCATTACGTGTTTTGGAAAATAGAGTAATTTAAAAAATATATTTGAAATGAAAAT





CTCCAACACATTAGAAGATGATGATGTTAGATGCCCATCGTGTGCCACAAGTGGTTTTTTCATTATGTAAAGCACCCGTT





GAATTAAAAGAATTTGTTTTTGTTCAACCTCTTCCTGAGGCCCAAGAGCATATGGGCAATTCGGATTTCCTGCTGGACCA





CAAGGTTCTGTTGATATTACATAGAAACGGGTATTCCAGACACTTCTTATGATGAAAGTCCAAAAGTGGCATCCAATTTA





AGGCCCCATCTTTCGTTGCCATTCTTCATTCCTACAAAGGACGAACTTGGATTACATCAACTTTGGACCCATTGGTTTTG





TCGCTGTCGTCAACTGACAGTGATTCACCACTGGTGATGATAAAAATGATGGAAGAAGAGTTGAAAGTCACTTTTTTCTT





TGGCCTGTCCCCATCTTTCTGTGACATCACAATGGGTCTGATCTGCATTTCACTTCCAGCTGCTGGTAGGTCTTTAGCAG





GCCTCTGGCACCTCAGCAGTCGGAGGCACAGAAGCTGCAAAAGGGATCTTCGAAACTGGGCAGAGAAAAAATAAAGTGGA





ATATTAAGTAAAAGTTGGGCACTAATCTGGATTAACATTCGAGGAAATCAGTTGAGCTGATTTAAGTTGTTTTTTGTTTG





TTAGCAGGTGTGGATGTGGGGTTATGTGGTCATGCTCAGATCTACCTAAATCACCCCAGAGCTTTATGTCTTTTATTCAT





TCTAAATCTTATTAACCGGAATATGTAGGACCATTTCAATACCTTGTAATCCTCCAAGCTTCAATCTGCACACACTTTCT





ATGAGGGCAGGTACAACTATTAAGAGATTTTGAACATTAAGTTAGTCCACAAATATTCAGTGGGCATCTACTAGGTGACA





GCCACTGTGCTATAATTAGAGACTTTTTACTATAAGCATCAAAAACAGATAAGGCTCTTCCTGGCAGAGTTTACAGCCTG





GTGTACTTGCTAATGTCTCTTTAATTAGGTGAAGAATTTTTTTTTTCTATCGAAATTACTAATCAGTTGGGGAAAAAAAT





ACTATAGCAGACAGCACTAATGTCATCAACAAACATTGTTCTTCTCCGTGTCCTGGGTACAACATCGAATAATATTTCTT





GGCCTCCTTTCCGCTTCTCCTCTCTGCTGTTCCTCTCTACAAGAACCTGGGAGGCCAACGCCTAAAGATCATAATATCAC





AATGGAAGGAACCTAGATTCCTAAATGACTGCATAGGACAGATCCCATCTCCTCCACCCAATACATTATTAGACTGAACT





GTGACCTGAAATGAGCAATAAACTCTGTATTAATTCACTGAAATGTTGGGGTTGCTTGTTATAGTAGTCGGTCCATCATG





ACCAGTAAAACATAAATCAAAAGTTAATGTAATTGTTATCCCATTATTTAGAGCGAAATAAATGTTGAATATATGGACTT





TCTCAGATTAGGAAATACCAATTAAAAATATAATAAATAGCT










[1052]

358





TABLE A5








Human Kynurenine Hydroxylase Protein Sequence
















ORF Start: 47      ORF Stop: 1505      Frame:2



>CG127322-01-prot      486 aa








(SEQ ID NO;524)









MDSSVIQRKKVAVIGGGLVGSLQACFLAKRNFQIDVYEAREDTRVATFTRGRSINLALSHRGRQALKAVGLEDQIVSQGI






PMRARMIHSLSGKKSAIPYGTKSQYILSVSRENLNKDLLTAAEKYPNVKMHFNHRLLKCNPEEGMITVLGSDKVPKDVTC





DLIVGCDGAYSTVRSHLMKKPRFDYSQQYIPHGYMELTIPPKNGDYAMEPNYLHIWPRNTFMMIALPNMNKSFTCTLFMP





FEEFEKLLTSNDVVDFFQKYFPDAIPLIGEKLLVQDFFLLPAQPMISVKCSSFHFKSHCVLLGDAAHAIVPFFGQGMNAG





FEDCLVFDELMDKFSNDLSLCLPVFSRLRIPDDHAISDLSMYNYIEMRAHVNSSWFIPQKNMERFLHAIMPSTFIPLYTM





VTFSRIRYHEAVQRWHWQKKVINKGLFFLGSLIAISSTYLLIHYMSPRSFLCLRRPWNWIAHFRNTTCFPAKAVDSLEQI





SNLISR










[1053] The following is an alignment of the protein sequences of the human (CG127322-01), and rat (genbank accession AF056031) versions of Kynurenine Hydroxylase. Overall homology is 78%.


[1054] Kynurenine Hydroxylase; 486 Amino Acids; Locus: 1q42-q44; Intracellular Domains: Monooxygenase, Amino Acids 159-361


[1055] In addition to the human version of the Kynurenine Hydroxylase, no other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG127322-01.
359TABLE A7The variants of the Kynurenine Hydroxylase obtained fromdirect cloning and/or public databasesDNA positionstrandAllelesAA positionAA change1090PlusG:T348Leu=>Phe1105PlusT:C353Asp=>Asp1126PlusC:T360Ser=>Ser1153PlusA:G369Ala=>Ala1161PlusA:T372Asn=>Ile1243PlusA:C399Thr=>Thr


[1056] Quantitative expression analysis of clones in various cells and tissues was determined as described in Example C.


[1057] CG127322-01: Kynurenine Hydroxylase-Isoform1


[1058] Expression of gene CG127322-01 was assessed using the primer-probe set Ag4744, described in Table A8. Results of the RTQ-PCR runs are shown in Tables A9 and A10.
360TABLE ASProbe Name Ag4744SEQ IDPrimersLengthStart PositionNO:Forward5′-cagtgcttggatctgacaaagt-3′22486527ProbeTET-5′-tcccaaagatgtcacttgtgacctca-3′-TAMRA26508528Reverse5′-gacagttgaataggctccatca-3′22544529


[1059]

361





TABLE A9










General_screening_panel_v1.4











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4744,

Ag4744,



Run

Run


Tissue Name
213829150
Tissue Name
213829150













Adipose
2.0
Renal ca. TK-10
0.2


Melanoma* Hs688(A).T
0.0
Bladder
2.1


Melanoma* Hs688(B).T
0.0
Gastric ca. (liver met.) NCI-N87
0.4


Melanoma* M14
0.0
Gastric ca. KATO III
0.0


Melanoma* LOXIMVI
0.0
Colon ca. SW-948
0.0


Melanoma* SK-MEL-5
1.0
Colon ca. SW480
0.0


Squamous cell carcinoma SCC-4
1.1
Colon ca.* (SW480 met) SW620
0.0


Testis Pool
0.8
Colon ca. HT29
0.0


Prostate ca.* (bone met) PC-3
1.0
Colon ca. HCT-116
0.0


Prostate Pool
0.3
Colon ca. CaCo-2
0.1


Placenta
6.3
Colon cancer tissue
3.0


Uterus Pool
0.0
Colon ca. SW1116
0.0


Ovarian ca. OVCAR-3
2.1
Colon ca. Colo-205
0.0


Ovarian ca. SK-OV-3
0.2
Colon ca. SW-48
0.0


Ovarian ca. OVCAR-4
0.0
Colon Pool
4.4


Ovarian ca. OVCAR-5
2.8
Small Intestine Pool
0.4


Ovarian ca. IGROV-1
0.9
Stomach Pool
4.9


Ovarian ca. OVCAR-8
0.0
Bone Marrow Pool
0.4


Ovary
0.5
Fetal Heart
0.1


Breast ca. MCF-7
1.2
Heart Pool
0.0


Breast ca. MDA-MB-231
0.0
Lymph Node Pool
13.6


Breast ca. BT 549
52.9
Fetal Skeletal Muscle
0.0


Breast ca. T47D
6.1
Skeletal Muscle Pool
0.3


Breast ca. MDA-N
0.1
Spleen Pool
7.1


Breast Pool
21.2
Thymus Pool
21.5


Trachea
0.6
CNS cancer (glio/astro) U87-MG
0.0


Lung
0.0
CNS cancer (glio/astro) U-118-MG
0.2


Fetal Lung
1.8
CNS cancer (neuro; met) SK-N-AS
0.0


Lung ca. NCI-N417
0.0
CNS cancer (astro) SF-539
0.1


Lung ca. LX-1
0.0
CNS cancer (astro) SNB-75
0.0


Lung ca. NCI-H146
0.2
CNS cancer (glio) SNB-19
0.1


Lung ca. SHP-77
0.0
CNS cancer (glio) SF-295
0.9


Lung ca. A549
0.7
Brain (Amygdala) Pool
0.3


Lung ca. NCI-H526
0.0
Brain (cerebellum)
0.0


Lung ca. NCI-H23
0.1
Brain (fetal)
0.4


Lung ca. NCI-H460
0.6
Brain (Hippocampus) Pool
0.4


Lung ca. HOP-62
0.0
Cerebral Cortex Pool
0.2


Lung ca. NCI-H522
0.0
Brain (Substantia nigra) Pool
0.0


Liver
9.3
Brain (Thalamus) Pool
0.0


Fetal Liver
47.3
Brain (whole)
0.5


Liver ca. HepG2
0.0
Spinal Cord Pool
0.5


Kidney Pool
0.5
Adrenal Gland
0.3


Fetal Kidney
9.9
Pituitary gland Pool
0.0


Renal ca. 786-0
100.0
Salivary Gland
0.2


Renal ca. A498
11.0
Thyroid (female)
0.7


Renal ca. ACHN
1.4
Pancreatic ca. CAPAN2
0.0


Renal ca UO-31
1.5
Pancreas Pool
18.7










[1060]

362





TABLE A10










Panel 5 Islet











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4744,

Ag4744,



Run

Run


Tissue Name
204244613
Tissue Name
204244613













97457_Patient-02go_adipose
3.5
94709_Donor 2 AM - A_adipose
0.0


97476_Patient-07sk_skeletal
0.0
94710_Donor 2 AM - B_adipose
0.0


muscle


97477_Patient-07ut_uterus
0.0
94711_Donor 2 AM - C_adipose
0.0


97478_Patient-07pl_placenta
43.2
94712_Donor 2 AD - A_adipose
0.0


99167_Bayer Patient 1
6.2
94713_Donor 2 AD - B_adipose
0.0


97482_Patient-08ut_uterus
1.0
94714_Donor 2 AD - C_adipose
0.0


97483_Patient-08pl_placenta
60.7
94742_Donor 3 U - A_Mesenchymal
0.0




Stem Cells


97486_Patient-09sk_skeletal
0.0
94743_Donor 3 U - B_Mesenchymal
0.0


muscle

Stem Cells


97487_Patient-09ut_uterus
1.9
94730_Donor 3 AM - A_adipose
0.0


97488_Patient-09pl_placenta
47.3
94731_Donor 3 AM - B_adipose
0.0


97492_Patient-10ut_uterus
0.0
94732_Donor 3 AM - C_adipose
0.0


97493_Patient-10pl_placenta
71.7
94733_Donor 3 AD - A_adipose
0.0


97495_Patient-11go_adipose
2.5
94734_Donor 3 AD - B_adipose
0.0


97496_Patient-11sk_skeletal
0.0
94735_Donor 3 AD - C_adipose
0.0


muscle


97497_Patient-11ut_uterus
1.8
77138_Liver_HepG2untreated
0.0


97498_Patient-11pl_placenta
17.9
73556_Heart_Cardiac stromal cells
0.0




(primary)


97500_Patient-12go_adipose
4.4
81735_Small Intestine
2.5


97501_Patient-12sk_skeletal
0.0
72409_Kidney_Proximal Convoluted
1.2


muscle

Tubule


97502_Patient-12ut_uterus
1.2
82685_Small intestine_Duodenum
0.0


97503_Patient-12pl_placenta
100.0
90650_Adrenal_Adrenocortical
4.6




adenoma


94721_Donor 2 U -
0.0
72410_Kidney_HRCE
2.3


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
72411_Kidney_HRE
0.0


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
73139_Uterus_Uterine smooth
0.0


C_Mesenchymal Stem Cells

muscle cells










[1061] General_screening_panel_v1.4 and Panel 5 Islet: Method of Use module Summary is provided above.


[1062] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics


[1063] Alterations in expression of kynurenine hydroxylase and associated gene products function in the etiology and pathogenesis of obesity and/or diabetes. The scheme seen in Table 4 incorporates the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of Kynurenine Hydroxylase would be to 1) inhibit the excess production of glucose, thus ameliorating hyperglycemia in Type 2 diabetes, and 2) inhibit the synthesis of triglycerides, thus preventing excess weight gain.


[1064] Taken in total, the data indicates that an inhibitor/antagonist of Kynurenine Hydroxylase would be beneficial in the treatment of obesity and/or diabetes:


[1065] 1. The carbon skeleton of tryptophan yields acetyl CoA which can be used for fatty acid synthesis.


[1066] 2. SHR rats have a defective form of the CD36 membrane fatty acid transporter which prevents the intracellular transport of medium and long-chain fatty acids (see below for references): the 100-fold up-regulation of tryptophan 2,3-dioxygenase in our discovery studies may be an adaptive response in which tryptophan catabolism provides the substrate for intracellular fatty acid synthesis.


[1067] 3. The side chain of tryptophan can be cleaved to yield alanine, the primary gluconeogenic amino acid.


[1068] 4. Inhibitors of kynurenine hydroxylase could be an effective adjunct therapy for the treatment of obesity or the prevention of excess glucose production in Type 2 diabetes.
363TABLE A14Pathways relevant to obesity and/or diabetes etiology andpathogenesis.1


[1069] B. NOV8b (CG148278-01)—Human Long-Chain Acyl CoA Synthetase I-Like Protein


[1070] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by CuraGen Corporation in certain cases. The LONG-CHAIN ACYL COA SYNTHETASE I—encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.


[1071] Discovery Process


[1072] The following sections describe the study design(s) and the techniques used to identify the LONG-CHAIN ACYL COA SYNTHETASE I—encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.
364Studies:BP24.2. Diet induced obesity


[1073] Study Statements:


[1074] The predominant cause for obesity in clinical populations is excess caloric intake. This so-called diet-induced obesity (DIO) is mimicked in animal models by feeding high fat diets of greater than 40% fat content. The DIO study was established to identify the gene expression changes contributing to the development and progression of diet-induced obesity. In addition, the study design seeks to identify the factors that lead to the ability of certain individuals to resist the effects of a high fat diet and thereby prevent obesity. The sample groups for the study had body weights +1 S.D., +4 S.D. and +7 S.D. of the chow-fed controls (below). In addition, the biochemical profile of the +7 S.D. mice revealed a further stratification of these animals into mice that retained a normal glycemic profile in spite of obesity and mice that demonstrated hyperglycemia. Tissues examined included hypothalamus, brainstem, liver, retroperitoneal white adipose tissue (WAT), epididymal WAT, brown adipose tissue (BAT), gastrocnemius muscle (fast twitch skeletal muscle) and soleus muscle (slow twitch skeletal muscle). The differential gene expression profiles for these tissues should reveal genes and pathways that can be used as therapeutic targets for obesity.
365Studies:MB.01 Insulin Resistance


[1075] Study Statements:


[1076] The spontaneously hypertensive rat (SHR) is a strain exhibiting features of the human Metabolic Syndrome X. The phenotypic features include obesity, hyperglycemia, hypertension, dyslipidemia and dysfibrinolysis. Tissues were removed from adult male rats and a control strain (Wistar-Kyoto) to identify the gene expression differences that underlie the pathologic state in the SHR and in animals treated with various anti-hyperglycemic agents such as troglitizone. Tissues included sub-cutaneous adipose, visceral adipose and liver. Table B6 shows body weight distribution for diet induced obesity in spontaneously hypertensive rats.


[1077] Species #1 mouse C56B1/6


[1078] Species #2 rat WKY


[1079] Long-Chain Acyl CoA Synthetase I:


[1080] We have found long chain acyl-CoA synthetase (ACS) 2 dysregulated in multiple studies including the Diet-induced obesity study. ACS is involved in both the elongation of fatty acids, which occurs in the midrosomes, as well as beta-oxidation of fatty acids, which occurs in the mitochondria. In the genetically obese ob/ob mice the majority of the ACS activity is associated with microsomes, while in control mice it is associated with the mitochondria, suggesting that elongation of fatty acids is more predominant then beta-oxidation in the ob/obmice. Indeed, our Genecalling suggest a role for ACS in the diet-induced obesity model in fatty acid elongation.


[1081] While in mouse only one ACS is known, in human two enzymes are known, long chain acyl CoA synthetase I and long chain acyl CoA synthetase II, which are both highly homologous to the mouse ACS. Human long chain acyl CoA synthetase I is known to have a microsomal localization, and therefore is most likely the mouse orthologue involved in fatty acid elongation. Therefore, we nominate the enzyme long-chain acyl CoA synthetase I as a valuable tool to inhibit fatty acid elongation and promote beta-oxidation.


[1082] SPECIES #1 mouse (C57B1/6 obese euglycemic sd7 brown adipose tissue versus chow brown adipose tissue)


[1083] A gene fragment of the mouse long chain acyl-CoA synthetase II was initially found to be downregulated by 1.6 fold in the brown fat pad of the obese euglycemic sd7 mice relative to the chow-fed mice using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating at approximately 293 nucleotides in length (Table B7a.—vertical line) was definitively identified as a component of the mouse long chain acyl-CoA synthetase II cDNA in the obese euglycemic sd7 brown adipose and chow brown adipose tissue (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the mouse long chain acyl-CoA synthetase II are ablated when a gene-specific primer (see below) which competes with primers in the linker-adaptors during the PCR amplification. The peaks at 293 nt in length are ablated in the sample from both the obese euglycemic sd7 brown adipose and chow brown adipose tissue. The altered expression in of these genes in the animal model support the role of long chain acyl-CoA synthetase I in the pathogenesis of obesity and/or diabetes.


[1084] SPECIES #2 rat (WKY Troglitazone LD10/72 h liver tissue vs. 0.02% DMSO/72 h liver tissueA gene fragment of the rat long chain acyl-CoA synthetase was initially found to be upregulated by 6.5 fold in the Troglitazone LD10/72 h treated liver tissue compared to the 0.02% DMSO/72 h untreated liver tissue of WKY rats using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed human gene fragment migrating at approximately 431 nucleotides in length (Table B8a—vertical line) was definitively identified as a component of the rat long chain acyl-CoA synthetase cDNA in the Troglitazone LD10/72 h treated liver tissue and the 0.02% DMSO/72 h untreated liver tissue of WKY rats (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat long chain acyl-CoA synthetase are ablated when a gene-specific primer (see below) which competes with primers in the linker-adaptors during the PCR amplification. The peaks at 431 nt in length are ablated in the sample from both the Troglitazone LD10/72 h treated liver tissue and the 0.02% DMSO/72 h untreated liver tissue (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The altered expression of these genes in the human cellular model support the role of long chain acyl-CoA synthetase I in the pathogenesis of obesity and/or diabetes.


[1085] Tables B7a and B7b show a differentially expressed mouse long chain acyl-CoA synthetase II gene fragment in Discovery Study BP24.02, C57B1/6 obese euglycemic sd7 brown adipose tissue versus chow brown adipose tissue.
366TABLE B1Long chain acyl-CoA synthetase II+HZ,45 Gene Sequence identified in C57B1/6 obese euglycemic sd7 brown adiposetissue versus chow brown adipose tissue(Identified fragment from 1806 to 2098 in bold. band size: 293).(gene length is 2100, only region from 1325 to 2100 shown)(SEQ ID NO:530)1325CAGTGCTGAC GTTTCTGAGG ACAGCGCTCG GCTGCCAGTT CTATGAAGGC TACGGACAGA1385CCGAGTGCAC TGCTGGTTGC TGCCTGAGCT TGCCCGGAGA CTGGACGGCA GGCCATGTTG1445GAGCCCCCAT GCCTTGCAAT TATGTAAAGC TTGTGGATGT GGAAGAAATG AATTACCTGG1505CATCCAAGGG CGAGGGTGAG GTGTGTGTGA AAGGGGCAAA TGTGTTCAAA GGCTACTTGA1565AAGACCCAGC AAGAACAGCT GAAGCCCTGG ATAAAGATGG CTGGTTACAC ACGGGGGACA1625TTGGAAAATG GCTGCCAAAT GGCACCTTGA AGATTATCGA CAGGAAAAAG CACATATTTA1685AACTAGCCCA AGGAGAGTAC ATAGCACCAG AAAAGATTGA AAATATCTAC CTGCGGAGTG1745AAGCCGTGGC CCAGGTGTTT GTCCACGGAG AAAGCTTGCA GGCCTTTCTC ATAGCAGTTG1805TGGTACCCGA CGTTGAGAGC CTACCGTCCT GGGCACAGAA GAGAGGCTTA CAAGGGTCCT1865TCGAAGAACT GTGCAGGAAC AAGGATATCA ATAAAGCTAT CCTGGACGAC TTGTTGAAAC1925TTGGGAAGGA AGCCGGTCTG AAGCCATTTG AACAGGTCAA AGGCATTGCT GTGCACCCGG1985AATTATTTTC TATTGACAAC GGCCTTCTGA CTCCAACACT GAAGGCGAAG AGGCCAGAGC2045TACGGAACTA TTTCAGGTCG CAGATAGATG AACTGTACGC CACCATCAAG ATCTAA


[1086]

367





TABLE B2










Long chain acyl-CoA synthetase+HZ,45







gene sequence identified in WKY Troglitazone LD10/72 h liver tissue


vs. 0.02% DMSO/72 h liver tissue


(Identified fragment from 347 to 777 in bold. band size: 431)


(gene length is 3657, only region from 1 to 1257 shown)








(SEQ ID NO:531)










1
CCAACACAGA ACTATGGAAG TCCACGAATT GTTCCGGTAT TTTCGAATGC CAGAGCTGAT






61
TGACATTCGG CAGTACGTGC GTACCCTTCC AACCAACACA CTCATGGGCT TCGGGGCTTT





121
TGCAGCGCTC ACCACCTTCT GGTATGCCAC CCGGCCGAAG GCCCTGAAGC CACCATGTGA





181
TCTGTCCATG CAGTCTGTGG AAGTAACGGG TACTACTGAG GGTGTCCGAA GATCAGCAGT





241
CCTTGAGGAC GACAAGCTCT TGCTGTACTA CTACGACGAT GTCAGAACGA TGTACGATGG





301
CTTCCAGAGG GGGATTCAGG TGTCAAATGA TGGCCCTTGT TTAGGTTCTA GAAAGCCAAA







361




CCAGCCATAT GAGTGGATTT CTTACAAACA GGTTGCAGAA ATGGCTGAGT GCATAGGCTC









421




GGCGCTGATC CAGAAGGGTT TCAAACCTTG CTCAGAGCAG TTCATCGGCA TCTTTTCTCA









481




GAACAGACCT GAGTGGGTGA CCATCGAGCA GGGGTGCTTC ACTTACTCCA TGGTGGTTGT









541




TCCGCTCTAT GACACGCTTG GAACCGACGC CATCACCTAC ATAGTGAACA AAGCTGAACT









601




CTCTGTGATT TTTGCTGACA AGCCAGAAAA AGCCAAACTC TTATTAGAAG GTGTAGAAAA









661




TAAGTTAACA CCATGCCTTA AAATCATAGT CATCATGGAC TCCTACGACA ATGATCTGGT









721




GGAACGCGGC CAGAAGTGTG GGGTGGAAAT CATCGGCCTA AAAGCTCTGG AGGATCT
TGG






781
AAGAGTGAAC AGAACGAAAC CCAAGCCTCC AGAACCTGAA GATCTTGCGA TAATCTGTTT





841
CACAAGTGGA ACTACAGGCA ACCCCAAAGG AGCAATGGTC ACCCACCAAA ACATTATGAA





901
CGATTGCTCC GGTTTTATAA AAGCGACGGA GAGTGCATTC ATCGCTTCCC CAGAGGATGT





961
TCTGATATCT TTCTTGCCTC TCGCCCATAT GTTTGAGACC GTTGTAGAGT GTGTAATGCT





1021
ATGTCATGGA GCTAAGATAG GATTTTTCCA AGGAGACATC AGGCTGCTTA TGGATGACCT





1081
CAAGGTGCTT CAGCCTACCA TCTTCCCTGT GGTTCCGAGA CTGCTAAACC GGATGTTTGA





1141
CAGAATTTTT GGACAAGCAA ACACGTCAGT GAAGCGATGG CTGTTGGATT TTGCCTCCAA





1201
AAGGAAAGAG GCGGAGCTTC GCAGTGGCAT CGTCAGAAAC AACAGCCTGT GGGATAA










[1087] Tables B8A and B8B show a differentially expressed rat long chain acyl-CoA synthetase gene fragment in Discovery Study MB.01 identified in WKY Troglitazone LD10/72 h liver tissue vs. 0.02% DMSO/72 h liver tissue.
368TABLE B3Human long chain acyl-CoA synthetase I DNA and Protein SequenceCG148278-01.(SEQ ID NO:532)CGGGCAGTGACAGCCGGCGCGGATCGCGCGTCCACGGAGGAGAATCAGCTTAGAGAACTATCAACACAGGACAATGCAAGCCCATGAGCTGTTCCGGTATTTTCGAATGCCAGAGCTGGTTGACTTCCGACAGTGCGTGACTCTTCCGACCAACACGCTTATGGGCTTCGGAGCTTTTTCCAGACGACTCACCACCTTCTGGCGGCCACGCCACCCAAAACCCCTGAAGCCGCCATGGCACCTCTCCATGCAGTCAGTGCAAGTGGCGGGTAGTGGTGGTGCACGAAGATCCGCACTACTTGACAGCGACGAGCCCTTGGTGTATTTCTATGATGATGTTACAACATTATACGAAGGTTTCCAGAGAGGGATACAGGTGTCAAATAATGGCCCTTGTTTAGGCTCTCGGAAACCAGACCAACCCTATGAATGGCTTTCATATAAACAGGTTGCAGAATTGTCGGAGTGCATAGGCTCAGCACTGATCCAGAAGGGCTTCAAGACTGCCCCAGATCAGTTCATTGGCATCTTTGCTCAAAATAGACCTGAGTGGGTGATTATTGAACAAGGATGCTTTGCTTATTCGATGGTGATCGTTCCACTTTATGATACCCTTGGAAATGAAGCCATCACGTACATAGTCAACAAAGCTGAACTCTCTCTGGTTTTTGTTGACAAGCCAGAGAAGGCCAAACTCTTATTAGAGGGTGTAGAAAATAAGTTAATACCAGGCCTTAAAATCATAGTTGTCATGGACTCGTACGGCAGTGAACTGGTGGAACGAGGCCAGAGGTGTGGGGTGGAAGTCACCAGCATGAAGGCGATGGAGGACCTGGGAAGAGCCAACAGACGGAAGCCCAAGCCTCCAGCACCTGAAGATCTTGCAGTAATTTGTTTCACAAGTGGAACTACAGGCAACCCCAAAGGAGCAATGGTCACTCACCGAAACATAGTGAGCGATTGTTCAGCTTTTGTGAAAGCAACAGAGAATACAGTCAATCCTTGCCCAGATGATACTTTGATATCTTTCTTGCCTCTCGCCCATATGTTTGAGAGAGTTGTAGAGTGTGTAATGCTGTGTCATGGAGCTAAAATCGGATTTTTCCAAGGAGATATCAGGCTGCTCATGGATGACCTCAAGGTGCTTCAACCCACTGTCTTCCCCGTGGTTCCAAGACTGCTGAACCGGATGTTTGACCGAATTTTCGGACAAGCAAACACCACCGTGAAGCGATGGCTCTTGGACTTTGCCTCCAAGAGGAAAGAAGCAGACGTTCGCAGCGGCATCATCAGAAACAACAGCCTGTGGGACCGGCTGATCTTCCACAAAGTACAGTCGAGCCTGGGCGGAAGAGTCCGGCTGATGGTGACAGGAGCCGCCCCGGTGTCTGCCACTGTGCTGACGTTCCTCAGAGCAGCCCTGGGCTGTCAGTTTTATGAAGGATACGGACAGACAGAGTGCACTGCCGGGTGCTGCCTAACCATGCCTGGAGACTGGACCACAGGCCATGTTGGGGCCCCGATGCCGTGCAATTTGATAAAACTTGGTTGGCAGTTGGAAGAAATGAATTACATGGCGTCCGAGGGCGAGGGCGAGGTGTGTGTGAAAGGGCCAAATGTATTTCAGGGCTACTTGAAGGACCCAGCGAAAACAGCAGAAGCTTTGGACAAAGACGGCTGGTTACACACAGGGGACATCGGAAAATGGTTACCAAATGGCACCTTGAAAATTATCGACCGGAAAAAGCACATATTTAAGCTGGCACAAGGAGAATACATAGCCCCTGAAAAGATTGAAAATATCTACATGCGAAGTGAGCCTGTTGCTCAGGTGTTTGTCCACGGAGAAAGCCTGCAGGCATTTCTCATTGCAATTGTGGTACCAGATGTTGAGACATTATGTTCCTGGGCCCAAAAGAGAGGATTTGAAGGGTCGTTTGAGGAACTGTGCAGAAATAAGGATGTCAAAAAAGCTATCCTCGAAGATATGGTGAGACTTGGGAAGGATTCTGGTCTGAAACCATTTGAACAGGTCAAAGGCATCACATTGCACCCTGAATTATTTTCTATCGACAATGGCCTTCTGACTCCAACAATGAAGGCGAAAAGGCCAGAGCTGCGGAACTATTTCAGGTCGCAGATAGATGACCTCTATTCCATCATCAAGGTTTAGTGTGAAGAAGAAAGCTCAGAGGAAATGGCACAGTTCCACAATCTCTTCTCCTGCTGATGGCCTTCATGTTGTTAATTTTGAATACAGCAAGTGTAGGGAAGGAAGCGTTCTGTGTTTGACTTGTCCATTCGGGGTTCTTCTCATAGGAATGCTAGAGGAAACAGAACACTGCCTTACAGTCACCTCAGTGTTCAGACCATGTTTATGGTAATACACACTTCCAAAAGTAGCCTTAAAAATTGTAAAGGGATACTATAAATGTGCTAATTATTTGAGACTTCCTCAGTTTAAAAAGTGGGTTTTAAATCTTCTGTCTCCCTGTTTTTCTAATCAAGGGGTTAGGACTTTGCTATCTCTGAGATGTCTGCTACTTCGTCGAAATTCTGCAGCTGTCTGCTGCTCTAAAGAGTACAGTGCTCTAGAGGGAAGTGTTCCCTTTAAAAATAAGAACAACTGTCCTGGCTGGAGATCTCACAAGCGGACCAGAGATCTTTTTAAATCCCTGCTACTGTCCCTTCTCACAGGCATTCACAGAACCCTTCTGATTCGAAGGGTTACGAAACTCATGTTCTTCTCCAGTCCCCTGTGGTTTCTGTTGGAGCATAAGGTTTCCAGTAAGCGGGAGGGCAGATCCAACTCAGAACCATGCAGATAAGGAGCCTCTGGCAAATGGGTGCTGCATCAGAACGCGTGGATTCTCTTTCATGGCAGATGCTCTTGGACTCGGTTCTCCAGGCCTGATTCCCCGACTCCATCCTTTTTCAGGGTTATTTAAAAATCTGCCTTAGATTCTATAGTGAAGACAAGCATTTCAAGAAAGAGTTACCTGGATCAGCCATGCTCAGCTGTGACGCCTGATAACTGTCTACTTTATCTTCACTGAACCACTCACTCTGTGTAAAGGCCAACGGATTTTTAATGTGGTTTTCATATCAAAAGATCATGTTGGGATTAACTTGCCTTTTTCCCCAAAAAATAAACTCTCAGGCAAGGCATTTCTTTTAAAGCTATTCCG


[1088]

369






TABLE B4










>CG148278-01-prot      699 aa









(SEQ ID NO:533)









MQAHELFRYFRMPELVDFRQCVTLPTNTLMGFGAFSRRLTTFWRPRHPKPLKPPWHLSMQSVEVAGSGGARRSALLDSDE






PLVYFYDDVTTLYEGFQRGIQVSNNGPCLGSRKPDQPYEWLSYKQVAELSECIGSALIQKGFKTAPDQFIGIFAQNRPEW





VIIEQGCFAYSMVIVPLYDTLGNEAITYIVNKAELSLVFVDKPEKAKLLLEGVENKLIPGLKIIVVMDSYGSELVERGQR





CGVEVTSMKAMEDLGRANRRKPKPPAPEDLAVICFTSGTTGNPKGAMVTHRNIVSDCSAFVKATENTVNPCPDDTLISFL





PLAHMFERVVECVMLCHGAKIGFFQGDIRLLMDDLKVLQPTVFPVVPRLLNRMFDRIFGQANTTVKRWLLDFASKRKEAD





VRSGIIRNNSLWDRLIFHKVQSSLGGRVRLMVTGAAPVSATVLTFLRAALGCQFYEGYGQTECTAGCCLTMPGDWTTGHV





GAPMPCNLIKLGWQLEEMNYMASEGEGEVCVKGPNVFQGYLKDPAKTAEALDKDGWLHTGDIGKWLPNGTLKIIDRKKHI





FKLAQGEYIAPEKIENIYMRSEPVAQVFVHGESLQAFLIAIVVPDVETLCSWAQKRGFEGSFEELCRNKDVKKAILEDMV





RLGKDSGLKPFEQVKGITLHPELFSIDNGLLTPTMKAKRPELRNYFRSQIDDLYSIIKV










[1089] The following is an alignment of the protein sequences of CG148278-01 and other ACS family members ACS2 (CG93648-01), ACS 4 and ACS5. ACS2 is highly identical but is a different gene with a different chromosomal localization.


[1090] Biochemistry and Cell Line Expression


[1091] The following illustrations summarize the biochemistry surrounding the human long chain acyl-CoA synthetase I and potential assays that may be used to screen for antibody therapeutics or small molecule drugs to treat obesity and/or diabetes. Cell lines expressing the long chain acyl-CoA synthetase I can be obtained from the RTQ-PCR results shown above. These and other long chain acyl-CoA synthetase I expressing cell lines could be used for screening purposes:


[1092] ATP+a long-chain carboxylic acid+CoA=>


[1093] AMP+pyrophosphate+acyl-CoA


[1094] Subunit: monomer; Co-factor: magnesium; Inhibitor: Triacsin C (Muoio et al., 2000). Inhibits also ACS4.


[1095] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics:


[1096] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human LONG-CHAIN ACYL COA SYNTHETASE I would be beneficial in the treatment of obesity and/or diabetes.


[1097] In multiple genecalling studies we have found the enzyme long chain acyl-CoA synthetase (ACS) I to be dysregulated in various disease models (see below). ACS (rats) is up-regulated in liver in response to TZD treatment, while in the diet-induced obesity study ACS2 was found to be upregulated in brown adipose of DIO mice. These data suggest that the microsomal ACSs are involved in fatty acid esterification and may contribute to the obese phenotype. In human, two ACS genes exist which are 97% identical on the amino acid level. A specific inhibitor of microsomal ACS1-2 may prevent Acyl-CoA from becoming re-esterified in adipose and liver and promote beta-oxidation. This should be beneficial for the treatment of obesity.


[1098] Physical cDNA Clone Available for Expression & Screening Purposes


[1099] CG148278-01 is a full length physical clone which is the preferred cDNA, among the variants listed above, that encompasses the coding portion of the human LONG-CHAIN ACYL COA SYNTHETASE I for expression of recombinant protein from any number of plasmid, phage or phagemid vectors in a variety of cellular systems for screening purposes. The corresponding amino acid sequence is listed above (see Table B1b). Although the sequence below is the preferred isoform, any of the other isoforms may be used for similar purposes. Furthermore, under varying assay conditions, conditions may dictate that another isoform may supplant the listed isoform.


[1100] Table B9 illustrates how alterations in the expression of the human long-chain acyl CoA synthetase I and associated gene products function in the etiology and pathogenesis of obesity and/or diabetes. The scheme incorporates the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of the human long-chain acyl CoA synthetase I would be a way to increase lypolysis by inhibiting anti-lypolytic effects of hydrogen peroxide.
370TABLE B9Human Long-Chain Acyl CoA Synthetase I and Associated GeneProduct Pathway Relevant to the Etiology and Pathogenesisof Obesity and/or Diabetes:2


[1101] C. NOV7b (CG148010-01)—Human Diacylglycerol Acyltransferase 2-Like Protein


[1102] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them are encoded by a cDNA and/or by genomic DNA. CuraGen Corporation identified the proteins, polypeptides and their cognate nucleic acids in certain cases. The Diacylglycerol acyltransferase 2-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.


[1103] Discovery Process


[1104] The following sections describe the study design(s) and the techniques used to identify the Diacylglycerol acyltransferase 2-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and/or Diabetes.
371Studies:MB.04: Lean vs. Obese Genetic mouse modelDiet-Induced Obesity


[1105] Study Statements:


[1106] MB.04: A large number of mouse strains have been identified that differ in body mass and composition. The AKR and NZB strains are obese, the SWR, C57L and C57BL/6 strains are of average weight whereas the SM/J and Cast/Ei strains are lean. Understanding the gene expression differences in the major metabolic tissues from these strains will elucidate the pathophysiologic basis for obesity. These specific strains of mouse were chosen for differential gene expression analysis because quantitative trait loci (QTL) for body weight and related traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1107] DIO: The predominant cause for obesity in clinical populations is excess caloric intake. This so-called diet-induced obesity (DIO) is mimicked in animal models by feeding high fat diets of greater than 40% fat content. The DIO study was established to identify the gene expression changes contributing to the development and progression of diet-induced obesity. In addition, the study design seeks to identify the factors that lead to the ability of certain individuals to resist the effects of a high fat diet and thereby prevent obesity. The sample groups for the study had body weights +1 S.D., +4 S.D. and +7 S.D. of the chow-fed controls (below). In addition, the biochemical profile of the +7 S.D. mice revealed a further stratification of these animals into mice that retained a normal glycemic profile in spite of obesity and mice that demonstrated hyperglycemia. Table C7 shows the results of this study. Tissues examined included hypothalamus, brainstem, liver, retro peritoneal white adipose tissue (WAT), epididymal WAT, brown adipose tissue (BAT), gastrocnemius muscle (fast twitch skeletal muscle) and soleus muscle (slow twitch skeletal muscle). The differential gene expression profiles for these tissues should reveal genes and pathways that can be used as therapeutic targets for obesity.


[1108] Diacylglycerol Acyltransferase 2:


[1109] Catalyzes the reaction of 1,2-diacylglycerol+Acyl-CoA giving triacylglyceride and CoA as it's products. Palmitoyl-CoA and other long-chain acyl-CoA's can act as donors in this reaction.


[1110] SPECIES #1 Tables C6a and C6b show that two gene fragments of the mouse Diacylglycerol acyltransferase 2 were found in two different studies. The first fragment was found in the MB04 study and was up-regulated by 2.1 fold in the Adipose of the AKR/J mouse relative to the C57L/J mouse strain. The second fragment was down-regulated −1.5 fold in the Brown Adipose tissue of mice found in the Diet-Induced Obesity model comparing hyperglycemic mice of the 7 standard deviation group versus the control Chow-fed group using CuraGen's GeneCalling™ method of differential gene expression. The two differentially expressed mouse gene fragments migrated, at approximately 116.9 (MB04) and 311.6 (DIO) nucleotides in length (Tables C6a and C6b—vertical line) was definitively identified as components of the mouse Diacylglycerol acyltransferase 2 cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The electropheragramatic peaks corresponding to the gene fragment of the mouse Diacylglycerol acyltransferase 2 are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 312.1 nt in length are ablated in the sample from both the NZB and SMJ mice.


[1111] Confirmatory Result—Human Diacylglycerol Acyltransferase 2 (Discovery Studies MB.04 and DIO):


[1112] The direct sequence of the 116.9 and 311.6 nucleotide-long gene fragments and the gene-specific primers used for competitive PC are indicated in italic. The gene-specific primers at the 5′ and 3′ ends of the fragment are in bold.
372TABLE C1Human Diacylglycerol acyltransferase 2 Gene SequencesMB04: (Identified fragment from 545 to 660 in italic. band size: 116)(SEQ ID NO:538)TGGCATGGTACAGGTCGATGTCTTTCTGGGTCGGGTGCTCCAGCTTGGGGACAGTGATGGGCTCCCCCACGACGGTGGTGATGGGCTTGGAGTAGGGCACCAGCCCCCAGGTGTCAGAGGAGAAGAGGCCTCGGCCATGGAAGATGCAGGGGGCGAAACCAATATACTTCTGGAACTTCTTCTGGACCCATCGGCCCCAGGAACCCTCCTCAAAGATCACCTGCTTGTATACCTCATTCTCTCCAAAGGAATAAGTGGGAACCAGATCAGCTCCATGGCGCAGGGCCAGCTTCACAAAGCCTTTGCGGTTCTTCAGGGTGACTGCGTTCTTGCCAGGCATGGAGCTCAGGGACTCAGCTGCACCTCCCACCACGATGATGATAGCATTGCCACTCCCATTCTTGGAGAGCAAGTAGTCTATGGTGTCTCGGTTGACAGGGCAGATGCCTCCAGACATCAGGTACTCGCGAAGCACAGGCATCCGGAAGTTACCAGCCAACGTAGCCAAATAGGGCCTTATGCCAGGAAACTTCTTGCTGACTTCAGTAGCCTCTGTGCTGAAGTTACAGAAGGCACCCAGGCCCATGATGCCATGGGGGTGGTATCCAAAGATATAGTTCCTGGTGGTCAGCAGGTTGTGTGTCTTCACCAGCTGGATGGGAAAGTAGTCTCGGAAGTAGCGCCACACGGCCCAGTTTCGCACCCACTGCGATCTCCTGCCACCTTTCTTCGGCGTGTTCCAGTCAAATGCCAGCCAGGTGAAGTAGAGCACAGCTATCAGCCAGCAGTCTGTGCAGAAGGTGTACATGAGGATGACACTGCAGGCCACTCCTAGCACCAGGAAGGATAGGACCCATTGTAGTACTGAGATGACCTGCAGCTGTTTTTCCACCTTAGATCTGTTGAGCCAGGTGACAGAGAAGATGTCTTGGAGGGCTGAGAGGATGCTGGAGCCAGTGCCCCATCGCCCAGACCCCTCGCGTGACAGGGCAGATCCTTTATTCTTGTTTTCGCTGCGGGCAGCTTCCGCCCGACGCTCACCCCGCAGGACCCCGGAGTAGGCGGCGATGAGGGTCT


[1113]

373





TABLE C2








Human Diacylglycerol acyltransferase 2 Gene Sequences
















DIO: (Identified fragment from 240 to 550 in italic. band Size: 311)









(SEQ ID NO:539)









GTGTCAGAGGAGAAGAGGCCTCGGCCATGGAAGATGCAGGGGGCGAAACCAATATACTTCTGGAACTTCTTCTGGACCCA






TCGGCCCCAGGAACCCTCCTCAAAGATCACCTGCTTGTATACCTCATTCTCTCCAAAGGAATAAGTGGGAACCAGATCAG





CTCCATGGCGCAGGGCCAGCTTCACAAAGCCTTTGCGGTTCTTCAGGGTGACTGCGTTCTTGCCAGGCATGGAGCTCAGG





GACTCAGCTGCACCTCCCACCACGATGATGATAGCATTGCCACTCCCATTCTTGGAGAGCAAGTAGTCTATGGTGTCTCG





GTTGACAGGGCAGATGCCTCCAGACATCAGGTACTCGCGAAGCACAGGCATCCGGAAGTTACCAGCCAACGTAGCCAAAT





AGGGCCTTATGCCAGGAAACTTCTTGCTGACTTCAGTAGCCTCTGTGCTGAAGTTACAGAAGGCACCCAGGCCCATGATG





CCATGGGGGTGGTATCCAAAGATATAGTTCCTGGTGGTCAGCAGGTTGTGTGTCTTCACCAGCTGGATGGGAAAGTAGTC





TCGGAAGTAGCGCCACACGGCCCAGTTTCGCACCCACTGCGATCTCCTGCCACCTTTCTTGGGCGTGTTCCAGTCAAATG





CCAGCCAGGTGAAGTAGAGCACAGCTATCAGCCAGCAGTCTGTGCAGAAGGTGTACATGAGGATGACACTGCAGGCCACT





CCTAGCACCAGGAAGGATAGGACCCATTGTAGTACTGAGATGACCTGCAGCTGTTTTTCCACCTTAGATCTGTTGAGCCA





GGTGACAGAGAAGATGTCTTGGAGGGCTGAGAGGATGCTGGAGCCAGTGCCCCATCGCCCAGACCCCTCGCGTGACAGGG





CAGATCCTTTATTCTTGTTTTCGCTGCGGGCAGCTTCCGCCCGACGCTCACCCCGCAGGACCCCGGAGTAGGCGGCGATG





AGGGTCTTCATGCTGAAGCCAATGCACGTCACGGCCGTGCAGAAAGCCGCCTCACGCCGCGCCCCTGACC










[1114]

374





TABLE C3








Nucleotide and protein sequence of Human Diacylglycerol acyltransferase 2
















CG148010-01









(SEQ ID NO:540)









TTCAGCCATGAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACCGGAGCCAGC






GCTCTCACGGAGGACCCGTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATCCAGCATCCTCTCCGCCCTCCAGGAC





CTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTC





CTTCCTTGTACTGGGAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCT





ACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCGAAACTGGGCTGTG





TGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAACCTGCTGACCACCAGGAACTATATCTTTGG





ATACCACCCCCATGGTATCATGGGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCC





CAGGCATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGGT





ATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGCTATCATCATCGTGGTCGG





GGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGG





CCCTGCGTCATGGAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAG





GGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCGAGGCCT





CTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCA





AGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAG





CACAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAACTGAGCCAGCCTTCGGGGCCAATTCCCTGGAGG





AACCAGCTGCAAATCACTTTTTTGCTCTGT










[1115]

375





TABLE C4








ORF Start: 8      ORF Stop: 1169      Frame: 2
















Human Diacylglycerol acyltransferase 2 Protein Sequence:



CG148010-01 387 aa








(SEQ ID NO:541)









MKTLIAAYSGVLRGERQAEADRSQRSHGGPVSREGSGRWGTGSSILSALQDLFSVTWLNRSKVEKQLQVI






SVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQWVRNWAVWRYFRDYFP





IQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIRPYLATLAGNFRMPVLREYLMSG





GICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKNAVTLRNRKGFVKLALRHGADLVPIYSFGE





NEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPT





QQDIDLYHTMYMEALVKLFDKHKTKFGLPETEVLEVN










[1116] The following is an alignment of the protein sequences of the human DGAT2 (CG148010-01) and mouse (AF384160) versions, also included is the protein sequence for human DGAT1 (NM012079).


[1117] In addition to the human version of the Diacylglycerol acyltransferase 2 identified as being differentially expressed in the experimental study, no other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen. The preferred variant to all those identified, to be used for screening purposes, is CG148010-01.


[1118] Biochemistry and Cell Line Expression


[1119] Table 8 summarizes the biochemistry surrounding the human diacylglycerol acyltransferase 2 enzyme. Cell lines expressing the diacylglycerol acyltransferase 2 enzyme can be obtained from the RTQ-PCR results shown above. These and other diacylglycerol acyltransferase 2 enzyme expressing cell lines could be used for screening purposes.


[1120] Findings: Diacylglycerol Acyltransferase 2 (DGAT2) is an important enzyme in the synthesis of triglycerides in both adipose, liver and muscle. DGAT2 is upregulated in the genetically obese mouse models while down regulated in brown adipose tissue in a mouse Diet Induced Obesity model. An inhibitor of DGAT2 would lead to a decrease in triacylglycerol storage. By decreasing lipid storage in particular tissues the complications associated with obesity, such as insulin resistance and Type II diabetes, may be ameliorated.


[1121] Taken in total, the data indicates that an inhibitor of the human Diacylglycerol acyltransferase 2 enzyme would be beneficial in the treatment of obesity and/or diabetes.


[1122] The sequence of Acc. No. CG148010-01 is an In silico prediction based on sequences available in CuraGen's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.


[1123] D. NOV23b—Human Secreted Carboxypeptidase HSCP1-Like Protein—CG55078-01


[1124] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by CuraGen Corporation in certain cases. The Secreted Carboxypeptidase HSCP1-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.


[1125] Discovery Process


[1126] The following sections describe the study design(s) and the techniques used to identify the Secreted Carboxypeptidase HSCP1-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.


[1127] Studies: MB.03: Type II Diabetes in Rat


[1128] Study Statements: MB.03


[1129] The GK rat was developed from the non-diabetic Wistar rat and selected over many generations on the basis of abnormal glucose tolerance. The GK rat shows mild basal hyperglycemia, marked glucose intolerance and both hepatic and peripheral insulin resistance. GK rats also demonstrate basal hyperinsulinemia and impaired insulin response to glucose. GK rats develop many of the late-term complications associated with Type 2 diabetes, including vascular disorders, nephropathy and neuropathy. Tissues were removed from adult male rats and three control strains (Wistar, Brown Norway and Fischer 344) to identify the gene expression differences that underlie the pathologic state in the GK rat model of Type II Diabetes. These specific strains of rat were chosen for differential gene expression analysis because quantitative trait loci (QTL) for diabetic traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1130] Species #1: Rat Strains GK vs Brown Norway


[1131] Secreted Carboxypeptidase HSCP1:


[1132] Secreted Carboxypeptidase HSCP 1 is a new poor-characterized member of carboxypeptidase family. This class of peptidase has been implicated in hormone maturation and/or degradation of secreted peptides such as insulin, GLP-1, PACAP, the latter has a major role in metabolic processes. Some carboxypeptidases, like CPE or PC1, have been shown to be involved in development of diabetes and obesity.


[1133] SPECIES #1 (GK vs Brown Norway adipose) Tables D6a and D6b show that a gene fragment of the rat Secreted Carboxypeptidase HSCP1 was initially found to be up-regulated by 11.6 fold in the adipose tissue of the GK non-obese diabetic rat relative to normal control rat strain (Brown Norway) using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating, at approximately 211.7 nucleotides in length (Tables D6a and D6b—vertical line) was definitively identified as a component of the rat Secreted Carboxypeptidase HSCP1 cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat Secreted Carboxypeptidase HSCP1 are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 145 nt in length are ablated (gray trace) in the sample from both the GK and control rats.


[1134] The direct sequence of the nucleotide-long gene fragment and the gene-specific primers used for competitive PCR are indicated on the cDNA sequence of the Secreted Carboxypeptidase HSCP1 and are shown below in bold.


[1135] Competitive PCR Primer for the Human Secreted Carboxypeptidase HSCP1:


[1136] Physical cDNA Clone Availability for Expression and Screening Purposes: the following sequence identification is the preferred cDNA that encompasses the coding portion of human secreted carboxypeptidase HSCP1 for expression of recombinant protein from any number of plasmid, phage or phagemid vectors in a variety of cellular systems for screening purposes. Although this sequence is the preferred isoform, any of the other isoforms may be used for similar purposes. Furthermore, under varying assay conditions, those conditions may dictate that another isoform may supplant the listed isoform.
376TABLE D1Gene Sequence(fragment from 1 to 212 in bold. band Size: 212)(SEQ ID NO:545)TGTACACCAATCCTAAGTCTTCAGAAACATCTGCGTTTGTCAAGTCCTATGAGAACTTAGCGTTCTACTGGATCCTAAAGGCGGGTCACATGGTTCCTGCTGACCAAGGGGACATGGCTCTGAAGATGATGAGGCTGGTTACTCAGCAGGAGTAGCTGAGCTGAGCTGGCCCTGGAGGCCCTGGAGGCCCTGGAGGCCCTGGAGTAGGGCCC(gene length is 212, only region from 1 to 212 shown)


[1137]

377





TABLE D2








Human Secreted Carboxypeptidase HSCP1 Gene Sequence
















>CG55078-01      1650 nt









(SEQ ID NO:546)









GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGTCCCGCGGTGGTTGCTGCT






GCTGCCGCTGCTGCTGGGCCTGAACGCAGGAGCTGTCATTGACTGGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATG





TGACGGTCCGCAAGGATGCCTACATGTTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCC





CTGGTCATGTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGCCCCTTGACAG





TGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTTGTGGATAATCCCGTGGGCACTGGGTTCA





GTTATGTGAATGGTAGTGGTGCCTATGCCAAGGACCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTC





TTCAGTTGCCACAAAGAATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGCAT





TGGTCTAGAGCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGTTGCCTTGGGTGATTCCTGGA





TCTCCCCTGTTGATTCGGTGCTCTCCTGGGGACCTTACCTGTACAGCATGTCTCTTCTCGAAGACAAAGGTCTGGCAGAG





GTGTCTAAGGTTGCAGAGCAAGTACTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGGAAAGC





AGAAATGATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCACGTCTACAATGG





AGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGCCACGTGAGACACCTACAACGAGATGCCTTA





AGCCAGCTCATGAATGGCCCCATCAGAAAGAAGCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAA





CGTCTTTGTGAACATGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATCAACG





TGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTGGGTGCGGAAACTGAAGTGGCCA





GAACTGCCTAAATTCAGTCAGCTGAAGTGGAAGGCCCTGTACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAA





GTCCTACAAGAACCTTGCTTTCTACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGA





AGATGATGAGACTGGTGACTCAGCAAGAATAGGATGGATGGGGCTGGAGATGAGCTGGTTTGGCCTTGGGGCACAGAGCT





GAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCTAACTGGGGCTGTGATCAAGAAGGTTCTGACCA





GCTTCTGCAGAGGATAAAATCATTGTCTCTGGAGGCAATTTGGAAATTATTTCTGCTTCTTAAAAAAACCTAAGATTTTT





TAAAAAATTGATTTGTTTTGATCAAAATAAAGGATGATAATAGATATTAA










[1138]

378





TABLE D3








Human Secreted Carboxypeptidase HSCP1 Protein Sequence
















ORF Start: 34      ORF Stop: 1390      Frame: 1



>CG55078-01-prot      452 aa








(SEQ ID NO;547)









MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMWLQGGPGG






SSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSYVNGSCAYAKDLAMVASDMMVLLKTFFSCHKEFQTVP





FYIFSESYGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNA





VNKGLYREATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALSQLMNGPIRKK





LKIIPEDQSMGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWK





ALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVPSDQGDMALKMMRLVTQQE










[1139] The following is an alignment of the protein sequences of the human (CG55078-01), rat (RISC_rat) and mouse (RISC_mouse) versions of the Secreted Carboxypeptidase HSCP1.


[1140] In addition to the human version of the Secreted Carboxypeptidase HSCP1 identified as being differentially expressed in the experimental study, no other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG55078-01.
379TABLE D5The variants of the human SecretedCarboxypeptidase HSCP1 obtainedfrom direct cloning and/or public databasesDNAAAAApublicPositionStrandAllelesPositionChangeSNP #600PlusC:T189Ile => Ile889PlusC:T286Leu => Leu1258PlusT:C409Leu => Leu


[1141] Biochemistry and Cell Line Expression


[1142] Enzymatic activity of human Secreted Carboxypeptidase HSCP1 may be assayed by measurement the cleavage of fluorescent artificial peptide substrates, like Mca-A-P-K-(Bnp)-COOH; McA-A-G-pNF-COOH; Ac-F-ThiaF-COOH. Cell lines expressing the human Secreted Carboxypeptidase HSCP1 can be obtained from the RTQ-PCR results shown above. These and other human Secreted Carboxypeptidase HSCP1 expressing cell lines could be used for screening purposes.


[1143] Findings and Rationale for Use as a Diagnostic and/or Target for Small Molecule Drug and Antibody Therapeutics.


[1144] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Secreted Carboxypeptidase HSCP1 would be beneficial in the treatment of obesity and/or diabetes.


[1145] 1. Secreted Carboxypeptidase HSCP1 is up-regulated 11.7 fold in adipose of the GK diabetic rat relative to the adipose of the control strain Brown Norway rat.


[1146] 2. Carboxypeptidases process, activate and/or inactivate prohormones, hormones and bio-peptides.


[1147] 3. Enzymes involved in hormone maturation (e.g. CPE, PC1) have been implicated in the development of an obese phenotype.


[1148] 4. Inhibition of this up-regulated carboxypeptidase may be beneficial in treating obesity.


[1149] E. NOV24b—Human Nardilysin 1-Like Protein—CG56149-03


[1150] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by CuraGen Corporation in certain cases. The NARDILYSIN 1-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.


[1151] Discovery Process


[1152] The following sections describe the study design(s) and the techniques used to identify the NARDILYSIN 1-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.


[1153] Studies: MB.03 (GK rat model for NIDDM)


[1154] Study Statements: MB.03 NIDDM is a major public health problem in Westernized nations and an increasing problem in developing countries. There are nearly 100 million people affected worldwide. Untreated NIDDM presents severe long term morbidity by not only proving to be a major risk factor for Coronary Artery Disease but also being a major contributor to kidney failure and vascular disease. The GK rat was developed from selective breeding over many generations of the non-diabetic Wistar rat colony on the basis of glucose tolerance. The GK rat shows mild basal hyperglycemia, marked glucose intolerance and both hepatic and peripheral insulin resistance. GK rats demonstrate basal hyperinsulinemia and impaired insulin response to glucose. The rat also develops many of the late-term complications associated with NIDDM including vascular disorders, nephropathy and neuropathy. Importantly, the GK rat is non-obese. Outcrosses of the GK rat with the brown Norway strain have demonstrated the evidence for possibly 7 QTL's associated with the development of NIDDM in the GK rat. A separate experiment crossing the rat to Fischer 344 rats indicated 3 QTL's associated with NIDDM, one QTL associated with body weight but not NIDDM on chromosome 7, and have weak linkage to 10 other potentially relevant loci. The purpose of our experiment is to perform QEA analysis on GK rats and compare these to each of: Wistar, Fischer 344, and Brown Norway to try to determine candidate genes for each of these QTL's. It is expected that through identification of these, (as well as through characterization of differences between other gene expression levels) we can expand our understanding of NIDDM.


[1155] NARDILYSIN 1: NRD convertase (EC 3.4.24.61) is an endopeptidase that cleaves at the N-terminus of Arg residues in dibasic sites of preproteins and propeptides; is in the insulinase family of metallopeptidases. Identified intracellularly and at the cell surface.
380TABLE E1Partial RAT NARDILYSIN 1 Gene Sequence(fragment from 1 to 159. band size: 159)(SEQ ID NO:551)CGGCCGGGTTGCTCGTCTAGGAGCGGATGAATCTGAGGAGGAGGGACGGTCTCTCAGTAATGTCGGGGACCCTGAGATCATCAAGTCTCCCAGCGATCCCAAGCAGTACCGATACATCAAATTACAGAATGGCTTGCAGGCTCTTTTGATTTCAGATCT


[1156] SPECIES #1 rat (GK vs Fischer-344 Adipose)


[1157] Tables E6a and E6b show that a gene fragment of the Rat NARDILYSIN 1 was initially found to be up-regulated by 10.5 fold in the adipose tissue of GK rats relative to Fischer rats using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating at approximately 159 nucleotides in length (Tables E6a and E6b—vertical line) was definitively identified as a component of the rat NARDILYSIN 1 cDNA in the GK and Fischer adipose (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat NARDILYSIN 1 are ablated when a gene-specific primer (see below) which competes with primers in the linker-adaptors during the PCR amplification. The peaks at 159 nt in length are ablated (gray trace) in the sample from both the GK and Fischer rats. The altered expression in of these genes in the animal model support the role of NARDILYSIN 1 in the pathogenesis of obesity and/or diabetes.
381TABLE E2Human NARDILYSIN 1 DNA and Protein Sequence>CG56149-03      3647 nt(SEQ ID NO:552)AGACTGGGGTGGGGGAGGGGTTCAGGCCTGTTCCCCGCGGCTGCGGCAGCACCAGGGCCGGCCGCCACCGCCTCTAGAACGCGGAGGAGGTGGGTCCTGGGAAGCGGGATGTCCATCGCTCCAGCTTGGTGGTGAATGCTGAGGAGAGTCACTGTTGCTGCAGTCTGTGCCACCCGGAGGAAGTTGTGTGAGGCCGGGCGGGACGTCGCGGCGCTCTGGGGAATCGAAACGCGGGGTCGGTGCGAAGACTCTGCTGCTGCCAGACCCTTTCCTATTCTGGCCATGCCTGGAAGGAACAAGGCGAAGTCTACCTGCAGCTGCCCTGACCTGCAGCCCAATGGACAGGATCTGGGCGAGAACAGCCGGGTTGCCCGTCTAGGAGCGGATGAATCTGAGGAAGAGGGACGGAGGGGGTCTCTCAGTAATGCTGGGGACCCTGAGATCGTCAAGTCTCCCAGCGACCCCAAGCAATACCGATACATCAAATTACAGAATGGCCTACAGGCACTTCTGATTTCAGACCTAAGTAATATGGAAGGTAAAACAGGAAATACAACAGATGATGAAGAAGAAGAGGAGGTGGAGGAAGAAGAAGAAGATGATGATGAAGATTCTGGAGCTGAAATAGAAGATGACGATGAAGAGGGTTTTGATGATGAAGATGAGTTTGATGATGAACATGATGATGATCTTGATACTGAGGATAATGAATTGGAAGAATTAGAAGAGAGAGCAGAAGCTAGAAAAAAAACTACTGAAAAACAGTCTGCAGCGGCTCTTTGTGTTGGAGTTGGGAGTTTCGCTGATCCAGATGACCTGCCGGGGCTGGCACACTTTTTGGAGCACATGGTATTCATGGGTAGTTTGAAATATCCAGATGAGAATGGATTTGATGCCTTCCTGAAGAAGCATGGGGGTAGTGATAATGCCTCAACTGATTGTGAACGCACTGTCTTTCAGTTTGATGTCCAGAGGAAGTACTTCAAGGAAGCTCTTGATAGATGGGCGCAGTTCTTCATCCACCCACTAATGATCAGAGATGCAATTGACCGTGAAGTTGAAGCTGTTGATAGTGAATATCAACTTGCAAGGCCTTCTGATGCAAACAGAAAGGAAATGTTGTTTGGAAGCCTTGCTAGACCTGGCCATCCTATGGGAAAATTTTTTTGGGGAAATGCTGAGACGCTCAAGCATGAGCCAAGAAAGAATAATATTGATACACATGCTAGATTGAGAGAATTCTGGATGCGTTACTACTCTTCTCATTACATGACTTTAGTGGTTCAATCCAAAGAAACACTGGATACTTTGGAAAAGTGGGTGACTGAAATCTTCTCTCAGATACCAAACAATGGGTTACCCAGACCAAACTTTGGCCATTTAACGGATCCATTTGACACACCAGCATTTAACAAACTTTATAGAGTTGTTCCAATCAGAAAAATTCATGCTCTGACCATCACATGGGCACTTCCTCCTCAACAGCAACATTACAGGGTGAAGCCACTTCATTATATATCCTGGCTGGTTGGACATGAAGGCAAAGGCAGCATTCTTTCTTTCCTTAGGAAAAAATGCTGGGCTCTTGCACTGTTTGGTGGAAATGGTGAGACAGGATTTGAGCAAAATTCTACTTATTCAGTGTTCAGCATTTCTATTACATTGACTGATGAGGGTTATGAACATTTTTATGACGTTGCTTACACTGTCTTTCTGTATTTAAAAATGCTGCAGAAGCTAGGCCCAGAAAAAAGAATTTTTGAAGAGATTCGGAAAATTGAGGATAATGAATTTCATTACCAAGAACAGACAGATCCAGTTGAGTATGTGGAAAACATGTGTGAGAACATGCAGCTGTACCCATTGCAGGACATTCTCACTGGAGATCAGCTTCTTTTTGAATACAAGCCAGAAGTCATTGGTGAAGCCTTGAATCAGCTAGTTCCTCAAAAAGCAAATCTTGTTTTACTGTCTGGTGCTAATGAGGGAAAATGTGACCTCAAGGAGAAATGGTTTGGAACTCAATATAGTATAGAAGATATTGAAAACTCTTGGGCTGAACTGTGGAATAGTAATTTCGAATTAAATCCAGATCTTCATCTTCCAGCTGAAAACAAGTACATAGCCACGGACTTTACGTTGAAGGCTTTCGATTGCCCGGAAACAGAATACCCAGTTAAAATTGTGAATACTCCACAAGGTTGCCTGTGGTATAAGAAAGACAACAAATTCAAAATCCCCAAAGCATATATACGTTTCCATCTAATTTCACCGTTGATACAGAAATCTGCAGCAAATGTGGTCCTCTTTGATATCTTTGTCAATATCCTTACGCATAACCTTGCGGAACCAGCTTATGAAGCAGATGTGGCACAGCTGGAGTATAAACTGGCAGCTGGAGAACATGGTTTAATTATTCGAGTGAAAGGATTTAACCACAAACTACCTCTACTGTTTCAGCTCATTATTGACTACTTAGCTGAGTTCAATTCCACACCAGCTGTCTTTACAATGATAACTGAGCAGTTGAAGAAGACCTACTTTAACATCCTCATCAAGCCTGAGACTTTGGCCAAAGATGTACGGCTTTTAATCTTGGAATATGCCCGTTGGTCTATGATTGACAAGTACCAGGCTTTGATGGACGGCCTTTCCCTTGAGTCTCTGCTGAGCTTCGTCAAAGAATTCAAATCCCAGCTCTTTGTGGAGGGCCTGGTACAAGGGAATGTCACAAGCACAGAATCTATGGATTTCCTGAAATATGTTGTTGACAAACTAAACTTCAAGCCTCTGGAGCAGGAGATGCCTGTGCAGTTCCAGGTGGTAGAGCTGCCCAGTGGCCACCATCTATGCAAAGTGAAAGCTCTGAACAAGGGTGATGCCAACTCTGAAGTCACTGTGTACTACCAGTCAGGTACCAGGAGTCTAAGAGAATATACGCTTATGGAGCTGCTTGTGATGCACATGGAAGAACCTTGTTTTGACTTCCTTCGAACCAAGCAGACCCTTGGGTACCATGTCTACCCTACGTGTAGGAACACATCCGGGATTCTAGGATTTTCTGTCACTGTGGGGACTCAGGCAACCAAATACAATTCTGAAGTTGTTGATAAGAAGATAGAAGAGTTTCTTTCTAGCTTTGACGAGAAGATTGAGAACCTCACTGAAGAGGCATTCAACACCCAGGTCACAGCTCTCATCAAGCTGAAGGAGTGTGAGGATACCCACCTTGGGGAGGAGGTGGATAGGAACTGGAATGAAGTGGTTACACAGCAGTACCTCTTTGACCGCCTTGCCCACGAGATTGAAGCACTGAAGTCATTCTCAAAATCAGACCTGGTCAACTGGTTCAAGGCTCATAGAGGGCCAGGAAGTAAAATGCTCAGCGTTCATGTTGTTGGGTATGGGAAGTATGGACTGGAAGAGGATGGATCCCCTTCTAGTGAGGATTCAAATTCTTCTTGTGAAGTGATGCAGCTGACCTACCTGCCAACCTCTCCTCTGCTGGCAGATTGTATCATCCCCATTACTGATATCAGGGCTTTCACAACAACACTCAACCTTCTCCCCTACCATAAAATAGTCAAATAAATAAACTGCAGTCACGTTGGCCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


[1158]

382





TABLE E3








CG56149-03 ORF
















Start: 136      ORF Stop: 3588      Frame: 1



>CG56149-03-prot      1151 aa








(SEQ ID NO:553)









MLRRVTVAAVCATRRLKCEAGRDVAALWGIETRGRCEDSAAARPFPILAMPGRNKAKSTCACPDLQPNGQDLGENSRVAR






LGADESEEEGRRGSLSNAGDPEIVKSPSDPKQYRYIKLQNGLQALLISDLSNMEGKTGNTTDDEEEEEVEEEEEDDDEDS





GAEIEDDDEEGFDDEDEFDDEHDDDLDTEDNELEELEERAEARKKTTEKQSAAALCVGVGSFADPDDLPGLAHFLEHMVF





MGSLKYPDENGFDAFLKKHGGSDNASTDCERTVFQFDVQRKYFKEALDRWAQFFIHPLMIRDAIDREVEAVDSEYQLARP





SDANRKEMLFGSLARPGHPMGKFFWGNAETLKHEPRKNNIDTHARLREFWMRYYSSHYMTLVVQSKETLDTLEKWVTEIF





SQIPNNGLPRPNFGHLTDPFDTPAFNKLYRVVPIRKIHALTITWALPPQQQHYRVKPLHYISWLVGHEGKGSILSFLRKK





CWALALFGGNGETGFEQNSTYSVFSISITLTDEGYEHFYEVAYTVFLYLKMLQKLGPEKRIFEEIRKIEDNEFHYQEQTD





PVEYVENMCENMQLYPLQDILTGDQLLFEYKPEVIGEALNQLVPQKANLVLLSGANEGKCDLKEKWFGTQYSIEDIENSW





AELWNSNFELNPDLHLPAENKYIATDFTLKAFDCPETEYPVKIVNTPQGCLWYKKDNKFKIPKAYIRFHLISPLIQKSAA





NVVLFDIFVNILTHNLAEPAYEADVAQLEYKLAAGEHGLIIRVKGFNHKLPLLFQLIIDYLAEFNSTPAVFTMITEQLKK





TYFNILIKPETLAKDVRLLILEYARWSMIDKYQALMDGLSLESLLSFVKEFKSQLFVEGLVQGNVTSTESMDFLKYVVDK





LNFKPLEQEMPVQFQVVELPSGHHLCKVKALNKGDANSEVTVYYQSGTRSLREYTLMELLVMHMEEPCFDFLRTKQTLGY





HVYPTCRNTSGILGFSVTVGTQATKYNSEVVDKKIEEFLSSFEEKIENLTEEAFNTQVTALIKLKECEDTHLGEEVDRNW





NEVVTQQYLFDRLAHEIEALKSFSKSDLVNWFKAHRGPGSKMLSVHVVGYGKYELEEDGSPSSEDSNSSCEVMOLTYLPT





SPLLADCIIPITDIRAFTTTLNLLPYHKIVK










[1159] The following is an alignment of the protein sequences of NARDILYSIN 1 and the rat version of NARDILYSIN 1. For the rat there is only a partial public sequence available.


[1160] The variants of the human NARDILYSIN 1 obtained from direct cloning and/or public databases.


[1161] In addition to the human version of the NARDILYSIN 1 identified as being differentially expressed in the experimental study, other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG56149-03.
383TABLE E5Variants of human NARDILYSIN 1DNAAAPosi-Posi-SNP IDtionE-ValueStrandAllelestionAA Change133754115902.30E−05PlusA:G152Glu => Gly1337514411462.30E−05MinusA:C337Gly => Gly1337514330489.20E−06MinusG:A971Gly => Gly


[1162] Nardilysin 1 expression results in a decreased level of active insulin.


[1163] F. NOV25a—Human SERCA 3-Like Protein—CG56216-01


[1164] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by CuraGen Corporation in certain cases. The Serca 3-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.


[1165] Discovery Process


[1166] The following sections describe the study design(s) and the techniques used to identify the Serca 3-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for obesity and diabetes.
384Studies:MB.11Rat Insulin Secretion


[1167] Study Statements: MB.11—The regulation of insulin secretion is critical to the control of serum glucose concentrations. Alterations in the secretion of insulin are central to the etiology, pathogenesis and consequences of both Type I and Type II diabetes. This study was designed to determine the role of gene expression in regulating insulin secretion from rat pancreatic beta cell lines derived from the heterogeneous rat INS-1 insulinoma. The rat insulinoma cell line INS-1 was transfected with the plasmid pCMV8/INS/IRES/Neo. The plasmid expresses the human insulin gene and the neo selectable marker under the control of the CMV promoter. Stable clones expressing these genes were isolated and described in Hohmeier, H E, Mulder, H., Chen, G., Prentki, M., Newgard, C B: Isolation of INS-1 derived cell lines with robust K ATP channel-dependent and independent glucose stimulated insulin secretion. Diabetes 49: 424-430, 2000.
385TABLE F1Poor InsulinGood InsulinPhenotypes Of The Cell LinesSecretionSecretionGlucagon ExpressionNegative832/1 832/13832/2 833/15Positive834/105834/112


[1168] Species #1: Rat Insulinoma Cell Line INS-1


[1169] Serca 3: Serca3 is a sarcoplasmic/endoplasmic reticulum calcium ATPase 3. It is a magnesium dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of the calcium. This enzyme transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum and has a central role in intracellular calcium signaling.


[1170] SPECIES #1 A gene fragment of the rat Serca 3 was initially found to be up-regulated by 9 fold in the glucagon negative/good insulin secreting rat INS-1 cell line relative to glucagon negative/poor insulin secreting rat INS-1 cell line using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating, at approximately 51.9 nucleotides in length (Table F8a—vertical line) was definitively identified as a component of the rat Serca 3 cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The electropherogram peaks corresponding to the gene fragment of the rat Serca 3 are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 51.9 nt in length are ablated in the sample from both the good and poor insulin secreting rat insulinoma cell lines.


[1171] Competitive PCR Primer for the Rat Serca 3


[1172] The direct sequence of the 51.9 nucleotide-long gene fragment and the gene-specific primers used for competitive PCR are indicated on the complete cDNA sequence of the Serca 3 and shown below in bold.
386TABLE F2Human Serca 3 Gene SequenceGene Sequence (fragment from 3766 to 3817 in bold, band size: 52)(SEQ ID NO:556)3285CCAGGGTCCT GTCTCCATTC CTGTCCTCCC TACAGCTCTG GCCCAGAAGT TGAGCCCAGG3345AGGGGAAGCT GAGAAGCCAG AGCTGCCTGA AGGGCCACCA CCCATTTCCC CCACAGATCT3405GCAGCCTTCC CCTGCTCGGA GGTGGGCATT TGCTTGGTAG CTAGTGCCTC TGCCCTGATG3465GAGGGCTCAT GGGGGCCGTC TTACTGACTC TGACCTCTTG CTTAGTTTGG GTCTGGAGCC3525TGGTCAGCTC TGGGAAGGAG GAGTCCGAGG GGACCATCTG GGTCCAGCTG TGAACATGAG3585GGGCAGCCCC TTCCACTTGG CTCAGCTTCC ACCAAGTCCA CTCCTGTGTC TGTTTATGTA3645TCTGCTGGCC CCAGGGAGTT GAAGGATCAC AGACAGATAG GAACATAAGG AGCAGCGGGG3705GCAGGCCTGG ACAAGGACTC CTTTCCCAGG AGTCAGCCTC CACTGGCTGG CTGGGCTCAG3765CACTAGTCCC ACCTTGAGGC TCACTTCCTC GGCTCAGGTT GGCTCAGGGA TCCTAACTTT3825ACAGTCCATG CCCCTGGTGC CTGAGACTCC AGGCATCCCT GGGTCCATGT CAGCTTCTCC3885TGCCACGAAG CCTGGGGTGA TACCGTGTCA CTTGCTGCAG GGCTGGGTGA TTCTAAACCT3945CCTGGACCCC TGGCATTACT CTTTGCCCTC TTTTCCTATC ATGCATGTCT GAGTCAGAGA4005GATGTCACTA GGGAGTGACT CCACAATCCT CCCCTACCTC CCCACTGAAA GGAAGCATCT4065GATGGGGGTC TATCAGATGA ATGTGTATTG GTCTTTGGGA TCTTTTTTGC CTCTTAACCC4125TGCTGTTGCT CCTTTGACAA AAGCTAGCTA AGCATCATGG GAAACGGAGA AAGCGCCTGT4185CAGTGTGACT TAGCTCTTCC CTGACTGTGT ACAATATGAT TATTTTATAT GTAAATCAAG4245GTTCACATCA CTGTCCTGAC ACCTGGTAGC AAAAGTCCCC TCAGCCTACC CAG(gene length is 4497, only region from 3285 to 4297 shown)


[1173]

387





TABLE F3








Human Serca 3 Gene Sequence
















>CG56216-01      3147 nt









(SEQ ID NO:557)









GCATGGAGGCCGCGCATCTGCTCCCGGCCGCCGACGTGCTGCGCCACTTCTCGGTGACAGCCGAGGGCGGCCTGAGCCCG






GCGCAGGTGACCGGCGCGCGGGAGCGCTACGGCCCCAACGAGCTCCCGAGTGAGGAAGGGAAGTCCCTGTGGGAGCTGGT





GCTGGAACAGTTTGAGGACCTCCTGGTGCGCATCCTGCTGCTGGCTGCCCTTGTCTCCTTTGTCCTGGCCTGGTTCGAGG





AGGGCGAGGAGACCACGACCGCCTTCGTGGAGCCCCTGGTCATCATGCTGATCCTCGTGGCCAACGCCATTGTGGGCGTG





TGGCAGGAACGCAACGCCGAGAGTGCCATCGAGGCCCTGAAGGAGTATGAGCCTGAGATGGGCAAGGTGATCCGCTCGGA





CCGCAAGGGCGTCCAGAGGATCCGTGCCCGGGACATCGTCCCAGGGGACATTGTAGAAGTGGCAGTGGGGGACAAAGTGC





CTGCTGACCTCCGCCTCATCGAGATCAACTCCACCACGCTGCGAGTGGACCAGTCCATCCTCACGGGTGAATCTGTGTCC





GTGACCAAGCACACAGAGGCCATCCCAGACCCCAGAGCTGTGAACCAGGACAAGAAGAACATGCTGTTTTCTGGCACCAA





TATCACATCGGGCAAAGCGGTGGGTGTGGCCGTGGCCACCGGCCTGCACACGGAGCTGGGCAAGATCCGGAGCCAGATGG





CGGCAGTCGAGCCCGAGCGGACGCCGCTGCAGCGCAAGCTGGACGAGTTTGGACGGCAGCTGTCCCACGCCATCTCTGTG





ATCTGTGTGGCCGTGTGGGTCATCAACATCGGCCACTTCGCCGACCCGGCCCACGGTGGCTCCTCGCTGCGTCGCGCTGT





CTACTACTTCAAGATCGCCGTGGCCCTGGCGGTGGCGGCCATCCCCGAGGGCCTCCCGGCTGTCATCACTACATGCCTGG





CACTGGGCACGCGCCGCATGGCACGCAAGAACCCCATCGTGCGAAGCCTGCCGTCCGTGGAGACCCTGGGCTGCACCTCA





GTCATCTGCTCCCACAAGACGCGCACGCTCACCACCAATCAGATGTCTGTCTGCCGGATGTTCGTGGTAGCCCACGCCGA





TGCGGGCTCCTGCCTTTTGCACGAGTTCACCATCTCGGGTACCACGTATACCCCCGAGCGCGAAGTGCGGCAGGGGGATC





AGCCTGTGCGCTGCGGCCAGTTCGACGGGCTGGTGGAGCTGGCCACCATCTGCGCCCTGTGCAACGACTCGGCTCTGGAC





TACAACGAGGCCAACGGTGTGTATGAGAAGGTCGGAGAGGCCACGGAGACAGCTCTGACTTGCCTGGTGGAGAAGATGAA





CGTGTTCGACACCGACCTGCACGCTCTGTCCCGGGTGGAGCGAGCTGGCGCCTCTAACACGGTCATCAAGCAGCTGATGC





GGAAGGAGTTCACCCTGGAGTTCTCCCGAGACCGGAAATCCATGTCCCTGTACTGCACGCCCACCCGCCCTCACCCTACT





GGCCAGGGCAGCAAGATGTTTGTGAAGGGGGCTCCTGAGAGTGTGATCGAGCGCTGTAGCTCAGTCCGCGTCGGGAGCCG





CACAGCACCCCTGACCCCCACCTCCAGGGAGCAGATCCTGGCAAAGATCCGGGATTGGGGCTCACGCTCACACACGCTGC





GCTGCCTGGCACTGGCCACCCGGGACGCGCCCCCAAGGAAGGACGACATGGAGCTGGACGACTGCGGCAAGTTTGTGCAG





TACGAGACGGACCTGACCTTCGTGGOCTGCGTACCCATGCTGGACCCGCCGCGACCCGAGGTGGCTGCCTGCATCACACG





CTGCTACCACGCGGGCATCCGCGTGGTCATGATCACGGGGGATAACAAAGGCACTGCCGTGGCCATCTGCCGCACGCTTG





GCATCTTTGGGGACACGGAAGACGTGGCGGGCAAGGCCTACACGGGCCGCGAGTTTGATGACCTCAGCCCCGAGCAGCAG





CGCCAGGCCTGCCGCACCGCCCGCTGCTTCGCCCGCGTGGAGCCCGCACACAAGTCCCGCATCGTGGAGAACCTGCAGTC





CTTTAACGAGATCACTGCTATGACTGGTGATGGAGTGAACGACGCACCAGCCCTGAAGAAAGCAGAGATCGGCATCGCCA





TGGGCTCAGGCACGGCCGTGGCCAACTCGGCGGCAGAGATGGTGCTGTCAGATGACAACTTTGCCTCCATCGTGGCTGCG





GTGGAGGAGGGCCGGGCCATCTACAGCAACATGAAGCAATTCATCCGCTACCTCATCTCCTCCAATGTTGGCGAGGTCGT





CTGCATCTTCCTCACGGCAATTCTGGGCCTGCCCGAAGCCCTGATCCCTGTGCAGCTGCTCTGGGTGAACCTGGTGACAG





ACGGCCTACCTGCCACCGCTCTGCGCTTCAACCCGCCAGACCTGGACATCATGGAGAAGCTGCCCCGGAGCCCCCGAGAA





GCCCTCATCAGTGGCTGGCTCTTCTTCCGATACCTGGCTATCGGAGTGTACGTAGGCCTGGCCACAGTGGCTGCCGCCAC





CTGGTCGTTTGTGTATCACGCCGAGGGACCTCACATCAACTTCTACCAGCTGAGGAACTTCCTGAAGTGCTCCGAAGACA





ACCCGCTCTTTGCCGGCATCGACTGTGAGGTGTTCGAGTCACGCTTCCCCACCACCATGGCCTTGTCCGTGCTCGTGACC





ATTGAAATGTGCAATGCCCTCAACAGCGTCTCGGAGAACCAGTCGCTGCTGCGGATGCCGCCCTGGATGAACCCCTGGCT





GCTGGTGGCTGTGGCCATGTCCATGGCCCTGCACTTCCTCATCCTGCTCGTGCCGCCCCTGCCTCTCATTTTCCAGGTGA





CCCCACTGAGCCGGCGCCAGTCGGTGGTGGTGCTCCAGATATCTCTGCCTGTCATCCTGCTGGATGAGGCCCTCAAGTAC





CTGTCCCGGAACCACATGCACGAAGAAATGAGCCAGAAGTGAGCGCTGCGAACAGACTGGAGTCTCCGGTGTGTACCTCA





GACTGATGGTGCCCATGTGTTCGCCTCCGCCCCCCACCCTTGCCACCACACTCGCCCACTTGCCCACCGGGTCCCGCCGG





ATAAATGACAGGCCCGAGGTCAGAATG










[1174]

388





TABLE F4








Human Serca 3 Protein Sequence
















ORF Start: 3      ORF Stop: 3000      Frame: 3



>CG56216-01-prot      999 aa








(SEQ ID NO:558)









MEAAHLLPAADVLRHFSVTAEGGLSPAQVTGARERYGPNELPSEEGKSLWELVLEQPEDLLVRILLLAALVSFVLAWFEE






GEETTTAFVEPLVIMLILVANAIVGVWQERNAESAIEALKEYEPEMGKVIRSDRKGVQRIRARDIVPGDIVEVAVGDKVP





ADLRLIEIKSTTLRVDQSILTGESVSVTKHTEAIPDPRAVNQDKKNMLFSGTNITSGKAVGVAVATGLHTELGKIRSQMA





AVEPERTPLQRKLDEFGRQLSHAISVICVAVWVINIGHFADPAHGGSWLRGAVYYFKIAVALAVAAIPEGLPAVITTCLA





LGTRRMARKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCRMFVVAEADAGSCLLHEFTISGTTYTPEGEVRQGDQ





PVRCGQFDOLVELATICALCNDSALDYNEAKGVYEKVGEATETALTCLVEKMNVFDTDLQALSRVERAGACNTVIKQLMR





KEFTLEFSRDRKSMSVYCTPTRPHPTGQGSKMFVKGAPESVIERCSSVRVGSRTAPLTPTSREQILAKIRDWGSGSDTLR





CLALATRDAPPRKEDMELDDCGKEVQYETDLTFVGCVGMLDPPRPEVAACITRCYQAGIRVVMITGDNKGTAVAICRRLG





IFGDTEDVAGKAYTCREFDDLSPEQQRQACRTARCFARVEPAHKSRIVENLQSFNEITAMTGDGVNDAPALKKAEIGIAM





GSGTAVARSAAEMVLSDDNFASIVAAVEEGRAIYSNMKQFIRYLISSNVGEVVCIFLTAILGLPEALIPVQLLWVNLVTD





GLPATALGFNPPDLDIMEKLPRSPREALISGWLFFRYLAIGVYVGLATVAAATWWFVYDAEGPHINFYQLRNFLKCSEDN





PLFAGIDCEVFESRFPTTMALSVLVTIEMCNALNSVSENQSLLRMPPWMWNPWLLAVAMSMALHFLILLVPPLPLIFQVT





PLSGRQWVVVLQISLPVILLDEALKYLSRNHMHEEMSQK










[1175] The following is an alignment of the protein sequences of the human (CG56216-01), rat and mouse versions of the Serca 3.


[1176] In addition to the human version of the Serca 3 identified as being differentially expressed in the experimental study, no other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG56216-01.
389TABLE F6The variants of the human Serca 3 obtainedfrom direct cloning and/or public databasesDNAAAAApublicPositionStrandAllelesPositionChangeSNP #1513PlusA:G504His => Arg1984PlusT:C661Leu => Pro2193MinusG:A731Ala => Thr2623MinusT:C874Leu => Pro2668MinusA:G889Glu => Gly2685MinusT:C895Phe => Leu


[1177] The probe and primers were designed on the 3′ untranslated region of SERCA3, which is not included in CG56216-01. Below is a clustalW (Table F7) of the sequence submitted for the development of RTQ-PCR (“human SERCA3 submitted for RTQ-PCR”) and CG56216-01. The positions of the primers and probe in table AA correspond to the positions in the RTQ-PCR sequence. Since it both concerns the gene of SERCA3 the primers will recognize the gene encoding CG56216-01.


[1178] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1179] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Serca3 would be beneficial in the treatment of obesity and/or diabetes.


[1180] Insulin secretion by the pancreatic beta cell is acutely stimulated by an influx of calcium through voltage-gated calcium channels in the plasma membrane. Restoration of intracellular calcium homeostasis is accomplished, in part, by uptake into calcium storage sites, including the endoplasmic reticulum (ER). SERCA3 is an ATPase that mediates calcium transport into the ER. It is upregulated 7-fold in good insulin-secreting insulinoma cell lines versus poor insulin-secreting insulinoma cell lines (MB.11). Insulin secretagogues that stimulate intracellular calcium influx, also elevate calcium levels in the ER (Maechler, P. et al. Secretagogues modulate the calcium concentration in the endoplasmic reticulum of insulin-secreting cells. J Biol Chem 274:12583-12592, 1999). Thus, SERCA3-mediated calcium uptake into the ER optimizes both beta cell calcium homeostasis and the insulin secretory process. Finally, SERCA3 is downregulated in islet tissue of the diabetic GK rat, further supporting an important role for SERCA3 in insulin secretion (Varadi, A. et al. Isoforms of endoplasmic reticulum Ca++-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J 319:521-527, 1996). The combined data suggest that activation of SERCA3 will promote beta cell insulin secretion and be an effective treatment for the beta cell secretory defect in Type 2 diabetes.


[1181] G. NOV26a—Olfactory Receptor-Like Protein—CG56230


[1182] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by Curagen Corporation in certain cases. The Human Neutral Amino Acid Transporter B-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.
390TABLE G1Consensus DNA Sequence, CG56230-01CG56230-01:      Olfactory Receptor Isoform 1Acc. No.:        GMAC072059_H>CG56230-01      911 nt(SEQ ID NO:564)ATCATTTCCTCCAGAACCAGGGTCTACTCATTAATTTCCTCATAGCTCCATGCACCTCTGTATTCCTCAGGCTGTAGATGATAGGATTGGGCATGGGGGTGACTATGCCATAGAACAGGGCAATCAGTTTGTCAAAAGCAGAGTCTTTGGACTTTGCCTTCATGTACATGAAGAGGATTGTCCCATAAAACACAATCACCACTGTCATGTGGGCTGAGCAGGTGGAAAAGGCCTTTTTCCTTCCTTCAGCTGAATTGATTCTTAGTACAGTAGAAAGGATAAAGATGTAGGAGATACAAATCAGCAGTAATGGAGAAAACAAAAATATTACATTGCCCAACATTATAATAATCTCATTCAAGGAAGTATCTGTGCAAGCCAGCTTGACAAAGGCCAATATTTCACAAACAAAATGATTGATGACATTTTTTCCACAGAAGGGTAACCGTATTGCAAGAACAGTTTCTGTCAATGAGTTGAGAAAGCCTAGTCCCCAAGAGACAGCCACCATCTGAATACAAAGTGCCTTGCCCATGATGATGGGATATCTCAGAGGGTTGCAGATGGCTACATAACGGTCATATGCCATCACTGCTAGAAGCACACACTTGGTGGATCCCATAGTGTAAGAGACAGACATTTGAATCACACATCTAGTGAAGGAAATGGTTTTCTTCTCTGATGGGAAGTGTATCAGCATTGAGGGGATGGAGGAGGATGTGTACCAAATGTCTAGGAAGGAGAGATTCCCAAGGAAGAAGTACATGGGTGTGTGGAGACGAGCATCCAGGAGTGTCAGAATGATCAAGGTGCCATTCCCTAGGAGAATCACCAGGTACATCACTAAGCACATCACGAAAAGGAATTTTTCAGCTCTTGGGTACCCTGAAAGTCCTTGCAGAATGAACTCT


[1183]

391





TABLE G2








Protein Sequence:
















ORF Start: 2      ORF Stop: 908      Frame: −2



>CG56230-01-prot      302 aa








(SEQ ID NO:565)









EFILQGLSGYPRAEKFLFVMCLVMYLVILLGNGTLIILTLLDARLHTPMY






FFLGNLSFLDIWYTSSSIPSMLIHFPSEKKTISFTRCVIQMSVSYTMGST





KCVLLAVMAYDRYVAICNPLRYPIIMGKALCIQMVAVSWGLGFLNSLTET





VLAIRLPFCGKNVINHFVCEILAFVKLACTDTSLNEIIIMLGNVIFLFSP





LLLICISYIFILSTVLRINSAEGRKKAFSTCSAHMTVVIVFYGTILFMYM





KAKSKDSAFDKLIALFYGIVTPMPNPIIYSLRNTEVHGAMRKLMSRPWFW





RK










[1184]

392





TABLE G3








DNA Sense Strand Sequence, CG56230-01
















CG56230-01:      Olfactory Receptor Isoform 1



Acc. No.:        GMAC072059_H


>CG56230-01      911 nt








(SEQ ID NO:566)









TAGTAAAGGAGGTCTTGGTCCCAGATGAGTAATTAAAGGAGTATCGAGGTACGTGGAGACATAAGGAGTCCGACATCTAC






TATCCTAACCCGTACCCCCACTGATACGGTATCTTGTCCCGTTAGTCAAACAGTTTTCGTCTCAGAAACCTGAAACGGAA





GTACATGTACTTCTCCTAACAGGGTATTTTGTGTTAGTGGTGACAGTACACCCGACTCGTCCACCTTTTCCGGAAAAAGG





AAGGAAGTCGACTTAACTAAGAATCATGTCATCTTTCCTATTTCTACATCCTCTATGTTTAGTCGTCATTACCTCTTTTG





TTTTTATAATGTAACGGGTTGTAATATTATTAGAGTAAGTTCCTTCATAGACACGTTCGGTCGAACTGTTTCCGGTTATA





AAGTGTTTGTTTTACTAACTACTGTAAAAAAGGTGTCTTCCCATTGGCATAACGTTCTTGTCAAAGACAGTTACTCAACT





CTTTCGGATCAGGGGTTCTCTGTCGGTGGTAGACTTATGTTTCACGGAACGGGTACTACTACCCTATAGAGTCTCCCAAC





GTCTACCGATGTATTGCCAGTATACGGTAGTGACGATCTTCGTGTGTGAACCACCTAGGGTATCACATTCTCTGTCTGTA





AACTTAGTGTGTAGATCACTTCCTTTACCAAAAGAAGAGACTACCCTTCACATAGTCGTAACTCCCCTACCTCCTCCTAC





ACATGGTTTACAGATCCTTCCTCTCTAAGGGTTCCTTCTTCATGTACCCACACACCTCTGCTCGTAGGTCCTCACAGTCT





TACTAGTTCCACGGTAAGGGATCCTCTTAGTGGTCCATGTAGTGATTCGTGTAGTGCTTTTCCTTAAAAAGTCGAGAACC





CATGGGACTTTCAGGAACGTCTTACTTGAGA










[1185] RTQ-PCR Human Expression Profiles: Quantitative Expression Analysis of Clones in Various Cells and Tissues


[1186] Expression analysis was performed as described in Example C.


[1187] CG56230-01: GPCR Olfactory Receptor, Isoform 1


[1188] Expression of gene CG56230-01 was assessed using the primer-probe set Ag1652, described in Table G4 and. Results of the RTQ-PCR runs are shown in Tables G5, G6 and G7.
393TABLE G4Probe Name Ag1652StartSEQ IDPrimersSequencesTMLengthPositionNO:Forward5′-CCTCAATGCTGATACACTTCCT-3′58.322250567ProbeFAM-5′-CCATCTCCTT CACTAGATGT65.628286568GTGATTCA-3′-TAMRAReverse5′-CGGTGGATCCCATAGTGTAAG-3′59.321325569


[1189]

394





TABLE G5










CG56230-01 Panel 1.3D











Rel.




Expr., %



Tissue Name
1.3dx4tm5398_ag1652_a1














Adipose
0



Adrenal gland
0



Bladder
0



Bone marrow
0



Brain (amygdala)
0



Brain (cerebellum)
0



Brain (fetal)
0



Brain (hippocampus)
0



Cerebral Cortex
0



Brain (substantia nigra)
0



Brain (thalamus)
0



Brain (whole)
0



Colorectal
0



Heart (fetal)
0



Liver adenocarcinoma
0



Heart
0



Kidney
0



Kidney (fetal)
0



Liver
0



Liver (fetal)
0



Lung
0



Lung (fetal)
0



Lymph node
0



Mammary gland
0



Fetal Skeletal
0



Ovary
0



Pancreas
0



Pituitary gland
0



Placenta
0



Prostate
0



Salivary gland
0



Skeletal muscle
0



Small intestine
0



Spinal cord
0



Spleen
0



Stomach
0



Testis
0



Thymus
0



Thyroid
0



Trachea
0



Uterus
0



genomic DNA control
64.8



Chemistry Control
100











[1190]

395





TABLE G6










CG56230-01 Panel 2.2









Rel.



Expr., %


Tissue Name
2.2x4tm6360f_ag1652_b1











Normal Colon GENPAK 061003
0


97759 Colon cancer (OD06064)
0


97760 Colon cancer NAT (OD06064)
0


97778 Colon cancer (OD06159)
0


97779 Colon cancer NAT (OD06159)
0


98861 Colon cancer (OD06297-04)
0


98862 Colon cancer NAT (OD06297-015)
0


83237 CC Gr.2 ascend colon (ODO3921)
0


83238 CC NAT (ODO3921)
0


97766 Colon cancer metastasis (OD06104)
0


97767 Lung NAT (OD06104)
0


87472 Colon mets to lung (OD04451-01)
0


87473 Lung NAT (OD04451-02)
0


Normal Prostate Clontech A+ 6546-1
0


(8090438)


84140 Prostate Cancer (OD04410)
0


84141 Prostate NAT (OD04410)
0


Normal Ovary Res. Gen.
0


98863 Ovarian cancer (OD06283-03)
0


98865 Ovarian cancer NAT/fallopian tube
0


(OD06283-07)


Ovarian Cancer GENPAK 064008
83.9


97773 Ovarian cancer (OD06145)
0


97775 Ovarian cancer NAT (OD06145)
0


98853 Ovarian cancer (OD06455-03)
0


98854 Ovarian NAT (OD06455-07)
0


Fallopian tube


Normal Lung GENPAK 061010
0


92337 Invasive poor diff. lung adeno
0


(ODO4945-01


92338 Lung NAT (ODO4945-03)
0


84136 Lung Malignant Cancer (OD03126)
0


84137 Lung NAT (OD03126)
0


90372 Lung Cancer (OD05014A)
0


90373 Lung NAT (OD05014B)
0


97761 Lung cancer (OD06081)
0


97762 Lung cancer NAT (OD06081)
0


85950 Lung Cancer (OD04237-01)
0


85970 Lung NAT (OD04237-02)
0


83255 Ocular Mel Met to Liver (ODO4310)
0


83256 Liver NAT (ODO4310)
37.8


84139 Melanoma Mets to Lung (OD04321)
0


84138 Lung NAT (OD04321)
0


Normal Kidney GENPAK 061008
0


83786 Kidney Ca, Nuclear grade 2
0


(OD04338)


83787 Kidney NAT (OD04338)
0


83788 Kidney Ca Nuclear grade 1/2
0


(OD04339)


83789 Kidney NAT (OD04339)
0


83790 Kidne Ca, Clear cell type (OD04340)
0


83791 Kidney NAT (OD04340)
50.4


83792 Kidney Ca, Nuclear grade 3
0


(OD04348)


83793 Kidney NAT (OD04348)
0


98938 Kidney malignant cancer
45.8


(OD06204B)


98939 Kidney normal adjacent tissue
0


(OD06204E)


85973 Kidney Cancer (OD04450-01)
0


85974 Kidney NAT (OD04450-03)
33.8


Kidney Cancer Clontech 8120613
0


Kidney NAT Clontech 8120614
0


Kidney Cancer Clontech 9010320
0


Kidney NAT Clontech 9010321
0


Kidney Cancer Clontech 8120607
0


Kidney NAT Clontech 8120608
0


Normal Uterus GENPAK 061018
0


Uterus Cancer GENPAK 064011
0


Normal Thyroid Clontech A+ 6570-1
0


(7080817)


Thyroid Cancer GENPAK 064010
0


Thyroid Cancer INVITROGEN A302152
33.2


Thyroid NAT INVITROGEN A302153
100


Normal Breast GENPAK 061019
0


84877 Breast Cancer (OD04566)
0


Breast Cancer Res. Gen. 1024
0


85975 Breast Cancer (OD04590-01)
0


85976 Breast Cancer Mets (OD04590-03)
0


87070 Breast Cancer Metastasis
52.6


(OD04655-05)


GENPAK Breast Cancer 064006
0


Breast Cancer Clontech 9100266
0


Breast NAT Clontech 9100265
0


Breast Cancer INVITROGEN A209073
0


Breast NAT INVITROGEN A2090734
0


97763 Breast cancer (OD06083)
0


97764 Breast cancer node metastasis
0


(OD06083)


Normal Liver GENPAK 061009
45.2


Liver Cancer Research Genetics RNA 1026
0


Liver Cancer Research Genetics RNA 1025
67.3


Paired Liver Cancer Tissue Research
0


Genetics RNA 6004-T


Paired Liver Tissue Research Genetics
0


RNA 6004-N


Paired Liver Cancer Tissue Research
0


Genetics RNA 6005-T


Paired Liver Tissue Research Genetics
0


RNA 6005-N


Liver Cancer GENPAK 064003
0


Normal Bladder GENPAK 061001
0


Bladder Cancer Research Genetics RNA
0


1023


Bladder Cancer INVITROGEN A302173
0


Normal Stomach GENPAK 061017
0


Gastric Cancer Clontech 9060397
0


NAT Stomach Clontech 9060396
0


Gastric Cancer Clontech 9060395
0


NAT Stomach Clontech 9060394
0


Gastric Cancer GENPAK 064005
0










[1191]

396





TABLE G7










CG56230-01 Panel 4D









Rel. Expr., %



4dx4tm5100f


Tissue Name
ag1652_a2











93768_Secondary Th1_anti-CD28/anti-CD3
0


93769_Secondary Th2_anti-CD28/anti-CD3
0


93770_Secondary Tr1_anti-CD28/anti-CD3
0


93573_Secondary Th1_resting day 4-6 in IL-2
0


93572_Secondary Th2_resting day 4-6 in IL-2
0


93571_Secondary Tr1_resting day 4-6 in IL-2
0


93568_primary Th1_anti-CD28/anti-CD3
0


93569_primary Th2_anti-CD28/anti-CD3
0


93570_primary Tr1_anti-CD28/anti-CD3
0


93565_primary Th1_resting dy 4-6 in IL-2
0


93566_primary Th2_resting dy 4-6 in IL-2
0


93567_primary Tr1_resting dy 4-6 in IL-2
50.7


93351_CD45RA CD4 lymphocyte_anti-CD28/anti-CD3
0


93352_CD45RO CD4 lymphocyte_anti-CD28/anti-CD3
0


93251_CD8 Lymphocytes_anti-CD28/anti-CD3
0


93353_chronic CD8 Lymphocytes 2ry_resting dy
0


4-6 in IL-2


93574_chronic CD8 Lymphocytes 2ry_activated
18


CD3/CD28


93354_CD4_none
0


93252_Secondary Th1/Th2/Tr1_anti-CD95 CH11
0


93103_LAK cells_resting
0


93788_LAK cells_IL-2
0


93787_LAK cells_IL-2 + IL-12
0


93789_LAK cells_IL-2 + IFN gamma
14.5


93790_LAK cells_IL-2 + IL-18
0


93104_LAK cells_PMA/ionomycin and IL-18
0


93578_NK Cells IL-2_resting
0


93109_Mixed Lymphocyte Reaction_Two Way MLR
0


93110_Mixed Lymphocyte Reaction_Two Way MLR
0


93111_Mixed Lymphocyte Reaction_Two Way MLR
0


93112_Mononuclear Cells (PBMCs)_resting
0


93113_Mononuclear Cells (PBMCs)_PWM
30.9


93114_Mononuclear Cells (PBMCs)_PHA-L
0


93249_Ramos (B cell)_none
0


93250_Ramos (B cell)_ionomycin
0


93349_B lymphocytes_PWM
0


93350_B lymphoytes_CD40L and IL-4
0


92665_EOL-1 (Eosinophil)_dbcAMP differentiated
0


93248_EOL-1 (Eosinophil)_dbcAMP/PMAionomycin
0


93356_Dendritic Cells_none
0


93355_Dendritic Cells_LPS 100 ng/ml
0


93775_Dendritic Cells_anti-CD40
0


93774_Monocytes_resting
0


93776_Monocytes_LPS 50 ng/ml
0


93581_Macrophages_resting
0


93582_Macrophages_LPS 100 ng/ml
0


93098_HUVEC (Endothelial)_none
0


93099_HUVEC (Endothelial)_starved
0


93100_HUVEC (Endothelial)_IL-1b
0


93779_HUVEC (Endothelial)_IFN gamma
0


93102_HUVEC (Endothelial)_TNF alpha + IFN gamma
0


93101_HUVEC (Endothelial)_TNF alpha + IL4
0


93781_HUVEC (Endothelial)_IL-11
0


93583_Lung Microvascular Endothelial Cells_none
0


93584_Lung Microvascular Endothelial Cells
0


TNF a (4 ng/ml) and IL1b (1 ng/ml)


92662_Microvascular Dermal endothelium_none
0


92663_Microsvasular Dermal endothelium
0


TNF a (4 ng/ml) and IL1b (1 ng/ml)


93773_Bronchial epithelium_TNF a (4 ng/ml)
0


and IL1b (1 ng/ml)**


93347_Small Airway Epithelium_none
0


93348_Small Airway Epithelium
0


TNF a (4 ng/ml) and IL1b (1 ng/ml)


92668_Coronery Artery SMC_resting
0


92669_Coronery Artery SMC_TNF a
0


(4 ng/ml) and IL1b (1 ng/ml)


93107_astrocytes_resting
0


93108_astrocytes_TNF a (4 ng/ml) and IL1b (1 ng/ml)
0


92666_KU-812 (Basophil)_resting
0


92667_KU-812 (Basophil)_PMA/ionoycin
0


93579_CCD1106 (Keratinocytes)_none
0


93580_CCD1106 (Keratinocytes)_TNF a and IFNg**
0


93791_Liver Cirrhosis
34.2


93792_Lupus Kidney
0


93577_NCI-H292
0


93358_NCI-H292_IL-4
0


93360_NCI-H292_IL-9
0


93359_NCI-H292_IL-13
0


93357_NCI-H292_IFN gamma
0


93777_HPAEC_-
0


93778_HPAEC_IL-1 beta/TNA alpha
0


93254_Normal Human Lung Fibroblast_none
0


93253_Normal Human Lung Fibroblast
0


TNF a (4 ng/ml) and IL-1b (1 ng/ml)


93257_Normal Human Lung Fibroblast_IL-4
0


93256_Normal Human Lung Fibroblast_IL-9
21.8


93255_Normal Human Lung Fibroblast_IL-13
0


93258_Normal Human Lung Fibroblast_IFN gamma
0


93106_Dermal Fibroblasts CCD1070_resting
0


93361_Dermal Fibroblasts CCD1070_TNF alpha
0


4 ng/ml


93105_Dermal Fibroblasts CCD1070_IL-1 beta 1 ng/ml
0


93772_dermal fibroblast_IFN gamma
0


93771_dermal fibroblast_IL-4
0


93259_IBD Colitis 1**
0


93260_IBD Colitis 2
0


93261_IBD Crohns
0


735010_Colon_normal
0


735019_Lung_none
0


64028-1_Thymus_none
0


64030-1_Kidney_none
100










[1192] H. NOV27b—Human Carboxypeptidase A2-Like Protein—CG56246-02


[1193] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1194] Endocrine balance within the body is maintained by a variety of peptides and peptide hormones, such as insulin, glucagon-like peptide, proopiomelanocortin etc. Several of these agents are subject to activation by proteolytic cleavage and the expression or non-expression of relevant proteases can be expected to have dramatic effects on pathophysiology. For example, carboxypeptidase E-deficient mice show deficiencies in hormone maturation, leading to obesity with mild diabetes (Friis-Hansen et a;., J Endocrinol June 2001;169(3):595-602). Therefore, there is precedence for the role of proteases in both obesity and diabetes. In the GeneCalling® studies described, the upregulation of the carboxypeptidase A2 in the liver of the spontaneous hypertensive rat, which can be abolished by thiazolidinedione treatment, suggest that insulin insensitivity in this animal model may be coupled to increased proteolysis. Therefore, the inhibition of CPA2 may be an effective way to reduce insulin resistance in the liver.


[1195] Besides for a role in insulin sensitivity, our GeneCalling and Pathcalling data show that CPA2 may be involved in satiety. Firstly, GeneCalling indicate that in the duodenum of fasted and subsequently refed rats this gene is 45 fold downregulated when compared with fasted rats. This indicated that CPA2 expression is linked to hunger signals initiated in the gut, which are high in the fasted state and low in the refed state. Pathcalling confirm the influence of CPA2 on satiety mechanisms, by showing that CPA2 interacts with cholecystokinin, a gut hormone which has been clearly suggested to be a physiological satiety factor. Our data show that most likely CPA2 is involved in the degradation of CCK, and thereby induces hunger. The downregulation of CPA2 therefore may be an effective therapeutic for obesity since it may decrease hunger.


[1196] Rat Dietary-Induced Obesity Fast-Re-feed Study (BP24.06)


[1197] This study was designed to examine the chronic gene expression changes in response to dietary-induced obesity (DIO), as well as the acute gene expression changes associated with fasting and re-feeding. The sample groups for the study were selected from male Wistar rats and were either chow-fed, or placed on a high fat (45%) diet. The rats on the high-fat diet were further sub-divided into rats resistant to DIO (<1 standard deviation above the weight of chow-fed control rats) and DIO rats (4 standard deviations above the weight of chow-fed control rats. Changes in gene expression in the three sample groups were examined under normal feeding conditions, after 24 hr fasting, and after 24 hr fasting followed by a 4-hr re-feeding period. The clinical data obtained from each animal included body weight, food intake, glucose levels, insulin levels, free fatty acid levels and blood chemistry. A variety of tissues were harvested, including hypothalamus, brainstem, striatum, epididymal fat pads, subcutaneous fat pad, brown adipose tissue (BAT), gastrocnemius muscle (fast twitch skeletal muscle), soleus muscle (slow twitch skeletal muscle,), proximal small intestine, distal small intestine, pituitary, kidneys, adrenal gland, and heart. The differential gene expression profiles for these tissues should reveal genes and pathways that can be used as therapeutic targets for obesity.


[1198] Species #3 Rat Strains: Wistar


[1199] Results of Rat Dietary-Induced Obesity Fast-Re-feed Study (BP24.06)


[1200] A gene fragment of the rat Carboxypeptidase A2 was also found to be downregulated by 45 fold in the duodenum of fasted and refed rats when compared to rats that were fasted using CuraGen's GeneCalling® method of differential gene expression. A differentially expressed rat gene fragment migrating, at approximately 290.8 nucleotides in length (Table H1a—vertical line) was definitively identified as a component of the rat Carboxypeptidase A2 cDNA. The method of direct sequencing was used for confirmation of gene assessment and revealed that this fragment belonged to the rat carboxypeptidase A2 gene. Competitive PCR was then performed using this sequence to ablate the peak (grey trace).
397TABLE H2The direct sequence of the 267.1 nucleotide-long genefragment is shown below.(SEQ ID NO:570)GATCTGCTTG GCTGGCAGGA GGAAGCCATA GAAACCTGTG TCCCTCAGTT CAAAGGCAAA TGAGTATTTGATGCCAAGGT CGTAAGCCCA GTCGATGCTT CCACCACTCG CCTGGTAGAT GACAGAACAG ATGGGTCCCACTTTATAACT GGTGCCGTGC AGTCTTTTCA AAGCCTGGGC AGCCTTCTGG GCCACTTCAT CCAGCTCATTAAAGTCATCT GGCTTGGTAC ATTTATAGCC ATAGGGGAAC ATAAGCAGTT GGGAATAGCT GTGAAGGGTAATAAAAGCT


[1201] Gene-specific primers were designed to the above sequence and used for competitive PCR.


[1202] This differentially expressed gene fragment in Discovery Study BP24.06 is from the rat Carboxypeptidase A2 gene.


[1203] Findings: The following illustration suggests how alterations in expression of the human CPA2 and associated gene products function in the etiology and pathogenesis of obesity and/or diabetes (Table H4). The scheme shows the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of the human CPA2 would lead to a reduction in food intake.


[1204] PathCalling screening identified the interaction between Carboxypeptidase A2 and cholecystokinin (CCK). Cholecystokinin is a gut hormone and a neuropeptide that has the capacity to stimulate insulin secretion. Administration of CCK has been proposed as a potential treatment for type II diabetes. Results from PathCalling suggest that Carboxypeptidase A2 may be involved in degradation of CCK. Thus, an antagonist of Carboxypeptidase A2 may be beneficial for stimulation of insulin secretion in type II Diabetes.


[1205] In Frame Cloning: In frame cloning is a process designed to insert DNA sequences into expression vectors such that the encoded proteins can be produced. The expressed proteins were either full length or corresponding to specific domains of interest. The PCR template was based on a previously identified plasmid (the PCR product derived by exon linking, covering the entire open reading frame) when available, or on human cDNA(s). The human cDNA pool was composed of 5 micrograms of each of the following human tissue cDNAs: adrenal gland, whole brain, amygdala, cerebellum, thalamus, bone marrow, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, liver, lymphoma, Burkitt's Raji cell line, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small Intestine, spleen, stomach, thyroid, trachea, uterus. For downstream cloning purposes, the forward and reverse primers included in-frame EcoRI and NotI restriction sites. The amplified product was detected by agarose gel electrophoresis. The fragment was gel-purified and ligated into the pcDNA3.1+, and pFastBac1 (Invitrogen, Carlsbad, Calif.) following the manufacturer's recommendation. Twenty four clones per transformation were picked and a quality control step was performed to verify that these clones contain an insert of the anticipated size. Subsequently, eight of these clones were sequenced, and assembled in a fashion similar to the SeqCalling process. In addition to analysis of the entire sequence assembly, sequence traces were evaluated manually.


[1206] Findings: Table H5 depicts the preferred cDNA(s), among the variants listed above, that encompass the coding portion of the human CPA2 for expression of recombinant protein from any number of plasmid, phage or phagemid vectors in a variety of cellular systems for screening purposes. The corresponding amino acid sequence(s) is also listed. Although the sequences below are the preferred isoforms, any of the other isoforms may be used for similar purposes. Furthermore, under varying assay conditions, conditions may dictate that another isoform may supplant the listed isoforms. As shown in Table H2B, the open reading frame of the working representatives of CG56246-02 have 1 aa difference when compared to CG56246-04. CG56246-04 contains an N-terminal histidine tag and CG56246-05 contains a C-terminal Histidine tag used for protein purification (not visible in ClustalW).


[1207] Tables H5a-H5f disclose physical cDNA clones available for expression and screening purposes.
398TABLE H5aCG56246-03>CG56246-03,      1258 nt(SEQ ID NO:571)TAATAGGGGTGGTCTCGCACATGCTCCATGATTGCCTTCAAGCCAAGCCAGGTCTCCTCGGCTGTGGGCAGGATCTGACGGGCTGGCAAGAGGAAGCCGTAGCGCCCTGTGTCTCTCAGTTCAAAGGCAAATGAGTACTTGATGCCATAATCATAGGACCAGTCAATGCTTCCTCCACTGGCTTGGTAGATGACAGAGCAGATTGGTCCCACTTTGTACTTGGTGCCATGCAGGCTTCTCAGAGATTGGGCAGCCTTTTGGGCCACTTCACTCAGCTCATCAAAGTCATCTAACTTGGTACATTTGTACCCATAGGGGAACATCAGCAGCTGGGAATAGCTGTGGAGGGTAATGAAGGCCTTGACTTTTCCATGACTCTTGATGAAGTCCACTATGGATTTCACTTCAACTTCAGAGTTGGCACTGGGTCCGTGGTATGAATCAGAGCAAGGGTTGCTGCTGGCTCCAGGTCCTCCAAAACCTGCATCCCAGTTCCGGTTAGGATCCACACCAACACAGAGGCTTCCAGATACCTTGGACCGGGTCTTCCGCCACATACGATTTTTGGTTTGAGAGAACACGTATCCATCAGGGTTTGTGACTGGCAGGAGGAAGATATCCAGGGCGTCCAGAATGGAAGTGATGGATGGGTCCTTTCCATAATCAGAAACAATCTTATTTGCTGTCCAAAGTGCCGTAGCTTGTGTAACCCACTCTCGAGCATGGATCCCAGCATCCAGCCAGATAGCTGGCTTGTCTCCTCCGGTGCTGAACTTGAGCACGTTCATAGGCCGGTTCTCAAAAGAAGAGCCAATATTCACTTTGCTCACTAGACCAGGGTGCTCAGCCACGAGGTTATCCATTTCTTGGGAAATCTCTTCCAGGGTATGGTAGGCCCCAAAATTGAAGTTACCACTCCGTTCTCTTCTCCTATTAAAAAGCATTTCTTCATTCTCTTTGTCCAACAGGACCTGCACGTCTTCAATCATGATGGAATAGGCAATTCCCTGGGACTCCAAGAACACTTTGACTGCCTGGACGTTGACGAAGGGAACTCGGACGTGGGCTGTCTCCCCTGGGGTGGTGGGTGATTTCCAAAAATCAAGCTGGAGATGTTCTTGAGCCTCCAATTGTAGCAGATTTTTAATTTGTTCTTCATTGCTTGGTACAATCTCAAGAACTTGGTCTCCCACAAATGTTTCTAGACAGTAGATATGCCCAAAAAGGGCACCAAAAAACAGGATCAACCTCATGGTGG


[1208]

399





TABLE H5b








CG56246-03
















>CG56246-03-prot      418 aa









(SEQ ID NO:572)









TMRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQAVKVFL






ESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVL





KFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRS





KVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCT





KLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAE





ETWLGLKAIMEHVRDHPY










[1209]

400





TABLE H5c








CG56246-04
















>CG56246-04,      1279 nt









(SEQ ID NO:573)









CCACCATGGGCCACCATCACCACCATCACAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAA






ACATTTGTGGGAGACCAAGTTCTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCA





AGAACATCTCCAGCTTGATTTTTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACG





TCCAGGCAGTCAAAGTGTTCTTGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGAC





AAAGAGAATGAAGAAATGCTTTTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGA





AGAGATTTCCCAAGAAATGGATAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTG





AGAACCGGCCTATGAACGTGCTCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCT





CGAGAGTGGGTTACACAAGCTACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCAC





TTCCATTCTGGACGCCCTGGATATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATC





GTATGTGGCGGAAGACCCGGTCCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGT





TTTGGAGGACCTGGAGCCAGCAGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAA





ATCCATAGTGGACTTCATCAAGAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGT





TCCCCTATGGGTACAAATGTACCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTG





AGAAGCCTGCATGGCACCAAGTACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTG





GTCCTATGATTATGGCATCAAGTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCC





GTCAGATCCTGCCCACAGCCGAGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATTA










[1210]

401





TABLE H5d








CG56246-04
















>CG56246-04-prot      425 aa









(SEQ ID NO:574)









TMGHHHHHHRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNV






QAVKVFLESQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFE





NRPMNVLKFSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNR





MWRKTRSKVSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMF





PYGYKCTKLDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPAR





QILPTAEETWLGLKAIMEHVRDHPY










[1211]

402





TABLE H5e








CG56246-05
















>CG56246-05,      1276 nt









(SEQ ID NO:575)









CCACCATGAGGTTGATCCTGTTTTTTGGTGCCCTTTTTGGGCATATCTACTGTCTAGAAACATTTGTGGGAGACCAAGTT






CTTGAGATTGTACCAAGCAATGAAGAACAAATTAAAAATCTGCTACAATTGGAGGCTCAAGAACATCTCCAGCTTGATTT





TTGGAAATCACCCACCACCCCAGGGGAGACAGCCCACGTCCGAGTTCCCTTCGTCAACGTCCAGGCAGTCAAAGTGTTCT





TGGAGTCCCAGGGAATTGCCTATTCCATCATGATTGAAGACGTGCAGGTCCTGTTGGACAAAGAGAATGAAGAAATGCTT





TTTAATAGGAGAAGAGAACGGAGTGGTAACTTCAATTTTGGGGCCTACCATACCCTGGAAGAGATTTCCCAAGAAATGGA





TAACCTCGTGGCTGAGCACCCTGGTCTAGTGAGCAAAGTGAATATTGGCTCTTCTTTTGAGAACCGGCCTATGAACGTGC





TCAAGTTCAGCACCGGAGGAGACAAGCCAGCTATCTGGCTGGATGCTGGGATCCATGCTCGAGAGTGGGTTACACAAGCT





ACGGCACTTTGGACAGCAAATAAGATTGTTTCTGATTATGGAAAGGACCCATCCATCACTTCCATTCTGGACGCCCTGGA





TATCTTCCTCCTGCCAGTCACAAACCCTGATGGATACGTGTTCTCTCAAACCAAAAATCGTATGTGGCGGAAGACCCGGT





CCAAGGTATCTGGAAGCCTCTGTGTTGGTGTGGATCCTAACCGGAACTGGGATGCAGGTTTTGGAGGACCTGGAGCCAGC





AGCAACCCTTGCTCTGATTCATACCACGGACCCAGTGCCAACTCTGAAGTTGAAGTGAAATCCATAGTGGACTTCATCAA





GAGTCATGGAAAAGTCAAGGCCTTCATTACCCTCCACAGCTATTCCCAGCTGCTGATGTTCCCCTATGGGTACAAATGTA





CCAAGTTAGATGACTTTGATGAGCTGAGTGAAGTGGCCCAAAAGGCTGCCCAATCTCTGAGAAGCCTGCATGGCACCAAG





TACAAAGTGGGACCAATCTGCTCTGTCATCTACCAAGCCAGTGGAGGAAGCATTGACTGGTCCTATGATTATGGCATCAA





GTACTCATTTGCCTTTGAACTGAGAGACACAGGGCGCTACGGCTTCCTCTTGCCAGCCCGTCAGATCCTGCCCACAGCCG





AGGAGACCTGGCTTGGCTTGAAGGCAATCATGGAGCATGTGCGAGACCACCCCTATCACCATCACCACCATCACTA










[1212]

403





TABLE H5f








CG56246-05
















>CG56246-05-prot      417 aa









(SEQ ID NO:576)









MRLILFFGALFGHIYCLETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQAVKVFLE






SQGIAYSIMIEDVQVLLDKENEEMLFNRRRERSGNFNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLK





FSTGGDKPAIWLDAGIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSK





VSGSLCVGVDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFITLHSYSQLLMFPYGYKCTK





LDDFDELSEVAQKAAQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEE





TWLGLKAIMEHVRDNPY










[1213]



[1214] I. NOV28b—Human SERCA1-Like Protein—CG57417-03


[1215] The present invention discloses novel associations of proteins and polypeptides and the nucleic acids that encode them with various diseases or pathologies. The proteins and related proteins that are similar to them, are encoded by a cDNA and/or by genomic DNA. The proteins, polypeptides and their cognate nucleic acids were identified by CuraGen Corporation in certain cases. The SERCA1 adult isoform-encoded protein and any variants, thereof, are suitable as diagnostic markers, targets for an antibody therapeutic and targets for small molecule drugs. As such the current invention embodies the use of recombinantly expressed and/or endogenously expressed protein in various screens to identify such therapeutic antibodies and/or therapeutic small molecules.


[1216] Discovery Process: The following sections describe the study design(s) and the techniques used to identify the SERCA1 adult isoform-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.


[1217] Studies: MB.04 Obese versus Lean Mice (Genetic)


[1218] Study Statements: MB04. Large number of mouse strains have been identified that differ in body mass and composition. The AKR and NZB strains are obese, the SWR, C57L and C57BL/6 strains are of average weight whereas the SM/J and Cast/Ei strains are lean. Understanding the gene expression differences in the major metabolic tissues from these strains will elucidate the pathophysiologic basis for obesity. These specific strains of rat were chosen for differential gene expression analysis because quantitative trait loci (QTL) for body weight and related traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1219] Species #1 MOUSE Strains NZB, SM/J, C57B1/6, Cast/Ei


[1220] SERCA1 Adult Isoform:


[1221] The SERCA1 adult isoform is a magnesium dependent enzyme that catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. It contributes to calcium sequestration involved in muscular excitation/contraction. SERCA 1 is an integral membrane protein of the sarcoplasmic and endoplasmic reticulum and has 2 alternative spliced isoforms, serca1a/atp2a1a/adult and serca1b/atp2a1b/neonatal. The SERCA1 adult isoform accounts for more than 99% of serca1 isoforms expressed in adult, while isoform serca1b predominates in neo-natal fibers. Defects in atp2a1 are associated with some forms of the autosomal recessive inheritance of the brody disease (bd), characterized by increasing impairment of relaxation of fast twist skeletal muscle during exercise.


[1222] SPECIES #1 mouse (NZB vs SM/J) FIGS. 1A and 1B show that a gene fragment of the mouse SERCA1 was initially found to be down-regulated by 16.4 fold in the adipose tissue of NZB mice relative to SM/J mice using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed mouse gene fragment migrating at approximately 277 nucleotides in length (Tables I1A and I1B—vertical line) was definitively identified as a component of the mouse SERCA1 cDNA in the NZB and SM/J adipose (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The electropherogramatic peaks corresponding to the gene fragment of the mouse SERCA1 are ablated when a gene-specific primer (see below) which competes with primers in the linker-adaptors during the PCR amplification. The peaks at 277 nt in length are ablated in the sample from both the NZB and SM/J mice. The altered expression in of these genes in the animal model support the role of SERCA1 in the pathogenesis of obesity and/or diabetes.


[1223] SPECIES #1 mouse (C57B1/6 vs Cast/Ei) The public partial sequence of mouse SERCA1 of 1045 nucleotides was amplified by PCR from the Cast/Ei and C57B1/6 mouse strains and directly sequenced. Comparison of the two obtained sequences of the C57B1/6 and Cast/Ei strain shows a mutation in the form of a deletion of a cytosine in the SERCA1 coding sequence in Cast/Ei leading to a stopcodon in the open reading frame (For alignment, see Table I3). The mutation occurs in between the 6th and the 7th transmembrane region of the ATPase and leads to the ablation of the calcium transporting function of SERCA1 in the Cast/Ei.
404TABLE I1Partial Mouse SERCA1 Gene SequenceIdentified fragment from 372 to 648 in bold. band size: 277(SEQ ID NO:581)TTGACTTTTCTGTCATTTATTTTCAATAAATAAGCAATCAGCTAGTCAGTTGCCTTGTGCCTGCAAGCCCCGTGAGTTCGGGAAGGGGATTTACAAGGTTCGGAGGGAGAGCGGGTTGCTGAAGGGGACGAGGGTGGAGGACTTTATTTATAAACAGAATTGAGGGGGAAGAAGGGTCAGTGCCTCAGCTTTGGCTGAAGATGCATGGCTATTGGGGTGGGGAACACAGGGCACAAGGGCTGGTTACTTCCTTCTCTCGTCTTCTGGATCTGTGACACGGTTCAAAGACATGGAGGAGGGGGGTGGTTATCCCTCCAGATAGTTCCGAGCAATGAACTTGAGAAGCTCATCCAGCCCGATGACTGGCAGTGAGATCTTGAGGACCATGAGCCACTGGGTAAAGTCCAGGGCCCGGAGCTTGAAGATCATCGGCAGGGGGTCGACATAGAGGATGAGGAAGTGGAGGGACATGGACAGGCAGATGGAACCCAGCAGCCAGATGTTCACCCAGGGTGGCATCCGCAGTAGGGACTGGTTCTCAGACAGGCTGTTGAGAGCATTGCACATCTCGATGGTCACCAACACAGACAAGGCCATGGTCATGGGCTCGGGGGCCTCAAAGACCTCACAGTCCAGGCCATCGAATTCAGGGTTGTGCTCAGTGCACTGCATGAAATGAGTCAGCTGATGGTAGCTGACATGAGGCCCGTCCTCTGCATACAAAAACCACCAGGCAGCTGCTCCTACAGTGGCTGCACCCACATAGCCCCCAATTGCCATGTAGCGGAAAAAGAGCCAGCCACTGATAAGAGGCTCCTTGGGACTCCTGGGGGGGCGGTCCATGATGTCCAGGTCAGGTGGGTTGAATCCCAGGGCAGTAGCCGGGAGCCCATCAGTCACCAAGTTCACCCAGAGCAGCTGCACAGGGATCAGAGCCTCAGCGAGCCCCAAGGCTGCTGTCAAGAAGATACAGACCACCTCGCCCACATTGGAGGAGATGAGGTAGCGGATGAACTGCTTCATGTTGTTGTAGATGGCGCGGCCC


[1224]



405





TABLE I4








Human SERCA1 adult isoform DNA and Protein Sequence CG57417-03
















SEQ ID NO:586










1
ATGGAGGCCGCTCATGCTAAAACCACGGAGGAATGTTTGGCCTATTTTGGGGTGAGTGAGACCACGGGCCTCACCCCGGA






81
CCAAGTTAAGCGGAATCTGGAGAAATACGGCCTCAATGAGCTCCCTGCTGAGGAAGGGAAGACCCTGTGGGAGCTGGTGA





161
TAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTCCTCCTGGCCGCATGCATTTCCTTCGTGCTGGCCTGGTTTGAGGAA





241
GGTGAAGAGACCATCACTGCCTTTGTTGAACCCTTTGTCATCCTCTTGATCCTCATTGCCAATGCCATCGTGGGGGTTTG





321
GCAGGAGCGGAACGCAGAGAACGCCATCGAGGCCCTGAAGGAGTATGAGCCAGAGATGGGGAAGGTCTACCGGGCTGACC





401
GCAAGTCAGTGCAAAGGATCAAGGCTCGGGACATCGTCCCTGGGGACATCGTGGAGGTGGCTGTGGGGGACAAAGTCCCT





481
GCAGACATCCGAATCCTCGCCATCAAATCCACCACGCTGCGGGTTGACCAGTCCATCCTGACAGGCGAGTCTGTATCTGT





561
CATCAAACACACGGAGCCCGTTCCTGACCCCCGAGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGCACCAACA





641
TTGCAGCCGGCAAGGCCTTGGGCATCGTGGCCACCACCGGTGTGGGCACCGAGATTGGGAAGATCCGAGACCAAATGGCT





721
GCCACAGAACAGGACAAGACCCCCTTGCAGCAGAAGCTGGATGAGTTTGGGGAGCAGCTCTCCAAGGTCATCTCCCTCAT





801
CTGTGTGGCTGTCTGGCTTATCAACATTGGCCACTTCAACGACCCCGTCCATGGGGGCTCCTGGTTCCGCGGGGCCATCT





881
ACTACTTTAAGATTGCCGTGGCCTTGGCTGTGGCTGCCATCCCCGAAGGTCTTCCTGCAGTCATCACCACCTGCCTGGCC





961
CTGGGTACCCGTCGGATGGCAAAGAAGAATGCCATTGTAAGAAGCTTGCCCTCCGTAGAGACCCTGGGCTGCACCTCTGT





1041
CATCTGTTCCGACAAGACAGGCACCCTCACCACCAACCAGATGTCTGTCTGCAAGATGTTTATCATTGACAAGGTGGATG





1121
GGGACATCTGCCTCCTGAATGAGTTCTCCATCACCGGCTCCACTTACGCTCCAGAGGGAGAGGTCTTGAAGAATGATAAG





1201
CCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTT





1201
CCAGTCCGGCCAGGGCAGTATGACGGGCTGGTGGAGCTGGCCACCATCTGTGCCCTCTGCAATGACTCCTCCTTGGACTT





1361
TGTTCAACACGGATGTGAGAAGCCTCTCGAAGGTGGAGAGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTAATGAAG





1441
AAGGAATTCACCCTGGAGTTCTCCCGAGACAGAAAGTCCATGTCTGTCTATTGCTCCCCAGCCAAATCTTCCCGGGCTGC





1521
TGTGGGCAACAAGATGTTTGTCAAGGGTGCCCCTGAGGGCGTCATCGACCGCTGTAACTATGTGCGAGTTGGCACCACCC





1601
GGGTGCCACTGACGGGGCCGGTGAAGGAAAAGATCATGGCGGTGATCAAGGAGTGGGGCACTGGCCGGGACACCCTGCGC





1681
TGCTTGGCCCTGGCCACCCGGGACACCCCCCCGAAGCGAGAGGAAATGGTCCTGGATGACTCTGCCAGGTTCCTGGAGTA





1761
TGAGACGGACCTGACATTCGTGGGTGTAGTGGGCATGCTGGACCCTCCGCGCAAGGAGGTCACGGGCTCCATCCAGCTGT





1841
GCCGTGACGCCGGGATCCGGGTGATCATGATCACTGGGGACAACAAGGGCACAGCCATTGCCATCTGCCGGCGAATTGGC





1921
ATCTTTGGGGAGAACGAGGAGGTCGCCGATCGCGCCTACACGGGCCGAGAGTTCGACGACCTGCCCCTGGCTGAACAGCG





2001
GGAAGCCTGCCGACGTGCCTGCTGCTTCGCCCGTGTGGAGCCCTCGCACAAGTCCAAGATTGTGGAGTACCTGCAGTCCT





2081
ACGATGAGATCACAGCCATGACAGGTGATGGCGTCAATGACGCCCCTGCCCTGAAGAAGGCTGAGATTGGCATTGCCATG





2161
GGATCTGGCACTGCCGTGGCCAAGACTGCCTCTGAGATGGTGCTGGCTGACGACAACTTCTCCACCATCGTAGCTGCTGT





2241
GGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATTTCCTCCAACGTGGGCGAGGTGGTCT





2321
GTATCTTCCTGACCGCTGCCCTGGGGCTGCCTGAGGCCCTGATCCCGGTGCAGCTGCTATGGGTGAACTTGGTGACCGAC





2401
GGGCTCCCAGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATCATGGACCGCCCCCCCCGGAGCCCCAAGGAGCC





2481
CCTCATCAGTGGCTGGCTCTTCTTCCGCTACATGGCAATCGGGGGCTATGTGGGTGCAGCCACCGTGGGAGCAGCTGCCT





2561
GGTGGTTCCTGTACGCTGAGGATGGGCCTCATGTCAACTACAGCCAGCTGACTCACTTCATGCAGTGCACCGAGGACAAC





2641
ACCCACTTTGAGGGCATAGACTGTGAGGTCTTCGAGGCCCCCGAGCCCATGACCATGGCCCTGTCCGTGCTGGTGACCAT





2721
CGAGATGTGCAATGCACTGAACAGCCTGTCCGAGAACCAGTCCCTGCTGCGGATGCCACCCTGGGTGAACATCTGGCTGC





2801
TGGGCTCCATCTGCCTCTCCATGTCCCTGCACTTCCTCATCCTCTATGTTGACCCCCTGCCGATGATCTTCAAGCTCCGG





2881
GCCCTGGACCTCACCCAGTGGCTCATGGTCCTCAAGATCTCACTGCCAGTCATTGGGCTCGACGAAATCCTCAAGTTCGT





2961
TGCTCGGAACTACCTAGAGGATCCAGAAGATGAAAGAAGGAAGTGAGCATCCTTTTGCTCTGTCCTCCCCACCCCGATAG










[1225]

406





TABLE I5








>CG57417-03-prot      1001 aa
















(SEQ ID NO:587)









MEAAHAKTTEECLAYFGVSETTGLTPDQVKRNLEKYGLNELPAEEGKTLWELVIEQFEDLLVRILLLAACISFVLAWFEE






GEETITAFVEPFVILLILIANAIVGVWQERNAENAIEALKEYEPEMGKVYRADRKSVQRIKARDIVPGDIVEVAVGDKVP





ADIRILAIKSTTLRVDQSILTGESVSVIKHTEPVPDPRAVNQDKKNMLFSGTNIAAGKALGIVATTGVGTEIGKIRDQMA





ATEQDKTPLQQKLDEFGEQLSKVISLICVAVWLINIGHFNDPVHGGSWFRGAIYYFKIAVALAVAAIPEGLPAVITTCLA





LGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSVCKMFIIDKVDGDICLLNEFSITGSTYAPEGEVLKNDK





PVRPGQYDGLVELATICALCNDSSLDFNEAKGVYEKVGEATETALTTLVEKMNVFNTDVRSLSKVERANACNSVIRQLMK





KEFTLEFSRDRKSMSVYCSPAKSSRAAVGNKMFVKGAPEGVIDRCNYVRVGTTRVPLTGPVKEKIMAVIKEWGTGRDTLR





CLALATRDTPPKREEMVLDDSARFLEYETDLTFVGVVGMLDPPRKEVTGSIQLCRDAGIRVIMITGDNKGTAIAICRRIG





IFGENEEVADRAYTGREFDDLPLAEQREACRRACCFARVEPSHKSKIVEYLQSYDEITAMTGDGVNDAPALKKAEIGIAM





GSGTAVAKTASEMVLADDNFSTIVAAVEEGRAIYNNMKQFIRYLISSNVGEVVCIFLTAALGLPEALIPVQLLWVNLVTD





GLPATALGFNPPDLDIMDRPPRSPKEPLISGWLFFRYMAIGGYVGAATVGAAAWWFLYAEDGPHVNYSQLTHFMQCTEDN





THFEGIDCEVFEAPEPMTMALSVLVTIEMCNALNSLSENQSLLRMPPWVNIWLLGSICLSMSLHFLILYVDPLPMIFKLR





ALDLTQWLMVLKISLPVIGLDEILKFVARNYLEDPEDERRK










[1226] Human SERCA1 Adult Isoform: 1001 Amino Acids; 110 kd; Locus: 12q24.1; Integral Membrane Protein SR


[1227] The following is an alignment of the protein sequences of the human adult and neonatal form of SERCA1 and the rat and mouse versions of the SERCA1. For the mouse there is only a partial public sequence available.


[1228] In addition to the human version of the SERCA1 adult isoform identified as being differentially expressed in the experimental study, one variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. This is the splice variant known in the public database as the neonatal isoform of SERCA1 (see above for clustalW). No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG57417-03.
407TABLE I7The variants of the human SERCA1 adult isoformobtained from direct cloning and/or public databasesDNAAAAASNP IDPositionE−ValueStrandAllelesPositionChange1337509612587.40E−06PlusT:C420Cys => Arg1337509816257.40E−06MinusA:G542Lys => Arg1337509719437.40E−06PlusT:C648Val => Ala1337498621997.40E−06PlusG:A733Met => Ile1337498722137.40E−06PlusA:G738Asp => Gly1337498822697.40E−06PlusA:G757Met => Val1337498922847.40E−06PlusC:T762Arg => Cys


[1229] Expression of gene CG57417-03 was assessed using the primer-probe set Ag3267, described in Table I8a. Results of the RTQ-PCR runs are shown in Tables I8b and I8C.


[1230] CG57417-03: SERCA1—isoform1 (neonatal), clone status=FIS; novelty=Public; ORF start=3, ORF stop=3096, frame=3; 3454 bp.


[1231] The probe and primers were designed on the neonatal isoform of the human SERCA1 gene in the non-coding region. This noncoding region is not included in CG57417-03 (see clustalW below) but is considered the same for the two alternative spliced forms of the gene. Primers both recognize the adult and neonatal SERCA1 isoforms.


[1232] Expression data was analyzed as described in Example C.
408TABLE I8aPrimers and probe for Ag3267StartSEQ IDPrimersSequencesLengthPositionNO:Forward5′-ccctctcaaccttgtaaattccc-3′233313595ProbeTET-5′-ttgcagggacaaggcgaccga-3′-TAMRA213355596Reverse5′-aataaataagcagctcagcgca-3′223377597


[1233]

409





TABLE I8b










General_screening_panel_v1.4










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag3267,
Ag3267,



Run
Run


Tissue Name
208010012
212650192












Adipose
2.5
0.3


Melanoma* Hs688(A).T
0.0
0.1


Melanoma* Hs688(B).T
0.0
0.0


Melanoma* M14
0.1
0.1


Melanoma* LOXIMVI
0.0
0.0


Melanoma* SK-MEL-5
0.1
0.1


Squamous cell carcinoma SCC-4
0.0
0.0


Testis Pool
0.2
0.1


Prostate ca.* (bone met) PC-3
0.1
0.1


Prostate Pool
0.1
0.2


Placenta
0.1
0.1


Uterus Pool
0.0
0.0


Ovarian ca. OVCAR-3
0.1
0.2


Ovarian ca. SK-OV-3
0.2
0.3


Ovarian ca. OVCAR-4
0.0
0.1


Ovarian ca. OVCAR-5
0.3
0.3


Ovarian ca. IGROV-1
0.0
0.0


Ovarian ca. OVCAR-8
0.0
0.1


Ovary
0.0
0.1


Breast ca. MCF-7
0.1
0.2


Breast ca. MDA-MB-231
0.1
0.2


Breast ca. BT 549
0.1
0.2


Breast ca. T47D
0.2
0.4


Breast ca. MDA-N
0.1
0.1


Breast Pool
0.1
0.1


Trachea
0.2
0.2


Lung
0.1
0.1


Fetal Lung
0.1
0.2


Lung ca. NCI-N417
0.0
0.0


Lung ca. LX-1
0.4
0.4


Lung ca. NCI-H146
0.1
0.1


Lung ca. SHP-77
0.2
0.3


Lung ca. A549
0.1
0.2


Lung ca. NCI-H526
0.0
0.0


Lung ca. NCI-H23
0.2
0.3


Lung ca. NCI-H460
0.1
0.1


Lung ca. HOP-62
0.1
0.1


Lung ca. NCI-H522
0.3
0.3


Liver
0.0
0.0


Fetal Liver
0.0
0.1


Liver ca. HepG2
0.4
0.4


Kidney Pool
0.1
0.2


Fetal Kidney
0.3
0.2


Renal ca. 786-0
0.1
0.1


Renal ca. A498
0.1
0.1


Renal ca. ACHN
0.1
0.2


Renal ca. UO-31
0.1
0.1


Renal ca. TK-10
0.5
0.7


Bladder
0.3
0.3


Gastric ca. (liver met.) NCI-N87
1.4
1.4


Gastric ca. KATO III
0.3
0.3


Colon ca. SW-948
0.0
0.0


Colon ca. SW480
0.1
0.2


Colon ca.* (SW480 met) SW620
0.1
0.2


Colon ca. HT29
0.1
0.1


Colon ca. HCT-116
0.3
0.4


Colon ca. CaCo-2
0.2
0.2


Colon cancer tissue
0.1
0.1


Colon ca. SW1116
0.1
0.1


Colon ca. Colo-205
0.0
0.1


Colon ca. SW-48
0.0
0.1


Colon Pool
0.1
0.6


Small Intestine Pool
0.2
0.2


Stomach Pool
0.1
0.2


Bone Marrow Pool
0.0
0.0


Fetal Heart
0.1
0.1


Heart Pool
0.0
0.0


Lymph Node Pool
0.1
0.2


Fetal Skeletal Muscle
16.7
17.0


Skeletal Muscle Pool
100.0
100.0


Spleen Pool
0.2
0.2


Thymus Pool
0.1
0.2


CNS cancer (glio/astro) U87-MG
0.2
0.2


CNS cancer (glio/astro) U-118-MG
0.2
0.3


CNS cancer (neuro; met) SK-N-AS
0.2
0.4


CNS cancer (astro) SF-539
0.1
0.1


CNS cancer (astro) SNB-75
0.1
0.1


CNS cancer (glio) SNB-19
0.0
0.0


CNS cancer (glio) SF-295
0.3
0.6


Brain (Amygdala) Pool
0.0
0.0


Brain (cerebellum)
0.1
0.1


Brain (fetal)
0.2
0.2


Brain (Hippocampus) Pool
0.0
0.1


Cerebral Cortex Pool
0.0
0.1


Brain (Substantia nigra) Pool
0.0
0.0


Brain (Thalamus) Pool
0.1
0.1


Brain (whole)
0.1
0.1


Spinal Cord Pool
0.2
0.3


Adrenal Gland
0.1
0.1


Pituitary gland Pool
0.0
0.1


Salivary Gland
0.2
0.3


Thyroid (female)
0.0
0.0


Pancreatic ca. CAPAN2
0.1
0.1


Pancreas Pool
0.2
0.1










[1234]

410





TABLE I8c










Panel 5D











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag3267,

Ag3267,



Run

Run


Tissue Name
166510707
Tissue Name
166510707













97457_Patient-02go_adipose
0.0
94709_Donor 2 AM - A_adipose
0.0


97476_Patient-07sk_skeletal
6.1
94710_Donor 2 AM - B _adipose
0.0


muscle


97477_Patient-07ut_uterus
0.0
94711_Donor 2 AM - C_adipose
0.0


97478 _Patient-07pl_placenta
0.0
94712_Donor 2 AD - A_adipose
0.0


97481_Patient-08sk_skeletal
5.3
94713_Donor 2 AD - B _adipose
0.0


muscle


97482_Patient-08ut_uterus
0.0
94714_Donor 2 AD - C_adipose
0.0


97483_Patient-08pl_placenta
0.0
94742_Donor 3 U - A_Mesenchymal
0.0




Stem Cells


97486_Patient-09sk_skeletal
7.4
94743_Donor 3 U - B_Mesenchymal
0.1


muscle

Stem Cells


97487_Patient-09ut_uterus
0.0
94730_Donor 3 AM - A_adipose
0.0


97488_Patient-09pl_placenta
0.1
94731_Donor 3 AM - B_adipose
0.1


97492_Patient-10ut_uterus
0.0
94732_Donor 3 AM - C_adipose
0.1


97493_Patient-10pl_placenta
0.0
94733_Donor 3 AD - A_adipose
0.0


97495_Patient-11go_adipose
0.0
94734_Donor 3 AD - B_adipose
0.0


97496_Patient-11sk_skeletal
20.6
94735_Donor 3 AD - C_adipose
0.0


muscle


97497_Patient-11ut_uterus
0.2
77138_Liver_HepG2untreated
0.2


97498_Patient-11pl_placenta
0.0
73556_Heart_Cardiac stromal cells
0.0




(primary)


97500_Patient-12go_adipose
0.0
81735_Small Intestine
0.1


97501_Patient-12sk_skeletal
100.0
72409_Kidney_Proximal Convoluted
0.0


muscle

Tubule


97502_Patient-12ut_uterus
0.0
82685_Small intestine_Duodenum
0.0


97503_Patient-12pl_placenta
0.0
90650_Adrenal_Adrenocortical
0.0




adenoma


94721_Donor 2 U -
0.0
72410_Kidney_HRCE
0.0


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
72411_Kidney_HRE
0.1


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
73139_Uterus_Uterine smooth
0.0


C_Mesenchymal Stem Cells

muscle cells










[1235] General_screening_panel_v1.4 Summary: Ag3267 Primers Specific for SERCA1


[1236] Biochemistry and Cell Line Expression


[1237] The following illustrations summarize the biochemistry surrounding the human SERCA1 adult isoform and potential assays that may be used to screen for antibody therapeutics or small molecule drugs to treat obesity and/or diabetes. Cell lines expressing the SERCA1 adult isoform can be obtained from the RTQ-PCR results shown above. These and other SERCA1 adult isoform expressing cell lines could be used for screening purposes.


[1238] The function of SERCA1 can be measured directly in a calcium flux assay using whole cells as well as subcellular fractionations as described in the Wheatly et al., Smith et al., and Thrower et al. references.


[1239] Alternatively, the ATPase activity of SERCA can be measured with measuring radioactive free phosphate.


[1240] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1241] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human SERCA1 adult isoform would be beneficial in the treatment of obesity and/or diabetes.


[1242] Table I11 shows that SERCA1 and the RYR1 have antagonistic functions in calcium signaling in the sarcoplasmic reticulum. SERCA1 catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the lumen of the SR/ER.


[1243] In the muscle, the lean Cast/Ei mouse was found to have a mutation in SERCA1 which ablates its ATPase activity. The presence of a nonfunctional SERCA1 may lead to increased futile cycling of calcium, which may result in a leaner phenotype of these animals. Thus, an antagonist for SERCA1 may increase futile cycling and energy expenditure and could be beneficial in the treatment of obesity.


[1244] On the other hand, increased activity of SERCA1 will replenish the calcium pool for adequate excitation-contraction coupling, leading to a better exercise-dependent insulin sensitivity of the muscle. Therefore, an agonist of SERCA1 could be beneficial for the treatment of diabetes.


[1245] J. NOV29b—Human Autotaxin-t-Like Protein—CG93541-01


[1246] Discovery Process The following sections describe the study design(s) and the techniques used to identify the Autotaxin-t-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.


[1247] Studies:


[1248] A. Identification of Genes Expressed in Human Pancreas


[1249] B. Insulin Secretion From Clonal INS-1 Cell Lines (MB.11)


[1250] Study Statements:


[1251] The regulation of insulin secretion is critical to the control of serum glucose concentrations. Alterations in the secretion of insulin are central to the etiology, pathogenesis and consequences of both Type I and Type II diabetes. This study was designed to determine the role of gene expression in regulating insulin secretion from rat pancreatic beta cell lines derived from the heterogeneous rat INS-1 insulinoma. The rat insulinoma cell line INS-1 was transfected with the plasmid pCMV8/INS/IRES/Neo. The plasmid expresses the human insulin gene and the neo selectable marker under the control of the CMV promoter. Stable clones expressing these genes were isolated and described in Hohmeier, H E, Mulder, H., Chen, G., Prentki, M., Newgard, C B: Isolation of INS-1 derived cell lines with robust K ATP channel-dependent and independent glucose stimulated insulin secretion. Diabetes 49: 424-430, 2000.
411TABLE J1INS-1 Derived Cell LinesGoodPoor InsulinInsulinPhenotypes Of The Cell LinesSecretionSecretionGlucagon ExpressionNegative832/1832/13832/2833/15Positive834/105834/112Species #1HumansStrainsN/ASpecies #2RatStrains INS-1Derived Cell LinesSpecies #3N/AStrainsN/A


[1252] The bifunctional enzyme phosphodiesterase I (EC 3.1.4.1)/nucleotide pyrophosphatase (EC 3.6.1.9) was cloned from rat brain by Narita et al. (1994) and designated PD-I(alpha). Kawagoe et al. (1995) obtained the human cDNA which codes for a predicted 863-amino acid protein with 89% identity to the rat protein. Northern blot analysis detected a 3-kb transcript in brain, placenta, kidney and lung. See, Online Mendelian Inheritance in Man (“OMIM”), accession no. 601060.


[1253] Phosphodiesterase I (EC 3.1.4.1)/nucleotide pyrophosphatase (EC 3.6.1.9) enzymes are a family of type II transmembrane proteins that catalyze the cleavage of phosphodiester and phosphosulfate bonds of a variety of molecules, including deoxynucleotides, NAD, and nucleotide sugars. Two previously cloned genes for 2 members of this family were designated PC-1 (PDNP1; 173335) and PD-I-alpha/autotaxin (PDNP2; 601060). Jin-Hua et al. (1997) cloned the third member of this family from a human prostate cDNA library and designated it phosphodiesterase-I-beta (PD-I-beta). The gene is symbolized PDNP3. See, OMIM 602182.


[1254] An apparent splice variant lacking 52 amino acids, but otherwise identical, has been described (Murata et al., 1994). Kawagoe et al. (1995) obtained a genomic clone for the 5-prime end of the gene which contained a variety of potential DNA-binding sites as well as intron 1.


[1255] Method of Identifying the Differentially Expressed Gene and Gene Product


[1256] It was determined by a directed mining approach utilizing CuraGen proprietary (SeqCalling) and public databases of expressed sequences that the human Autotaxin-t (PDE1 isoform) is expressed in human pancreas.


[1257] Subsequently, a gene fragment of the rat PDE1 was initially found to be down-regulated by 3.2 fold in good insulin-secreting INS-1-derived cell lines compared to poor insulin-secreting INS-1-derived cell lines using CuraGen's GeneCalling™ method of differential gene expression.


[1258] The GeneCalling™ method makes a comparison between experimental samples in the amount of each cDNA fragment generated by digestion with a unique pair of restriction endonucleases, after linker-adaptor ligation, PCR amplification and electropherogramatic separation. Computer analysis is employed to assign potential identity to the gene fragment. Seven of 10 expected gene fragments from the rat PDE1 cDNA were identified as being down-regulated in the good versus poor secretors.


[1259] A differentially expressed rat gene fragment migrating, at approximately 419 nucleotides in length (FIGS. 1A and 1B—vertical line) was definitively identified as a component of the rat Autotaxin-t cDNA by competitive PCR as well as by PCR with Perfect or Mismatched 3′ Nucleotides (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). Four additional gene fragments were also identified by PCR with Perfect or Mismatched 3′ Nucleotides (See Below).


[1260] Three methods are routinely used in the identification of a gene fragment found to have altered expression in models of or patients with obesity and/or diabetes.


[1261] 1) Direct Sequencing


[1262] The differentially expressed gene fragment is isolated, cloned into a plasmid and sequenced. Afterwards the sequence information is used to design an oligonucleotide corresponding to either or both termini of the gene fragment. This oligonucleotide, when used in a competitive PCR reaction, will ablate the chromatographic band from which the sequence is derived.


[1263] 2) Competitive PCR


[1264] In competitive PCR, the electropherogramatic peaks corresponding to the gene fragment of the human Autotaxin-t are ablated when a gene-specific primer (designed from the sequenced band or available databases) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 419 nt in length are ablated in the sample from both the gestational diabetics and normal patients.


[1265] 3) PCR with Perfect or Mismatched 3′ Nucleotides (Trapping)


[1266] This method utilizes a competitive PCR approach using a degenerate set of primers that extend one or two nucleotides into the gene-specific region of the fragment beyond the flanking restriction sites. As in the competitive PCR approach, primers that lead to the ablation of the electropherogramatic band add additional sequence information. In conjunction with the size of the gene fragment and the 12 nucleotides of sequence derived from the restriction sites, this additional sequence data can uniquely define the gene after database analysis.


[1267] The direct sequence of the 419 nucleotide-long gene fragment and the gene-specific primers used for competitive PC are indicated on the complete cDNA sequence of the Autotaxin-t and shown below in bold.


[1268] Tables J2A and 2B show a differentially expressed rat PDE1 gene fragment from Discovery Study MB.11. The electropherograms represent the competitive PCR results for the Rat Autotaxin-t and provide confirmation of differential expression. The electropherogramatic peaks corresponding to the gene fragment of the Rat Autotaxin-t are ablated when a gene-specific primer (designed from the sequenced band or available databases; see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 419 nt in length are ablated in the sample from the good (top) versus poor (bottom) secretors. In the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response.


[1269] The sequence shown below is the Rat PDE1 cDNA. The gene fragment (band size: 418 nucleotides in length (migrating as 419 nt) identified as being differentially expressed corresponds to nucleotides 1257 to 1674 (bold) in the cDNA. The gene-specific primer used in the competitive PCR reaction is underlined.
412TABLE J3Rat Sequence # A55453(fragment from 1257 to 1674 in bold. band size: 418)(SEQ ID NO:598)GGTACCCAAC AGCCTGAACT CAGAGCCCCG AGAGCAGAGC ATTCAGGGCA AGCAGAAACA CCCTGCAGAGGCTTTCCAAG AATCCCTCGG CATGGCAAGA CAAGGCTGTC TCGGGTCATT CCAGGTAATA TCCTTGTTCACTTTTGCCAT CAGTGTCAAT ATCTGCTTAG GATTCACAGC AAGTCGAATT AAGAGGGCAG AATGGGATGAAGGACCTCCC ACAGTGCTGT CTGACTCTCC ATGGACCAAC ACCTCTGGAT CCTGCAAAGG TAGATGCTTTGAGCTTCAAG AGGTTGGCCC TCCAGACTGT CGGTGTGACA ACCTGTGTAA GAGCTACAGC AGCTGCTGCCACGATTTCGA TGAGCTCTGT TTGAAAACAG TCCGAGGCTG GGAGTGCACC AAAGACAGAA GTGGGGAAGTACGAAACGAG GAAAATGCCT GTCACTGCCC AGAAGACTGC TTGTCCAGGG GAGACTGCTG TACCAACTACCAAGTGGTCT GCAAAGGAGA ATCACACTGG GTAGATGATG CTGCGAGAAA TCAAAGTTCC GAATGCCTGCAGGTTTGTCC GCCTCCGTTA ATCATCTTCT CTGTGGATGG TTTCCGTGCA TCATACATGA AGAAAGGCAGCAAGGTTATG CCCAACATTG AGAAACTGCG GTCCTGTGGC ACCCATGTCC CCTACACGAG GCCTGTGTACCCCACAAAAA CCTTCCCTAA TCTATATACG CTGGCCACTG GTTTATATCC GGAATCCCAT GGAATTGTCGGTAATTCAAT GTATGATCCT GTCTTTGATG CTTCGTTCCA TCTACGAGGG CGAGAGAAGT TTAATCATAGGTGGTGGGGA GGCCAACCGC TATGGATTAC AGCCACCAAG CAAGGGGTGA GAGCTGGAAC ATTCTTTTGGTCTGTGAGCA TCCCTCATGA ACGGAGGATC CTAACCATTC TTCAGTGGCT TTCTCTGCCA GACAACGAGAGGCCTTCAGT TTATGCCTTC TACTCAGAGC AGCCTGATTT TTCTGGACAC AAGTACGGCC CTTTTGGCCCTGAGATGACA AATCCTCTGA GGGAGATTGA CAAGACCGTG GGGCAGTTAA TGGATGGACT GAAACAACTCAGGCTGCATC GCTGTGTGAA CGTTATCTTT GTTGGAGACC ATGGAATGGA AGATGTGACA TGTGACAGAACTGAGTTCTT GAGCAACTAT CTGACTAATG TGGATGACAT TACTTTAGTG CCTGGAACTC TGGGAAGAATTCGAGCCAAA TCTATCAATA ATTCTAAATA TGACCCTAAA ACCATTATTG CTAACCTCAC GTGCAAAAAACCGGATCAGC ACTTTAAGCC TTACATGAAA CAGCACCTTC CCAAACGGTT GCACTATGCC AACAACAGAAGAATTGAAGA CATCCATTTA TTGGTCGATC GAAGATGGCA TGTTGCAAGG AAACCTTTGG ACGTTTATAAGAAACCATCA GGAAAATGTT TTTTCCAGGG TGACCACGGC TTTGATAACA AGGTCAATAG CATGCAGACTGTTTTCGTAG GTTATGGCCC AACTTTTAAG TACAGGACTA AAGTGCCTCC ATTTGAAAAC ATTGAACTTTACAATGTTAT GTGCGATCTC CTAGGCTTGA AGCCCGCTCC CAATAATGGA ACTCATGGAA GCTTGAATCACCTACTGCGT ACAAATACCT TTAGGCCAAC CATGCCAGAC GAAGTCAGCC GACCTAACTA CCCAGGGATTATGTACCTTC AGTCCGAGTT TGACCTGGGC TGCACCTGTG ACGATAAGGT AGAGCCAAAG AACAAATTGGAAGAACTCAA TAAACGTCTT CATACCAAAG GATCAACAGA AGCTGAAACC GGGAAATTCA GAGGCAGCAAACATGAAAAC AAGAAAAACC TTAATGGAAG TGTTGAACCT AGAAAAGAGA GACATCTCCT GTATGGACGGCCTGCAGTGC TCTATCGGAC TAGCTATGAT ATCTTATACC ATACGGACTT TGAAAGTGGT TATAGTGAAATATTCTTAAT GCCTCTCTGG ACATCGTATA CCATTTCTAA GCAGGCTGAG GTCTCCAGCA TCCCAGAACACCTGACCAAC TGTGTTCGTC CTGATGTCCG TGTGTCTCCA GGATTCAGTC AGAACTGTTT AGCTTATAAAAATGATAAAC AGATGTCATA TGGATTCCTT TTTCCTCCCT ACCTGAGCTC CTCCCCAGAA GCTAAGTATGATGCATTCCT CGTAACCAAC ATGGTTCCAA TGTACCCCGC CTTCAAACGT GTTTGGGCTT ATTTCCAAAGGGTTTTGGTG AAGAAATATG CTTCAGAAAG GAATGGAGTC AACGTAATAA GTGGACCGAT TTTTGACTACAATTACGATG GCCTACGTGA CACTGAAGAT GAAATTAAAC AGTATGTGGA AGGCAGCTCT ATACCTGTCCCCACCCACTA CTACAGCATC ATCACCAGCT GCCTGGACTT CACTCAGCCT GCAGACAAGT GTGACGGTCCCCTCTCTGTG TCTTCCTTCA TCCTTCCTCA CCGACCCGAC AATGATGAGA GCTGTAATAG CTCCGAGGATGAGTCGAAGT GGGTAGAGGA ACTCATGAAG ATGCACACAG CTCGGGTGCG GGACATTGAG CACCTCACTGGTCTGGATTT CTACCGGAAG ACTAGCCGTA GCTATTCGGA AATTCTGACC CTCAAGACAT ACCTGCATACATATGAGAGC GAGATTTAAC TTTCTGGGCC TGGGCAGTGT AGTCTTAGCA ACTGGTGTAT ATTTTTATATTGTGTTTGTA TTTATTAATT TGAACCAGGA CACAAACAAA CAAAGAAACA AACAAATAAA AAAAAAAACCACTTAGTATT TTAATCCTGT ACCAAATCTG ACATATTAAG CTGAATGACT GTGCTATTTT TTTTCCTTAATTCTTGATTT AGACAGAGTT GTGTTCTGAG CAGAGTTTAT AGTGAACACT GAGGCTCACA ATCCAAGTAGAAGCTACGTG GATCTACAAG GTGCTGCAGG TTGAAAATTT GCATTGAGGA AATATTAGTT TTCCAGGGCACAGTCACCAC GTGTAGTTCT GTTCTGTTTT GAAAGACTGA TTTTGTAAAG GTGCATTCAT CTGCTGTTAACTTTGACAGA CATATTTATG CCTTATAGAC CAAGCTTAAA TATAATAAAT CACACATTCA GATTT


[1270] The following are alignments of the cDNA and protein sequences of the human, rat and mouse versions of PDE1/Autotaxin-t.


[1271] Intracellular—Variants of the Human Autotaxin-t are Obtained from Direct Cloning and/or Public Databases.


[1272] In addition to the human version of the Autotaxin-t identified as being differentially expressed in the experimental study, other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG93541-01.


[1273] Analysis of CuraGen proprietary and public human sequence databases have permitted the identification of the single nucleotide polymorphisms listed in Table J6 below:
413TABLE J6Single Nucleotide Polymorphisms of Human Autotaxin-tDNA IDProtein IDORF StartORF StopE-Value CutoffCG93541-01CG93541-01602648 0.5SNP IDDNA PositionStrandAllelesAA Positionc100.2799903PlusC:T282


[1274] One splice Variant, CG93541-02, protein has the first 175 amino acids and last 23 amino acids of Autotaxin-T (Q13822). The remaining 660 amino acids of the coding region is missing. Alignment of the cDNA sequences is shown below:


[1275] J8. Expression of the Human Autotaxin-t (CG93541-01)


[1276] Tissue expression for the human Autotaxin-t was assessed using the primer-probe set Ag4285, described in Table JAA. Results of the RTQ-PCR runs are shown in Tables JAB, JAC and JAD.


[1277] Table JAA. Probe Name Ag 3857
414TABLE JAAProbe Name Ag3857SEQ IDPrimersSequenesLengthStart PositionNOForward5′-tgcctggaactctaggaagaat-3′221216607ProbeTET-5′-tcgatccaaatttagcaacaatgcta-3′-TAMRA261238608Reverse5′-agattggcaataatggctttg-3′211274609


[1278] The highest level of expression in normal, adlt tissue is in stomach.
415TABLE JABGeneral_screening_panel_v1.4Rel.Rel.Tissue NameExp. (%)Exp. (%)1.Adipose27.291.1%2.Melanoma* Hs688(A).T25.88  3%3.Melanoma* Hs688(B).T28.050.7%4.Melanoma* M1428.120.6%5.Melanoma* LOXIMVI40  0%6.Melanoma* SK-MEL-535.45  0%7.Squamous cell carcinoma SCC-437.28  0%8.Testis Pool28.23 .6%9.Prostate ca.* (bone met) PC-340  0%10.Prostate Pool29.1.3%11.Placenta28.07 .7%12.Uterus Pool27.091.3%13.Ovarian ca. OVCAR-334.14  0%14.Ovarian ca. SK-OV-329.02 .3%15.Ovarian ca. OVCAR-435.02  0%16.Ovarian ca. OVCAR-540  0%17.Ovarian ca. IGROV-136.57  0%18.Ovarian ca. OVCAR-835.01  0%19.Ovary27.64 .9%20.Breast ca. MCF-735.71  0%21.Breast ca. MDA-MB-23133.3  0%22.Breast ca. BT 54929.16 .3%23.Breast ca. T47D37.3  0%24.Breast ca. MDA-N28.03 .7%25.Breast Pool262.8%26.Trachea30.06 .2%27.Lung30.56 .1%28.Fetal Lung26.022.8%29.Lung ca. NCI-N41735.41  0%30.Lung ca. X-132.01  0%31.Lung ca. NCI-H14640  0%32.Lung ca. SHP-7734.66  0%33.Lung ca. A54940  0%34.Lung ca. NCI-H52637.01  0%35.Lung ca. NCI-H2335.97  0%36.Lung ca. NCI-H46034.71  0%37.Lung ca. HOP-6231.79 .1%38.Lung ca. NCI-H52234.7  0%39.Liver32.1  0%40.Fetal Liver27.361.1%41.Liver ca. HepG233.74  0%42.Kidney Pool26.991.4%43.Fetal Kidney28.29 .6%44.Renal ca. 786-036.54  0%45.Renal ca. A49830.46 .1%46.Renal ca. ACHN33.84  0%47.Renal ca. UO-3140  0%48.Renal ca. TK-1034.28  0%49.Bladder28.39 .5%50.Gastric ca. (liver met.) NCI-N8733.27  0%51.Gastric ca. KATO III37.42  0%52.Colon ca. SW-94840  0%53.Colon ca. SW48034.71  0%54.Colon ca.* (SW480 met) SW62037.32  0%55.Colon ca. HT2933.58  0%56.Colon ca. HCT-11640  0%57.Colon ca. CaCo-233.89  0%58.Colon cancer tissue28.28 .6%59.Colon ca. SW111635.69  0%60.Colon ca. Colo-20537.4  0%61.Colon ca. SW-4840  0%62.Colon Pool26.082.6%63.Small Intestine Pool26.741.7%64.Stomach Pool20.84 100% 65.Bone Marrow Pool29.33 .3%66.Fetal Heart31.12 .1%67.Heart Pool28.56 .5%68.Lymph Node Pool27.41.1%69.Fetal Skeletal Muscle29.04 .3%70.Skeletal Muscle Pool29.89 .2%71.Spleen Pool28.46 .5%72.Thymus Pool27.42  1%73.CNS cancer (glio/astro) U87-MG26.12.6%74.CNS cancer (glio/astro) U-118-MG27.391.1%75.CNS cancer (neuro; met) SK-N-AS32.04  0%76.CNS cancer (astro) SF-53929.57 .2%77.CNS cancer (astro) SNB-7525.88  3%78.CNS cancer (glio) SNB-1938.07  0%79.CNS cancer (glio) SF-29528.28 .6%80.Brain (Amygdala) Pool25.533.9%81.Brain (cerebellum)27.11.3%82.Brain (fetal)30.89 .1%83.Brain (Hippocampus) Pool25.454.1%84.Cerebral Cortex Pool25.454.1%85.Brain (Substantia nigra) Pool25.374.3%86.Brain (Thalamus) Pool24.866.2%87.Brain (whole)25.783.3%88.Spinal Cord Pool24.557.6%89.Adrenal Gland27.361.1%90.Pituitary gland Pool29.15 .3%91.Salivary Gland31.41 .1%92.Thyroid (female)30.83 .1%93.Pancreatic ca. CAPAN240  0%94.Pancreas Pool26.282.3%


[1279] The highest level of expression in tissue relevant to obesity and/or diabetes is adipose. There is also significant expression in pancreatic islets (Sample 5).
416TABLE JACPanel 5 IsletRel.Rel.Tissue NameExp.(%)Exp.(%)1.97457_Patient-02go_adipose29.959.5%2.97476_Patient-O7sk_skeletal muscle31.62  18%3.97477_Patient-07ut_uterus31.1225.5%4.97478_Patient-O7pl_placenta30.952.1%5.99167_Bayer Patient 130.0653.2%6.97482_Patient-08ut_uterus31.3721.5%7.97483_Patient-08pl_placenta30.6934.4%8.97486_Patient-09sk_skeletal muscle34.85 1.9%9.97487_Patient-09ut_uterus31.3222.2%10.97488_Patient-09pl_placenta30.9927.9%11.97492_Patient-10ut_uterus30.4341.2%12.97493_Patient-10pl_placenta29.5575.8%13.97495_Patient-11go_adipose32.0113.8%14.97496_Patient-11sk_skeletal muscle34.29 2.8%15.97497_Patient-11ut_uterus30.5936.9%16.97498_Patient-11pl_placenta32.0513.4%17.97500_Patient-12go_adipose30.4  42%18.97501_Patient-12sk_skeletal muscle32.66 8.8%19.97502_Patient-12ut_uterus30.5438.2%20.97503_Patient-12pl_placenta31.2922.7%21.94721_Donor 2 U - A_Mesenchymal Stem Cells31.322.5%22.94722_Donor 2 U - B_Mesenchymal Stem Cells32.112.9%23.94723_Donor 2 U - C_Mesenchymal Stem Cells31.1225.5%24.94709_Donor 2 AM - A_adipose30.27  46%25.94710_Donor 2 AM - B_adipose31.3322.1%26.94711_Donor 2 AM - C_adipose31.6617.6%27.94712_Donor 2 AD - A_adipose29.578.5%28.94713_Donor 2 AD - B_adipose29.4780.1%29.94714_Donor 2 AD - C_adipose29.15 100%30.94742_Donor 3 U - A_Mesenchymal Stem Cells32.112.9%31.94743_Donor 3 U - B_Mesenchymal Stem Cells30.8830.1%32.94730_Donor 3 AM - A_adipose30.1350.7%33.94731_Donor 3 AM - B_adipose31.1425.2%34.94732_Donor 3 AM - C_adipose31.2423.5%35.94733_Donor 3 AD - A_adipose29.2990.8%36.94734_Donor 3 AD - B_adipose31.0327.2%37.94735_Donor 3 AD - C_adipose29.5177.9%38.77138_Liver_HepG2untreated33.84 3.9%39.73556_Heart_Cardiac stromal cells (primary)39.27 .1%40.81735_Small Intestine32.2811.4%41.72409_Kidney Proximal Convoluted Tubule35.36 1.4%42.82685_Small intestine_Duodenum33.75 4.1%43.90650_Adrenal_Adrenocortical adenoma33.45 5.1%44.72410_Kidney_HRCE35 1.7%45.72411_Kidney_HRE38.23 .2%46.73139_Uterus_Uterine smooth muscle cells34.5 2.5%


[1280]

417





TABLE J9








Autotaxin_CG93541-01
















View DNA Sequence Analysis of Autotaxin_CG93541-01



Translated Protein—Frame: 3—Nucleotide 60 to 2648


Printed 80 characters to a line








(SEQ ID NO:610)









AGTGCACTCCGTGAAGGCAAAGAGAACACGCTGCAAAAGGCTTTCCAATAATCCTCGACATGGCAAGGAGGAGCTCGTTC



                                                           M  A  R  R  S  S  F  





CAGTCGTGTCAGATAATATCCCTGTTCACTTTTGCCGTTGGAGTCAATATCTGCTTAGGATTCACTGCACATCGAATTAA


Q  S  C  Q  I  I  S  L  F  T  F  A  V  G  V  N  I  C  L  G  F  T  A  H  R  I  K





GAGAGCAGAAGGATGGGAGGAAGGTCCTCCTACAGTGCTATCAGACTCCCCCTGGACCAACATCTCCGGATCTTGCAAGG


 R  A  E  G  W  E  E  G  P  P  T  V  L  S  D  S  P  W  T  N  I  S  G  S  C  K  G





GCAGGTGCTTTGAACTTCAAGAGGCTGGACCTCCTGATTGTCGCTGTGACAACTTGTGTAAGAGCTATACCAGTTGCTGC


  R  C  F  E  L  Q  E  A  G  P  P  D  C  R  C  D  N  L  C  K  S  Y  T  S  C  C  





CATGACTTTGATGAGCTGTGTTTGAAGACAGCCCGTGCGTGGGAGTGTACTAAGGACAGATGTGGGGAAGTCAGAAATGA


H  D  F  D  E  L  C  L  K  T  A  R  A  W  E  C  T  K  D  R  C  G  E  V  R  N  E 





AGAAAATGCCTGTCACTGCTCAGAGGACTGCTTGGCCAGGGGAGACTGCTGTACCAATTACCAAGTGGTTTGCAAAGGAG


 E  N  A  C  H  C  S  E  D  C  L  A  R  G  D  C  C  T  N  Y  Q  V  V  C  K  G  E





AGTCGCATTGGGTTGATGATGACTGTGAGGAAATAAAGGCCGCAGAATGCCCTGCAGGGTTTGTTCGCCCTCCATTAATC


  S  H  W  V  D  D  D  C  E  E  I  K  A  A  E  C  P  A  G  F  V  R  P  P  L  I  





ATCTTCTCCGTGGATGGCTTCCGTGCATCATACATGAAGAAAGGCAGCAAAGTCATGCCTAATATTGAAAAACTAAGGTC


I  F  S  V  D  G  F  R  A  S  Y  M  K  K  G  S  K  V  M  P  N  I  E  K  L  R  S 





TTGTGGCACACACTCTCCCTACATGAGGCCGGTGTACCCAACTAAAACCTTTCCTAACTTATACACTTTGGCCACTGGGC


 C  G  T  H  S  P  Y  M  R  P  V  Y  P  T  K  T  F  P  N  L  Y  T  L  A  T  G  L





TATATCCAGAATCACATGGAATTGTTGGCAATTCAATGTATGATCCTGTATTTGATGCCACTTTTCATCTGCGAGGGCGA


  Y  P  E  S  H  G  I  V  G  N  S  M  Y  D  P  V  F  D  A  T  F  H  L  R  G  R  





GAGAAATTTAATCATAGATGGTGGGGAGGTCAACCGCTATGGATTACAGCCACCAAGCAAGGGGTGAAAGCTGGAACATT


E  K  F  N  H  R  W  W  G  G  Q  P  L  W  I  T  A  T  K  Q  G  V  K  A  G  T  F 





CTTTTGGTCTGTTGTCATCCCTCACGAGCGGAGAATATTAACCATATTGCAGTGGCTCACCCTGCCAGATCATGAGAGGC


 F  W  S  V  V  I  P  H  E  R  R  I  L  T  I  L  Q  W  L  T  L  P  D  H  E  R  P





CTTCGGTCTATGCCTTCTATTCTGAGCAACCTGATTTCTCTGGACACAAATATGGCCCTTTCGGCCCTGAGATGACAAAT


  S  V  Y  A  F  Y  S  E  Q  P  D  F  S  G  H  K  Y  G  P  F  G  P  E  M  T  N  





CCTCTGAGGGAAATCGACAAAATTGTGGGGCAATTAATGGATGGACTGAAACAACTAAAACTGCATCGGTGTGTCAACGT


P  L  R  E  I  D  K  I  V  G  Q  L  M  D  G  L  K  Q  L  K  L  H  R  C  V  N  V 





CATCTTTGTCGGAGACCATGGAATGGAAGATGTCACATGTGATAGAACTGAGTTCTTGAGTAATTACCTAACTAATGTGG


 I  F  V  G  D  H  G  M  E  D  V  T  C  D  R  T  E  F  L  S  N  Y  L  T  N  V  D





ATGATATTACTTTAGTGCCTGGAACTCTAGGAAGAATTCGATCCAAATTTAGCAACAATGCTAAATATGACCCCAAAGCC


  D  I  T  L  V  P  G  T  L  G  R  I  R  S  K  F  S  N  N  A  K  Y  D  P  K  A  





ATTATTGCCAATCTCACGTGTAAAAAACCAGATCAGCACTTTAAGCCTTACTTGAAACAGCACCTTCCCAAACGTTTGCA


I  I  A  N  L  T  C  K  K  P  D  Q  H  F  K  P  Y  L  K  Q  H  L  P  K  R  L  H 





CTATGCCAACAACAGAAGAATTGAGGATATCCATTTATTGGTGGAACGCAGATGGCATGTTGCAAGGAAACCTTTGGATG


 Y  A  N  N  R  R  I  E  D  I  H  L  L  V  E  R  R  W  H  V  A  R  K  P  L  D  V





TTTATAAGAAACCATCAGGAAAATGCTTTTTCCAGGGAGACCACGGATTTGATAACAAGGTCAACAGCATGCAGACTGTT


  Y  K  K  P  S  G  K  C  F  F  Q  G  D  H  G  F  D  N  K  V  N  S  M  Q  T  V  





TTTGTAGGTTATGGCCCAACATTTAAGTACAAGACTAAAGTGCCTCCATTTGAAAACATTGAACTTTACAATGTTATGTG


F  V  G  Y  G  P  T  F  K  Y  K  T  K  V  P  P  F  E  N  I  E  L  Y  N  V  M  C 





TGATCTCCTGGGATTGAAGCCAGCTCCTAATAATGGGACCCATGGAAGTTTGAATCATCTCCTGCGCACTAATACCTTCA


 D  L  L  G  L  K  P  A  P  N  N  G  T  H  G  S  L  N  H  L  L  R  T  N  T  F  R





GGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATCCAGGGATTATGTACCTTCAGTCTGATTTTGACCTGGGCTGC


  P  T  M  P  E  E  V  T  R  P  N  Y  P  G  I  M  Y  L  Q  S  D  F  D  L  G  C  





ACTTGTGATGATAAGGTAGAGCCAAAGAACAAGTTGGATGAACTCAACAAACGGCTTCATACAAAAGGGTCTACAGAAGA


T  C  D  D  K  V  E  P  K  N  K  L  D  E  L  N  K  R  L  H  T  K  G  S  T  E  E 





GAGACACCTCCTCTATGGGCGACCTGCAGTGCTTTATCGGACTAGATATGATATCTTATATCACACTGACTTTGAAAGTG


 R  H  L  L  Y  G  R  P  A  V  L  Y  R  T  R  Y  D  I  L  Y  H  T  D  F  E  S  G





GTTATAGTGAAATATTCCTAATGCCACTCTGGACATCATATACTGTTTCCAAACAGGCTGAGGTTTCCAGCGTTCCTGAC


  Y  S  E  I  F  L  M  P  L  W  T  S  Y  T  V  S  K  Q  A  E  V  S  S  V  P  D  





CATCTGACCAGTTGCGTCCGGCCTGATGTCCGTGTTTCTCCGAGTTTCAGTCAGAACTGTTTGGCCTACAAAAATGATAA


H  L  T  S  C  V  R  P  D  V  R  V  S  P  S  F  S  Q  N  C  L  A  Y  K  N  D  K 





GCAGATGTCCTACGGATTCCTCTTTCCTCCTTATCTGAGCTCTTCACCAGAGGCTAAATATGATGCATTCCTTGTAACCA


 Q  M  S  Y  G  F  L  F  P  P  Y  L  S  S  S  P  E  A  K  Y  D  A  F  L  V  T  N





ATATGGTTCCAATGTATCCTGCTTTCAAACGGGTCTGGAATTATTTCCAAAGGGTATTGGTGAAGAAATATGCTTCGGAA


  M  V  P  M  Y  P  A  F  K  R  V  W  N  Y  F  Q  R  V  L  V  K  K  Y  A  S  E  





AGAAATGGAGTTAACGTGATAAGTGGACCAATCTTCGACTATGACTATGATGGCTTACATGACACAGAAGACAAAATAAA


R  N  G  V  N  V  I  S  G  P  I  F  D  Y  D  Y  D  G  L  H  D  T  E  D  K  I  K 





ACAGTACGTGGAAGGCAGTTCCATTCCTGTTCCAACTCACTACTACAGCATCATCACCAGCTGTCTGGATTTCACTCAGC


 Q  Y  V  E  G  S  S  I  P  V  P  T  H  Y  Y  S  I  I  T  S  C  L  D  F  T  Q  P





CTGCCGACAAGTGTGACGGCCCTCTCTCTGTGTCCTCCTTCATCCTGCCTCACCGGCCTGACAACGAGGAGAGCTGCAAT


  A  D  K  C  D  G  P  L  S  V  S  S  F  I  L  P  H  R  P  D  N  E  E  S  C  N  





AGCTCAGAGGACGAATCAAAATOCGTACAAOAACTCATOAACATCCACACAOCTAOOCTCCCTOACATTOAACATCTCAC


S  S  E  D  E  S  K  W  V  E  E  L  M  K  M  H  T  A  R  V  R  D  I  E  H  L  T 





CAGCCTGGACTTCTTCCGAAAGACCAGCCGCAGCTACCCAGAAATCCTGACACTCAAGACATACCTGCATACATATGAGA


 S  L  D  F  F  R  K  T  S  R  S  Y  P  E  I  L  T  L  K  T  Y  L  H  T  Y  E  S





GCGAGATTTAACTTTCTGAGCATCTGCAGTACAGTCTTATCAACTGGTTGTATATTTTTATATTGTTTTTGTATTTATTA


  E  I                                                                          











(SEQ ID NO:611)









ATTTGAAACCAGGACATTAAAAATGTTAGTATTTTAATCCTGTACCAAATCTGACATATTATGCCTGAATGACTCCACTG






TTTTTCTCTAATGCTTGATTTAGGTAGCCTTGTGTTCTGAGTAGAGCTTGTAATAAATACTGCAGCTTGAGTTTTTAGTG





GAAGCTTCTAAATGGTGCTGCAGATTTGATATTTGCATTGAGGAAATATTAATTTTCCAATGCACAGTTGCCACATTTAG





TCCTGTACTGTATGGAAACACTGATTTTGTAAAGTTGCCTTTATTTGCTGTTAACTGTTAACTATGACAGATATATTTAA





GCCTTATAAACCAATCTTAAACATAATAAATCACACATTCAGTTTTTTCTGGTAAAAAAAAAAAAAAAAA










[1281] Table J10a shows ExPASy table for phosphodiesterase 1 and Table J10b shows ExPASy table for nucleotide pyrophosphatase. Additional cell lines expressing the Autotaxin-t can be obtained from the RTQ-PCR results shown above. These and other Autotaxin-t expressing cell lines could be used for screening purposes.


[1282] Table J11 is a schematic of pathways relevant to obesity and/or diabetes, and suggests how alterations in expression of the human Autotaxin-t and associated gene products may function in the etiology and pathogenesis of obesity and/or diabetes. The scheme incorporates the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of the human Autotaxin-t would be a reduction of Insulin Resistance, a major problem in obesity and/or diabetes.


[1283] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1284] Table J12 is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Autotaxin-t would be beneficial in the treatment of obesity and/or diabetes.
418TABLE J12Indications for Use of Autotaxin-t Inhibitors/Antagonistsin Obesity and/or Diabetes.Autotaxin-t is a gene expressed in human islets.Autotaxin-t, like PC-1, was found to hydrolyze the type Iphosphodiesterase substrate p-nitrophenyl thymidine-5′-monophosphate (J Biol Chem 1994 Dec 2; 269(48): 30479-84).The rat orthologue (PDE1) was found to be down-regulated in goodinsulin secreting cell lines.An antagonist for Autotaxin-t should therefore improve insulinsecretion in diabetes.


[1285] K. NOV30b and NOV30I-Human Adenylate Kinase 3 Alpha-Like Protein—CG93735-01


[1286] Discovery Process: The following sections describe the study design(s) and the techniques used to identify the Adenylate Kinase 3 Alpha-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.
419Studies:MB.03Rat Type II DiabetesMB.11Insulin Secretion


[1287] Study Statements: MB.03—The GK rat was developed from the non-diabetic Wistar rat and selected over many generations on the basis of abnormal glucose tolerance. The GK rat shows mild basal hyperglycemia, marked glucose intolerance and both hepatic and peripheral insulin resistance. GK rats also demonstrate basal hyperinsulinemia and impaired insulin response to glucose. GK rats develop many of the late-term complications associated with Type 2 diabetes, including vascular disorders, nephropathy and neuropathy. Tissues were removed from adult male rats and three control strains (Wistar, Brown Norway and Fischer 344) to identify the gene expression differences that underlie the pathologic state in the GK rat model of Type II Diabetes. These specific strains of rat were chosen for differential gene expression analysis because quantitative trait loci (QTL) for diabetic traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1288] MB.11 The regulation of insulin secretion is critical to the control of serum glucose concentrations. Alterations in the secretion of insulin are central to the etiology, pathogenesis and consequences of both Type I and Type II diabetes. This study was designed to determine the role of gene expression in regulating insulin secretion from rat pancreatic beta cell lines derived from the heterogeneous rat INS-1 insulinoma. The rat insulinoma cell line INS-1 was transfected with the plasmid pCMV8/INS/IRES/Neo. The plasmid expresses the human insulin gene and the neo selectable marker under the control of the CMV promoter. Stable clones expressing these genes were isolated and described in Hohmeier, H E, Mulder, H., Chen, G., Prentki, M., Newgard, C B: Isolation of INS-1 derived cell lines with robust K ATP channel-dependent and independent glucose stimulated insulin secretion. Diabetes 49: 424-430, 2000.
420TABLE K1Insulin Expression of Stable Clone LinesPoorGoodPhenotypes Of The Cell LinesInsulin SecretionInsulin SecretionGlucagon ExpressionNegative832/1832/13832/2833/15Positive834/105834/112Species #1 Rat Strains GK, Brown Norway (BN), Wistar, Fischer 344 Species #2 Rat


[1289] Adenylate Kinase 3 Alpha: This enzyme is also known as guanosine triphosphate-adenylate kinase; nucleoside triphosphate-adenosine monophosphate transphosphorylase; GTP:AMP phosphotransferase. It catalyzes the following reaction in the mitochondrial matrix:


GTP+AMP→GDP+ADP


[1290] It was initially purified from beef heart mitochondria (Albrecht G J, Biochemistry 9 (1970) 2462-2770). Bovine AK3 was cloned and sequenced (Yamada M, Shahjahan M, Tanabe T, Kishi F, Nakazawa A.; J Biol Chem Nov. 15, 1998;264(32):19192-9) and found to complement an AK3 mutation in E. coli when expressed in these cells. The X-ray crystallographic structure of the bovine enzyme has been deduced (Diederichs K, Schulz G E.; Biochemistry Sep. 4, 1990;29(35):8138-44).


[1291] SPECIES #1 (GK vs. BN adipose): A gene fragment of the rat Adenylate Kinase 3 Alpha was initially found to be up-regulated by 23.1 fold in the adipose of GK rats (which are rat models of type II diabetes) relative to the control BN rats using CuraGen's GeneCalling® method of differential gene expression. A differentially expressed rat gene fragment migrating, at approximately 217.4 nucleotides in length (FIGS. 1A and 1B, panel 1—vertical line) was definitively identified as a component of the rat Adenylate Kinase 3 Alpha cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of direct sequencing followed by competitive PCR to the sequence obtained was used for confirmation of gene and the trace in FIGS. 1C and 1D, panel 2, represents the ablated peak. In addition, a differentially expressed fragment migrating at approximately 217.9 nucleotides in length was found to be up-regulated 2.2 fold in the adipose of GK rats relative to the control Wistar rats, as seen in FIGS. 1E and 1F, panel 3.


[1292] The direct sequence of the 217.4 nucleotide-long gene fragment and the gene-specific primers used for competitive PCR are indicated on the cDNA sequence of the rat adenylate kinase 3 and shown below in bold.
421TABLE K2Gene Sequence(fragment from 1 to 218 in bold. band size: 218)(SEQ ID NO:612)TCATGACTCGGCTGGCCCTCCATGAGCTGAAAAACCTTACCCAGTGTAGCTGGCTGTTGGACGGATTTCCAAGGACACTTCCACAGGCAGAAGCCCTGGATAGAGTTTATCAGATAGACACAGTGATAAATCTCAACGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCTGCCAGTGGCCGAGTTTACAACATTGAATTC


[1293] SPECIES #2 (Glucagon negative good responders vs. glucagons negative poor responders): A gene fragment of the rat Adenylate Kinase 3 Alpha was also found to be up-regulated by 2.1 fold in the glucagon negative good insulin-secreting cells relative to the poor insulin secretors using CuraGen's GeneCalling® method of differential gene expression. A differentially expressed rat gene fragment migrating, at approximately 386.4 nucleotides in length (FIGS. 1A and 1B—vertical line) was definitively identified as a component of the rat Adenylate Kinase 3 Alpha cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used to ablate the peak and to confirm gene assessment which revealed that this fragment belonged to the rat Adenylate Kinase 3 Alpha gene.


[1294] The gene-specific primers used for competitive PCR are indicated on the cDNA sequence of the rat adenylate kinase 3 and shown below in bold.
422TABLE K3Gene Sequence(fragment from 336 to 721 in bold. band size: 386)(SEQ ID NO:613)GCGGGAGAGCCGGGCGCCCTGGCCACCGCCCGCTTGCAGTTGCCAGCGGGCCAGGGCCTCAGAGCCTTTGAGCGCCCAGGCCAGGCCGCAGTTCAGCGTCTGCGCAGCTTCGGCCACCGTTGCCACCATGGGGGCATCGGGGCGGCTGCTGCGCGCCGTGATCATGGGGGCCCCGGGCTCCGGTAAGGGCACCGTGTCGTCACGCATCACCAAACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGCCAGAACATGCTGCAGGGCACAGAAATCGGTGTGTTGGCCAAGACTTTCATTGACCAAGGAAAGCTCATCCCGGATGATGTCATGACTCGGCTGGCCCTCCATGAGCTGAAAAACCTTACCCAGTGTAGCTGGCTGTTGGACGGATTTCCAAGGACACTTCCACAGGCAGAAGCCCTGGATAGAGTTTATCAGATAGACACAGTGATAAATCTCAACGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCTGCCAGTGGCCGAGTTTACAACATTGAATTCAACCCTCCCAAGACTGTGGGCATCGATGACCTAACGGGAGAACCTCTGATTCAGCGTGAGGACGACAAACCAGAGACGGTGATCAAGAGATTGAAGGCGTATGAAGCCCAGACAGAGCCGGTCCTGCAGTATTACCAGAAAAAAGGGGTGTTGGAAACATTCTCCGGAACAGAAACCAACAAGATCTGGCCCCACGTATACTCCTTCCTGCAAATGAAAGTTCCAGAAACCATCCAAAAAGCCTCTGTTACTCCCTGAGGAAGGCACTTGGCGGGATGAAGCAGGGCCTCCTCCACTCCTCCCCTCGCCTCTGTATTTCGAAGCTCTTTTCCTAAGACTTCTCTGAAAATTATGATTTAGTCCTAATGGCTCTGCCTAATGAGTCAGAAACTAAGGCTGACCATGTGTTTATCTAGTTGTCTTCCATGGATGTGCAATTCAAAACGTCAGACATGTTGAAACAAACAAACTCAGAGCACAATTAAGAGAGCAACTGGTGGGGTTGGGGATTTAGCTCAGTGGTAGAGCGCTTGCCTAGGAAGTACAAGGCCCTGGGTTCGGTCCCCAGCTCCGAAAAAACAAGAAAAAACAAAACAAAACAAAACAAAACAAAAAAACACATTAGGGAGAATCCTTTACTAAAGCAGC(gene length is 1315, only region from 1 to 1201 shown)


[1295]

423





TABLE K 4








Human Adenylate Kinase 3 Alpha Gene Sequence
















>CG93735-01      1021 nt









(SEQ ID NO:614)









ACTTCCGGGAACGCCGGGGAACCGCAGTAGCCGCCTGCTAGTGGCGCTGCTAGCCGGCCGGCGCAGGCTGCCGAGCGGGT






GAGCGCGCAGGCCAGGCCAAAGCCCTGGTACCCGCGCGGTGCGGGCCTCAGTCTGCGGCCATGGGGGCGTCGGGGCGGCT





GCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCCCGCATCACTACACACTTCGAGCTGA





AGCACCTCTCCCGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCCAGGCTTTCATT





GACCAAGGGAAACTCATCCCAGATTATGTCACGACTCGGCTGGCCCTTCATGAGCTGAAAAACCTCACCCAGTATAGCTG





GCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACC





TGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATT





GAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGA





GACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGTTGG





AAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGC





CAGAAAGCTTCAGTTACTCCATGAGGAGAAATGTGTGTAACTATTAATAGTAAGATGGGCAAACCTCCTAGTCCTTGCAT





TTAGAAGCTGCTTTTCCTAAGACTTCTAGTATGTATGAATTCTTTGAAAATTATATTACTTTTATTTCTACTGATTTTAT





TTTGGATACTAAGGATGTGCCAAATGATTCGGATACTAAGATGCATCGTTTGAAATCATCT










[1296]

424





TABLE K 5








Human Adenylate Kinase 3 Alpha Protein Sequence:
















ORF Start: 141      ORF Stop: 822      Frame: 3



>CG93735-01-prot      227 aa








(SEQ ID NO:615)









MGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSRGDLLRDNMLRGT






EIGVLAQAFIDQGKLIPDYVTTRLALHELKNLTQYSWLLDGFPRTLPQAE





ALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGI





DDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTE





TNKIWPYVYAFLQTKVPQRSQKASVTP










[1297] The following is an alignment of the protein sequences of the human (CG93735-01; SEQ ID NO:616), mouse (AK3_MOUSE; SEQ ID NO:617) and rat (AK3_RAT; SEQ ID NO:618) versions of the Adenylate Kinase 3 Alpha protein. Also included are a protein annotated as similar to the human adenylate kinase 3 (Q9NPB4; SEQ ID NO:619) and a novel human protein with significant homology to adenylate kinase 3 alpha (CG56785-01; SEQ ID NO:620).


[1298] In addition to the human version of the Adenylate Kinase 3 Alpha identified as being differentially expressed in the experimental study, two other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen. One SNP was identified and is presented in the table below. The preferred variant of all those identified, to be used for screening purposes, is CG93735-02 (SEQ ID NO:621).
425TABLE K8SNP of CG93735-01SNP IDDNA PositionE−ValueStrandAllelesAA PositionAA Change133747826251.70E−06PlusA:G162Glu=> GlyCG93735-01: human adenylate kinase 3 alpha—isoform1; clone status = FIS; novelty = Public; ORF start = 141, ORF stop = 822, frame = 3; 1021 bp.


[1299] Human RTQ-PCR results were obtained as described in Example C. Expression of gene CG93735-01 was assessed using the primer-probe set Ag3926, described in Table KAA. Results of the RTQ-PCR runs are shown in Tables KAB and KAC.
426TABLE KAAProbe Name Ag3926StartSEQ IDPrimersSequencesLengthPositionNOForward5′-gtatagctggctgttggatg-3′20392624(SEQ ID NO:XX)ProbeTET-5′-ttttccaaggacacttccacaggcagaa-3′-TAMRA290625(SEQ ID NO:XX)Reverse5′-cgatctgataagctctatctag-3′22444626(SEQ Id NO:XX)


[1300]

427





TABLE KAB










General_screening_panel_v1.4











Rel. Exp.(%)




Ag3926, Run



Tissue Name
214146654














Adipose
4.6



Melanoma* Hs688(A).T
6.8



Melanoma* Hs688(B).T
5.2



Melanoma* M14
6.1



Melanoma* LOXIMVI
4.2



Melanoma* SK-MEL-5
4.9



Squamous cell carcinoma SCC-4
1.7



Testis Pool
1.2



Prostate ca.* (bone met) PC-3
5.5



Prostate Pool
3.0



Placenta
1.9



Uterus Pool
1.7



Ovarian ca. OVCAR-3
25.5



Ovarian ca. SK-OV-3
2.9



Ovarian ca. OVCAR-4
2.4



Ovarian ca. OVCAR-5
11.0



Ovarian ca. IGROV-1
4.0



Ovarian ca. OVCAR-8
3.0



Ovary
3.0



Breast ca. MCF-7
4.8



Breast ca. MDA-MB-231
3.0



Breast ca. BT 549
13.6



Breast ca. T47D
17.1



Breast ca. MDA-N
2.3



Breast Pool
4.0



Trachea
3.0



Lung
1.4



Fetal Lung
3.5



Lung ca. NCI-N417
1.3



Lung ca. LX-1
5.2



Lung ca. NCI-H146
1.8



Lung ca. SHP-77
1.4



Lung ca. A549
7.2



Lung ca. NCI-H526
2.8



Lung ca. NCI-H23
2.7



Lung ca. NCI-H460
2.8



Lung ca. HOP-62
6.5



Lung ca. HCI-H522
7.0



Liver
1.4



Fetal Liver
4.0



Liver ca. HepG2
10.0



Kidney Pool
100.0



Fetal Kidney
3.2



Renal ca. 786-0
4.3



Renal ca. A498
2.5



Renal ca. ACHN
3.6



Renal ca. UO-31
5.6



Renal ca. TK-10
6.2



Bladder
5.0



Gastric ca. (liver met.) NCI-N87
12.0



Gastric ca. KATO III
10.7



Colon ca. SW-948
1.3



Colon ca. SW480
24.5



Colon ca.* (SW480 met) SW620
6.7



Colon ca. HT29
4.9



Colon ca. HCT-116
6.1



Colon ca. CaCo-2
8.7



Colon cancer tissue
3.5



Colon ca. SW1116
1.2



Colon ca. Colo-205
1.4



Colon ca. SW-48
2.4



Colon Pool
100.0



Small Intestine Pool
4.9



Stomach Pool
2.7



Bone Marrow Pool
2.8



Fetal Heart
1.6



Heart Pool
63.3



Lymph Node Pool
5.9



Fetal Skeletal Muscle
2.4



Skeletal Muscle Pool
12.2



Spleen Pool
2.3



Thymus Pool
3.5



CNS cancer (glio/astro) U87-MG
5.7



CNS cancer (glio/astro) U-118-MG
5.6



CNS cancer (neuro;met) SK-N-AS
3.0



CNS cancer (astro) SF-539
2.4



CNS cancer (astro) SNB-75
6.7



CNS cancer (glio) SNB-19
3.4



CNS cancer (glio) SF-295
17.3



Brain (Amygdala) Pool
2.0



Brain (cerebellum)
2.3



Brain (fetal)
4.1



Brain (Hippocampus) Pool
3.0



Cerebral Cortex Pool
2.5



Brain (Substantia nigra) Pool
2.3



Brain (Thalamus) Pool
3.6



Brain (whole)
1.7



Spinal Cord Pool
3.0



Adrenal Gland
5.9



Pituitary gland Pool
0.7



Salivary Gland
1.4



Thyroid (female)
1.4



Pancreatic ca. CAPAN2
4.5



Pancreas Pool
4.7











[1301]

428





TABLE KAC










Panel 5 Islet









Rel. Exp.(%)



Ag3926, Run


Tissue Name
227742519











97457_Patient-02go_adipose
29.7


97476_Patient-07sk_skeletal muscle
22.1


97477_Patient-07ut_uterus
16.3


97478_Patient-07pl_placenta
29.3


99167_Bayer Patient 1
18.4


97482_Patient-08ut_uterus
12.5


97483_Patient-08pl_placenta
38.2


97486_Patient-09sk_skeletal muscle
16.5


97487_Patient-09ut_uterus
36.1


97488_Patient-09pl_placenta
13.0


97492_Patient-10ut_uterus
25.0


97493_Patient-10pl_placenta
39.5


97495_Patient-11go_adipose
28.5


97496_Patient-11sk_skeletal muscle
49.3


97497_Patient-11ut_uterus
31.4


97498_Patient-11pl_placenta
17.7


97500_Patient-12go_adipose
24.1


97501_Patient-12sk_skeletal muscle
78.5


97502_Patient-12ut_uterus
26.8


97503_Patient-12pl_placenta
18.7


94721_Donor 2 U -
17.6


A_Mesenchymal Stem Cells


94722_Donor 2 U -
12.1


B_Mesenchymal Stem Cells


94723_Donor 2 U -
18.6


C_Mesenchymal Stem Cells


94709_Donor 2 AM - A_adipose
26.4


94710_Donor 2 AM - B_adipose
17.4


94711_Donor 2 AM - C_adipose
14.4


94712_Donor 2 AD - A_adipose
40.1


94713_Donor 2 AD - B_adipose
42.3


94714_Donor 2 AD - C_adipose
36.3


94742_Donor 3 U - A_Mesenchymal
4.7


Stem Cells


94743_Donor 3 U - B_Mesenchymal
12.0


Stem Cells


94730_Donor 3 AM - A_adipose
24.7


94731_Donor 3 AM - B_adipose
10.8


94732_Donor 3 AM - C_adipose
14.2


94733_Donor 3 AD - A_adipose
36.1


94734_Donor 3 AD - B_adipose
13.0


94735_Donor 3 AD - C_adipose
33.2


77138_Liver_HepG2untreated
100.0


73556_Heart_Cardiac stromal cells (primary)
15.7


81735_Small Intestine
41.5


72409_Kidney_Proximal Convoluted Tubule
21.3


82685_Small intestine_Duodenum
29.1


90650_Adrenal_Adrenocortical adenoma
15.3


72410_Kidney_HRCE
40.6


72411_Kidney_HRE
39.8


73139_Uterus_Uterine smooth muscle cells
19.3










[1302] General_screening_panel_v1.4 Summary: The expression of the adenylate kinase 3 alpha gene is ubiquitous, showing high levels of expression in both normal and disease tissues. However, it is especially high in the kidney and colon pools, with lesser amounts in the heart and skeletal muscle. Among cancer cell lines, highest expression is seen in the ovarian cancer cell line OVCAR-3, with lower levels in colon cancer, breast cancer and glioblastoma cell lines.


[1303] Panel 5 Islet Summary: Expression of the adenylate kinase 3 alpha gene is ubiquitous in panel 5i, consistent with expression in panel 1.4. Highest expression is seen in the HepG2 cell line. Among human tissue samples, the highest expression is seen in skeletal muscle from patient 12.


[1304] Biochemistry and Cell Line Expression. The reaction that Adenylate Kinase 3 Alpha catalyzes is: GTP+AMP→GDP+ADP


[1305] The enzyme can be overexpressed using tagged expression constructs in E. coli, mammalian or baculovirus systems and be purified using affinity chromatography to the tag. Alternatively, conventional chromatographic techniques can be used. Successful expression in E. coli has been previously demonstrated (Yamada et al.) A well-defined AMP-binding site has been defined in X-ray crystallographic studies (Diederichs et al.) and should be clearly amenable to high-throughput screening assays. The assays can be coupled to detection systems monitoring ADP production, for example, by utilizing loss of NADH coupled through pyruvate kinase and lactate dehydrogenase.


[1306] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1307] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Adenylate Kinase 3 Alpha would be beneficial in the treatment of obesity and/or diabetes.


[1308] The overexpression of the phosphotransferase AK3 in the adipocytes of the diabetic GK rat suggests a shift in mitochondrial energy production. In parallel, levels of AK3 are increased in the subset of INS-1 cells that are good secretors. Inhibition of AK3 can cause an increase in AMP levels, which could result in activation of AMP kinase, one of the key intracellular mediators of insulin signaling. Inhibition of this enzyme in pancreatic islets may, therefore, result in altered insulin secretion and may be an effective therapeutic for diabetes. AMP kinase can also phosphorylate and inactivate acetyl-CoA carboxylase (ACC), which results in a decrease in malonyl-CoA production and, as a consequence, causes an increase in fatty acid oxidation in adipose tissue. Knock-outs of ACC2, for example, have decreased body weight even though they have increased food intake (Abu-Elheiga et al). Therefore, inhibitors of AK3 may be effective therapeutics against obesity.


[1309] Methods of Use for the Compositions of the Invention


[1310] The protein similarity information, expression pattern, cellular localization, and map location for the protein and nucleic acid disclosed herein suggest that this protein may have important structural and/or physiological functions characteristic of the Adenylate Kinase 3 Alpha family. Therefore, the nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed.


[1311] The nucleic acids and proteins of the invention have applications in the diagnosis and/or treatment of various diseases and disorders. For example, the compositions of the present invention will have efficacy for the treatment of patients suffering from: obesity and/or diabetes.


[1312] These materials are further useful in the generation of antibodies that bind immunospecifically to the substances of the invention for use in diagnostic and/or therapeutic methods.


[1313] Table K10A, 10B, 10C, 10D, 10E and 10F show results disclosing differentially expressed rat adenylate kinase 3 alpha gene fragment from discovery study MB.03, species #1.


[1314] Physical cDNA Clone Available for Expression and Screening Purposes


[1315] Materials and Methods were performed as describe in Example B with exon linking and in-frame cloning.


[1316] In Frame Cloning: In frame cloning is a process designed to insert DNA sequences into expression vectors such that the encoded proteins can be produced. The expressed proteins were either full length or corresponding to specific domains of interest. The PCR template was based on a previously identified plasmid (the PCR product derived by exon linking, covering the entire open reading frame) when available, or on human cDNA(s). The human cDNA pool was composed of 5 micrograms of each of the following human tissue cDNAs: adrenal gland, whole brain, amygdala, cerebellum, thalamus, bone marrow, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, liver, lymphoma, Burkitt's Raji cell line, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small Intestine, spleen, stomach, thyroid, trachea, uterus. For downstream cloning purposes, the forward and reverse primers included in-frame BamHI and NotI restriction sites. The amplified product was detected by agarose gel electrophoresis. The fragment was gel-purified and ligated into the pGEX-6P-1, pFastBac1, pcDNA3.1+ and pET-28a (+) (Invitrogen, Carlsbad, Calif.) following the manufacturer's recommendation. Twenty four clones per transformation were picked and a quality control step was performed to verify that these clones contain an insert of the anticipated size. Subsequently, eight of these clones were sequenced, and assembled in a fashion similar to the SeqCalling process. In addition to analysis of the entire sequence assembly, sequence traces were evaluated manually.


[1317] Results and Discussion: Table K12 depicts the preferred cDNA(s) that encompass the coding portion of the human AK3 alpha for expression of recombinant protein from any number of plasmid, phage or phagemid vectors in a variety of cellular systems for screening purposes. The corresponding amino acid sequence(s) are also listed. Although the sequences below are the preferred isoforms, any of the other isoforms may be used for similar purposes. Furthermore, under varying assay conditions, conditions may dictate that another isoform may supplant the listed isoforms. As seen in Table K13 the open reading frame of the working representatives of CG93735-01 differs with a few amino acids from CG93735-01. The CG93735-03 and CG93735-04 working representatives have N-terminal and C-terminal Histidine tags used for protein purification.
429TABLE K12Physical cDNA Clone Available for Expression & Screening Purposes>CG93735-02       688(SEQ ID NO:627)ntCACCATGGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATGA>CG93735-02-prot  227(SEQ ID NO:628)aaMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTP>CG93735-03,      709(SEQ ID NO:629)ntCCACCATGGGCCACCATCACCACCATCACGGGGCGTCGGGGCGGCTGCTGCGAGCGGTGATCATGGGGGCCCCGGGCTCGGGCAAGGGCACCGTGTCGTCGCGCATCACTACACACTTCGAGCTGAAGCACCTCTCCAGCGGGGACCTGCTCCGGGACAACATGCTGCGGGGCACAGAAATTGGCGTGTTAGCCAAGGCTTTCATTGACCAAGGGAAACTCATCCCAGATGATGTCATGACTCGGCTGGCCCTTCATGAGCTGAAAAATCTCACCCAGTATAGCTGGCTGTTGGATGGTTTTCCAAGGACACTTCCACAGGCAGAAGCCCTAGATAGAGCTTATCAGATCGACACAGTGATTAACCTGAATGTGCCCTTTGAGGTCATTAAACAACGCCTTACTGCTCGCTGGATTCATCCCGCCAGTGGCCGAGTCTATAACATTGAATTCAACCCTCCCAAAACTGTGGGCATTGATGACCTGACTGGGGAGCCTCTCATTCAGCGTGAGGATGATAAACCAGAGACGGTTATCAAGAGACTAAAGGCTTATGAAGACCAAACAAAGCCAGTCCTGGAATATTACCAGAAAAAAGGGGTGCTGGAAACATTCTCCGGAACAGAAACCAACAAGATTTGGCCCTATGTATATGCTTTCCTACAAACTAAAGTTCCACAAAGAAGCCAGAAAGCTTCAGTTACTCCATA>CG93735-03-prot  235(SEQ ID NO:630)aaTMGHHHHHHGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTP>CG93735-04,      707(SEQ ID NO:631)ntTCAGTGATGGTGGTGATGGTGTGGAGTAACTGAAGCTTTCTGGCTTCTTTGTGGAACTTTAGTTTGTAGGAAAGCATATACATAGGGCCAAATCTTGTTGGTTTCTGTTCCGGAGAATGTTTCCAGCACCCCTTTTTTCTGGTAATATTCCAGGACTGGCTTTGTTTGGTCTTCATAAGCCTTTAGTCTCTTGATAACCGTCTCTGGTTTATCATCCTCACGCTGAATGAGAGGCTCCCCAGTCAGGTCATCAATGCCCACAGTTTTGGGAGGGTTGAATTCAATGTTATAGACTCGGCCACTGGCGGGATGAATCCAGCGAGCAGTAAGGCGTTGTTTAATGACCTCAAAGGGCACATTCAGGTTAATCACTGTGTCGATCTGATAAGCTCTATCTAGGGCTTCTGCCTGTGGAAGTGTCCTTGGAAAACCATCCAACAGCCAGCTATACTGGGTGAGATTTTTCAGCTCATGAAGGGCCAGCCGAGTCATGACATCATCTGGGATGAGTTTCCCTTGGTCAATGAAAGCCTTGGCTAACACGCCAATTTCTGTGCCCCGCAGCATGTTGTCCCGGAGCAGGTCCCCGCTGGAGAGGTGCTTCAGCTCGAAGTGTGTAGTGATGCGCGACGACACGGTGCCCTTGCCCGAGCCCGGGGCCCCCATGATCACCGCTCGCAGCAGCCGCCCCGACGCCCCCATGGTGG>CG93735-04-prot  234(SEQ ID NO:632)aaTMGASGRLLRAVIMGAPGSGKGTVSSRITTHFELKHLSSGDLLRDNMLRGTEIGVLAKAFIDQGKLIPDDVMTRLALHELKNLTQYSWLLDGFPRTLPQAEALDRAYQIDTVINLNVPFEVIKQRLTARWIHPASGRVYNIEFNPPKTVGIDDLTGEPLIQREDDKPETVIKRLKAYEDQTKPVLEYYQKKGVLETFSGTETNKIWPYVYAFLQTKVPQRSQKASVTPHHHHHH


[1318]



[1319] L. NOV31a—GPCR Olfactory Receptor-Like Protein AdEn-GPCR1-isoform 1—CG93817-01:


[1320] CG93817-01 was derived by laboratory cloning of cDNA fragments, by in silico prediction of the sequence. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, were cloned. In silico prediction was based on sequences available in CuraGen's proprietary sequence databases or in the public human sequence databases, and provided either the full-length DNA sequence, or some portion thereof.


[1321] Methods of Use for the Compositions of the Invention


[1322] The protein similarity information, expression pattern, cellular localization, and map location for the protein and nucleic acid disclosed herein suggest that this protein may have important structural and/or physiological functions characteristic of the Human Neutral Amino Acid Transporter B family. Therefore, the nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed. The nucleic acids and proteins of the invention have applications in the diagnosis and/or treatment of various diseases and disorders. For example, the compositions of the present invention will have efficacy for the treatment of patients suffering from: obesity and/or diabetes.
430TABLE L1CG93817-01 DNA SequenceFull Length Clone Acc. No.: GMAC072059_G; also known as AdEn-GPCR1-isoform1.>CG93817-01       999 nt(SEQ ID NO:637)AGGTGAACATAACATAAAAAAATGTTCCCGGCAAATTGGACATCTGTAAAAGTATTTTTCTTCCTGGGATTTTTTCACTACCCCAAAGTTCAGGTCATCATATTTGCGGTGTGCTTGCTGATGTACCTGATCACCTTGCTGGGCAACATTTTTCTGATCTCCATCACCATTCTAGATTCCCACCTGCACACCCCTATGTACCTCTTCCTCAGCAATCTCTCCTTTCTGGACATCTGGTACTCCTCTTCTGCCCTCTCTCCAATGCTGGCAAACTTTGTTTCAGGGAGAAACACTATTTCATTCTCAGGGTGCGCCACTCAGATGTACCTCTCCCTTGCCATGGGCTCCACTGAGTGTGTGCTCCTGCCCATGATGGCATATGACCGGTATGTGGCCATCTGCAACCCCCTGAGATACCCTGTCATCATGAATAGGAGAACCTGTGTGCAGATTGCAGCTGGCTCCTGGATGACAGGCTGTCTCACTGCCATGGTGGAAATGATGTCTGTGCTGCCACTGTCTCTCTGTGGTAATAGCATCATCAATCATTTCACTTGTGAAATTCTGGCCATCTTGAAATTGGTTTGTGTGGACACCTCCCTGGTGCAGTTAATCATGCTGGTGATCAGTGTACTTCTTCTCCCCATGCCAATGCTACTCATTTGTATCTCTTATGCATTTATCCTCGCCAGTATCCTGAGAATCAGCTCAGTGGAAGGTCGAAGTAAAGCCTTTTCAACGTGCACAGCCCACCTGATGGTGGTAGTTTTGTTCTATGGGACGGCTCTCTCCATGCACCTGAAGCCCTCCGCTGTAGATTCACAGGAAATAGACAAATTTATGGCTTTGGTGTATGCCGGACAAACCCCCATGTTGAATCCTATCATCTATAGTCTACGGAACAAAGAGGTGAAAGTGGCCTTGAAAAAATTGCTGATTAGAAATCATTTTAATACTGCCTTCATTTCCATCCTCAAATAACAATCACACTCATATAGA


[1323]

431





TABLE L2








CG93817-01 Protein Sequence
















Start: 22    ORF Stop: 979    Frame: 1



>CG93817-01-prot  319 aa








(SEQ ID NO:638)









MFPANWTSVKVFFFLGFFHYPKVQVIIFAVCLLMYLITLLGNIFLISITI






LDSHLHTPMYLFLSNLSFLDIWYSSSALSPMLANFVSGRVTISFSGCATQ





MYLSLAMGSTECVLLPMMAYDRYVAICNPLRYPVIMNRRTCVQIAAGSWM





TGCLTAMVEMMSVLPLSLCGNSIINHFTCEILAILKLVCVDTSLVQLIML





VISVLLLPMPMLLICISYAFILASILRISSVEGRSKAFSTCTAHLMVVVL





FYGTALSMHLKPSAVDSQEIDKFMALVYAGQTPMLNPIIYSLRNKEVKVA





LKKLLIRNHFNTAFISILK










[1324] L3. RTQ-PCR.


[1325] Quantitative expression analysis of clones in various cells and tissues were performed as described in Example C. Expression of gene CG93817-01 was assessed using the primer-probe set Ag1653, described in Tables LAB and. Results of the RTQ-PCR runs are shown in Tables LAC, LAD, LAE and LAF.
432TABLE LABProbe Name: Ag1653StartSEQ IDPrimersSequencesTMLengthPositionNO:Forward5′-TCTCCTTTCTGGACATCTGGTA-3′58.822218639ProbeTET-5′-TCCAATGCTGGCAAACTTTGTTTCAG-3′-TAMRA6926258640Reverse5′-GCACCCTGAGAATGAAATAGTG-3′58.722291641


[1326]

433





TABLE LAC










Panel 1.3D











Rel. Expr., %



Tissue Name
1.3dx4tm5594t_ag1653_b2














Adipose
23.3



Adrenal gland
0



Bladder
0



Bone marrow
0



Brain (amygdala)
0



Brain (cerebellum)
0



Brain (fetal)
0



Brain (hippocampus)
0



Cerebral Cortex
0



Brain (substantia nigra)
0



Brain (thalamus)
0



Brain (whole)
0



Colorectal
0



Heart (fetal)
0



Liver adenocarcinoma
0



Heart
0



Kidney
0



Kidney (fetal)
0



Liver
0



Liver (fetal)
0



Lung
0



Lung (fetal)
0



Lymph node
0



Mammary gland
0



Fetal Skeletal
0



Ovary
0



Pancreas
0



Pituitary gland
0



Placenta
0



Prostate
0



Salivary gland
0



Skeletal muscle
0



Small intestine
0



Spinal cord
0



Spleen
0.2



Stomach
0



Testis
0



Thymus
0



Thyroid
0



Trachea
0



Uterus
0



genomic DNA control
18.9



Chemistry Control
100











[1327] Panel 2.2. The data generated using panel 2.2 in sub-optimal. During the attempt to normalize the panel, some samples were diluted too much. It was also established that the quality of some of the RNAs was sub-optimal. This result in too many false negative and a reduce delta between diseased and normal tissues. The suggestion is to use this data to prioritize further analysis with TaqMan.
434TABLE LADPanel 2.2Rel. Expr., %Tissue Name2.2x4tm6363t_ag1653_a1Normal Colon GENPAK 0610030.097759 Colon cancer (OD06064)0.097760 Colon cancer NAT (OD06064)0.097778 Colon cancer (OD06159)0.097779 Colon cancer NAT (OD06159)0.098861 Colon cancer (OD06297-04)0.098862 Colon cancer NAT (OD06297-015)0.083237 CC Gr.2 ascend colon (ODO3921)0.083238 CC NAT (ODO3921)0.097766 Colon cancer metastasis (OD06104)0.097767 Lung NAT (OD06104)0.087472 Colon mets to lung (OD04451-01)0.087473 Lung NAT (OD04451-02)0.0Normal Prostate Clontech A+ 6546-10.0(8090438)84140 Prostate Cancer (OD04410)0.084141 Prostate NAT (OD04410)0.0Normal Ovary Res. Gen.0.098863 Ovarian cancer (OD06283-03)0.098865 Ovarian cancer NAT/fallopian tube0.0(OD06283-07)Ovarian Cancer GENPAK 0640080.097773 Ovarian cancer (OD06145)0.097775 Ovarian cancer NAT (OD06145)16.098853 Ovarian cancer (OD06455-03)0.098854 Ovarian NAT (OD06455-07)0.0Fallopian tubeNormal Lung GENPAK 0610100.092337 Invasive poor diff. lung adeno30.5(ODO4945-0192338 Lung NAT (ODO4945-03)0.084136 Lung Malignant Cancer (OD03126)0.084137 Lung NAT (OD03126)0.090372 Lung Cancer (OD05014A)0.090373 Lung NAT (OD05014B)0.097761 Lung cancer (OD06081)0.097762 Lung cancer NAT (OD06081)0.085950 Lung Cancer (OD04237-01)6.885970 Lung NAT (OD04237-02)6.783255 Ocular Mel Met to Liver (ODO4310)0.083256 Liver NAT (ODO4310)0.084139 Melanoma Mets to Lung (OD04321)0.084138 Lung NAT (OD04321)0.0Normal Kidney GENPAK 0610080.083786 Kidney Ca, Nuclear grade 20.0(OD04338)83787 Kidney NAT (OD04338)0.083788 Kidney Ca Nuclear grade 1/212.8(OD04339)83789 Kidney NAT OD04339)0.083790 Kidney Ca, Clear cell type0.0(OD04340)83791 Kidney NAT (OD04340)0.083792 Kidney Ca, Nuclear grade 37.8(OD04348)83793 Kidney NAT (OD04348)0.098938 Kidney malignant cancer0.0(OD06204B)98939 Kidney normal adjacent tissue0.0(OD06204E)85973 Kidney Cancer (OD04450-01)0.085974 Kidney NAT (OD04450-03)0.0Kidney Cancer Clontech 81206130.0Kidney NAT Clontech 81206140.0Kidney Cancer Clontech 90103200.0Kidney NAT Clontech 90103210.0Kidney Cancer Clontech 81206070.0Kidney NAT Clontech 81206080.0Normal Uterus GENPAK 0610180.0Uterus Cancer GENPAK 0640110.0Normal Thyroid Clontech A+ 6570-10.0(7080817)Thyroid Cancer GENPAK 0640100.0Thyroid Cancer INVITROGEN A3021520.0Thyroid NAT INVITROGEN A302153100.0Normal Breast GENPAK 0610190.084877 Breast Cancer (OD04566)0.0Breast Cancer Res. Gen. 10240.085975 Breast Cancer (OD04590-01)0.085976 Breast Cancer Mets (OD04590-03)0.087070 Breast Cancer Metastasis0.0(OD04655-05)GENPAK Breast Cancer 0640060.0Breast Cancer Clontech 91002660.0Breast NAT Clontech 91002650.0Breast Cancer INVITROGEN A2090730.0Breast NAT INVITROGEN A20907340.097763 Breast cancer (OD06083)0.097764 Breast cancer node metastasis19.7(OD06083)Normal Liver GENPAK 06100948.8Liver Cancer Research Genetics RNA 10260.0Liver Cancer Research Genetics RNA 10250.0Paired Liver Cancer Tissue Research0.0Genetics RNA 6004-TPaired Liver Tissue Research Genetics0.0RNA 6004-NPaired Liver Cancer Tissue Research0.0Genetics RNA 6005-TPaired Liver Tissue Research Genetics0.0RNA 6005-NLiver Cancer GENPAK 0640030.0Normal Bladder GENPAK 0610010.0Bladder Cancer Research Genetics RNA0.01023Bladder Cancer INVITROGEN A3021730.0Normal Stomach GENPAK 0610170.0Gastric Cancer Clontech 90603970.0NAT Stomach Clontech 90603960.0Gastric Cancer Clontech 90603950.0NAT Stomach Clontech 90603940.0Gastric Cancer GENPAK 0640050.0


[1328]

435





TABLE LAE










Panel 4D










Tissue Name
Rel. Expr.,







Liver cirrhosis
−100% (CT=32.7)











[1329]

436





TABLE LAF










Panel 5D









Rel. Expr., %


Tissue Name
5dtm5883t_ag1653_s1











97457_Patient-02go_adipose
0.0


97476_Patient-07sk_skeletal muscle
0.0


97477_Patient-07ut_uterus
0.0


97478_Patient-07pl_placenta
0.0


97481_Patient-08sk_skeletal muscle
0.0


97482_Patient-08ut_uterus
0.0


97483_Patient-08pl_placenta
0.0


97486_Patient-09sk_skeletal muscle
0.0


97487_Patient-09ut_uterus
0.0


97488_Patient-09pl_placenta
0.0


97492_Patient-10ut_uterus
0.0


97493_Patient-10pl_placenta
0.0


97495_Patient-11go_adipose
0.0


97496_Patient-11sk_skeletal muscle
0.0


97497_Patient-11ut_uterus
0.0


97498_Patient-11pl_placenta
0.0


97500_Patient-12go_adipose
0.0


97501_Patient-12sk_skeletal muscle
0.0


97502_Patient-12ut_uterus
0.0


97503_Patient-12pl_placenta
0.0


94721_Donor 2 U - A_Mesenchymal Stem
0.0


Cells


94722_Donor 2 U - B_Mesenchymal Stem
0.0


Cells


94723_Donor 2 U - C_Mesenchymal Stem
0.0


Cells


94709_Donor 2 AM - A_adipose
0.0


94710_Donor 2 AM - B_adipose
0.0


94711_Donor 2 AM - C_adipose
0.0


94712_Donor 2 AD - A_adipose
0.0


94713_Donor 2 AD - B_adipose
0.0


94714_Donor 2 AD - C_adipose
0.0


94742_Donor 3 U - A_Mesenchymal Stem
0.0


Cells


94743_Donor 3 U - B_Mesenchymal Stem
0.0


Cells


94730_Donor 3 AM - A_adipose
0.0


94731_Donor 3 AM - B_adipose
0.0


94732_Donor 3 AM - C_adipose
0.0


94733_Donor 3 AD - A_adipose
0.0


94734_Donor 3 AD - B_adipose
0.0


94735_Donor 3 AD - C_adipose
0.0


77138_Liver_HepG2untreated
0.0


73556_Heart_Cardiac stromal cells (primary)
0.0


81735_Small Intestine
0.0


72409_Kidney_Proximal Convoluted Tubule
0.0


82685_Small intestine_Duodenum
0.0


90650_Adrenal_Adrenocortical adenoma
0.0


72410_Kidney_HRCE
0.0


72411_Kidney_HRE
0.0


73139_Uterus_Uterine smooth muscle cells
0.0


genomic_DNA
63.7


Chemistry Control
100.0










[1330] M. NOV32a—Human HMG-COA LYASE Precursor-Like Protein


[1331] Discovery Process: The following sections describe the study design(s) and the techniques used to identify the HMG-COA LYASE-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.


[1332] Studies: MB.01 Insulin Resistance


[1333] Study Statements: The spontaneously hypertensive rat (SHR) is a strain exhibiting features of the human Metabolic Syndrome X. The phenotypic features include obesity, hyperglycemia, hypertension, dyslipidemia and dysfibrinolysis. Tissues were removed from adult male rats and a control strain (Wistar-Kyoto) to identify the gene expression differences that underlie the pathologic state in the SHR and in animals treated with various anti-hyperglycemic agents such as troglitizone. Tissues included sub-cutaneous adipose, visceral adipose and liver.


[1334] Species #1 rat—Strains—WKY, SHR, treatment with 0.02% DMSO, treatment with Troglitazone LD10


[1335] HMG-COA LYASE: 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL) catalyzes the final step of ketogenesis, an important pathway of mammalian energy metabolism. HL deficiency known as hydroxymethylglutaricaciduria is an autosomal recessive inborn error in man leading to episodes of hypoglycemia and coma.


[1336] SPECIES #1 rat (WKY strain treated with Troglitazone LD10 vs. 0.02% DMSO)


[1337] A gene fragment of the rat HMG-COA LYASE was initially found to be upregulated by 1.6 fold in the liver of WKY rats treated with Troglitazone LD10 relative to WKY rats treated with 0.02% DMSO as control using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating at approximately 426.4 nucleotides in length (Table M2A.—vertical line) was definitively identified as a component of the rat HMG-COA LYASE cDNA in the Troglitazone treated and the untreated WKY control rats (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat HMG-COA LYASE are ablated when a gene-specific primer (see below) which competes with primers in the linker-adaptors during the PCR amplification. The peaks at 426.4 nt in length are ablated in the sample from both the Troglitazone treated and the untreated WKY control rats. The altered expression in of these genes in the animal model support the role of HMG-COA LYASE in the pathogenesis of obesity and/or diabetes.


[1338] SPECIES #1 rat (SHR strain treated with Troglitazone LD10 vs. 0.02% DMSO)


[1339] A gene fragment of the rat HMG-COA LYASE was initially found to be upregulated by 2.6 fold in the liver of SHR rats treated with Troglitazone LD10 relative to SHR rats treated with 0.02% DMSO as control using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating at approximately 48.2 nucleotides in length (Table M2A—vertical line) was definitively identified as a component of the rat HMG-COA LYASE cDNA in the Troglitazone treated and the untreated SHR control rats (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat HMG-COA LYASE are ablated when a gene-specific primer (see below) which competes with primers in the linker-adaptors during the PCR amplification. The peaks at 48.2 nt in length are ablated in the sample from both the Troglitazone treated and the untreated WKY control rats. The altered expression in of these genes in the animal model support the role of HMG-COA LYASE in the pathogenesis of obesity and/or diabetes.
437TABLE M1Partial rat HMG-COA LYASE Gene SequenceGene Sequence identified in WKY Troglitazone LD10 vs. 0.02% DMSO(Identified fragment from 612 to 1038 in bold, band size: 427)(SEQ ID NO:642)GGCCCCCGAG ATGGTCTGCA GAATGAAAAG AGTATCGTGC CGACGCCAGT GAAAATCAAA CTGATAGACATGCTATCCGA AGCAGGGCTC CCGGTCATCG AGGCCACCAG CTTTGTCTCT CCCAAGTGGG TGCCGCAGATGGCTGACCAC TCTGACGTCT TGAAGGGCAT TCAGAAGTTT CCCGGCATCA ACTACCCGGT CCTGACACCAAACATGAAAG GCTTTGAGGA AGCGGTAGCT GCAGGTGCCA AGGAAGTGAG CATCTTTGGG GCTGCGTCCGAGCTCTTCAC CCGGAAGAAT GTGAACTGCT CTATAGAGGA GAGTTTCCAG CGCTTTGATG GGGTCATGCAGGCCGCGAGG GCTGCCAGCA TCTCTGTGAG AGGGTATGTC TCCTGTGCCC TCGGATGTCC CTACGAGGGGAAGGTCTCCC CGGCTAAAGT TGCTGAGGTC GCCAAGAAGT TGTACTCAAT GGGCTGCTAT GAGATCTCCCTTGGGGACAC CATTGGCGTA GGCACGCCAG GACTCATGAA AGACATGCTG ACTGCTGTCC TGCATGAAGTGCCTGTGGCC GCATTGGCTG TCCACTGCCA TGACACCTAT GGCCAAGCTC TGGCCAACAC GTTGGTGGCCCTGCAGATGG GAGTGAGCGT TGTGGACTCC TCGGTGGCAG GACTCGGAGG CTGTCCCTAT GCAAAGGGGGCGTCAGGAAA CTTGGGTACC GAGGACCTGG TCTACATGCT GACTGGCTTA GGGATTCACA CGGGTGTGAACCTCCAGAAG CTCCTAGAAG CCGGGGACTT CATCTGTCAA GCCCTGAACA GAAAAACCAG TTCCAAAGTGGCACAGGCCA CCTGCAAACT CTGAGCCCCT TGTTCACCTA AACCGGAACT GTGGGAGTTG GGTGTACACAATGATTCCTG GATGGGGAAA TGGAATGAAG GCAAATGAGC CGGCCTCACA GAGGTCCCTC TCCTACATAGAAGGGCTAGA GCTGCCAGCA CGCCCGGACC AGCTCCCCAG AGCTGCGTGC CTAAGCACTG CTTGGCTGGCCCTGGGTGAG TCCACTAGCC AGCAGAGCTG ACATCCATGT GCCACGACCG CGGGTCCCAT GTTCTACCTCTGAGGACAGC AGCGCCTTTG CTGAAATGGT GGGCTCAATC TACTGCGGTG GCCGACTGCC AACTCCAGCGTCTCTGGGAA ATCTCTGTAC GTGATTCTTG AAAACAGCTT ATGTAATTAA AGGTTTAATT TTCTAATATC


[1340] Table M2A shows the differential regulation of HMG-CoA lyase by the differentially expressed rat HMB-CoA Lyase gene fragment from Discovery Study MB.01 identified in WKY Troglitazone LD10 vs. 0.02% DMSO.
438TABLE M3Partial rat HMG-COA LYASE Gene SequenceGene Sequence identified in SHR Troglitazone LD10 vs. 0.02% DMSO(Identified fragment from 612 to 659 in bold. band size: 48)(SEQ ID NO:643)GGCCCCCGAGATGGTCTGCAGAATGAAAAGAGTATCGTGCCGACGCCAGTGAAAATCAAACTGATAGACATGCTATCCGAAGCAGGGCTCCCGGTCATCGAGGCCACCAGCTTTGTCTCTCCCAAGTGGGTGCCGCAGATGGCTGACCACTCTGACGTCTTGAAGGGCATTCAGAAGTTTCCCGGCATCAACTACCCGGTCCTGACACCAAACATGAAAGGCTTTGAGGAAGCGGTAGCTGCAGGTGCCAAGGAAGTGAGCATCTTTGGGGCTGCGTCCGAGCTCTTCACCCGGAAGAATGTGAACTGCTCTATAGAGGAGAGTTTCCAGCGCTTTGATGGGGTCATGCAGGCCGCGAGGGCTGCCAGCATCTCTGTGACAGGGTATGTCTCCTGTGCCCTCGGATGTCCCTACGAGGGGAAGGTCTCCCCGGCTAAAGTTGCTGAGGTCGCCAAGAAGTTGTACTCAATGGGCTGCTATGAGATCTCCCTTGGGGACACCATTGGCGTAGGCACGCCAGGACTCATGAAAGACATGCTGACTGCTGTCCTGCATGAAGTGCCTGTGGCCGCATTGGCTGTCCACTGCCATGACACCTATGGCCAAGCTCTGGCCAACACGTTGGTGGCCCTGCAGATGGGAGTGAGCGTTGTGGACTCCTCGGTGGCAGGACTCGGAGGCTGTCCCTATGCAAAGGGGGCGTCAGGAAACTTGGCTACCGAGGACCTGGTCTACATGCTGACTGGCTTAGGGATTCACACGGGTGTGAACCTCCAGAAGCTCCTAGAAGCCGGGGACTTCATCTGTCAAGCCCTGAACAGAAAAACCAGTTCCAAAGTGGCACAGGCCACCTGCAAACTCTGAGCCCCTTGTTCACCTAAACCGGAACTGTGGGAGTTGGGTGTACACAATGATTCCTGGATGGGGAAATGGAATGAAGGCAAATGAGCCGGCCTCACAGAGGTCCCTCTCCTACATAGAAGGGCTAGAGCTGCCAGCACGCCCGGAC


[1341] The sequence of Acc. No CG96859-03 was derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, were sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full-length DNA sequence, or some portion thereof.
439TABLE M4Human HMG-CoA Lyase-like CG96859-03 DNA and Protein Sequence(SEQ ID NO:644)ATGCCCCTTATTTCCACATCATCCCCAGGCCTTCAGGTGGGCAAGGGGCTCAGAGTTTACAGGTAGCCTGAGCCACTTTGGAGCTAGTTTTTCTGTTCAGGGCTTGACAGATAAAGTTTCCAGCTTCCAGAAGCTTCTGGAGATTCACACCCGTGTGAATGCCCAAGCCCTCTAGCATGTAGACCAGGTCTTCTGTGGCCAAGTTTCCTGATGCCCCCTGTGCGTAGGGACAGCCTCCAAGTCCTGCCACAGAAGAGTCCACGACACTCACTCCCATCTGCAGGGCCATCAAGGTGTTGGCCAGGGCTTGACCATAGGTGTCATGGCAGTGGACAGCCAGGGCAGCCAGAGGCACTTCCTGCATGACAGCAGACAGCATGTCTTTCATGATCCCTGGGGTGCCCACACCAATGGTGTCCCCCAGGGAGATCTCGTAGCAGCCCATTGAGTAGAACTTCTTGGTGACCTCAGCTACTTTAGCTGGGGAGATCTTCCCTTCATAAGGGCAGCCAAGAGCACAGGAGACGTACCCCCGCACAGAAATATTGGCTGACTGCGCTGCCTTCAGGATTGCGTCAAACCTCTGAAAACTCTCCTCTATGGAACAATTGATGTTCTTCTTGGTGAAGAGCTCTGAGGCAGCTCCAAAGATGACTACTTCCTTGGCTCCAGCAGCAACCGCTGCCTCGAAGCCTTTCAAATTTGGGGTCAGGACTGGGTAGTTGATGCCAGGAAACTTCTGAATGCCCTTCAAGACTTCAGTGTGGTCACCCATCTGGGGAACCCACTTAGGAGACACAAAGCTGGTGGTTTCTATAACAGAGAGTCCTGCTTCAGAAAGCATGTCTATCAGCTTGATTTTCACTGGAGTAGATACGATATTCTTTTCATTTTGTAGTCCATCTCGGGCACCAACTTCCACAATTTTCACCCGCTTTGGTAAAGTGCCCATAGATGAGGTGCTGACAGCCCGGAGGGACGCCAAGCCCACCAGTCGCCGCGGAAGCGCCTTCCTCATTGCTGCCATCTTGGCCGGAATTT


[1342]

440





TABLE M5








>CG96859-03 Protein
















325 aa









(SEQ ID NO:645)









MAAMRKALPRRLVGLASLRAVSTSSMGTLPKRVKIVEVGPRDGLQNEKNI






VSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPG





INYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRF





DAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEI





SLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQ





MGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLL





EAGNFICQALNRKTSSKVAQATCKL










[1343] The following is an alignment of the protein sequences of CG96859-03, another public form of HMG CoA lyase with one aa difference (P35914), a novel splice form of HMG CoA lyase (CG96859-02), and the rat and mouse orthologues of HMG-COA LYASE.


[1344] In addition to the human version of the HMG-COA LYASE identified as being differentially expressed in the experimental study, other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. Two splice-form variants have been identified at CuraGen. Below is a clustalW of the CG96859-03 (SEQ ID NO:651) and the two alternative spliced forms, CG96859-02 (SEQ ID NO:652) and CG96859-05 (SEQ IDNO:653). No amino acid-changing cSNPs were identified. The preferred variant of all those identified, to be used for screening purposes, is CG96859-03.


[1345] Expression Profiles: Hydroxymethylglutaryl-CoA Lyase CG96859-03 Expression


[1346] Quantitative expression analysis of clones in various cells and tissues was performed as described in Example C. Expression of gene CG96859-02 was assessed using the primer-probe set Ag4735, described in Table MAA. Results of the RTQ-PCR runs are shown in Tables MAB and MC. This primer set recognizes all three isoforms of HMG-CoA lyase (CG96859-02/03/05).
441TABLE MAAProbe Name Ag4735StartSEQ IDPrimersSequencesLengthPositionNOForward5′-tgaccgctgcctcga-3′15990654ProbeTET-5′-atgccaggaaacttctgaatgccc-3′-TAMRA241040655Reverse5′-gtgtctcctaagtgggttcc-3′201094656


[1347]

442





TABLE MAB










General_screening_panel_v1.4











Rel. Exp.(%)




Ag4735, Run



Tissue Name
222262773














Adipose
3.1



Melanoma* Hs688(A).T
23.2



Melanoma* Hs688(B).T
18.7



Melanoma* M14
19.2



Melanoma* LOXIMVI
4.5



Melanoma* SK-MEL-5
13.1



Squamous cell carcinoma SCC-4
7.9



Testis Pool
5.1



Prostate ca.* (bone met) PC-3
31.6



Prostate Pool
3.4



Placenta
5.8



Uterus Pool
1.2



Ovarian ca. OVCAR-3
15.0



Ovarian ca. SK-OV-3
26.2



Ovarian ca. OVCAR-4
17.2



Ovarian ca. OVCAR-5
35.1



Ovarian ca. IGROV-1
20.0



Ovarian ca. OVCAR-8
15.5



Ovary
4.7



Breast ca. MCF-7
35.4



Breast ca. MDA-MB-231
20.0



Breast ca. BT 549
44.4



Breast ca. T47D
100.0



Breast ca. MDA-N
2.9



Breast Pool
5.7



Trachea
8.6



Lung
2.7



Fetal Lung
11.8



Lung ca. NCI-N417
4.4



Lung ca. LX-1
24.0



Lung ca. NCI-H146
2.0



Lung ca. SHP-77
8.7



Lung ca. A549
12.9



Lung ca. NCI-H526
4.5



Lung ca. NCI-H23
18.3



Lung ca. NCI-H460
11.0



Lung ca. HOP-62
15.8



Lung ca. NCI-H522
27.4



Liver
17.0



Fetal Liver
26.1



Liver ca. HepG2
41.5



Kidney Pool
12.5



Fetal Kidney
7.7



Renal ca. 786-0
29.7



Renal ca. A498
5.5



Renal ca. ACHN
19.1



Renal ca. UO-31
7.5



Renal ca. TK-10
34.9



Bladder
11.4



Gastric ca. (liver met.) NCI-N87
51.4



Gastric ca. KATO III
42.6



Colon ca. SW-948
9.2



Colon ca. SW480
19.9



Colon ca.* (SW480 met) SW620
20.3



Colon ca. HT29
20.2



Colon ca. HCT-116
25.0



Colon ca. CaCo-2
18.7



Colon cancer tissue
12.0



Colon ca. SW1116
8.4



Colon ca. Colo-205
10.3



Colon ca. SW-48
6.5



Colon Pool
6.2



Small Intestine Pool
4.7



Stomach Pool
3.6



Bone Marrow Pool
2.1



Fetal Heart
4.0



Heart Pool
6.2



Lymph Node Pool
6.1



Fetal Skeletal Muscle
4.5



Skeletal Muscle Pool
19.9



Spleen Pool
5.1



Thymus Pool
5.2



CNS cancer (glio/astro) U87-MG
42.3



CNS cancer (glio/astro) U-118-MG
25.5



CNS cancer (neuro;met) SK-N-AS
10.9



CNS cancer (astro) SF-539
23.8



CNS cancer (astro) SNB-75
63.3



CNS cancer (glio) SNB-19
23.2



CNS cancer (glio) SF-295
41.5



Brain (Amygdala) Pool
7.0



Brain (cerebellum)
8.5



Brain (fetal)
5.0



Brain (Hippocampus) Pool
9.5



Cerebral Cortex Pool
7.3



Brain (Substantia nigra) Pool
10.0



Brain (Thalamus) Pool
12.1



Brain (whole)
7.5



Spinal Cord Pool
15.8



Adrenal Gland
12.3



Pituitary gland Pool
2.5



Salivary Gland
5.1



Thyroid (female)
10.2



Pancreatic ca. CAPAN2
30.4



Pancreas Pool
8.0











[1348]

443





TABLE MAC










Panel 5D











Rel. Exp.(%)




Ag4735, Run



Tissue Name
204263058














97457_Patient-02go_adipose
12.0



97476_Patient-07sk_skeletal muscle
9.8



97477_Patient-07ut_uterus
12.4



97478_Patient-07pl_placenta
17.8



97481_Patient-08sk_skeletal muscle
5.6



97482_Patient-08ut_uterus
11.6



97483_Patient-08pl_placenta
8.8



97486_Patient-09sk_skeletal muscle
5.4



97487_Patient-09ut_uterus
10.8



97488_Patient-09pl_placenta
10.8



97492_Patient-10ut_uterus
7.3



97493_Patient-10pl_placenta
40.9



97495_Patient-11go_adipose
11.9



97496_Patient-11sk_skeletal muscle
41.2



97497_Patient-11ut_uterus
20.2



97498_Patient-11pl_placenta
17.6



97500_Patient-12go_adipose
15.6



97501_Patient-12sk_skeletal muscle
88.9



97502_Patient-12ut_uterus
19.6



97503_Patient-12pl_placenta
18.2



94721_Donor 2 U -
22.7



A_Mesenchymal Stem Cells



94722_Donor 2 U -
18.4



B_Mesenchymal Stem Cells



94723_Donor 2 U -
16.4



C_Mesenchymal Stem Cells



94709_Donor 2 AM - A_adipose
37.1



94710_Donor 2 AM - B_adipose
14.9



94711_Donor 2 AM - C_adipose
12.0



94712_Donor 2 AD - A_adipose
36.1



94713_Donor 2 AD - B_adipose
40.3



94714_Donor 2 AD - C_adipose
24.8



94742_Donor 3 U - A_Mesenchymal
18.8



Stem Cells



94743_Donor 3 U - B_Mesenchymal
18.7



Stem Cells



94730_Donor 3 AM - A_adipose
16.0



94731_Donor 3 AM - B_adipose
16.2



94732_Donor 3 AM - C_adipose
11.4



94733_Donor 3 AD - A_adipose
46.0



94734_Donor 3 AD - B_adipose
19.9



94735_Donor 3 AD - C_adipose
19.5



77138_Liver_HepG2untreated
100.0



73556_Heart_Cardiac stromal cells
4.3



(primary)



81735_Small Intestine
23.5



72409_Kidney_Proximal
11.8



Convoluted Tubule



82685_Small intestine_Duodenum
27.4



90650_Adrenal_Adrenocortical
8.2



adenoma



72410_Kidney_HRCE
57.4



72411_Kidney_HRE
25.2



73139_Uterus_Uterine smooth
12.5



muscle cells











[1349] General_screening_panel_v1.4 Summary: The primer set Ag4735 recognizes all three isoforms of the HMG-CoA lyase.


[1350] Panel 5D Summary: The primer set Ag4735 recognizes all three isoforms of the HMG-CoA lyase.


[1351] ZA. CG96859-03 Hydroxymethylglutaryl-CoA Lyase-Like Protein


[1352] Expression of gene CG96859-01 was assessed using the primer-probe set Ag4736, described in Table ZAA. Results of the RTQ-PCR runs are shown in Tables ZAB and ZAC. The primer set Ag4736 was developed to recognize only the CG96859-03 splice variant of the gene.
444TABLE ZAAProbe Name Ag4736StartSEQ IDPrimersSequencesLengthPositionNOForward5′-aagtagctgaggtcaccaaga-3′21565657ProbeTET-5′-ttctactcaatgggctgctacgagatctcc-3′-TAMRA30588658Reverse5′-tagcatgtctttcatgatcc-3′20649659


[1353]

445





TABLE ZAB










General_screening_panel_v1.5











Rel. Exp.(%)




Ag4736, Run



Tissue Name
228714901














Adipose
2.7



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
10.7



Melanoma* LOXIMVI
0.6



Melanoma* SK-MEL-5
100.0



Squamous cell carcinoma SCC-4
5.1



Testis Pool
1.8



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.9



Placenta
0.2



Uterus Pool
2.4



Ovarian ca. OVCAR-3
6.2



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.9



Ovarian ca. OVCAR-8
11.7



Ovary
1.5



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
1.2



Trachea
3.1



Lung
7.4



Fetal Lung
7.4



Lung ca. NCI-N417
3.2



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.3



Lung ca. SHP-77
0.1



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
3.4



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
1.7



Lung ca. NCI-H522
0.2



Liver
0.0



Fetal Liver
0.2



Liver ca. HepG2
0.0



Kidney Pool
3.7



Fetal Kidney
0.6



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.6



Renal ca. UO-31
0.1



Renal ca. TK-10
0.0



Bladder
1.0



Gastric ca. (liver met.) NCI-N87
0.8



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.4



Colon cancer tissue
1.2



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.1



Colon ca. SW-48
0.0



Colon Pool
0.4



Small Intestine Pool
0.9



Stomach Pool
0.9



Bone Marrow Pool
2.9



Fetal Heart
0.3



Heart Pool
0.6



Lymph Node Pool
0.7



Fetal Skeletal Muscle
3.4



Skeletal Muscle Pool
0.6



Spleen Pool
0.8



Thymus Pool
1.9



CNS cancer (glio/astro) U87-MG
0.4



CNS cancer (glio/astro) U-118-MG
7.7



CNS cancer (neuro;met) SK-N-AS
0.4



CNS cancer (astro) SF-539
20.3



CNS cancer (astro) SNB-75
5.8



CNS cancer (glio) SNB-19
1.9



CNS cancer (glio) SF-295
7.8



Brain (Amygdala) Pool
3.8



Brain (cerebellum)
15.5



Brain (fetal)
4.5



Brain (Hippocampus) Pool
7.3



Cerebral Cortex Pool
3.2



Brain (Substantia nigra) Pool
3.3



Brain (Thalamus) Pool
5.8



Brain (whole)
3.2



Spinal Cord Pool
14.4



Adrenal Gland
1.3



Pituitary gland Pool
2.4



Salivary Gland
0.2



Thyroid (female)
0.1



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
0.7











[1354]

446





TABLE ZAC










Panel 5D











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4736,

Ag4736,



Run

Run


Tissue Name
204266936
Tissue Name
204266936













97457_Patient-02go_adipose
0.0
94709_Donor 2 AM - A_adipose
38.2


97476_Patient-07sk_skeletal
3.3
94710_Donor 2 AM - B_adipose
28.9


muscle


97477_Patient-07ut_uterus
7.6
94711_Donor 2 AM - C_adipose
18.6


97478_Patient-07pl_placenta
11.1
94712_Donor 2 AD - A_adipose
50.3


97481_Patient-08sk_skeletal
4.0
94713_Donor 2 AD - B_adipose
65.1


muscle


97482_Patient-08ut uterus
7.3
94714_Donor 2 AD - C_adipose
56.6


97483_Patient-08pl_placenta
6.3
94742_Donor 3 U - A_Mesenchymal
27.7




Stem Cells


97486_Patient-09sk_skeletal
3.9
94743_Donor 3 U - B_Mesenchymal
20.2


muscle

Stem Cells


97487_Patient-09ut_uterus
13.7
94730_Donor 3 AM - A_adipose
29.9


97488_Patient-09pl_placenta
27.0
94731_Donor 3 AM - B_adipose
16.5


97492_Patient-10ut_uterus
12.9
94732_Donor 3 AM - C_adipose
14.3


97493_Patient-10pl_placenta
44.4
94733_Donor 3 AD - A_adipose
53.2


97495_Patient-11go_adipose
13.9
94734_Donor 3 AD - B_adipose
32.1


97496_Patient-11sk_skeletal
21.0
94735_Donor 3 AD - C_adipose
21.5


muscle


97497_Patient-11ut_uterus
38.4
77138_Liver_HepG2untreated
100.0


97498_Patient-11pl_placenta
24.8
73556_Heart_Cardiac stromal cells
4.8




(primary)


97500_Patient-12go_adipose
29.5
81735_Small Intestine
27.0


97501_Patient-12sk_skeletal
82.4
72409_Kidney_Proximal
11.0


muscle

Convoluted Tubule


97502_Patient-12ut_uterus
28.3
82685_Small intestine_Duodenum
26.4


97503_Patient-12pl_placenta
27.0
90650_Adrenal_Adrenocortical
6.3




adenoma


94721_Donor 2 U -
34.6
72410_Kidney_HRCE
36.6


A_Mesenchymal Stem Cells


94722_Donor 2 U -
31.0
72411_Kidney_HRE
6.7


B_Mesenchymal Stem Cells


94723_Donor 2 U -
35.8
73139_Uterus_Uterine smooth
7.9


C_Mesenchymal Stem Cells

muscle cells










[1355] General_screening_panel_v1.5 Summary: Primer set Ag4736 is specific for alternative spliced variant CG96859-03.


[1356] Panel 5D Summary: Primer set Ag4736 is specific for alternative spliced variant CG96859-03.


[1357] Biochemistry and Cell Line Expression


[1358] The following illustrations summarize the biochemistry surrounding the human HMG-COA LYASE and potential assays that may be used to screen for antibody therapeutics or small molecule drugs to treat obesity and/or diabetes. Cell lines expressing the HMG-COA LYASE can be obtained from the RTQ-PCR results shown above. These and other HMG-COA LYASE expressing cell lines could be used for screening purposes.


[1359] HMG-CoA Lyase has the following catalytic activity:


[1360] 3-hydroxy-3-methylglutaryl-CoA=acetyl-CoA+acetoacetate


[1361] HMG-CoA affects biochemical pathways relevant to the etiology and pathogenesis of obesity and/or diabetes. The scheme incorporates the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of the human Aryl Hydrocarbon Receptor would be a reduction of Insulin Resistance, a major problem in obesity and/or diabetes. HMG-CoA lyase uses HMG-CoA as a substrate to produce acetoacetate and acetyl-CoA. This is the final step in ketogenesis and leucine metabolism. Importantly, acetyl-CoA from this reaction can be fed back into the TCA cycle but also into lipogenic pathways.


[1362] Physical cDNA Clone Available for Expression and Screening Purposes


[1363] Exon linking and In-Frame cloning was performed as described above. Table M10 depicts the preferred cDNA(s) that encompass the coding portion of the human HMG-CoA lyase for expression of recombinant protein from any number of plasmid, phage or phagemid vectors in a variety of cellular systems for screening purposes. The corresponding amino acid sequence(s) are also listed. Although the sequences below are the preferred isoforms, any of the other isoforms may be used for similar purposes. Furthermore, under varying assay conditions, conditions may dictate that another isoform may supplant the listed isoforms. Table M11 shows the clustalw CG96859-03 and its working representatives CG96859-08 and -09 analysis. The working representatives of CG96859-03 are partials of CG96859-03. The CG96859-09 variant has an N-terminal Histidine tag used for protein purification.
447TABLE M10Physical cDNA Clone Available for Expression & Screening Purposes>CG96859-08.      969 nt(SEQ ID NO:660)TCAGAGTTTACAGGTAGCCTGAGCCACTTTGGAGCTAGTTTTTCTGTTCAGGGCTTGACAGATAAAGTTTCCAGCTTCCAGAAGCTTCTGGAGATTCACACCCGTGTGAATGCCCAAGCCCTCTAGCATGTAGACCAGGTCTTCTGTGGCCAAGTTTCCTGATGCCCCCTGTGCGTAGGGACAGCCTCCAAGTCCTGCCACAGAAGAGTCCACGACACTCACTCCCATCTGCAGGGCCATCAAGGTGTTGGCCAGGGCTTGACCATAGGTGTCATGGCAGTGGACAGCCAGGGCAGCCAGAGGCACTTCCTGCATGACAGCAGACAGCATGTCTTTCATGATCCCTGGGGTGCCCACACCAATGGTGTCCCCCAGGGAGATCTCGTAGCAGCCCATTGAGTAGAACTTCTTGGTGACCTCAGCTACTTTAGCTGGGGAGATCTTCCCTTCATAAGGGCAGCCAAGAGCACAGGAGACGTACCCCCGCACAGAAATATTGGCTGACTGCGCTGCCTTCAGGATTGCGTCAAACCTCTGAAAACTCTCCTCTATGGAACAATTGATGTTCTTCTTGGTGAAGAGCTCTGAGGCAGCTCCAAAGATGACTACTTCCTTGGCTCCAGCAGCAACCGCTGCCTCGAAGCCTTTCAAATTTGGGGTCAGGACTGGGTAGTTGATGCCAGGAAACTTCTGAATGCCCTTCAAGACTTCAGTGTGGTCACCCATCTGGGGAACCCACTTAGGAGACACAAAGCTGGTGGTTTCTATAACAGAGAGTCCTGCTTCAGAAAGCATGTCTATCAGCTTGATTTTCACTGGAGTAGATACGATATTCTTTTCATTTTGTAGTCCATCTCGGGGACCAACTTCCACAATTTTCACCCGCTTTGGTAAAGTGCCCATGGTTTATTCCTCCTTATTTAATCGATACATTAATATATACCTCTTTAATTTTTAATAATAAAGTTA>CG96859-08-prot  301 aa(SEQ ID NO:661)TMGTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKL>CG96859-09,      987 nt(SEQ ID NO:662)TAACTTTATTATTAAAAATTAAAGAGGTATATATTAATGTATCGATTAAATAAGGAGGAATAAACCATGGGCCACCATCACCACCATCACACTTTACCAAAGCGGGTGAAAATTGTGGAAGTTGGTCCCCGAGATGGACTACAAAATGAAAAGAATATCGTATCTACTCCAGTGAAAATCAAGCTGATAGACATGCTTTCTGAAGCAGGACTCTCTGTTATAGAAACCACCAGCTTTGTGTCTCCTAAGTGGGTTCCCCAGATGGGTGACCACACTGAAGTCTTGAAGGGCATTCAGAAGTTTCCTGGCATCAACTACCCAGTCCTGACCCCAAATTTGAAAGGCTTCGAGGCAGCGGTTGCTGCTGGAGCCAAGGAAGTAGTCATCTTTGGAGCTGCCTCAGAGCTCTTCACCAAGAAGAACATCAATTGTTCCATAGAGGAGAGTTTTCAGAGGTTTGACGCAATCCTGAAGGCAGCGCAGTCAGCCAATATTTCTGTGCGGGGGTACGTCTCCTGTGCTCTTGGCTGCCCTTATGAAGGGAAGATCTCCCCAGCTAAAGTAGCTGAGGTCACCAAGAAGTTCTACTCAATGGGCTGCTACGAGATCTCCCTGGGGGACACCATTGGTGTGGGCACCCCAGGGATCATGAAAGACATGCTGTCTGCTGTCATGCAGGAAGTGCCTCTGGCTGCCCTGGCTGTCCACTGCCATGACACCTATGGTCAAGCCCTGGCCAACACCTTGATGGCCCTGCAGATGGGAGTGAGTGTCGTGGACTCTTCTGTGGCAGGACTTGGAGGCTGTCCCTACGCACAGGGGGCATCAGGAAACTTGGCCACAGAAGACCTGGTCTACATGCTAGAGGGCTTGGGCATTCACACGGGTGTGAATCTCCAGAAGCTTCTGGAAGCTGGAAACTTTATCTGTCAAGCCCTGAACAGAAAAACTAGCTCCAAAGTGGCTCAGGCTACCTGTAAACTCTGA>CG96859-09-prot  307 aa(SEQ ID NO:663)TMGHHHHHHTLPKRVKIVEVGPRDGLQNEKNIVSTPVKIKLIDMLSEAGLSVIETTSFVSPKWVPQMGDHTEVLKGIQKFPGINYPVLTPNLKGFEAAVAAGAKEVVIFGAASELFTKKNINCSIEESFQRFDAILKAAQSANISVRGYVSCALGCPYEGKISPAKVAEVTKKFYSMGCYEISLGDTIGVGTPGIMKDMLSAVMQEVPLAALAVHCHDTYGQALANTLMALQMGVSVVDSSVAGLGGCPYAQGASGNLATEDLVYMLEGLGIHTGVNLQKLLEAGNFICQALNRKTSSKVAQATCKL


[1364]



[1365] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1366] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human HMG-COA LYASE would be beneficial in the treatment of obesity and/or diabetes.


[1367] Mitochondrial 3-Hydroxy-3methylglutaryl coenzyme A lyase (mHMG-CoA lyase) is upregulated in the liver of SHR and WKY rats after triglitazone treatment. mHMG-CoA lyase is the final step in ketogenesis and leucine catabolism which has 3-hydroxy-methylglutaryl-CoA as its substrate, and produces acetoacetate (ketone body) and acetyl-CoA. This process takes place in the liver especially during weight loss and the amount of acetyl-CoA produced during both fatty acid oxidation and ketogenesis often exceeds the capacity of the TCA cycle. Moreover, excess citrate shunts acetyl-CoA back into the cytoplasm where it is used for cholesterol and fatty acid biosynthesis. Therefore, inhibiting this enzyme during weight loss may slow down ketone body formation and the generation of acetyl-CoA, and thus prevent the saturation of the TCA cycle.


[1368] The sequence of Acc. No. CG96859-03 was derived by laboratory cloning of cDNA fragments, by in silico prediction of the sequence. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, were cloned. In silico prediction was based on sequences available in CuraGen's proprietary sequence databases or in the public human sequence databases, and provided either the full-length DNA sequence, or some portion thereof.


[1369] N. Human Aryl Hydrocarbon Receptor-Like Protein—CG105355-01


[1370] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Aryl Hydrocarbon Receptor would be beneficial in the treatment of obesity and/or diabetes.


[1371] Aryl Hydrocarbon was upregulated 1.9 fold in sub-cutaneous adipose from gestational diabetics. TCDD, an AHR agonist, suppresses PPAR-γ. Conversely TZDs activate PPAR-γ.


[1372] AHR activation decreases GLUT4 expression in adipose. The clinical rise may represent a compensatory response. No dysregulation of toxification genes (CYP1A1, CYP1A2, or CYP1B). Upregulated in obese, hyperglycemic mouse liver and adipose. AHR nuclear translocator (ARNT) is also upregulated. AHR interacting protein (AIP) is also upregulated. An AHR antagonist would be beneficial for obesity and diabetes.


[1373] Discovery Process: The following sections describe the study design(s) and the techniques used to identify the Aryl Hydrocarbon Receptor-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.
448Studies:MB.09:Gestational Diabetes in HumansBP24.02Dietary Induced Obesity in Mice


[1374] Study Statements: MB.09—Gestational diabetes complicates 4% of pregnancies and is a prognostic factor in the development of Type II diabetes. In addition, offspring of women who develop gestational diabetes are at increased risk of becoming obese and developing diabetes. Thus, the differences in gene expression from the metabolic tissues of gestational diabetics and non-diabetic should reveal underlying differences related to the pathophysiology of diabetes. Because many women deliver by C-section this patient population provides an opportunity to examine gene expression changes in surgical material from normals, gestational diabetics treated by diet alone and gestational diabetics treated with insulin. These patients, generally, do not suffer from confounding medical conditions and are not exposed to drugs that may influence gene expression. In this IRB-approved study, clinical information and samples were obtained from sub-cutaneous adipose, skeletal muscle, visceral adipose (omentum) and smooth muscle (uterus) from women giving birth by non-emergency C-section. Maternal and cord blood were also obtained for genotype analysis. The body mass index spanned a wide range in this patient population. Those patients meeting the diagnostic criteria for gestational diabetes were treated with either dietary modification and/or insulin therapy.


[1375] BP24.02—The predominant cause for obesity in clinical populations is excess caloric intake. This so-called diet-induced obesity (DIO) is mimicked in animal models by feeding high fat diets of greater than 40% fat content. The DIO study was established to identify the gene expression changes contributing to the development and progression of diet-induced obesity. In addition, the study design seeks to identify the factors that lead to the ability of certain individuals to resist the effects of a high fat diet and thereby prevent obesity. The sample groups for the study had body weights +1 S.D., +4 S.D. and +7 S.D. of the chow-fed controls (below). In addition, the biochemical profile of the +7 S.D. mice revealed a further stratification of these animals into mice that retained a normal glycemic profile in spite of obesity and mice that demonstrated hyperglycemia. Tissues examined included hypothalamus, brainstem, liver, retroperitoneal white adipose tissue (WAT), epididymal WAT, brown adipose tissue (BAT), gastrocnemius muscle (fast twitch skeletal muscle) and soleus muscle (slow twitch skeletal muscle). The differential gene expression profiles for these tissues should reveal genes and pathways that can be used as therapeutic targets for obesity.
449Species #1HumansStrainsN/ASpecies #2MouseStrainsC57BL/6J


[1376] Aryl Hydrocarbon Receptor: The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a known activating ligand that initiates expression of multiple genes, including CYP1B1 and glutathione S-transferase. The Aryl Hydrocarbon Receptor forms a heterodimer with ARNT, a nuclear translocator, to form an active complex that crosses the nuclear membrane and binds to DNA. As a result of activation of AHR, PPAR-gamma can become suppressed and GLUT4 expression becomes down regulated in adipose tissue. These actions are of biological importance in the development of insulin resistance and: of diabetes.


[1377] The Aryl Hydrocarbon Receptor is a member of the PAS (Per-Ahr-Sim) superfamily of transcription factors having functions in development and detoxification. Only recently has any member of this family been associated with obesity and diabetes.


[1378] SPECIES #1 A gene fragment of the human Aryl Hydrocarbon Receptor was initially found to be up-regulated by 1.9 fold in the adipose tissues of human gestational diabetics relative to normal pregnant females using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed human gene fragment migrating, at approximately 131 nucleotides in length (Table N1. black trace-vertical line) was identified as a component of the human Aryl Hydrocarbon Receptor cDNA. The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the human Aryl Hydrocarbon Receptor are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 131 nt in length are ablated (gray trace) in the sample from both the gestational diabetics and normal patients.


[1379] SPECIES #2 Additionally, gene fragments corresponding to the mouse ortholog of AHR and two AHR-binding proteins, ARNT (AHR nuclear transporter) and AIP (AHR interacting protein) were found to have altered expression in a mouse model of dietary-induced obesity. The altered expression of these genes in the animal model support the role of the Aryl Hydrocarbon Receptor in the pathogenesis of obesity and/or diabetes.


[1380] The chromatograms below represent the competitive PCR result for the Human Aryl Hydrocarbon Receptor (Discovery Study MB.09). The chromatographic peaks corresponding to the gene fragment of the human Aryl Hydrocarbon Receptor (black trace) are ablated when a gene-specific primer (designed from the sequenced band or available databases; below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 131 nt in length are ablated (gray trace) in the sample from both the gestational diabetics (top chromatogram) and normal patients (bottom chromatogram). This is a confirmatory result. Related Result—Mouse AHR-Interacting protein [AIP] (Discovery Study BP24.02). Related Result—Mouse Aryl hydrocarbon receptor nuclear translocator protein [ARNT] (Discovery Study BP24.02)


[1381] The Sequence of CG105355-01 is the reverse complement of the Human Aryl Hydrocarbon Receptor cDNA. The gene fragment (band size: 131 nucleotides in length) identified as being differentially expressed corresponds to nucleotides 187 to 317 (bold) in the 3′ UTR of the cDNA. The gene-specific primer used in the competitive PCR reaction is underlined.
450TABLE N2CG105355-01 Sense and Antisense Sequence(SEQ ID NO:667) AGTCGCTGGGGAGTCCCGTCGACGCTCTGTTCCGAGAGCGTGCCCCGGACCGCCAGCTCAGAACAGGGGCAGCCGTGTAGCCGAACGGAAGCTGGGAGCAGCCCGGACTGGTGGCCCGCGCCCGAGCTCCGCAGGCGGGAAGCACCCTGGATTTCGGAAGTCCCGGGAGCAGCGCGGCGGCACCTCCCTCACCCAAGGGGCCGCGGCGACCGTCACGGGGCCCGGCGCCACCGTGAGCGACCCAGGCCAGGATTCTAAATAGACGGCCCAGGCTCCTCCTCCGCCCGGGCCGCCTCACCTGCGGGCATTGCCGCGCCGCCTCCGCCGGTGTAGACGGCACCTGCGCCGCCTTGCTCGCGCGTCTCCGCCCCTCGCCCACCCTCACTGCGCCAGGCCCAGGCAGCTCACCTGTACTGGCGCGGGCTGCGGAAGCCTGCGTGAGCCGAGGCGTTGAGGCGCGGCGCCCACGCCACTGTCCCGAGAGGACGCAGGTGGAGCGGGCGCGGCTTCGCGGAACCCGGCGCCGGCCGCCGCAGTGGTCCCAGCCTACACCGGGTTCCGGGGACCCGGCCGCCAGTCCCCGGGGAGTAGCCGCCGCCGTCGGCTGGGCACCATGAACAGCAGCAGCGCCAACATCACCTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAAACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGACGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAACGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGCTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAACATCGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATCCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTGCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTCGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGGCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGCTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATCGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGGCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAATTCCAAGCCCAATTTTGACCCTGGTTTTTGGATTAAATTAGTTTGTGAAGGATTATGGAAAAATAAAACTGTCACTGTTGGACGTCAGCAAGTTCACATGGAGGCATTGATGCATGCTATTCACAATTATTCCAAACCAAATTTTAATTTTTGCTTTTAGAAAAGGGAGTTTAAAAATGGTATCAAAATTACATATACTACAGTCAAGATAGAAAGGGTGCTGCCACGGAGTGGTGACGTACCGTCTACATTTCACATTATTCTGGGCACCACAAAATATACAAAACTTTATCACCGAAACTAAGATTCTTTTAAATTAGAAAATATTCTCTATTTGAATTATTTCTGTCACAGTAAAAATAAAATACTTTGAGTTTTGAGCTACTGGATTCTTATTAGTTCCCCAAATACAAAGTTAGAGAACTAAACTAGTTTTTCCTATCATGTTAACCTCTGCTTTTATCTCAGATGTTAAAATAAATGGTTTGGTGCTTTTTATAAAAAGATAATCTCAGTGCTTTCCTCCTTCACTGTTTCATCTAAGTGCCTCACATTTTTTTCTACCTATAACACTCTAGGATGTATATTTTATATAAACTATTCTTTTTCTTTTTTAAATTAATATCTTTCT~CACACAAATATTATTTGTGTTTCCTAAATCCAACCATTTTCATTAATTCAGGCATATTTTAACTCCACTGCTTACCTACTTTCTTCAGGTAAAGGGCAAATAATGATCGAAAAAATAATTATTTATTACATAATTTAGTTGTTTCTAGACTATAAATGTTGCTATGTGCCTTATGTTGAAAAAATTTAAAAGTAAAATGTCTTTCCAAATTATTTCTTAATTATTATAAAAATATTAAGACAATAGCACTTAAATTCCTCAACAGTGTTTTCAGAAGAAATAAATATACCACTCTTTACCTTTATTGATATCTCCATGATGATAGTTGAATGTTGCAATGTGAAAAATCTGCTGTTAACTGCAACCTTGTGTATTAAATTGCAAGAAGCTTTATTTCTAGCTTTTTAATTAAGCAAAGCACCCATTTCAATGTGTATAAATTGTCTTTAAAAACTGTTTTAGACCTATAATCCTTGATAATATATTGTGTTGACTTTATAAATTTCGCTTCTTAGAACAGTGGAAACTATGTGTTTTTCTCATATTTGAGGAGTGTTAAGATTGCAGATAGCAAGGTTTCGTGCAAAGTATTGTAATGAGTGAATTGAATGGTGCATTGTATAGATATAATGAACAAAATTATTTGTAAGATATTTGCAGTTTTTCATTTTAAAAAGTCCATACCTTATATATGCACTTAATTTGTTGGGGCTTTACATACTTTATCAATGTGTCTTTCTAAGAAATCAAGTAATGAATCCAACTGCTTAAAGTTGGTATTAATAAAAAGACAACCACATAGTTCGTTTACCTTCAAACTTTAGGTTTTTTTAATGATATACTGATCTTCATTACCAATAGGCAAATTAATCACCCTACCAACTTTACTGTCCTAACATGGTTTAAAAGAAAAAATGACACCATCTTTTATTCTTTTTTTTTTTTTTTTTGAGAGAGAGTCTTACTCTCCCCCCCAAACTCGAGTGCAGTGGCACAATCTTGGCTCACTGCAACCTCTACCTCCTGGGTTCAAGTGATTCTCTTGCCTCAGCCTCCCGAGTTGCTGGGATTGCGGGCATGGTGGCGTGAGCCTGTAGTCCTAGCTACTCGGGAGGCTGACGCACGAGAATACCCTGAACCTGGGAATCGGAGGTTCCAGGGCCAAGATCGCCCCACTGACTCCAGCCTGGCAATAGACCGAGACTCCGTCTCCAAAAAAAAAAAAAAATACAATTTTTATTTCTTTTACTTTTTTTAGTAAGTTAATGTATATAAAAATGGCTTCGGACAAAATATCTCTGAGTTCTGTGTATTTTCAGTCAAAACTTTAAACCTGTAGAATCAATTTAAGTGTTGGAAAAAATTTGTCTGAAACATTTCATAATTTGTTTCCAGCATGAGGTATCTAAGGATTTAGACCAGACGTCTAGATTAATACTCTATTTTTACATTTAAACCTTTTATTATAAGTCTTACATAAACCATTTTTGTTACTCTCTTCCACATGTTACTGGATAAATTGTTTAGTGGAAAATAGGCTTTTTAATCATGAATATGATGACAATCAGTTATACAGTTATAAAATTAAAAGTTTGAAAAGCAATATTGTATATTTTTATCTATATAAAATAACTAAAATGTATCTAAGAATAATAAAATCACGTTAAACCAAATACACGTTTGTCTGTATTGTTAAGTGCCAAACAAAGGATACTTAGTGCACTGCTACATTGTGGGATTTATTTCTAGATGATGTGCACATCTAAGGATATGGATGTGTCTAATTTTAGTCTTTTCCTGTACCAGGTTTTTCTTACAATACCTGAAGACTTACCAGTATTCTAGTGTATTATGAAGCTTTCAACATTACTATGCACAAACTAGTGTTTTTCGATGTTACTAAATTTTAGGTAAATGCTTTCATGGCTTTTTTCTTCAAAATGTTACTGCTTACATATATCATGCATAGATTTTTGCTTAAAGTATGATTTATAATATCCTCATTATCAAAGTTGTATACAATAATATATAATAAAATAACAAATATGAATAATAAAAAAAAAAAAAAAAA.(SEQ ID NO:688)TTTTTTTTTTTTTTTTTATTATTCATATTTGTTATTTTATTATATATThTTGTATACAACTTTGATAATGAGGATATTATAAATCATACTTTAAGCAAAAATCTATGCATGATATATGTAAGCAGTAACATTTTGAAGAAAAAACCCATGAAAGCATTTACCTAAAATTTAGTAACATCGAAAAACATTTGTGCATAGTAATGTTGAAAGCTTCATAATACACTAGAATACTGGTAAGTCTTCAGGTATTGTAAGAAAAACCTGGTACACGAAAAGACTAAAATTAGACACATCCATATCCTTAGATGTGCACATCATCTAGAAATAAATCCCACAATGTAGCAGTGCACTAAGTATCCTTTGTTTGGCACTTAACAATACAGACAAACGTGTATTTGGTTTAACGTGATTTTATTATTCTTAGATACATTTTAGTTATTTTATATAGATAAAAATATACAATATTGCTTTTCAAACTTTTAATTTTATAACTGTATAACTGATTGTCATCATATTCATGATTAAAAAGCCTATTTTCCACTAAACAATTTATCCAGTAACATGTGGAAGAGAGTAACAAAAATGGTTTATGTAAGACTTATAATAAAAGGTTTAAATGTAAAAATAGAGTATTAATCTAGACCTCTGGTCTAAATCCTTAGATACCTCATGCTGGAAACAAATTATGAAATGTTTCAGACAAATTTTTTCCAACACTTAAATTGATTCTACAGGTTTAAAGTTTTGACTGAAAATACACAGAACTCAGAGATTTTTTGTCCGAAGCCATTTTTATATACATTAACTTACTAAAAAAAGTAAAAGAAATAAAAATTGTATTTTTTTTTTTTTTGGAGACGGAGTCTCGGTCTATTGCCAGGCTGGAGTGCAGTGGGGCCATCTTGGCCCTGCAACCTCCGATTCCCAGGTTCAGGCTATTCTCCTGCCTCAGCCTCCCGAGTAGCTAGGACTACAGGCTCACGCCACCATGCCCGCAATCCCAGCAACTCGGGAGGCTGACGCAAGAGAATCACTTGAACCCAGGAGGTAGAGGTTGCAGTGAGCCAAGATTGTGCCACTGCACTCCAGTTTGGGCGGCAGAGTAAGACTCTCTCTCAAAAAAAAAAAAAAAAAGAATAAAAGATGGTGTCATTTTTTCTTTTAAACCATGTTAGGACAGTAAAGTTGGTAGGGTGATTAATTTGCCTATTGGTAATGAAGATCAGTATATCATTAAAAAAACCTAAAGTTTGAAGGTAAACGAACTATGTGGTTGTCTTTTTATTAATACCAACTTTAAGCAGTTGGATTCATTACTTGATTTCTTACAAAGACACATTGATAAAGTATGTAAAGCCCCAACAAATTAAGTGCATATATAAGGTATGGACTTTTTAAAATGAAAAACTGCAAATATCTTACAAATAATTTTGTTCATTATATCTATACAATGCACCATTCAATTCACTCATTACAATACTTTGCACCAAACCTTGCTATCTGCAATCTTAACACTCCTCAAATATGAGAAAAACACATAGTTTCCACTCTTCTAAGAAGCGAAATTTATAAAGTCAACACAATATATTATCAAGGATTATAGGTCTAAAACAGTTTTTAAAGACAATTTATACACATTGAAATGGGTGCTTTGCTTAATTAAAAAGCTAGAAATAAAGCTTCTTGCAATTTAATACACAAGGTTGCAGTTAACAGCAGATTTTTCACATTGCAACATTCAACTATCATCATGGAGATATCAATAAAGGTAAAGAGTGGTATATTTATTTCTTCTGAAAACACTGTTGAGGAATTTAAGTGCTATTGTCTTAATATTTTTATAATAATTAAGAAATAATTTGGAAAGACATTTTACTTTTAAATTTTTTCAACATAAGGCACATAGCAACATTTATAGTCTAGAAACAACTAAATTATGTAATAAATAATTATTTTTTCGATCATTATTTGCCCTTTACCTGAAGAAAGTAGGTAAGCAGTGGAGTTAAAATATGCCTGAATTAATGAAAATGGTTGGATTTAGGAAACACAAATAATATTTGTGTGCAGAAAGATATTAATTTAAAAAAGAAAAAGAATACTTTATATAAAATATACATCCTAGAGTGTTATAGGTAGAAAAAAATGTGAGGCACTTAGATGAAACAGTGAAGGAGGAAAGCACTGAGATTATCTTTTTATAAAAAGCACCAAACCATTTATTTTAACATCTGAGATAAAAGCAGAGGTTAACATGATAGGAAAAACTAGTTTAGTTCTCTAACTTTGTATTTCGGGAACTAATAAGAATCCAGTAGCTCAAAACTCAAAGTATTTTATTTTTACTGTGACAGAAATAATTCAAATAGAGAATATTTTCTAATTTAAAAGAATCTTAGTTTCCCTGATAAAGTTTTGTATATTTTGTGGTGCCCAGAATAATGTGAAATGTAGACGGTACCTCACCACTCCGTGGCAGCACCCTTTCTATCTTGACTGTAGTATATGTAATTTTGATACCATTTTTAAACTCCCTTTTCTAAAAGCAAAAATTAAAATTTCGTTTGGAATAATTGTGAATAGCATGCATCAATGCCTCCATGTGAACTTGCTGACGTCCAACAGTGACAGTTTTATTTTTCCATAATCCTTCACAAACTAATTTAATCCAAAAACCAGGGTCAAAATTGGGCTTGGAATTACAGGAATCCACTGGATCTCAAATCAGGAAAAGGTCTGGCTTCTGACGGATGATGAAGTGGCTGAAGATGTGTCGTACTCTGAGTGTTATTTATGTTATTTAATTCAGCTGGATATGTTTCATTTAAAACTCCATTCTGAAACTTGTTTAAAAATGCCTGTTGGCCTGGCAGTACTGGATTGTACTGCATCTGACCCACGTGGGTGTGCTGAGGTTCTGGCTGGCACTGATACATCGACACGGCCCCAGCATAACATGTCTCAGGAGTTATTATGGCTGACTGTGGATTTAATCCATGCTTTTGGTTTTCAGGAAGTTGTAAACAAGTGACAAAATCTTCTAAACTAGAAGTAGTGCGGTATGGGGATGGTTCAAAACTCCCCATAGGGTAGTCCAGCTCTGTACATTTGGAATGTTGTGGTAATACAGGCTGATTACAGGAAATAAAGTTCTGTGTATAAGGCATAGAATCCATTTCAGATTTGTAGGGGAACTCTTGACTGATCCCATGTAAGTCTGTAAAGACATTATATTGTTGTGGGTCTTGCTGTGGACAATTGAAAGGCACGAATTGGTTAGAGTTCCAATTTTCAAACATGCCATTAACTTGCATGTGCTTCATCTTCTGACACAGCTGTTGCTGTGGCTCCACTACTACTTGCTTTTGGTGATGTTGCTGTTGCTGTTCTAGATGTAGGTGTTCCTGTACCATACAGCTTGAGTTCAGAGCCAAGGACTGTTGCTGTTGATAATCTGAAGGTATGAAGGGAGACTTACTTAAAGAATCTTGGACATACGTCAGGATTTCATCCGTTAAGTCAATGTCTCTGAAGTCAACCTCACCAGAAAAATCATTTCTGAAAAATTTTTCATTCTGCATGTGTCTGATGTCTTCAAAATCAATGCCTAGGTTTTTCATTATGCTGTACAAGTCACTGTTTTTACTATCTTGAAACAGCCCTGGGTCACCTCCAGCAAATGAGTTCACATCCTGAGGCTCGTCAATTTGCTCATGTTTCAGGATAGTATCATTTCCCATCGGTGCAGTATTATCTTGCCAATTTCTGCATTCATTCATAGATTCGTTGAAAAAGTTGTTTTCAAAACGTGCAGTACTTGAAGTACTTGAAGCAGGATAGAGATAAATAGACTCATCTTGTTGCATCATGGCAGCCAGGAGGGAACTAGGATTGAGAGAGTCCTTGCTTAGAGTGGATGTGGTAGCAGAGTCTTTTCCACTAGTGCCATTTTTAGTCCTTAGTGGTAAGGGATCCATTATGGCAGCAAAAGGGTTGGTTGCCTCATACAACACAGCTTCTCCAGTGGTAAACATAAAAGGCAACTTCGTATTTCGTTTTCGTAAATGCTCTGTTCCTTCCTCATCTGTTAGTGGTCTCTGAGTTACAATGATATAATCTGGTCTTCCATTTTTATAAAGCAGGCGTGCATTAGACTGGACCCAAGTCCATCGGTTGTTTTTTGTAAGAAGCCGGAAAACTATCATGCCACTTTCTCCAGTCTTAATCATTCGGATATGGGACTCGGCACAATAAAGCATATCAGCTGCATGAATAAACTGATAACCTGAGCCTCTCGTGCACAGCTCTGCTTCAGTATATCCTAAAACAATTCTTCCTTTCGCATCACAACCAATAGGTGTGAAGTCTAGTTTGTGTTTGGTTCTAAAGATAAAATTTTTGGTCCGGATTTCAAGTATGGATGGTGGCTGAAGTGGAGTAGCTATCGCAAACAAAGCCAACTGAGGTGGAAGTATTGATCCATCTTTCCCTTTCTTTTTCTGTCCATGAAGATACTTTAACTTCCCTTGGAAATTCATTGCCAGAAAACCAGATGAATTATCCAGCAGACACCTTAGACGACATATGAAGCACCTCTCCATTAAAGGAGAGTTTTCTGGAGGAATCTGGTCTGGGTTATAACAGACTACTGTCTGGCGGAGACCAGTGGCTTCTTCAATTCCTTGTCCAGACTCTGTACACTGAGAACGATTTAATGCCCAGTGTAGCTGACGCTGAAATTCAGCTCGGTCTTCGGTATGGATAAGTTCATATACACTCTGATGTATGACATCAGACTGCTGAAACCCTAGATAATCTTGTATAGTAGAAGAAGCATAAAAGACCAAAGCATCTGTAGTGACAACTAATACAAAGCCATTCAGAGCCTGTAATAACAATTCTCCTTCTTGTAAGTTCAGGCCTTCTCTGAAATTTGCTGCTCTACAGTTATCCTGGCCTCCGTTTCTTTCAGTAGGGGAGGATTTTAATGCAACATCAAAGAAGCTCTTGGCTCTCAGGTAACTGACGCTGAGCCTAAGAACTGAAAGTTTGTCCAACTTATTAATAACATCTTGTGGGAAAGGCAGCAGGCTAGCCAAACGGTCCAACTCTGTATTAAGTCGGTCTCTATGCCGCTTGGAAGGATTTGACTTGATTCCTTCAGCTGGGATTGGCTTTACTGTTTTCTGCACCGGCTTCCGCCGCTTGCGACTGGCGTACGTGATGTTCGCGCTGCTGCTGTTCATCGTGCCCAGCCGACGGCGGCGGCTACTCCCCGGGCACTGGCGGCCGGGTCCCCGGAACCCGGTGTAGGCTGGGACCACTGCGGCGGCCGGCGCCCGGTTCCGCGAAGCCGCGCCCGCTCCACCTGCGTCCTCTCGGGACAGTGGCGTGGGCGCCGCGCCTCAACGCCTCCGCTCACGCAGGCTTCCGCAGCCCGCGCCAGTACACGTGAGCTGCCTGGGCCTGGCCCAGTGACGGTGGGCGAGGGGCGGAGACCCGCGAGCAAGGCGGCGCAGGTGCCGTCTACACCGGCGGAGGCGGCGCGGCAATGCCCGCAGGTGAGGCGGCCCGGGCGGAGGAGGAGCCTGGGCCGTCTATTTTGAATCCTGGCCTGGGTCGCTCACGGTGGCGCCGCGCCCCCTGACCGTCGCCGCGGCCCCTTGGGTGAGGGAGGTGCCGCCGCGCTGCTCCCGGGACTTCCCAAATCCACCGTGCTTCCCGCCTGCGGAGCTCGGGCGCGGGCCACCAGTCCCGGCTGCTCCCAGCTTCCGTTCGGCTACACGGCTGCCCCTGTTCTGAGCTCGCGGTCCGGGGCACGCTCTCGGAACAGAGCGTCGACGGGACTCCCCAGCCACT


[1382]

451





TABLE N3








Human Aryl Hydrocarbon Receptor Protein Sequence:
















ORF Start: 615```ORF Stop: 3159```Frame: -3



>CG105355-01-prot 848 aa








(SEQ ID NO:669)









MNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDKLSVLRLSVSYLRAK






SFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVFYASSTIQDYLGFQOSDVIHQSVYE





LIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQ





GKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGCDAKGRIVLGTYEAELCTRGS





GYQFIHAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNT





KLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAP





FENNFFNESMNECRNWQDWTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEK





FFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQ





KMKHMQVNGMFENWNSNQFVPFNCPQQDPQQYNVFTDLHGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYP





MGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLN





KFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFL










[1383] The following is an alignment of the protein sequences of the human, rat and mouse versions of the Aryl Hydrocarbon Receptor.


[1384] In addition to the human version of the Aryl Hydrocarbon Receptor identified as being differentially expressed in the experimental study, other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen whereas several amino acid-changing cSNPs were identified. These are found below. The preferred variant of all those identified, to be used for screening purposes, is CG105355-01.
452TABLE N5The variants of the human Aryl HydrocarbonReceptor obtained from direct cloning and/orpublic databases.DNAPosi-AAAApublictionStrandAllelesPositionChangeSNP #757PlusA:G48Asp => Gly869PlusT:C85Val => Val1132PlusA:G173Gln => Arg2028PlusG:A472Ala => Thr2275plusG:A554Arg => Lysrs2066853


[1385] RTQ-PCR Relative Expression Levels of Human Aryl Hydrocarbon Receptor (CG105355-01).


[1386] Tissue expression for the human Aryl Hydrocarbon Receptor was assessed using the primer-probe set Ag4285, described in Table NAA. Results of the RTQ-PCR runs are shown in Tables NAB, NAC and NAD.
453TABLE NAAProbe Name Ag4285StartSEQ IDPrimersSequencesLengthPositionNOForward5′-caggatttcatccgttaagtca-3′221765673ProbeTET-5′-tgtctctgaagtcaacctcaccagaa-3′-TAMRA261738674Reverse5′-acatcagacacatgcagaatga-3′221695675


[1387] The highest level of expression in normal, adult tissue is in adipose.
454TABLE NABGeneral_screening_panel_v1.4Rel. Exp. (%)Rel. Exp.Tissue NameAg4285(%) Ag42851.Adipose26.1911.7% 2.Melanoma* Hs688(A).T27.694.2%3.Melanoma* Hs688(B).T26.668.5%4.Melanoma* M1425.74 16%5.Melanoma* LOXIMVI28.262.8%6.Melanoma* SK-MEL-525.9314.1% 7.Squamous cell carcinoma SCC-425.9913.5% 8.Testis Pool28.951.7%9.Prostate ca.* (bone met) PC-325.6517.1% 10.Prostate Pool28.342.6%11.Placenta27.544.6%12.Uterus Pool27.813.8%13.Ovarian ca. OVCAR-328.542.3%14.Ovarian ca. SK-OV-327.674.2%15.Ovarian ca. OVCAR-429.171.5%16.Ovarian ca. OVCAR-52526.8% 17.Ovarian ca. IGROV-128.392.6%18.Ovarian ca. OVCAR-830.62 .5%19.Ovary27.793.9%20.Breast ca. MCF-726.837.5%21.Breast ca. MDA-MB-23125.6517.1% 22.Breast ca. BT 54923.9455.9% 23.Breast ca. T47D24.5137.6% 24.Breast ca. MDA-N26.817.6%25.Breast Pool27.35.4%26.Trachea26.57  9%27.Lung29.071.6%28.Fetal Lung24.2545.1% 29.Lung ca. NCI-N41736.08  0%30.Lung ca. LX-126.877.3%31.Lung ca. NCI-H14630.12 .8%32.Lung ca. SHP-7727.724.1%33.Lung ca. A54926.3710.4% 34.Lung ca. NCI-H52634.54  0%35.Lung ca. NCI-H2325.0226.4% 36.Lung ca. NCI-H46026.817.6%37.Lung ca. HOP-6226.3610.4% 38.Lung ca. NCI-H52233.54 .1%39.Liver31.8 .2%40.Fetal Liver27.41  5%41.Liver ca. HepG226.767.9%42.Kidney Pool27.136.1%43.Fetal Kidney26.3410.6% 44.Renal ca. 786-026.668.5%45.Renal ca. A49827.773.9%46.Renal ca. ACHN28.332.7%47.Renal ca. UO-3126.2211.5% 48.Renal ca. TK-1026.1312.2% 49.Bladder26.1811.8% 50.Gastric ca. (liver met.) NCI-N8724.4838.4% 51.Gastric ca. KATO III23.2987.7% 52.Colon ca. SW-94827.395.1%53.Colon ca. SW48027.16  6%54.Colon ca.* (SW480 met) SW62027.594.5%55.Colon ca. HT2927.315.4%56.Colon ca. HCT-11627.076.4%57.Colon ca. CaCo-226.0912.6% 58.Colon cancer tissue25.6716.8% 59.Colon ca. SW111630.22 .7%60.Colon ca. Colo-20530.17 .7%61.Colon ca. SW-4828.352.6%62.Colon Pool27.116.2%63.Small Intestine Pool28.033.3%64.Stomach Pool27.793.9%65.Bone Marrow Pool283.3%66.Fetal Heart28.14  3%67.Heart Pool28.123.1%68.Lymph Node Pool27.484.8%69.Fetal Skeletal Muscle28.252.8%70.Skeletal Muscle Pool30.01 .8%71.Spleen Pool27.54.7%72.Thymus Pool283.3%73.CNS cancer (glio/astro) U87-MG25.1124.8% 74.CNS cancer (glio/astro) U-118-MG24.4240.1% 75.CNS cancer (neuro; met) SK-N-AS27.514.7%76.CNS cancer (astro) SF-53928.74  2%77.CNS cancer (astro) SNB-752613.4% 78.CNS cancer (glio) SNB-1928.42.5%79.CNS cancer (glio) SF-29523.1 100% 80.Brain (Amygdala) Pool29.621.1%81.Brain (cerebellum)30.31 .7%82.Brain (fetal)30.3 .7%83.Brain (Hippocampus) Pool29.351.3%84.Cerebral Cortex Pool29.31.4%85.Brain (Substantia nigra) Pool30.13 .8%86.Brain (Thalamus) Pool28.911.8%87.Brain (whole)30.18 .7%88.Spinal Cord Pool29.31.4%89.Adrenal Gland28.432.5%90.Pituitary gland Pool31.08 .4%91.Salivary Gland30.98 .4%92.Thyroid (female)28.282.8%93.Pancreatic ca. CAPAN226.827.6%94.Pancreas Pool27.116.2%


[1388] The highest level of expression in normal (non-pregnant) adult tissue is adipose.
455TABLE NACPanel 5 IsletRel. Exp.Rel. Exp.Tissue Name(%) Ag4285(%) Ag42851.97457_Patient-02go_adipose33.78 1.8%2.97476_Patient-07sk_skeletal muscle30.615.9%3.97477_Patient-07ut_uterus32.87 3.3%4.97478_Patient-07pl_placenta28.1487.7%5.99167_Bayer Patient 133.04 2.9%6.97482_Patient-08ut_uterus32.16 5.4%7.97483_Patient-08pl_placenta28.4272.2%8.97486_Patient-09sk_skeletal muscle33.31 2.4%9.97487_Patient-09ut_uterus30.8313.6%10.97488_Patient-09pl_placenta29.07  46%11.97492_Patient-10ut_uterus31.14  11%12.97493_Patient-10pl_placenta27.95 100%13.97495_Patient-11go_adipose30.1521.8%14.97496_Patient-11sk_skeletal muscle32.37 4.7%15.97497_Patient-11ut_uterus30.8113.8%16.97498_Patient-11pl_placenta30.7814.1%17.97500_Patient-12go_adipose30.1621.6%18.97501_Patient-12sk_skeletal muscle31.73 7.3%19.97502_Patient-12ut_uterus31.1910.6%20.97503_Patient-12pl_placenta29.2241.5%21.94721_Donor 2 U - A_Mesenchymal30.9412.6%Stem Cells22.94722_Donor 2 U - B_Mesenchymal32.08 5.7%Stem Cells23.94723_Donor 2 U - C_Mesenchymal30.9712.3%Stem Cells24.94709_Donor 2 AM - A_adipose30.7214.7%25.94710_Donor 2 AM - B_adipose31.1710.7%26.94711_Donor 2 AM - C_adipose31.89 6.5%27.94712_Donor 2 AD - A_adipose29.6929.9%28.94713_Donor 2 AD - B_adipose29.7229.3%29.94714_Donor 2 AD - C_adipose29.3438.2%30.94742_Donor 3 U - A_Mesenchymal31.74 7.2%Stem Cells31.94743_Donor 3 U - B_Mesenchymal30.9312.7%Stem Cells32.94730_Donor 3 AM - A_adipose29.8926.1%33.94731_Donor 3 AM - B_adipose30.8613.3%34.94732_Donor 3 AM - C_adipose30.8113.8%35.94733_Donor 3 AD - A_adipose28.9450.3%36.94734_Donor 3 AD - B_adipose31.01  12%37.94735_Donor 3 AD - C_adipose29.2839.8%38.77138_Liver_HepG2untreated28.55  66%39.73556_Heart_Cardiac stromal cells40  0%(primary)40.81735_Small Intestine30.4817.3%41.72409_Kidney_Proximal Convoluted30.3119.5%Tubule42.82685_Small intestine_Duodenum34.39 1.2%43.90650_Adrenal_Adrenocortical32.43 4.5%adenoma44.72410_Kidney_HRCE29.7528.7%45.72411_Kidney_HRE31.27  10%46.73139_Uterus_Uterine smooth muscle32.2 5.3%cells


[1389] The protein associated with Ahr_CG105355-01 is encoded in a negative reading frame. The sequence shown below has been reverse-complemented and renumbered to allow reading of the protein in the expected N to C direction.
456TABLE N7cDNA Sequence of Translated ProteinFrame: −3—Nucleotide 615 to 3158) with RTQ-PCR Primer/Probe Positions Indicated.CAGTGGCTGGGGAGTCCCGTCGACGCTCTGTTCCGAGAGCGTGCCCCGGACCGCCAGCTCAGAACAGGGGCAGCCGTGTA(SEQ ID NO:677)GCCGAACGGAAGCTGGGAGCAGCCGGGACTGGTGGCCCGCGCCCGAGCTCCGCAGGCGGGAAGCACCCTGGATTTGGGAAGTCCCGGGAGCAGCGCGGCGGCACCTCCCTCACCCAAGGGGCCGCGGCGACGGTCACGGGGCGCGGCGCCACCGTGAGCGACCCAGGCCAGGATTCTAAATAGACGGCCCAGGCTCCTCCTCCGCCCGGGCCGCCTCACCTGCGGGCATTGCCGCGCCGCCTCCGCCGGTGTAGACGGCACCTGCGCCGCCTTGCTCGCGGGTCTCCGCCCCTCGCCCACCCTCACTGCGCCAGGCCCAGGCAGCTCACCTGTACTGGCGCGGGCTGCGGAAGCCTGCGTGAGCCGAGGCGTTGAGGCGCGGCGCCCACGCCACTGTCCCGAGAGGACGCAGGTGGAGCGGGCGCGGCTTCGCGGAACCCGGCGCCGGCCGCCGCAGTGGTCCCAGCCTACACCGGGTTCCGGGGACCCGGCCGCCAGTGCCCGGGGAGTAGCCGCCGCCGTCGGCTGGGCACCATGAACAGCAGCAGCGCCAACATCAC                                                      M  N  S  S  S  A  N  I  T(SEQ ID NO:676)CTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAAACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTT Y  A  S  R  K  R  R  K  P  V  Q  K  T  V  K  P  I  P  A  E  G  I  K  S  N  P  SCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAAT  K  R  H  R  D  R  L  N  T  E  L  D  R  L  A  S  L  L  P  F  P  Q  D  V  I  NAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCK  L  D  K  L  S  V  L  R  L  S  V  S  Y  L  R  A  K  S  F  F  D  V  A  L  K  SCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGS  P  T  E  R  N  G  G  Q  D  N  C  R  A  A  N  F  R  E  G  L  N  L  Q  E  G  EAATTCTTATTACAGGCTCTCAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATA  F  L  L  Q  A  L  N  G  F  V  L  V  V  T  T  D  A  L  V  F  Y  A  S  S  T  ICAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAQ  D  Y  L  G  F  Q  Q  S  D  V  I  H  Q  S  V  Y  E  L  I  H  T  E  D  R  A  EATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTC F  Q  R  Q  L  H  W  A  L  N  P  S  Q  C  T  E  S  G  Q  G  I  E  E  A  T  G  LTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGT  P  Q  T  V  V  C  Y  N  P  D  Q  I  P  P  E  N  S  P  L  M  E  R  C  F  I  CCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAR  L  R  C  L  L  D  N  S  S  G  F  L  A  M  N  F  Q  G  K  L  K  Y  L  H  G  QGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCAT K  K  K  G  K  D  G  S  I  L  P  P  Q  L  A  L  F  A  I  A  T  P  L  Q  P  P  SCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCC  I  L  E  I  R  T  K  N  F  I  F  R  T  K  H  K  L  D  F  T  P  I  G  C  D  AAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGAK  G  R  I  V  L  G  Y  T  E  A  E  L  C  T  R  G  S  G  Y  Q  F  I  H  A  A  DTATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAA M  L  Y  C  A  E  S  H  I  R  M  I  K  T  G  E  S  G  M  I  V  F  R  L  L  T  KAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACT  N  N  R  W  T  W  V  Q  S  N  A  R  L  L  Y  K  N  G  R  P  D  Y  I  I  V  TCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGQ  R  P  L  T  D  E  E  G  T  E  H  L  R  K  R  N  T  K  L  P  F  M  F  T  T  GAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGGCACTA E  A  V  L  Y  E  A  T  N  P  F  P  A  I  M  D  P  L  P  L  R  T  K  N  G  T  SGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAA  G  K  D  S  A  T  T  S  T  L  S  K  D  S  L  N  P  S  S  L  L  A  A  M  M  QCAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCQ  D  E  S  I  Y  L  Y  P  A  S  S  T  S  S  T  A  P  F  E  N  N  F  F  N  E  STATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACC M  N  E  C  R  N  W  Q  D  N  T  A  P  M  G  N  D  T  I  L  K  H  E  Q  I  D  QAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATA  P  Q  D  V  N  S  F  A  G  G  H  P  G  L  F  Q  D  S  K  N  S  D  L  Y  S  IATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAM  K  N  L  G  I  D  F  E  D  I  R  H  M  Q  N  E  K  F  F  R  N  D  F  S  G  EGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATAC V  D  F  R  D  I  D  L  T  D  E  I  L  T  Y  V  Q  D  S  L  S  K  S  P  F  I  PCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAA  S  D  Y  Q  Q  Q  Q  S  L  A  L  N  S  S  C  M  V  Q  E  H  L  H  L  E  Q  QCAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGQ  Q  H  H  Q  K  Q  V  V  V  E  P  Q  Q  Q  L  C  Q  K  M  K  H  M  Q  V  N  GCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTA M  F  E  N  W  N  S  N  Q  F  V  P  F  N  C  P  Q  Q  D  P  Q  Q  Y  N  V  F  TCAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCC  D  L  H  G  I  S  Q  E  F  P  Y  K  S  E  M  D  S  M  P  Y  T  Q  N  F  I  STGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATAC  N  Q  P  V  L  P  Q  H  S  K  C  T  E  L  D  Y  P  M  G  S  F  E  P  S  P  YCCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGT P  T  T  S  S  L  E  D  F  V  T  C  L  Q  L  P  E  N  Q  K  H  G  L  N  P  Q  SCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCAC  A  I  I  T  P  Q  T  C  Y  A  G  A  V  S  M  Y  Q  C  Q  P  E  P  Q  H  T  HGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGGCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAV  G  Q  M  Q  Y  N  P  V  L  P  G  Q  Q  A  F  L  N  K  F  Q  N  G  V  L  N  EAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAG T  Y  P  A  E  L  N  N  I  N  N  T  Q  T  T  T  H  L  Q  P  L  H  H  P  S  E  ACCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAATTCCAAGCCCAATTTTGACCCTGGTTTTTGGATTAAATT  R  P  F  P  D  L  T  S  S  G  F  LACTTTGTGAAGGATTATGGAAAAATAAAACTGTCACTGTTGGACGTCAGCAAGTTCACATGGAGGCATTGATGCATGCTATTCACAATTATTCCAAACCAAATTTTAATTTTTGCTTTTAGAAAAGGGAGTTTAAAAATGGTATCAAAATTACATATACTACAGTCAAGATAGAAAGGGTGCTGCCACGGAGTGGTGAGGTACCGTCTACATTTCACATTATTCTGGGCACCACAAAATATACAAAACTTTATCAGGGAAACTAAGATTCTTTTAAATTAGAAAATATTCTCTATTTGAATTATTTCTCTCACAGTAAAA                                                                      PrimerATAAAATACTTTGAGTTTTGAGCTACTGGATTCTTATTAGTTCCCCAAATACAAAGTTAGAGAACTAAACTAGTTTTTCC                Probe                                        PrimerTATCATGTTAACCTCTGCTTTTATCTCAGATGTTAAAATAAATGGTTTGGTGCTTTTTATAAAAAGATAATCTCAGTGCTTTCCTCCTTCACTGTTTCATCTAAGTGCCTCACATTTTTTTCTACCTATAACACTCTAGGATGTATATTTTATATAAAGTATTCTTTTTCTTTTTTAAATTAATATCTTTCTGCACACAAATATTATTTGTGTTTCCTAAATCCAACCATTTTCATTAATTCAGGCATATTTTAACTCCACTGCTTACCTACTTTCTTCAGGTAAAGGGCAAATAATGATCGAAAAAATAATTATTTATTACATAATTTAGTTGTTTCTAGACTATAAATGTTGCTATGTGCCTTATGTTGAAAAAATTTAAAAGTAAAATGTCTTTCCAAATTATTTCTTAATTATTATAAAAATATTAAGACAATAGCACTTAAATTCCTCAACAGTGTTTTCAGAAGAAATAAATATACCACTCTTTACCTTTATTGATATCTCCATGATGATAGTTGAATGTTGCAATGTGAAAAATCTGCTGTTAACTGCAACCTTGTGTATTAAATTGCAAGAAGCTTTATTTCTAGCTTTTTAATTAAGCAAAGCACCCATTTCAATGTGTATAAATTGTCTTTAAAAACTGTTTTAGACCTATAATCCTTGATAATATATTGTGTTGACTTTATAAATTTCGCTTCTTAGAACAGTGGAAACTATGTGTTTTTCTCATATTTGAGGAGTGTTAAGATTGCAGATAGCAAGGTTTGGTGCAAAGTATTGTAATGAGTGAATTGAATGGTGCATTGTATAGATATAATGAACAAAATTATTTGTAAGATATTTGCAGTTTTTCATTTTAAAAAGTCCATACCTTATATATGCACTTAATTTGTTGGGGCTTTACATACTTTATCAATGTGTCTTTCTAAGAAATCAAGTAATGAATCCAACTGCTTAAAGTTGGTATTAATAAAAAGACAACCACATAGTTCGTTTACCTTCAAACTTTAGGTTTTTTTAATGATATACTGATCTTCATTACCAATAGGCAAATTAATCACCCTACCAACTTTACTGTCCTAACATGGTTTAAAAGAAAAAATGACACCATCTTTTATTCTTTTTTTTTTTTTTTTTGAGAGAGAGTCTTACTCTGCCGCCCAAACTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAACCTCTACCTCCTGGGTTCAAGTGATTCTCTTGCCTCAGCCTCCCGAGTTGCTGGGATTGCGGGCATGGTGGCGTGAGCCTGTAGTCCTAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCCTGAACCTGGGAATCGGAGGTTGCAGGGCCAAGATCGCCCCACTGCACTCCAGCCTGGCAATAGACCGAGACTCCGTCTCCAAAAAAAAAAAAAATACAATTTTTATTTCTTTTACTTTTTTTAGTAAGTTAATGTATATAAAAATGGCTTCGGACAAAATATCTCTGAGTTCTGTGTATTTTCAGTCAAAACTTTAAACCTGTAGAATCAATTTAAGTGTTGGAAAAAATTTGTCTGAAACATTTCATAATTTGTTTCCAGCATGAGGTATCTAAGGATTTAGACCAGAGGTCTAGATTAATACTCTATTTTTACATTTAAACCTTTTATTATAAGTCTTACATAAACCATTTTTGTTACTCTCTTCCACATGTTACTGGATAAATTGTTTAGTGGAAAATAGGCTTTTTAATCATGAATATGATGACAATCAGTTATACAGTTATAAAATTAAAAGTTTGAAAAGCAATATTGTATATTTTTATCTATATAAAATAACTAAAATGTATCTAAGAATAATAAAATCACGTTAAACCAAATACACGTTTGTCTGTATTGTTAAGTGCCAAACAAAGGATACTTAGTGCACTGCTACATTGTGGGATTTATTTCTAGATGATGTGCACATCTAAGGATATGGATGTGTCTAATTTTAGTCTTTTCCTGTACCAGGTTTTTCTTACAATACCTGAAGACTTACCAGTATTCTAGTGTATTATGAAGCTTTCAACATTACTATGCACAAACTAGTGTTTTTCGATGTTACTAAATTTTAGGTAAATGCTTTCATGGCTTTTTTCTTCAAAATGTTACTGCTTACATATATCATGCATAGATTTTTGCTTAAAGTATGATTTATAATATCCTCATTATCAAAGTTGTATACAATAATATATAATAAAATAACAAATATGAATAATAAAAAAAAAAAAAAAAA


[1390] Human Aryl Hydrocarbon Receptor and associated gene products function in the etiology and pathogenesis of obesity and/or diabetes. The scheme incorporates the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of the human Aryl Hydrocarbon Receptor would be a reduction of Insulin Resistance, a major problem in obesity and/or diabetes.


[1391] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics


[1392] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Aryl Hydrocarbon Receptor would be beneficial in the treatment of obesity and/or diabetes:


[1393] a) Aryl Hydrocarbon was upregulated 1.9 fold in sub-cutaneous adipose from gestational diabetics. TCDD, an AHR agonist, suppresses PPAR-γ. Conversely TZDs activate PPAR-γ.


[1394] b) AHR activation decreases GLUT4 expression in adipose.


[1395] c) The clinical rise may represent a compensatory response.


[1396] d) No dysregulation of toxification genes (CYP1A1, CYP1A2, or CYP1B).


[1397] e) Upregulated in obese, hyperglycemic mouse liver and adipose. AHR nuclear translocator (ARNT) and AHR interacting protein (AIP) are also upregulated.


[1398] Expression analysis was performed as described in Example C.


[1399] O. Human Neutral Amino Acid Transporter B-Like Protein—CG96736-01 Discovery Process


[1400] The following sections describe the study design(s) and the techniques used to identify the Human Neutral Amino Acid Transporter B-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for Obesity and Diabetes.
457Studies:MB.04Obese vs Lean Mice (Genetic)


[1401] Study Statement: A number of genetic models of obesity have been studied, most prominently in mouse and rat, but only a few causative genes have been identified. Polygenic mouse models of obesity have been evaluated by GeneCalling in order to identify the set of genes differentially expressed in obese vs. lean animals. This strategy should lead to the discovery of drug targets for the prevention and/or treatment of obesity.


[1402] Species #1 Mouse—Strains: AKR and C57BL/6J


[1403] Human Neutral Amino Acid Transporter B: This is a Na+-dependent neutral amino acid transporter that exhibits high affinity electroneutral uptake of neutral amino acids such as L-alanine, L-serine, L-threonine, L-cysteine and L-glutamine. This transporter prefers neutral amino acids without bulky or branched side chains. It is localized to the plasma membrane and has eight putative transmembrane segments. It appears to be a Type IIIa membrane protein with an N-terminal cytoplasmic tail and a C-terminal extracellular segment. A connection between this transporter and obesity and/or diabetes has not previously been reported.


[1404] SPECIES #1—A gene fragment of the mouse Neutral Amino Acid Transporter B was initially found to be up-regulated by 6 fold in the adipose tissue of obese mice (AKR) relative to non-obese mice (C57BL/6J) using CuraGen's GeneCalling™ method of differential gene expression. Two differentially expressed mouse gene fragments migrating, at approximately 138 and 347 nucleotides in length (FIGS. 1A, 1B for Sequence 1A, and FIGS. 1C and 1D for Sequence 1B respectively—vertical line) were definitively identified as a component of the Mouse Neutral Amino Acid Transporter B cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The electropherogramatic peaks corresponding to the gene fragment of the mouse Neutral Amino Acid Transporter B are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 138 nt length are ablated in the sample from both the obese and non-obese mice.


[1405] The direct sequences of the 138.4 and 346.7 nucleotide-long gene fragments and the gene-specific primers used for competitive PCR are indicated on the cDNA sequence of the Mouse Neutral Amino Acid Transporter B are shown below in bold. The gene-specific primers at the 5′ and 3′ ends of the fragment are in italics. Competitive PCR Primer for the Mouse Neutral Amino Acid Transporter B (peak at 138.4) is below.
458TABLE O1Sequence #1A Gene Sequence(fragment from 564 to 700 in bold. band size: 137)(SEQ ID NO:678)CCAGAGAGGACCAGAGTGCGAAAGCAGGTGGTTGCTGCGGTTCCCGTGACCGGGTGCGCCGCTGCATTCGCGCCAACCTGCTGGTGCTGCTCACGGTGGCTGCGGTGGTGGCTGGCGTGGGGCTGGGGCTGGGGGTCTCGGCGGCGGGCGGTGCTGACGCGCTGGGTCCCGCGCGCTTGACCGCTTTCGCCTTCCCGGGAGAGCTGCTGCTGCGTCTGCTGAAGATGATCATCCTGCCGCTCGTGGTGTGCAGCCTGATCGGAGGTGCAGCCAGCTTGGACCCTAGCGCGCTCGGTCGTGTGGGCGCCTGGGCGCTGCTCTTTTTCCTGGTCACCACACTGCTCGCGTCGGCGCTCGGCGTGGGTTTGGCCCTGGCGCTGAAGCCGGGCGCCGCCGTTACCGCCATCACCTCCATCAACGACTCTGTTGTAGACCCCTGTGCCCGCAGTGCACCAACCAAAGAGGTGCTGGATTCCTTTCTAGATCTCGTGAGGAATATTTTCCCCTCCAATCTGGTGTCTGCTGCCTTCCGCTCTTTTGCTACCTCATATGAACCCAAAGACAACTCATGTAAAATACCGCAATCCTGTATCCAGCGGGAGATAAATTCAACCATGGTCCAGCTTCTCTGTCAGCTGGAGGGAATGAACATCCTGGGCCTGGTGGTCTTCGCTATCGTCTTTCGTGTGGCTCTGCGGAAGCTGGGGCCCGAGGGTGAGCTGCTCATTCGTTTCTTCAACTCCTTCAATGATGCCACCATGGTCCTGGTCTCCTGGATTATGTGGTACGCACCCGTTGGAATCCTGTTCCTGGTGGCCAGCAAGATTGTGGAGATGAAAGACGTCCGCCAGCTCTTCATCAGCCTCGGCAAATACATTCTGTGCTGCCTGCTGGGCCACGCCATCCACGGGCTCCTGGTTCTGCCTCTCATCTACTTCCTCTTCACCCGCAAAAATCCCTATCGATTCCTGTGGGGCATCATGACACCCCTGOCCACTGCTTTCGCGACCTCTTCTAGCTCTGCCACCTTGCCTCTGATGATGAAGTGTGTAGAGGAGAAGAATCGTGTGGCCAAACACATCAGCCGGTTCATCCTAC(gene length is 1668, only region from 83 to 1180 shown)


[1406] Competitive PCR Primer for the Mouse Neutral Amino Acid Transporter B (peak at 346.7): (The gene-specific primers at the 5′ and 3′ ends of the fragment are in italics.)
459TABLE O2Sequence #1B Gene Sequence(fragment from 1 to 347 in italics, band size: 347)(SEQ ID NO:679)GGATCCCTGCCGCACCGACACTGGATGCTGTGGCTGTGACCCTGGGGAAGAGAAGAGCGGAGATGGCAGAATCATGGGGGCGGGGCCTCCTGCCACAGCCCCTGGCACTCACACGATGGTGATGATCTTCACGAAGTCCAGGGACACCCCGTTTAGTTGTGCGATGAACACTGCCGCCACACACTGGAACAGCGCCGCCCCGTCCATGTTGACCGTGGCGCCGATGGGTAGGATGAACCGGCTGATGTGTTTGGCCACACCATTCTTCTCCTCTACACACTTCATCATCAGAGGCAAGGTGGCAGAGCTAGAAGAGGTCCCGAAAGCAGTGGCCAGGGGTGTCATGA(gene length is 347, only region from 1 to 347 shown)


[1407] Tables O3 shows differentially expressed mouse neutral amino acid transporter B gene fragment, Sequence #1A, from Discovery Study MB.04, and Table O4 shows differentially expressed mouse neutral amino acid transporter B gene fragment, Sequence #1B, from Discovery Study MB.04.
460TABLE O5Human Neutral Amino Acid Transporter B Gene Sequence>CG96736-01       2885 nt(SEQ ID NO:680)CGGCACGCCCGGGAGGCTTTCTCTGGCTGGTAACCGCTACTCCCGGACACCAGACCACCGCCTTCCGTACACAGGGGCCCGCATCCCACCCTCCCGGACCTAAGAGCCTGGGTCCCCTGTTTCCGGAGTCCGCTTCCCGGCCCCCAGATTCTGGCATCCCAGCCCTCAGTGTCCAAGACCCAGGCAGCCCGGGTCCCCGCCTCCCGGATCCAGGCGTCCGGGATCTGCGCCACCAGAACCTAGCCTCCTGCAGACCTCCGCCATCTGGGGGCACTCAACCTCCTGGAGCCAAGGGCCCCACGTCCCACCCAGAGAAACTCTCGTATTCCCAGCTCCTAGGGCCAAGGAACCCGGGCGCTCCGAACTCCCAGCTTTCGGACATCTGGCACACGGGGCAGAGCAGAGAAGCCTCAGCGCCCAGCCTGGGGAATTTAAACACTCCAGCTTCCAAGAGCCAAGGAACTTCAGTGCTGTGAACTCACAACTCTAAGGAGCCCTCCAAAGTTCCAGTCTCCAGGTGCTGTTACTCAACTCAGTCCTAGGAACGTCGGGTCCTGGGAAGGAGCCCAAGCGCTCCCAGCCAGCTTCCAGGCGCTAAGAAACCCCGGTGCTTCCCATCATGGTGGCCGATCCTCCTCGAGACTCCAAGGGGCTCGCAGCGGCGGAGCCACCGCCAACGGGGGCCTGGCAGCTGGCCTCCATCGAGGACCAAGGCGCGGCAGCAGGCGGCTACTGCGGTTCCCGGGACCTGGTGCGCCGCTGCCTTCGAGCCAACCTGCTTGTGCTGCTGACAGTGGTGGCCGTGGTGGCCGGCGTGGCGCTGGGACTGGGGGTGTCGGGGGCCGGGGGTGCGCTGGCGTTGGGCCCGGGAGCGCTTGAGGCCTTCGTCTTCCCGGGCGAGCTGCTGCTGCGTCTGCTGCGGATGATCATCTTGCCGCTGGTGGTGTGCAGCTTGATCGGCGGCGCCGCCAGCCTGGACCCCGGCGCGCTCGGCCGTCTGGGCGCCTGGGCGCTGCTCTTTTTCCTGGTCACCACGCTGCTGGCGTCGGCGCTCGGAGTGGGCTTGGCGCTGGCTCTGCAGCCGGGCGCCGCCTCCGCCGCCATCAACGCCTCCGTGGGAGCCGCGGGCAGTGCCGAAAATGCCCCCAGCAAGGAGGTGCTCGATTCGTTCCTGGATCTTGCGAGAAATATCTTCCCTTCCAACCTGGTGTCAGCAGCCTTTCGCTCATACTCTACCACCTATGAAGAGAGGAATATCACCGGAACCAGGGTGAAGGTGCCCGTGGGGCAGGAGGTGGAGGGGATGAACATCCTGGGCTTGGTAGTGTTTGCCATCGTCTTTGGTGTGGCGCTGCGGAAGCTGGGGCCTGAAGGGGAGCTGCTTATCCGCTTCTTCAACTCCTTCAATGAGGCCACCATGGTTCTGGTCTCCTGGATCATGTGGTACGCCCCTGTGGGCATCATGTTCCTGGTGGCTGGCAAGATCGTGGAGATGGAGGATGTGGGTTTACTCTTTGCCCGCCTTGGCAAGTACATTCTGTGCTGCCTGCTGGGTCACGCCATCCATGGGCTCCTGGTACTGCCCCTCATCTACTTCCTCTTCACCCGCAAAAACCCCTACCGCTTCCTGTGGGGCATCGTGACGCCGCTGGCCACTGCCTTTGGGACCTCTTCCAGTTCCGCCACGCTGCCGCTGATGATGAAGTGCGTGGAGGAGAATAATGGCGTGGCCAAGCACATCAGCCGTTTCATCCTGCCCATCGGCGCCACCGTCAACATGGACGGTGCCGCGCTCTTCCAGTGCGTGGCCGCAGTGTTCATTGCACAGCTCAGCCAGCAGTCCTTGGACTTCGTAAAGATCATCACCATCCTGGTCACGGCCACAGCGTCCAGCGTGGGGGCAGCGGGCATCCCTGCTGGAGGTGTCCTCACTCTGGCCATCATCCTCGAAGCAGTCAACCTCCCGGTCGACCATATCTCCTTGATCCTGGCTGTGGACTGGCTAGTCGACCGGTCCTGTACCGTCCTCAATGTAGAAGGTGACGCTCTGGGGGCAGGACTCCTCCAAAATTATGTGGACCGTACGGAGTCGAGAAGCACAGAGCCTGAGTTGATACAAGTGAAGAGTGAGCTGCCCCTGGATCCGCTGCCAGTCCCCACTGAGGAAGGAAACCCCCTCCTCAAACACTATCGGGGGCCCGCAGGGGATGCCACGGTCGCCTCTGAGAAGGAATCAGTCATGTAAACCCCGGGAGGGACCTTCCCTGCCCTGCTGGGGGTGCTCTTTGGACACTGGATTATGAGGAATGGATAAATGGATGAGCTAGGGCTCTGGGGGTCTGCCTGCACACTCTGGGGAGCCAGGGGCCCCAGCACCCTCCAGGACAGGAGATCTGGGATGCCTGGCTGCTGGAGTACATGTGTTCACAAGGGTTACTCCTCAAAACCCCCAGTTCTCACTCATGTCCCCAACTCAAGGCTAGAAAACAGCAAGATGGAGAAATAATGTTCTGCTGCGTCCCCACCGTGACCTGCCTGGCCTCCCCTGTCTCAGGGAGCAGGTCACAGGTCACCATGGGGAATTCTAGCCCCCACTGGGGGGATGTTACAACACCATGCTGGTTATTTTGGCGGCTGTAGTTGTGGGGGGATGTGTGTGTGCACGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCTGTGACCTCCTGTCCCCATGGTACGTCCCACCCTGTCCCCAGATCCCCTATTCCTCCCACAATAACAGAAACACTCCCAGGGACTCTGGGGAGAGGCTGAGGACAAATACCTGCTGTCACTCCAGAGGACATTTTTTTTAGCAATAAAATTGAGTGTCAACTATTAAAAAAAAAAAAAAAAAA


[1408]

461





TABLE O6








Human Neutral Amino Acid Transporter B Protein Sequence
















ORF Start: 620      ORF Stop: 2243      Frame: 2



>CG96736-01-prot  541 aa








(SEQ ID NO:681)









MVADPPRDSKGLAAAEPPPTGAWQLASIEDQGAAAGGYCGSRDLVRRCLRANLLVLLTVVAVVAGVALGLGVSGAGGALA






LGPGALEAFVFPGELLLRLLEMIILPLVVCSLIGGAASLDPGALGRLGAWALLFFLVTTLLASALGVGLALALQPGAASA





AINASVGAAGSAENAPSKEVLDSFLDLARNIFPSNLVSAAFRSYSTTYEERNITGTRVKVPVGQEVEGMNILGLVVFAIV





FGVALRKLGPEGELLIRFFNSFNEATMVLVSWIMWYAPVGIMFLVAGKIVEMEDVGLLFARLGKYILCCLLGHAIHGLLV





LPLIYFLFTRKNPYRFLWGIVTPLATAFGTSSSSATLPLMMKCVEENNGVAKHISRFILPIGATVNMDGAALFQCVAAVF





IAQLSQQSLDFVKIITILVTATASSVGAAGIPAGGVLTLAIILEAVNLPVDHISLILAVDWLVDRSCTVLNVEGDALGAG





LLQNYVDRTESRSTEPELIQVKSELPLDPLPVPTEEGNPLLKHYRGPAGDATVASEKESVM










[1409] The following is an alignment of the protein sequences of the human (CG96736-01) and mouse versions of the Neutral Amino Acid Transporter B: 80% overall homology.


[1410] In addition to the human version of the neutral amino acid transporter B identified as being differentially expressed in the experimental study, no other variant has been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen. See the table below for SNPs identified. The preferred variant of all those identified, to be used for screening purposes, is CG96736-01.
462TABLE O8The variants of the Human Neutral Amino AcidTransporter B obtained from direct cloningand/or public databases.DNA PositionStrandAllelesAA PositionAA Change272PlusC:T0N/A => N/A281PlusT:C0N/A => N/A1484PlusA:G289Ile => Val2021PlusA:G468Thr => Ala2036PlusG:A473Glu => Lys2074MinusC:T485Tyr => Tyr2074MinusC:T485Tyr => Tyr2153PlusG:C512Val => Leu2157PlusC:T513Pro => Leu2160PlusC:T514Thr => Ile2329PlusG:A0N/A => N/A


[1411] Table O9. RTQ-PCR Human Expression Profiles


[1412] Quantitative expression analysis of clones in various cells and tissues was performed as described in Example C.


[1413] CG96736-01: Neutral amino acid transporter B—isoform 1


[1414] Expression of gene CG96736-01 was assessed using the primer-probe set Ag4075, described in Tables OAA and. Results of the RTQ-PCR runs are shown in Tables OAC, OAD and OAF.
463TABLE OAAProbe Name Ag4075StartSEQ IDPrimersSequencesLengthPositionNOForward5′-cgagaaatatcttcccttccaa-3′221182441ProbeTET-5′-tgtcagcagcctttcgctcatactct-3′-TAMRA261209442Reverse5′-ttccggtgatattcctctcttc-3′221244443


[1415]

464





TABLE OAC










General_screening_panel_v1.4










Rel.
Rel.



Exp. (%)
Exp. (%)



Ag4075,
Ag4075,



Run
Run


Tissue Name
212696066
218525356












Adipose
0.0
1.3


Melanoma* Hs688(A).T
14.4
23.2


Melanoma* Hs688(B).T
19.1
29.9


Melanoma* M14
9.5
12.7


Melanoma* LOXIMVI
8.1
12.9


Melanoma* SK-MEL-5
5.9
14.2


Squamous cell carcinoma SCC-4
5.1
10.2


Testis Pool
1.4
1.9


Prostate ca.* (bone met) PC-3
9.5
13.6


Prostate Pool
1.1
1.5


Placenta
1.1
1.3


Uterus Pool
0.1
0.2


Ovarian ca. OVCAR-3
6.5
8.0


Ovarian ca. SK-OV-3
8.1
9.9


Ovarian ca. OVCAR-4
9.2
16.4


Ovarian ca. OVCAR-5
28.1
32.1


Ovarian ca. IGROV-1
23.0
33.2


Ovarian ca. OVCAR-8
10.3
16.4


Ovary
0.5
0.8


Breast ca. MCF-7
15.7
17.2


Breast ca. MDA-MB-231
10.4
15.6


Breast ca. BT 549
9.9
18.7


Breast ca. T47D
53.2
51.8


Breast ca. MDA-N
4.7
6.3


Breast Pool
0.6
0.6


Trachea
3.6
5.3


Lung
0.1
0.1


Fetal Lung
2.4
4.0


Lung ca. NCI-N417
1.6
0.0


Lung ca. LX-1
81.8
82.4


Lung ca. NCI-H146
0.4
0.8


Lung ca. SHP-77
6.8
8.5


Lung ca. A549
9.8
15.8


Lung ca. NCI-H526
2.1
2.5


Lung ca. NCI-H23
4.3
4.2


Lung ca. NCI-H460
9.2
16.2


Lung ca. HOP-62
4.4
4.5


Lung ca. NCI-H522
9.5
10.0


Liver
0.0
0.1


Fetal Liver
2.9
4.3


Liver ca. HepG2
6.7
7.9


Kidney Pool
1.1
1.2


Fetal Kidney
0.3
0.5


Renal ca. 786-0
5.1
9.5


Renal ca. A498
3.1
5.0


Renal ca. ACHN
5.1
5.9


Renal ca. UO-31
2.6
4.2


Renal ca. TK-10
9.7
14.8


Bladder
1.0
1.8


Gastric ca. (liver met.) NCI-N87
41.5
42.0


Gastric ca. KATO III
25.5
22.8


Colon ca. SW-948
4.4
5.6


Colon ca. SW480
100.0
100.0


Colon ca.* (SW480 met) SW620
41.5
50.0


Colon ca. HT29
10.2
13.6


Colon ca. HCT-116
13.0
20.9


Colon ca. CaCo-2
12.0
14.5


Colon cancer tissue
5.0
8.4


Colon ca. SW1116
14.7
15.9


Colon ca. Colo-205
24.7
29.5


Colon ca. SW-48
3.6
4.7


Colon Pool
0.7
1.1


Small Intestine Pool
0.5
0.6


Stomach Pool
0.8
0.8


Bone Marrow Pool
0.2
0.4


Fetal Heart
0.1
0.1


Heart Pool
0.2
0.3


Lymph Node Pool
1.2
1.0


Fetal Skeletal Muscle
0.2
0.2


Skeletal Muscle Pool
0.2
0.3


Spleen Pool
0.7
0.5


Thymus Pool
0.8
0.9


CNS cancer (glio/astro) U87-MG
20.0
20.3


CNS cancer (glio/astro) U-118-MG
11.2
12.9


CNS cancer (neuro; met) SK-N-AS
6.9
8.9


CNS cancer (astro) SF-539
9.3
12.0


CNS cancer (astro) SNB-75
36.1
55.5


CNS cancer (glio) SNB-19
30.1
37.6


CNS cancer (glio) SF-295
58.6
60.7


Brain (Amygdala) Pool
0.0
0.1


Brain (cerebellum)
0.1
0.2


Brain (fetal)
0.2
0.3


Brain (Hippocampus) Pool
0.1
0.1


Cerebral Cortex Pool
0.0
0.1


Brain (Substantia nigra) Pool
0.1
0.1


Brain (Thalamus) Pool
0.0
0.1


Brain (whole)
0.2
0.2


Spinal Cord Pool
0.2
0.3


Adrenal Gland
0.3
0.6


Pituitary gland Pool
0.1
0.3


Salivary Gland
3.0
2.8


Thyroid (female)
0.1
0.1


Pancreatic ca. CAPAN2
7.9
12.2


Pancreas Pool
1.3
1.2










[1416]

465





TABLE OAD










General_screening_panel_v1.5











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4075,

Ag4075,



Run

Run


Tissue Name
228714883
Tissue Name
228714883













Adipose
1.0
Renal ca. TK-10
9.8


Melanoma* Hs688(A).T
18.0
Bladder
1.4


Melanoma* Hs688(B).T
17.4
Gastric ca. (liver met.) NCI-N87
35.4


Melanoma* M14
9.5
Gastric ca. KATO III
19.9


Melanoma* LOXIMVI
9.0
Colon ca. SW-948
4.4


Melanoma* SK-MEL-5
8.7
Colon ca. SW480
100.0


Squamous cell carcinoma SCC-4
5.8
Colon ca.* (SW480 met) SW620
32.8


Testis Pool
1.2
Colon ca. HT29
9.9


Prostate ca.* (bone met) PC-3
10.8
Colon ca. HCT-116
15.2


Prostate Pool
1.5
Colon ca. CaCo-2
11.1


Placenta
1.1
Colon cancer tissue
5.1


Uterus Pool
0.3
Colon ca. SW1116
7.2


Ovarian ca. OVCAR-3
6.2
Colon ca. Colo-205
23.7


Ovarian ca. SK-OV-3
7.5
Colon ca. SW-48
3.2


Ovarian ca. OVCAR-4
12.5
Colon Pool
0.7


Ovarian ca. OVCAR-5
20.2
Small Intestine Pool
0.4


Ovarian ca. IGROV-1
23.8
Stomach Pool
0.7


Ovarian ca. OVCAR-8
11.2
Bone Marrow Pool
0.2


Ovary
0.6
Fetal Heart
0.1


Breast ca. MCF-7
14.4
Heart Pool
0.2


Breast ca. MDA-MB-231
14.1
Lymph Node Pool
0.7


Breast ca. BT 549
8.4
Fetal Skeletal Muscle
0.2


Breast ca. T47D
2.1
Skeletal Muscle Pool
0.4


Breast ca. MDA-N
3.6
Spleen Pool
0.3


Breast Pool
0.5
Thymus Pool
0.5


Trachea
4.6
CNS cancer (glio/astro) U87-MG
12.5


Lung
0.1
CNS cancer (glio/astro) U-118-MG
8.5


Fetal Lung
2.6
CNS cancer (neuro; met) SK-N-AS
5.5


Lung ca. NCI-N417
1.9
CNS cancer (astro) SF-539
8.4


Lung ca. LX-1
81.8
CNS cancer (astro) SNB-75
13.1


Lung ca. NCI-H146
0.6
CNS cancer (glio) SNB-19
27.2


Lung ca. SHP-77
7.7
CNS cancer (glio) SF-295
53.2


Lung ca. A549
11.8
Brain (Amygdala) Pool
0.0


Lung ca. NCI-H526
2.1
Brain (cerebellum)
0.1


Lung ca. NCI-H23
3.5
Brain (fetal)
0.2


Lung ca. NCI-H460
8.8
Brain (Hippocampus) Pool
0.0


Lung ca. HOP-62
3.5
Cerebral Cortex Pool
0.1


Lung ca. NCI-H522
7.5
Brain (Substantia nigra) Pool
0.1


Liver
0.0
Brain (Thalamus) Pool
0.1


Fetal Liver
2.9
Brain (whole)
0.2


Liver ca. HepG2
6.2
Spinal Cord Pool
0.1


Kidney Pool
0.8
Adrenal Gland
0.4


Fetal Kidney
0.3
Pituitary gland Pool
0.2


Renal ca. 786-0
5.6
Salivary Gland
2.7


Renal ca. A498
3.4
Thyroid (female)
0.1


Renal ca. ACHN
4.9
Pancreatic ca. CAPAN2
9.7


Renal ca. UO-31
2.4
Pancreas Pool
0.8










[1417]

466





TABLE OAE










Panel 5 Islet











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4075,

Ag4075,



Run

Run


Tissue Name
186511155
Tissue Name
186511155













97457_Patient-02go_adipose
7.6
94709_Donor 2 AM - A_adipose
45.7


97476_Patient-07sk_skeletal
2.9
994710_Donor 2 AM - B_adipose
27.4


muscle


97477_Patient-07ut_uterus
3.5
94711_Donor 2 AM - C_adipose
15.2


97478_Patient-07pl_placenta
5.0
94712_Donor 2 AD - A_adipose
62.9


99167_Bayer_Patient 1
30.6
94713_Donor 2 AD - B_adipose
66.4


97482_Patient-08ut_uterus
4.6
94714_Donor 2 AD - C_adipose
57.4


97483_Patient-08pl_placenta
3.8
94742_Donor 3 U - A_Mesenchymal
36.1




Stem Cells


97486_Patient-09sk_skeletal
0.3
94743_Donor 3 U - B_Mesenchymal
62.4


muscle

Stem Cells


97487_Patient-09ut_uterus
8.3
94730_Donor 3 AM - A_adipose
34.9


97488_Patient-09pl_placenta
3.4
94731_Donor 3 AM - B_adipose
17.2


97492_Patient-10ut_uterus
7.5
94732_Donor 3 AM - C_adipose
22.4


97493_Patient-10pl_placenta
5.1
94733_Donor 3 AD - A_adipose
100.0


97495_Patient-11go_adipose
6.4
94734_Donor 3 AD - B_adipose
32.3


97496_Patient-11sk_skeletal
1.3
94735_Donor 3 AD - C_adipose
66.9


muscle


97497_Patient-11ut_uterus
11.6
77138_Liver_HepG2untreated
31.4


97498_Patient-11pl_placenta
3.9
73556_Heart_Cardiac stromal cells
3.6




(primary)


97500_Patient-12go_adipose
8.5
81735_Small Intestine
6.4


97501_Patient-12sk_skeletal
2.7
72409_Kidney_Proximal Convoluted
3.8


muscle

Tubule


97502_Patient-12ut_uterus
8.7
82685_Small intestine_Duodenum
1.9


97503_Patient-12pl_placenta
3.1
90650_Adrenal_Adrenocortical
1.4




adenoma


94721_Donor 2 U -
40.1
72410_Kidney_HRCE
14.9


A_Mesenchymal Stem Cells


94722_Donor 2 U -
23.7
72411_Kidney_HRE
11.1


B_Mesenchymal Stem Cells


94723_Donor 2 U -
52.5
73139_Uterus_Uterine smooth
17.4


C_Mesenchymal Stem Cells

muscle cells










[1418] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1419] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the Human Neutral Amino Acid Transporter B would be beneficial in the treatment of obesity and/or diabetes.


[1420] The pathophysiologic basis of obesity in the AKR mouse is not known. Neutral amino acid transporter B (NATB) is upregulated 6-fold in adipose tissue of obese AKR versus normal C57L mice. NATB transports the gluconeogenic amino acids L-alanine and L-glutamine across the plasma membrane into the cell. Phosphoenolpyruvate carboxykinase, the rate-limiting gluconeogenic enzyme, is also increased 3-fold in adipose tissue of AKR versus C57L mice. Thus, excess neutral amino acid transport and glucose production may lead to increased triglyceride synthesis in adipose tissue, resulting in obesity in the AKR mouse. The data from this genetic comparison indicates that inhibition of NATB may be an effective treatment for the prevention of obesity in human populations.


[1421] Methods of Use for the Compositions of the Invention


[1422] The protein similarity information, expression pattern, cellular localization, and map location for the protein and nucleic acid disclosed herein suggest that this protein may have important structural and/or physiological functions characteristic of the Human Neutral Amino Acid Transporter B family. Therefore, the nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed.


[1423] The nucleic acids and proteins of the invention have applications in the diagnosis and/or treatment of various diseases and disorders. For example, the compositions of the present invention will have efficacy for the treatment of patients suffering from: obesity and/or diabetes. These materials are further useful in the generation of antibodies that bind immunospecifically to the substances of the invention for use in diagnostic and/or therapeutic methods.


[1424] P. Human Cytosolic HMG CoA Synthase-Like Protein—CG97025-01


[1425] The following sections describe the study design(s) and the techniques used to identify the Cytosolic HMG CoA synthase-encoded protein and any variants, thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for obesity and/or diabetes.


[1426] Studies:MB.04: Mean vs. Obese Genetic mouse model


[1427] MB.04 A large number of mouse strains have been identified that differ in body mass and composition. The AKR and NZB strains are obese, the SWR, C57L and C57BL/6 strains are of average weight whereas the SM/J and Cast/Ei strains are lean. Understanding the gene expression differences in the major metabolic tissues from these strains will elucidate the pathophysiologic basis for obesity. These specific strains of rat were chosen for differential gene expression analysis because quantitative trait loci (QTL) for body weight and related traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1428] Species #1 Mouse Strains NZB vs SMJ


[1429] Cytoplasmic HMG CoA synthase mediates an early step in cholesterol biosynthesis. This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA Reductase.


[1430] SPECIES #1—A gene fragment of the mouse cytosolic HMG CoA synthase was initially found to be up-regulated by 7 fold in the liver of the NZB mouse relative to the SMJ mouse strain using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed mouse gene fragment migrating, at approximately 312 nucleotides in length (FIGS. 1A and 1B.—vertical line) was definitively identified as a component of the mouse Cytosolic HMG CoA synthase cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat Cytosolic HMG CoA synthase are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 312 nt in length are ablated in the sample from both the NZB and SMJ mice.


[1431] Competitive PCR Primer for the Human Cytosolic HMG CoA Synthase


[1432] Confirmatory Result—Human Cytosolic HMG CoA synthase (Discovery Study MB.04): The direct sequence of the 312 nucleotide-long gene fragment and the gene-specific primers used for competitive PC are indicated in italic. The gene-specific primers at the 5′ and 3′ ends of the fragment are in bold.
467TABLE P1Human Cytosolic HMG CoA synthase Gene Sequence(Identified fragment from 101 to 412 in italic. band size: 312)(SEQ ID NO:444)GTATTTCTGTGTTTTGTTTGTTTTTGTATCCGTTCGAAAATTTAACCCACATTTTCACATAGTGAAAATTTCACATGGTCTGATTAGCCAAAAAAGAATAAGATCTAGAAGTAGAACTCACACCATTTTTTTTCTTAACTTTGATTTCTAAAACAACAAAAACTACCACATGAGCTGAATAAGAAAATTCACTAGCAACTTCTCTCCATGATTTTTGGTGCTGAACAATCACATCACCCTCAGACTCTAAAATACAGGTAGTTCCAACTAATGTACAGAACTAAATTTCTTAACCTTATTTCCGTTTAATTCTCTGAAGTTTCAGTTATCTAAAATAAATGTGTAATGTTTCAGATTGCAAGGTGATAAGTAATGTAGCATTTGTAAGATACTCTTGTCAATATTAACTAGTAGGATTTTGATTTGTACAGTTTTAATTGGTTAAAATGATCTCATTTTAACATCCACTGCTATAGATGAATAATGTAACTTCAGATTTAATGAATGGTGGGGAGATGGTGCATGTAATTTTTTTGCAAGTATTGAGAGTTCTGTATGTTTTGAAAAGAGTAATTTTAACCTTTGGGTGCCAAGAAGTGGGTTTTCTCAGAGTCCATTGCCGGCAATGGGCAAGCCTGGCGGTACTGGCACGGAGCGTTAACCACACCTTTCTAATAGCAAGGCCAATAACTTTGAAATAAAGTTTTAGACAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG


[1433]

468





TABLE P2








Nucleotide and protein sequence of Human Cytosolic HMG CoA synthase:
















C097025-01









(SEQ ID NO:445)









CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTTGGGATTGTTGC






CCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGCGAAGTATACCA





TTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTT





ATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGT





GAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATCCATGCTATGGAG





GCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGAT





ATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTT





AATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTA





TAGTAGATCAGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATCTGTCTACTGCAAAAAGATCCATGCC





CAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACT





GGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAAAGATAAAAATAGTATCTATAGTGGCC





TGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAA





CTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCT





TGCATCTCTTCTAGCACAGTAOTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTG





CCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCCGCGTCTGCTCTTGATAAAATAACAGCAACTTTATGTGATCTT





AAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATCTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTT





GGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAA





GAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAG





CATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGA





ACATTAAGATACTCTGTGAGGTGCAAGACTTCAGCGTGGCGTGGGCATGGGGTGGGGGTATGGGAACAGTTCG










[1434]

469





TABLE P3








Human Cytosolic HMG CoA synthase Protein Sequence
















ORF Start: 22      ORF Stop: 1582      Frame: 1



CG97025-01-prot   520 aa








(SEQ ID NO:467)









MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDOVDAGKYTIGLCQAKMGFCTDREDINSLCMTVVQNLMERNN






LSYDCIGRLEVGTETITDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGQTAAVFNAVNWIESSSWDGRYALVVAGDIAV





YATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQ





WQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASS





ELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLACKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASL





CDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHS





NIATEHIPSPAKKVPRLPATAAEPEAAVISNGEH










[1435] The following is an alignment of the protein sequences of the human (CG97025-01; SEQ ID NO:468), rat (J05210) and mouse (AF332052; SEQ ID NO:469) versions of the Cytosolic HMG CoA synthase.


[1436] The variants of the human Cytosolic HMG CoA synthase obtained from direct cloning and/or public databases. In addition to the human version of the Cytosolic HMG CoA synthase identified as being differentially expressed in the experimental study, no other variants have been identified by direct sequencing of cDNAs derived from many different human tissues and from sequences in public databases. No splice-form variants have been identified at CuraGen.


[1437] RTQ-PCR Results—Human Cytosolic HMG CoA synthase: The quantitative expression of various clones was assessed as described in Example C. Expression of gene CG97025-01 was assessed using the primer-probe set Ag4087, described in Table PAA. Results of the RTQ-PCR runs are shown in Tables PAB and PAC.
470TABLE PAAProbe Name Ag4087StartSEQ IDPrimersLengthPositionNOForward5′-ttcagtatatggttcccttgca-3′221062470ProbeTET-5′-tgttctagcacagtactcacctcagca-3′-TAMRA271086471Reverse5′-actccaattctcttccctgcta-3′221115472


[1438]

471





TABLE PAB










General_screening_panel_v1.4











Reel. Exp. (%)

Reel. Exp. (%)



Ag4087,

Ag4087,



Run

Run


Tissue Name
219430028
Tissue Name
219430028













Adipose
2.3
Renal ca. TK-10
24.7


Melanoma* Hs688(A).T
3.2
Bladder
17.6


Melanoma* Hs688(B).T
8.8
Gastric ca. (liver met.) NCI-N87
23.3


Melanoma* M14
18.6
Gastric ca. KATO III
79.6


Melanoma* LOXIMVI
4.4
Colon ca. SW-948
14.2


Melanoma* SK-MEL-5
21.6
Colon ca. SW480
10.7


Squamous cell carcinoma
39.5
Colon ca.* (SW480 met) SW620
9.5


SCC-4


Testis Pool
6.2
Colon ca. HT29
20.4


Prostate ca.* (bone met) PC-3
6.8
Colon ca. HCT-116
24.8


Prostate Pool
0.6
Colon ca. CaCo-2
63.3


Placenta
1.3
Colon cancer tissue
5.0


Uterus Pool
2.0
Colon ca. SW1116
3.3


Ovarian ca. OVCAR-3
80.7
Colon ca. Colo-205
10.2


Ovarian ca. SK-OV-3
26.6
Colon ca. SW-48
7.9


Ovarian ca. OVCAR-4
7.1
Colon Pool
2.8


Ovarian ca. OVCAR-5
31.4
Small Intestine Pool
3.2


Ovarian ca. IGROV-1
58.6
Stomach Pool
2.7


Ovarian ca. OVCAR-8
3.5
Bone Marrow Pool
1.2


Ovary
11.4
Fetal Heart
4.1


Breast ca. MCF-7
17.9
Heart Pool
1.5


Breast ca. MDA-MB-231
12.9
Lymph Node Pool
2.9


Breast ca. BT 549
38.7
Fetal Skeletal Muscle
0.2


Breast ca. T47D
55.9
Skeletal Muscle Pool
2.4


Breast ca. MDA-N
7.9
Spleen Pool
4.4


Breast Pool
2.4
Thymus Pool
3.3


Trachea
3.8
CNS cancer (glio/astro) U87-MG
10.4


Lung
1.2
CNS cancer (glio/astro)
8.7




U-118-MG


Fetal Lung
9.9
CNS cancer (neuro; met)
19.3




SK-N-AS


Lung ca. NCI-N417
22.4
CNS cancer (astro) SF-539
42.9


Lung ca. LX-1
16.8
CNS cancer (astro) SNB-75
26.1


Lung ca. NCI-H146
28.5
CNS cancer (glio) SNB-19
51.8


Lung ca. SHP-77
36.6
CNS cancer (glio) SF-295
11.4


Lung ca. A549
25.2
Brain (Amygdala) Pool
11.3


Lung ca. NCI-H526
25.7
Brain (cerebellum)
3.3


Lung ca. NCI-H23
16.7
Brain (fetal)
52.5


Lung ca. NCI-H460
4.5
Brain (Hippocampus) Pool
17.7


Lung ca. HOP-62
23.0
Cerebral Cortex Pool
17.8


Lung ca. NCI-H522
9.2
Brain (Substantia nigra) Pool
15.9


Liver
1.3
Brain (Thalamus) Pool
26.2


Fetal Liver
100.0
Brain (whole)
14.9


Liver ca. HepG2
50.7
Spinal Cord Pool
13.2


Kidney Pool
6.0
Adrenal Gland
23.0


Fetal Kidney
8.8
Pituitary gland Pool
1.2


Renal ca. 786-0
31.0
Salivary Gland
0.8


Renal ca. A498
4.1
Thyroid (female)
2.1


Renal ca. ACHN
20.9
Pancreatic ca. CAPAN2
56.6


Renal ca. UO-31
18.6
Pancreas Pool
4.9










[1439]

472





TABLE PAC










Panel 5 Islet











Rel.

Rel.



Exp. (%)

Exp. (%)



Ag4087,

Ag4087,



Run

Run


Tissue Name
186511156
Tissue Name
186511156













97457_Patient-02go_adipose
1.8
94709_Donor 2 AM - A_adipose
10.6


97476_Patient-07sk_skeletal
2.3
94710_Donor 2 AM - B_adipose
7.2


muscle


97477_Patient-07ut_uterus
3.6
94711_Donor 2 AM - C_adipose
2.6


97478_Patient-07pl_placenta
5.5
94712_Donor 2 AD - A_adipose
14.0


99167_Bayer Patient 1
13.8
94713_Donor 2 AD - B_adipose
13.7


97482_Patient-08ut_uterus
1.3
94714_Donor 2 AD - C_adipose
14.8


97483_Patient-08pl_placenta
4.5
94742_Donor 3 U - A_Mesenchymal
7.2




Stem Cells


97486_Patient-09sk_skeletal
0.4
94743_Donor 3 U - B_Mesenchymal
8.5


muscle

Stem Cells


97487_Patient-09ut_uterus
3.0
94730_Donor 3 AM - A_adipose
12.9


97488_Patient-09pl_placenta
3.5
94731_Donor 3 AM - B_adipose
7.9


97492_Patient-10ut_uterus
2.7
94732_Donor 3 AM - C_adipose
7.7


97493_Patient-10pl_placenta
12.6
94733_Donor 3 AD - A_adipose
28.9


97495_Patient-11go_adipose
2.2
94734_Donor 3 AD - B_adipose
5.6


97496_Patient-11sk_skeletal
2.9
94735_Donor 3 AD - C_adipose
23.8


muscle


97497_Patient-11ut_uterus
4.5
77138_Liver_HepG2untreated
100.0


97498_Patient-11pl_placenta
3.3
73556_Heart_Cardiac stromal cells
2.9




(primary)


97500_Patient-12go_adipose
5.2
81735_Small Intestine
10.3


97501_Patient-12sk_skeletal
6.2
72409_Kidney_Proximal Convoluted
8.8


muscle

Tubule


97502_Patient-12ut_uterus
4.7
82685_Small intestine_Duodenum
1.8


97503_Patient-12pl_placenta
6.2
90650_Adrenal_Adrenocortical
10.2




adenoma


94721_Donor 2 U -
7.9
72410_Kidney_HRCE
42.6


A_Mesenchymal Stem Cells


94722_Donor 2 U -
5.0
72411_Kidney_HRE
38.2


B_Mesenchymal Stem Cells


94723_Donor 2 U -
9.5
73139_Uterus_Uterine smooth
4.7


C_Mesenchymal Stem Cells

muscle cells










[1440] General_screening_panel_v1.4 Summary: Method of Use Panel


[1441] Panel 5 Islet Summary: Method of Use Panel


[1442] Biochemistry and Cell Line Expression


[1443] The following summarizes the biochemistry surrounding the human Cytosolic HMG CoA synthase enzyme. Cell lines expressing the Cytosolic HMG CoA synthase enzyme can be obtained from the RTQ-PCR results shown above. These and other Cytosolic HMG CoA synthase enzyme expressing cell lines could be used for screening purposes.


[1444] Biochemistry: Cytosolic HMG CoA synthase condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA Reductase. This condensation reaction occurs above the diversion point to farnesoic acid in the cholesterol biosynthetic pathway. The reaction proceeds as follows:


acetyl-CoA+H2O+acetoacetyl-CoA=(S)-3-hydroxy-3-methylglutaryl-CoA+CoA


[1445] Rationale for Use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics.


[1446] HMG CoA synthase is up-regulated 7-fold in a genetic model of obesity characterized by apparent LXR alpha activation (adipose induction of ApoE, malic enzyme, ATP citrate lyase, FAS, SCD), thus HMG CoA synthase provides the substrate for LXRa ligands. Inhibition of this enzyme may be a treatment for the prevention or treatment of obesity.


[1447] Taken in total, the data indicates that an inhibitor of the human Cytosolic HMG CoA synthase enzyme would be beneficial in the treatment of obesity and/or diabetes.



Other Embodiments

[1448] Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.


Claims
  • 1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188.
  • 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188.
  • 3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188.
  • 4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188.
  • 5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
  • 6. A composition comprising the polypeptide of claim 1 and a carrier.
  • 7. A kit comprising, in one or more containers, the composition of claim 6.
  • 8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
  • 9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and (c) determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
  • 10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
  • 11. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: (a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
  • 12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
  • 13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; (b) contacting the cell with a composition comprising a candidate substance; and (c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
  • 14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising: (a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and (c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
  • 15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
  • 16. A method for modulating the activity of the polypeptide of claim 1, the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • 17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • 18. The method of claim 17, wherein the subject is a human.
  • 19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188 or a biologically active fragment thereof.
  • 20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188.
  • 21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
  • 22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188.
  • 23. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 188.
  • 24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consisting of 2n−1, wherein n is an integer between 1 and 188.
  • 25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n−1, wherein n is an integer between 1 and 188, or a complement of said nucleotide sequence.
  • 26. A vector comprising the nucleic acid molecule of claim 20.
  • 27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
  • 28. A cell comprising the vector of claim 26.
  • 29. An antibody that immunospecifically binds to the polypeptide of claim 1.
  • 30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
  • 31. The antibody of claim 29, wherein the antibody is a humanized antibody.
  • 32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and (c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
  • 33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • 34. The method of claim 33 wherein the cell or tissue type is cancerous.
  • 35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • 36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188.
  • 37. The method of claim 36 wherein the cell is a bacterial cell.
  • 38. The method of claim 36 wherein the cell is an insect cell.
  • 39. The method of claim 36 wherein the cell is a yeast cell.
  • 40. The method of claim 36 wherein the cell is a mammalian cell.
  • 41. A method of producing the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:2n−1, wherein n is an integer between 1 and 188.
  • 42. The method of claim 41 wherein the cell is a bacterial cell.
  • 43. The method of claim 41 wherein the cell is an insect cell.
  • 44. The method of claim 41 wherein the cell is a yeast cell.
  • 45. The method of claim 41 wherein the cell is a mammalian cell.
RELATED APPLICATIONS

[0001] This application claims priority to provisional patent applications U.S. Ser. No. 60/336,881, filed Dec. 3, 2001; U.S. Ser. No. 60/336,820, filed Dec. 5, 2001; U.S. Ser. No. 60/361,770, filed Mar. 5, 2002; U.S. Ser. No. 60/364,238, filed Mar. 13, 2002; U.S. Ser. No. 60/338,285, filed Dec. 7, 2001; U.S. Ser. No. 60/383,829, filed May 29, 2002; U.S. Ser. No. 60/383,534, filed May 28, 2002; U.S. Ser. No. 60/338,318, filed Dec. 7, 2001; U.S. Ser. No. 60/404,676, filed Aug. 20, 2002; U.S. Ser. No. 60/353,288, filed February, 2001; U.S. Ser. No. 60/362,230, filed Mar. 5, 2002; U.S. Ser. No. 60/364,181, filed Mar. 13, 2002; U.S. Ser. No. 60/339,022, filed Dec. 10, 2001; U.S. Ser. No. 60/353,286, filed Feb. 1, 2002; U.S. Ser. No. 60/364,978, filed Mar. 15, 2002; U.S. Ser. No. 60/338,989, filed Dec. 10, 2001; U.S. Ser. No. 60/359,956, filed Feb. 27, 2002; U.S. Ser. No. 60/360,964, filed Feb. 28, 2002; U.S. Ser. No. 60/405,698, filed Aug. 23, 2002; U.S. Ser. No. 60/339,314, filed Dec. 11, 2001; U.S. Ser. No. 60/339,517, filed Dec. 11, 2001; U.S. Ser. No. 60/361,256, filed Feb. 28, 2002; U.S. Ser. No. 60/339,611, filed Dec. 11, 2001; U.S. Ser. No. 60/359,914, filed Feb. 27, 2002; U.S. Ser. No. 60/405,400, filed Aug. 23, 2002; U.S. Ser. No. 60/339,516, filed Dec. 11, 2001; U.S. Ser. No. 60/359,626, filed Feb. 26, 2002; U.S. Ser. No. 60/361,264, filed Feb. 28, 2002; U.S. Ser. No. 60/365,025, filed Mar. 15, 2002; U.S. Ser. No. 60/405,684, filed Aug. 23, 2002; U.S. Ser. No. 60/340,981, filed Dec. 12, 2001; U.S. Ser. No. 60/340,565, filed Dec. 14,2001; U.S. Ser. No. 60/359,671, filed Feb. 26, 2002; U.S. Ser. No. 60/360,924, filed Feb. 28, 2002; U.S. Ser. No. 60/381,004, filed May 16, 2002; U.S. Ser. No. 60/401,315, filed Aug. 6, 2002; U.S. Ser. No. 60/340,608, filed Dec. 14, 2001; U.S. Ser. No. 60/405,687, filed Aug. 23, 2002; U.S. Ser. No. 60/340,440, filed Dec. 14, 2001; U.S. Ser. No. 60/361,028, filed Feb. 28, 2002; U.S. Ser. No. 60/341,144, filed Dec. 14, 2001; U.S. Ser. No. 60/359,599, filed Feb. 26, 2002; U.S. Ser. No. 60/393,332, filed Jul. 2, 2002; U.S. Ser. No. 60/341,346, filed Dec. 12, 2001; U.S. Ser. No. 60/341,477, filed Dec. 17, 2001; U.S. Ser. No. 60/381,495, filed May 17, 2002; U.S. Ser. No. 60/401,788, filed Aug. 7, 2002; U.S. Ser. No. 60/341,540, filed Dec. 17, 2001; U.S. Ser. No. 60/383,744, filed May 28, 2002; U.S. Ser. No. 60/342,592, filed Dec. 20, 2001; U.S. Ser. No. 60/340,390, filed Dec. 14, 2001; U.S. Ser. No. 60/344,903, filed Dec. 31, 2001; U.S. Ser. No. 60/384,024, filed May 29, 2002; U.S. Ser. No. 60/373,288, filed Apr. 17, 2002; U.S. Ser. No. 60/380,981, filed May 15, 2002; U.S. Ser. No. 60/406,353, filed Aug. 26, 2002; U.S. Ser. No. 60/______ (given attorney docket number 21402-532 IFC-04), filed Oct. 31, 2002; and U.S. Ser. No. 60/341,768, filed Dec. 18, 2001; each of which is incorporated herein by reference in its entirety.

Provisional Applications (57)
Number Date Country
60336881 Dec 2001 US
60336820 Dec 2001 US
60361770 Mar 2002 US
60364238 Mar 2002 US
60338285 Dec 2001 US
60383829 May 2002 US
60383534 May 2002 US
60338318 Dec 2001 US
60404676 Aug 2002 US
60353288 Feb 2002 US
60362230 Mar 2002 US
60364181 Mar 2002 US
60339022 Dec 2001 US
60353286 Feb 2002 US
60364978 Mar 2002 US
60338989 Dec 2001 US
60359956 Feb 2002 US
60360964 Feb 2002 US
60405698 Aug 2002 US
60339314 Dec 2001 US
60339517 Dec 2001 US
60361256 Feb 2002 US
60339611 Dec 2001 US
60359914 Feb 2002 US
60405400 Aug 2002 US
60339516 Dec 2001 US
60359626 Feb 2002 US
60361264 Feb 2002 US
60365025 Mar 2002 US
60405684 Aug 2002 US
60340981 Dec 2001 US
60340565 Dec 2001 US
60359671 Feb 2002 US
60360924 Feb 2002 US
60381004 May 2002 US
60401315 Aug 2002 US
60340608 Dec 2001 US
60405687 Aug 2002 US
60340440 Dec 2001 US
60361028 Feb 2002 US
60341144 Dec 2001 US
60359599 Feb 2002 US
60393332 Jul 2002 US
60341346 Dec 2001 US
60341477 Dec 2001 US
60381495 May 2002 US
60401788 Aug 2002 US
60341540 Dec 2001 US
60383744 May 2002 US
60342592 Dec 2001 US
60340390 Dec 2001 US
60344903 Dec 2001 US
60384024 May 2002 US
60373288 Apr 2002 US
60380981 May 2002 US
60406353 Aug 2002 US
60341768 Dec 2001 US