Nuclease profiling system

Information

  • Patent Grant
  • 11920181
  • Patent Number
    11,920,181
  • Date Filed
    Wednesday, January 27, 2021
    3 years ago
  • Date Issued
    Tuesday, March 5, 2024
    2 months ago
Abstract
Some aspects of this disclosure provide strategies, methods, and reagents for determining nuclease target site preferences and specificity of site-specific endonucleases. Some methods provided herein utilize a novel “one-cut” strategy for screening a library of concatemers comprising repeat units of candidate nuclease target sites and constant insert regions to identify library members that can been cut by a nuclease of interest via sequencing of an intact target site adjacent and identical to a cut target site. Some aspects of this disclosure provide strategies, methods, and reagents for selecting a site-specific endonuclease based on determining its target site preferences and specificity. Methods and reagents for determining target site preference and specificity are also provided.
Description
BACKGROUND OF THE INVENTION

Site-specific endonucleases theoretically allow for the targeted manipulation of a single site within a genome and are useful in the context of gene targeting as well as for therapeutic applications. In a variety of organisms, including mammals, site-specific endonucleases have been used for genome engineering by stimulating either non-homologous end joining or homologous recombination. In addition to providing powerful research tools, site-specific nucleases also have potential as gene therapy agents, and two site-specific endonucleases have recently entered clinical trials: one, CCR5-2246, targeting a human CCR-5 allele as part of an anti-HIV therapeutic approach (NCT00842634, NCT01044654, NCT01252641), and the other one, VF24684, targeting the human VEGF-A promoter as part of an anti-cancer therapeutic approach (NCT01082926).


Specific cleavage of the intended nuclease target site without or with only minimal off-target activity is a prerequisite for clinical applications of site-specific endonuclease, and also for high-efficiency genomic manipulations in basic research applications, as imperfect specificity of engineered site-specific binding domains has been linked to cellular toxicity and undesired alterations of genomic loci other than the intended target. Most nucleases available today, however, exhibit significant off-target activity, and thus may not be suitable for clinical applications. Technology for evaluating nuclease specificity and for engineering nucleases with improved specificity are therefore needed.


SUMMARY OF THE INVENTION

Some aspects of this disclosure are based on the recognition that the reported toxicity of some engineered site-specific endonucleases is based on off-target DNA cleavage, rather than on off-target binding alone. Some aspects of this disclosure provide strategies, compositions, systems, and methods to evaluate and characterize the sequence specificity of site-specific nucleases, for example, RNA-programmable endonucleases, such as Cas9 endonucleases, zinc finger nucleases (ZNFs), homing endonucleases, or transcriptional activator-like element nucleases (TALENs).


The strategies, methods, and reagents of the present disclosure represent, in some aspects, an improvement over previous methods for assaying nuclease specificity. For example, some previously reported methods for determining nuclease target site specificity profiles by screening libraries of nucleic acid molecules comprising candidate target sites relied on a “two-cut” in vitro selection method which requires indirect reconstruction of target sites from sequences of two half-sites resulting from two adjacent cuts of the nuclease of a library member nucleic acid (see e.g., PCT Application WO 2013/066438; and Pattanayak, V., Ramirez, C. L., Joung, J. K. & Liu, D. R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods 8, 765-770 (2011), the entire contents of each of which are incorporated herein by reference). In contrast to such “two-cut” strategies, the methods of the present disclosure utilize an optimized “one cut” screening strategy, which allows for the identification of library members that have been cut at least once by the nuclease. As explained in more detail elsewhere herein, the “one-cut” selection strategies provided herein are compatible with single end high-throughput sequencing methods and do not require computational reconstruction of cleaved target sites from cut half-sites, thus streamlining the nuclease profiling process.


Some aspects of this disclosure provide in vitro selection methods for evaluating the cleavage specificity of endonucleases and for selecting nucleases with a desired level of specificity. Such methods are useful, for example, for characterizing an endonuclease of interest and for identifying a nuclease exhibiting a desired level of specificity, for example, for identifying a highly specific endonuclease for clinical applications.


Some aspects of this disclosure provide methods of identifying suitable nuclease target sites that are sufficiently different from any other site within a genome to achieve specific cleavage by a given nuclease without any or at least minimal off-target cleavage. Such methods are useful for identifying candidate nuclease target sites that can be cleaved with high specificity on a genomic background, for example, when choosing a target site for genomic manipulation in vitro or in vivo.


Some aspects of this disclosure provide methods of evaluating, selecting, and/or designing site-specific nucleases with enhanced specificity as compared to current nucleases. For example, provided herein are methods that are useful for selecting and/or designing site-specific nucleases with minimal off-target cleavage activity, for example, by designing variant nucleases with binding domains having decreased binding affinity, by lowering the final concentration of the nuclease, by choosing target sites that differ by at least three base pairs from their closest sequence relatives in the genome, and, in the case of RNA-programmable nucleases, by selecting a guide RNA that results in the fewest off-target sites being bound and/or cut.


Compositions and kits useful in the practice of the methods described herein are also provided.


Some aspects of this disclosure provide methods for identifying a target site of a nuclease. In some embodiments, the method comprises (a) providing a nuclease that cuts a double-stranded nucleic acid target site, wherein cutting of the target site results in cut nucleic acid strands comprising a 5′ phosphate moiety; (b) contacting the nuclease of (a) with a library of candidate nucleic acid molecules, wherein each nucleic acid molecule comprises a concatemer of a sequence comprising a candidate nuclease target site and a constant insert sequence, under conditions suitable for the nuclease to cut a candidate nucleic acid molecule comprising a target site of the nuclease; and (c) identifying nuclease target sites cut by the nuclease in (b) by determining the sequence of an uncut nuclease target site on the nucleic acid strand that was cut by the nuclease in step (b). In some embodiments, the nuclease creates blunt ends. In some embodiments, the nuclease creates a 5′ overhang. In some embodiments, the determining of step (c) comprises ligating a first nucleic acid adapter to the end of a nucleic acid strand that was cut by the nuclease in step (b) via 5′-phosphate-dependent ligation. In some embodiments, the nucleic acid adapter is provided in double-stranded form. In some embodiments, the 5′-phosphate-dependent ligation is a blunt end ligation. In some embodiments, the method comprises filling in the 5′-overhang before ligating the first nucleic acid adapter to the nucleic acid strand that was cut by the nuclease. In some embodiments, the determining of step (c) further comprises amplifying a fragment of the concatemer cut by the nuclease that comprises an uncut target site via a PCR reaction using a PCR primer that hybridizes with the adapter and a PCR primer that hybridizes with the constant insert sequence. In some embodiments, the method further comprises enriching the amplified nucleic acid molecules for molecules comprising a single uncut target sequence. In some embodiments, the step of enriching comprises a size fractionation. In some embodiments, the determining of step (c) comprises sequencing the nucleic acid strand that was cut by the nuclease in step (b), or a copy thereof obtained via PCR. In some embodiments, the library of candidate nucleic acid molecules comprises at least 108, at least 109, at least 1010, at least 1011, or at least 1012 different candidate nuclease cleavage sites. In some embodiments, the nuclease is a therapeutic nuclease which cuts a specific nuclease target site in a gene associated with a disease. In some embodiments, the method further comprises determining a maximum concentration of the therapeutic nuclease at which the therapeutic nuclease cuts the specific nuclease target site, and does not cut more than 10, more than 5, more than 4, more than 3, more than 2, more than 1, or no additional nuclease target sites. In some embodiments, the method further comprises administering the therapeutic nuclease to a subject in an amount effective to generate a final concentration equal or lower than the maximum concentration. In some embodiments, the nuclease is an RNA-programmable nuclease that forms a complex with an RNA molecule, and wherein the nuclease:RNA complex specifically binds a nucleic acid sequence complementary to the sequence of the RNA molecule. In some embodiments, the RNA molecule is a single-guide RNA (sgRNA). In some embodiments, the sgRNA comprises 5-50 nucleotides, 10-30 nucleotides, 15-25 nucleotides, 18-22 nucleotides, 19-21 nucleotides, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides. In some embodiments, the nuclease is a Cas9 nuclease. In some embodiments, the nuclease target site comprises a [sgRNA-complementary sequence]-[protospacer adjacent motif (PAM)] structure, and the nuclease cuts the target site within the sgRNA-complementary sequence. In some embodiments, the sgRNA-complementary sequence comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides. In some embodiments, the nuclease comprises an unspecific nucleic acid cleavage domain. In some embodiments, the nuclease comprises a FokI cleavage domain. In some embodiments, the nuclease comprises a nucleic acid cleavage domain that cleaves a target sequence upon cleavage domain dimerization. In some embodiments, the nuclease comprises a binding domain that specifically binds a nucleic acid sequence. In some embodiments, the binding domain comprises a zinc finger. In some embodiments, the binding domain comprises at least 2, at least 3, at least 4, or at least 5 zinc fingers. In some embodiments, the nuclease is a Zinc Finger Nuclease. In some embodiments, the binding domain comprises a Transcriptional Activator-Like Element. In some embodiments, the nuclease is a Transcriptional Activator-Like Element Nuclease (TALEN). In some embodiments, the nuclease is an organic compound. In some embodiments, the nuclease comprises an enediyne functional group. In some embodiments, the nuclease is an antibiotic. In some embodiments, the compound is dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin, or a derivative thereof. In some embodiments, the nuclease is a homing endonuclease.


Some aspects of this disclosure provide libraries of nucleic acid molecules, in which each nucleic acid molecule comprises a concatemer of a sequence comprising a candidate nuclease target site and a constant insert sequence of 10-100 nucleotides. In some embodiments, the constant insert sequence is at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, at least 65, at least 70, at least 75, at least 80, or at least 95 nucleotides long. In some embodiments, the constant insert sequence is not more than 15, not more than 20, not more than 25, not more than 30, not more than 35, not more than 40, not more than 45, not more than 50, not more than 55, not more than 60, not more than 65, not more than 70, not more than 75, not more than 80, or not more than 95 nucleotides long. In some embodiments, the candidate nuclease target sites are sites that can be cleaved by an RNA-programmable nuclease, a Zinc Finger Nuclease (ZFN), a Transcription Activator-Like Effector Nuclease (TALEN), a homing endonuclease, an organic compound nuclease, or an enediyne antibiotic (e.g., dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin). In some embodiments, the candidate nuclease target site can be cleaved by a Cas9 nuclease. In some embodiments, the library comprises at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, or at least 1012 different candidate nuclease target sites. In some embodiments, the library comprises nucleic acid molecules of a molecular weight of at least 0.5 kDa, at least 1 kDa, at least 2 kDa, at least 3 kDa, at least 4 kDa, at least 5 kDa, at least 6 kDa, at least 7 kDa, at least 8 kDa, at least 9 kDa, at least 10 kDa, at least 12 kDa, or at least 15 kDa. In some embodiments, the library comprises candidate nuclease target sites that are variations of a known target site of a nuclease of interest. In some embodiments, the variations of a known nuclease target site comprise 10 or fewer, 9 or fewer, 8 or fewer, 7 or fewer, 6 or fewer, 5 or fewer, 4 or fewer, 3 or fewer, or 2 or fewer mutations as compared to a known nuclease target site. In some embodiments, the variations differ from the known target site of the nuclease of interest by more than 5%, more than 10%, more than 15%, more than 20%, more than 25%, or more than 30% on average, distributed binomially. In some embodiments, the variations differ from the known target site by no more than 10%, no more than 15%, no more than 20%, no more than 25%, nor more than 30%, no more than 40%, or no more than 50% on average, distributed binomially. In some embodiments, the nuclease of interest is a Cas9 nuclease, a zinc finger nuclease, a TALEN, a homing endonuclease, an organic compound nuclease, or an enediyne antibiotic (e.g., dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin). In some embodiments, the candidate nuclease target sites are Cas9 nuclease target sites that comprise a [sgRNA-complementary sequence]-[PAM] structure, wherein the sgRNA-complementary sequence comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides.


Some aspects of this disclosure provide methods for selecting a nuclease that specifically cuts a consensus target site from a plurality of nucleases. In some embodiments, the method comprises (a) providing a plurality of candidate nucleases that cut the same consensus sequence; (b) for each of the candidate nucleases of step (a), identifying a nuclease target site cleaved by the candidate nuclease that differ from the consensus target site using a method provided herein; (c) selecting a nuclease based on the nuclease target site(s) identified in step (b). In some embodiments, the nuclease selected in step (c) is the nuclease that cleaves the consensus target site with the highest specificity. In some embodiments, the nuclease that cleaves the consensus target site with the highest specificity is the candidate nuclease that cleaves the lowest number of target sites that differ from the consensus site. In some embodiments, the candidate nuclease that cleaves the consensus target site with the highest specificity is the candidate nuclease that cleaves the lowest number of target sites that are different from the consensus site in the context of a target genome. In some embodiments, the candidate nuclease selected in step (c) is a nuclease that does not cleave any target site other than the consensus target site. In some embodiments, the candidate nuclease selected in step (c) is a nuclease that does not cleave any target site other than the consensus target site within the genome of a subject at a therapeutically effective concentration of the nuclease. In some embodiments, the method further comprises contacting a genome with the nuclease selected in step (c). In some embodiments, the genome is a vertebrate, mammalian, human, non-human primate, rodent, mouse, rat, hamster, goat, sheep, cattle, dog, cat, reptile, amphibian, fish, nematode, insect, or fly genome. In some embodiments, the genome is within a living cell. In some embodiments, the genome is within a subject. In some embodiments, the consensus target site is within an allele that is associated with a disease or disorder. In some embodiments, cleavage of the consensus target site results in treatment or prevention of a disease or disorder, e.g., amelioration or prevention of at least one sign and/or symptom of the disease or disorder. In some embodiments, cleavage of the consensus target site results in the alleviation of a sign and/or symptom of the disease or disorder. In some embodiments, cleavage of the consensus target site results in the prevention of the disease or disorder. In some embodiments, the disease is HIV/AIDS. In some embodiments, the allele is a CCR5 allele. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is cancer. In some embodiments, the allele is a VEGFA allele.


Some aspects of this disclosure provide isolated nucleases that have been selected according to a method provided herein. In some embodiments, the nuclease has been engineered to cleave a target site within a genome. In some embodiments, the nuclease is a Cas9 nuclease comprising an sgRNA that is complementary to the target site within the genome. In some embodiments, the nuclease is a Zinc Finger Nuclease (ZFN) or a Transcription Activator-Like Effector Nuclease (TALEN), a homing endonuclease, or an organic compound nuclease (e.g., an enediyne, an antibiotic nuclease, dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin, or a derivative thereof). In some embodiments, the nuclease has been selected based on cutting no other candidate target site, not more than one candidate target site, not more than two candidate target sites, not more than three candidate target sites, not more than four candidate target sites, not more than five candidate target sites, not more than six candidate target sites, not more than seven candidate target sites, not more than eight candidate target sites, not more than eight candidate target sites, not more than nine candidate target sites, or not more than ten candidate target sites in addition to its known nuclease target site.


Some aspects of this disclosure provide kits comprising a library of nucleic acid molecules comprising candidate nuclease target sites as provided herein. Some aspects of this disclosure provide kits comprising an isolated nuclease as provided herein. In some embodiments, the nuclease is a Cas9 nuclease. In some embodiments, the kit further comprises a nucleic acid molecule comprising a target site of the isolated nuclease. In some embodiments, the kit comprises an excipient and instructions for contacting the nuclease with the excipient to generate a composition suitable for contacting a nucleic acid with the nuclease. In some embodiments, the composition is suitable for contacting a nucleic acid within a genome. In some embodiments, the composition is suitable for contacting a nucleic acid within a cell. In some embodiments, the composition is suitable for contacting a nucleic acid within a subject. In some embodiments, the excipient is a pharmaceutically acceptable excipient.


Some aspects of this disclosure provide pharmaceutical compositions that are suitable for administration to a subject. In some embodiments, the composition comprises an isolated nuclease as provided herein. In some embodiments, the composition comprises a nucleic acid encoding such a nuclease. In some embodiments, the composition comprises a pharmaceutically acceptable excipient.


Other advantages, features, and uses of the invention will be apparent from the detailed description of certain non-limiting embodiments of the invention; the drawings, which are schematic and not intended to be drawn to scale; and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B. In vitro selection overview. (FIG. 1A) Cas9 complexed with a short guide RNA (sgRNA) recognizes ˜20 bases of a target DNA substrate that is complementary to the sgRNA sequence and cleaves both DNA strands. The white triangles represent cleavage locations. (FIG. 1B) A modified version of our previously described in vitro selection was used to comprehensively profile Cas9 specificity. A concatemeric pre-selection DNA library in which each molecule contains one of 1012 distinct variants of a target DNA sequence (white rectangles) was generated from synthetic DNA oligonucleotides by ligation and rolling-circle amplification. This library was incubated with a Cas9:sgRNA complex of interest. Cleaved library members contain 5′ phosphate groups (circles with “P”) and therefore are substrates for adapter ligation and PCR. The resulting amplicons were subjected to high-throughput DNA sequencing and computational analysis.



FIGS. 2A-2H. In vitro selection results for Cas9:CLTA1 sgRNA. Heat maps21 show the specificity profiles of Cas9:CLTA1 sgRNA v2.1 under enzyme-limiting conditions (FIGS. 2A, 2B), Cas9:CLTA1 sgRNA v1.0 under enzyme-saturating conditions (FIGS. 2C, 2D), and Cas9:CLTA1 sgRNA v2.1 under enzyme-saturating conditions (FIGS. 2E, 2F). Heat maps show all post-selection sequences (FIGS. 2A, 2C, 2E) or only those sequences containing a single mutation in the 20-base pair sgRNA-specified target site and two-base pair PAM (FIGS. 2B, 2D, 2F). Specificity scores of 1.0 and −1.0 corresponds to 100% enrichment for and against, respectively, a particular base pair at a particular position. Black boxes denote the intended target nucleotides. (FIG. 2G) Effect of Cas9:sgRNA concentration on specificity. Positional specificity changes between enzyme-limiting (200 nM DNA, 100 nM Cas9:sgRNA v2.1) and enzyme-saturating (200 nM DNA, 1000 nM Cas9:sgRNA v2.1) conditions, normalized to the maximum possible change in positional specificity, are shown for CLTA1. (FIG. 2H) Effect of sgRNA architecture on specificity. Positional specificity changes between sgRNA v1.0 and sgRNA v2.1 under enzyme-saturating conditions, normalized to the maximum possible change in positional specificity, are shown for CLTA1. See FIGS. 6-8, 25, and 26 for corresponding data for CLTA2, CLTA3, and CLTA4. Sequence Identifiers: The sgRNA sequences shown in (FIGS. 2A-2F) correspond to SEQ ID NO:1.



FIGS. 3A-3D. Target sites profiled in this study. (FIG. 3A) The 5′ end of the sgRNA has 20 nucleotides that are complementary to the target site. The target site contains an NGG motif (PAM) adjacent to the region of RNA:DNA complementarity. (FIG. 3B) Four human clathrin gene (CLTA) target sites are shown. (FIGS. 3C, 3D) Four human clathrin gene (CLTA) target sites are shown with sgRNAs. sgRNA v1.0 is shorter than sgRNA v2.1. The PAM is shown for each site. The non-PAM end of the target site corresponds to the 5′ end of the sgRNA. Sequence Identifiers: The sequences shown in (FIG. 3B), from top to bottom, are SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6; and SEQ ID NO:7. The sequences shown in (FIG. 3C), from top to bottom, are SEQ ID NO:8; SEQ ID NO:9; SEQ ID NO:10; SEQ ID NO:11; SEQ ID NO:12; SEQ ID NO:13; SEQ ID NO:14; SEQ ID NO:15; SEQ ID NO:16; SEQ ID NO:17; SEQ ID NO:18; and SEQ ID NO:19. The sequences shown in (FIG. 3D), from top to bottom, are SEQ ID NO:20; SEQ ID NO:21; SEQ ID NO:22; SEQ ID NO:23; SEQ ID NO:24; SEQ ID NO:25; SEQ ID NO:26; SEQ ID NO:27; SEQ ID NO:28; SEQ ID NO:29; SEQ ID NO:30; and SEQ ID NO:31.



FIG. 4. Cas9:guide RNA cleavage of on-target DNA sequences in vitro. Discrete DNA cleavage assays on an approximately 1-kb linear substrate were performed with 200 nM on-target site and 100 nM Cas9:v1.0 sgRNA, 100 nM Cas9:v2.1 sgRNA, 1000 nM Cas9:v1.0 sgRNA, and 1000 nM Cas9:v2.1 sgRNA for each of four CLTA target sites. For CLTA1, CLTA2, and CLTA4, Cas9:v2.1 sgRNA shows higher activity than Cas9:v1.0 sgRNA. For CLTA3, the activities of the Cas9:v1.0 sgRNA and Cas9:v2.1 sgRNA were comparable.



FIGS. 5A-5E. In vitro selection results for four target sites. In vitro selections were performed on 200 nM pre-selection library with 100 nM Cas9:sgRNA v2.1, 1000 nM Cas9:sgRNA v1.0, or 1000 nM Cas9:sgRNA v2.1. (FIG. 5A) Post-selection PCR products are shown for the 12 selections performed. DNA containing 1.5 repeats were quantified for each selection and pooled in equimolar amounts before gel purification and sequencing. (FIGS. 5B-5E) Distributions of mutations are shown for pre-selection (black) and post-selection libraries (colored). The post-selection libraries are enriched for sequences with fewer mutations than the pre-selection libraries. Mutations are counted from among the 20 base pairs specified by the sgRNA and the two-base pair PAM. P-values are <0.01 for all pairwise comparisons between distributions in each panel. P-values were calculated using t-tests, assuming unequal size and unequal variance.



FIGS. 6A-6F. In vitro selection results for Cas9:CLTA2 sgRNA. Heat maps24 show the specificity profiles of Cas9:CLTA2 sgRNA v2.1 under enzyme-limiting conditions (FIGS. 6A, 6B), Cas9:CLTA2 sgRNA v1.0 under enzyme-excess conditions (FIGS. 6C, 6D), and Cas9:CLTA2 sgRNA v2.1 under enzyme-excess conditions (FIGS. 6E, 6F). Heat maps show all post-selection sequences (FIGS. 6A, 6C, 6E) or only those sequences containing a single mutation in the 20-base pair sgRNA-specified target site and two-base pair PAM (FIGS. 6B, 6D, 6F). Specificity scores of 1.0 and −1.0 corresponds to 100% enrichment for and against, respectively, a particular base pair at a particular position. Black boxes denote the intended target nucleotides. Sequence Identifiers: The sgRNA sequences shown in (FIGS. 6A-6F) correspond to SEQ ID NO:32.



FIGS. 7A-7F. In vitro selection results for Cas9:CLTA3 sgRNA. Heat maps24 show the specificity profiles of Cas9:CLTA3 sgRNA v2.1 under enzyme-limiting conditions (FIGS. 7A, 7B), Cas9:CLTA3 sgRNA v1.0 under enzyme-excess conditions (FIGS. 7C, 7D), and Cas9:CLTA3 sgRNA v2.1 under enzyme-saturating conditions (FIG. 7E, 7F). Heat maps show all post-selection sequences (FIGS. 7A, 7C, 7E) or only those sequences containing a single mutation in the 20-base pair sgRNA-specified target site and two-base pair PAM (FIG. 7B, 7D, 7F). Specificity scores of 1.0 and −1.0 corresponds to 100% enrichment for and against, respectively, a particular base pair at a particular position. Black boxes denote the intended target nucleotides. Sequence Identifiers: The sgRNA sequences shown in (FIGS. 7A-7F) correspond to SEQ ID NO:32.



FIGS. 8A-8F. In vitro selection results for Cas9:CLTA4 sgRNA. Heat maps 24 show the specificity profiles of Cas9:CLTA4 sgRNA v2.1 under enzyme-limiting conditions (FIG. 8A, 8B), Cas9:CLTA4 sgRNA v1.0 under enzyme-excess conditions (FIGS. 8C, 8D), and Cas9:CLTA4 sgRNA v2.1 under enzyme-saturating conditions (FIGS. 8E, 8F). Heat maps show all post-selection sequences (FIGS. 8A, 8C, 8E) or only those sequences containing a single mutation in the 20-base pair sgRNA-specified target site and two-base pair PAM (FIGS. 8B, 8D, 8F). Specificity scores of 1.0 and −1.0 corresponds to 100% enrichment for and against, respectively, a particular base pair at a particular position. Black boxes denote the intended target nucleotides. Sequence Identifiers: The sgRNA sequences shown in (FIGS. 8A-8F) correspond to SEQ ID NO:33.



FIGS. 9A-9D. In vitro selection results as sequence logos. Information content is plotted 25 for each target site position (1-20) specified by CLTA1 (FIG. 9A), CLTA2 (FIG. 9B), CLTA3 (FIG. 9C), and CLTA4 (FIG. 9D) sgRNA v2.1 under enzyme-limiting conditions. Positions in the PAM are labelled “P1,” “P2,” and “P3.” Information content is plotted in bits. 2.0 bits indicates absolute specificity and 0 bits indicates no specificity.



FIGS. 10A-10L. Tolerance of mutations distal to the PAM for CLTA1. The maximum specificity scores at each position are shown for the Cas9:CLTA1 v2.1 sgRNA selections when considering only those sequences with on-target base pairs in gray, while allowing mutations in the first 1-12 base pairs (FIG. 10A-10L). The positions that are not constrained to on-target base pairs are indicated by dark bars. Higher specificity score values indicate higher specificity at a given position. The positions that were not allowed to contain any mutations (gray) were plotted with a specificity score of +1. For all panels, specificity scores were calculated from pre-selection library sequences and post-selection library sequences with an n≥5,130 and n≥74,538, respectively.



FIGS. 11A-11L. Tolerance of mutations distal to the PAM for CLTA2. The maximum specificity scores at each position are shown for the Cas9:CLTA2 v2.1 sgRNA selections when considering only those sequences with on-target base pairs in gray, while allowing mutations in the first 1-12 base pairs (FIG. 11A-11L). The positions that are not constrained to on-target base pairs are indicated by dark bars. Higher specificity score values indicate higher specificity at a given position. The positions that were not allowed to contain any mutations (gray) were plotted with a specificity score of +1. For all panels, specificity scores were calculated from pre-selection library sequences and post-selection library sequences with an n≥3,190 and n≥25,365, respectively.



FIGS. 12A-12L. Tolerance of mutations distal to the PAM for CLTA3. The maximum specificity scores at each position are shown for the Cas9:CLTA3 v2.1 sgRNA selections when considering only those sequences with on-target base pairs in gray, while allowing mutations in the first 1-12 base pairs (FIGS. 12A-12L). The positions that are not constrained to on-target base pairs are indicated by dark bars. Higher specificity score values indicate higher specificity at a given position. The positions that were not allowed to contain any mutations (gray) were plotted with a specificity score of +1. For all panels, specificity scores were calculated from pre-selection library sequences and post-selection library sequences with an n≥5,604 and n≥158,424, respectively.



FIGS. 13A-13L. Tolerance of mutations distal to the PAM for CLTA4. The maximum specificity scores at each position are shown for the Cas9:CLTA4 v2.1 sgRNA selections when considering only those sequences with on-target base pairs in gray, while allowing mutations in the first 1-12 base pairs (FIGS. 13A-13L). The positions that are not constrained to on-target base pairs are indicated by dark bars. Higher specificity score values indicate higher specificity at a given position. The positions that were not allowed to contain any mutations (gray) were plotted with a specificity score of +1. For all panels, specificity scores were calculated from pre-selection library sequences and post-selection library sequences with an n≥2,323 and n≥21,819, respectively.



FIGS. 14A-14L. Tolerance of mutations distal to the PAM in CLTA1 target sites. Distributions of mutations are shown for in vitro selection on 200 nM pre-selection library with 1000 nM Cas9:CLTA1 sgRNA v2.1. The number of mutations shown are in a 1-12 base pair target site subsequence farthest from the PAM (FIGS. 14A-14L) when the rest of the target site, including the PAM, contains only on-target base pairs. The pre-selection and post-selection distributions are similar for up to three base pairs, demonstrating tolerance for target sites with mutations in the three base pairs farthest from the PAM when the rest of the target sites have optimal interactions with the Cas9:sgRNA. For all panels, graphs were generated from pre-selection library sequences and post-selection library sequences with an n≥5,130 and n≥74,538, respectively.



FIGS. 15A-15L. Tolerance of mutations distal to the PAM in CLTA2 target sites. Distributions of mutations are shown for in vitro selection on 200 nM pre-selection library with 1000 nM Cas9:CLTA2 sgRNA v2.1. The number of mutations shown are in a 1-12 base pair target site subsequence farthest from the PAM (FIGS. 15A-15L) when the rest of the target site, including the PAM, contains only on-target base pairs. The pre-selection and post-selection distributions are similar for up to three base pairs, demonstrating tolerance for target sites with mutations in the three base pairs farthest from the PAM when the rest of the target sites have optimal interactions with the Cas9:sgRNA. For all panels, graphs were generated from pre-selection library sequences and post-selection library sequences with an n≥3,190 and n≥21,265, respectively.



FIGS. 16A-16L. Tolerance of mutations distal to PAM in CLTA3 target sites. Distributions of mutations are shown for in vitro selection on 200 nM pre-selection library with 1000 nM Cas9:CLTA3 sgRNA v2.1. The number of mutations shown are in a 1-12 base pair target site subsequence farthest from the PAM (FIGS. 16A-16L) when the rest of the target site, including the PAM, contains only on-target base pairs. The pre-selection and post-selection distributions are similar for up to three base pairs, demonstrating tolerance for target sites with mutations in the three base pairs farthest from the PAM when the rest of the target sites have optimal interactions with the Cas9:sgRNA. For all panels, graphs were generated from pre-selection library sequences and post-selection library sequences with an n≥5,604 and n≥158,424, respectively.



FIGS. 17A-17L. Tolerance of mutations distal to PAM in CLTA4 target sites. Distributions of mutations are shown for in vitro selection on 200 nM pre-selection library with 1000 nM Cas9:CLTA4 sgRNA v2.1. The number of mutations shown are in a 1-12 base pair target site subsequence farthest from the PAM (FIGS. 17A-17L) when the rest of the target site, including the PAM, contains only on-target base pairs. The pre-selection and post-selection distributions are similar for up to three base pairs, demonstrating tolerance for target sites with mutations in the three base pairs farthest from the PAM when the rest of the target sites have optimal interactions with the Cas9:sgRNA. For all panels, graphs were generated from pre-selection library sequences and post-selection library sequences with an n≥2,323 and n≥21,819, respectively.



FIGS. 18A-18D. Positional specificity patterns for 100 nM Cas9:sgRNA v2.1. Positional specificity, defined as the sum of the magnitude of the specificity score for each of the four possible base pairs recognized at a certain position in the target site, is plotted for each target site under enzyme-limiting conditions for sgRNA v2.1. The positional specificity is shown as a value normalized to the maximum positional specificity value of the target site. Positional specificity is highest at the end of the target site proximal to the PAM and is lowest in the middle of the target site and in the several nucleotides most distal to the PAM.



FIGS. 19A-19D. Positional specificity patterns for 1000 nM Cas9:sgRNA v1.0. Positional specificity, defined as the sum of the magnitude of the specificity score for each of the four possible base pairs recognized at a certain position in the target site, is plotted for each target site under enzyme-excess conditions with sgRNA v1.0. The positional specificity is shown as a value normalized to the maximum positional specificity value of the target site. Positional specificity is relatively constant across the target site but is lowest in the middle of the target site and in the several nucleotides most distal to the PAM.



FIGS. 20A-20D. Positional specificity patterns for 1000 nM Cas9:sgRNA v2.1. Positional specificity, defined as the sum of the magnitude of the specificity score for each of the four possible base pairs recognized at a certain position in the target site, is plotted for each target site under enzyme-excess conditions with sgRNA v2.1. The positional specificity is shown as a value normalized to the maximum positional specificity value of the target site. Positional specificity is relatively constant across the target site but is lowest in the middle of the target site and in the several nucleotides most distal to the PAM.



FIGS. 21A-21D. PAM nucleotide preferences. The abundance in the pre-selection library and post-selection libraries under enzyme-limiting or enzyme-excess conditions are shown for all 16 possible PAM dinucleotides for selections with CLTA1 (FIG. 21A), CLTA2 (FIG. 21B), CLTA3 (FIG. 21C), and CLTA4 (FIG. 21D) sgRNA v2.1. GG dinucleotides increased in abundance in the post-selection libraries, while the other possible PAM dinucleotides decreased in abundance after the selection.



FIGS. 22A-22D. PAM nucleotide preferences for on-target sites. Only post-selection library members containing no mutations in the 20 base pairs specified by the guide RNAs were included in this analysis. The abundance in the pre-selection library and post-selection libraries under enzyme-limiting and enzyme-excess conditions are shown for all 16 possible PAM dinucleotides for selections with CLTA1 (FIG. 22A), CLTA2 (FIG. 22B), CLTA3 (FIG. 22C), and CLTA4 (FIG. 22D) sgRNA v2.1. GG dinucleotides increased in abundance in the post-selection libraries, while the other possible PAM dinucleotides generally decreased in abundance after the selection, although this effect for the enzyme-excess concentrations of Cas9:sgRNA was modest or non-existent for many dinucleotides.



FIGS. 23A-23D. PAM dinucleotide specificity scores. The specificity scores under enzyme-limiting and enzyme-excess conditions are shown for all 16 possible PAM dinucleotides (positions 2 and 3 of the three-nucleotide NGG PAM) for selections with CLTA1 (FIG. 23A), CLTA2 (FIG. 23B), CLTA3 (FIG. 23C), and CLTA4 (FIG. 23D) sgRNA v2.1. The specificity score indicates the enrichment of the PAM dinucleotide in the post-selection library relative to the pre-selection library, normalized to the maximum possible enrichment of that dinucleotide. A specificity score of +1.0 indicates that a dinucleotide is 100% enriched in the post-selection library, and a specificity score of −1.0 indicates that a dinucleotide is 100% de-enriched. GG dinucleotides were the most enriched in the post-selection libraries, and AG, GA, GC, GT, and TG show less relative de-enrichment compared to the other possible PAM dinucleotides.



FIGS. 24A-24D. PAM dinucleotide specificity scores for on-target sites. Only post-selection library members containing no mutations in the 20 base pairs specified by the guide RNAs were included in this analysis. The specificity scores under enzyme-limiting and enzyme-excess conditions are shown for all 16 possible PAM dinucleotides (positions 2 and 3 of the three-nucleotide NGG PAM) for selections with CLTA1 (FIG. 24A), CLTA2 (FIG. 24B), CLTA3 (FIG. 24C), and CLTA4 (FIG. 24D) sgRNA v2.1. The specificity score indicates the enrichment of the PAM dinucleotide in the post-selection library relative to the pre-selection library, normalized to the maximum possible enrichment of that dinucleotide. A specificity score of +1.0 indicates that a dinucleotide is 100% enriched in the post-selection library, and a specificity score of −1.0 indicates that a dinucleotide is 100% de-enriched. GG dinucleotides were the most enriched in the post-selection libraries, AG and GA nucleotides were neither enriched or de-enriched in at least one selection condition, and GC, GT, and TG show less relative de-enrichment compared to the other possible PAM dinucleotides.



FIGS. 25A-25D. Effects of Cas9:sgRNA concentration on specificity. Positional specificity changes between enzyme-limiting (200 nM DNA, 100 nM Cas9:sgRNA v2.1) and enzyme-excess (200 nM DNA, 1000 nM Cas9:sgRNA v2.1) conditions are shown for selections with sgRNAs targeting CLTA1 (FIG. 25A), CLTA2 (FIG. 25B), CLTA3 (FIG. 25C), and CLTA4 (FIG. 25D) target sites. Lines indicate the maximum possible change in positional specificity for a given position. The highest changes in specificity occur proximal to the PAM as enzyme concentration is increased.



FIGS. 26A-26D. Effects of sgRNA architecture on specificity. Positional specificity changes between Cas9:sgRNA v1.0 and Cas9:sgRNA v2.1 under enzyme-excess (200 nM DNA, 1000 nM Cas9:sgRNA v2.1) conditions are shown for selections with sgRNAs targeting CLTA1 (FIG. 26A), CLTA2 (FIG. 26B), CLTA3 (FIG. 2C), and CLTA4 (FIG. 26D) target sites. Lines indicate the maximum possible change in positional specificity for a given position.



FIG. 27. Cas9:guide RNA cleavage of off-target DNA sequences in vitro. Discrete DNA cleavage assays on a 96-bp linear substrate were performed with 200 nM DNA and 1000 nM Cas9:CLTA4 v2.1 sgRNA for the on-target CLTA4 site (CLTA4-0) and five CLTA4 off-target sites identified by in vitro selection. Enrichment values shown are from the in vitro selection with 1000 nM Cas9:CLTA4 v2.1 sgRNA. CLTA4-1 and CLTA4-3 were the most highly enriched sequences under these conditions. CLTA4-2a, CLTA4-2b, and CLTA4-2c are two-mutation sequences that represent a range of enrichment values from high enrichment to no enrichment to high de-enrichment. Lowercase letters indicate mutations relative to the on-target CLTA4 site. The enrichment values are qualitatively consistent with the observed amount of cleavage in vitro. Sequence Identifiers: The sequences shown from top to bottom, are SEQ ID NO:34; SEQ ID NO:35; SEQ ID NO:36; SEQ ID NO:37; SEQ ID NO:38; and SEQ ID NO:39.



FIG. 28. Effect of guide RNA architecture and Cas9:sgRNA concentration on in vitro cleavage of an off-target site. Discrete DNA cleavage assays on a 96-bp linear substrate were performed with 200 nM DNA and 100 nM Cas9:v1.0 sgRNA, 100 nM Cas9:v2.1 sgRNA, 1000 nM Cas9:v1.0 sgRNA, or 1000 nM Cas9:v2.1 sgRNA for the CLTA4-3 off-target site (5′ GggGATGTAGTGTTTCCACtGGG 3′ (SEQ ID NO:39)-mutations are shown in lowercase letters). DNA cleavage is observed under all four conditions tested, and cleavage rates are higher under enzyme-excess conditions, or with v2.1 sgRNA compared with v1.0 sgRNA.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


The term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof. A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (e.g., viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNA species. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA molecule. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of which is hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L. expand/collapse author list McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, proteins comprising Cas9 or fragments thereof proteins are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to the corresponding fragment of wild type Cas9. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC 017053.1, SEQ ID NO:40 (nucleotide); SEQ ID NO:41 (amino acid)).









(SEQ ID NO: 1)


ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGG





ATGGGCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGG





TTCTGGGAAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCT





CTTTTATTTGGCAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGAC





AGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGG





AGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGA





CTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCC





TATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAA





CTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGATAAAGCGGAT





TTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCA





TTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAAAC





TATTTATCCAGTTGGTACAAATCTACAATCAATTATTTGAAGAAAACCCT





ATTAACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAG





TAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGA





GAAATGGCTTGTTTGGGAATCTCATTGCTTTGTCATTGGGATTGACCCCT





AATTTTAAATCAAATTTTGATTTGGCAGAAGATGCTAAATTACAGCTTTC





AAAAGATACTTACGATGATGATTTAGATAATTTATTGGCGCAAATTGGAG





ATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATT





TTACTTTCAGATATCCTAAGAGTAAATAGTGAAATAACTAAGGCTCCCCT





ATCAGCTTCAATGATTAAGCGCTACGATGAACATCATCAAGACTTGACTC





TTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATC





TTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGC





TAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGG





ATGGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGC





AAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGG





TGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAA





AAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTAT





TATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCG





GAAGTCTGAAGAAACAATTACCCCATGGAATTTTGAAGAAGTTGTCGATA





AAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAA





AATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTTATGAGTA





TTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAGGGAA





TGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGAT





TTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGA





TTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTG





AAGATAGATTTAATGCTTCATTAGGCGCCTACCATGATTTGCTAAAAATT





ATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGA





GGATATTGTTTTAACATTGACCTTATTTGAAGATAGGGGGATGATTGAGG





AAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAG





CTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGAT





TAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATTAGATTTTTTGA





AATCAGATGGTTTTGCCAATCGCAATTTTATGCAGCTGATCCATGATGAT





AGTTTGACATTTAAAGAAGATATTCAAAAAGCACAGGTGTCTGGACAAGG





CCATAGTTTACATGAACAGATTGCTAACTTAGCTGGCAGTCCTGCTATTA





AAAAAGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAAGTA





ATGGGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCA





GACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCG





AAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTT





GAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTACAAAA





TGGAAGAGACATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTG





ATTATGATGTCGATCACATTGTTCCACAAAGTTTCATTAAAGACGATTCA





ATAGACAATAAGGTACTAACGCGTTCTGATAAAAATCGTGGTAAATCGGA





TAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGAC





AACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACG





AAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAA





ACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCACAAATTT





TGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTATTCGA





GAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAA





AGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCC





ATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATAT





CCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGT





TCGTAAAATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAA





AATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATTACA





CTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGA





AACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCA





AAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAG





ACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAA





GCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGGTGGTTTTG





ATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAA





GGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAAT





TATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTA





AAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATAT





AGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGG





AGAATTACAAAAAGGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATT





TTTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGAAGAT





AACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGA





GATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATG





CCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCA





ATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAATCT





TGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATCGTAAAC





GATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATCC





ATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGA





CTGA













(SEQ ID NO: 2)


MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFGSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLADSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQIYNQLFEENP





INASRVDAKAILSARLSKSRRLENLIAQLPGEKRNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNSEITKAPLSASMIKRYDEHHQDLILLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMIRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGAYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKGILQTVKIVDELVKV





MGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV





ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFIKDDS





IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT





KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR





EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY





PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT





LANGEIRKRPLIEINGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ





TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK





GKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY





SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPED





NEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKP





IREQAENIIHLFTLINLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQS





ITGLYETRIDLSQLGGD






The term “concatemer,” as used herein in the context of nucleic acid molecules, refers to a nucleic acid molecule that contains multiple copies of the same DNA sequences linked in a series. For example, a concatemer comprising ten copies of a specific sequence of nucleotides (e.g., [XYZ]10), would comprise ten copies of the same specific sequence linked to each other in series, e.g., 5′-XYZXYZXYZXYZXYZXYZXYZXYZXYZXYZ-3′. A concatemer may comprise any number of copies of the repeat unit or sequence, e.g., at least 2 copies, at least 3 copies, at least 4 copies, at least 5 copies, at least 10 copies, at least 100 copies, at least 1000 copies, etc. An example of a concatemer of a nucleic acid sequence comprising a nuclease target site and a constant insert sequence would be [(target site)-(constant insert sequence)]300. A concatemer may be a linear nucleic acid molecule, or may be circular.


The terms “conjugating,” “conjugated,” and “conjugation” refer to an association of two entities, for example, of two molecules such as two proteins, two domains (e.g., a binding domain and a cleavage domain), or a protein and an agent, e.g., a protein binding domain and a small molecule. In some aspects, the association is between a protein (e.g., RNA-programmable nuclease) and a nucleic acid (e.g., a guide RNA). The association can be, for example, via a direct or indirect (e.g., via a linker) covalent linkage or via non-covalent interactions. In some embodiments, the association is covalent. In some embodiments, two molecules are conjugated via a linker connecting both molecules. For example, in some embodiments where two proteins are conjugated to each other, e.g., a binding domain and a cleavage domain of an engineered nuclease, to form a protein fusion, the two proteins may be conjugated via a polypeptide linker, e.g., an amino acid sequence connecting the C-terminus of one protein to the N-terminus of the other protein.


The term “consensus sequence,” as used herein in the context of nucleic acid sequences, refers to a calculated sequence representing the most frequent nucleotide residues found at each position in a plurality of similar sequences. Typically, a consensus sequence is determined by sequence alignment in which similar sequences are compared to each other and similar sequence motifs are calculated. In the context of nuclease target site sequences, a consensus sequence of a nuclease target site may, in some embodiments, be the sequence most frequently bound, or bound with the highest affinity, by a given nuclease. With respect to RNA-programmable nuclease (e.g., Cas9) target site sequences, the consensus sequence may, in some embodiments, be the sequence or region to which a gRNA, or a plurality of gRNAs, is expected or designed to bind, e.g., based on complementary base pairing.


The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a nuclease, a hybrid protein, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, the specific allele, genome, target site, cell, or tissue being targeted, and the agent being used.


The term “enediyne,” as used herein, refers to a class of bacterial natural products characterized by either nine- and ten-membered rings containing two triple bonds separated by a double bond (see, e.g., K. C. Nicolaou; A. L. Smith; E. W. Yue (1993). “Chemistry and biology of natural and designed enediynes”. PNAS 90 (13): 5881-5888; the entire contents of which are incorporated herein by reference). Some enediynes are capable of undergoing Bergman cyclization, and the resulting diradical, a 1,4-dehydrobenzene derivative, is capable of abstracting hydrogen atoms from the sugar backbone of DNA which results in DNA strand cleavage (see, e.g., S. Walker; R. Landovitz; W. D. Ding; G. A. Ellestad; D. Kahne (1992). “Cleavage behavior of calicheamicin gamma 1 and calicheamicin T”. Proc Natl Acad Sci U.S.A. 89 (10): 4608-12; the entire contents of which are incorporated herein by reference). Their reactivity with DNA confers an antibiotic character to many enediynes, and some enediynes are clinically investigated as anticancer antibiotics. Nonlimiting examples of enediynes are dynemicin, neocarzinostatin, calicheamicin, esperamicin (see, e.g., Adrian L. Smith and K. C. Bicolaou, “The Enediyne Antibiotics” J. Med. Chem., 1996, 39 (11), pp 2103-2117; and Donald Borders, “Enediyne antibiotics as antitumor agents,” Informa Healthcare; 1st edition (Nov. 23, 1994, ISBN-10: 0824789385; the entire contents of which are incorporated herein by reference).


The term “homing endonuclease,” as used herein, refers to a type of restriction enzymes typically encoded by introns or inteins Edgell D R (February 2009). “Selfish DNA: homing endonucleases find a home”. Curr Biol 19 (3): R115-R117; Jasin M (June 1996). “Genetic manipulation of genomes with rare-cutting endonucleases”. Trends Genet 12 (6): 224-8; Burt A, Koufopanou V (December 2004). “Homing endonuclease genes: the rise and fall and rise again of a selfish element”. Curr Opin Genet Dev 14 (6): 609-15; the entire contents of which are incorporated herein by reference. Homing endonuclease recognition sequences are long enough to occur randomly only with a very low probability (approximately once every 7×1010 bp), and are normally found in only one instance per genome.


The term “library,” as used herein in the context of nucleic acids or proteins, refers to a population of two or more different nucleic acids or proteins, respectively. For example, a library of nuclease target sites comprises at least two nucleic acid molecules comprising different nuclease target sites. In some embodiments, a library comprises at least 101, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015 different nucleic acids or proteins. In some embodiments, the members of the library may comprise randomized sequences, for example, fully or partially randomized sequences. In some embodiments, the library comprises nucleic acid molecules that are unrelated to each other, e.g., nucleic acids comprising fully randomized sequences. In other embodiments, at least some members of the library may be related, for example, they may be variants or derivatives of a particular sequence, such as a consensus target site sequence.


The term “linker,” as used herein, refers to a chemical group or a molecule linking two adjacent molecules or moieties, e.g., a binding domain and a cleavage domain of a nuclease. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety.


The term “nuclease,” as used herein, refers to an agent, for example a protein or a small molecule, capable of cleaving a phosphodiester bond connecting nucleotide residues in a nucleic acid molecule. In some embodiments, a nuclease is a protein, e.g., an enzyme that can bind a nucleic acid molecule and cleave a phosphodiester bond connecting nucleotide residues within the nucleic acid molecule. A nuclease may be an endonuclease, cleaving a phosphodiester bonds within a polynucleotide chain, or an exonuclease, cleaving a phosphodiester bond at the end of the polynucleotide chain. In some embodiments, a nuclease is a site-specific nuclease, binding and/or cleaving a specific phosphodiester bond within a specific nucleotide sequence, which is also referred to herein as the “recognition sequence,” the “nuclease target site,” or the “target site.” In some embodiments, a nuclease is a RNA-guided (i.e., RNA-programmable) nuclease, which complexes with (e.g., binds with) an RNA having a sequence that complements a target site, thereby providing the sequence specificity of the nuclease. In some embodiments, a nuclease recognizes a single stranded target site, while in other embodiments, a nuclease recognizes a double-stranded target site, for example a double-stranded DNA target site. The target sites of many naturally occurring nucleases, for example, many naturally occurring DNA restriction nucleases, are well known to those of skill in the art. In many cases, a DNA nuclease, such as EcoRI, HindIII, or BamHI, recognize a palindromic, double-stranded DNA target site of 4 to 10 base pairs in length, and cut each of the two DNA strands at a specific position within the target site. Some endonucleases cut a double-stranded nucleic acid target site symmetrically, i.e., cutting both strands at the same position so that the ends comprise base-paired nucleotides, also referred to herein as blunt ends. Other endonucleases cut a double-stranded nucleic acid target sites asymmetrically, i.e., cutting each strand at a different position so that the ends comprise unpaired nucleotides. Unpaired nucleotides at the end of a double-stranded DNA molecule are also referred to as “overhangs,” e.g., as “5′-overhang” or as “3′-overhang,” depending on whether the unpaired nucleotide(s) form(s) the 5′ or the 3′ end of the respective DNA strand. Double-stranded DNA molecule ends ending with unpaired nucleotide(s) are also referred to as sticky ends, as they can “stick to” other double-stranded DNA molecule ends comprising complementary unpaired nucleotide(s). A nuclease protein typically comprises a “binding domain” that mediates the interaction of the protein with the nucleic acid substrate, and also, in some cases, specifically binds to a target site, and a “cleavage domain” that catalyzes the cleavage of the phosphodiester bond within the nucleic acid backbone. In some embodiments a nuclease protein can bind and cleave a nucleic acid molecule in a monomeric form, while, in other embodiments, a nuclease protein has to dimerize or multimerize in order to cleave a target nucleic acid molecule. Binding domains and cleavage domains of naturally occurring nucleases, as well as modular binding domains and cleavage domains that can be fused to create nucleases binding specific target sites, are well known to those of skill in the art. For example, zinc fingers or transcriptional activator like elements can be used as binding domains to specifically bind a desired target site, and fused or conjugated to a cleavage domain, for example, the cleavage domain of FokI, to create an engineered nuclease cleaving the target site.


The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, i.e. analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).


The term “pharmaceutical composition,” as used herein, refers to a composition that can be administrated to a subject in the context of treatment of a disease or disorder. In some embodiments, a pharmaceutical composition comprises an active ingredient, e.g., a nuclease or a nucleic acid encoding a nuclease, and a pharmaceutically acceptable excipient.


The term “proliferative disease,” as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.


The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. A protein may comprise different domains, for example, a nucleic acid binding domain and a nucleic acid cleavage domain. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA.


The term “randomized,” as used herein in the context of nucleic acid sequences, refers to a sequence or residue within a sequence that has been synthesized to incorporate a mixture of free nucleotides, for example, a mixture of all four nucleotides A, T, G, and C. Randomized residues are typically represented by the letter N within a nucleotide sequence. In some embodiments, a randomized sequence or residue is fully randomized, in which case the randomized residues are synthesized by adding equal amounts of the nucleotides to be incorporated (e.g., 25% T, 25% A, 25% G, and 25% C) during the synthesis step of the respective sequence residue. In some embodiments, a randomized sequence or residue is partially randomized, in which case the randomized residues are synthesized by adding non-equal amounts of the nucleotides to be incorporated (e.g., 79% T, 7% A, 7% G, and 7% C) during the synthesis step of the respective sequence residue. Partial randomization allows for the generation of sequences that are templated on a given sequence, but have incorporated mutations at a desired frequency. For example, if a known nuclease target site is used as a synthesis template, partial randomization in which at each step the nucleotide represented at the respective residue is added to the synthesis at 79%, and the other three nucleotides are added at 7% each, will result in a mixture of partially randomized target sites being synthesized, which still represent the consensus sequence of the original target site, but which differ from the original target site at each residue with a statistical frequency of 21% for each residue so synthesized (distributed binomially). In some embodiments, a partially randomized sequence differs from the consensus sequence by more than 5%, more than 10%, more than 15%, more than 20%, more than 25%, or more than 30% on average, distributed binomially. In some embodiments, a partially randomized sequence differs from the consensus site by no more than 10%, no more than 15%, no more than 20%, no more than 25%, nor more than 30%, no more than 40%, or no more than 50% on average, distributed binomially.


The term “RNA-programmable nuclease,” and “RNA-guided nuclease” are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA) or a single-guide RNA (sgRNA). The gRNA/sgRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site and providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example Cas9 (Csn1) from Streptococcus pyogenes (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L. expand/collapse author list McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference


Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to determine target DNA cleavage sites, these proteins are able to cleave, in principle, any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (See e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).


The terms “small molecule” and “organic compound” are used interchangeably herein and refer to molecules, whether naturally-occurring or artificially created (e.g., via chemical synthesis) that have a relatively low molecular weight. Typically, an organic compound contains carbon. An organic compound may contain multiple carbon-carbon bonds, stereocenters, and other functional groups (e.g., amines, hydroxyl, carbonyls, or heterocyclic rings). In some embodiments, organic compounds are monomeric and have a molecular weight of less than about 1500 g/mol. In certain embodiments, the molecular weight of the small molecule is less than about 1000 g/mol or less than about 500 g/mol. In certain embodiments, the small molecule is a drug, for example, a drug that has already been deemed safe and effective for use in humans or animals by the appropriate governmental agency or regulatory body. In certain embodiments, the organic molecule is known to bind and/or cleave a nucleic acid. In some embodiments, the organic compound is an enediyne. In some embodiments, the organic compound is an antibiotic drug, for example, an anticancer antibiotic such as dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin, or a derivative thereof.


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode.


The terms “target nucleic acid,” and “target genome,” as used herein in the context of nucleases, refer to a nucleic acid molecule or a genome, respectively, that comprises at least one target site of a given nuclease.


The term “target site,” used herein interchangeably with the term “nuclease target site,” refers to a sequence within a nucleic acid molecule that is bound and cleaved by a nuclease. A target site may be single-stranded or double-stranded. In the context of nucleases that dimerize, for example, nucleases comprising a FokI DNA cleavage domain, a target sites typically comprises a left-half site (bound by one monomer of the nuclease), a right-half site (bound by the second monomer of the nuclease), and a spacer sequence between the half sites in which the cut is made. This structure ([left-half site]-[spacer sequence]-[right-half site]) is referred to herein as an LSR structure. In some embodiments, the left-half site and/or the right-half site is between 10-18 nucleotides long. In some embodiments, either or both half-sites are shorter or longer. In some embodiments, the left and right half sites comprise different nucleic acid sequences. In the context of zinc finger nucleases, target sites may, in some embodiments comprise two half-sites that are each 6-18 bp long flanking a non-specified spacer region that is 4-8 bp long. In the context of TALENs, target sites may, in some embodiments, comprise two half-sites sites that are each 10-23 bp long flanking a non-specified spacer region that is 10-30 bp long. In the context of RNA-guided (e.g., RNA-programmable) nucleases, a target site typically comprises a nucleotide sequence that is complementary to the sgRNA of the RNA-programmable nuclease, and a protospacer adjacent motif (PAM) at the 3′ end adjacent to the sgRNA-complementary sequence. For the RNA-guided nuclease Cas9, the target site may be, in some embodiments, 20 base pairs plus a 3 base pair PAM (e.g., NNN, wherein N represents any nucleotide). Typically, the first nucleotide of a PAM can be any nucleotide, while the two downstream nucleotides are specified depending on the specific RNA-guided nuclease. Exemplary target sites for RNA-guided nucleases, such as Cas9, are known to those of skill in the art and include, without limitation, NNG, NGN, NAG, and NGG, wherein N represents any nucleotide. In addition, Cas9 nucleases from different species (e.g., S. thermophilus instead of S. pyogenes) recognizes a PAM that comprises the sequence NGGNG. Additional PAM sequences are known, including, but not limited to NNAGAAW and NAAR (see, e.g., Esvelt and Wang, Molecular Systems Biology, 9:641 (2013), the entire contents of which are incorporated herein by reference). For example, the target site of an RNA-guided nuclease, such as, e.g., Cas9, may comprise the structure [NZ]-[PAM], where each N is, independently, any nucleotide, and z is an integer between 1 and 50. In some embodiments, z is at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, or at least 50. In some embodiments, z is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50. In some embodiments, Z is 20.


The term “Transcriptional Activator-Like Effector,” (TALE) as used herein, refers to bacterial proteins comprising a DNA binding domain, which contains a highly conserved 33-34 amino acid sequence comprising a highly variable two-amino acid motif (Repeat Variable Diresidue, RVD). The RVD motif determines binding specificity to a nucleic acid sequence, and can be engineered according to methods well known to those of skill in the art to specifically bind a desired DNA sequence (see, e.g., Miller, Jeffrey; et. al. (February 2011). “A TALE nuclease architecture for efficient genome editing”. Nature Biotechnology 29 (2): 143-8; Zhang, Feng; et. al. (February 2011). “Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription”. Nature Biotechnology 29 (2): 149-53; Geiβler, R.; Scholze, H.; Hahn, S.; Streubel, J.; Bonas, U.; Behrens, S. E.; Boch, J. (2011), Shiu, Shin-Han. ed. “Transcriptional Activators of Human Genes with Programmable DNA-Specificity”. PLoS ONE 6 (5): e19509; Boch, Jens (February 2011). “TALEs of genome targeting”. Nature Biotechnology 29 (2): 135-6; Boch, Jens; et. al. (December 2009). “Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors”. Science 326 (5959): 1509-12; and Moscou, Matthew J.; Adam J. Bogdanove (December 2009). “A Simple Cipher Governs DNA Recognition by TAL Effectors”. Science 326 (5959): 1501; the entire contents of each of which are incorporated herein by reference). The simple relationship between amino acid sequence and DNA recognition has allowed for the engineering of specific DNA binding domains by selecting a combination of repeat segments containing the appropriate RVDs.


The term “Transcriptional Activator-Like Element Nuclease,” (TALEN) as used herein, refers to an artificial nuclease comprising a transcriptional activator like effector DNA binding domain to a DNA cleavage domain, for example, a FokI domain. A number of modular assembly schemes for generating engineered TALE constructs have been reported (see e.g., Zhang, Feng; et. al. (February 2011). “Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription”. Nature Biotechnology 29 (2): 149-53; Geiβler, R.; Scholze, H.; Hahn, S.; Streubel, J.; Bonas, U.; Behrens, S. E.; Boch, J. (2011), Shiu, Shin-Han. ed. “Transcriptional Activators of Human Genes with Programmable DNA-Specificity”. PLoS ONE 6 (5): e19509; Cermak, T.; Doyle, E. L.; Christian, M.; Wang, L.; Zhang, Y.; Schmidt, C.; Baller, J. A.; Somia, N. V. et al. (2011). “Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting”. Nucleic Acids Research; Morbitzer, R.; Elsaesser, J.; Hausner, J.; Lahaye, T. (2011). “Assembly of custom TALE-type DNA binding domains by modular cloning”. Nucleic Acids Research; Li, T.; Huang, S.; Zhao, X.; Wright, D. A.; Carpenter, S.; Spalding, M. H.; Weeks, D. P.; Yang, B. (2011). “Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes”. Nucleic Acids Research.; Weber, E.; Gruetzner, R.; Werner, S.; Engler, C.; Marillonnet, S. (2011). Bendahmane, Mohammed. ed. “Assembly of Designer TAL Effectors by Golden Gate Cloning”. PLoS ONE 6 (5): e19722; the entire contents of each of which are incorporated herein by reference).


The terms “treatment,” “treat,” and “treating,” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.


The term “zinc finger,” as used herein, refers to a small nucleic acid-binding protein structural motif characterized by a fold and the coordination of one or more zinc ions that stabilize the fold. Zinc fingers encompass a wide variety of differing protein structures (see, e.g., Klug A, Rhodes D (1987). “Zinc fingers: a novel protein fold for nucleic acid recognition”. Cold Spring Harb. Symp. Quant. Biol. 52: 473-82, the entire contents of which are incorporated herein by reference). Zinc fingers can be designed to bind a specific sequence of nucleotides, and zinc finger arrays comprising fusions of a series of zinc fingers, can be designed to bind virtually any desired target sequence. Such zinc finger arrays can form a binding domain of a protein, for example, of a nuclease, e.g., if conjugated to a nucleic acid cleavage domain. Different type of zinc finger motifs are known to those of skill in the art, including, but not limited to, Cys2His2, Gag knuckle, Treble clef, Zinc ribbon, Zn2/Cys6, and TAZ2 domain-like motifs (see, e.g., Krishna S S, Majumdar I, Grishin N V (January 2003). “Structural classification of zinc fingers: survey and summary”. Nucleic Acids Res. 31 (2): 532-50). Typically, a single zinc finger motif binds 3 or 4 nucleotides of a nucleic acid molecule. Accordingly, a zinc finger domain comprising 2 zinc finger motifs may bind 6-8 nucleotides, a zinc finger domain comprising 3 zinc finger motifs may bind 9-12 nucleotides, a zinc finger domain comprising 4 zinc finger motifs may bind 12-16 nucleotides, and so forth. Any suitable protein engineering technique can be employed to alter the DNA-binding specificity of zinc fingers and/or design novel zinc finger fusions to bind virtually any desired target sequence from 3-30 nucleotides in length (see, e.g., Pabo C O, Peisach E, Grant R A (2001). “Design and selection of novel cys2His2 Zinc finger proteins”. Annual Review of Biochemistry 70: 313-340; Jamieson A C, Miller J C, Pabo C O (2003). “Drug discovery with engineered zinc-finger proteins”. Nature Reviews Drug Discovery 2 (5): 361-368; and Liu Q, Segal D J, Ghiara J B, Barbas C F (May 1997). “Design of polydactyl zinc-finger proteins for unique addressing within complex genomes”. Proc. Natl. Acad. Sci. U.S.A. 94 (11); the entire contents of each of which are incorporated herein by reference). Fusions between engineered zinc finger arrays and protein domains that cleave a nucleic acid can be used to generate a “zinc finger nuclease.” A zinc finger nuclease typically comprises a zinc finger domain that binds a specific target site within a nucleic acid molecule, and a nucleic acid cleavage domain that cuts the nucleic acid molecule within or in proximity to the target site bound by the binding domain. Typical engineered zinc finger nucleases comprise a binding domain having between 3 and 6 individual zinc finger motifs and binding target sites ranging from 9 base pairs to 18 base pairs in length. Longer target sites are particularly attractive in situations where it is desired to bind and cleave a target site that is unique in a given genome.


The term “zinc finger nuclease,” as used herein, refers to a nuclease comprising a nucleic acid cleavage domain conjugated to a binding domain that comprises a zinc finger array. In some embodiments, the cleavage domain is the cleavage domain of the type II restriction endonuclease FokI. Zinc finger nucleases can be designed to target virtually any desired sequence in a given nucleic acid molecule for cleavage, and the possibility to the design zinc finger binding domains to bind unique sites in the context of complex genomes allows for targeted cleavage of a single genomic site in living cells, for example, to achieve a targeted genomic alteration of therapeutic value. Targeting a double-strand break to a desired genomic locus can be used to introduce frame-shift mutations into the coding sequence of a gene due to the error-prone nature of the non-homologous DNA repair pathway. Zinc finger nucleases can be generated to target a site of interest by methods well known to those of skill in the art. For example, zinc finger binding domains with a desired specificity can be designed by combining individual zinc finger motifs of known specificity. The structure of the zinc finger protein Zif268 bound to DNA has informed much of the work in this field and the concept of obtaining zinc fingers for each of the 64 possible base pair triplets and then mixing and matching these modular zinc fingers to design proteins with any desired sequence specificity has been described (Pavletich N P, Pabo C O (May 1991). “Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A”. Science 252 (5007): 809-17, the entire contents of which are incorporated herein). In some embodiments, separate zinc fingers that each recognize a 3 base pair DNA sequence are combined to generate 3-, 4-, 5-, or 6-finger arrays that recognize target sites ranging from 9 base pairs to 18 base pairs in length. In some embodiments, longer arrays are contemplated. In other embodiments, 2-finger modules recognizing 6-8 nucleotides are combined to generate 4-, 6-, or 8-zinc finger arrays. In some embodiments, bacterial or phage display is employed to develop a zinc finger domain that recognizes a desired nucleic acid sequence, for example, a desired nuclease target site of 3-30 bp in length. Zinc finger nucleases, in some embodiments, comprise a zinc finger binding domain and a cleavage domain fused or otherwise conjugated to each other via a linker, for example, a polypeptide linker. The length of the linker determines the distance of the cut from the nucleic acid sequence bound by the zinc finger domain. If a shorter linker is used, the cleavage domain will cut the nucleic acid closer to the bound nucleic acid sequence, while a longer linker will result in a greater distance between the cut and the bound nucleic acid sequence. In some embodiments, the cleavage domain of a zinc finger nuclease has to dimerize in order to cut a bound nucleic acid. In some such embodiments, the dimer is a heterodimer of two monomers, each of which comprise a different zinc finger binding domain. For example, in some embodiments, the dimer may comprise one monomer comprising zinc finger domain A conjugated to a FokI cleavage domain, and one monomer comprising zinc finger domain B conjugated to a FokI cleavage domain. In this nonlimiting example, zinc finger domain A binds a nucleic acid sequence on one side of the target site, zinc finger domain B binds a nucleic acid sequence on the other side of the target site, and the dimerize FokI domain cuts the nucleic acid in between the zinc finger domain binding sites.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

Introduction


Site-specific nucleases are powerful tools for targeted genome modification in vitro or in vivo. Some site specific nucleases can theoretically achieve a level of specificity for a target cleavage site that would allow one to target a single unique site in a genome for cleavage without affecting any other genomic site. It has been reported that nuclease cleavage in living cells triggers a DNA repair mechanism that frequently results in a modification of the cleaved, repaired genomic sequence, for example, via homologous recombination. Accordingly, the targeted cleavage of a specific unique sequence within a genome opens up new avenues for gene targeting and gene modification in living cells, including cells that are hard to manipulate with conventional gene targeting methods, such as many human somatic or embryonic stem cells. Nuclease-mediated modification of disease-related sequences, e.g., the CCR-5 allele in HIV/AIDS patients, or of genes necessary for tumor neovascularization, can be used in the clinical context, and two site specific nucleases are currently in clinical trials.


One important aspect in the field of site-specific nuclease-mediated modification are off-target nuclease effects, e.g., the cleavage of genomic sequences that differ from the intended target sequence by one or more nucleotides. Undesired side effects of off-target cleavage range from insertion into unwanted loci during a gene targeting event to severe complications in a clinical scenario. Off-target cleavage of sequences encoding essential gene functions or tumor suppressor genes by an endonuclease administered to a subject may result in disease or even death of the subject. Accordingly, it is desirable to characterize the cleavage preferences of a nuclease before using it in the laboratory or the clinic in order to determine its efficacy and safety. Further, the characterization of nuclease cleavage properties allows for the selection of the nuclease best suited for a specific task from a group of candidate nucleases, or for the selection of evolution products obtained from a plurality of nucleases. Such a characterization of nuclease cleavage properties may also inform the de-novo design of nucleases with enhanced properties, such as enhanced specificity or efficiency.


In many scenarios where a nuclease is employed for the targeted manipulation of a nucleic acid, cleavage specificity is a crucial feature. The imperfect specificity of some engineered nuclease binding domains can lead to off-target cleavage and undesired effects both in vitro and in vivo. Current methods of evaluating site-specific nuclease specificity, including ELISA assays, microarrays, one-hybrid systems, SELEX, and its variants, and Rosetta-based computational predictions, are all premised on the assumption that the binding specificity of the nuclease is equivalent or proportionate to their cleavage specificity.


It was previously discovered that the prediction of nuclease off-target binding effects constitute an imperfect approximation of a nuclease's off-target cleavage effects that may result in undesired biological effects (see PCT Application WO 2013/066438; and Pattanayak, V., Ramirez, C. L., Joung, J. K. & Liu, D. R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods 8, 765-770 (2011), the entire contents of each of which are incorporated herein by reference). This finding was consistent with the notion that the reported toxicity of some site specific DNA nucleases results from off-target DNA cleavage, rather than off-target binding alone.


The methods and reagents of the present disclosure represent, in some aspects, an improvement over previous methods and allow for an accurate evaluation of a given nuclease's target site specificity and provide strategies for the selection of suitable unique target sites and the design or selection of highly specific nucleases for the targeted cleavage of a single site in the context of a complex genome. For example, some previously reported methods for determining nuclease target site specificity profiles by screening libraries of nucleic acid molecules comprising candidate target sites relied on a “two-cut” in vitro selection method which requires indirect reconstruction of target sites from sequences of two half-sites resulting from two adjacent cuts of the nuclease of a library member nucleic acid (see e.g., Pattanayak, V. et al., Nature Methods 8, 765-770 (2011)). In contrast to such “two-cut” strategies, the methods of the present disclosure utilize a “one cut” screening strategy, which allows for the identification of library members that have been cut at least once by the nuclease. The “one-cut” selection strategies provided herein are compatible with single end high-throughput sequencing methods and do not require computational reconstruction of cleaved target sites from cut half-sites because they feature, in some embodiments, direct sequencing of an intact target nuclease sequence in a cut library member nucleic acid.


Additionally, the presently disclosed “one-cut” screening methods utilize concatemers of a candidate nuclease target site and constant insert region that are about 10-fold shorter than previously reported constructs used for two-cut strategies (˜50 bp repeat sequence length versus ˜500 bp repeat sequence length in previous reports). This difference in repeat sequence length in the concatemers of the library allows for the generation of highly complex libraries of candidate nuclease target sites, e.g., of libraries comprising 1012 different candidate nuclease target sequences. As described herein, an exemplary library of such complexity has been generated, templated on a known Cas9 nuclease target site by varying the sequence of the known target site. The exemplary library demonstrated that a greater than coverage of all sequences with eight or fewer mutations of the known target site can be achieved using the strategies provided herein. The use of a shorter repeat sequence also allows the use of single-end sequencing, since both a cut half-site and an adjacent uncut site of the same library member are contained within a 100 nucleotide sequencing read.


The strategies, methods, libraries, and reagents provided herein can be utilized to analyze the sequence preferences and specificity of any site-specific nuclease, for example, to Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), homing endonucleases, organic compound nucleases, and enediyne antibiotics (e.g., dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin). Suitable nucleases in addition to the ones described herein will be apparent to those of skill in the art based on this disclosure.


Further, the methods, reagents, and strategies provided herein allow those of skill in the art to identify, design, and/or select nucleases with enhanced specificity and minimize the off-target effects of any given nuclease (e.g., site-specific nucleases such as ZFNs, and TALENS which produce cleavage products with sticky ends, as well as RNA-programmable nucleases, for example Cas9, which produce cleavage products having blunt ends). While of particular relevance to DNA and DNA-cleaving nucleases, the inventive concepts, methods, strategies, and reagents provided herein are not limited in this respect, but can be applied to any nucleic acid:nuclease pair.


Identifying Nuclease Target Sites Cleaved by a Site-Specific Nuclease


Some aspects of this disclosure provide improved methods and reagents to determine the nucleic acid target sites cleaved by any site-specific nuclease. The methods provided herein can be used for the evaluation of target site preferences and specificity of both nucleases that create blunt ends and nucleases that create sticky ends. In general, such methods comprise contacting a given nuclease with a library of target sites under conditions suitable for the nuclease to bind and cut a target site, and determining which target sites the nuclease actually cuts. A determination of a nuclease's target site profile based on actual cutting has the advantage over methods that rely on binding in that it measures a parameter more relevant for mediating undesired off-target effects of site-specific nucleases. In general, the methods provided herein comprise ligating an adapter of a known sequence to nucleic acid molecules that have been cut by a nuclease of interest via 5′-phosphate-dependent ligation. Accordingly, the methods provided herein are particularly useful for identifying target sites cut by nucleases that leave a phosphate moiety at the 5′-end of the cut nucleic acid strand when cleaving their target site. After ligating an adapter to the 5′-end of a cut nucleic acid strand, the cut strand can directly be sequenced using the adapter as a sequencing linker, or a part of the cut library member concatemer comprising an intact target site identical to the cut target site can be amplified via PCR and the amplification product can then be sequenced.


In some embodiments, the method comprises (a) providing a nuclease that cuts a double-stranded nucleic acid target site, wherein cutting of the target site results in cut nucleic acid strands comprising a 5′-phosphate moiety; (b) contacting the nuclease of (a) with a library of candidate nucleic acid molecules, wherein each nucleic acid molecule comprises a concatemer of a sequence comprising a candidate nuclease target site and a constant insert sequence, under conditions suitable for the nuclease to cut a candidate nucleic acid molecule comprising a target site of the nuclease; and (c) identifying nuclease target sites cut by the nuclease in (b) by determining the sequence of an uncut nuclease target site on the nucleic acid strand that was cut by the nuclease in step (b).


In some embodiments, the method comprises providing a nuclease and contacting the nuclease with a library of candidate nucleic acid molecules comprising candidate target sites. In some embodiments, the candidate nucleic acid molecules are double-stranded nucleic acid molecules. In some embodiments, the candidate nucleic acid molecules are DNA molecules. In some embodiments, each nucleic acid molecule in the library comprises a concatemer of a sequence comprising a candidate nuclease target site and a constant insert sequence. For example, in some embodiments, the library comprises nucleic acid molecules that comprise the structure R1-[(candidate nuclease target site)-(constant insert sequence)]n-R2, wherein R1 and R2 are, independently, nucleic acid sequences that may comprise a fragment of the [(candidate nuclease target site)-(constant insert sequence)] structure, and n is an integer between 2 and y. In some embodiments, y is at least 101, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015. In some embodiments, y is less than 102, less than 103, less than 104, less than 105, less than 106, less than 107, less than 108, less than 109, less than 1010, less than 1011, less than 1012, less than 1013, less than 1014, or less than 1015


For example, in some embodiments, the candidate nucleic acid molecules of the library comprise a candidate nuclease target site of the structure [(NZ)-(PAM)], and, thus, the nucleic acid molecules of the library comprise the structure R1-[(NZ)-(PAM)-(constant region)]X-R2, wherein R1 and R2 are, independently, nucleic acid sequences that may comprise a fragment of the [(NZ)-(PAM)-(constant region)] repeat unit; each N represents, independently, any nucleotide; Z is an integer between 1 and 50; and X is an integer between 2 and y. In some embodiments, y is at least 101, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015. In some embodiments, y is less than 102, less than 103, less than 104, less than 105, less than 106, less than 107, less than 108, less than 109, less than 1010, less than 1011, less than 1012, less than 1013, less than 1014, or less than 1015. In some embodiments, Z is at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, or at least 50. In some embodiments, Z is 20. Each N represents, independently, any nucleotide. Accordingly, a sequence provided as NZ with z=2 would be NN, with each N, independently, representing A, T, G, or C. Accordingly, NZ with z=2 can represent AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, and CC.


In other embodiments, the candidate nucleic acid molecules of the library comprise a candidate nuclease target site of the structure [left-half site]-[spacer sequence]-[right-half site] (“LSR”), and, thus, the nucleic acid molecules of the library comprise the structure R1-[(LSR)-(constant region)]X-R2, wherein R1 and R2 are, independently, nucleic acid sequences that may comprise a fragment of the [(LSR)-(constant region)] repeat unit, and X is an integer between 2 and y. In some embodiments, y is at least 101, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015. In some embodiments, y is less than 102, less than 103, less than 104, less than 105, less than 106, less than 107, less than 108, less than 109, less than 1010, less than 1011, less than 1012, less than 1013, less than 1014, or less than 1015. The constant region, in some embodiments, is of a length that allows for efficient self-ligation of a single repeat unit. Suitable lengths will be apparent to those of skill in the art. For example, in some embodiments, the constant region is between 5 and 100 base pairs long, for example, about 5 base pairs, about 10 base pairs, about 15 base pairs, about 20 base pairs, about 25 base pairs, about 30 base pairs, about 35 base pairs, about 40 base pairs, about 50 base pairs, about 60 base pairs, about 70 base pairs, about 80 base pairs, about 90 base pairs, or about 100 base pairs long. In some embodiments, the constant region is 16 base pairs long. In some embodiments, the nuclease cuts a double-stranded nucleic acid target site and creates blunt ends. In other embodiments, the nuclease creates a 5′-overhang. In some such embodiments, the target site comprises a [left-half site]-[spacer sequence]-[right-half site] (LSR) structure, and the nuclease cuts the target site within the spacer sequence.


In some embodiments, a nuclease cuts a double-stranded target site and creates blunt ends. In some embodiments, a nuclease cuts a double-stranded target site and creates an overhang, or sticky end, for example, a 5′-overhang. In some such embodiments, the method comprises filling in the 5′-overhangs of nucleic acid molecules produced from a nucleic acid molecule that has been cut once by the nuclease, wherein the nucleic acid molecules comprise a constant insert sequence flanked by a left or right half-site and cut spacer sequence on one side, and an uncut target site sequence on the other side, thereby creating blunt ends.


In some embodiments, the determining of step (c) comprises ligating a first nucleic acid adapter to the 5′ end of a nucleic acid strand that was cut by the nuclease in step (b) via 5′-phosphate-dependent ligation. In some embodiments, the nuclease creates blunt ends. In such embodiments, an adapter can directly be ligated to the blunt ends resulting from the nuclease cut of the target site by contacting the cut library members with a double-stranded, blunt-ended adapter lacking 5′ phosphorylation. In some embodiments, the nuclease creates an overhang (sticky end). In some such embodiments, an adapter may be ligated to the cut site by contacting the cut library member with an excess of adapter having a compatible sticky end. If a nuclease is used that cuts within a constant spacer sequence between variable half-sites, the sticky end can be designed to match the 5′ overhang created from the spacer sequence. In embodiments, where the nuclease cuts within a variable sequence, a population of adapters having a variable overhang sequence and a constant annealed sequence (for use as a sequencing linker or PCR primer) may be used, or the 5′ overhangs may be filled in to form blunt ends before adapter ligation.


In some embodiments, the determining of step (c) further comprises amplifying a fragment of the concatemer cut by the nuclease that comprises an uncut target site via PCR using a PCR primer that hybridizes with the adapter and a PCR primer that hybridizes with the constant insert sequence. Typically, the amplification of concatemers via PCR will yield amplicons comprising at least one intact candidate target site identical to the cut target sites because the target sites in each concatemer are identical. For single-direction sequencing, an enrichment of amplicons that comprise one intact target site, no more than two intact target sites, no more than three intact target sites, no more than four intact target sites, or no more than five intact target sites may be desirable. In embodiments where PCR is used for amplification of cut nucleic acid molecules, the PCR parameters can be optimized to favor the amplification of short sequences and disfavor the amplification of longer sequences, e.g., by using a short elongation time in the PCR cycle. Another possibility for enrichment of short amplicons is size fractionation, e.g., via gel electrophoresis or size exclusion chromatography. Size fractionation can be performed before and/or after amplification. Other suitable methods for enrichment of short amplicons will be apparent to those of skill in the art and the disclosure is not limited in this respect.


In some embodiments, the determining of step (c) comprises sequencing the nucleic acid strand that was cut by the nuclease in step (b), or a copy thereof obtained via amplification, e.g., by PCR. Sequencing methods are well known to those of skill in the art. The disclosure is not limited in this respect.


In some embodiments, the nuclease being profiled using the inventive system is an RNA-programmable nuclease that forms a complex with an RNA molecule, and wherein the nuclease:RNA complex specifically binds a nucleic acid sequence complementary to the sequence of the RNA molecule. In some embodiments, the RNA molecule is a single-guide RNA (sgRNA). In some embodiments, the sgRNA comprises 5-50 nucleotides, 10-30 nucleotides, 15-25 nucleotides, 18-22 nucleotides, 19-21 nucleotides, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides. In some embodiments, the sgRNA comprises 5-50 nucleotides, 10-30 nucleotides, 15-25 nucleotides, 18-22 nucleotides, 19-21 nucleotides, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides that are complementary to a sequence of the nuclease target site. In some embodiments, the sgRNA comprises 20 nucleotides that are complementary to the nuclease target site. In some embodiments, the nuclease is a Cas9 nuclease. In some embodiments, the nuclease target site comprises a [sgRNA-complementary sequence]-[protospacer adjacent motif (PAM)] structure, and the nuclease cuts the target site within the sgRNA-complementary sequence. In some embodiments, the sgRNA-complementary sequence comprises 5-50 nucleotides, 10-30 nucleotides, 15-25 nucleotides, 18-22 nucleotides, 19-21 nucleotides, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides.


In some embodiments, the RNA-programmable nuclease is a Cas9 nuclease. The RNA-programmable Cas9 endonuclease cleaves double-stranded DNA (dsDNA) at sites adjacent to a two-base-pair PAM motif and complementary to a guide RNA sequence (sgRNA). Typically, the sgRNA sequence that is complementary to the target site sequence is about 20 nucleotides long, but shorter and longer complementary sgRNA sequences can be used as well. For example, in some embodiments, the sgRNA comprises 5-50 nucleotides, 10-30 nucleotides, 15-25 nucleotides, 18-22 nucleotides, 19-21 nucleotides, e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides. The Cas9 system has been used to modify genomes in multiple cell types, demonstrating its potential as a facile genome-engineering tool.


In some embodiments, the nuclease comprises an unspecific nucleic acid cleavage domain. In some embodiments, the nuclease comprises a FokI cleavage domain. In some embodiments, the nuclease comprises a nucleic acid cleavage domain that cleaves a target sequence upon cleavage domain dimerization. In some embodiments, the nuclease comprises a binding domain that specifically binds a nucleic acid sequence. In some embodiments, the binding domain comprises a zinc finger. In some embodiments, the binding domain comprises at least 2, at least 3, at least 4, or at least 5 zinc fingers. In some embodiments, the nuclease is a Zinc Finger Nuclease. In some embodiments, the binding domain comprises a Transcriptional Activator-Like Element. In some embodiments, the nuclease is a Transcriptional Activator-Like Element Nuclease (TALEN). In some embodiments, the nuclease is a homing endonuclease. In some embodiments, the nuclease is an organic compound. In some embodiments, the nuclease comprises an enediyne functional group. In some embodiments, the nuclease is an antibiotic. In some embodiments, the compound is dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin, or a derivative thereof.


Incubation of the nuclease with the library nucleic acids will result in cleavage of those concatemers in the library that comprise target sites that can be bound and cleaved by the nuclease. If a given nuclease cleaves a specific target site with high efficiency, a concatemer comprising target sites will be cut, e.g., once or multiple times, resulting in the generation of fragments comprising a cut target site adjacent to one or more repeat units. Depending on the structure of the library members, an exemplary cut nucleic acid molecule released from a library member concatemer by a single nuclease cleavage may, for example, be of the structure (cut target site)-(constant region)-[(target site)-(constant region)]X—R2. For example, in the context of an RNA-guided nuclease, an exemplary cut nucleic acid molecule released from a library member concatemer by a single nuclease cleavage may, for example, be of the structure (PAM)-(constant region)-[(NZ)-(PAM)-(constant region)]X—R2. And in the context of a nuclease cutting an LSR structure within the spacer region, an exemplary cut nucleic acid molecule released from a library member concatemer by a single nuclease cleavage may, for example, be of the structure (cut spacer region)-(right half site)-(constant region)-[(LSR)-(constant region)]X—R2. Such cut fragments released from library candidate molecules can then be isolated and/or the sequence of the target site cleaved by the nuclease identified by sequencing an intact target site (e.g., an intact (NZ)-(PAM) site of released repeat units. See, e.g., FIG. 1B for an illustration.


Suitable conditions for exposure of the library of nucleic acid molecules will be apparent to those of skill in the art. In some embodiments, suitable conditions do not result in denaturation of the library nucleic acids or the nuclease and allow for the nuclease to exhibit at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% of its nuclease activity.


Additionally, if a given nuclease cleaves a specific target site, some cleavage products will comprise a cut half site and an intact, or uncut target site. As described herein, such products can be isolated by routine methods, and because the insert sequence, in some aspects, is less than 100 base pairs, such isolated cleavage products may be sequenced in a single read-through, allowing identification of the target site sequence without reconstructing the sequence, e.g., from cut half sites.


Any method suitable for isolation and sequencing of the repeat units can be employed to elucidate the LSR sequence cleaved by the nuclease. For example, since the length of the constant region is known, individual released repeat units can be separated based on their size from the larger uncut library nucleic acid molecules as well as from fragments of library nucleic acid molecules that comprise multiple repeat units (indicating non-efficient targeted cleavage by the nuclease). Suitable methods for separating and/or isolating nucleic acid molecules based on their size are well-known to those of skill in the art and include, for example, size fractionation methods, such as gel electrophoresis, density gradient centrifugation, and dialysis over a semi-permeable membrane with a suitable molecular cutoff value. The separated/isolated nucleic acid molecules can then be further characterized, for example, by ligating PCR and/or sequencing adapters to the cut ends and amplifying and/or sequencing the respective nucleic acids. Further, if the length of the constant region is selected to favor self-ligation of individual released repeat units, such individual released repeat units may be enriched by contacting the nuclease treated library molecules with a ligase and subsequent amplification and/or sequencing based on the circularized nature of the self-ligated individual repeat units.


In some embodiments, where a nuclease is used that generates 5′-overhangs as a result of cutting a target nucleic acid, the 5′-overhangs of the cut nucleic acid molecules are filled in. Methods for filling in 5′-overhangs are well known to those of skill in the art and include, for example, methods using DNA polymerase I Klenow fragment lacking exonuclease activity (Klenow (3′→5′ exo-)). Filling in 5′-overhangs results in the overhang-templated extension of the recessed strand, which, in turn, results in blunt ends. In the case of single repeat units released from library concatemers, the resulting structure is a blunt-ended S2′R-(constant region)-LS1′, with S1′ and S2′ comprising blunt ends. PCR and/or sequencing adapters can then be added to the ends by blunt end ligation and the respective repeat units (including S2′R and LS1′ regions) can be sequenced. From the sequence data, the original LSR region can be deduced. Blunting of the overhangs created during the nuclease cleavage process also allows for distinguishing between target sites that were properly cut by the respective nuclease and target sites that were non-specifically cut, e.g., based on non-nuclease effects such as physical shearing. Correctly cleaved nuclease target sites can be recognized by the existence of complementary S2′R and LS1′ regions, which comprise a duplication of the overhang nucleotides as a result of the overhang fill in while target sites that were not cleaved by the respective nuclease are unlikely to comprise overhang nucleotide duplications. In some embodiments, the method comprises identifying the nuclease target site cut by the nuclease by determining the sequence of the left-half site, the right-half-site, and/or the spacer sequence of a released individual repeat unit. Any suitable method for amplifying and/or sequencing can be used to identify the LSR sequence of the target site cleaved by the respective nuclease. Methods for amplifying and/or sequencing nucleic acids are well known to those of skill in the art and the disclosure is not limited in this respect. In the case of nucleic acids released from library concatemers that comprise a cut half site and an uncut target site (e.g., comprises at least about 1.5 repeat sequences), filling in the 5′-overhangs also provides for assurance that the nucleic acid was cleaved by the nuclease. Because the nucleic acid also comprises an intact, or uncut target site, the sequence of said site can be determined without having to reconstruct the sequence from a left-half site, right-half site, and/or spacer sequence.


Some of the methods and strategies provided herein allow for the simultaneous assessment of a plurality of candidate target sites as possible cleavage targets for any given nuclease. Accordingly, the data obtained from such methods can be used to compile a list of target sites cleaved by a given nuclease, which is also referred to herein as a target site profile. If a sequencing method is used that allows for the generation of quantitative sequencing data, it is also possible to record the relative abundance of any nuclease target site detected to be cleaved by the respective nuclease. Target sites that are cleaved more efficiently by the nuclease will be detected more frequently in the sequencing step, while target sites that are not cleaved efficiently will only rarely release an individual repeat unit from a candidate concatemer, and thus, will only generate few, if any, sequencing reads. Such quantitative sequencing data can be integrated into a target site profile to generate a ranked list of highly preferred and less preferred nuclease target sites.


The methods and strategies of nuclease target site profiling provided herein can be applied to any site-specific nuclease, including, for example, ZFNs, TALENs, homing endonucleases, and RNA-programmable nucleases, such as Cas9 nucleases. As described in more detail herein, nuclease specificity typically decreases with increasing nuclease concentration, and the methods described herein can be used to determine a concentration at which a given nuclease efficiently cuts its intended target site, but does not efficiently cut any off-target sequences. In some embodiments, a maximum concentration of a therapeutic nuclease is determined at which the therapeutic nuclease cuts its intended nuclease target site but does not cut more than 10, more than 5, more than 4, more than 3, more than 2, more than 1, or any additional sites. In some embodiments, a therapeutic nuclease is administered to a subject in an amount effective to generate a final concentration equal or lower than the maximum concentration determined as described above.


In some embodiments, the library of candidate nucleic acid molecules used in the methods provided herein comprises at least 108, at least 109, at least 1010, at least 1011, or at least 1012 different candidate nuclease target sites.


In some embodiments, the nuclease is a therapeutic nuclease which cuts a specific nuclease target site in a gene associated with a disease. In some embodiments, the method further comprises determining a maximum concentration of the therapeutic nuclease at which the therapeutic nuclease cuts the specific nuclease target site and does not cut more than 10, more than 5, more than 4, more than 3, more than 2, more than 1, or no additional sites. In some embodiments, the method further comprises administering the therapeutic nuclease to a subject in an amount effective to generate a final concentration equal or lower than the maximum concentration.


Nuclease Target Site Libraries


Some embodiments of this disclosure provide libraries of nucleic acid molecules for nuclease target site profiling. In some embodiments, the candidate nucleic acid molecules of the library comprise the structure R1-[(NZ)-(PAM)-(constant region)]X-R2, wherein R1 and R2 are, independently, nucleic acid sequences that may comprise a fragment of the [(NZ)-(PAM)-(constant region)] repeat unit; each N represents, independently, any nucleotide; Z is an integer between 1 and 50; and X is an integer between 2 and y. In some embodiments, y is at least 101, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015. In some embodiments, y is less than 102, less than 103, less than 104, less than 105, less than 106, less than 107, less than 108, less than 109, less than 1010, less than 1011, less than 1012, less than 1013, less than 1014, or less than 1015. In some embodiments, Z is at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, or at least 50. In some embodiments, Z is 20. Each N represents, independently, any nucleotide. Accordingly, a sequence provided as NZ with z=2 would be NN, with each N, independently, representing A, T, G, or C. Accordingly, NZ with z=2 can represent AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, and CC.


In some embodiments, a library is provided comprising candidate nucleic acid molecules that comprise target sites with a partially randomized left-half site, a partially randomized right-half site, and/or a partially randomized spacer sequence. In some embodiments, the library is provided comprising candidate nucleic acid molecules that comprise target sites with a partially randomized left half site, a fully randomized spacer sequence, and a partially randomized right half site. In some embodiments, a library is provided comprising candidate nucleic acid molecules that comprise target sites with a partially or fully randomized sequence, wherein the target sites comprise the structure [NZ-(PAM)], for example as described herein. In some embodiments, partially randomized sites differ from the consensus site by more than 5%, more than 10%, more than 15%, more than 20%, more than 25%, or more than 30% on average, distributed binomially.


In some embodiments such a library comprises a plurality of nucleic acid molecules, each comprising a concatemer of a candidate nuclease target site and a constant insert sequence, also referred to herein as a constant region. For example, in some embodiments, the candidate nucleic acid molecules of the library comprise the structure R1-[(sgRNA-complementary sequence)-(PAM)-(constant region)]X-R2, or the structure R1-[(LSR)-(constant region)]X-R2, wherein the structure in square brackets (“[ . . . ]”) is referred to as a repeat unit or repeat sequence; R1 and R2 are, independently, nucleic acid sequences that may comprise a fragment of the repeat unit, and X is an integer between 2 and y. In some embodiments, y is at least 101, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015. In some embodiments, y is less than 102, less than 103, less than 104, less than 105, less than 106, less than 107, less than 108, less than 109, less than 1010, less than 1011, less than 1012, less than 1013, less than 1014, or less than 1015. The constant region, in some embodiments, is of a length that allows for efficient self-ligation of a single repeat unit. In some embodiments, the constant region is of a length that allows for efficient separation of single repeat units from fragments comprising two or more repeat units. In some embodiments, the constant region is of a length allows for efficient sequencing of a complete repeat unit in one sequencing read. Suitable lengths will be apparent to those of skill in the art. For example, in some embodiments, the constant region is between 5 and 100 base pairs long, for example, about 5 base pairs, about 10 base pairs, about 15 base pairs, about 20 base pairs, about 25 base pairs, about 30 base pairs, about 35 base pairs, about 40 base pairs, about 50 base pairs, about 60 base pairs, about 70 base pairs, about 80 base pairs, about 90 base pairs, or about 100 base pairs long. In some embodiments, the constant region is 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 base pairs long.


An LSR site typically comprises a [left-half site]-[spacer sequence]-[right-half site] structure. The lengths of the half-size and the spacer sequence will depend on the specific nuclease to be evaluated. In general, the half-sites will be 6-30 nucleotides long, and preferably 10-18 nucleotides long. For example, each half site individually may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides long. In some embodiments, an LSR site may be longer than 30 nucleotides. In some embodiments, the left half site and the right half site of an LSR are of the same length. In some embodiments, the left half site and the right half site of an LSR are of different lengths. In some embodiments, the left half site and the right half site of an LSR are of different sequences. In some embodiments, a library is provided that comprises candidate nucleic acids which comprise LSRs that can be cleaved by a FokI cleavage domain, a Zinc Finger Nuclease (ZFN), a Transcription Activator-Like Effector Nuclease (TALEN), a homing endonuclease, or an organic compound (e.g., an enediyne antibiotic such as dynemicin, neocarzinostatin, calicheamicin, and esperamicinl; and bleomycin).


In some embodiments, a library of candidate nucleic acid molecules is provided that comprises at least 105, at least 106, at least 107, at least 108, at least 109, at least 1010, at least 1011, at least 1012, at least 1013, at least 1014, or at least 1015 different candidate nuclease target sites. In some embodiments, the candidate nucleic acid molecules of the library are concatemers produced from a secularized templates by rolling cycle amplification. In some embodiments, the library comprises nucleic acid molecules, e.g., concatemers, of a molecular weight of at least 5 kDa, at least 6 kDa, at least 7 kDa, at least 8 kDa, at least 9 kDa, at least 10 kDa, at least 12 kDa, or at least 15 kDa. In some embodiments, the molecular weight of the nucleic acid molecules within the library may be larger than 15 kDa. In some embodiments, the library comprises nucleic acid molecules within a specific size range, for example, within a range of 5-7 kDa, 5-10 kDa, 8-12 kDa, 10-15 kDa, or 12-15 kDa, or 5-10 kDa or any possible subrange. While some methods suitable for generating nucleic acid concatemers according to some aspects of this disclosure result in the generation of nucleic acid molecules of greatly different molecular weights, such mixtures of nucleic acid molecules may be size fractionated to obtain a desired size distribution. Suitable methods for enriching nucleic acid molecules of a desired size or excluding nucleic acid molecules of a desired size are well known to those of skill in the art and the disclosure is not limited in this respect.


In some embodiments, partially randomized sites differ from the consensus site by no more than 10%, no more than 15%, no more than 20%, no more than 25%, nor more than 30%, no more than 40%, or no more than 50% on average, distributed binomially. For example, in some embodiments partially randomized sites differ from the consensus site by more than 5%, but by no more than 10%; by more than 10%, but by no more than 20%; by more than 20%, but by no more than 25%; by more than 5%, but by no more than 20%, and so on. Using partially randomized nuclease target sites in the library is useful to increase the concentration of library members comprising target sites that are closely related to the consensus site, for example, that differ from the consensus sites in only one, only two, only three, only four, or only five residues. The rationale behind this is that a given nuclease, for example a given ZFN or RNA-programmable nuclease, is likely to cut its intended target site and any closely related target sites, but unlikely to cut a target sites that is vastly different from or completely unrelated to the intended target site. Accordingly, using a library comprising partially randomized target sites can be more efficient than using libraries comprising fully randomized target sites without compromising the sensitivity in detecting any off-target cleavage events for any given nuclease. Thus, the use of partially randomized libraries significantly reduces the cost and effort required to produce a library having a high likelihood of covering virtually all off-target sites of a given nuclease. In some embodiments however it may be desirable to use a fully randomized library of target sites, for example, in embodiments, where the specificity of a given nuclease is to be evaluated in the context of any possible site in a given genome.


Selection and Design of Site-Specific Nucleases


Some aspects of this disclosure provide methods and strategies for selecting and designing site-specific nucleases that allow the targeted cleavage of a single, unique sites in the context of a complex genome. In some embodiments, a method is provided that comprises providing a plurality of candidate nucleases that are designed or known to cut the same consensus sequence; profiling the target sites actually cleaved by each candidate nuclease, thus detecting any cleaved off-target sites (target sites that differ from the consensus target site); and selecting a candidate nuclease based on the off-target site(s) so identified. In some embodiments, this method is used to select the most specific nuclease from a group of candidate nucleases, for example, the nuclease that cleaves the consensus target site with the highest specificity, the nuclease that cleaves the lowest number of off-target sites, the nuclease that cleaves the lowest number of off-target sites in the context of a target genome, or a nuclease that does not cleave any target site other than the consensus target site. In some embodiments, this method is used to select a nuclease that does not cleave any off-target site in the context of the genome of a subject at concentration that is equal to or higher than a therapeutically effective concentration of the nuclease.


The methods and reagents provided herein can be used, for example, to evaluate a plurality of different nucleases targeting the same intended targets site, for example, a plurality of variations of a given site-specific nuclease, for example a given zinc finger nuclease. Accordingly, such methods may be used as the selection step in evolving or designing a novel site-specific nucleases with improved specificity.


Identifying Unique Nuclease Target Sites within a Genome


Some embodiments of this disclosure provide a method for selecting a nuclease target site within a genome. As described in more detail elsewhere herein, it was surprisingly discovered that off target sites cleaved by a given nuclease are typically highly similar to the consensus target site, e.g., differing from the consensus target site in only one, only two, only three, only four, or only five nucleotide residues. Based on this discovery, a nuclease target sites within the genome can be selected to increase the likelihood of a nuclease targeting this site not cleaving any off target sites within the genome. For example, in some embodiments, a method is provided that comprises identifying a candidate nuclease target site; and comparing the candidate nuclease target site to other sequences within the genome. Methods for comparing candidate nuclease target sites to other sequences within the genome are well known to those of skill in the art and include for example sequence alignment methods, for example, using a sequence alignment software or algorithm such as BLAST on a general purpose computer. A suitable unique nuclease target site can then be selected based on the results of the sequence comparison. In some embodiments, if the candidate nuclease target site differs from any other sequence within the genome by at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotides, the nuclease target site is selected as a unique site within the genome, whereas if the site does not fulfill this criteria, the site may be discarded. In some embodiments, once a site is selected based on the sequence comparison, as outlined above, a site-specific nuclease targeting the selected site is designed. For example, a zinc finger nuclease may be designed to target any selected nuclease target site by constructing a zinc finger array binding the target site, and conjugating the zinc finger array to a DNA cleavage domain. In embodiments where the DNA cleavage domain needs to dimerize in order to cleave DNA, to zinc finger arrays will be designed, each binding a half site of the nuclease target site, and each conjugated to a cleavage domain. In some embodiments, nuclease designing and/or generating is done by recombinant technology. Suitable recombinant technologies are well known to those of skill in the art, and the disclosure is not limited in this respect.


In some embodiments, a site-specific nuclease designed or generated according to aspects of this disclosure is isolated and/or purified. The methods and strategies for designing site-specific nucleases according to aspects of this disclosure can be applied to design or generate any site-specific nuclease, including, but not limited to Zinc Finger Nucleases, Transcription Activator-Like Effector Nucleases (TALENs), a homing endonuclease, an organic compound nuclease, or an enediyne antibiotic (e.g., dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin).


Isolated Nucleases


Some aspects of this disclosure provide isolated site-specific nucleases with enhanced specificity that are designed using the methods and strategies described herein. Some embodiments, of this disclosure provide nucleic acids encoding such nucleases. Some embodiments of this disclosure provide expression constructs comprising such encoding nucleic acids. For example, in some embodiments an isolated nuclease is provided that has been engineered to cleave a desired target site within a genome, and has been evaluated according to a method provided herein to cut less than 1, less than 2, less than 3, less than 4, less than 5, less than 6, less than 7, less than 8, less than 9 or less than 10 off-target sites at a concentration effective for the nuclease to cut its intended target site. In some embodiments an isolated nuclease is provided that has been engineered to cleave a desired unique target site that has been selected to differ from any other site within a genome by at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 nucleotide residues. In some embodiments, the isolated nuclease is an RNA-programmable nuclease, such as a Cas9 nuclease; a Zinc Finger Nuclease (ZFN); or a Transcription Activator-Like Effector Nuclease (TALEN), a homing endonuclease, an organic compound nuclease, or an enediyne antibiotic (e.g., dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin). In some embodiments, the isolated nuclease cleaves a target site within an allele that is associated with a disease or disorder. In some embodiments, the isolated nuclease cleaves a target site the cleavage of which results in treatment or prevention of a disease or disorder. In some embodiments, the disease is HIV/AIDS, or a proliferative disease. In some embodiments, the allele is a CCR5 (for treating HIV/AIDS) or a VEGFA allele (for treating a proliferative disease).


In some embodiments, the isolated nuclease is provided as part of a pharmaceutical composition. For example, some embodiments provide pharmaceutical compositions comprising a nuclease as provided herein, or a nucleic acid encoding such a nuclease, and a pharmaceutically acceptable excipient. Pharmaceutical compositions may optionally comprise one or more additional therapeutically active substances.


In some embodiments, compositions provided herein are administered to a subject, for example, to a human subject, in order to effect a targeted genomic modification within the subject. In some embodiments, cells are obtained from the subject and contacted with a nuclease or a nuclease-encoding nucleic acid ex vivo, and re-administered to the subject after the desired genomic modification has been effected or detected in the cells. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.


Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.


Pharmaceutical formulations may additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, M D, 2006; incorporated in its entirety herein by reference) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. See also PCT application PCT/US2010/055131, incorporated in its entirety herein by reference, for additional suitable methods, reagents, excipients and solvents for producing pharmaceutical compositions comprising a nuclease. Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure.


The function and advantage of these and other embodiments of the present invention will be more fully understood from the Examples below. The following Examples are intended to illustrate the benefits of the present invention and to describe particular embodiments, but are not intended to exemplify the full scope of the invention. Accordingly, it will be understood that the Examples are not meant to limit the scope of the invention.


EXAMPLES

Materials and Methods


Oligonucleotides. All oligonucleotides used in this study were purchased from Integrated DNA Technologies. Oligonucleotide sequences are listed in Table 9.


Expression and Purification of S. pyogenes Cas9. E. coli Rosetta (DE3) cells were transformed with plasmid pMJ80611, encoding the S. pyogenes cas9 gene fused to an N-terminal 6xHis-tag/maltose binding protein. The resulting expression strain was inoculated in Luria-Bertani (LB) broth containing 100 μg/mL of ampicillin and 30 μg/mL of chloramphenicol at 37° C. overnight. The cells were diluted 1:100 into the same growth medium and grown at 37° C. to OD600 ˜0.6. The culture was incubated at 18° C. for 30 min, and isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at 0.2 mM to induce Cas9 expression. After ˜17 h, the cells were collected by centrifugation at 8,000 g and resuspended in lysis buffer (20 mM tris(hydroxymethyl)-aminomethane (Tris)-HCl, pH 8.0, 1 M KCl, 20% glycerol, 1 mM tris (2-carboxyethyl)phosphine (TCEP)). The cells were lysed by sonication (10 sec pulse-on and 30 sec pulse-off for 10 min total at 6 W output) and the soluble lysate was obtained by centrifugation at 20,000 g for 30 min. The cell lysate was incubated with nickel-nitriloacetic acid (nickel-NTA) resin (Qiagen) at 4° C. for 20 min to capture His-tagged Cas9. The resin was transferred to a 20-mL column and washed with 20 column volumes of lysis buffer. Cas9 was eluted in 20 mM Tris-HCl (pH 8), 0.1 M KCl, 20% glycerol, 1 mM TCEP, and 250 mM imidazole, and concentrated by Amicon ultra centrifugal filter (Millipore, 30-kDa molecular weight cut-off) to ˜50 mg/mL. The 6xHis tag and maltose-binding protein were removed by TEV protease treatment at 4° C. for 20 h and captured by a second Ni-affinity purification step. The eluent, containing Cas9, was injected into a HiTrap SP FF column (GE Healthcare) in purification buffer containing 20 mM Tris-HCl (pH 8), 0.1 M KCl, 20% glycerol, and 1 mM TCEP. Cas9 was eluted with purification buffer containing a linear KCl gradient from 0.1 M to 1 M over five column volumes. The eluted Cas9 was further purified by a HiLoad Superdex 200 column in purification buffer, snap-frozen in liquid nitrogen, and stored in aliquots at −80° C.


In Vitro RNA Transcription. 100 pmol CLTA(#) v2.1 fwd and v2.1 template rev were incubated at 95° C. and cooled at 0.1° C./s to 37° C. in NEBuffer2 (50 mM sodium chloride, 10 mM Tris-HCl, 10 mM magnesium chloride, 1 mM dithiothreitol, pH 7.9) supplemented with 10 μM dNTP mix (Bio-Rad). 10 U of Klenow Fragment (3′→5′ exo) (NEB) were added to the reaction mixture and a double-stranded CLTA(#) v2.1 template was obtained by overlap extension for 1 h at 37° C. 200 nM CLTA(#) v2.1 template alone or 100 nM CLTA(#) template with 100 nM T7 promoter oligo was incubated overnight at 37° C. with 0.16 U/μL of T7 RNA Polymerase (NEB) in NEB RNAPol Buffer (40 mM Tris-HCl, pH 7.9, 6 mM magnesium chloride, 10 mM dithiothreitol, 2 mM spermidine) supplemented with 1 mM rNTP mix (1 mM rATP, 1 mM rCTP, 1 mM rGTP, 1 mM rUTP). In vitro transcribed RNA was precipitated with ethanol and purified by gel electrophoresis on a Criterion 10% polyacrylamide TBE-Urea gel (Bio-Rad). Gel-purified sgRNA was precipitated with ethanol and redissolved in water.


In Vitro Library Construction. 10 pmol of CLTA(#) lib oligonucleotides were separately circularized by incubation with 100 units of CircLigase II ssDNA Ligase (Epicentre) in 1× CircLigase II Reaction Buffer (33 mM Tris-acetate, 66 mM potassium acetate, 0.5 mM dithiothreitol, pH 7.5) supplemented with 2.5 mM manganese chloride in a total reaction volume of 20 μL for 16 hours at 60° C. The reaction mixture was incubated for 10 minutes at 85° C. to inactivate the enzyme. 5 μL (5 pmol) of the crude circular single-stranded DNA were converted into the concatemeric pre-selection libraries with the illustra TempliPhi Amplification Kit (GE Healthcare) according to the manufacturer's protocol. Concatemeric pre-selection libraries were quantified with the Quant-it PicoGreen dsDNA Assay Kit (Invitrogen).


In Vitro Cleavage of On-Target and Off-Target Substrates. Plasmid templates for PCR were constructed by ligation of annealed oligonucleotides CLTA(#) site fwd/rev into HindIII/XbaI double-digested pUC19 (NEB). On-target substrate DNAs were generated by PCR with the plasmid templates and test fwd and test rev primers, then purified with the QIAquick PCR Purification Kit (Qiagen). Off-target substrate DNAs were generated by primer extension. 100 pmol off-target (#) fwd and off-target (#) rev primers were incubated at 95° C. and cooled at 0.1° C./s to 37° C. in NEBuffer2 (50 mM sodium chloride, 10 mM Tris-HCl, 10 mM magnesium chloride, 1 mM dithiothreitol, pH 7.9) supplemented with 10 μM dNTP mix (Bio-Rad). 10 U of Klenow Fragment (3′→5′ exo-) (NEB) were added to the reaction mixture and double-stranded off-target templates were obtained by overlap extension for 1 h at 37° C. followed by enzyme inactivation for 20 min at 75° C., then purified with the QIAquick PCR Purification Kit (Qiagen). 200 nM substrate DNAs were incubated with 100 nM Cas9 and 100 nM (v1.0 or v2.1) sgRNA or 1000 nM Cas9 and 1000 nM (v1.0 or v2.1) sgRNA in Cas9 cleavage buffer (200 mM HEPES, pH 7.5, 1.5 M potassium chloride, 100 mM magnesium chloride, 1 mM EDTA, 5 mM dithiothreitol) for 10 min at 37° C. On-target cleavage reactions were purified with the QIAquick PCR Purification Kit (Qiagen), and off-target cleavage reactions were purified with the QIAquick Nucleotide Removal Kit (Qiagen) before electrophoresis in a Criterion 5% polyacrylamide TBE gel (Bio-Rad).


In Vitro Selection. 200 nM concatemeric pre-selection libraries were incubated with 100 nM Cas9 and 100 nM sgRNA or 1000 nM Cas9 and 1000 nM sgRNA in Cas9 cleavage buffer (200 mM HEPES, pH 7.5, 1.5 M potassium chloride, 100 mM magnesium chloride, 1 mM EDTA, 5 mM dithiothreitol) for 10 min at 37° C. Pre-selection libraries were also separately incubated with 2 U of BspMI restriction endonuclease (NEB) in NEBuffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol, pH 7.9) for 1 h at 37° C. Blunt-ended post-selection library members or sticky-ended pre-selection library members were purified with the QIAQuick PCR Purification Kit (Qiagen) and ligated to 10 pmol adapter1/2(AACA) (Cas9:v2.1 sgRNA, 100 nM), adapter1/2(TTCA) (Cas9:v2.1 sgRNA, 1000 nM), adapter1/2 (Cas9:v2.1 sgRNA, 1000 nM), or lib adapter1/CLTA(#) lib adapter 2 (pre-selection) with 1,000 U of T4 DNA Ligase (NEB) in NEB T4 DNA Ligase Reaction Buffer (50 mM Tris-HCl, pH 7.5, 10 mM magnesium chloride, 1 mM ATP, 10 mM dithiothreitol) overnight (≥10 h) at room temperature. Adapter-ligated DNA was purified with the QIAquick PCR Purification Kit and PCR-amplified for 10-13 cycles with Phusion Hot Start Flex DNA Polymerase (NEB) in Buffer HF (NEB) and primers CLTA(#) sel PCR/PE2 short (post-selection) or CLTA(#) lib seq PCR/lib fwd PCR (pre-selection). Amplified DNAs were gel purified, quantified with the KAPA Library Quantification Kit-Illumina (KAPA Biosystems), and subjected to single-read sequencing on an Illumina MiSeq or Rapid Run single-read sequencing on an Illumina HiSeq 2500 (Harvard University FAS Center for Systems Biology Core facility, Cambridge, MA).


Selection Analysis. Pre-selection and post-selection sequencing data were analyzed as previously described21, with modification (Algorithms) using scripts written in C++. Raw sequence data is not shown; see Table 2 for a curated summary. Specificity scores were calculated with the formulae: positive specificity score=(frequency of base pair at position[post-selection]−frequency of base pair at position[pre-selection])/(1−frequency of base pair at position[pre-selection]) and negative specificity score=(frequency of base pair at position[post-selection]−frequency of base pair at position[pre-selection])/(frequency of base pair at position[pre-selection]). Normalization for sequence logos was performed as previously described22.


Cellular Cleavage Assays. HEK293T cells were split at a density of 0.8×105 per well (6-well plate) before transcription and maintained in Dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) in a 37° C. humidified incubator with 5% CO2. After 1 day, cells were transiently transfected using Lipofectamine 2000 (Invitrogen) following the manufacturer's protocols. HEK293T cells were transfected at 70% confluency in each well of 6-well plate with 1.0 μg of the Cas9 expression plasmid (Cas9-HA-2xNLS-GFP-NLS) and 2.5 μg of the single-strand RNA expression plasmid pSiliencer-CLTA (version 1.0 or 2.1). The transfection efficiencies were estimated to be ˜70%, based on the fraction of GFP-positive cells observed by fluorescence microscopy. 48 h after transfection, cells were washed with phosphate buffered saline (PBS), pelleted and frozen at −80° C. Genomic DNA was isolated from 200 μL cell lysate using the DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer's protocol.


Off-Target Site Sequence Determination. 100 ng genomic DNA isolated from cells treated with Cas9 expression plasmid and single-strand RNA expression plasmid (treated cells) or Cas9 expression plasmid alone (control cells) were amplified by PCR with 10 s 72° C. extension for 35 cycles with primers CLTA(#)-(#)-(#) fwd and CLTA(#)-(#)-(#) rev and Phusion Hot Start Flex DNA Polymerase (NEB) in Buffer GC (NEB), supplemented with 3% DMSO. Relative amounts of crude PCR products were quantified by gel, and Cas9-treated (control) and Cas9:sgRNA-treated PCRs were separately pooled in equimolar concentrations before purification with the QIAquick PCR Purification Kit (Qiagen). Purified DNA was amplified by PCR with primers PE1-barcode # and PE2-barcode # for 7 cycles with Phusion Hot Start Flex DNA Polymerase (NEB) in Buffer HF (NEB). Amplified control and treated DNA pools were purified with the QIAquick PCR Purification Kit (Qiagen), followed by purification with Agencourt AMPure XP (Beckman Coulter). Purified control and treated DNAs were quantified with the KAPA Library Quantification Kit-Illumina (KAPA Biosystems), pooled in a 1:1 ratio, and subjected to paired-end sequencing on an Illumina MiSeq.


Statistical Analysis. Statistical analysis was performed as previously described21. P-values in Table 1 and Table 6 were calculated for a one-sided Fisher exact test.


Algorithms


All scripts were written in C++. Algorithms used in this study are as previous reported (reference) with modification.


Sequence binning. 1) designate sequence pairs starting with the barcode “AACA” or “TTCA” as post-selection library members. 2) for post-selection library members (with illustrated example):

    • example read:









(SEQ ID NO: 42)



AACA
CATGGGTCGACACAAACACAA
CTCGGCAGGTACTTGCAGATGTAGT






CTTTCCACATGGGTCGACACAAACACAACTCGGCAGGTATCTCGTATGCC








    • i) search both paired reads for the positions, pos1 and pos2, of the constant sequence














(SEQ ID NO: 43)



CTCGGCAGGT”.








    •  ii) keep only sequences that have identical sequences between the barcode and pos1 and preceding pos2. iii) keep the region between the two instances of the constant sequence (the region between the barcode and pos1 contains a cut half-site; the region that is between the two instances of the constant sequence contains a full site)

    • example:












(SEQ ID NO: 44)


ACTTGCAGATGTAGTCTTTCCACATGGGTCGACACAAACACAA








    • ii) search the sequence for a selection barcode (
















(SEQ ID NO: 45)




TGTGTTTGTGTT








    •  ) for CLTA1,












for CLTA2


(SEQ ID NO: 46)


AGAAGAAGAAGA”,





for CLTA3


(SEQ ID NO: 47)


TTCTCTTTCTCT”,





for CLTA4)


(SEQ ID NO: 48)


ACACAAACACAA








    • example:












(SEQ ID NO: 49)


ACTTGCAGATGTAGTCTTTCCACATGGGTCGACACAAACACAA








    •  —CLTA4)

    • iii) the sequence before the barcode is the full post-selection library member (first four and last four nucleotides are fully randomized flanking sequence)

    • example:














(SEQ ID NO: 50)



ACTT GCAGATGTAGTCTTTCCACATGG GTCG








    • iv) parse the quality scores for the positions corresponding to the 23 nucleotide post-selection library member

    • example read:












(SEQ ID NO: 51)


AACACATGGGTCGACACAAACACAACTCGGCAGGTACTTGCAGATGTAGT






CTTTCCACATGGGTCGACACAAACACAACTCGGCAGGTATCTCGTATGCC






CCCFFFFFHHHHHJJJJJJJJJJJJJJJJJJJJJGIJJJJIJIJJJIIIH






IIJJJHHHGHAEFCDDDDDDDDDDDDDDDDDDDDDDD?CDDEDD@DCCCD









    • v) keep sequences only if the corresponding quality score string (underlined) FASTQ quality characters for the sequence are ‘?’ or higher in ASCII code (Phred quality score >=30)





NHEJ Sequence Calling

    • example read:









(SEQ ID NO: 52)


CAATCTCCCGCATGCGCTCAGTCCTCATCTCCCTCAAGCAGGCCCCGCTG






GTGCACTGAAGAGCCA
CCCTGTGAAACACTACATCTGC
AATATCTTAATC







CTACTCAGTGAAGCTCTTCACAGTCATTGGATTAATTATGTTGAGTTCTT






TTGGACCAAACC








    • example quality scores:












CCBCCFFFFCCCGGGGGGGGGGHHHHHHHHHHHHHHHHHHHHGGGGGGGG





GHHHHHHHHHHHHHHHHHGHHHHHHHHHHHHHHHHHHHHHGHHHHHHHHH





HHHHHHHHFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH





HHHGHFHHHHHF








    • 1) identify the 20 base pairs flanking both sides of 20 base pair target site+three base pair PAM for each target site

    • example flanking sequences:












(SEQ ID NO: 53)



GCTGGTGCACTGAAGAGCCA






(SEQ ID NO: 54)



AATATCTTAATCCTACTCAG









    • 2) search all sequence reads for the flanking sequences to identify the potential off-target site (the sequence between the flanking sequences)

    • example potential off-target site:














(SEQ ID NO: 55)




CCCTGTGAAACACTACATCTGC









    • 3) if the potential off-target site contains indels (length is less than 23), keep sequence as potential off-target site if all corresponding FASTQ quality characters for the sequence are ‘?’ or higher in ASCII code (Phred quality score >=30)

    • example potential off-target site length=22
      • example corresponding FASTQ quality characters: HHGHHHHHHHHHHHHHHHHHHH

    • 4) bin and manually inspect all sequences that pass steps 2 and 3 and keep sequences as potential modified sequences if they have at least one deletion involving position 16, 17, or 18 (of 20 counting from the non-PAM end) of if they have an insertion between position 17 and 18, consistent with the most frequent modifications observed for the intended target site (FIG. 3)

    • example potential off-target site (reverse complement, with positions labeled) with reference sequence:
      • 11111111112222 non-PAM end 12345678901234567890123 PAM end














(SEQ ID NO: 56)




GCAGATGTAGTGTTTC-ACAGGG







(SEQ ID NO: 57)




GCAGATGTAGTGTTTCCACAGGG









    • 4) repeat steps 1-3 for read2 and keep only if the sequence is the same

    • 5) compare overall counts in Cas9+sgRNA treated sample to Cas9 alone sample to identify modified sites





Filter Based on Cleavage Site (for Post-Selection Sequences)

    • 1) tabulate the cleavage site locations across the recognition site by identifying the first position in the full sequenced recognition site (between the two constant sequences) that is identical to the first position in the sequencing read after the barcode (before the first constant sequence).
    • 2) after tabulation, repeat step 1, keeping only sequences with cleavage site locations that are present in at least 5% of the sequencing reads.


      Results


      Broad Off-Target DNA Cleavage Profiling Reveals RNA Programmed Cas9 Nuclease specificity.


Sequence-specific endonucleases including zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have become important tools to modify genes in induced pluripotent stem cells (iPSCs),1-3 in multi-cellular organisms,4-8 and in ex vivo gene therapy clinical trials.9-10 Although ZFNs and TALENs have proved effective for such genetic manipulation, a new ZFN or TALEN protein must be generated for each DNA target site. In contrast, the RNA-guided Cas9 endonuclease uses RNA:DNA hybridization to determine target DNA cleavage sites, enabling a single monomeric protein to cleave, in principle, any sequence specified by the guide RNA.11


Previous studies12-17 demonstrated that Cas9 mediates genome editing at sites complementary to a 20-nucleotide sequence in a bound guide RNA. In addition, target sites must include a protospacer adjacent motif (PAM) at the 3′ end adjacent to the 20-nucleotide target site; for Streptococcus pyogenes Cas9, the PAM sequence is NGG. Cas9-mediated DNA cleavage specificity both in vitro and in cells has been inferred previously based on assays against small collections of potential single-mutation off-target sites. These studies suggested that perfect complementarity between guide RNA and target DNA is required in the 7-12 base pairs adjacent to the PAM end of the target site (3′ end of the guide RNA) and mismatches are tolerated at the non-PAM end (5′ end of the guide RNA).11, 12, 17-19


Although such a limited number of nucleotides specifying Cas9:guide RNA target recognition would predict multiple sites of DNA cleavage in genomes of moderate to large size (>˜107 bp), Cas9:guide RNA complexes have been successfully used to modify both cells12, 13, 15 and organisms.14 A study using Cas9:guide RNA complexes to modify zebrafish embryos observed toxicity at a rate similar to that of ZFNs and TALENs.14 A recent, broad study of the specificity of DNA binding (transcriptional repression) in E. coli of a catalytically inactive Cas9 mutant using high-throughput sequencing found no detectable off-target transcriptional repression in the relatively small E. coli transcriptome.20 While these studies have substantially advanced our basic understanding of Cas9, a systematic and comprehensive profile of Cas9:guide RNA-mediated DNA cleavage specificity generated from measurements of Cas9 cleavage on a large number of related mutant target sites has not been described. Such a specificity profile is needed to understand and improve the potential of Cas9:guide RNA complexes as research tools and future therapeutic agents.


We modified our previously published in vitro selection,21 adapted to process the blunt-ended cleavage products produced by Cas9 compared to the overhang-containing products of ZFN cleavage, to determine the off-target DNA cleavage profiles of Cas9:single guide RNA (sgRNA)11 complexes. Each selection experiment used DNA substrate libraries containing ˜1012 sequences, a size sufficiently large to include ten-fold coverage of all sequences with eight or fewer mutations relative to each 22-base pair target sequence (including the two-base pair PAM) (FIG. 1). We used partially randomized nucleotide mixtures at all 22 target-site base pairs to create a binomially distributed library of mutant target sites with an expected mean of 4.62 mutations per target site. In addition, target site library members were flanked by four fully randomized base pairs on each side to test for specificity patterns beyond those imposed by the canonical 20-base pair target site and PAM.


Pre-selection libraries of 1012 individual potential off-target sites were generated for each of four different target sequences in the human clathrin light chain A (CLTA) gene (FIG. 3). Synthetic 5′-phosphorylated 53-base oligonucleotides were self-ligated into circular single-stranded DNA in vitro, then converted into concatemeric 53-base pair repeats through rolling-circle amplification. The resulting pre-selection libraries were incubated with their corresponding Cas9:sgRNA complexes. Cleaved library members containing free 5′ phosphates were separated from intact library members through the 5′ phosphate-dependent ligation of non-phosphorylated double-stranded sequencing adapters. The ligation-tagged post-selection libraries were amplified by PCR. The PCR step generated a mixture of post-selection DNA fragments containing 0.5, 1.5, or 2.5, etc. repeats of library members cleaved by Cas9, resulting from amplification of an adapter-ligated cut half-site with or without one or more adjacent corresponding full sites (FIG. 1). Post-selection library members with 1.5 target-sequence repeats were isolated by gel purification and analyzed by high-throughput sequencing. In a final computational selection step to minimize the impact of errors during DNA amplification or sequencing, only sequences with two identical copies of the repeated cut half-site were analyzed.


Pre-selection libraries were incubated under enzyme-limiting conditions (200 nM target site library, 100 nM Cas9:sgRNA v2.1) or enzyme-saturating conditions (200 nM target site library, 1000 nM Cas9:sgRNA v2.1) for each of the four guide RNAs targets tested (CLTA1, CLTA2, CLTA3, and CLTA4) (FIGS. 3C and 3D). A second guide RNA construct, sgRNA v1.0, which is less active than sgRNA v2.1, was assayed under enzyme-saturating conditions alone for each of the four guide RNA targets tested (200 nM target site library, 1000 nM Cas9:sgRNA v1.0). The two guide RNA constructs differ in their length (FIG. 3) and in their DNA cleavage activity level under the selection conditions, consistent with previous reports 15 (FIG. 4). Both pre-selection and post-selection libraries were characterized by high-throughput DNA sequencing and computational analysis. As expected, library members with fewer mutations were significantly enriched in post-selection libraries relative to pre-selection libraries (FIG. 5).


Pre- and Post-Selection Library Composition. The pre-selection libraries for CLTA1, CLTA2, CLTA3, and CLTA4 had observed mean mutation rates of 4.82 (n=1,129,593), 5.06 (n=847,618), 4.66 (n=692,997), and 5.00 (n=951,503) mutations per 22-base pair target site, including the two-base pair PAM, respectively. The post-selection libraries treated under enzyme-limiting conditions with Cas9 plus CLTA1, CLTA2, CLTA3, or CLTA4 v.2.1 sgRNAs contained means of 1.14 (n=1,206,268), 1.21 (n=668,312), 0.91 (n=1,138,568), and 1.82 (n=560,758) mutations per 22-base pair target site. Under enzyme-excess conditions, the mean number of mutations among sequences surviving selection increased to 1.61 (n=640,391), 1.86 (n=399,560), 1.46 (n=936,414), and 2.24 (n=506,179) mutations per 22-base pair target site, respectively, for CLTA1, CLTA2, CLTA3, or CLTA4 v2.1 sgRNAs. These results reveal that the selection significantly enriched library members with fewer mutations for all Cas9:sgRNA complexes tested, and that enzyme-excess conditions resulted in the putative cleavage of more highly mutated library members compared with enzyme-limiting conditions (FIG. 5).


We calculated specificity scores to quantify the enrichment level of each base pair at each position in the post-selection library relative to the pre-selection library, normalized to the maximum possible enrichment of that base pair. Positive specificity scores indicate base pairs that were enriched in the post-selection library and negative specificity scores indicate base pairs that were de-enriched in the post-selection library. For example, a score of +0.5 indicates that a base pair is enriched to 50% of the maximum enrichment value, while a score of −0.5 indicates that a base pair is de-enriched to 50% of the maximum de-enrichment value.


In addition to the two base pairs specified by the PAM, all 20 base pairs targeted by the guide RNA were enriched in the sequences from the CLTA1 and CLTA2 selections (FIG. 2, FIGS. 6 and 9, and Table 2). For the CLTA3 and CLTA4 selections (FIGS. 7 and 8, and Table 2), guide RNA-specified base pairs were enriched at all positions except for the two most distal base pairs from the PAM (5′ end of the guide RNA), respectively. At these non-specified positions farthest from the PAM, at least two of the three alternate base pairs were nearly as enriched as the specified base pair. Our finding that the entire 20 base-pair target site and two base pair PAM can contribute to Cas9:sgRNA DNA cleavage specificity contrasts with the results from previous single-substrate assays suggesting that only 7-12 base pairs and two base pair PAM are specified.11, 12, 15


All single-mutant pre-selection (n≥14,569) and post-selection library members (n≥103,660) were computationally analyzed to provide a selection enrichment value for every possible single-mutant sequence. The results of this analysis (FIG. 2 and FIGS. 6 and 8) show that when only single-mutant sequences are considered, the six to eight base pairs closest to the PAM are generally highly specified and the non-PAM end is poorly specified under enzyme-limiting conditions, consistent with previous findings.11, 12, 17-19 Under enzyme-saturating conditions, however, single mutations even in the six to eight base pairs most proximal to the PAM are tolerated, suggesting that the high specificity at the PAM end of the DNA target site can be compromised when enzyme concentrations are high relative to substrate (FIG. 2). The observation of high specificity against single mutations close to the PAM only applies to sequences with a single mutation and the selection results do not support a model in which any combination of mutations is tolerated in the region of the target site farthest from the PAM (FIG. 10-15). Analyses of pre- and post-selection library composition are described elsewhere herein, position-dependent specificity patterns are illustrated in FIGS. 18-20, PAM nucleotide specificity is illustrated in FIGS. 21-24, and more detailed effects of Cas9:sgRNA concentration on specificity are described in FIG. 2G and FIG. 25).


Specificity at the Non-PAM End of the Target Site. To assess the ability of Cas9:v2.1 sgRNA under enzyme-excess conditions to tolerate multiple mutations distal to the PAM, we calculated maximum specificity scores at each position for sequences that contained mutations only in the region of one to 12 base pairs at the end of the target site most distal from the PAM (FIG. 10-17).


The results of this analysis show no selection (maximum specificity score ˜0) against sequences with up to three mutations, depending on the target site, at the end of the molecule farthest from the PAM when the rest of the sequence contains no mutations. For example, when only the three base pairs farthest from the PAM are allowed to vary (indicated by dark bars in FIG. 11C) in the CLTA2 target site, the maximum specificity scores at each of the three variable positions are close to zero, indicating that there was no selection for any of the four possible base pairs at each of the three variable positions. However, when the eight base pairs farthest from the PAM are allowed to vary (FIG. 11H), the maximum specificity scores at positions 4-8 are all greater than +0.4, indicating that the Cas9:sgRNA has a sequence preference at these positions even when the rest of the substrate contains preferred, on-target base pairs.


We also calculated the distribution of mutations (FIG. 15-17), in both pre-selection and v2.1 sgRNA-treated post-selection libraries under enzyme-excess conditions, when only the first 1-12 base pairs of the target site are allowed to vary. There is significant overlap between the pre-selection and post-selection libraries for only a subset of the data (FIG. 15-17, a-c), demonstrating minimal to no selection in the post-selection library for sequences with mutations only in the first three base pairs of the target site. These results collectively show that Cas9:sgRNA can tolerate a small number of mutations (˜one to three) at the end of the sequence farthest from the PAM when provided with maximal sgRNA:DNA interactions in the rest of the target site.


Specificity at the PAM End of the Target Site. We plotted positional specificity as the sum of the magnitudes of the specificity scores for all four base pairs at each position of each target site, normalized to the same sum for the most highly specified position (FIG. 18-20). Under both enzyme-limiting and enzyme-excess conditions, the PAM end of the target site is highly specified. Under enzyme-limiting conditions, the PAM end of the molecule is almost absolutely specified (specificity score ≥0.9 for guide RNA-specified base pairs) by CLTA1, CTLA2, and CLTA3 guide RNAs (FIG. 2 and FIGS. 6-9), and highly specified by CLTA4 guide RNA (specificity score of +0.7 to +0.9). Within this region of high specificity, specific single mutations, consistent with wobble pairing between the guide RNA and target DNA, that are tolerated. For example, under enzyme-limiting conditions for single-mutant sequences, a dA:dT off-target base pair and a guide RNA-specified dG:dC base pair are equally tolerated at position 17 out of 20 (relative to the non-PAM end of the target site) of the CLTA3 target site. At this position, an rG:dT wobble RNA:DNA base pair may be formed, with minimal apparent loss of cleavage activity.


Importantly, the selection results also reveal that the choice of guide RNA hairpin affects specificity. The shorter, less-active sgRNA v1.0 constructs are more specific than the longer, more-active sgRNA v2.1 constructs when assayed under identical, enzyme-saturating conditions that reflect an excess of enzyme relative to substrate in a cellular context (FIG. 2 and FIGS. 5-8). The higher specificity of sgRNA v1.0 over sgRNA v2.1 is greater for CLTA1 and CLTA2 (˜40-90% difference) than for CLTA3 and CLTA4 (<40% difference). Interestingly, this specificity difference is localized to different regions of the target site for each target sequence (FIGS. 2H and 26). Collectively, these results indicate that different guide RNA architectures result in different DNA cleavage specificities, and that guide RNA-dependent changes in specificity do not affect all positions in the target site equally. Given the inverse relationship between Cas9:sgRNA concentration and specificity described above, we speculate that the differences in specificity between guide RNA architectures arises from differences in their overall level of DNA-cleavage activities.


Effects of Cas9:sgRNA Concentration on DNA Cleavage Specificity. To assess the effect of enzyme concentration on patterns of specificity for the four target sites tested, we calculated the concentration-dependent difference in positional specificity and compared it to the maximal possible change in positional specificity (FIG. 25). In general, specificity was higher under enzyme-limiting conditions than enzyme-excess conditions. A change from enzyme-excess to enzyme-limiting conditions generally increased the specificity at the PAM end of the target by ≥80% of the maximum possible change in specificity. Although a decrease in enzyme concentration generally induces small (˜30%) increases in specificity at the end of the target sites farthest from the PAM, concentration decreases induce much larger increases in specificity at the end of the target site nearest the PAM. For CLTA4, a decrease in enzyme concentration is accompanied by a small (˜30%) decrease in specificity at some base pairs near the end of the target site farthest from the PAM.


Specificity of PAM Nucleotides. To assess the contribution of the PAM to specificity, we calculated the abundance of all 16 possible PAM dinucleotides in the pre-selection and post-selection libraries, considering all observed post-selection target site sequences (FIG. 21) or considering only post-selection target site sequences that contained no mutations in the 20 base pairs specified by the guide RNA (FIG. 22). Considering all observed post-selection target site sequences, under enzyme-limiting conditions, GG dinucleotides represented 99.8%, 99.9%, 99.8%, and 98.5% of the post-selection PAM dinucleotides for selections with CLTA1, CLTA2, CLTA3, and CLTA4 v2.1 sgRNAs, respectively. In contrast, under enzyme-excess conditions, GG dinucleotides represented 97.7%, 98.3%, 95.7%, and 87.0% of the post-selection PAM dinucleotides for selections with CLTA1, CLTA2, CLTA3, and CLTA4 v2.1 sgRNAs, respectively. These data demonstrate that an increase in enzyme concentration leads to increased cleavage of substrates containing non-canonical PAM dinucleotides.


To account for the pre-selection library distribution of PAM dinucleotides, we calculated specificity scores for the PAM dinucleotides (FIG. 23). When only on-target post-selection sequences are considered under enzyme-excess conditions (FIG. 24), non-canonical PAM dinucleotides with a single G rather than two Gs are relatively tolerated. Under enzyme-excess conditions, Cas9:CLTA4 sgRNA 2.1 exhibited the highest tolerance of non-canonical PAM dinucleotides of all the Cas9:sgRNA combinations tested. AG and GA dinucleotides were the most tolerated, followed by GT, TG, and CG PAM dinucleotides. In selections with Cas9:CLTA1, 2, or 3 sgRNA 2.1 under enzyme-excess conditions, AG was the predominate non-canonical PAM (FIGS. 23 and 24). Our results are consistent with another recent study of PAM specificity, which shows that Cas9:sgRNA can recognize AG PAM dinucleotides23. In addition, our results show that under enzyme-limiting conditions, GG PAM dinucleotides are highly specified, and under enzyme-excess conditions, non-canonical PAM dinucleotides containing a single G can be tolerated, depending on the guide RNA context.


To confirm that the in vitro selection results accurately reflect the cleavage behavior of Cas9 in vitro, we performed discrete cleavage assays of six CLTA4 off-target substrates containing one to three mutations in the target site. We calculated enrichment values for all sequences in the post-selection libraries for the Cas9:CLTA4 v2.1 sgRNA under enzyme-saturating conditions by dividing the abundance of each sequence in the post-selection library by the calculated abundance in the pre-selection library. Under enzyme-saturating conditions, the single one, two, and three mutation sequences with the highest enrichment values (27.5, 43.9, and 95.9) were cleaved to ≥71% completion (FIG. 27). A two-mutation sequence with an enrichment value of 1.0 was cleaved to 35%, and a two-mutation sequence with an enrichment value near zero (0.064) was not cleaved. The three-mutation sequence, which was cleaved to 77% by CLTA4 v2.1 sgRNA, was cleaved to a lower efficiency of 53% by CLTA4 v1.0 sgRNA (FIG. 28). These results indicate that the selection enrichment values of individual sequences are predictive of in vitro cleavage efficiencies.


To determine if results of the in vitro selection and in vitro cleavage assays pertain to Cas9:guide RNA activity in human cells, we identified 51 off-target sites (19 for CLTA1 and 32 for CLTA4) containing up to eight mutations that were both enriched in the in vitro selection and present in the human genome (Tables 3-5). We expressed Cas9:CLTA1 sgRNA v1.0, Cas9:CLTA1 sgRNA v2.1, Cas9:CLTA4 sgRNA v1.0, Cas9:CLTA4 sgRNA v2.1, or Cas9 without sgRNA in HEK293T cells by transient transfection and used genomic PCR and high-throughput DNA sequencing to look for evidence of Cas9:sgRNA modification at 46 of the 51 off-target sites as well as at the on-target loci; no specific amplified DNA was obtained for five of the 51 predicted off-target sites (three for CLTA1 and two for CLTA4).


Deep sequencing of genomic DNA isolated from HEK293T cells treated with Cas9:CLTA1 sgRNA or Cas9:CLTA4 sgRNA identified sequences evident of non-homologous end-joining (NHEJ) at the on-target sites and at five of the 49 tested off-target sites (CLTA1-1-1, CLTA1-2-2, CLTA4-3-1, CLTA4-3-3, and CLTA4-4-8) (Tables 1 and 6-8). The CLTA4 target site was modified by Cas9:CLTA4 v2.1 sgRNA at a frequency of 76%, while off-target sites, CLTA4-3-1 CLTA4-3-3, and CLTA4-4-8, were modified at frequencies of 24%, 0.47% and 0.73%, respectively. The CLTA1 target site was modified by Cas9:CLTA1 v2.1 sgRNA at a frequency of 0.34%, while off-target sites, CLTA1-1-1 and CLTA1-2-2, were modified at frequencies of 0.09% and 0.16%, respectively.


Under enzyme-saturating conditions with the v2.1 sgRNA, the two verified CLTA1 off-target sites, CLTA1-1-1 and CLTA1-2-2, were two of the three most highly enriched sequences identified in the in vitro selection. CLTA4-3-1 and CLTA4-3-3 were the highest and third-highest enriched sequences of the seven CLTA4 three-mutation sequences enriched in the in vitro selection that are also present in the genome. The in vitro selection enrichment values of the four-mutation sequences were not calculated, since 12 out of the 14 CLTA4 sequences in the genome containing four mutations, including CLTA4-4-8, were observed at a level of only one sequence count in the post-selection library. Taken together, these results confirm that several of the off-target substrates identified in the in vitro selection that are present in the human genome are indeed cleaved by Cas9:sgRNA complexes in human cells, and also suggest that the most highly enriched genomic off-target sequences in the selection are modified in cells to the greatest extent.


The off-target sites we identified in cells were among the most-highly enriched in our in vitro selection and contain up to four mutations relative to the intended target sites. While it is possible that heterochromatin or covalent DNA modifications could diminish the ability of a Cas9:guide RNA complex to access genomic off-target sites in cells, the identification of five out of 49 tested cellular off-target sites in this study, rather than zero or many, strongly suggests that Cas9-mediated DNA cleavage is not limited to specific targeting of only a 7-12-base pair target sequence, as suggested in recent studies. 11, 12, 19


The cellular genome modification data are also consistent with the increase in specificity of sgRNA v1.0 compared to sgRNA v2.1 sgRNAs observed in the in vitro selection data and discrete assays. Although the CLTA1-2-2, CLTA 4-3-3, and CLTA 4-4-8 sites were modified by the Cas9-sgRNA v2.1 complexes, no evidence of modification at any of these three sites was detected in Cas9:sgRNA v1.0-treated cells. The CLTA4-3-1 site, which was modified at 32% of the frequency of on-target CLTA4 site modification in Cas9:v2.1 sgRNA-treated cells, was modified at only 0.5% of the on-target modification frequency in v1.0 sgRNA-treated cells, representing a 62-fold change in selectivity. Taken together, these results demonstrate that guide RNA architecture can have a significant influence on Cas9 specificity in cells. Our specificity profiling findings present an important caveat to recent and ongoing efforts to improve the overall DNA modification activity of Cas9:guide RNA complexes through guide RNA engineering.11, 15


Overall, the off-target DNA cleavage profiling of Cas9 and subsequent analyses show that (i) Cas9:guide RNA recognition extends to 18-20 specified target site base pairs and a two-base pair PAM for the four target sites tested; (ii) increasing Cas9:guide RNA concentrations can decrease DNA-cleaving specificity in vitro; (iii) using more active sgRNA architectures can increase DNA-cleavage specificity both in vitro and in cells but impair DNA-cleavage specificity both in vitro and in cells; and (iv) as predicted by our in vitro results, Cas9:guide RNA can modify off-target sites in cells with up to four mutations relative to the on-target site. Our findings provide key insights to our understanding of RNA-programmed Cas9 specificity, and reveal a previously unknown role for sgRNA architecture in DNA-cleavage specificity. The principles revealed in this study may also apply to Cas9-based effectors engineered to mediate functions beyond DNA cleavage.


EQUIVALENTS AND SCOPE

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. The scope of the present invention is not intended to be limited to the above description, but rather is as set forth in the appended claims.


In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.


Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the claims or from relevant portions of the description is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of using the composition for any of the purposes disclosed herein are included, and methods of making the composition according to any of the methods of making disclosed herein or other methods known in the art are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.


Where elements are presented as lists, e.g., in Markush group format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, steps, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, steps, etc. For purposes of simplicity those embodiments have not been specifically set forth in haec verba herein. Thus for each embodiment of the invention that comprises one or more elements, features, steps, etc., the invention also provides embodiments that consist or consist essentially of those elements, features, steps, etc.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.


In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.


TABLES

Table 1. Cellular modification induced by Cas9:CLTA4 sgRNA. 33 human genomic DNA sequences were identified that were enriched in the Cas9:CLTA4 v2.1 sgRNA in vitro selections under enzyme-limiting or enzyme-saturating conditions. Sites shown with underline contain insertions or deletions (indels) that are consistent with significant Cas9:sgRNA-mediated modification in HEK293T cells. In vitro enrichment values for selections with Cas9:CLTA4 v1.0 sgRNA or Cas9:CLTA4 v2.1 sgRNA are shown for sequences with three or fewer mutations. Enrichment values were not calculated for sequences with four or more mutations due to low numbers of in vitro selection sequence counts. Modification frequencies (number of sequences with indels divided by total number of sequences) in HEK293T cells treated with Cas9 without sgRNA (“no sgRNA”), Cas9 with CLTA4 v1.0 sgRNA, or Cas9 with CLTA4 v2.1 sgRNA. P-values are listed for those sites that show significant modification in v1.0 sgRNA- or v2.1 sgRNA-treated cells compared to cells treated with Cas9 without sgRNA. “Not tested (n.t.)” indicates that PCR of the genomic sequence failed to provide specific amplification products.


Table 2: Raw selection sequence counts. Positions −4 to −1 are the four nucleotides preceding the 20-base pair target site. PAM1, PAM2, and PAM3 are the PAM positions immediately following the target site. Positions +4 to +7 are the four nucleotides immediately following the PAM.


Table 3: CLTA1 genomic off-target sequences. 20 human genomic DNA sequences were identified that were enriched in the Cas9:CLTA1 v2.1 sgRNA in vitro selections under enzyme-limiting or enzyme-excess conditions. “m” refers to number of mutations from on-target sequence with mutations shown in lower case. Sites shown with underline contain insertions or deletions (indels) that are consistent with significant Cas9:sgRNA-mediated modification in HEK293T cells. Human genome coordinates are shown for each site (assembly GRCh37). CLTA1-0-1 is present at two loci, and sequence counts were pooled from both loci. Sequence counts are shown for amplified and sequenced DNA for each site from HEK293T cells treated with Cas9 without sgRNA (“no sgRNA”), Cas9 with CLTA1 v1.0 sgRNA, or Cas9 with CLTA1 v2.1 sgRNA.


Table 4: CLTA4 genomic off-target sequences. 33 human genomic DNA sequences were identified that were enriched in the Cas9:CLTA4 v2.1 sgRNA in vitro selections under enzyme-limiting or enzyme-excess conditions. “m” refers to number of mutations from on-target sequence with mutations shown in lower case. Sites shown with underline contain insertions or deletions (indels) that are consistent with significant Cas9:sgRNA-mediated modification in HEK293T cells. Human genome coordinates are shown for each site (assembly GRCh37). Sequence counts are shown for amplified and sequenced DNA for each site from HEK293T cells treated with Cas9 without sgRNA (“no sgRNA”), Cas9 with CLTA4 v1.0 sgRNA, or Cas9 with CLTA4 v2.1 sgRNA.


Table 5: Genomic coordinates of CLTA1 and CLTA4 off-target sites. 54 human genomic DNA sequences were identified that were enriched in the Cas9:CLTA1 v2.1 sgRNA and Cas9:CLTA4 v2.1 sgRNA in vitro selections under enzyme-limiting or enzyme-excess conditions. Human genome coordinates are shown for each site (assembly GRCh37).


Table 6: Cellular modification induced by Cas9:CLTA1 sgRNA. 20 human genomic DNA sequences were identified that were enriched in the Cas9:CLTA1 v2.1 sgRNA in vitro selections under enzyme-limiting or enzyme-excess conditions. Sites shown with underline contain insertions or deletions (indels) that are consistent with significant Cas9:sgRNA-mediated modification in HEK293T cells. In vitro enrichment values for selections with Cas9:CLTA1 v1.0 sgRNA or Cas9:CLTA1 v2.1 sgRNA are shown for sequences with three or fewer mutations. Enrichment values were not calculated for sequences with four or more mutations due to low numbers of in vitro selection sequence counts. Modification frequencies (number of sequences with indels divided by total number of sequences) in HEK293T cells treated with Cas9 without sgRNA (“no sgRNA”), Cas9 with CLTA1 v1.0 sgRNA, or Cas9 with CLTA1 v2.1 sgRNA. P-values of sites that show significant modification in v1.0 sgRNA- or v2.1 sgRNA-treated cells compared to cells treated with Cas9 without sgRNA were 1.1E-05 (v1.0) and 6.9E-55 (v2.1) for CLTA1-0-1, 2.6E-03 (v1.0) and 2.0E-10 (v2.1) for CLTA1-1-1, and 4.6E-08 (v2.1) for CLTA1-2-2. P-values were calculated using a one-sided Fisher exact test. “Not tested (n.t.)” indicates that the site was not tested or PCR of the genomic sequence failed to provide specific amplification products.


Table 7: CLTA1 genomic off-target indel sequences. Insertion and deletion-containing sequences from cells treated with amplified and sequenced DNA for the on-target genomic sequence (CLTA1-0-1) and each modified off-target site from HEK293T cells treated with Cas9 without sgRNA (“no sgRNA”), Cas9 with CLTA1 v1.0 sgRNA, or Cas9 with CLTA1 v2.1 sgRNA. “ref” refers to the human genome reference sequence for each site, and the modified sites are listed below. Mutations relative to the on-target genomic sequence are shown in lowercase letters. Insertions and deletions are shown in underlined bold letters or dashes, respectively. Modification percentages are shown for those conditions (v1.0 sgRNA or v2.1 sgRNA) that show statistically significant enrichment of modified sequences compared to the control (no sgRNA).


Table 8: CLTA4 genomic off-target indel sequences. Insertion and deletion-containing sequences from cells treated with amplified and sequenced DNA for the on-target genomic sequence (CLTA4-0-1) and each modified off-target site from HEK293T cells treated with Cas9 without sgRNA (“no sgRNA”), Cas9 with CLTA4 v1.0 sgRNA, or Cas9 with CLTA4 v2.1 sgRNA. “ref” refers to the human genome reference sequence for each site, and the modified sites are listed below. Mutations relative to the on-target genomic sequence are shown in lowercase letters. Insertions and deletions are shown in underlined bold letters or dashes, respectively. Modification percentages are shown for those conditions (v1.0 sgRNA or v2.1 sgRNA) that show statistically significant enrichment of modified sequences compared to the control (no sgRNA).


Table 9: Oligonucleotides used in this study. All oligonucleotides were purchased from Integrated DNA Technologies. An asterisk (*) indicates that the preceding nucleotide was incorporated as a hand mix of phosphoramidites consisting of 79 mol % of the phosphoramidite corresponding to the preceding nucleotide and 4 mol % of each of the other three canonical phosphoramidites. “/5Phos/” denotes a 5′ phosphate group installed during synthesis.














TABLE 1












in vitro



# of



enrichment














Mutations
sequence
SEQ ID NO.
gene
v1.0
v2.1






CLTA4-0-1


0


GCAGATGTAGTGTTTCCACAGGG

SEQ ID NO: 58

CLTA


20    


7.95




CLTA4-3-1


3


aCAtATGTAGTaTTTCCACAGGG

SEQ ID NO: 59


16.5  


12.5  



CLTA4-3-2
3
GCAtATGTAGTGTTTCCAaATGt
SEQ ID NO: 60

2.99
6.97



CLTA4-3-3


3


cCAGATGTAGTaTTcCCACAGGG

SEQ ID NO: 61

CELF1


1.00


4.95



CLTA4-3-4
3
GCAGtTtTAGTGTTTtCACAGGG
SEQ ID NO: 62
BC073807
0.79
3.12


CLTA4-3-5
3
GCAGAgtTAGTGTTTCCACACaG
SEQ ID NO: 63
MPPED2
0   
1.22


CLTA4-3-6
3
GCAGATGgAGgGTTTtCACAGGG
SEQ ID NO: 64
DCHS2
1.57
1.17


CLTA4-3-7
3
GgAaATtTAGTGTTTCCACAGGG
SEQ ID NO: 65

0.43
0.42


CLTA4-4-1
4
aaAGAaGTAGTaTTTCCACATGG
SEQ ID NO: 66





CLTA4-4-2
4
aaAGATGTAGTcaTTCCACAAGG
SEQ ID NO: 67





CLTA4-4-3
4
aaAtATGTAGTcTTTCCACAGGG
SEQ ID NO: 68





CLTA4-4-4
4
atAGATGTAGTGTTTCCAaAGGa
SEQ ID NO: 69
NR1H4




CLTA4-4-5
4
cCAGAgGTAGTGcTcCCACAGGG
SEQ ID NO: 70





CLTA4-4-6
4
cCAGATGTgagGTTTCCACAAGG
SEQ ID NO: 71
XKR6




CLTA4-4-7
4
ctAcATGTAGTGTTTCCALATGG
SEQ ID NO: 72
HKR1





CLTA4-4-8


4


ctAGATGaAGTGcTTCCACATGG

SEQ ID NO: 73

CDK8





CLTA4-4-9
4
GaAaATGgAGTGTTTaCACATGG
SEQ ID NO: 74





CLTA4-4-10
4
GCAaATGaAGTGTcaCCACAAGG
SEQ ID NO: 75





CLTA4-4-11
4
GCAaATGTAtTaTTTCCACtAGG
SEQ ID NO: 76
NOV




CLTA4-4-12
4
GCAGATGTAGctTTTgtACATGG
SEQ ID NO: 77





CLTA4-4-13
4
GCAGcTtaAGTGTTTtCACATGG
SEQ ID NO: 78
GRHL2




CLTA4-4-14
4
ttAcATGTAGTGTTTaCACACGG
SEQ ID NO: 79
LINC00535




CLTA4-5-1
5
GaAGAgGaAGTGTTTgCcCAGGG
SEQ ID NO: 80
RNH1




CLTA4-5-2
5
GaAGATGTgGaGTTgaCACATGG
SEQ ID NO: 81
FZD3




CLTA4-5-3
5
GCAGAaGTAcTGTTgttACAAGG
SEQ ID NO: 82





CLTA4-5-4
5
GCAGATGTgGaaTTaCaACAGGG
SEQ ID NO: 83
SLC9A2




CLTA4-5-5
5
GCAGtcaTAGTGTaTaCACATGG
SEQ ID NO: 84





CLTA4-5-6
5
taAGATGTAGTaTTTCCAaAAGt
SEQ ID NO: 85





CLTA4-6-1
6
GCAGcTGgcaTtTcTCCACACGG
SEQ ID NO: 86





CLTA4-6-2
6
GgAGATcTgaTGgTTCtACAAGG
SEQ ID NO: 87





CLTA4-6-3
6
taAaATGcAGTGTaTCCAtATGG
SEQ ID NO: 88
SMA4




CLTA4-7-1
7
GCcagaaTAGTtTTTCaACAAGG
SEQ ID NO: 89
SEPHS2




CLTA4-7-2
8
ttgtATtTAGaGaTTgCACAAGG
SEQ ID NO: 90
RORB
















modification frequency














in HEK293T cells
P-value















no sgRNA
v1.0
v2.1
v1.0
v2.1







CLTA4-0-1


0.021%

   11%
   76%
<1E−55
  <1E−55




CLTA4-3-1


0.006%


0.055%

   24%

6.0E−04

  <1E−55



CLTA4-3-2
0.017%
    0%
0.014%






CLTA4-3-3

    0%
    0%

0.469%


2.5E−21



CLTA4-3-4
    0%
    0%
    0%





CLTA4-3-5
0.005%
0.015%
0.018%





CLTA4-3-6
0.015%
0.023%
0.021%





CLTA4-3-7
0.005%
0.012%
0.003%





CLTA4-4-1
n.t.
n.t.
n.t.





CLTA4-4-2
0.004%
    0%
0.005%





CLTA4-4-3
0.004%
0.009%
    0%





CLTA4-4-4
0.032%
0.006%
0.052%





CLTA4-4-5
0.005%
0.006%
0.007%





CLTA4-4-6
0.018%
    0%
0.007%





CLTA4-4-7
0.006%
    0%
0.008%






CLTA4-4-8


0.009%


0.013%


0.730%



9.70E−21




CLTA4-4-9
    0%
    0%
0.004%





CLTA4-4-10
0.004%
    0%
    0%





CLTA4-4-11
    0%
 0.00%
    0%





CLTA4-4-12
    0%
 0.00%
    0%





CLTA4-4-13
0.020%
 0.02%
0.030%





CLTA4-4-14
n.t.
n.t.
n.t.





CLTA4-5-1
0.004%
 0.01%
0.006%





CLTA4-5-2
0.004%
 0.00%
    0%





CLTA4-5-3
0.002%
 0.00%
0.003%





CLTA4-5-4
    0%
 0.00%
    0%





CLTA4-5-5
0.004%
 0.00%
0.005%





CLTA4-5-6
0.007%
 0.01%
    0%





CLTA4-6-1
n.t.
n.t.
n.t.





CLTA4-6-2
0.007%
 0.00%
0.009%





CLTA4-6-3
0.015%
 0.00%
    0%





CLTA4-7-1
    0%
 0.00%
0.007%





CLTA4-7-2
    0%
 0.00%
    0%





















100 nM Cas9:CLTA 1 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
212906
240335
195549
240089
1.04E+08
72751
40206
62972


C
285295
248595
283973
260202
37926
32496
24822
1.10E+06


G
214213
219078
220275
183578
61062
1.04E+06
25785
11117


T
493854
498460
526471
516420
64694
59173
1.12E+06
35336





position
5
6
7
8
9
10
11
12





A
41734
17376
18710
1.17E+06
24455
83195
46083
33528


C
1.12E+06
42444
1.18E+06
5339
22096
1.06E+06
48105
1.14E+06


G
9125
5423
5745
5121
8080
14905
8906
3732


T
34236
1.14E+06
20532
24018
1.15E+06
50488
1.10E+06
32417





position
13
14
15
16
17
18
19
20





A
8551
9688
4582
32237
1.15E+06
1.20E+06
2032
4237


C
1.14E+06
1.18E+06
4090
1.13E+06
4363
628
959
1.19E+06


G
3294
3867
3597
7250
3400
2474
1.19E+08
1301


T
57990
13065
1.19E+06
36826
8958
3966
9354
8065

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
261056
1386
574
235187
223887
222343
301956


C
210695
167
152
211027
273777
264354
309690


G
238989
1.20E+06
1.21E+06
205765
222282
240526
217260


T
496128
475
211
554309
486322
479045
377362










1000 nM Cas9:CLTA1 v1.0 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
154613
184336
154288
177436
805105
66777
43554
56451


C
227144
201856
215687
220834
30269
30133
24249
825333


G
153868
174052
177891
148150
47940
784264
26342
17972


T
389059
374430
386838
389204
51570
53510
840739
34918





position
5
6
7
8
9
10
11
12





A
32941
16531
19465
904226
19696
56556
35200
26674


C
865486
35184
889622
5488
17340
828521
36975
876730


G
10299
6332
5785
5938
9185
11560
10641
3020


T
25958
877857
19812
19035
888463
38037
851868
28200





position
13
14
15
16
17
18
19
20





A
7925
9269
4859
32891
910633
925527
3595
5976


C
880022
908816
4419
859631
5694
776
2120
920211


G
2819
3185
2994
6763
3631
2894
916417
1415


T
43918
13414
922412
35339
14728
5487
12552
7082

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
163479
1380
413
182704
171051
174052
221899


C
180463
120
88
180657
220438
211411
245967


G
193418
932808
934044
172551
172071
176484
161703


T
377324
366
139
398772
371124
372727
305115










1000 nM Cas9:CLTA1 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
104782
127116
103351
124521
554601
40232
29541
38710


C
154144
136337
145670
146754
20057
19440
17922
569754


G
113998
119668
120741
103026
32861
547445
18458
9314


T
267467
257270
270619
266090
32872
33274
574460
22613





position
5
6
7
8
9
10
11
12





A
23659
10435
11462
618404
14608
41826
27762
19590


C
590426
25233
612203
3834
15297
561351
26392
592757


G
5346
3908
4295
3719
5851
10987
15350
5605


T
19960
600815
12431
14434
604535
26327
570877
22439





position
13
14
15
16
17
18
19
20





A
8961
19434
9549
35083
604115
607264
4665
16515


C
594459
615112
11645
553953
13212
4438
5146
550160


G
3378
3517
6896
22551
8856
12770
813580
3712


T
33583
1328
613301
23764
14406
15919
17000
30004

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
125225
10391
2519
125288
114575
120476
149847


C
116022
329
138
123802
154249
146572
165531


G
121392
828454
537588
118600
113590
118494
111278


T
277752
1207
146
272501
258007
254879
212736










CLTA1 pre-selection library















position
−4
−3
−2
−1
1
2
3
4





A
241543
217144
208045
198284
943175
103452
75259
106919


C
254366
269805
276090
322860
52984
65855
58943
834238


G
230024
196574
210445
180859
60493
357631
56783
89386


T
403590
446000
433943
427520
72868
102585
927538
99000





position
5
6
7
8
9
10
11
12





A
124476
58762
109375
937511
85477
110292
87774
96299


C
812029
52158
839953
54708
43285
831610
50109
851358


G
85315
87098
77499
59257
71824
89679
68090
66121


T
107703
950495
103688
78047
948937
98052
943550
105745





position
13
14
15
16
17
18
19
20





A
89029
108977
52686
119398
931093
908362
84245
111479


C
641519
817157
51678
757914
90108
52995
42517
813253


G
86080
95496
81357
104949
52143
77389
913970
96000


T
113595
105893
933794
107251
85181
90774
203988
108791

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
190574
97856
104002
193367
178912
198049
215754


C
239201
58543
59450
289074
295400
288007
284268


G
192652
873150
870948
196672
202194
196499
202544


T
507096
95634
95123
460410
453017
445968
422957










100 nM Cas9:CLTA2 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
109129
135587
94032
141748
5.74E+04
44802
48284
24464


C
155710
138970
207735
220443
529643
24503
566049
6.27E+05


G
136555
142038
118241
105620
39991
2.11E+04
26481
3756


T
266918
251717
248304
200501
41277
577893
2.75E+04
13008





position
5
6
7
8
9
10
11
12





A
11611
16668
6282
6.58E+05
655917
28909
24210
656617


C
5.46E+05
19040
6.52E+05
2351
2577
1.30E+04
617274
2.64E+03


G
3627
2889
2498
3025
3202
609865
8312
5889


T
7318
6.30E+05
7487
4920
6.62E+03
16554
1.85E+04
3165





position
13
14
15
16
17
18
19
20





A
59160
36601
2974
12980
3.27E+03
1.09E+03
17686
689


C
1.48E+04
9.12E+03
660929
6.50E+05
660305
666122
1314
6.65E+05


G
581322
606454
1564
2134
1818
89
6.44E+05
505


T
13024
16134
2.85E+03
3253
2918
1016
4886
2608

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
193742
284
129
143150
165553
136708
146056


C
42664
48
43
162563
111729
143442
177253


G
137388
6.68E+05
6.68E+05
103305
146355
139972
124772


T
294518
146
42
259294
244675
248190
220231










1000 nM Cas9:CLTA2 v1.0 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
94138
115628
85485
120876
52411
41438
46093
22399


C
140695
125708
179224
191394
452192
21517
481298
538392


G
113243
118054
101836
91048
35101
18969
22797
3440


T
228367
217053
209898
173125
36739
494519
26255
12212





position
5
6
7
8
9
10
11
12





A
9066
14310
5351
567337
565061
24132
23848
558483


C
557549
16233
562576
1973
2127
11807
525901
4992


G
2802
2960
2526
2895
2793
526655
9738
8100


T
7026
542940
5990
4238
6462
13849
16956
4868





position
13
14
15
16
17
18
19
20





A
49577
39401
5425
30774
6408
5055
36081
2573


C
13617
13316
563557
535780
560658
567693
4938
569653


G
495156
496382
1789
3325
1846
166
519782
520


T
18093
27344
5672
6564
7531
3529
15642
3697

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
148145
782
243
132801
126862
118528
122897


C
46472
70
45
133402
123970
130555
148756


G
125177
575395
576103
118877
108849
104210
103370


T
256649
196
52
191363
216762
223150
201420










1000 nM Cas9:CLTA2 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
64249
81812
58977
85387
35172
29833
33434
19419


C
96983
87918
124642
127760
316077
14548
327166
364874


G
77913
80500
68612
64299
23522
15748
19664
3856


T
160415
149330
147329
122114
24789
339431
19296
11411





position
5
6
7
8
9
10
11
12





A
9272
13136
4907
391675
389930
19852
16657
383605


C
380987
11360
387025
1694
1815
8124
363374
5168


G
3035
2752
2062
2398
2439
360755
7431
6019


T
6266
372312
5566
3793
5376
10829
12098
4768





position
13
14
15
16
17
18
19
20





A
32780
22855
8722
25181
12518
17950
28198
5471


C
9569
8710
374342
355544
373485
370343
11652
378841


G
344511
350245
1559
5882
1339
391
331376
1034


T
12700
16750
13937
12953
12218
10876
28334
14214

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
100745
4933
834
89339
87351
82615
85108


C
40532
238
34
93621
87920
91380
105625


G
74803
393760
398660
79776
75927
74068
70435


T
183480
629
32
136824
148362
151497
138392










CLTA2 pre-selection library















position
−4
−3
−2
−1
1
2
3
4





A
203147
173899
167999
170203
89970
73770
88239
88611


C
181430
214835
246369
272618
632831
41977
641062
644565


G
177090
153006
151178
140868
58664
49976
60827
56077


T
285951
305878
282072
263929
66153
681895
57490
58365





position
5
6
7
8
10
10
11
12





A
76114
78589
75016
726091
712150
96111
90307
728931


C
670872
40877
649838
38931
44691
46591
628706
32296


G
52341
49259
55484
39801
38939
630670
55013
38368


T
48291
678893
67280
42795
51838
74246
73592
48023





position
13
14
15
16
17
18
19
20





A
91515
84764
79586
86205
87337
85547
92983
100316


C
49519
46571
641958
624548
637703
635473
51727
594349


G
627263
642878
59549
55292
53056
57979
616575
66553


T
79321
73405
66525
81573
69522
68619
86333
86400

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
177716
84144
88017
177831
180209
176904
174190


C
136372
41282
41689
216880
206368
210039
235263


G
158929
656315
654970
162242
160704
157741
138890


T
374601
65877
62942
290665
300337
302934
299275










100 nM Cas9:CLTA3 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
212836
248582
202151
249368
9.13E+04
77392
19048
39738


C
233270
241259
274819
305120
37894
35918
13930
5.61E+03


G
211701
187534
185281
196614
66632
9.88E+05
26572
1074020


T
480761
461193
476317
387466
942707
37284
1.08E+06
19204





position
5
6
7
8
9
10
11
12





A
1078520
1106930
46196
1.12E+06
64461
11912
30992
21158


C
1.22E+04
3774
6.35E+03
4063
5018
1.11E+06
27501
4.68E+04


G
12936
9205
1066570
7418
1050360
3828
3949
2231


T
34885
1.87E+04
19450
11145
1.77E+04
13689
1.08E+06
1068370





position
13
14
15
16
17
18
19
20





A
6465
1130430
4097
5750
4.71E+04
1.14E+06
6151
2047


C
1.12E+06
1.96E+03
1129400
1.82E+03
3421
167
1451
6.66E+02


G
2504
2471
1726
2881
1081680
876
1.13E+06
600


T
9829
3709
3.34E+03
1128120
6398
1320
4480
1135260

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
305062
1993
394
213566
240851
230230
252637


C
261609
103
82
319990
253055
261338
293644


G
228865
1.14E+06
1.14E+06
142425
192720
220683
227840


T
343032
211
69
462587
451942
426317
364447










1000 nM Cas9:CLTA3 v1.0 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
219833
263464
207913
284018
97886
78562
20653
39724


C
240570
261247
311444
333414
39996
40484
13961
5323


G
221683
206195
199246
215583
76580
1032080
24785
1126840


T
506611
457791
470094
375682
974235
37571
1129290
16811





position
5
6
7
8
9
10
11
12





A
1136320
1151200
42956
1156400
49443
18569
44852
44644


C
11099
5475
10323
6501
8456
1126310
36792
56203


G
12654
12465
1114450
12075
1113930
12078
19275
9014


T
28626
19560
20956
13723
16854
31636
1087980
1078840





position
13
14
15
16
17
18
19
20





A
44771
1152540
16264
30980
71714
1156700
47106
27658


C
1096280
8437
1156840
8448
25120
4351
24685
9473


G
7707
9466
2708
17195
1053760
10278
1085310
10308


T
39940
18250
12883
1132070
38103
17372
31596
1141260

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
276285
36304
12701
219034
239515
244440
255380


C
297135
1331
939
354209
298216
277740
292917


G
238545
1148550
1174510
171862
193096
217301
239319


T
376732
2514
550
443512
457870
449216
401101










1000 nM Cas9:CLTA3 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
169775
206549
186197
201768
75243
67150
20449
36549


C
197800
209445
243688
264177
32775
34540
14250
7885


G
174766
159928
158824
168325
58121
801768
26558
865689


T
394073
361492
367705
302144
770275
32956
875157
25291





position
5
6
7
8
9
10
11
12





A
876154
998360
39901
911344
44415
13218
37301
33080


C
14793
4878
7791
4636
7510
890591
28425
46269


G
13343
12052
868394
8837
867980
7923
14022
6553


T
32124
21124
20328
11597
16509
24682
856666
850512





position
13
14
15
16
17
18
19
20





A
26409
893570
6315
20807
52541
903619
33690
20904


C
870864
7991
910584
5931
19923
4977
18171
6508


G
3393
7912
1499
12906
836022
9011
859600
8302


T
35748
26841
19016
896770
27928
18807
24953
900700

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
205940
26623
9880
172210
182986
187305
196429


C
229797
1163
693
283240
240802
224453
236469


G
190011
906628
925513
132620
153591
172169
187623


T
310668
2000
328
348344
359035
352487
315893










CLTA3 pre-selection library















position
−4
−3
−2
−1
1
2
3
4





A
173122
135327
138244
142598
50365
69486
37040
66315


C
143788
158534
152646
177240
25902
40142
28129
34658


G
137601
132826
130592
128304
42860
534378
42217
531723


T
238486
266310
261515
244854
573870
48991
585611
60291





position
5
6
7
8
9
10
11
12





A
575295
566722
70249
528947
72610
41265
61770
56547


C
38933
36129
61591
52201
46032
559715
32233
34830


G
29873
34068
479149
49753
501888
41949
43243
30118


T
48896
56078
82008
62096
72467
50068
555751
571502





position
13
14
15
16
17
18
19
20





A
75555
586476
51203
51740
70943
569277
70484
50807


C
519328
30904
540977
24982
45344
35359
44014
35778


G
38922
34282
34082
37275
515778
36956
516177
45203


T
59192
41335
56735
579000
60932
51405
62322
561209

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
130402
57527
61702
110207
118993
126967
127707


C
174938
42259
46083
201434
190347
184758
207347


G
137307
539445
527404
113323
119846
118423
127230


T
250350
53766
57808
268033
263811
262839
230713










100 nM Cas9:CLTA4 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
55030
78101
78867
81833
8.09E+04
58148
525585
29962


C
168401
162082
139480
130495
22088
428628
4498
1.21E+04


G
89302
75785
82959
133275
415632
4.70E+04
14868
504358


T
248025
244790
259452
215155
42090
26956
1.58E+04
14300





position
5
6
7
8
9
10
11
12





A
544918
18446
54151
2.59E+04
550200
29521
34194
38891


C
5.14E+03
15601
7.10E+03
35217
2481
2.35E+04
16846
2.03E+04


G
6156
9951
493432
14899
4529
498832
27411
497382


T
4541
5.16E+05
6071
484788
3.55E+03
8877
4.82E+05
4222





position
13
14
15
16
17
18
19
20





A
26542
23991
15243
25122
5.36E+03
5.51E+05
1994
540029


C
3.69E+04
8.47E+03
5182
5.22E+05
547711
5715
546119
3.02E+03


G
6729
3344
3716
3926
3162
554
1.45E+03
4637


T
490573
524958
5.37E+05
9437
4528
3692
11194
13069

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
47731
4642
1401
77633
56902
63224
54815


C
152056
655
473
141128
164035
146401
190955


G
72296
5.55E+05
5.58E+05
84257
77627
75123
91454


T
288675
911
495
257745
262194
276010
223534










1000 nM Cas9:CLTA4 v1.0 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
95188
141261
145156
141850
151224
116745
928773
50295


C
305024
297215
260676
243819
34420
745345
8606
17266


G
159888
138073
153474
225343
742232
85777
29776
907007


T
438973
421524
439767
388051
71197
51206
31918
24505





position
5
6
7
8
9
10
11
12





A
975924
29201
95476
30383
980248
50181
65094
77253


C
7541
29948
10779
47831
5069
32501
30389
29610


G
9285
13455
883325
19640
8303
902733
44730
879985


T
6323
926469
9493
901219
5453
13658
858860
12225





position
13
14
15
16
17
18
19
20





A
42674
41050
32933
55244
39984
942989
19900
887311


C
61641
25910
21400
887446
900777
34590
940504
23749


G
16677
7879
8429
12432
17373
4103
7346
20095


T
878081
924234
936311
43951
40939
17391
31323
67918

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
80159
28536
12390
142460
96664
110844
99920


C
257985
2556
4791
252462
297152
258929
338099


G
139488
954013
976818
154302
139784
136512
165750


T
521441
3968
5074
449849
465473
492788
395304










1000 nM Cas9:CLTA4 v2.1 sgRNA















position
−4
−3
−2
−1
1
2
3
4





A
47674
70467
71535
72698
72554
54587
471218
27627


C
154985
151636
133622
122579
18730
384037
4452
10916


G
80869
68972
76726
118084
379024
42360
14989
453870


T
222651
214104
224296
192818
35871
25195
15520
13766





position
5
6
7
8
9
10
11
12





A
493315
16818
47470
17728
498471
29769
40021
41618


C
4303
16232
5436
28594
1961
19017
19152
18001


G
5084
6863
448784
10260
3281
450120
23076
439828


T
3477
456266
4489
449597
2466
7273
423930
6732





position
13
14
15
16
17
18
19
20





A
24741
23050
16409
27974
2697
478335
12667
451298


C
35213
12845
13497
445302
480543
15631
469503
11832


G
7741
5091
5456
7558
7112
3083
5302
10184


T
438484
465193
470817
25345
15827
9130
18707
32865

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
36128
22041
16967
68943
49017
56451
51102


C
122541
3529
8965
126313
153105
134293
171499


G
87517
474540
471647
85848
72063
71600
85239


T
259993
6069
8800
225074
231994
243835
198339










CLTA4 pre-selection library















position
−4
−3
−2
−1
1
2
3
4





A
106798
131577
131941
132368
127160
103294
820923
103844


C
304597
297419
277233
283453
50833
722264
29748
65558


G
146240
137027
134399
183111
695802
68240
51484
708098


T
393868
385480
407930
352571
77708
57705
49348
74003





position
5
6
7
8
9
10
11
12





A
840417
99163
133349
123366
824537
126564
115133
122618


C
44890
59551
73916
77470
45318
84973
73106
90384


G
30709
62837
673752
89897
49093
672860
88125
663922


T
35487
729952
70496
660770
32555
67106
675139
74579





position
13
14
15
16
17
18
19
20





A
108492
107761
96384
99908
76163
806675
75877
793806


C
78280
76978
56776
738550
776738
55522
754286
42188


G
67768
53472
58440
47550
41427
42574
54424
59162


T
696963
713292
729903
65495
57175
46732
66919
56347

















position
PAM1
PAM2
PAM3
+4
+5
+6
+7





A
87755
82110
83605
111015
103082
109315
101198


C
278802
57603
55530
266158
281433
258029
295144


G
151536
740525
732891
163824
158224
146268
151560


T
433410
71265
79477
410508
408764
437891
403601





















TABLE 3










no sgRNA
v1.0 sgRNA
v2.1 sgRNA


















modified
total
modified
total
modified
total



m
sequence
sequences
sequences
sequences
sequences
sequences
sequences






CLTA1-0-1


0


AGTCCTCATCTCCCTCAAGCAGG


2


58889


18


42683


178  


52845





(SEQ ID NO: 91)












CLTA1-1-1


1


AGTCCTCAaCTCCCTCAAGCAGG


1


39804


9


29000


37


40588





(SEQ ID NO: 92)











CLTA1-2-1
2
AGcCCTCATtTCCCTCAAGCAGG
0
16276
0
15032
0
18277




(SEQ ID NO: 93)












CLTA1-2-2


2


AcTCCTCATCcCCCTCAAGCCGG


3


21267


1


20042


33


22579





(SEQ ID NO: 94)











CLTA1-2-3
2
AGTCaTCATCTCCCTCAAGCAGa
0
    0
0
    0
0
    0




(SEQ ID NO: 95)











CLTA1-3-1
3
CGTCCTCcTCTCCCCCAAGCAGG
2
53901
0
42194
0
52205




(SEQ ID NO: 96)











CLTA1-3-2
3
tGTCCTCtTCTCCCTCAAGCAGa
0
14890
0
14231
0
15937




(SEQ ID NO: 97)











CLTA1-4-1
4
AagCtTCATCTCtCTCAAGCTGG
0
49579
2
31413
0
41234




(SEQ ID NO: 98)











CLTA1-4-2
4
AGTaCTCtTtTCCCTCAgGCTGG
2
30013
1
23470
4
26999




(SEQ ID NO: 99)











CLTA1-4-3
4
AGTCtTaAatTCCCTCAAGCAGG
2
63792
0
52321
1
73007




(SEQ ID NO: 100)











CLTA1-4-4
4
AGTgCTCATCTaCCagAAGCTGG
1
12585
0
11339
0
12066




(SEQ ID NO: 101)











CLTA1-4-5
4
ccTCCTCATCTCCCTgcAGCAGG
4
30568
1
23810
0
27870




(SEQ ID NO: 102)











CLTA1-4-6
4
ctaCaTCATCTCCCTCAAGCTGG
0
13200
1
12886
2
12843




(SEQ ID NO: 103)











CLTA1-4-7
4
gGTCCTCATCTCCCTaAAaCAGa
1
 8697
3
 8188
0
 8783




(SEQ ID NO: 104)











CLTA1-4-8
4
tGTCCTCATCggCCTCAgGCAGG
0
13169
0
 8805
2
12830




(SEQ ID NO: 105)











CLTA1-5-1
5
AGaCacCATCTCCCTtgAGCTGG
0
46109
1
32515
2
35567




(SEQ ID NO: 106)











CLTA1-5-2
5
AGgCaTCATCTaCaTCAAGtTGG
0
41280
0
28896
0
35152




(SEQ ID NO: 107)











CLTA1-5-3
5
AGTaaTCActTCCaTCAAGCCGG
0
    0
0
    0
0
    0




(SEQ ID NO: 108)











CLTA1-5-4
5
tccCCTCAcCTCCCTaAAGCAGG
2
24169
5
17512
1
23483




(SEQ ID NO: 109)











CLTA1-5-5
5
tGTCtTtATtTCCCTCtAGCTGG
0
11527
0
10481
1
11027




(SEQ ID NO: 110)











CLTA1-6-1
6
AGTCCTCATCTCCCTCAAGCAGG
0
 6537
0
 5654
0
 6741




(SEQ ID NO: 111)





















TABLE 4










no sgRNA
v1.0 sgRNA
v2.1 sgRNA


















modified
total
modified
total
modified
total



m
sequence
sequences
sequences
sequences
sequences
sequences
sequences






CLTA4-0-1


0


GCAGATGTAGTGTTTCCACAGGG


6


29191


2005   


18640


14970    


19661





(SEQ ID NO: 112)












CLTA4-3-1


3


aCAtATGTAGTaTTTCCACAGGG


2


34165


11


20018


3874   


16082





(SEQ ID NO: 113)











CLTA4-3-2
3
GCAtATGTAGTGTTTCCAaATGt
3
17923
0
11688
2
13880




(SEQ ID NO: 114)












CLTA4-3-3


3


CCAGATGTAGTaTTcCCACAGGG


0


16559


0


12007


52


11082





(SEQ ID NO: 115)











CLTA4-3-4
3
GCAGtTtTAGTGTTTtCACAGGG
0
21722
0
12831
0
15726




(SEQ ID NO: 116)











CLTA4-3-5
3
GCAGAgtTAGTGTTTCCACACaG
1
21222
2
13555
3
16425




(SEQ ID NO: 117)











CLTA4-3-6
3
GCAGATGgAGgGTTTtCACAGGG
3
20342
3
12804
3
14068




(SEQ ID NO: 118)











CLTA4-3-7
3
GgAaATtTAGTGTTTCCACAGGG
2
38894
3
24017
1
29347




(SEQ ID NO: 119)











CLTA4-4-1
4
aaAGAaGTAGTaTTTCCACATGG
0
    0
0
    0
0
    0




(SEQ ID NO: 120)











CLTA4-4-2
4
aaAGATGTAGTcaTTCCACAAGG
1
27326
0
17365
1
18941




(SEQ ID NO: 121)











CLTA4-4-3
4
aaAtATGTAGTCTTTCCACAGGG
2
46232
3
32264
0
32638




(SEQ ID NO: 122)











CLTA4-4-4
4
atAGATGTAGTGTTTCCAaAGGa
9
27821
1
16223
8
15388




(SEQ ID NO: 123)











CLTA4-4-5
4
CCAGAgGTAGTGcTcCCACAGGG
1
20979
1
15674
1
15086




(SEQ ID NO: 124)











CLTA4-4-6
4
CCAGATGTgagGTTTCCACAAGG
4
22021
0
15691
1
14253




(SEQ ID NO: 125)











CLTA4-4-7
4
ctAcATGTAGTGTTTCCAtATGG
2
35942
0
23076
1
11867




(SEQ ID NO: 126)












CLTA4-4-8


4


ctAGATGaAGTGcTTCCACATGG


1


10692


1

7609

59

8077




(SEQ ID NO: 127)











CLTA4-4-9
4
GaAaATGgAGTGTTTaCACATGG
0
34616
0
22302
1
24671




(SEQ ID NO: 128)











CLTA4-4-10
4
GCAaATGaAGTGTcaCCACAAGG
1
25210
0
16187
0
16974




(SEQ ID NO: 129)











CLTA4-4-11
4
GCAaATGTAtTaTTTCCACtAGG
0
34144
1
24770
0
22547




(SEQ ID NO: 130)











CLTA4-4-12
4
GCAGATGTAGctTTTgtACATGG
0
14254
0
 9616
0
 9994




(SEQ ID NO: 131)











CLTA4-4-13
4
GCAGcTtaAGTGTTTtCACATGG
8
39466
1
 7609
5
16525




(SEQ ID NO: 132)











CLTA4-4-14
4
ttAcATGTAGTGTTTaCACACGG
0
    0
0
22302
0
    0




(SEQ ID NO: 133)











CLTA4-5-1
5
GaAGAgGaAGTGTTTgCcCAGGG
1
27616
1
16319
1
16140




(SEQ ID NO: 134)











CLTA4-5-2
5
GaAGATGTgGaGTTgaCACATGG
1
22533
0
14292
0
15013




(SEQ ID NO: 135)











CLTA4-5-3
5
GCAGAaGTAcTGTTgttACAAGG
1
44243
1
29391
1
29734




(SEQ ID NO: 136)











CLTA4-5-4
5
GCAGATGTgGaaTTaCaACAGGG
0
27321
0
13640
0
14680




(SEQ ID NO: 137)











CLTA4-5-5
5
GCAGtcaTAGTGTaTaCACATGG
1
26538
0
18449
1
20559




(SEQ ID NO: 138)











CLTA4-5-6
5
taAGATGTAGTaTTTCCAaAAGt
1
15145
1
 8905
0
 7911




(SEQ ID NO: 139)











CLTA4-6-1
6
GCAGcTGgcaTtTcTCCACACGG
0
    2
0
    0
0
    0




(SEQ ID NO: 140)











CLTA4-6-2
6
GgAGATcTgaTGgTTCtACAAGG
2
27797
0
19450
2
21709




(SEQ ID NO: 141)











CLTA4-6-3
6
taAaATGcAGTGTaTCCAtATGG
4
27551
0
18424
0
18783




(SEQ ID NO: 142)











CLTA4-7-1
7
GCcagaaTAGTtTTTCaACAAGG
0
20942
0
13137
1
13792




(SEQ ID NO: 143)











CLTA4-7-2
8
ttgtATtTAGaGaTTgCACAAGG
0
28470
0
18104
0
20416




(SEQ ID NO: 144)



















TABLE 5







Off-target site
Human genome coordinates









CLTA1-0-1
9(+): 36,211,732-36,211,754




12(+): 7,759,893-7,759,915



CLTA1-1-1
8(−): 15,546,437-15,546,459



CLTA1-2-1
3(−): 54,223,111-54,223,133



CLTA1-2-2
15(+): 89,388,670-89,388,692



CLTA1-2-3
5(+): 88716920-88,716,942



CLTA1-3-1
21(+): 27,972,462-27,972,484



CLTA1-3-2
4(−): 17,179,924-17,179,946



CLTA1-4-1
1(+): 147,288,742-147,288,764



CLTA1-4-2
10(+): 97,544,444-97,544,466



CLTA1-4-3
2(−): 161,873,870-161,873,892



CLTA1-4-4
1(+): 196,172,702-196,172,724



CLTA1-4-5
13(+): 56,574,636-56,574,658



CLTA1-4-6
2(+): 241,357,827-241,357,849



CLTA1-4-7
3(+): 121,248,627-121,248,649



CLTA1-4-8
12(+): 132,937,319-132,937,341



CLTA1-5-1
9(−): 80,930,919-80,930,941



CLTA1-5-2
2(+): 140,901,875-14,0901,897



CLTA1-5-3
3(+): 45,016,841-45,016,863



CLTA1-5-4
X(+): 40,775,684-40,775,706



CLTA1-5-5
2(−): 185,151,622-185,151,644



CLTA1-6-1
X(+): 150,655,097-150,655,119



CLTA4-0-1
9(−): 36,211,779-36,211,801



CLTA4-3-1
12(−): 50,679,419-50,679,441



CLTA4-3-2
X(−): 143,939,483-143,939,505



CLTA4-3-3
11(−): 47,492,611-47,492,633



CLTA4-3-4
3(−): 162,523,715-162,523,737



CLTA4-3-5
11(+): 30,592,975-30,592,997



CLTA4-3-6
4(−): 155,252,699-155,252,721



CLTA4-3-7
18(+): 39,209,441-39,209,463



CLTA4-4-1
17(−): 36,785,650-36,785,672



CLTA4-4-2
1(−): 241,537,119-241,537,141



CLTA4-4-3
8(−): 120,432,103-120,432,125



CLTA4-4-4
6(−): 106,204,600-106,204,622



CLTA4-4-5
8(+): 102,527,804-102,527,826



CLTA4-4-6
8(−): 94,685,538-94,685,560



CLTA4-4-7
2(+): 35,820,054-35,820,076



CLTA4-4-8
3(−): 36,590,352-36,590,374



CLTA4-4-9
12(+): 100,915,498-100,915,520



CLTA4-4-10
21(+): 33,557,705-33,557,727



CLTA4-4-11
8(+): 10,764,183-10,764,205



CLTA4-4-12
19(+): 37,811,645-37,811,667



CLTA4-4-13
13(−): 26,832,673-26,832,695



CLTA4-4-14
6(+): 19,349,572-19,349,594



CLTA4-5-1
11(−): 502,300-502,322



CLTA4-5-2
8(−): 28,389,683-28,389,705



CLTA4-5-3
2(−): 118,557,405-118,557,427



CLTA4-5-4
2(−): 103,248,360-103,248,382



CLTA4-5-5
21(−): 42,929,085-42,929,107



CLTA4-5-6
13(−): 83,097,278-83,097,300



CLTA4-6-1
2(+): 43,078,423-43,078,445



CLTA4-6-2
7(−): 11,909,384-11,909,406



CLTA4-6-3
5(−): 69,775,482-69,775,504



CLTA4-7-1
16(+): 30,454,945-30,454,967



CLTA4-7-2
9(−): 77,211,328-77,211,350






















TABLE 6











in vitro
modification frequency



number of


enrichment
in HEK293T cells
















mutations
sequence
gene
v1.0
v2.1
no sgRNA
v1.0
v2.1






CLTA1-0-1


0


AGTCCTCATCTCCCTCAAGCAGG


CLTA


41.4


23.3


0.003%


0.042%


0.337%





(SEQ ID NO: 145)












CLTA1-1-1


1


AGTCCTCAaCTCCCTCAAGCAGG


TUSC3


25.9


14  


0.003%


0.031%


0.091%





(SEQ ID NO: 146)











CLTA1-2-1
2
AGcCCTCATt TCCCTCAAGCAGG
CACNA2D3
15.4
26.2
    0%
    0%
    0%




(SEQ ID NO: 147)












CLTA1-2-2


2


AcTCCTCATCcCCCTCAAGCCGG


ACAN


29.2


18.8


0.014%


0.005%


0.146%





(SEQ ID NO: 148)











CLTA1-2-3
2
AGTCaTCATCTCCCTCAAGCAGa

  0.06
  1.27
n.t.
n.t.
n.t.




(SEQ ID NO: 149)











CLTA1-3-1
3
CGTCCTCcTCTCCCcCAAGCAGG

0 
  2.07
0.004%
    0%
    0%




(SEQ ID NO: 150)











CLTA1-3-2
3
tGTCCTCtTCTCCCTCAAGCAGa
BC029598
0 
  1.47
    0%
    0%
    0%




(SEQ ID NO: 151)











CLTA1-4-1
4
AagCtTCATCTCtCTCAAGCTGG



    0%
0.006%
    0%




(SEQ ID NO: 152)











CLTA1-4-2
4
AGTaCTCtTtTCCCTCAgGCTGG
ENTPD1


0.007%
0.004%
0.015%




(SEQ ID NO: 153)











CLTA1-4-3
4
AGTCtTaAatTCCCTCAAGCAGG



0.003%
    0%
0.001%




(SEQ ID NO: 154)











CLTA1-4-4
4
AGTgCTCATCTaCCagAAGCTGG



0.008%
    0%
    0%




(SEQ ID NO: 155)











CLTA1-4-5
4
CCTCCTCATCTCCCTgcAGCAGG



0.013%
0.004%
    0%




(SEQ ID NO: 156)











CLTA1-4-6
4
ctaCaTCATCTCCCTCAAGCTGG



    0%
0.008%
0.016%




(SEQ ID NO: 157)











CLTA1-4-7
4
gGTCCTCATCTCCCTaAAaCAGa
POLQ


0.011%
0.037%
    0%




(SEQ ID NO: 158)
(coding)










CLTA1-4-8
4
tGTCCTCATCggCCTCAgGCAGG



    0%
    0%
0.016%




(SEQ ID NO: 159)











CLTA1-5-1
5
AGaCacCATCTCCCTtgAGCTGG
PSAT1


    0%
0.003%
0.006%




(SEQ ID NO: 160)











CLTA1-5-2
5
AGgCaTCATCTaCaTCAAGtTGG



    0%
    0%
    0%




(SEQ ID NO: 161)











CLTA1-5-3
5
AGTaaTCActTCCaTCAAGCCGG
ZDHHC3,


n.t.
n.t.
n.t.




(SEQ ID NO: 162)
EXOSC7










CLTA1-5-4
5
tccCCTCAcCTCCCTaAAGCAGG



0.008%
0.029%
0.004%




(SEQ ID NO: 163)











CLTA1-5-5
5
tGTCtTtATtTCCCTCtAGCIGG



    0%
    0%
0.009%




(SEQ ID NO: 164)











CLTA1-6-1
6
AGTCCTCATCTCCCTCAAGCAGG



    0%
    0%
    0%




(SEQ ID NO: 165)

















TABLE 7







CLTA1-0-1
# of sequences












sequence
no sgRNA
v1.0 sgRNA
v2.1 sgRNA





ref
AGTCCTCATCTCCCTCAAGCAGG (SEQ ID
58,887
42,665
52,667



NO: 166)






AGTCCTCATCTCCCTCA custom character AGCAGG (SEQ ID
0
0
66



NO: 167)






AGTCCTCATCTCCCTC-AGCAGG (SEQ ID
0
2
28



NO: 168)






AGTCCTCAT--------------
0
0
13



AGTCCTCATCTCCCTCA custom character AGCAGG (SEQ ID
0
0
11



NO: 169)






AGTCCTCAT--------AGCAGG (SEQ ID
0
0
9



NO: 170)






AGTCCTCATCT------AGCAGG (SEQ ID
0
0
8



NO: 171)






AGTCCTCA---------AGCAGG (SEQ ID
0
0
6



NO: 172)






AGTCCTCATCTCCCTCA custom character
0
0
4




custom character AGCAGG (SEQ ID







NO: 173)






AGTCCTCATCTCCCTCA custom character AGCAGG (SEQ ID
0
0
4



NO: 174)






AGTCCTCATCTCCCTCA custom character
0
0
3




custom character AGCAG







G (SEQ ID NO: 175)






AGTCCTCATCTCCCT-AGCAGG (SEQ ID
0
11
0



NO: 176)






AGTCCTCATCCCTC-AAGCAGG (SEQ ID
0
3
0



NO: 177)






AGTCCTCATCTCCCT-AAGCAGG (SEQ ID
1
2
0



NO: 178)






other
1
0
26



modified total
2
18
178





(0.042%)
(0.34%)











CLTA1-1-1
# of sequences












sequence
no sgRNA
v1.0 sgRNA
v2.1 sgRNA





ref
AGTCCTCAaCTCCCTCAAGCAGG (SEQ ID
39,803
28,991
40,551



NO: 179)






AGTCCTCAaCTCCCTCA custom character AGCAGG (SEQ ID
0
4
13



NO: 180)






AGTCCTCAaCTCCCTCA------ (SEQ ID
0
0
12



NO: 181)






AGTCCTCAaCTCCCTC-AGCAGG (SEQ ID
0
2
4



NO: 182)






AGTCCTCAaCTCCCTCA custom character
0
0
3




custom character AGCAGG (SEQ ID







NO: 183)






AGTCCTCAaCTCCCTCA custom character
0
0
2




custom character AGCAGG







(SEQ ID NO: 184)






AGTCCTCAaCTCCCT-AAGCAGG (SEQ ID
0
3
1



NO: 185)






AGTCCTCAaCTCCCTCAACCA custom character
0
0
1




custom character AGCAGG







(SEQ ID NO: 186)






AGTCCTCAaCTCCCTCA custom character
0
0
1




custom character AGCAGG







(SEQ ID NO: 187)






AGTCCTCAaCTCCC-AAGCAGG (SEQ ID
1
0
0



NO: 188)






modified total
1
9
37





(0.031%)
(0.091%)











CLTA1-2-2
# of sequences












sequence
no sgRNA
v1.0 sgRNA
v2.1 sgRNA





ref
AcTCCTCATCcCCCTCAAGCCGG (SEQ ID
21,264
20,041
22,546



NO: 189)






AcTCCTCATCcCCCTCA custom character AGCCGG (SEQ ID
0
0
8



NO: 190)






AcTCCTCATCcCCCTCA custom character AGCCGG (SEQ ID
0
0
7



NO: 191)






AcTCCTC------------AGCCGG (SEQ ID
0
0
5



NO: 192)






AcTCCTCATCcCCCTCA custom character AGCCGG (SEQ ID
0
0
2



NO: 193)






AcTCCTCATCcCCCTCA custom character AGCCGG (SEQ ID
0
0
2



NO: 194)






AcTCCTCATCcCCCTCA custom character AGCCGG (SEQ ID
0
0
2



NO: 195)






AcTCCTCATCcCCCTCA custom character CCGG (SEQ ID
0
0
2



NO: 196)






AcTCCTCATCCC-----AGCCGG (SEQ ID
0
0
2



NO: 197)






AcTCCTCATCcCCCTA-AGCCGG (SEQ ID
3
1
1



NO: 198)






AcTCCTCATCcCCCTCA custom character AGCCGG (SEQ ID
0
0
1



NO: 199)






AcTCCTCACCCCCCTCA custom character AGCCGG (SEQ ID
0
0
1



NO: 200)






modified total
3
1
33






(0.15%)

















TABLE 8







CLTA4-0-1
# of sequences












sequence
control
v1.0 sgRNA
v2.1 sgRNA





ref
GCAGATGTAGTGTTTCCACAGGG
29,185
16,635
17,555



(SEQ ID NO: 201)






GCAGATGTAGTGTTTC-ACAGGG
1
891
5,937



(SEQ ID NO: 202)






GCAGATGTAGTGTTTCC custom character ACAGGG
0
809
5,044



(SEQ ID NO: 203)






GCAGATGTAGTG----CACAGGG
0
14
400



(SEQ ID NO: 204)






GCAGATGTAGTGTTTCC-CAGGG
0
19
269



(SEQ ID NO: 205)






GCAGATGTAC-------ACAGGG
0
17
262



(SEQ ID NO: 206)






GCAGATGTAGTGTCA---CAGGG
2
6
254



(SEQ ID NO: 207)






GCAGATGTAGTGTTCA-CAGGG (SEQ
0
21
229



ID NO: 208)






GCAGATGTAGTGTTTC-CAGGG (SEQ
1
14
188



ID NO: 209)






GCAGATGTAGT-----CACAGGG
0
0
152



(SEQ ID NO: 210)






GCAGATGT-----------AGGG
0
6
129



(SEQ ID NO: 211)






other
2
208
2,106



modified total
6
2,005
14,970





(11%)
(76%)











CLTA4-3-1
# of sequences












sequence
control
v1.0 sgRNA
v2.1 sgRNA





ref
aCAtATGTAGTaTTTCCACAGGG
34,163
20,007
12,208



(SEQ ID NO: 212)






aCAtATGTAGTaTTTCC custom character ACAGGG
0
8
1779



(SEQ ID NO: 213)






aCAtATGTAGTaTTTCA-CAGGG
1
0
293



(SEQ ID NO: 214)






aCAtATGTAGTaTTTC-CAGGG (SEQ
1
0
227



ID NO: 215)






aCAtAT----------CACAGGG
0
0
117



(SEQ ID NO: 216)






a-----------------CAGGG
0
0
96



aCAt- CACAGGG
0
0
78



(SEQ ID NO: 217)






aCAtATGTAGT-----CACAGGG
0
0
77



(SEQ ID NO: 218)






aCAtATGTAGTaTTTCC------
0
0
76



(SEQ ID NO: 219)






aCAtATGT-----------AGGG
0
0
68



(SEQ ID NO: 220)






aCAtATGTAG------CACAGGG
0
0
64



(SEQ ID NO: 221)






other
0
3
999



modified total
2
11
3874





(0.055%)
(24%)











CLTA4-3-3
# of sequences












sequence
control
v1.0 sgRNA
v2.1 sgRNA





ref
CCAGATGTAGTaTTcCCACAGGG
16,559
12,007
11,030



(SEQ ID NO: 222)






CCAGATGTAGTaTTcCC custom character ACAGGG
0
0
35



(SEQ ID NO: 223)






CCAGATGTAGTaT----ACAGGG
0
0
5



(SEQ ID NO: 224)






CCAGATGTAGTaT---CACAGGG
0
0
3



(SEQ ID NO: 225)






CCAGATGTAGTaTTcCC custom character ACAGGG
0
0
2



(SEQ ID NO: 226)






CCAGATGTAGTaTT-CACAGGG (SEQ
0
0
2



ID NO: 227)






CCAGATGTAGTaTTcC-CAGGG (SEQ
0
0
2



ID NO: 228)






CCAGATGTA--------------
0
0
2



CCAGATGTAGTaTTcC-ACAGGG
0
0
1



(SEQ ID NO: 229)






modified total
0
0
52






(0.47%)











CLTA4-4-8
# of sequences












sequence
control
v1.0 sgRNA
v2.1 sgRNA





ref
ctAGATGaAGTGcTTCCACATGG
10,691
7,608
8,018



(SEQ ID NO: 230)






ctAGATGaAGTGcTTCC custom character ACATGG
0
0
49



(SEQ ID NO: 231)






ctAGATGaAGTGcTTC-ACATGG
0
0
6



(SEQ ID NO: 232)






ctAGATGaAGTG-----------
0
0
2



(SEQ ID NO: 233)






ctAGATGaAGTGcTTCC custom character ACATGG
0
0
1



(SEQ ID NO: 234)






ctAGATGaAGTGcTTC-CATGG (SEQ
1
0
0



ID NO: 235)






ctAGATGaAGTGcTTCC-CATGG
0
1
0



(SEQ ID NO: 236)






modified total
1
1
59






(0.73%)




















oligonucleotide name
oligonucleotide sequence (5′→3′)







CLTA1 v2.1 template fwd
TAA TAC GAC TCA CTA TAG GAG TCC TCA TCT CCC TCA AGC GTT TTA GAG CTA TGC TG (SEQ ID NO: 237)





CLTA2 v2.1 template fwd
TAA TAC GAC TCA CTA TAG GCT CCC TCA AGC AGG CCC CGC GTT TTA GAG CTA TGC TG (SEQ ID NO: 238)





CLTA3 v2.1 template fwd
TAA TAC GAC TCA CTA TAG GTG TGA AGA GCT TCA CTG AGT GTT TTA GAG CTA TGC TG (SEQ ID NO: 239)





CLTA4 v2.1 template fwd
TAA TAC GAC TCA CTA TAG GGC AGA TGT AGT GTT TCC ACA GTT TTA GAG CTA TGC TG (SEQ ID NO: 240)





v2.1 template rev
GAT AAC GGA CTA GCC TTA TTT TAA CTT GCT ATG CTT TTC AGC ATA GCT CTA AAA C (SEQ ID NO: 241)





CLTA1 v1.0 template
CGG ACT AGC CTT ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC GCT TGA GGG AGA TGA GGA CTC CTA TAG TGA GTC GTA TTA



(SEQ ID NO: 242)





CLTA2 v1.0 template
CGG ACT AGC CTT ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC GCG GGG CCT GCT TGA GGG AGC CTA TAG TGA GTC GTA TTA



(SEQ ID NO: 243)





CLTA3 v1.0 template
CGG ACT AGC CTT ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC ACT CAG TGA AGC TCT TCA CAC CTA TAG TGA GTC GTA TTA



(SEQ ID NO: 244)





CLTA4 v1.0 template
CGG ACT AGC CTT ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGT GGA AAC ACT ACA TCT GCC CTA TAG TGA GTC GTA TTA



(SEQ ID NO: 245)





T7 promoter oligo
TAA TAC GAC TCA CTA TAG G (SEQ ID NO: 246)





CLTA1 lib
/5Phos/AAC ACA NNN NC*C* NG*C* T*T*G* A*G*G* G*A*G* A*T*G* A*G*G* A*C*T* NNN NAC CTG CCG AGA ACA CA (SEQ ID NO: 247)





CLTA2 lib
/5Phos/TCT TCT NNN NC*C* NG*C* G*G*G* G*C*C* T*G*C* T*T*G* A*G*G* G*A*G* NNN NAC CTG CCG AGT CTT CT (SEQ ID NO: 248)





CLTA3 lib
/5Phos/AGA GAA NNN NC*C* NA*C* T*C*A* G*T*G* A*A*G* C*T*C* T*T*C* A*C*A* NNN NAC CTG CCG AGA GAG AA (SEQ ID NO: 249)





CLTA4 lib
/5Phos/TTG TGT NNN NC*C* NT*G* T*G*G* A*A*A* C*A*C* T*A*C* A*T*C* T*G*C* NNN NAC CTG CCG AGT TGT GT (SEQ ID NO: 250)





CLTA1 site fwd
CTA GCA GTC CTC ATC TCC CTC AAG CAG GC (SEQ ID NO: 251)





CLTA1 site rev
AGC TGC CTG CTT GAG GGA GAT GAG GAC TG (SEQ ID NO: 252)





CLTA2 site fwd
CTA GTC TCC CTC AAG CAG GCC CCG CTG GT (SEQ ID NO: 253)





CLTA2 site rev
AGC TAC CAG CGG GGC CTG CTT GAG GGA GA (SEQ ID NO: 254)





CLTA3 site fwd
CTA GCT GTG AAG AGC TTC ACT GAG TAG GA (SEQ ID NO: 255)





CLTA3 site rev
AGC TTC CTA CTC AGT GAA GCT CTT CAC AG (SEQ ID NO: 256)





CLTA4 site fwd
CTA GTG CAG ATG TAG TGT TTC CAC AGG GT (SEQ ID NO: 257)





CLTA4 site rev
AGC TAC CCT GTG GAA ACA CTA CAT CTG CA (SEQ ID NO: 258)





test fwd
GCG ACA CGG AAA TGT TGA ATA CTC AT (SEQ ID NO: 259)





test rev
GGA GTC AGG CAA CTA TGG ATG AAC G (SEQ ID NO: 260)





off-target CLTA4-0 fwd
ACT GTG AAG AGC TTC ACT GAG TAG GAT TAA GAT ATT GCA GAT GTA GTG TTT CCA CAG GGT (SEQ ID NO: 261)





off-target CLTA4-1 fwd
ACT GTG AAG AGC TTC ACT GAG TAG GAT TAA GAT ATT GAA GAT GTA GTG TTT CCA CAG GGT (SEQ ID NO: 262)





off-target CLTA4-2a fwd
ACT GTG AAG AGC TTC ACT GAG TAG GAT TAA GAT ATT GAA GAT GTA GTG TTT CCA CTG GGT (SEQ ID NO: 263)





off-target CLTA4-2b fwd
ACT GTG AAG AGC TTC ACT GAG TAG GAT TAA GAT ATT GCA GAT GGA GGG TTT CCA CAG GGT (SEQ ID NO: 264)





off-target CLTA4-2c fwd
ACT GTG AAG AGC TTC ACT GAG TAG GAT TAA GAT ATT GCA GAT GTA GTG TTA CCA GAG GGT (SEQ ID NO: 265)





off-target CLTA4-3 fwd
ACT GTG AAG AGC TTC ACT GAG TAG GAT TAA GAT ATT GGG GAT GTA GTG TTT CCA CTG GGT (SEQ ID NO: 266)





off-target CLTA4-0 rev
TCC CTC AAG CAG GCC CCG CTG GTG CAC TGA AGA GCC ACC CTG TGG AAA CAC TAC ATC TGC (SEQ ID NO: 267)





off-target CLTA4-1 rev
TCC CTC AAG CAG GCC CCG CTG GTG CAC TGA AGA GCC ACC CTG TGG AAA CAC TAC ATC TTC (SEQ ID NO: 268)





off-target CLTA4-2a rev
TCC CTC AAG CAG GCC CCG CTG GTG CAC TGA AGA GCC ACC CAG TGG AAA CAC TAC ATC TTC (SEQ ID NO: 269)





off-target CLTA4-2b rev
TCC CTC AAG CAG GCC CCG CTG GTG CAC TGA AGA GCC ACC CTG TGG AAA CCC TCC ATC TGC (SEQ ID NO: 270)





off-target CLTA4-2c rev
TCC CTC AAG CAG GCC CCG CTG GTG CAC TGA AGA GCC ACC CTC TGG TAA CAC TAC ATC TGC (SEQ ID NO: 271)





off-target CLTA4-3 rev
TCC CTC AAG CAG GCC CCG CTG GTG CAC TGA AGA GCC ACC CAG TGG AAA CAC TAC ATC CCC (SEQ ID NO: 272)





adapter1(AACA)
AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAA CA (SEQ ID NO: 273)





adapter2(AACA)
TGT TAG ATC GGA AGA GCG TCG TGT AGG GAA AGA GTG TAG ATC TCG GTG G (SEQ ID NO: 274)





adapter1 (TTCA)
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TTT CA (SEQ ID NO: 275)





adapter2(TTCA)
TGA AAG ATC GGA AGA GCG TCG TGT AGG GAA AGA GTG TAG ATC TCG GTG G (SEQ ID NO: 276)





adapter1
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T (SEQ ID NO: 277)





adapter2
AGA TCG GAA GAG CGT CGT GTA GGG AAA GAG TGT AGA TCT CGG TGG (SEQ ID NO: 278)





lib adapter1
GAC GGC ATA CGA GAT (SEQ ID NO: 279)





CLTA1 lib adapter2
AAC AAT CTC GTA TGC CGT CTT CTG CTT G (SEQ ID NO: 280)





CLTA2 lib adapter2
TCT TAT CTC GTA TGC CGT CTT CTG CTT G (SEQ ID NO: 281)





CLTA3 lib adapter2
AGA GAT CTC GTA TGC CGT CTT CTG CTT G (SEQ ID NO: 282)





CLTA4 lib adapter2
TTG TAT CTC GTA TGC CGT CTT CTG CTT G (SEQ ID NO: 283)





CLTA1 sel PCR
CAA GCA GAA GAC GGC ATA CGA GAT TGT GTT CTC GGC AGG T (SEQ ID NO: 284)





CLTA2 sel PCR
CAA GCA GAA GAC GGC ATA CGA GAT AGA AGA CTC GGC AGG T (SEQ ID NO: 285)





CLTA3 sel PCR
CAA GCA GAA GAC GGC ATA CGA GAT TTC TCT CTC GGC AGG T (SEQ ID NO: 286)





CLTA4 sel PCR
CAA GCA GAA GAC GGC ATA CGA GAT ACA CAA CTC GGC AGG T (SEQ ID NO: 287)





PE2 short
AAT GAT ACG GCG ACC ACC GA (SEQ ID NO: 288)





CLTA1 lib seq PCR
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TNN NNA CCT ACC TGC CGA GAA CAC A



(SEQ ID NO: 289)





CLTA2 lib seq PCR
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TNN NNA CCT ACC TGC CGA GTC TTC T



(SEQ ID NO: 290)





CLTA3 lib seq PCR
AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TNN NNA CCT ACC TGC CGA GAG AGA A



(SEQ ID NO: 291)





CLTA4 lib seq PCR
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TNN NNA CCT ACC TGC CGA GTT GTG T



(SEQ ID NO: 292)





lib fwd PCR
CAA GCA GAA GAC GGC ATA CGA GAT (SEQ ID NO: 293)





CLTA1-0-1 (Chr. 9) fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CAA GTC TAG CAA GCA GGC CA (SEQ ID NO: 294)





CLTA1-0-1 (Chr. 12) fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CAG GCA CTG AGT GGG AAA GT (SEQ ID NO: 295)





CLTA1-1-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TAA CCC CAA GTC AGC AAG CA (SEQ ID NO: 296)





CLTA1-2-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TTG CTG GTC AAT ACC CTG GC (SEQ ID NO: 297)





CLTA1-2-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGA GTA CCC CTG AAA TGG GC (SEQ ID NO: 298)





CLTA1-3-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TCG CTA CCA ATC AGG GCT TT (SEQ ID NO: 299)





CLTA1-3-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CCA TTG CCA CTT GTT TGC AT (SEQ ID NO: 300)





CLTA1-4-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CCT ACC CCC ACA ACT TTG CT (SEQ ID NO: 301)





CLTA1-4-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GTG TAC ATC CAG TGC ACC CA (SEQ ID NO: 302)





CLTA1-4-3 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TCG GAA AGG ACT TTG AAT ACT TGT (SEQ ID NO: 303)





CLTA1-4-4 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CGG CCC AAG ACC TCA TTC AC (SEQ ID NO: 304)





CLTA1-4-5 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GTC CTC TCT GGG GCA GAA GT (SEQ ID NO: 305)





CLTA1-4-6 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT AGC TGA GTC ATG AGT TGT CTC C (SEQ ID NO: 306)





CLTA1-4-7 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CTG CCA GCT TCT CAC ACC AT (SEQ ID NO: 307)





CLTA1-4-8 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CTG AAG GAC AAA GGC GGG AA (SEQ ID NO: 308)





CLTA1-5-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT AAG GTG CTA AAG GCT CCA CG (SEQ ID NO: 309)





CLTA1-5-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GAC CAT TGG TGA GCC CAG AG (SEQ ID NO: 310)





CLTA1-5-3 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TTT TTC GGG CAA CTG CTC AC (SEQ ID NO: 311)





CLTA1-5-4 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GCA AGC CTT CTC TCC TCA GA (SEQ ID NO: 312)





CLTA1-5-5 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT ACA CAA ACT TCC CTG AGA CCC (SEQ ID NO: 313)





CLTA1-6-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGA GTT AGC CCT GCT GTT CA (SEQ ID NO: 314)





CLTA4-0-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGA AGA GCT TCA CTG AGT AGG A (SEQ ID NO: 315)





CLTA4-3-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TCC CCT TAC AGC CAA TTT CGT (SEQ ID NO: 316)





CLTA4-3-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGC TGA TGA AAT GCA ATT AAG AGG T (SEQ ID NO: 317)





CLTA4-3-3 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GGT CCC TGC AAG CCA GTA TG (SEQ ID NO: 318)





CLTA4-3-4 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT ATC AAA GCC TTG TAT CAC AGT T (SEQ ID NO: 319)





CLTA4-3-5 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CCC AAA TAA TGC AGG AGC CAA (SEQ ID NO: 320)





CLTA4-3-6 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CTG CCT TTA GTG GGA CAG ACT T (SEQ ID NO: 321)





CLTA4-3-7 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT AGT AAC CCT AGT AGC CCT CCA (SEQ ID NO: 322)





CLTA4-4-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CAT TGC AGT GAG CCG AGA TTG (SEQ ID NO: 323)





CLTA4-4-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGG CAA AGT TCA CTT CCA TGT (SEQ ID NO: 324)





CLTA4-4-3 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGC TCT GTG ATG TCT GCC AC (SEQ ID NO: 325)





CLTA4-4-4 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGT GTA GGA TTG TGA ACC AGC A (SEQ ID NO: 326)





CLTA4-4-5 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TCC CAG CCC AGC ATT TTT CT (SEQ ID NO: 327)





CLTA4-4-6 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT AGG TTG CTT TGT GCA CAG TC (SEQ ID NO: 328)





CLTA4-4-7 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CCT GGC TTG GGA TGT TGG AA (SEQ ID NO: 329)





CLTA4-4-8 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TTG CCC AAG GTC ATA CTG CT (SEQ ID NO: 330)





CLTA4-4-9 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT ACC CAC TAG GTA GCC ATA ATC CA (SEQ ID NO: 331)





CLTA4-4-10 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CGG TCA TGT CGC TTG GAA GA (SEQ ID NO: 332)





CLTA4-4-11 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TTG GCC CAT ATT GCT TTA TGC TG (SEQ ID NO: 333)





CLTA4-4-12 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT ATT AGG GGT TGG CTG CAT GA (SEQ ID NO: 334)





CLTA4-4-13 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CCA AGA CGT GTT GCA TGC TG (SEQ ID NO: 335)





CLTA4-4-14 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TGG GAG GTG ATA AAT TCC CTA AAT (SEQ ID NO: 336)





CLTA4-5-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CCA GAG ACA AAG GTG GGG AG (SEQ ID NO: 337)





CLTA4-5-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TCA TAC AGA AGA GCA AAG TAC CA (SEQ ID NO: 338)





CLTA4-5-3 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CAA AGA GGG GTA TCG GGA GC (SEQ ID NO: 339)





CLTA4-5-4 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT AAA TGG AAG AAC CAA GTA GAT GAA (SEQ ID NO: 340)





CLTA4-5-5 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TTT TGG TTG ACA GAT GGC CAC A (SEQ ID NO: 341)





CLTA4-5-6 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT TCT TAC TTG TGT GAT TTT AGA ACA A (SEQ ID NO: 342)





CLTA4-6-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GAT GGT TCA TGC AGA GGG CT (SEQ ID NO: 343)





CLTA4-6-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GCT GGT CTT TCC TGA GCT GT (SEQ ID NO: 344)





CLTA4-6-3 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CTC CAT CAG ATA CCT GTA CCC A (SEQ ID NO: 345)





CLTA4-7-1 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GGG AAA ACA CTC TCT CTC TGC T (SEQ ID NO: 346)





CLTA4-7-2 fwd
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GGA GGC CAC GAC ACA CAA TA (SEQ ID NO: 347)





CLTA1-0-1 (Chr. 9) rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CAC AGG GTG GCT CTT CAG TG (SEQ ID NO: 348)





CLTA1-0-1 (Chr. 12) rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGC ACA TGT TTC CAC AGG GT (SEQ ID NO: 349)





CLTA1-1-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGT GTT TCC AGG AGC GGT TT (SEQ ID NO: 350)





CLTA1-2-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AAG CCT CAG GCA CAA CTC TG (SEQ ID NO: 351)





CLTA1-2-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TAG GGG AGG GGC AAA GAC A (SEQ ID NO: 352)





CLTA1-3-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGG AAC AGT GGT ATG CTG GT (SEQ ID NO: 353)





CLTA1-3-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGT GTG GAC ACT GAC AAG GAA (SEQ ID NO: 354)





CLTA1-4-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TCA CTG CCT GGG TGC TTT AG (SEQ ID NO: 355)





CLTA1-4-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TAC CCC AGC CTC CAG CTT TA (SEQ ID NO: 356)





CLTA1-4-3 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGA CTA CTG GGG AGC GAT GA (SEQ ID NO: 357)





CLTA1-4-4 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGG CTG TTA TGC AGG AAA GGA A (SEQ ID NO: 358)





CLTA1-4-5 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GCG GTT GAG GTG GAT GGA AG (SEQ ID NO: 359)





CLTA1-4-6 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGC AGC ATC CCT TAC ATC CT (SEQ ID NO: 360)





CLTA1-4-7 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGA AAA AGC TTC CCC AGA AAG GA (SEQ ID NO: 361)





CLTA1-4-8 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CTG CAC CAA CCT CTA CGT CC (SEQ ID NO: 362)





CLTA1-5-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CTG GAG AGG GCA TAG TTG GC (SEQ ID NO: 363)





CLTA1-5-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGG AAG GCT CTT TGT GGG TT (SEQ ID NO: 364)





CLTA1-5-3 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TTC CTA GCG GGA ACT GGA AA (SEQ ID NO: 365)





CLTA1-5-4 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGG CTA ATG GGG TAG GGG AT (SEQ ID NO: 366)





CLTA1-5-5 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGT CCA TGT TGG CTG AGG TG (SEQ ID NO: 367)





CLTA1-6-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CAG GCC AAC CTT GAC AAC TT (SEQ ID NO: 368)





CLTA4-0-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGC AGG CCA AAG ATG TCT CC (SEQ ID NO: 369)





CLTA4-3-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TCT GCT CTT GAG GTT ATT TGT CC (SEQ ID NO: 370)





CLTA4-3-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGG ACC AAT TTG CTA CTC ATG G (SEQ ID NO: 371)





CLTA4-3-3 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGG AGG CTG TAA ACG TCC TG (SEQ ID NO: 372)





CLTA4-3-4 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGC TAT GAT TTG CTG AAT TAC TCC T (SEQ ID NO: 373)





CLTA4-3-5 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GCA ATT TTG CAG ACC ACC ATC (SEQ ID NO: 374)





CLTA4-3-6 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGC AGC TTG CAA CCT TCT TG (SEQ ID NO: 375)





CLTA4-3-7 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TCA TGA GAG TTT CCC CAA CA (SEQ ID NO: 376)





CLTA4-4-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT ACT TGA GGG GGA AAA AGT TTC TTA (SEQ ID NO: 377)





CLTA4-4-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGG TCC CTG TCT GTC ATT GG (SEQ ID NO: 378)





CLTA4-4-3 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AAG CGA GTG ACT GTC TGG GA (SEQ ID NO: 379)





CLTA4-4-4 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CAT GGG TGG GAC ACG TAG TT (SEQ ID NO: 380)





CLTA4-4-5 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGC TTT CCT GGA CAC CCT ATC (SEQ ID NO: 381)





CLTA4-4-6 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT AGA GCG AGG GAG CGA TGT A (SEQ ID NO: 382)





CLTA4-4-7 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TTG TGG ACC ACT GCT TAG TGC (SEQ ID NO: 383)





CLTA4-4-8 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CAA CTA CCC TGA GGC CAC C (SEQ ID NO: 384)





CLTA4-4-9 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGT CAG CAC TCC TCA GCT TT (SEQ ID NO: 385)





CLTA4-4-10 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TGG AGG ATG CAT GCC ACA TT (SEQ ID NO: 386)





CLTA4-4-11 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CCC AGC CTC TTT GAC CCT TC (SEQ ID NO: 387)





CLTA4-4-12 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CCC ACA CCA GGC TGT AAG G (SEQ ID NO: 388)





CLTA4-4-13 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TAG ATA TAT GGG TGT GTC TGT ACG (SEQ ID NO: 389)





CLTA4-4-14 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TTC CAA AGT GGC TGA ACC AT (SEQ ID NO: 390)





CLTA4-5-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CCC ACA GGG CTG ATG TTT CA (SEQ ID NO: 391)





CLTA4-5-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TTG TAA TGC AAC CTC TGT CAT GC (SEQ ID NO: 392)





CLTA4-5-3 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CCA GCT CCA GCA ATC CAT GA (SEQ ID NO: 393)





CLTA4-5-4 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT TTT GGG AAA GAT AGC CCT GGA (SEQ ID NO: 394)





CLTA4-5-5 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CAA TGA AAC AGC GGG GAG GT (SEQ ID NO: 395)





CLTA4-5-6 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT ACA ATC ACG TGT CCT TCA CT (SEQ ID NO: 396)





CLTA4-6-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT CAG ATC CCT CCT GGG CAA TG (SEQ ID NO: 397)





CLTA4-6-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GTC AGG AGG CAA GGA GGA AC (SEQ ID NO: 398)





CLTA4-6-3 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT ACT TCC TTC CTT TTG AGA CCA AGT (SEQ ID NO: 399)





CLTA4-7-1 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GCG GCA GAT TCC TGG TGA TT (SEQ ID NO: 400)





CLTA4-7-2 rev
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT GGT CAC CAT CAG CAC AGT CA (SEQ ID NO: 401)





PE1-barcode1
CAA GCA GAA GAC GGC ATA CGA GAT ATA TCA GTG TGA CTG GAG TTC AGA CGT GTG CT (SEQ ID NO: 402)





PE1-barcode2
CAA GCA GAA GAC GGC ATA CGA GAT TTT CAC CGG TGA CTG GAG TTC AGA CGT GTG CT (SEQ ID NO: 403)





PE1-barcode3
CAA GCA GAA GAC GGC ATA CGA GAT CCA CTC ATG TGA CTG GAG TTC AGA CGT GTG CT (SEQ ID NO: 404)





PE1-barcode4
CAA GCA GAA GAC GGC ATA CGA GAT TAC GTA CGG TGA CTG GAG TTC AGA CGT GTG CT (SEQ ID NO: 405)





PE1-barcode5
CAA GCA GAA GAC GGC ATA CGA GAT CGA AAC TCG TGA CTG GAG TTC AGA CGT GTG CT (SEQ ID NO: 406)





PE1-barcode6
CAA GCA GAA GAC GGC ATA CGA GAT ATC AGT ATG TGA CTG GAG TTC AGA CGT GTG CT (SEQ ID NO: 407)





PE2-barcode1
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACA TTA CTC GAC ACT CTT TCC CTA CAC GAC (SEQ ID NO: 408)





PE2-barcode2
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACT CCG GAG AAC ACT CTT TCC CTA CAC GAC (SEQ ID NO: 409)





PE2-barcode3
AAT GAT ACG GOG ACC ACC GAG ATC TAC ACC GCT CAT TAC ACT CTT TCC CTA CAC GAC (SEQ ID NO: 410)









REFERENCES



  • 1. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nature biotechnology 29, 731-734 (2011).

  • 2. Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell stem cell 5, 97-110 (2009).

  • 3. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature biotechnology 27, 851-857 (2009).

  • 4. Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature biotechnology 26, 702-708 (2008).

  • 5. Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D. & Wolfe, S. A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature biotechnology 26, 695-701 (2008).

  • 6. Sander, J. D. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature biotechnology 29, 697-698 (2011).

  • 7. Tesson, L. et al. Knockout rats generated by embryo microinjection of TALENs. Nature biotechnology 29, 695-696 (2011).

  • 8. Cui, X. et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases.



Nature biotechnology 29, 64-67 (2011).

  • 9. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature biotechnology 26, 808-816 (2008).
  • 10. NCT00842634, NCT01044654, NCT01252641, NCT01082926.
  • 11. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
  • 12. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
  • 13. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
  • 14. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013).
  • 15. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).
  • 16. Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013).
  • 17. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013).
  • 18. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic acids research 39, 9275-9282 (2011).
  • 19. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proceedings of the National Academy of Sciences of the United States of America 108, 10098-10103 (2011).
  • 20. Qi, L. S. et al. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 152, 1173-1183 (2013).
  • 21. Pattanayak, V., Ramirez, C. L., Joung, J. K. & Liu, D. R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods 8, 765-770 (2011).
  • 22. Doyon, J. B., Pattanayak, V., Meyer, C. B. & Liu, D. R. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. Journal of the American Chemical Society 128, 2477-2484 (2006).
  • 23. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013).
  • 24. Pattanayak, V., Ramirez, C. L., Joung, J. K. & Liu, D. R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods 8, 765-770 (2011).
  • 25. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic acids research 18, 6097-6100 (1990).


All publications, patents and sequence database entries mentioned herein, including those items listed above, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.

Claims
  • 1. A library of nucleic acid molecules comprising a plurality of nucleic acid molecules, wherein each nucleic acid molecule comprises a concatemer of a repeat unit sequence, wherein each repeat unit sequence comprises a candidate nuclease target site and a constant insert sequence, wherein the constant insert sequence comprises at least 10 and not more than 70 nucleotides.
  • 2. The library of claim 1, wherein the constant insert sequence is at least 15 nucleotides and not more than 70 nucleotides long.
  • 3. The library of claim 1, wherein the constant insert sequence is at least 10 nucleotides and not more than 60 nucleotides long.
  • 4. The library of claim 1, wherein the candidate nuclease target site can be cleaved by an RNA-programmable nuclease, a Zinc Finger Nuclease (ZFN), a Transcription Activator-Like Effector Nuclease (TALEN), a homing endonuclease, an organic compound nuclease, or an antibiotic nuclease.
  • 5. The library of claim 1, wherein the library comprises at least 105 candidate nuclease target sites.
  • 6. The library of claim 1, wherein the library comprises nucleic acid molecules of a molecular weight of at least 0.5 kDa.
  • 7. The library of claim 1, wherein the library comprises candidate nuclease target sites that are variations of a known target site of a nuclease of interest.
  • 8. The library of claim 7, wherein the variations of a known nuclease target site comprise 10 or fewer mutations as compared to a known nuclease target site.
  • 9. The library of claim 7, wherein the variations differ from the known target site of the nuclease of interest by more than 5% on average, distributed binomially.
  • 10. The library of claim 7, wherein the variations differ from the known target site by no more than 50% on average, distributed binomially.
  • 11. The library of claim 7, wherein the nuclease of interest is an RNA-programmable nuclease, a Zinc Finger Nuclease (ZFN), a Transcription Activator-Like Effector Nuclease TALEN, a homing endonuclease, an organic compound nuclease, or an antibiotic nuclease.
  • 12. The library of claim 1, wherein the candidate nuclease target sites are Cas9 nuclease target sites that comprise a [sgRNA-complementary sequence]-[PAM] structure, wherein the sgRNA-complementary sequence comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides.
  • 13. A kit comprising a library according to claim 1, wherein the kit further comprises an isolated nuclease.
  • 14. The library of claim 4, wherein the organic compound nuclease comprises an enediyne.
  • 15. The library of claim 4, wherein the antibiotic nuclease is dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin, or a derivative thereof.
  • 16. The library of claim 11, wherein the organic compound nuclease comprises enediyne.
  • 17. The library of claim 11, wherein the antibiotic nuclease is dynemicin, neocarzinostatin, calicheamicin, esperamicin, bleomycin, or a derivative thereof.
  • 18. The library of claim 7, wherein the known target site of a nuclease of interest is within an allele that is associated with a disease or disorder.
  • 19. The library of claim 4, wherein the candidate nuclease target site can be cleaved by an RNA-programmable nuclease.
  • 20. The library of claim 11, wherein the nuclease of interest is an RNA-programmable nuclease.
  • 21. The library of claim 20, wherein the nuclease of interest is a Cas9 nuclease.
  • 22. The library of claim 19, wherein the RNA-programmable nuclease is a Cas9 nuclease.
RELATED APPLICATIONS

This application is a divisional of and claims priority under 35 U.S.C. § 120 to U.S. application, U.S. Ser. No. 14/911,117, filed Feb. 9, 2016, which is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2014/050283, filed Aug. 8, 2014, which claims priority under 35 U.S.C. § 365(c) to U.S. application, U.S. Ser. No. 14/320,370, filed Jun. 30, 2014, and to U.S. application, U.S. Ser. No. 14/320,413, filed Jun. 30, 2014. International PCT application, PCT/US2014/050283, filed Aug. 8, 2014, U.S. application, U.S. Ser. No. 14/320,370, filed Jun. 30, 2014, and U.S. application, U.S. Ser. No. 14/320,413, filed Jun. 30, 2014 each claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application, U.S. Ser. No. 61/864,289, filed Aug. 9, 2013. U.S. application, U.S. Ser. No. 14/911,117, filed Feb. 9, 2016, also claims priority under 35 U.S.C. § 120 to U.S. application, U.S. Ser. No. 14/874,123, filed Oct. 2, 2015, which is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. application, U.S. Ser. No. 14/320,370, filed Jun. 30, 2014, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application, U.S. Ser. No. 61/864,289, filed Aug. 9, 2013. The entire contents of each of the above-indicated applications are incorporated herein by reference.

GOVERNMENT SUPPORT

This invention was made with U.S. Government support under grant numbers HR0011-11-2-0003 and N66001-12-C-4207, awarded by the Defense Advanced Research Projects Agency. The U.S. Government has certain rights in the invention.

US Referenced Citations (547)
Number Name Date Kind
4182449 Kozlow Jan 1980 A
4186183 Steck et al. Jan 1980 A
4217344 Vanlerberghe et al. Aug 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4261975 Fullerton et al. Apr 1981 A
4485054 Mezei et al. Nov 1984 A
4501728 Geho et al. Feb 1985 A
4663290 Weis et al. May 1987 A
4737323 Martin et al. Apr 1988 A
4774085 Fidler Sep 1988 A
4797368 Carter et al. Jan 1989 A
4837028 Allen Jun 1989 A
4873316 Meade et al. Oct 1989 A
4880635 Janoff et al. Nov 1989 A
4889818 Gelfand et al. Dec 1989 A
4897355 Eppstein et al. Jan 1990 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
4946787 Eppstein et al. Aug 1990 A
4965185 Grischenko et al. Oct 1990 A
5017492 Kotewicz et al. May 1991 A
5047342 Chatterjee Sep 1991 A
5049386 Eppstein et al. Sep 1991 A
5079352 Gelfand et al. Jan 1992 A
5139941 Muzyczka et al. Aug 1992 A
5173414 Lebkowski et al. Dec 1992 A
5223409 Ladner et al. Jun 1993 A
5244797 Kotewicz et al. Sep 1993 A
5270179 Chatterjee Dec 1993 A
5374553 Gelfand et al. Dec 1994 A
5405776 Kotewicz et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5449639 Wei et al. Sep 1995 A
5496714 Comb et al. Mar 1996 A
5512462 Cheng Apr 1996 A
5580737 Polisky et al. Dec 1996 A
5614365 Tabor et al. Mar 1997 A
5652094 Usman et al. Jul 1997 A
5658727 Barbas et al. Aug 1997 A
5668005 Kotewicz et al. Sep 1997 A
5677152 Birch et al. Oct 1997 A
5767099 Harris et al. Jun 1998 A
5780053 Ashley et al. Jul 1998 A
5830430 Unger et al. Nov 1998 A
5834247 Comb et al. Nov 1998 A
5835699 Kimura Nov 1998 A
5844075 Kawakami et al. Dec 1998 A
5849548 Haseloff et al. Dec 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5856463 Blankenborg et al. Jan 1999 A
5962313 Podsakoff et al. Oct 1999 A
5981182 Jacobs, Jr. et al. Nov 1999 A
6015794 Haseloff et al. Jan 2000 A
6057153 George et al. May 2000 A
6063608 Kotewicz et al. May 2000 A
6077705 Duan et al. Jun 2000 A
6156509 Schellenberger Dec 2000 A
6183998 Ivanov et al. Feb 2001 B1
6355415 Wagner et al. Mar 2002 B1
6429298 Ellington et al. Aug 2002 B1
6453242 Eisenberg et al. Sep 2002 B1
6479264 Louwrier Nov 2002 B1
6503717 Case et al. Jan 2003 B2
6534261 Cox, III et al. Mar 2003 B1
6599692 Case et al. Jul 2003 B1
6607882 Cox, III et al. Aug 2003 B1
6610522 Kotewicz et al. Aug 2003 B1
6689558 Case Feb 2004 B2
6716973 Baskerville et al. Apr 2004 B2
6824978 Cox, III et al. Nov 2004 B1
6933113 Case et al. Aug 2005 B2
6979539 Cox, III et al. Dec 2005 B2
7013219 Case et al. Mar 2006 B2
7045337 Schultz et al. May 2006 B2
7067650 Tanaka Jun 2006 B1
7070928 Liu et al. Jul 2006 B2
7078208 Smith et al. Jul 2006 B2
7083970 Schultz et al. Aug 2006 B2
7163824 Cox, III et al. Jan 2007 B2
7192739 Liu et al. Mar 2007 B2
7223545 Liu et al. May 2007 B2
7354761 Schultz et al. Apr 2008 B2
7368275 Schultz et al. May 2008 B2
7442160 Liu et al. Oct 2008 B2
7476500 Liu et al. Jan 2009 B1
7476734 Liu Jan 2009 B2
7479573 Chu et al. Jan 2009 B2
7491494 Liu et al. Feb 2009 B2
7541450 Liu et al. Jun 2009 B2
7557068 Liu et al. Jul 2009 B2
7595179 Chen et al. Sep 2009 B2
7638300 Schultz et al. Dec 2009 B2
7670807 Lampson et al. Mar 2010 B2
7678554 Liu et al. Mar 2010 B2
7713721 Schultz et al. May 2010 B2
7771935 Liu et al. Aug 2010 B2
7794931 Breaker et al. Sep 2010 B2
7807408 Liu et al. Oct 2010 B2
7851658 Liu et al. Dec 2010 B2
7915025 Schultz et al. Mar 2011 B2
7919277 Russell et al. Apr 2011 B2
7993672 Huang et al. Aug 2011 B2
7998904 Liu et al. Aug 2011 B2
8012739 Schultz et al. Sep 2011 B2
8017323 Liu et al. Sep 2011 B2
8017755 Liu et al. Sep 2011 B2
8030074 Schultz et al. Oct 2011 B2
8067556 Hogrefe et al. Nov 2011 B2
8114648 Schultz et al. Feb 2012 B2
8173364 Schultz et al. May 2012 B2
8173392 Schultz et al. May 2012 B2
8183012 Schultz et al. May 2012 B2
8183178 Liu et al. May 2012 B2
8206914 Liu et al. Jun 2012 B2
8361725 Russell et al. Jan 2013 B2
8394604 Liu et al. Mar 2013 B2
8440431 Voytas et al. May 2013 B2
8440432 Voytas et al. May 2013 B2
8450471 Voytas et al. May 2013 B2
8492082 De Franciscis et al. Jul 2013 B2
8546553 Terns et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8586363 Voytas et al. Nov 2013 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691729 Liu et al. Apr 2014 B2
8691750 Constien et al. Apr 2014 B2
8697359 Zhang Apr 2014 B1
8697853 Voytas et al. Apr 2014 B2
8709466 Coady et al. Apr 2014 B2
8728526 Heller May 2014 B2
8748667 Budzik et al. Jun 2014 B2
8758810 Okada et al. Jun 2014 B2
8759103 Kim et al. Jun 2014 B2
8759104 Unciti-Broceta et al. Jun 2014 B2
8771728 Huang et al. Jul 2014 B2
8790664 Pitard et al. Jul 2014 B2
8795965 Zhang Aug 2014 B2
8822663 Schrum et al. Sep 2014 B2
8835148 Janulaitis et al. Sep 2014 B2
8846578 McCray et al. Sep 2014 B2
8871445 Cong et al. Oct 2014 B2
8889418 Zhang et al. Nov 2014 B2
8900814 Yasukawa et al. Dec 2014 B2
8945839 Zhang Feb 2015 B2
8975232 Liu et al. Mar 2015 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9023594 Liu et al. May 2015 B2
9023649 Mali et al. May 2015 B2
9034650 Padidam May 2015 B2
9068179 Liu et al. Jun 2015 B1
9150626 Liu et al. Oct 2015 B2
9163271 Schultz et al. Oct 2015 B2
9163284 Liu et al. Oct 2015 B2
9181535 Liu et al. Nov 2015 B2
9200045 Liu et al. Dec 2015 B2
9221886 Liu et al. Dec 2015 B2
9228207 Liu et al. Jan 2016 B2
9234213 Wu Jan 2016 B2
9243038 Liu et al. Jan 2016 B2
9267127 Liu et al. Feb 2016 B2
9322006 Liu et al. Apr 2016 B2
9322037 Liu et al. Apr 2016 B2
9340799 Liu et al. May 2016 B2
9340800 Liu et al. May 2016 B2
9359599 Liu et al. Jun 2016 B2
9388430 Liu et al. Jul 2016 B2
9394537 Liu et al. Jul 2016 B2
9434774 Liu et al. Sep 2016 B2
9512446 Joung et al. Dec 2016 B1
9526724 Oshlack et al. Dec 2016 B2
9526784 Liu et al. Dec 2016 B2
9737604 Liu et al. Aug 2017 B2
9771574 Liu et al. Sep 2017 B2
9816093 Donohoue et al. Nov 2017 B1
9840690 Karli et al. Dec 2017 B2
9840699 Liu et al. Dec 2017 B2
9873907 Zeiner et al. Jan 2018 B2
9879270 Hittinger et al. Jan 2018 B2
9938288 Kishi et al. Apr 2018 B1
9944933 Storici et al. Apr 2018 B2
9982279 Gill et al. May 2018 B1
9999671 Liu et al. Jun 2018 B2
10059940 Zhong Aug 2018 B2
10077453 Liu et al. Sep 2018 B2
10113163 Liu et al. Oct 2018 B2
10167457 Liu et al. Jan 2019 B2
10179911 Liu et al. Jan 2019 B2
10227581 Liu et al. Mar 2019 B2
10323236 Liu et al. Jun 2019 B2
10336997 Liu et al. Jul 2019 B2
10392674 Liu et al. Aug 2019 B2
10465176 Liu et al. Nov 2019 B2
10508298 Liu et al. Dec 2019 B2
10597679 Liu et al. Mar 2020 B2
10612011 Liu et al. Apr 2020 B2
10682410 Liu et al. Jun 2020 B2
10704062 Liu et al. Jul 2020 B2
10745677 Maianti et al. Aug 2020 B2
10858639 Liu et al. Dec 2020 B2
10912833 Liu et al. Feb 2021 B2
10930367 Zhang et al. Feb 2021 B2
10947530 Liu et al. Mar 2021 B2
10954548 Liu et al. Mar 2021 B2
11046948 Liu et al. Jun 2021 B2
11053481 Liu et al. Jul 2021 B2
11124782 Liu et al. Sep 2021 B2
11214780 Liu et al. Jan 2022 B2
11268082 Liu et al. Mar 2022 B2
11299755 Liu et al. Apr 2022 B2
11306324 Liu et al. Apr 2022 B2
11319532 Liu et al. May 2022 B2
11447770 Liu et al. Sep 2022 B1
11542496 Liu et al. Jan 2023 B2
11542509 Maianti et al. Jan 2023 B2
11560566 Liu et al. Jan 2023 B2
11578343 Liu et al. Feb 2023 B2
11643652 Liu et al. May 2023 B2
11661590 Liu et al. May 2023 B2
11702651 Liu et al. Jul 2023 B2
20030082575 Schultz et al. May 2003 A1
20030087817 Cox et al. May 2003 A1
20030096337 Hillman et al. May 2003 A1
20030108885 Schultz et al. Jun 2003 A1
20030119764 Loeb et al. Jun 2003 A1
20030167533 Yadav et al. Sep 2003 A1
20030203480 Kovesdi et al. Oct 2003 A1
20040003420 Kuhn et al. Jan 2004 A1
20040115184 Smith et al. Jun 2004 A1
20040197892 Moore et al. Oct 2004 A1
20040203109 Lal et al. Oct 2004 A1
20050136429 Guarente et al. Jun 2005 A1
20050222030 Allison Oct 2005 A1
20050260626 Lorens et al. Nov 2005 A1
20060088864 Smolke et al. Apr 2006 A1
20060104984 Littlefield et al. May 2006 A1
20060246568 Honjo et al. Nov 2006 A1
20070015238 Snyder et al. Jan 2007 A1
20070264692 Liu et al. Nov 2007 A1
20070269817 Shapero Nov 2007 A1
20080008697 Mintier et al. Jan 2008 A1
20080051317 Church et al. Feb 2008 A1
20080124725 Barrangou et al. May 2008 A1
20080182254 Hall et al. Jul 2008 A1
20080220502 Schellenberger et al. Sep 2008 A1
20080241917 Akita et al. Oct 2008 A1
20080268516 Perreault et al. Oct 2008 A1
20090130718 Short May 2009 A1
20090215878 Tan et al. Aug 2009 A1
20090234109 Han et al. Sep 2009 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100273857 Thakker et al. Oct 2010 A1
20100305197 Che Dec 2010 A1
20100316643 Eckert et al. Dec 2010 A1
20110059160 Essner et al. Mar 2011 A1
20110059502 Chalasani Mar 2011 A1
20110104787 Church et al. May 2011 A1
20110177495 Liu et al. Jul 2011 A1
20110189775 Ainley et al. Aug 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20110301073 Gregory et al. Dec 2011 A1
20120129759 Liu et al. May 2012 A1
20120141523 Castado et al. Jun 2012 A1
20120244601 Bertozzi et al. Sep 2012 A1
20120270273 Zhang et al. Oct 2012 A1
20120322861 Byrne et al. Dec 2012 A1
20130022980 Nelson et al. Jan 2013 A1
20130059931 Petersen-Mahrt et al. Mar 2013 A1
20130117869 Duchateau et al. May 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130165389 Schellenberger et al. Jun 2013 A1
20130212725 Kuhn et al. Aug 2013 A1
20130309720 Schultz et al. Nov 2013 A1
20130344117 Mirosevich et al. Dec 2013 A1
20130345064 Liu et al. Dec 2013 A1
20140004280 Loomis Jan 2014 A1
20140005269 Ngwuluka et al. Jan 2014 A1
20140017214 Cost Jan 2014 A1
20140018404 Chen et al. Jan 2014 A1
20140044793 Goll et al. Feb 2014 A1
20140065711 Liu et al. Mar 2014 A1
20140068797 Doudna et al. Mar 2014 A1
20140127752 Zhou et al. May 2014 A1
20140128449 Liu et al. May 2014 A1
20140141094 Smyth et al. May 2014 A1
20140141487 Feldman et al. May 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186919 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140201858 Ostertag et al. Jul 2014 A1
20140234289 Liu et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140273234 Zhang et al. Sep 2014 A1
20140283156 Zador et al. Sep 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356956 Church et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140356959 Church et al. Dec 2014 A1
20140357523 Zeiner et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150010526 Liu et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150031132 Church et al. Jan 2015 A1
20150031133 Church et al. Jan 2015 A1
20150044191 Liu et al. Feb 2015 A1
20150044192 Liu et al. Feb 2015 A1
20150044772 Zhao Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056177 Liu et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150064789 Paschon et al. Mar 2015 A1
20150071898 Liu et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150071900 Liu et al. Mar 2015 A1
20150071901 Liu et al. Mar 2015 A1
20150071902 Liu et al. Mar 2015 A1
20150071903 Liu et al. Mar 2015 A1
20150071906 Liu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150118216 Liu et al. Apr 2015 A1
20150128300 Warming et al. May 2015 A1
20150132269 Orkin et al. May 2015 A1
20150140664 Byrne et al. May 2015 A1
20150159172 Miller et al. Jun 2015 A1
20150165054 Liu et al. Jun 2015 A1
20150166980 Liu et al. Jun 2015 A1
20150166981 Liu et al. Jun 2015 A1
20150166982 Liu et al. Jun 2015 A1
20150166983 Liu et al. Jun 2015 A1
20150166984 Liu et al. Jun 2015 A1
20150166985 Liu et al. Jun 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150197759 Xu et al. Jul 2015 A1
20150211058 Carstens Jul 2015 A1
20150218573 Loque et al. Aug 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150275202 Liu et al. Oct 2015 A1
20150291965 Zhang et al. Oct 2015 A1
20150307889 Petolino et al. Oct 2015 A1
20150315252 Haugwitz et al. Nov 2015 A1
20150344549 Muir et al. Dec 2015 A1
20160015682 Cawthorne et al. Jan 2016 A2
20160017393 Jacobson et al. Jan 2016 A1
20160017396 Cann et al. Jan 2016 A1
20160032292 Storici et al. Feb 2016 A1
20160032353 Braman et al. Feb 2016 A1
20160040155 Maizels et al. Feb 2016 A1
20160046952 Hittinger et al. Feb 2016 A1
20160046961 Jinek et al. Feb 2016 A1
20160046962 May et al. Feb 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160074535 Ranganathan et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160090603 Carnes et al. Mar 2016 A1
20160090622 Liu et al. Mar 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160138046 Wu May 2016 A1
20160153003 Joung et al. Jun 2016 A1
20160186214 Brouns et al. Jun 2016 A1
20160200779 Liu et al. Jul 2016 A1
20160201040 Liu et al. Jul 2016 A1
20160201089 Gersbach et al. Jul 2016 A1
20160206566 Lu et al. Jul 2016 A1
20160208243 Zhang et al. Jul 2016 A1
20160208288 Liu et al. Jul 2016 A1
20160215275 Zhong Jul 2016 A1
20160215276 Liu et al. Jul 2016 A1
20160215300 May et al. Jul 2016 A1
20160244784 Jacobson et al. Aug 2016 A1
20160244829 Bang et al. Aug 2016 A1
20160272593 Ritter et al. Sep 2016 A1
20160272965 Zhang et al. Sep 2016 A1
20160281072 Zhang Sep 2016 A1
20160304846 Liu et al. Oct 2016 A1
20160304855 Stark et al. Oct 2016 A1
20160312304 Sorrentino et al. Oct 2016 A1
20160319262 Doudna et al. Nov 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160340662 Zhang et al. Nov 2016 A1
20160345578 Barrangou et al. Dec 2016 A1
20160346360 Quake et al. Dec 2016 A1
20160346361 Quake et al. Dec 2016 A1
20160346362 Quake et al. Dec 2016 A1
20160348074 Quake et al. Dec 2016 A1
20160348096 Liu et al. Dec 2016 A1
20160350476 Quake et al. Dec 2016 A1
20160369262 Reik et al. Dec 2016 A1
20170009224 Liu et al. Jan 2017 A1
20170009242 McKinley et al. Jan 2017 A1
20170014449 Bangera et al. Jan 2017 A1
20170020922 Wagner et al. Jan 2017 A1
20170037432 Donohoue et al. Feb 2017 A1
20170044520 Liu et al. Feb 2017 A1
20170044592 Peter et al. Feb 2017 A1
20170053729 Kotani et al. Feb 2017 A1
20170058271 Joung et al. Mar 2017 A1
20170058272 Carter et al. Mar 2017 A1
20170058298 Kennedy et al. Mar 2017 A1
20170073663 Wang et al. Mar 2017 A1
20170073670 Nishida et al. Mar 2017 A1
20170087224 Quake Mar 2017 A1
20170087225 Quake Mar 2017 A1
20170088587 Quake Mar 2017 A1
20170088828 Quake Mar 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107560 Peter et al. Apr 2017 A1
20170114367 Hu et al. Apr 2017 A1
20170121693 Liu et al. May 2017 A1
20170145394 Yeo et al. May 2017 A1
20170145405 Tang et al. May 2017 A1
20170145438 Kantor May 2017 A1
20170152528 Zhang Jun 2017 A1
20170152787 Kubo et al. Jun 2017 A1
20170159033 Kamtekar et al. Jun 2017 A1
20170166928 Vyas et al. Jun 2017 A1
20170175104 Doudna et al. Jun 2017 A1
20170175142 Zhang et al. Jun 2017 A1
20170191047 Terns et al. Jul 2017 A1
20170191078 Zhang et al. Jul 2017 A1
20170198269 Zhang et al. Jul 2017 A1
20170198277 Kmiec et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170226522 Hu et al. Aug 2017 A1
20170233703 Xie et al. Aug 2017 A1
20170233756 Begemann et al. Aug 2017 A1
20170247671 Yung et al. Aug 2017 A1
20170247703 Sloan et al. Aug 2017 A1
20170268022 Liu et al. Sep 2017 A1
20170283797 Robb et al. Oct 2017 A1
20170314016 Kim et al. Nov 2017 A1
20170362635 Chamberlain et al. Dec 2017 A1
20180064077 Dunham et al. Mar 2018 A1
20180066258 Powell Mar 2018 A1
20180068062 Zhang et al. Mar 2018 A1
20180073012 Liu et al. Mar 2018 A1
20180100147 Yates et al. Apr 2018 A1
20180105867 Xiao et al. Apr 2018 A1
20180119118 Lu et al. May 2018 A1
20180127780 Liu et al. May 2018 A1
20180155708 Church et al. Jun 2018 A1
20180155720 Donohoue et al. Jun 2018 A1
20180163213 Aneja et al. Jun 2018 A1
20180170984 Harris et al. Jun 2018 A1
20180179503 Maianti et al. Jun 2018 A1
20180179547 Zhang et al. Jun 2018 A1
20180201921 Malcolm Jul 2018 A1
20180230464 Zhong Aug 2018 A1
20180230471 Storici et al. Aug 2018 A1
20180236081 Liu et al. Aug 2018 A1
20180237758 Liu et al. Aug 2018 A1
20180237787 Maianti et al. Aug 2018 A1
20180245066 Yao et al. Aug 2018 A1
20180265864 Li et al. Sep 2018 A1
20180273939 Yu et al. Sep 2018 A1
20180282722 Jakimo et al. Oct 2018 A1
20180305688 Zhong Oct 2018 A1
20180305704 Zhang Oct 2018 A1
20180312825 Liu et al. Nov 2018 A1
20180312828 Liu et al. Nov 2018 A1
20180312835 Yao et al. Nov 2018 A1
20180327756 Zhang et al. Nov 2018 A1
20190093099 Liu et al. Mar 2019 A1
20190185883 Liu et al. Jun 2019 A1
20190225955 Liu et al. Jul 2019 A1
20190233847 Savage et al. Aug 2019 A1
20190241633 Fotin-Mleczek et al. Aug 2019 A1
20190256842 Liu et al. Aug 2019 A1
20190264202 Church et al. Aug 2019 A1
20190276816 Liu et al. Sep 2019 A1
20190322992 Liu et al. Oct 2019 A1
20190352632 Liu et al. Nov 2019 A1
20190367891 Liu et al. Dec 2019 A1
20200010818 Liu et al. Jan 2020 A1
20200010835 Maianti et al. Jan 2020 A1
20200071722 Liu et al. Mar 2020 A1
20200172931 Liu et al. Jun 2020 A1
20200181619 Tang et al. Jun 2020 A1
20200190493 Liu et al. Jun 2020 A1
20200216833 Liu et al. Jul 2020 A1
20200255868 Liu et al. Aug 2020 A1
20200277587 Liu et al. Sep 2020 A1
20200323984 Liu et al. Oct 2020 A1
20200399619 Maianti et al. Dec 2020 A1
20200399626 Liu et al. Dec 2020 A1
20210054416 Liu et al. Feb 2021 A1
20210115428 Maianti et al. Apr 2021 A1
20210196809 Maianti et al. Jul 2021 A1
20210198330 Liu et al. Jul 2021 A1
20210214698 Liu et al. Jul 2021 A1
20210230577 Liu et al. Jul 2021 A1
20210315994 Liu et al. Oct 2021 A1
20210317440 Liu et al. Oct 2021 A1
20220033785 Liu et al. Feb 2022 A1
20220119785 Liu et al. Apr 2022 A1
20220170013 Liu et al. Jun 2022 A1
20220177877 Church et al. Jun 2022 A1
20220204975 Liu et al. Jun 2022 A1
20220213507 Liu et al. Jul 2022 A1
20220220462 Liu et al. Jul 2022 A1
20220238182 Shen et al. Jul 2022 A1
20220249697 Liu et al. Aug 2022 A1
20220282275 Liu et al. Sep 2022 A1
20220290115 Liu et al. Sep 2022 A1
20220307001 Liu et al. Sep 2022 A1
20220307003 Liu et al. Sep 2022 A1
20220315906 Liu et al. Oct 2022 A1
20220356469 Liu et al. Nov 2022 A1
20220380740 Liu et al. Dec 2022 A1
20220389395 Liu et al. Dec 2022 A1
20230002745 Liu et al. Jan 2023 A1
20230021641 Liu et al. Jan 2023 A1
20230056852 Liu et al. Feb 2023 A1
20230058176 Liu et al. Feb 2023 A1
20230078265 Liu et al. Mar 2023 A1
20230086199 Liu et al. Mar 2023 A1
20230090221 Liu et al. Mar 2023 A1
20230108687 Liu et al. Apr 2023 A1
20230123669 Liu et al. Apr 2023 A1
20230127008 Liu et al. Apr 2023 A1
20230159913 Liu et al. May 2023 A1
20230193295 Maianti et al. Jun 2023 A1
20230220374 Liu et al. Jul 2023 A1
20230272425 Liu et al. Aug 2023 A1
20230279443 Liu et al. Sep 2023 A1
Foreign Referenced Citations (1617)
Number Date Country
2012244264 Nov 2012 AU
2015252023 Nov 2015 AU
2015101792 Jan 2016 AU
2012354062 Sep 2017 AU
112015013786 Jul 2017 BR
2894668 Jun 2014 CA
2894681 Jun 2014 CA
2894684 Jun 2014 CA
2 852 593 Nov 2015 CA
1069962 Mar 1993 CN
101460619 Jun 2009 CN
101873862 Oct 2010 CN
102892777 Jan 2013 CN
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103388006 Nov 2013 CN
103614415 Mar 2014 CN
103642836 Mar 2014 CN
103668472 Mar 2014 CN
103820441 May 2014 CN
103820454 May 2014 CN
103911376 Jul 2014 CN
103923911 Jul 2014 CN
103088008 Aug 2014 CN
103981211 Aug 2014 CN
103981212 Aug 2014 CN
104004778 Aug 2014 CN
104004782 Aug 2014 CN
104017821 Sep 2014 CN
104109687 Oct 2014 CN
104178461 Dec 2014 CN
104342457 Feb 2015 CN
104404036 Mar 2015 CN
104450774 Mar 2015 CN
104480144 Apr 2015 CN
104498493 Apr 2015 CN
104504304 Apr 2015 CN
104531704 Apr 2015 CN
104531705 Apr 2015 CN
104560864 Apr 2015 CN
104561095 Apr 2015 CN
104593418 May 2015 CN
104593422 May 2015 CN
104611370 May 2015 CN
104651392 May 2015 CN
104651398 May 2015 CN
104651399 May 2015 CN
104651401 May 2015 CN
104673816 Jun 2015 CN
104725626 Jun 2015 CN
104726449 Jun 2015 CN
104726494 Jun 2015 CN
104745626 Jul 2015 CN
104762321 Jul 2015 CN
104805078 Jul 2015 CN
104805099 Jul 2015 CN
104805118 Jul 2015 CN
104846010 Aug 2015 CN
104894068 Sep 2015 CN
104894075 Sep 2015 CN
104928321 Sep 2015 CN
105039339 Nov 2015 CN
105039399 Nov 2015 CN
105063061 Nov 2015 CN
105087620 Nov 2015 CN
105112422 Dec 2015 CN
105112445 Dec 2015 CN
105112519 Dec 2015 CN
105121648 Dec 2015 CN
105132427 Dec 2015 CN
105132451 Dec 2015 CN
105177038 Dec 2015 CN
105177126 Dec 2015 CN
105210981 Jan 2016 CN
105219799 Jan 2016 CN
105238806 Jan 2016 CN
105255937 Jan 2016 CN
105274144 Jan 2016 CN
105296518 Feb 2016 CN
105296537 Feb 2016 CN
105316324 Feb 2016 CN
105316327 Feb 2016 CN
105316337 Feb 2016 CN
105331607 Feb 2016 CN
105331608 Feb 2016 CN
105331609 Feb 2016 CN
105331627 Feb 2016 CN
105400773 Mar 2016 CN
105400779 Mar 2016 CN
105400810 Mar 2016 CN
105441451 Mar 2016 CN
105462968 Apr 2016 CN
105463003 Apr 2016 CN
105463027 Apr 2016 CN
105492608 Apr 2016 CN
105492609 Apr 2016 CN
105505976 Apr 2016 CN
105505979 Apr 2016 CN
105518134 Apr 2016 CN
105518135 Apr 2016 CN
105518137 Apr 2016 CN
105518138 Apr 2016 CN
105518139 Apr 2016 CN
105518140 Apr 2016 CN
105543228 May 2016 CN
105543266 May 2016 CN
105543270 May 2016 CN
105567688 May 2016 CN
105567689 May 2016 CN
105567734 May 2016 CN
105567735 May 2016 CN
105567738 May 2016 CN
105593367 May 2016 CN
105594664 May 2016 CN
105602987 May 2016 CN
105624146 Jun 2016 CN
105624187 Jun 2016 CN
105646719 Jun 2016 CN
105647922 Jun 2016 CN
105647962 Jun 2016 CN
105647968 Jun 2016 CN
105647969 Jun 2016 CN
105671070 Jun 2016 CN
105671083 Jun 2016 CN
105695485 Jun 2016 CN
105779448 Jul 2016 CN
105779449 Jul 2016 CN
105802980 Jul 2016 CN
105821039 Aug 2016 CN
105821040 Aug 2016 CN
105821049 Aug 2016 CN
105821072 Aug 2016 CN
105821075 Aug 2016 CN
105821116 Aug 2016 CN
105838733 Aug 2016 CN
105861547 Aug 2016 CN
105861552 Aug 2016 CN
105861554 Aug 2016 CN
105886498 Aug 2016 CN
105886534 Aug 2016 CN
105886616 Aug 2016 CN
105907758 Aug 2016 CN
105907785 Aug 2016 CN
105925608 Sep 2016 CN
105950560 Sep 2016 CN
105950626 Sep 2016 CN
105950633 Sep 2016 CN
105950639 Sep 2016 CN
105985985 Oct 2016 CN
106011104 Oct 2016 CN
106011150 Oct 2016 CN
106011167 Oct 2016 CN
106011171 Oct 2016 CN
106032540 Oct 2016 CN
106047803 Oct 2016 CN
106047877 Oct 2016 CN
106047930 Oct 2016 CN
106086008 Nov 2016 CN
106086028 Nov 2016 CN
106086061 Nov 2016 CN
106086062 Nov 2016 CN
106109417 Nov 2016 CN
106119275 Nov 2016 CN
106119283 Nov 2016 CN
106148286 Nov 2016 CN
106148370 Nov 2016 CN
106148416 Nov 2016 CN
106167525 Nov 2016 CN
106167808 Nov 2016 CN
106167810 Nov 2016 CN
106167821 Nov 2016 CN
106172238 Dec 2016 CN
106190903 Dec 2016 CN
106191057 Dec 2016 CN
106191061 Dec 2016 CN
106191062 Dec 2016 CN
106191064 Dec 2016 CN
106191071 Dec 2016 CN
106191099 Dec 2016 CN
106191107 Dec 2016 CN
106191113 Dec 2016 CN
106191114 Dec 2016 CN
106191116 Dec 2016 CN
106191124 Dec 2016 CN
106222177 Dec 2016 CN
106222193 Dec 2016 CN
106222203 Dec 2016 CN
106244555 Dec 2016 CN
106244591 Dec 2016 CN
106244609 Dec 2016 CN
106282241 Jan 2017 CN
106318934 Jan 2017 CN
106318973 Jan 2017 CN
106350540 Jan 2017 CN
106367435 Feb 2017 CN
106399306 Feb 2017 CN
106399311 Feb 2017 CN
106399360 Feb 2017 CN
106399367 Feb 2017 CN
106399375 Feb 2017 CN
106399377 Feb 2017 CN
106434651 Feb 2017 CN
106434663 Feb 2017 CN
106434688 Feb 2017 CN
106434737 Feb 2017 CN
106434748 Feb 2017 CN
106434752 Feb 2017 CN
106434782 Feb 2017 CN
106446600 Feb 2017 CN
106479985 Mar 2017 CN
106480027 Mar 2017 CN
106480036 Mar 2017 CN
106480067 Mar 2017 CN
106480080 Mar 2017 CN
106480083 Mar 2017 CN
106480097 Mar 2017 CN
106544351 Mar 2017 CN
106544353 Mar 2017 CN
106544357 Mar 2017 CN
106554969 Apr 2017 CN
106566838 Apr 2017 CN
106701763 May 2017 CN
106701808 May 2017 CN
106701818 May 2017 CN
106701823 May 2017 CN
106701830 May 2017 CN
106754912 May 2017 CN
106755026 May 2017 CN
106755077 May 2017 CN
106755088 May 2017 CN
106755091 May 2017 CN
106755097 May 2017 CN
106755424 May 2017 CN
106801056 Jun 2017 CN
106834323 Jun 2017 CN
106834341 Jun 2017 CN
106834347 Jun 2017 CN
106845151 Jun 2017 CN
106868008 Jun 2017 CN
106868031 Jun 2017 CN
106906240 Jun 2017 CN
106906242 Jun 2017 CN
106916820 Jul 2017 CN
106916852 Jul 2017 CN
106939303 Jul 2017 CN
106947750 Jul 2017 CN
106947780 Jul 2017 CN
106957830 Jul 2017 CN
106957831 Jul 2017 CN
106957844 Jul 2017 CN
106957855 Jul 2017 CN
106957858 Jul 2017 CN
106967697 Jul 2017 CN
106967726 Jul 2017 CN
106978428 Jul 2017 CN
106987570 Jul 2017 CN
106987757 Jul 2017 CN
107012164 Aug 2017 CN
107012174 Aug 2017 CN
107012213 Aug 2017 CN
107012250 Aug 2017 CN
107022562 Aug 2017 CN
107034188 Aug 2017 CN
107034218 Aug 2017 CN
107034229 Aug 2017 CN
107043775 Aug 2017 CN
107043779 Aug 2017 CN
107043787 Aug 2017 CN
107058320 Aug 2017 CN
107058328 Aug 2017 CN
107058358 Aug 2017 CN
107058372 Aug 2017 CN
107083392 Aug 2017 CN
107099533 Aug 2017 CN
107099850 Aug 2017 CN
107119053 Sep 2017 CN
107119071 Sep 2017 CN
107129999 Sep 2017 CN
107130000 Sep 2017 CN
107142272 Sep 2017 CN
107142282 Sep 2017 CN
107177591 Sep 2017 CN
107177595 Sep 2017 CN
107177631 Sep 2017 CN
107190006 Sep 2017 CN
107190008 Sep 2017 CN
107217042 Sep 2017 CN
107217075 Sep 2017 CN
107227307 Oct 2017 CN
107227352 Oct 2017 CN
107236737 Oct 2017 CN
107236739 Oct 2017 CN
107236741 Oct 2017 CN
107245502 Oct 2017 CN
107254485 Oct 2017 CN
107266541 Oct 2017 CN
107267515 Oct 2017 CN
107287245 Oct 2017 CN
107298701 Oct 2017 CN
107299114 Oct 2017 CN
107304435 Oct 2017 CN
107312785 Nov 2017 CN
107312793 Nov 2017 CN
107312795 Nov 2017 CN
107312798 Nov 2017 CN
107326042 Nov 2017 CN
107326046 Nov 2017 CN
107354156 Nov 2017 CN
107354173 Nov 2017 CN
107356793 Nov 2017 CN
107362372 Nov 2017 CN
107365786 Nov 2017 CN
107365804 Nov 2017 CN
107384894 Nov 2017 CN
107384922 Nov 2017 CN
107384926 Nov 2017 CN
107400677 Nov 2017 CN
107418974 Dec 2017 CN
107435051 Dec 2017 CN
107435069 Dec 2017 CN
107446922 Dec 2017 CN
107446923 Dec 2017 CN
107446924 Dec 2017 CN
107446932 Dec 2017 CN
107446951 Dec 2017 CN
107446954 Dec 2017 CN
107460196 Dec 2017 CN
107474129 Dec 2017 CN
107475300 Dec 2017 CN
107488649 Dec 2017 CN
107502608 Dec 2017 CN
107502618 Dec 2017 CN
107513531 Dec 2017 CN
107519492 Dec 2017 CN
107523567 Dec 2017 CN
107523583 Dec 2017 CN
107541525 Jan 2018 CN
107557373 Jan 2018 CN
107557378 Jan 2018 CN
107557381 Jan 2018 CN
107557390 Jan 2018 CN
107557393 Jan 2018 CN
107557394 Jan 2018 CN
107557455 Jan 2018 CN
107574179 Jan 2018 CN
107586777 Jan 2018 CN
107586779 Jan 2018 CN
107604003 Jan 2018 CN
107619829 Jan 2018 CN
107619837 Jan 2018 CN
107630006 Jan 2018 CN
107630041 Jan 2018 CN
107630042 Jan 2018 CN
107630043 Jan 2018 CN
107641631 Jan 2018 CN
107653256 Feb 2018 CN
107686848 Feb 2018 CN
206970581 Feb 2018 CN
107760652 Mar 2018 CN
107760663 Mar 2018 CN
107760684 Mar 2018 CN
107760715 Mar 2018 CN
107784200 Mar 2018 CN
107794272 Mar 2018 CN
107794276 Mar 2018 CN
107815463 Mar 2018 CN
107828738 Mar 2018 CN
107828794 Mar 2018 CN
107828826 Mar 2018 CN
107828874 Mar 2018 CN
107858346 Mar 2018 CN
107858373 Mar 2018 CN
107880132 Apr 2018 CN
107881184 Apr 2018 CN
107893074 Apr 2018 CN
107893075 Apr 2018 CN
107893076 Apr 2018 CN
107893080 Apr 2018 CN
107893086 Apr 2018 CN
107904261 Apr 2018 CN
107937427 Apr 2018 CN
107937432 Apr 2018 CN
107937501 Apr 2018 CN
107974466 May 2018 CN
107988229 May 2018 CN
107988246 May 2018 CN
107988256 May 2018 CN
107988268 May 2018 CN
108018316 May 2018 CN
108034656 May 2018 CN
108048466 May 2018 CN
108102940 Jun 2018 CN
108103092 Jun 2018 CN
108103098 Jun 2018 CN
108103586 Jun 2018 CN
108148835 Jun 2018 CN
108148837 Jun 2018 CN
108148873 Jun 2018 CN
108192956 Jun 2018 CN
108251423 Jul 2018 CN
108251451 Jul 2018 CN
108251452 Jul 2018 CN
108342480 Jul 2018 CN
108359691 Aug 2018 CN
108359712 Aug 2018 CN
108384784 Aug 2018 CN
108396027 Aug 2018 CN
108410877 Aug 2018 CN
108410906 Aug 2018 CN
108410907 Aug 2018 CN
108410911 Aug 2018 CN
108424931 Aug 2018 CN
108441519 Aug 2018 CN
108441520 Aug 2018 CN
108486108 Sep 2018 CN
108486111 Sep 2018 CN
108486145 Sep 2018 CN
108486146 Sep 2018 CN
108486154 Sep 2018 CN
108486159 Sep 2018 CN
108486234 Sep 2018 CN
108504657 Sep 2018 CN
108504685 Sep 2018 CN
108504693 Sep 2018 CN
108546712 Sep 2018 CN
108546717 Sep 2018 CN
108546718 Sep 2018 CN
108559730 Sep 2018 CN
108559732 Sep 2018 CN
108559745 Sep 2018 CN
108559760 Sep 2018 CN
108570479 Sep 2018 CN
108588071 Sep 2018 CN
108588123 Sep 2018 CN
108588128 Sep 2018 CN
108588182 Sep 2018 CN
108610399 Oct 2018 CN
108611364 Oct 2018 CN
108624622 Oct 2018 CN
108642053 Oct 2018 CN
108642055 Oct 2018 CN
108642077 Oct 2018 CN
108642078 Oct 2018 CN
108642090 Oct 2018 CN
108690844 Oct 2018 CN
108707604 Oct 2018 CN
108707620 Oct 2018 CN
108707621 Oct 2018 CN
108707628 Oct 2018 CN
108707629 Oct 2018 CN
108715850 Oct 2018 CN
108728476 Nov 2018 CN
108728486 Nov 2018 CN
108753772 Nov 2018 CN
108753783 Nov 2018 CN
108753813 Nov 2018 CN
108753817 Nov 2018 CN
108753832 Nov 2018 CN
108753835 Nov 2018 CN
108753836 Nov 2018 CN
108795902 Nov 2018 CN
108822217 Nov 2018 CN
108823248 Nov 2018 CN
108823249 Nov 2018 CN
108823291 Nov 2018 CN
108841845 Nov 2018 CN
108853133 Nov 2018 CN
108866093 Nov 2018 CN
108893529 Nov 2018 CN
108913664 Nov 2018 CN
108913691 Nov 2018 CN
108913714 Nov 2018 CN
108913717 Nov 2018 CN
208034188 Nov 2018 CN
0264166 Apr 1988 EP
0321201 Jun 1989 EP
0519463 Dec 1992 EP
2604255 Jun 2013 EP
2840140 Feb 2015 EP
2877490 Jun 2015 EP
2966170 Jan 2016 EP
3009511 Apr 2016 EP
3031921 Jun 2016 EP
3045537 Jul 2016 EP
3 115 457 Jan 2017 EP
3144390 Mar 2017 EP
3199632 Aug 2017 EP
3216867 Sep 2017 EP
3252160 Dec 2017 EP
3450553 Dec 2019 EP
2528177 Jan 2016 GB
2531454 Apr 2016 GB
2542653 Mar 2017 GB
1208045 Feb 2016 HK
2007-501626 Feb 2007 JP
2008-515405 May 2008 JP
2010-033344 Feb 2010 JP
2010-535744 Nov 2010 JP
2010-539929 Dec 2010 JP
2011-081011 Apr 2011 JP
2011-523353 Aug 2011 JP
2012-525146 Oct 2012 JP
2012-210172 Nov 2012 JP
2012-531909 Dec 2012 JP
2015-523856 Aug 2015 JP
2015-532654 Nov 2015 JP
2016-534132 Nov 2016 JP
2017-500035 Jan 2017 JP
6629734 Jan 2020 JP
101584933 Jan 2016 KR
2016-0050069 May 2016 KR
20160133380 Nov 2016 KR
20170037025 Apr 2017 KR
20170037028 Apr 2017 KR
101748575 Jun 2017 KR
2018-0022465 Mar 2018 KR
2016104674 Aug 2017 RU
2634395 Oct 2017 RU
2652899 May 2018 RU
2015128057 Mar 2019 RU
2015128098 Mar 2019 RU
2687451 May 2019 RU
2019112514 Jun 2019 RU
2019127300 Sep 2019 RU
2701850 Oct 2019 RU
10201707569 Oct 2017 SG
10201710486 Jan 2018 SG
10201710487 Jan 2018 SG
10201710488 Jan 2018 SG
I608100 Dec 2017 TW
2018-29773 Aug 2018 TW
WO 1990002809 Mar 1990 WO
WO 1991003162 Mar 1991 WO
WO 1991016024 Oct 1991 WO
WO 1991017271 Nov 1991 WO
WO 1991017424 Nov 1991 WO
WO 1992006188 Apr 1992 WO
WO 1992006200 Apr 1992 WO
WO 1992007065 Apr 1992 WO
WO 1993015187 Aug 1993 WO
WO 1993024641 Dec 1993 WO
WO 1994018316 Aug 1994 WO
WO 1994026877 Nov 1994 WO
WO 1996004403 Feb 1996 WO
WO 1996010640 Apr 1996 WO
WO 1998032845 Jul 1998 WO
WO 2001036452 May 2001 WO
WO 2001038547 May 2001 WO
WO 2002059296 Aug 2002 WO
WO 2002068676 Sep 2002 WO
WO 2002103028 Dec 2002 WO
WO 2004007684 Jan 2004 WO
WO 2005014791 Feb 2005 WO
WO 2005019415 Mar 2005 WO
WO 2006002547 Jan 2006 WO
WO 2006042112 Apr 2006 WO
WO 2007025097 Mar 2007 WO
WO 2007037444 Apr 2007 WO
WO 2007066923 Jun 2007 WO
WO 2007136815 Nov 2007 WO
WO 2007143574 Dec 2007 WO
WO 2008005529 Jan 2008 WO
WO 2008108989 Sep 2008 WO
WO 2009002418 Dec 2008 WO
WO 2009098290 Aug 2009 WO
WO 2009134808 Nov 2009 WO
WO 2010011961 Jan 2010 WO
WO 2010012902 Feb 2010 WO
WO 2010028347 Mar 2010 WO
WO 2010054108 May 2010 WO
WO 2010054154 May 2010 WO
WO 2010068289 Jun 2010 WO
WO 2010075424 Jul 2010 WO
WO 2010102257 Sep 2010 WO
WO 2010104749 Sep 2010 WO
WO 2010129019 Nov 2010 WO
WO 2010129023 Nov 2010 WO
WO 2010132092 Nov 2010 WO
WO 2010144150 Dec 2010 WO
WO 2011002503 Jan 2011 WO
WO 2011017293 Feb 2011 WO
WO 2011053868 May 2011 WO
WO 2011053982 May 2011 WO
WO 2011068810 Jun 2011 WO
WO 2011075627 Jun 2011 WO
WO 2011091311 Jul 2011 WO
WO 2011091396 Jul 2011 WO
WO 2011109031 Sep 2011 WO
WO 2011143124 Nov 2011 WO
WO 2011147590 Dec 2011 WO
WO 2011159369 Dec 2011 WO
WO 2012054726 Apr 2012 WO
WO 2012065043 May 2012 WO
WO 2012088381 Jun 2012 WO
WO 2012125445 Sep 2012 WO
WO 2012138927 Oct 2012 WO
WO 2012149470 Nov 2012 WO
WO 2012158985 Nov 2012 WO
WO 2012158986 Nov 2012 WO
WO 2012164565 Dec 2012 WO
WO 2012170930 Dec 2012 WO
WO 2013012674 Jan 2013 WO
WO 2013013105 Jan 2013 WO
WO 2013039857 Mar 2013 WO
WO 2013039861 Mar 2013 WO
WO 2013045632 Apr 2013 WO
WO 2013047844 Apr 2013 WO
WO 2013066438 May 2013 WO
WO-2013066438 May 2013 WO
WO 2013086441 Jun 2013 WO
WO 2013086444 Jun 2013 WO
WO 2013098244 Jul 2013 WO
WO 2013119602 Aug 2013 WO
WO 2013126794 Aug 2013 WO
WO 2013130824 Sep 2013 WO
WO 2013141680 Sep 2013 WO
WO 2013152359 Oct 2013 WO
WO 2013160230 Oct 2013 WO
WO 2013166315 Nov 2013 WO
WO 2013169398 Nov 2013 WO
WO 2013169802 Nov 2013 WO
WO 2013176772 Nov 2013 WO
WO 2013176915 Nov 2013 WO
WO 2013176916 Nov 2013 WO
WO 2013181440 Dec 2013 WO
WO 2013186754 Dec 2013 WO
WO 2013188037 Dec 2013 WO
WO 2013188522 Dec 2013 WO
WO 2013188638 Dec 2013 WO
WO 2013192278 Dec 2013 WO
WO 2013142378 Jan 2014 WO
WO 2014004336 Jan 2014 WO
WO 2014005042 Jan 2014 WO
WO 2014011237 Jan 2014 WO
WO 2014011901 Jan 2014 WO
WO 2014018423 Jan 2014 WO
WO 2014020608 Feb 2014 WO
WO 2014022120 Feb 2014 WO
WO 2014022702 Feb 2014 WO
WO 2014036219 Mar 2014 WO
WO 2014039513 Mar 2014 WO
WO 2014039523 Mar 2014 WO
WO 2014039585 Mar 2014 WO
WO 2014039684 Mar 2014 WO
WO 2014039692 Mar 2014 WO
WO 2014039702 Mar 2014 WO
WO 2014039872 Mar 2014 WO
WO 2014039970 Mar 2014 WO
WO 2014041327 Mar 2014 WO
WO 2014043143 Mar 2014 WO
WO 2014047103 Mar 2014 WO
WO 2014055782 Apr 2014 WO
WO 2014059173 Apr 2014 WO
WO 2014059255 Apr 2014 WO
WO 2014065596 May 2014 WO
WO 2014066505 May 2014 WO
WO 2014068346 May 2014 WO
WO 2014070887 May 2014 WO
WO 2014071006 May 2014 WO
WO 2014071219 May 2014 WO
WO 2014071235 May 2014 WO
WO 2014072941 May 2014 WO
WO 2014081729 May 2014 WO
WO 2014081730 May 2014 WO
WO 2014081855 May 2014 WO
WO 2014082644 Jun 2014 WO
WO 2014085261 Jun 2014 WO
WO 2014085593 Jun 2014 WO
WO 2014085830 Jun 2014 WO
WO 2014089212 Jun 2014 WO
WO 2014089290 Jun 2014 WO
WO 2014089348 Jun 2014 WO
WO 2014089513 Jun 2014 WO
WO 2014089533 Jun 2014 WO
WO 2014089541 Jun 2014 WO
WO 2014093479 Jun 2014 WO
WO 2014093595 Jun 2014 WO
WO 2014093622 Jun 2014 WO
WO 2014093635 Jun 2014 WO
WO 2014093655 Jun 2014 WO
WO 2014093661 Jun 2014 WO
WO 2014093694 Jun 2014 WO
WO 2014093701 Jun 2014 WO
WO 2014093709 Jun 2014 WO
WO 2014093712 Jun 2014 WO
WO 2014093718 Jun 2014 WO
WO 2014093736 Jun 2014 WO
WO 2014093768 Jun 2014 WO
WO 2014093852 Jun 2014 WO
WO 2014096972 Jun 2014 WO
WO 2014099744 Jun 2014 WO
WO 2014099750 Jun 2014 WO
WO 2014104878 Jul 2014 WO
WO 2014110006 Jul 2014 WO
WO 2014110552 Jul 2014 WO
WO 2014113493 Jul 2014 WO
WO 2014123967 Aug 2014 WO
WO 2014124226 Aug 2014 WO
WO 2014125668 Aug 2014 WO
WO 2014127287 Aug 2014 WO
WO 2014128324 Aug 2014 WO
WO 2014128659 Aug 2014 WO
WO 2014130706 Aug 2014 WO
WO 2014130955 Aug 2014 WO
WO 2014131833 Sep 2014 WO
WO 2014138379 Sep 2014 WO
WO 2014143381 Sep 2014 WO
WO 2014144094 Sep 2014 WO
WO 2014144155 Sep 2014 WO
WO 2014144288 Sep 2014 WO
WO 2014144592 Sep 2014 WO
WO 2014144761 Sep 2014 WO
WO 2014144951 Sep 2014 WO
WO 2014145599 Sep 2014 WO
WO 2014145736 Sep 2014 WO
WO 2014150624 Sep 2014 WO
WO 2014152432 Sep 2014 WO
WO 2014152940 Sep 2014 WO
WO 2014153118 Sep 2014 WO
WO 2014153470 Sep 2014 WO
WO 2014158593 Oct 2014 WO
WO 2014161821 Oct 2014 WO
WO 2014164466 Oct 2014 WO
WO 2014165177 Oct 2014 WO
WO 2014165349 Oct 2014 WO
WO 2014165612 Oct 2014 WO
WO 2014165707 Oct 2014 WO
WO 2014165825 Oct 2014 WO
WO 2014172458 Oct 2014 WO
WO 2014172470 Oct 2014 WO
WO 2014172489 Oct 2014 WO
WO 2014173955 Oct 2014 WO
WO 2014182700 Nov 2014 WO
WO 2014183071 Nov 2014 WO
WO 2014184143 Nov 2014 WO
WO 2014184741 Nov 2014 WO
WO 2014184744 Nov 2014 WO
WO 2014186585 Nov 2014 WO
WO 2014186686 Nov 2014 WO
WO 2014190181 Nov 2014 WO
WO 2014191128 Dec 2014 WO
WO 2014191518 Dec 2014 WO
WO 2014191521 Dec 2014 WO
WO 2014191525 Dec 2014 WO
WO 2014191527 Dec 2014 WO
WO 2014193583 Dec 2014 WO
WO 2014194190 Dec 2014 WO
WO 2014197568 Dec 2014 WO
WO 2014197748 Dec 2014 WO
WO 2014199358 Dec 2014 WO
WO 2014200659 Dec 2014 WO
WO 2014201015 Dec 2014 WO
WO 2014204578 Dec 2014 WO
WO 2014204723 Dec 2014 WO
WO 2014204724 Dec 2014 WO
WO 2014204725 Dec 2014 WO
WO 2014204726 Dec 2014 WO
WO 2014204727 Dec 2014 WO
WO 2014204728 Dec 2014 WO
WO 2014204729 Dec 2014 WO
WO 2014205192 Dec 2014 WO
WO 2014207043 Dec 2014 WO
WO 2015002780 Jan 2015 WO
WO 2015004241 Jan 2015 WO
WO 2015006290 Jan 2015 WO
WO 2015006294 Jan 2015 WO
WO 2015006437 Jan 2015 WO
WO 2015006498 Jan 2015 WO
WO 2015006747 Jan 2015 WO
WO 2015007194 Jan 2015 WO
WO 2015010114 Jan 2015 WO
WO 2015011483 Jan 2015 WO
WO 2015013583 Jan 2015 WO
WO 2015017866 Feb 2015 WO
WO 2015018503 Feb 2015 WO
WO 2015021353 Feb 2015 WO
WO 2015021426 Feb 2015 WO
WO 2015021990 Feb 2015 WO
WO 2015024017 Feb 2015 WO
WO 2015024986 Feb 2015 WO
WO 2015026883 Feb 2015 WO
WO 2015026885 Feb 2015 WO
WO 2015026886 Feb 2015 WO
WO 2015026887 Feb 2015 WO
WO 2015027134 Feb 2015 WO
WO 2015028969 Mar 2015 WO
WO 2015030881 Mar 2015 WO
WO 2015031619 Mar 2015 WO
WO 2015031775 Mar 2015 WO
WO 2015032494 Mar 2015 WO
WO 2015033293 Mar 2015 WO
WO 2015034872 Mar 2015 WO
WO 2015034885 Mar 2015 WO
WO 2015035136 Mar 2015 WO
WO 2015035139 Mar 2015 WO
WO 2015035162 Mar 2015 WO
WO 2015040075 Mar 2015 WO
WO 2015040402 Mar 2015 WO
WO 2015042393 Mar 2015 WO
WO 2015042585 Mar 2015 WO
WO 2015048577 Apr 2015 WO
WO 2015048690 Apr 2015 WO
WO 2015048707 Apr 2015 WO
WO 2015048801 Apr 2015 WO
WO 2015049897 Apr 2015 WO
WO 2015051191 Apr 2015 WO
WO 2015052133 Apr 2015 WO
WO 2015052231 Apr 2015 WO
WO 2015052335 Apr 2015 WO
WO 2015053995 Apr 2015 WO
WO 2015054253 Apr 2015 WO
WO 2015054315 Apr 2015 WO
WO 2015057671 Apr 2015 WO
WO 2015057834 Apr 2015 WO
WO 2015057852 Apr 2015 WO
WO 2015057976 Apr 2015 WO
WO 2015057980 Apr 2015 WO
WO 2015059265 Apr 2015 WO
WO 2015065964 May 2015 WO
WO 2015066119 May 2015 WO
WO 2015066634 May 2015 WO
WO 2015066636 May 2015 WO
WO 2015066637 May 2015 WO
WO 2015066638 May 2015 WO
WO 2015066643 May 2015 WO
WO 2015069682 May 2015 WO
WO 2015070083 May 2015 WO
WO 2015070193 May 2015 WO
WO 2015070212 May 2015 WO
WO 2015071474 May 2015 WO
WO 2015073683 May 2015 WO
WO 2015073867 May 2015 WO
WO 2015073990 May 2015 WO
WO 2015075056 May 2015 WO
WO 2015075154 May 2015 WO
WO 2015075175 May 2015 WO
WO 2015075195 May 2015 WO
WO 2015075557 May 2015 WO
WO 2015077058 May 2015 WO
WO 2015077290 May 2015 WO
WO 2015077318 May 2015 WO
WO 2015079056 Jun 2015 WO
WO 2015079057 Jun 2015 WO
WO 2015086795 Jun 2015 WO
WO 2015086798 Jun 2015 WO
WO 2015088643 Jun 2015 WO
WO 2015089046 Jun 2015 WO
WO 2015089077 Jun 2015 WO
WO 2015089277 Jun 2015 WO
WO 2015089351 Jun 2015 WO
WO 2015089354 Jun 2015 WO
WO 2015089364 Jun 2015 WO
WO 2015089406 Jun 2015 WO
WO 2015089419 Jun 2015 WO
WO 2015089427 Jun 2015 WO
WO 2015089462 Jun 2015 WO
WO 2015089465 Jun 2015 WO
WO 2015089473 Jun 2015 WO
WO 2015089486 Jun 2015 WO
WO 2015095804 Jun 2015 WO
WO 2015099850 Jul 2015 WO
WO 2015100929 Jul 2015 WO
WO 2015103057 Jul 2015 WO
WO 2015103153 Jul 2015 WO
WO 2015105928 Jul 2015 WO
WO 2015108993 Jul 2015 WO
WO 2015109752 Jul 2015 WO
WO 2015110474 Jul 2015 WO
WO 2015112790 Jul 2015 WO
WO 2015112896 Jul 2015 WO
WO 2015113063 Jul 2015 WO
WO 2015114365 Aug 2015 WO
WO 2015115903 Aug 2015 WO
WO 2015116686 Aug 2015 WO
WO 2015116969 Aug 2015 WO
WO 2015117021 Aug 2015 WO
WO 2015117041 Aug 2015 WO
WO 2015117081 Aug 2015 WO
WO 2015118156 Aug 2015 WO
WO 2015119941 Aug 2015 WO
WO 2015121454 Aug 2015 WO
WO 2015122967 Aug 2015 WO
WO 2015123339 Aug 2015 WO
WO 2015124715 Aug 2015 WO
WO 2015124718 Aug 2015 WO
WO 2015126927 Aug 2015 WO
WO 2015127428 Aug 2015 WO
WO 2015127439 Aug 2015 WO
WO 2015129686 Sep 2015 WO
WO 2015131101 Sep 2015 WO
WO 2015133554 Sep 2015 WO
WO 2015134121 Sep 2015 WO
WO 2015134812 Sep 2015 WO
WO 2015136001 Sep 2015 WO
WO 2015138510 Sep 2015 WO
WO 2015138739 Sep 2015 WO
WO 2015138855 Sep 2015 WO
WO 2015138870 Sep 2015 WO
WO 2015139008 Sep 2015 WO
WO 2015139139 Sep 2015 WO
WO 2015143046 Sep 2015 WO
WO 2015143177 Sep 2015 WO
WO 2015145417 Oct 2015 WO
WO 2015148431 Oct 2015 WO
WO 2015148670 Oct 2015 WO
WO 2015148680 Oct 2015 WO
WO 2015148761 Oct 2015 WO
WO 2015148860 Oct 2015 WO
WO 2015148863 Oct 2015 WO
WO 2015153760 Oct 2015 WO
WO 2015153780 Oct 2015 WO
WO 2015153789 Oct 2015 WO
WO 2015153791 Oct 2015 WO
WO 2015153889 Oct 2015 WO
WO 2015153940 Oct 2015 WO
WO 2015155341 Oct 2015 WO
WO 2015155686 Oct 2015 WO
WO 2015157070 Oct 2015 WO
WO 2015157534 Oct 2015 WO
WO 2015159068 Oct 2015 WO
WO 2015159086 Oct 2015 WO
WO 2015159087 Oct 2015 WO
WO 2015160683 Oct 2015 WO
WO 2015161276 Oct 2015 WO
WO 2015163733 Oct 2015 WO
WO 2015164740 Oct 2015 WO
WO 2015164748 Oct 2015 WO
WO 2015165274 Nov 2015 WO
WO 2015165275 Nov 2015 WO
WO 2015165276 Nov 2015 WO
WO 2015166272 Nov 2015 WO
WO 2015167766 Nov 2015 WO
WO 2015167956 Nov 2015 WO
WO 2015168125 Nov 2015 WO
WO 2015168158 Nov 2015 WO
WO 2015168404 Nov 2015 WO
WO 2015168547 Nov 2015 WO
WO 2015168800 Nov 2015 WO
WO 2015171603 Nov 2015 WO
WO 2015171894 Nov 2015 WO
WO 2015171932 Nov 2015 WO
WO 2015172128 Nov 2015 WO
WO 2015173436 Nov 2015 WO
WO 2015175642 Nov 2015 WO
WO 2015179540 Nov 2015 WO
WO 2015183025 Dec 2015 WO
WO 2015183026 Dec 2015 WO
WO 2015183885 Dec 2015 WO
WO 2015184259 Dec 2015 WO
WO 2015184262 Dec 2015 WO
WO 2015184268 Dec 2015 WO
WO 2015188056 Dec 2015 WO
WO 2015188065 Dec 2015 WO
WO 2015188094 Dec 2015 WO
WO 2015188109 Dec 2015 WO
WO 2015188132 Dec 2015 WO
WO 2015188135 Dec 2015 WO
WO 2015188191 Dec 2015 WO
WO 2015189693 Dec 2015 WO
WO 2015191693 Dec 2015 WO
WO 2015191899 Dec 2015 WO
WO 2015191911 Dec 2015 WO
WO 2015193858 Dec 2015 WO
WO 2015195547 Dec 2015 WO
WO 2015195621 Dec 2015 WO
WO 2015195798 Dec 2015 WO
WO 2015198020 Dec 2015 WO
WO 2015200334 Dec 2015 WO
WO 2015200378 Dec 2015 WO
WO 2015200555 Dec 2015 WO
WO 2015200805 Dec 2015 WO
WO 2016001978 Jan 2016 WO
WO 2016004010 Jan 2016 WO
WO 2016004318 Jan 2016 WO
WO 2016007347 Jan 2016 WO
WO 2016007604 Jan 2016 WO
WO 2016007948 Jan 2016 WO
WO 2016011080 Jan 2016 WO
WO 2016011210 Jan 2016 WO
WO 2016011428 Jan 2016 WO
WO 2016012544 Jan 2016 WO
WO 2016012552 Jan 2016 WO
WO 2016014409 Jan 2016 WO
WO 2016014565 Jan 2016 WO
WO 2016014794 Jan 2016 WO
WO 2016014837 Jan 2016 WO
WO 2016016119 Feb 2016 WO
WO 2016016358 Feb 2016 WO
WO 2016019144 Feb 2016 WO
WO 2016020399 Feb 2016 WO
WO 2016021972 Feb 2016 WO
WO 2016021973 Feb 2016 WO
WO 2016022363 Feb 2016 WO
WO 2016022866 Feb 2016 WO
WO 2016022931 Feb 2016 WO
WO 2016025131 Feb 2016 WO
WO 2016025469 Feb 2016 WO
WO 2016025759 Feb 2016 WO
WO 2016026444 Feb 2016 WO
WO 2016028682 Feb 2016 WO
WO 2016028843 Feb 2016 WO
WO 2016028887 Feb 2016 WO
WO 2016033088 Mar 2016 WO
WO 2016033230 Mar 2016 WO
WO 2016033246 Mar 2016 WO
WO 2016033298 Mar 2016 WO
WO 2016035044 Mar 2016 WO
WO 2016036754 Mar 2016 WO
WO 2016037157 Mar 2016 WO
WO 2016040030 Mar 2016 WO
WO 2016040594 Mar 2016 WO
WO 2016044182 Mar 2016 WO
WO 2016044416 Mar 2016 WO
WO 2016046635 Mar 2016 WO
WO 2016049024 Mar 2016 WO
WO 2016049163 Mar 2016 WO
WO 2016049230 Mar 2016 WO
WO 2016049251 Mar 2016 WO
WO 2016049258 Mar 2016 WO
WO 2016053397 Apr 2016 WO
WO 2016054326 Apr 2016 WO
WO 2016057061 Apr 2016 WO
WO 2016057821 Apr 2016 WO
WO 2016057835 Apr 2016 WO
WO 2016057850 Apr 2016 WO
WO 2016057951 Apr 2016 WO
WO 2016057961 Apr 2016 WO
WO 2016061073 Apr 2016 WO
WO 2016061374 Apr 2016 WO
WO 2016061481 Apr 2016 WO
WO 2016061523 Apr 2016 WO
WO 2016064894 Apr 2016 WO
WO 2016065364 Apr 2016 WO
WO 2016069282 May 2016 WO
WO 2016069283 May 2016 WO
WO 2016069591 May 2016 WO
WO 2016069774 May 2016 WO
WO 2016069910 May 2016 WO
WO 2016069912 May 2016 WO
WO 2016070037 May 2016 WO
WO 2016070070 May 2016 WO
WO 2016070129 May 2016 WO
WO 2016072399 May 2016 WO
WO 2016072936 May 2016 WO
WO 2016073433 May 2016 WO
WO 2016073559 May 2016 WO
WO 2016073990 May 2016 WO
WO 2016075662 May 2016 WO
WO 2016076672 May 2016 WO
WO 2016077273 May 2016 WO
WO 2016077350 May 2016 WO
WO 2016080097 May 2016 WO
WO 2016080795 May 2016 WO
WO 2016081923 May 2016 WO
WO 2016081924 May 2016 WO
WO 2016082135 Jun 2016 WO
WO 2016083811 Jun 2016 WO
WO 2016084084 Jun 2016 WO
WO 2016084088 Jun 2016 WO
WO 2016086177 Jun 2016 WO
WO 2016089433 Jun 2016 WO
WO 2016089866 Jun 2016 WO
WO 2016089883 Jun 2016 WO
WO 2016090385 Jun 2016 WO
WO 2016094679 Jun 2016 WO
WO 2016094845 Jun 2016 WO
WO 2016094867 Jun 2016 WO
WO 2016094872 Jun 2016 WO
WO 2016094874 Jun 2016 WO
WO 2016094880 Jun 2016 WO
WO 2016094888 Jun 2016 WO
WO 2016097212 Jun 2016 WO
WO 2016097231 Jun 2016 WO
WO 2016097751 Jun 2016 WO
WO 2016099887 Jun 2016 WO
WO 2016100272 Jun 2016 WO
WO 2016100389 Jun 2016 WO
WO 2016100568 Jun 2016 WO
WO 2016100571 Jun 2016 WO
WO 2016100951 Jun 2016 WO
WO 2016100955 Jun 2016 WO
WO 2016100974 Jun 2016 WO
WO 2016103233 Jun 2016 WO
WO 2016104716 Jun 2016 WO
WO 2016106236 Jun 2016 WO
WO 2016106239 Jun 2016 WO
WO 2016106244 Jun 2016 WO
WO 2016106338 Jun 2016 WO
WO 2016108926 Jul 2016 WO
WO 2016109255 Jul 2016 WO
WO 2016109840 Jul 2016 WO
WO 2016110214 Jul 2016 WO
WO 2016110453 Jul 2016 WO
WO 2016110511 Jul 2016 WO
WO 2016110512 Jul 2016 WO
WO 2016111546 Jul 2016 WO
WO 2016112242 Jul 2016 WO
WO 2016112351 Jul 2016 WO
WO 2016112963 Jul 2016 WO
WO 2016113357 Jul 2016 WO
WO 2016114972 Jul 2016 WO
WO 2016115179 Jul 2016 WO
WO 2016115326 Jul 2016 WO
WO 2016115355 Jul 2016 WO
WO 2016116032 Jul 2016 WO
WO 2016120480 Aug 2016 WO
WO 2016123071 Aug 2016 WO
WO 2016123230 Aug 2016 WO
WO 2016123243 Aug 2016 WO
WO 2016123578 Aug 2016 WO
WO 2016126747 Aug 2016 WO
WO 2016130600 Aug 2016 WO
WO 2016130697 Aug 2016 WO
WO 2016131009 Aug 2016 WO
WO 2016132122 Aug 2016 WO
WO 2016133165 Aug 2016 WO
WO 2016135507 Sep 2016 WO
WO 2016135557 Sep 2016 WO
WO 2016135558 Sep 2016 WO
WO 2016135559 Sep 2016 WO
WO 2016137774 Sep 2016 WO
WO 2016137949 Sep 2016 WO
WO 2016141224 Sep 2016 WO
WO 2016141893 Sep 2016 WO
WO 2016142719 Sep 2016 WO
WO 2016145150 Sep 2016 WO
WO 2016148994 Sep 2016 WO
WO 2016149484 Sep 2016 WO
WO 2016149547 Sep 2016 WO
WO 2016150336 Sep 2016 WO
WO 2016150855 Sep 2016 WO
WO 2016154016 Sep 2016 WO
WO 2016154579 Sep 2016 WO
WO 2016154596 Sep 2016 WO
WO 2016155482 Oct 2016 WO
WO 2016161004 Oct 2016 WO
WO 2016161207 Oct 2016 WO
WO 2016161260 Oct 2016 WO
WO 2016161380 Oct 2016 WO
WO 2016161446 Oct 2016 WO
WO 2016164356 Oct 2016 WO
WO 2016164797 Oct 2016 WO
WO 2016166340 Oct 2016 WO
WO 2016167300 Oct 2016 WO
WO 2016168631 Oct 2016 WO
WO 2016170484 Oct 2016 WO
WO 2016172359 Oct 2016 WO
WO 2016172727 Oct 2016 WO
WO 2016174056 Nov 2016 WO
WO 2016174151 Nov 2016 WO
WO 2016174250 Nov 2016 WO
WO 2016176191 Nov 2016 WO
WO 2016176404 Nov 2016 WO
WO 2016176690 Nov 2016 WO
WO 2016177682 Nov 2016 WO
WO 2016178207 Nov 2016 WO
WO 2016179038 Nov 2016 WO
WO 2016179112 Nov 2016 WO
WO 2016181357 Nov 2016 WO
WO 2016182893 Nov 2016 WO
WO 2016182917 Nov 2016 WO
WO 2016182959 Nov 2016 WO
WO 2016183236 Nov 2016 WO
WO 2016183298 Nov 2016 WO
WO 2016183345 Nov 2016 WO
WO 2016183402 Nov 2016 WO
WO 2016183438 Nov 2016 WO
WO 2016183448 Nov 2016 WO
WO 2016184955 Nov 2016 WO
WO 2016184989 Nov 2016 WO
WO 2016185411 Nov 2016 WO
WO 2016186745 Nov 2016 WO
WO 2016186772 Nov 2016 WO
WO 2016186946 Nov 2016 WO
WO 2016186953 Nov 2016 WO
WO 2016187717 Dec 2016 WO
WO 2016187904 Dec 2016 WO
WO 2016191684 Dec 2016 WO
WO 2016191869 Dec 2016 WO
WO 2016196273 Dec 2016 WO
WO 2016196282 Dec 2016 WO
WO 2016196308 Dec 2016 WO
WO 2016196361 Dec 2016 WO
WO 2016196499 Dec 2016 WO
WO 2016196539 Dec 2016 WO
WO 2016196655 Dec 2016 WO
WO 2016196805 Dec 2016 WO
WO 2016196887 Dec 2016 WO
WO 2016197132 Dec 2016 WO
WO 2016197133 Dec 2016 WO
WO 2016197354 Dec 2016 WO
WO 2016197355 Dec 2016 WO
WO 2016197356 Dec 2016 WO
WO 2016197357 Dec 2016 WO
WO 2016197358 Dec 2016 WO
WO 2016197359 Dec 2016 WO
WO 2016197360 Dec 2016 WO
WO 2016197361 Dec 2016 WO
WO 2016197362 Dec 2016 WO
WO 2016198361 Dec 2016 WO
WO 2016198500 Dec 2016 WO
WO 2016200263 Dec 2016 WO
WO 2016201047 Dec 2016 WO
WO 2016201138 Dec 2016 WO
WO 2016201152 Dec 2016 WO
WO 2016201153 Dec 2016 WO
WO 2016201155 Dec 2016 WO
WO 2016205276 Dec 2016 WO
WO 2016205613 Dec 2016 WO
WO 2016205623 Dec 2016 WO
WO 2016205680 Dec 2016 WO
WO 2016205688 Dec 2016 WO
WO 2016205703 Dec 2016 WO
WO 2016205711 Dec 2016 WO
WO 2016205728 Dec 2016 WO
WO 2016205745 Dec 2016 WO
WO 2016205749 Dec 2016 WO
WO 2016205759 Dec 2016 WO
WO 2016205764 Dec 2016 WO
WO 2017001572 Jan 2017 WO
WO 2017001988 Jan 2017 WO
WO 2017004261 Jan 2017 WO
WO 2017004279 Jan 2017 WO
WO 2017004616 Jan 2017 WO
WO 2017005807 Jan 2017 WO
WO 2017009399 Jan 2017 WO
WO 2017010556 Jan 2017 WO
WO 2017011519 Jan 2017 WO
WO 2017011721 Jan 2017 WO
WO 2017011804 Jan 2017 WO
WO 2017015015 Jan 2017 WO
WO 2017015101 Jan 2017 WO
WO 2017015545 Jan 2017 WO
WO 2017015567 Jan 2017 WO
WO 2017015637 Jan 2017 WO
WO 2017017016 Feb 2017 WO
WO 2017019867 Feb 2017 WO
WO 2017019895 Feb 2017 WO
WO 2017023803 Feb 2017 WO
WO 2017023974 Feb 2017 WO
WO 2017024047 Feb 2017 WO
WO 2017024319 Feb 2017 WO
WO 2017024343 Feb 2017 WO
WO 2017024602 Feb 2017 WO
WO 2017025323 Feb 2017 WO
WO 2017027423 Feb 2017 WO
WO 2017028768 Feb 2017 WO
WO 2017029664 Feb 2017 WO
WO 2017031360 Feb 2017 WO
WO 2017031483 Feb 2017 WO
WO 2017035416 Mar 2017 WO
WO 2017040348 Mar 2017 WO
WO 2017040511 Mar 2017 WO
WO 2017040709 Mar 2017 WO
WO 2017040786 Mar 2017 WO
WO 2017040793 Mar 2017 WO
WO 2017040813 Mar 2017 WO
WO 2017043573 Mar 2017 WO
WO 2017043656 Mar 2017 WO
WO 2017044419 Mar 2017 WO
WO 2017044776 Mar 2017 WO
WO 2017044857 Mar 2017 WO
WO 2017049129 Mar 2017 WO
WO 2017050963 Mar 2017 WO
WO 2017053312 Mar 2017 WO
WO 2017053431 Mar 2017 WO
WO 2017053713 Mar 2017 WO
WO 2017053729 Mar 2017 WO
WO 2017053753 Mar 2017 WO
WO 2017053762 Mar 2017 WO
WO 2017053879 Mar 2017 WO
WO 2017054721 Apr 2017 WO
WO 2017058658 Apr 2017 WO
WO 2017059241 Apr 2017 WO
WO 2017062605 Apr 2017 WO
WO 2017062723 Apr 2017 WO
WO 2017062754 Apr 2017 WO
WO 2017062855 Apr 2017 WO
WO 2017062886 Apr 2017 WO
WO 2017062983 Apr 2017 WO
WO 2017064439 Apr 2017 WO
WO 2017064546 Apr 2017 WO
WO 2017064566 Apr 2017 WO
WO 2017066175 Apr 2017 WO
WO 2017066497 Apr 2017 WO
WO 2017066588 Apr 2017 WO
WO 2017066707 Apr 2017 WO
WO 2017068077 Apr 2017 WO
WO 2017068377 Apr 2017 WO
WO 2017069829 Apr 2017 WO
WO 2017070029 Apr 2017 WO
WO 2017070032 Apr 2017 WO
WO 2017070169 Apr 2017 WO
WO 2017070284 Apr 2017 WO
WO 2017070598 Apr 2017 WO
WO 2017070605 Apr 2017 WO
WO 2017070632 Apr 2017 WO
WO 2017070633 Apr 2017 WO
WO 2017072590 May 2017 WO
WO 2017074526 May 2017 WO
WO 2017074962 May 2017 WO
WO 2017075261 May 2017 WO
WO 2017075335 May 2017 WO
WO 2017075475 May 2017 WO
WO 2017077135 May 2017 WO
WO 2017077329 May 2017 WO
WO 2017078751 May 2017 WO
WO 2017079400 May 2017 WO
WO 2017079428 May 2017 WO
WO 2017079673 May 2017 WO
WO 2017079724 May 2017 WO
WO 2017081097 May 2017 WO
WO 2017081288 May 2017 WO
WO 2017083368 May 2017 WO
WO 2017083722 May 2017 WO
WO 2017083766 May 2017 WO
WO 2017087395 May 2017 WO
WO 2017090724 Jun 2017 WO
WO 2017091510 Jun 2017 WO
WO 2017091630 Jun 2017 WO
WO 2017092201 Jun 2017 WO
WO 2017093370 Jun 2017 WO
WO 2017095111 Jun 2017 WO
WO 2017096041 Jun 2017 WO
WO 2017096237 Jun 2017 WO
WO 2017100158 Jun 2017 WO
WO 2017100431 Jun 2017 WO
WO 2017104404 Jun 2017 WO
WO 2017105251 Jun 2017 WO
WO 2017105350 Jun 2017 WO
WO 2017105991 Jun 2017 WO
WO 2017106414 Jun 2017 WO
WO 2017106528 Jun 2017 WO
WO 2017106537 Jun 2017 WO
WO 2017106569 Jun 2017 WO
WO 2017106616 Jun 2017 WO
WO 2017106657 Jun 2017 WO
WO 2017106767 Jun 2017 WO
WO 2017109134 Jun 2017 WO
WO 2017109757 Jun 2017 WO
WO 2017112620 Jun 2017 WO
WO 2017115268 Jul 2017 WO
WO 2017117395 Jul 2017 WO
WO 2017118598 Jul 2017 WO
WO 2017118720 Jul 2017 WO
WO 2017123609 Jul 2017 WO
WO 2017123910 Jul 2017 WO
WO 2017124086 Jul 2017 WO
WO 2017124100 Jul 2017 WO
WO 2017124652 Jul 2017 WO
WO 2017126987 Jul 2017 WO
WO 2017127807 Jul 2017 WO
WO 2017131237 Aug 2017 WO
WO 2017132112 Aug 2017 WO
WO 2017132580 Aug 2017 WO
WO 2017136520 Aug 2017 WO
WO 2017136629 Aug 2017 WO
WO 2017136794 Aug 2017 WO
WO 2017139264 Aug 2017 WO
WO 2017139505 Aug 2017 WO
WO 2017141173 Aug 2017 WO
WO 2017142835 Aug 2017 WO
WO 2017142999 Aug 2017 WO
WO 2017143042 Aug 2017 WO
WO 2017147278 Aug 2017 WO
WO 2017147432 Aug 2017 WO
WO 2017147446 Aug 2017 WO
WO 2017147555 Aug 2017 WO
WO 2017151444 Sep 2017 WO
WO 2017152015 Sep 2017 WO
WO 2017155717 Sep 2017 WO
WO 2017157422 Sep 2017 WO
WO 2017158153 Sep 2017 WO
WO 2017160689 Sep 2017 WO
WO 2017160752 Sep 2017 WO
WO 2017160890 Sep 2017 WO
WO 2017161068 Sep 2017 WO
WO 2017165826 Sep 2017 WO
WO 2017165862 Sep 2017 WO
WO 2017172644 Oct 2017 WO
WO 2017172645 Oct 2017 WO
WO 2017172860 Oct 2017 WO
WO 2017172860 Oct 2017 WO
WO 2017173004 Oct 2017 WO
WO 2017173054 Oct 2017 WO
WO 2017173092 Oct 2017 WO
WO 2017174329 Oct 2017 WO
WO 2017176529 Oct 2017 WO
WO 2017176806 Oct 2017 WO
WO 2017178590 Oct 2017 WO
WO 2017180694 Oct 2017 WO
WO 2017180711 Oct 2017 WO
WO 2017180915 Oct 2017 WO
WO 2017180926 Oct 2017 WO
WO 2017181107 Oct 2017 WO
WO 2017181735 Oct 2017 WO
WO 2017182468 Oct 2017 WO
WO 2017184334 Oct 2017 WO
WO 2017184768 Oct 2017 WO
WO 2017184786 Oct 2017 WO
WO 2017186550 Nov 2017 WO
WO 2017189308 Nov 2017 WO
WO 2017189336 Nov 2017 WO
WO 2017190257 Nov 2017 WO
WO 2017190664 Nov 2017 WO
WO 2017191210 Nov 2017 WO
WO 2017192172 Nov 2017 WO
WO 2017192512 Nov 2017 WO
WO 2017192544 Nov 2017 WO
WO 2017192573 Nov 2017 WO
WO 2017193029 Nov 2017 WO
WO 2017193053 Nov 2017 WO
WO 2017196768 Nov 2017 WO
WO 2017197038 Nov 2017 WO
WO 2017197238 Nov 2017 WO
WO 2017197301 Nov 2017 WO
WO 2017201476 Nov 2017 WO
WO 2017205290 Nov 2017 WO
WO 2017205423 Nov 2017 WO
WO 2017207589 Dec 2017 WO
WO 2017208247 Dec 2017 WO
WO 2017209809 Dec 2017 WO
WO 2017213896 Dec 2017 WO
WO 2017213898 Dec 2017 WO
WO 2017214460 Dec 2017 WO
WO 2017216392 Dec 2017 WO
WO 2017216771 Dec 2017 WO
WO 2017218185 Dec 2017 WO
WO 2017219027 Dec 2017 WO
WO 2017219033 Dec 2017 WO
WO 2017220751 Dec 2017 WO
WO 2017222370 Dec 2017 WO
WO 2017222773 Dec 2017 WO
WO 2017222834 Dec 2017 WO
WO 2017223107 Dec 2017 WO
WO 2017223330 Dec 2017 WO
WO 2018000657 Jan 2018 WO
WO 2018002719 Jan 2018 WO
WO 2018005117 Jan 2018 WO
WO 2018005289 Jan 2018 WO
WO 2018005691 Jan 2018 WO
WO 2018005782 Jan 2018 WO
WO 2018005873 Jan 2018 WO
WO 201806693 Jan 2018 WO
WO 2018009520 Jan 2018 WO
WO 2018009562 Jan 2018 WO
WO 2018009822 Jan 2018 WO
WO 2018013821 Jan 2018 WO
WO 2018013990 Jan 2018 WO
WO 2018014384 Jan 2018 WO
WO 2018015444 Jan 2018 WO
WO 2018015936 Jan 2018 WO
WO 2018017754 Jan 2018 WO
WO 2018018979 Feb 2018 WO
WO 2018020248 Feb 2018 WO
WO 2018022480 Feb 2018 WO
WO 2018022634 Feb 2018 WO
WO 2018025206 Feb 2018 WO
WO 2018026723 Feb 2018 WO
WO 2018026976 Feb 2018 WO
WO 2018027078 Feb 2018 WO
WO 2018030608 Feb 2018 WO
WO 2018031683 Feb 2018 WO
WO 2018035250 Feb 2018 WO
WO 2018035300 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO 2018035503 Feb 2018 WO
WO 2018039145 Mar 2018 WO
WO 2018039438 Mar 2018 WO
WO 2018039440 Mar 2018 WO
WO 2018039448 Mar 2018 WO
WO 2018045630 Mar 2018 WO
WO 2018048827 Mar 2018 WO
WO 2018049168 Mar 2018 WO
WO 2018051347 Mar 2018 WO
WO 2018058064 Mar 2018 WO
WO 2018062866 Apr 2018 WO
WO 2018064352 Apr 2018 WO
WO 2018064371 Apr 2018 WO
WO 2018064516 Apr 2018 WO
WO 2018067546 Apr 2018 WO
WO 2018068053 Apr 2018 WO
WO 2018069474 Apr 2018 WO
WO 2018071623 Apr 2018 WO
WO 2018071663 Apr 2018 WO
WO 2018071868 Apr 2018 WO
WO 2018071892 Apr 2018 WO
WO 2018074979 Apr 2018 WO
WO 2018079134 May 2018 WO
WO 2018080573 May 2018 WO
WO 2018081504 May 2018 WO
WO 2018081535 May 2018 WO
WO 2018081728 May 2018 WO
WO 2018083128 May 2018 WO
WO 2018083606 May 2018 WO
WO 2018085288 May 2018 WO
WO 2018085414 May 2018 WO
WO 2018086623 May 2018 WO
WO 2018093990 May 2018 WO
WO 2018098383 May 2018 WO
WO 2018098480 May 2018 WO
WO 2018098587 Jun 2018 WO
WO 2018099256 Jun 2018 WO
WO 2018103686 Jun 2018 WO
WO 2018106268 Jun 2018 WO
WO 2018107028 Jun 2018 WO
WO 2018107103 Jun 2018 WO
WO 2018107129 Jun 2018 WO
WO 2018108272 Jun 2018 WO
WO 2018109101 Jun 2018 WO
WO 2018111946 Jun 2018 WO
WO 2018111947 Jun 2018 WO
WO 2018112336 Jun 2018 WO
WO 2018112446 Jun 2018 WO
WO 2018119354 Jun 2018 WO
WO 2018119359 Jun 2018 WO
WO 2018130830 Jul 2018 WO
WO 2018135838 Jul 2018 WO
WO 2018136396 Jul 2018 WO
WO 2018138385 Aug 2018 WO
WO 2018148246 Aug 2018 WO
WO 2018148256 Aug 2018 WO
WO 2018148647 Aug 2018 WO
WO 2018149418 Aug 2018 WO
WO 2018149888 Aug 2018 WO
WO 2018152418 Aug 2018 WO
WO 2018154380 Aug 2018 WO
WO 2018154387 Aug 2018 WO
WO 2018154412 Aug 2018 WO
WO 2018154413 Aug 2018 WO
WO 2018154418 Aug 2018 WO
WO 2018154439 Aug 2018 WO
WO 2018154459 Aug 2018 WO
WO 2018154462 Aug 2018 WO
WO 2018156372 Aug 2018 WO
WO 2018156824 Aug 2018 WO
WO 2018161009 Sep 2018 WO
WO 2018165504 Sep 2018 WO
WO 2018165629 Sep 2018 WO
WO 2018170015 Sep 2018 WO
WO 2018170340 Sep 2018 WO
WO 2018175502 Sep 2018 WO
WO 2018176009 Sep 2018 WO
WO 2018177351 Oct 2018 WO
WO 2018179578 Oct 2018 WO
WO 2018183403 Oct 2018 WO
WO 2018195545 Oct 2018 WO
WO 2018195555 Oct 2018 WO
WO 2018197020 Nov 2018 WO
WO 2018197495 Nov 2018 WO
WO 2018202800 Nov 2018 WO
WO 2018204493 Nov 2018 WO
WO 2018208755 Nov 2018 WO
WO 2018208998 Nov 2018 WO
WO 2018209158 Nov 2018 WO
WO 2018209320 Nov 2018 WO
WO 2018213708 Nov 2018 WO
WO 2018213726 Nov 2018 WO
WO 2018213771 Nov 2018 WO
WO 2018213791 Nov 2018 WO
WO 2018217852 Nov 2018 WO
WO 2018217981 Nov 2018 WO
WO 2018218166 Nov 2018 WO
WO 2018218188 Nov 2018 WO
WO 2018218206 Nov 2018 WO
WO 2019005884 Jan 2019 WO
WO 2019005886 Jan 2019 WO
WO 2019010384 Jan 2019 WO
WO 2019023680 Jan 2019 WO
WO 2019079347 Apr 2019 WO
WO 2019084062 May 2019 WO
WO 2019118949 Jun 2019 WO
WO 2019139645 Jul 2019 WO
WO 2019161251 Aug 2019 WO
WO 2019168953 Sep 2019 WO
WO 2019226953 Nov 2019 WO
WO 2019241649 Dec 2019 WO
WO 2020014261 Jan 2020 WO
WO 2020028555 Feb 2020 WO
WO 2020041751 Feb 2020 WO
WO 2020051360 Mar 2020 WO
WO 2020086908 Apr 2020 WO
WO 2020092453 May 2020 WO
WO 2020102659 May 2020 WO
WO 2020154500 Jul 2020 WO
WO 2020180975 Sep 2020 WO
WO 2020181178 Sep 2020 WO
WO 2020181180 Sep 2020 WO
WO 2020181193 Sep 2020 WO
WO 2020181195 Sep 2020 WO
WO 2020181202 Sep 2020 WO
WO 2020191153 Sep 2020 WO
WO 2020191171 Sep 2020 WO
WO 2020191233 Sep 2020 WO
WO 2020191234 Sep 2020 WO
WO 2020191239 Sep 2020 WO
WO 2020191241 Sep 2020 WO
WO 2020191242 Sep 2020 WO
WO 2020191243 Sep 2020 WO
WO 2020191245 Sep 2020 WO
WO 2020191246 Sep 2020 WO
WO 2020191248 Sep 2020 WO
WO 2020191249 Sep 2020 WO
WO 2020210751 Oct 2020 WO
WO 2020214842 Oct 2020 WO
WO 2020236982 Nov 2020 WO
WO 2021025750 Feb 2021 WO
WO 2021030666 Feb 2021 WO
WO 2021072328 Apr 2021 WO
WO 2021108717 Jun 2021 WO
WO 2021138469 Jul 2021 WO
WO 2021155065 Aug 2021 WO
WO 2021158921 Aug 2021 WO
WO 2021158995 Aug 2021 WO
WO 2021158999 Aug 2021 WO
WO 2021222318 Nov 2021 WO
WO 2021226558 Nov 2021 WO
Non-Patent Literature Citations (1734)
Entry
U.S. Appl. No. 61/874,746, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/874,682, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al.
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al.
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al.
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al.
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al.
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al.
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al.
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al.
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al.
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al.
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages.
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages.
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573.
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi.
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu.
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo.
Advisory Action and Applicant Initiated Interview Summary, dated Jul. 30, 2015, in connection with U.S. Appl. No. 14/320,413.
Akopian et al., Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8688-91. Epub Jul. 1, 2003.
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014.
Badran et al., In vivo continuous directed evolution. Curr Opin Chem Biol. Feb. 2015;24:1-10. doi: 10.1016/j.cbpa.2014.09.040. Epub Nov. 7, 2014.
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76.
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12.
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357.
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96.
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012.
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/.
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review.
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006.
Bibikova et al., Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. Jan. 2001;21(1):289-97.
Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75.
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017.
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16.
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5.
Boch et al., Breaking the code of DNA binding specificity of TAL-type III effectors. Science. Dec. 11, 2009;326(5959):1509-12. Doi: 10.1126/science.1178811.
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767.
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20.
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006.
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014.
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61.
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html.
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12.
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019.
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5.
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010.
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401.
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52.
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16.
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9.
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31.
Bulyk et al., Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci U S A. Jun. 19, 2001;98(13):7158-63. Epub Jun. 12, 2001.
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX.
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240.
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012.
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380.
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65.
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8.
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5.
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008.
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171.
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review.
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011.
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017.
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016.
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a.
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint].
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages.
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195.
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016.
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67.
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013.
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013.
Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012.
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8.
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006.
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013.
Cong et al., Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun. Jul. 24, 2012;3:968. doi: 10.1038/ncomms1962.
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Cornu et al., DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. Feb. 2008;16(2):352-8. Epub Nov. 20, 2007.
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917.
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012.
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793.
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013.
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152.
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010.
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010.
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014.
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52.
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012.
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143.
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015.
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27.
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43.
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012.
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014.
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437.
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015.
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096.
Doyon et al., Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. Jan. 2011;8(1):74-9. Doi: 10.1038/nmeth.1539. Epub Dec. 5, 2010.
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008.
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review.
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard.
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6.
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3.
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6.
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014;111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014.
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014.
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6.
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013.
Extended European Search Report for EP 15830407.1, dated Mar. 2, 2018.
Extended European Search Report for EP 19181479.7, dated Oct. 31, 2019.
Extended European Search Report for EP 19187331.4, dated Mar. 25, 2020.
Extended European Search Report for EP18199195.1, dated Feb. 12, 2019.
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9.
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560.
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93.
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834.
Ferretti et al., Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4658-63.
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633.
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information.
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013.
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4.
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013.
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44.
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512.
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011.
Gabriel et al., An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. Aug. 7, 2011;29(9):816-23. doi: 10.1038/nbt.1948.
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46.
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014.
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013.
Gaj et al., Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A. Jan. 11, 2011;108(2):498-503. doi: 10.1073/pnas.1014214108. Epub Dec. 27, 2010.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013.
Gao et al., Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. Dec. 2012;22(12):1716-20. doi: 10.1038/cr.2012.156. Epub Nov. 13, 2012.
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016.
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005.
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523.
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included.
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013.
GENBANK Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages.
GENBANK Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages.
GENBANK Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages.
GENBANK Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page.
GENBANK Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages.
GENBANK Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages.
GENBANK Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages.
GENBANK Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages.
GENBANK Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages.
GENBANK Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages.
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010.
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011.
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51.
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013.
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014.
Gordley et al., Evolution of programmable zinc finger-recombinases with activity in human cells. J Mol Biol. Mar. 30, 2007;367(3):802-13. Epub Jan. 12, 2007.
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014.
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.
Guo et al., Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol. Jul. 2, 2010;400(1):96-107. doi: 10.1016/j.jmb.2010.04.060. Epub May 4, 2010.
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004.
Guo et al., Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. Sep. 4, 1997;389(6646):40-6.
Gupta et al., Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res. Jan. 2011;39(1):381-92. doi: 10.1093/nar/gkq787. Epub Sep. 14, 2010.
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2.
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8.
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna.
Händel et al., Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. Jan. 2009;17(1):104-11. doi: 10.1038/mt.2008.233. Epub Nov. 11, 2008.
Harrington et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839?842. doi:10.1136/bmj.329.7470.839.
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009.
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002.
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006.
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016.
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008.
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review.
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7.
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
Hirano et al., Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol. Oct. 2011;92(2):227-39. doi: 10.1007/s00253-011-3519-5. Epub Aug. 7, 2011. Review.
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009.
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927.
Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775.
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555.
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007.
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013.
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60.
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12.
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013.
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009.
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939.
Hubbard et al., Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat Methods. Oct. 2015;12(10):939-42. doi: 10.1038/nmeth.3515. Epub Aug. 10, 2015.
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112.
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003.
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review.
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
International Preliminary Report on Patentability for PCT/US2014/048390, dated Mar. 7, 2019.
International Preliminary Report on Patentability for PCT/US2016/058344, dated May 3, 2018.
International Preliminary Report on Patentability for PCT/US2017/068114, dated Jul. 4, 2019.
International Preliminary Report on Patentability for PCT/US2017/068105, dated Jul. 4, 2019.
International Preliminary Report on Patentability for PCT/US2017/056671, dated Apr. 25, 2019.
International Preliminary Report on Patentability for PCT/US2017/046144, dated Feb. 21, 2019.
International Preliminary Report on Patentability for PCT/US2017/045381, dated Feb. 14, 2019.
International Preliminary Report on Patentability for PCT/US2012/047778, dated Feb. 6, 2014.
International Preliminary Report on Patentability for PCT/US2014/070038, dated Jun. 23, 2016.
International Preliminary Report on Patentability for PCT/US2014/054291, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/054247, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/052231, dated Mar. 3, 2016.
International Preliminary Report on patentability for PCT/US2014/050283, dated Feb. 18, 2016.
International Preliminary Report on Patentability for PCT/US2015/058479, dated May 11, 2017.
International Preliminary Report on Patentability for PCT/US2015/042770, dated Dec. 19, 2016.
International Preliminary Report on Patentability for PCT/US2018/044242, dated Feb. 6, 2020.
International Preliminary Report on Patentability for PCT/US2018/032460, dated Nov. 21, 2019.
International Preliminary Report on Patentability for PCT/US2018/024208, dated Oct. 3, 2019.
International Preliminary Report on Patentability for PCT/US2018/021880, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/021878, dated Sep. 19, 2019.
International Preliminary Report on Patentability for PCT/US2018/021664, dated Sep. 19, 2019.
International Preliminary Report on Patentability or PCT/US2014/054252, dated Mar. 17, 2016.
International Prelminary Report on Patentability for PCT/US2018/048969, dated Mar. 12, 2020.
International Search Report and Written Opinion for PCT/US2012/047778, dated May 30, 2013.
International Search Report and Written Opinion for PCT/US2014/054291, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/054252, dated Mar. 5, 2015.
International Search Report and Written Opinion for PCT/US2014/054247, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/052231, dated Jan. 30, 2015. (Corrected Version).
International Search Report and Written Opinion for PCT/US2014/052231, dated Dec. 4, 2014.
International Search Report and Written Opinion for PCT/US2014/050283, dated Nov. 6, 2014.
International Search Report and Written Opinion for PCT/US2014/070038, dated Apr. 14, 2015.
International Search Report and Written Opinion for PCT/US2015/042770, dated Feb. 23, 2016.
International Search Report and Written Opinion for PCT/US2015/058479, dated Feb. 11, 2016.
International Search Report and Written Opinion for PCT/US2016/044546, dated Dec. 28, 2016.
International Search Report and Written Opinion for PCT/US2016/058344, dated Apr. 20, 2017.
International Search Report and Written Opinion for PCT/US2017/046144, dated Oct. 10, 2017.
International Search Report and Written Opinion for PCT/US2017/045381, dated Oct. 26, 2017.
International Search Report and Written Opinion for PCT/US2017/056671, dated Feb. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/068114, dated Mar. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/068105, dated Apr. 4, 2018.
International Search Report and Written Opinion for PCT/US2017/48390, dated Jan. 9, 2018.
International Search Report and Written Opinion for PCT/US2018/044242, dated Nov. 21, 2019.
International Search Report for PCT/US2013/032589, dated Jul. 26, 2013.
International Search Report for PCT/US2018/021664, dated Jun. 21, 2018.
International Search Report for PCT/US2018/021878, dated Aug. 20, 2018.
International Search Report for PCT/US2018/021880, dated Jun. 20, 2018.
International Search Report for PCT/US2018/024208, dated Aug. 23, 2018.
International Search Report for PCT/US2018/025887, dated Jun. 21, 2018.
International Search Report for PCT/US2018/032460, dated Jul. 11, 2018.
International Search Report for PCT/US2018/048969, dated Jul. 31, 2019.
Invitation to Pay Additional Fees for PCT/US2014/054291, dated Dec. 18, 2014.
Invitation to Pay Additional Fees for PCT/US2016/058344, dated Mar. 1, 2017.
Invitation to Pay Additional Fees for PCT/US2017/056671, dated Dec. 21, 2017.
Invitation to Pay Additional Fees for PCT/US2017/48390, dated Nov. 7, 2017.
Invitation to Pay Additional Fees for PCT/US2018/021878, dated Jun. 8, 2018.
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33.
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8.
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013.
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452.
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016.
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471.
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014.
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011.
Joung et al.,TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012.
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6.
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9.
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009.
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53.
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review.
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016.
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62.
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11.
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002.
Kilbride et al., Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol. Jan. 13, 2006;355(2):185-95. Epub Nov. 9, 2005.
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013.
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017.
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017.
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014.
Kim et al., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. Feb. 6, 1996;93(3):1156-60.
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017.
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013.
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009.
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013.
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013.
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015.
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016.
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012.
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9.
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37.
Klug et al., Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol. 1987;52:473-82.
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017.
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010.
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102.
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004.
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044.
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017.
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946.
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008.
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x.
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9.
Krishna et al., Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. Jan. 15, 2003;31(2):532-50.
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9.
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017.
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017.
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014.
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439.
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33.
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013.
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8.
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52.
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773.
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52.
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753.
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97.
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016.
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012.
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379.
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018.
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33.
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016.
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print].
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011.
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654.
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010.
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024.
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20.
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104.
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766.
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review.
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22.
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013.
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007.
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLOS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30.
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006.
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589.
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007.
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9.
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016.
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007.
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19.
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y.
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi:10.1038/nmeth.4027.
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013.
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016.
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013.
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011.
Mak et al., The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. Feb. 10, 2012;335(6069):716-9. doi: 10.1126/science.1216211. Epub Jan. 5, 2012.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29.
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015.
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Mali et al., Cas9 as a versatile tool for engineeringbiology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x.
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57.
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6.
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771.
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Meckler et al., Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. Apr. 2013;41(7):4118-28. doi: 10.1093/nar/gkt085. Epub Feb. 13, 2013.
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016.
Meng et al., Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res. 2007;35(11):e81. Epub May 30, 2007.
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008.
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012.
Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010.
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007.
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112.
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry. . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016.
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82.
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8.
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80.
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012.
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011.
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817.
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3.
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011.
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012.
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004.
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages.
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50.
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014.
Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013.
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012.
Notice of Allowance and Applicant Initiated Interview Summary, dated Jun. 10, 2015, in connection with Application No. U.S. Appl. No. 14/320,370.
Notice of Allowance, dated Jul. 15, 2019, in connection with U.S. Appl. No. 14/874,123.
Notice of Allowance, dated Mar. 22, 2019 , in connection with U.S. Appl. No. 14/874,123.
Notice of Allowance, dated Nov. 29, 2018, in connection with U.S. Appl. No. 14/874,123.
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016.
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511.
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014.
Office Action, dated Apr. 1, 2015, in connection with U.S. Appl. No. 14/320,413.
Office Action, dated Dec. 4, 2014, in connection with U.S. Appl. No. 14/320,413.
Office Action, dated Jan. 30, 2015, in connection with U.S. Appl. No. 14/320,370.
Office Action, dated Jul. 27, 2018, in connection with U.S. Appl. No. 14/874,123.
Office Action, dated Mar. 14, 2018, in connection with U.S. Appl. No. 14/874,123.
Office Action, dated Nov. 10, 2014, in connection with U.S. Appl. No. 14/320,370.
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/.
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013.
Pabo et al., Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-40.
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9.
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014.
Partial European Search Report for Application No. EP 19187331.4, dated Dec. 19, 2019.
Partial Supplementary European Search Report for Application No. EP 12845790.0, dated Mar. 18, 2015.
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013.
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670.
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17.
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81.
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896.
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008.
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012.
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013.
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010.
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542.
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74.
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8.
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006.
Pluciennik et al., PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010.
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4.
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63.
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8.
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011.
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537.
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46.
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012.
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Rakonjac J, Model P. Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014.
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012.
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374.
Ran et al., Double Nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013.
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013.
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015.
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6.
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998).
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40.
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55.
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790.
Requirement for Restriction/Election, dated Jul. 28, 2017, in connection with U.S. Appl. No. 14/874,123.
Requirement for Restriction/Election, dated Oct. 20, 2017, in connection with U.S. Appl. No. 14/874,123.
Reyon et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170.
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016.
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291.
Riechmann et al.,. The C-terminal domain of To1A is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308.
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5.
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009.
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013; 159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013.
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179.
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004.
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012.
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014.
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013.
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934.
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86.
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431.
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008.
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011.
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z.
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012.
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9.
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6.
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002.
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006.
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72.
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51.
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40.
Segal et al., Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. Feb. 25, 2003;42(7):2137-48.
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63.
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78.
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011.
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41.
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007.
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461.
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011.
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015.
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012.
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40.
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013.
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222.
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601.
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017.
Shimizu et al., Adding fingers to an engineered zinc finger nuclease can reduce activity. Biochemistry. Jun. 7, 2011;50(22):5033-41. doi: 10.1021/bi200393g. Epub May 11, 2011.
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011.
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97.
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8.
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005.
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014.
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006.
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015.
Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521.
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7.
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010.
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi: 10.1038/nature11017.
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014.
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016.
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012.
Supplementary European Search Report for Application No. EP 12845790.0, dated Oct. 12, 2015.
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879.
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007.
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4.
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939.
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662.
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204.
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54.
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34.
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27.
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015.
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014.
Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
UniProt Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages.
UniProt Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages.
UniProt Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages.
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842.
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005.
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82.
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008.
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002.
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78.
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999; 104(1):15-22.
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104.
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004.
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9.
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014.
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo—Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016.
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print].
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013.
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434.
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013.
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010.
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012.
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71.
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci U S A. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008.
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12.
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011.
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015.
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review.
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012.
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008.
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611.
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51.
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34.
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014.
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015.
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017.
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62.
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017.
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330.
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016.
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017.
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28.
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011.
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014.
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010.
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303.
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018.
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46.
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149.
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405.
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review.
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014.
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011.
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6.
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645.
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47.
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050.
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858.
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017.
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009.
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80.
[No Author Listed] NCBI Accession No. XP_015843220.1. C ->U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540. Mar. 21, 2016.
[No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016.
[No Author Listed], “Lambda DNA” from Catalog & Technical Reference. New England Biolabs Inc. 2002/2003. pp. 133 and 270-273.
[No Author Listed], Mus musculus (Mouse). UniProtKB Accession No. P51908 (ABEC1_MOUSE). Oct. 1, 1996. 10 pages.
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14.
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x.
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016.
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n.
Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015.
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20.
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98.
Aik et al., Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014.
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x.
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011.
Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015.
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015.
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2.
Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013.
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2.
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known γ-gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013.
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020.
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15.
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014: 546:1-20.
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science.1589762.
André et al., Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol. Dec. 2003;90(6):3764-73. doi: 10.1152/jn.00449.2003. Epub Aug. 27, 2003.
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016.
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005.
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29.
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSR1. J Mol Biol. May 5, 1992;225(1):25-37. doi: 10.1016/0022-2836(92)91023-i.
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868.
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013.
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015.
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008.
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999;18(5):1407-14.
Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015.
Asokan et al., The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. Apr. 2012;20(4):699-708. doi: 10.1038/mt.2011.287. Epub Jan. 24, 2012.
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016.
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr.161638.113. Epub Oct. 31, 2013.
Auricchio et al., Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. Dec. 15, 2001;10(26):3075-81. doi: 10.1093/hmg/10.26.3075.
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731.
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x.
Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub Feb. 21, 2006.
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):1111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013.
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016.
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425.
Bae et al., Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. May 15, 2014;30(10):1473-5. doi: 10.1093/bioinformatics/btu048. Epub Jan. 24, 2014.
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015.
Bagal et al., Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett. Aug. 15, 2014;24(16):3690-9. doi: 10.1016/j.bmcl.2014.06.038. Epub Jun. 21, 2014.
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013.
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. Jan. 1987;6(1):229-34.
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi:10.1093/nar/gki291.
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6.
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004.
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012.
Barmania et al., C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom. May 26, 2013;2:3-16. doi: 10.1016/j.atg.2013.05.004.
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. Mar. 1, 1992;112(1):29-35. doi: 10.1016/0378-1119(92)90299-5.
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852.
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011.
Bass, B.L., RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 2002;71:817-46. doi: 10.1146/annurev.biochem.71.110601.135501. Epub Nov. 9, 2001.
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007.
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5.
Beaudry et al., Directed evolution of an RNA enzyme. Science. Jul. 31, 1992;257(5070):635-41. doi: 10.1126/science.1496376.
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34.
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct. 1994;5(5):382-9. doi: 10.1021/bc00029a002.
Bell et al., Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry. Dec. 24, 2002;41(51):15327-33. doi: 10.1021/bi0267386.
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5.
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604.
Benarroch, HCN channels: function and clinical implications. Neurology. Jan. 15, 2013;80(3):304-10. doi: 10.1212/WNL.0b013e31827dec42.
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014.
Bentin, T., A ribozyme transcribed by a ribozyme. Artif DNA PNA XNA. Apr. 2011;2(2):40-42. doi: 10.4161/adna.2.2.16852.
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010.
Berges et al., Transduction of brain by herpes simplex virus vectors. Mol Ther. Jan. 2007;15(1):20-9. doi: 10.1038/sj.mt.6300018.
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999.
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005.
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110.
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex Vivo in Vivo gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015.
Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4.
Bhagwat, DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). Jan. 5, 2004;3(1):85-9.
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20.
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6):1896-910. doi: 10.1111/j.1365-2958.2005.04517.x.
Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75. doi: 10.1093/genetics/161.3.1169.
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657.
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7.
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92.
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315.
Blau et al., A proliferation switch for genetically modified cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076.
Blauw et al., SMN1 gene duplications are associated with sporadic ALS. Neurology. Mar. 13, 2012;78(11):776-80. doi: 10.1212/WNL.0b013e318249f697. Epub Feb. 8, 2012.
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52.
Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090.
Boersma et al., Selection strategies for improved biocatalysts. FEBS J. May 2007;274(9):2181-95.
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094.
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006.
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615.
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015.
Bourinet et al., Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. Jan. 26, 2005;24(2):315-24. doi: 10.1038/sj.emboj.7600515. Epub Dec. 16, 2004.
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217.
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667.
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9.
Brierley et al., Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. Aug. 2007;5(8):598-610. doi: 10.1038/nrmicro1704.
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0.
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990.
Brown et al., Structural insights into the stabilization of MALATI noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014.
Brutlag et al., Improved sensitivity of biological sequence database searches. Comput Appl Biosci. Jul. 1990;6(3):237-45. doi: 10.1093/bioinformatics/6.3.237.
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006.
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992.
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1 α interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012.
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231rr02.
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3-17. doi: 10.1007/978-1-62703-411-1_1.
Burke et al., Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation. Mol Microbiol. Feb. 2004;51(4):937-48.
Burton et al., Gene delivery using herpes simplex virus vectors. DNA Cell Biol. Dec. 2002;21(12):915-36. doi: 10.1089/104454902762053864.
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004.
Buskirk et al., In vivo evolution of an RNA-based transcriptional activator. Chem Biol. Jun. 2003;10(6):533-40. doi: 10.1016/s1074-5521(03)00109-1.
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473.
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28.
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33.
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3.
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999; 121(23):5597-5598. https://doi.org/10.1021/ja990929n.
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537.
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003.
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570.
Canver et al., Customizing the genome as therapy for the β-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016.
Cao et al., Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med. Jun. 29, 2011;3(89):89ra58. doi: 10.1126/scitranslmed.3002346.
Cargill et al., Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8.
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021.
Carlier et al., Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate. Genome Announc. Apr. 10, 2014;2(2):e00298-14. doi: 10.1128/genomeA.00298-14.
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results.
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590.
Cartegni et al., Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. Jan. 2006;78(1):63-77. doi: 10.1086/498853. Epub Nov. 16, 2005.
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010.
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x.
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038.
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015.
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007.
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005.
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252.
Chan et al., Novel selection methods for DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:55-61. doi:10.1016/j.cbpa.2015.02.010.
Chan et al., The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst). Nov. 2013;12(11):878-89. doi: 10.1016/j.dnarep.2013.07.008. Epub Aug. 26, 2013.
Chang et al., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int. Dec. 2004;45(7):1107-12. doi: 10.1016/j.neuint.2004.04.005.
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029.
Chari et al., Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. Sep. 2015;12(9):823-6. doi: 10.1038/nmeth.3473. Epub Jul. 13, 2015.
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23.
Chawla et al., An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. Aug. 18, 2015;43(14):6714-29. doi: 10.1093/nar/gkv606. Epub Jun. 27, 2015.
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009.
Chen et al., A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11399-404. doi: 10.1073/pnas.1101046108. Epub Jun. 22, 2011.
Chen et al., Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol. May 2003;22(5):1033-43.
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012.
Chen et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. Mar. 12, 2015;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub Mar. 5, 2015.
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016.
Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015.
Cheng et al., Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. Oct. 2013;23(10):1163-71. doi: 10.1038/cr.2013.122. Epub Aug. 27, 2013.
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47.
Chester et al., The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. Aug. 1, 2003;22(15):3971-82. doi: 10.1093/emboj/cdg369.
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014.
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8.
Cho et al., A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. Mar. 1, 2010;24(5):438-42. doi: 10.1101/gad.1884910.
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999.
Cho et al., The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. May 27, 2012;15(7):1015-21. doi: 10.1038/nn.3111.
Choi et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 11, 2016.
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 27, 2005.
Choi et al., Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1. J Mol Biol. Nov. 19, 2010;404(1):34-44. doi: 10.1016/j.jmb.2010.09.015. Epub Oct. 1, 2010.
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109.
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567.
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159.
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587.
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 19, 1997;192(2):271-81. doi: 10.1016/s0378-1119(97)00105-4.
Choudhury et al., CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. Jul. 19, 2016;7(29):46545-46556. doi: 10.18632/oncotarget.10234.
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154.
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968.
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994.
Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016.
Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841.
Chujo et al., Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012.
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437.
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012.
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092.
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-1-62703-293-3_8.
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9.
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519.
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005.
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/gb-2008-9-6-229. Epub Jun. 17, 2008.
Corcia et al., The importance of the SMN genes in the genetics of sporadic ALS. Amyotroph Lateral Scler. Oct.-Dec. 2009;10(5-6):436-40. doi: 10.3109/17482960902759162.
Corti et al., Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. Dec. 19, 2012;4(165):165ra162. doi: 10.1126/scitranslmed.3004108.
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995;14(6):1276-85.
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework: A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999; 121(5):1100-1. https://doi.org/10.1021/ja983804b.
Cox et al., An SCN9A channelopathy causes congenital inability to experience pain. Nature. Dec. 14, 2006;444(7121):894-8. doi: 10.1038/nature05413.
Cox et al., Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat. Sep. 2010;31(9):E1670-86. doi: 10.1002/humu.21325.
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561.
Crabtree et al., Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci. Nov. 1996;21(11):418-22. doi: 10.1016/s0968-0004(96)20027-1.
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63.
Cronican et al., A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. Jul. 29, 2011;18(7):833-8. doi: 10.1016/j.chembiol.2011.07.003.
Cronican et al., Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol. Aug. 20, 2010;5(8):747-52. doi: 10.1021/cb1001153.
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404.
Cucchiarini et al., Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med. Jan. 2014;18(1):115-24. doi: 10.1111/jcmm.12170. Epub Nov. 17, 2013.
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016.
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9.
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91.
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390.
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3.
Das et al., The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032.
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009.
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762.
Database EBI Accession No. ADE34233 Jan. 29, 2004.
Database UniProt Accession No. G8I3E0. Jan. 14, 2012.
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5.
Davidson et al., Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci. May 2003;4(5):353-64. doi: 10.1038/nrn1104.
Davis et al., Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A. Mar. 11, 2014;111(10):E924-32. doi: 10.1073/pnas.1400236111. Epub Feb. 20, 2014.
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003.
De Sandre-Giovannoli et al., Lamin a truncation in Hutchinson-Gilford progeria. Science. Jun. 27, 2003;300(5628):2055. doi: 10.1126/science.1084125. Epub Apr. 17, 2003.
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856.
Dekosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016.
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science.1206938. Epub Jun. 23, 2011.
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015.
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013.
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013.
Deverman et al., Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. Feb. 2016;34(2):204-9. doi: 10.1038/nbt.3440. Epub Feb. 1, 2016.
Devigili et al., Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain. Sep. 2014;155(9):1702-1707. doi: 10.1016/j.pain.2014.05.006. Epub May 10, 2014.
Dianov et al., Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. Apr. 1, 2013;41(6):3483-90. doi: 10.1093/nar/gkt076. Epub Feb. 13, 2013.
Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015.
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013.
Dickinson et al., A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat Commun. Oct. 30, 2014;5:5352. doi: 10.1038/ncomms6352.
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12.
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M.
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w.
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997;119(22):5106-5109. https://doi.org/10.1021/ja963891c.
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010.
Doench et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. Dec. 2014;32(12):1262-7. doi: 10.1038/nbt.3026. Epub Sep. 3, 2014.
Dolan et al., Trans-splicing with the group I intron ribozyme from Azoarcus. RNA. Feb. 2014;20(2):202-13. doi: 10.1261/rna.041012.113. Epub Dec. 16, 2013.
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112.
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006.
Dorr et al., Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A. Sep. 16, 2014;111(37):13343-8. doi: 10.1073/pnas.1411179111. Epub Sep. 3, 2014.
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54.
Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84.
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. Aug. 15, 1991;88(16):7160-4.
Drenth et al., Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. Dec. 2007;117(12):3603-9. doi: 10.1172/JCI33297.
Drost et al., Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat. Nov. 2013;34(11):1477-80. doi: 10.1002/humu.22426. Epub Sep. 11, 2013.
Duan et al., Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol. Aug. 2001;75(16):7662-71. doi: 10.1128/JVI.75.16.7662-7671.2001.
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French.
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger—DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11.
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912.
Edlund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002.
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68.
Ekstrand et al., Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer. Fam Cancer. Jun. 2010;9(2):125-9. doi: 10.1007/s10689-009-9293-1.
Emery et al., HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science. Sep. 9, 2011;333(6048):1462-6. doi: 10.1126/science.1206243.
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92.
England, Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9.
Entin-Meer et al., The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance. Biochem J. Oct. 15, 2002;367(Pt 2):381-91. doi: 10.1042/BJ20020712.
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2.
Epstein, HSV-1-based amplicon vectors: design and applications. Gene Ther. Oct. 2005;12 Suppl 1:S154-8. doi: 10.1038/sj.gt.3302617.
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972.
Estacion et al., A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol. Dec. 2009;66(6):862-6. doi: 10.1002/ana.21895.
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011.
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091.
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103.
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26):18359-63. doi: 10.1074/jbc.274.26.18359.
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923.
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016.
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5.
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006.
Farboud et al., Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics. Apr. 2015;199(4):959-71. doi: 10.1534/genetics.115.175166. Epub Feb. 18, 2015.
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 26, 1986;47(6):1007-15. doi: 10.1016/0092-8674(86)90815-9.
Feldstein et al., Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. Oct. 15, 1989;82(1):53-61. doi: 10.1016/0378-1119(89)90029-2.
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014.
Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2.
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132.
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5.
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888.
Fischbach et al., Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci U S A. Jul. 17, 2007;104(29):11951-6. doi: 10.1073/pnas.0705348104. Epub Jul. 9, 2007.
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x.
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998.
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259.
Flynn et al., CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. Oct. 2015;43(10):838-848.e3. doi: 10.1016/j.exphem.2015.06.002. Epub Jun. 19, 2015. Including supplementary figures and data.
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014.
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x.
Fortini et al., Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry. Mar. 17, 1998;37(11):3575-80. doi: 10.1021/bi972999h.
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006.
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941.
Friedman, J. H., Greedy function approximation: A gradient boosting machine. Ann. Statist. Oct. 2001;29(5):1189-232. doi: 10.1214/aos/1013203451.
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014.
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11.
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15.
Fusi et al., In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency. Jun. 26, 2015; bioRxiv. http://dx.doi.org/10.1101/021568.
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0.
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185.
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22.
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb.12152. Epub Mar. 6, 2014.
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005.
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608.
GenBank Accession No. J01600.1. Brooks et al., E. coli dam gene coding for DNA adenine methylase. Apr. 26, 1993.
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994.
GenBank Submission; NIH/NCBI Accession No. 4UN5_B. Anders et al., Jul. 23, 2014. 5 pages.
GenBank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AIT42264.1. Hyun et al., Oct. 15, 2014. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. AKA60242.1. Tong et al., Apr. 5, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. AKQ21048.1. Gilles et al., Jul. 19, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. AKS40380.1. Nodvig et al., Aug. 2, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. BDB43378. Zhang et al., Aug. 11, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. NC_000001.11. Gregory et al., Jun. 6, 2016. 3 pages.
GenBank Submission; NIH/NCBI, Accession No. NP_628093.1. Hsiao et al., Aug. 3, 2016. 2 pages.
GenBank Submission; NIH/NCBI, Accession No. WP_002989955.1. No Author Listed, May 6, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_010922251.1. No Author Listed, May 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011054416.1. No Author Listed, May 15, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011284745.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011285506.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_011527619.1. No Author Listed, May 16, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_012560673.1. No Author Listed, May 17, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_014407541.1. No Author Listed, May 18, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_020905136.1. No Author Listed, Jul. 25, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_023080005.1. No Author Listed, Oct. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_023610282.1. No Author Listed, Nov. 27, 2013. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_030125963.1. No Author Listed, Jul. 9, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_030126706.1. No Author Listed, Jul. 9, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_031488318.1. No Author Listed., Aug. 5, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032460140.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032461047.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032462016.1. Haft et al., Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032462936.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_032464890.1. No Author Listed, Oct. 4, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038431314.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038432938.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_038434062.1. No Author Listed, Dec. 26, 2014. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_048327215.1. No Author Listed, Jun. 26, 2015. 1 page.
GenBank Submission; NIH/NCBI, Accession No. WP_049519324.1. No Author Listed, Jul. 20, 2015. 1 page.
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097.
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271.
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975.
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417.
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146.
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84.
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009.
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3.
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82.
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002.
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006.
Goldberg et al., Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. Apr. 2007;71(4):311-9. doi: 10.1111/j.1399-0004.2007.00790.x.
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011.
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8.
Gordley et al., Synthesis of programmable integrases. Proc Natl Acad Sci U S A. Mar. 31, 2009;106(13):5053-8. doi: 10.1073/pnas.0812502106. Epub Mar. 12, 2009.
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56.
Grati et al., Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network. J Neurosci. Oct. 10, 2012;32(41):14288-93. doi: 10.1523/JNEUROSCI.3071-12.2012.
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003.
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):REVIEWS1017. doi: 10.1186/gb-2001-2-6-reviews1017. Epub Jun. 5, 2001.
Grindley et al., Mechanisms of site-specific recombination. Annu Rev Biochem. 2006;75:567-605. doi: 10.1146/annurev.biochem.73.011303.073908.
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4.
Groher et al., Synthetic riboswitches—A tool comes of age. Biochim Biophys Acta. Oct. 2014;1839(10):964-973. doi: 10.1016/j.bbagrm.2014.05.005. Epub May 17, 2014.
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775.
Groth et al., Phage integrases: biology and applications. J Mol Biol. Jan. 16, 2004;335(3):667-78.
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122.
Gruber et al., The Vienna RNA websuite. Nucleic Acids Res. Jul. 1, 2008;36(Web Server issue):W70-4. doi: 10.1093/nar/gkn188. Epub Apr. 19, 2008.
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006.
Guedon et al., Current gene therapy using viral vectors for chronic pain. Mol Pain. May 13, 2015;11:27. doi: 10.1186/s12990-015-0018-1.
Guo et al., Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat Struct Biol. Nov. 2002;9(11):855-61. doi: 10.1038/nsb850.
Guo et al., Facile functionalization of FK506 for biological studies by the thiol-ene ‘click’ reaction. RSC Advances. 2014;22:11400-3.
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013.
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007.
Gutschner et al., Post-translational Regulation of Cas9 during G1 Enhances Homology—Directed Repair. Cell Rep. Feb. 16, 2016;14(6):1555-1566. doi: 10.1016/j.celrep.2016.01.019. Epub Feb. 4, 2016.
Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130.
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995;199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14.
Halbert et al., Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. Feb. 2000;74(3):1524-32. doi: 10.1128/jvi.74.3.1524-1532.2000.
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000.
Hardt et al.,Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Fam Cancer. Jun. 2011;10(2):273-84. doi: 10.1007/s10689-011-9431-4.
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540.
Harris et al., RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Mol Cell. Nov. 2002;10(5):1247-53.
Hart et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. Dec. 3, 2015;163(6):1515-26. doi: 10.1016/j.cell.2015.11.015. Epub Nov. 25, 2015.
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75.
Hartung et al., Cre mutants with altered DNA binding properties. J Biol Chem. Sep. 4, 1998;273(36):22884-91.
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x.
Hawley-Nelson et al., Transfection of Cultured Eukaryotic Cells Using Cationic Lipid Reagents. Curr Prot Mol Biol. Jan. 2008;9.4.1-9.4.17. doi: 10.102/0471142727.mb0904s81. 17 pages.
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203.
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001.
Hendel et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. Sep. 2015;33(9):985-989. doi: 10.1038/nbt.3290. Epub Jun. 29, 2015. Author Manuscript. 14 pages.
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659.
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466.
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010.
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015.
Heyer et al., Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113-39. doi: 10.1146/annurev-genet-051710-150955. Author Manuscript. 33 pages.
Higgs et al., Genetic complexity in sickle cell disease. Proc Natl Acad Sci U S A. Aug. 19, 2008;105(33):11595-6. doi: 10.1073/pnas.0806633105. Epub Aug. 11, 2008.
Hilbers et al., New developments in structure determination of pseudoknots. Biopolymers. 1998;48(2-3):137-53. doi: 10.1002/(SICI)1097-0282(1998)48:2<137::AID-BIP4>3.0.CO;2-H.
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016.
Hoess et al., DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol. Dec. 20, 1990;216(4):873-82. doi: 10.1016/S0022-2836(99)80007-2.
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008.
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79.
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810.
Holt et al., Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. Aug. 2010;28(8):839-47. doi: 10.1038/nbt.1663. Epub Jul. 2, 2010.
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8.
Hotta et al., [Neurotropic viruses—classification, structure and characteristics]. Nihon Rinsho. Apr. 1997;55(4):777-82. Japanese.
Housden et al., Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal. Sep. 8, 2015;8(393):rs9. doi: 10.1126/scisignal.aab3729.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages.
Huang et al., Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain. Jun. 2014;137(Pt 6):1627-42. doi: 10.1093/brain/awu079. Epub Apr. 27, 2014.
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5):1201-11. doi: 10.1016/s1097-2765(02)00736-0.
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110.
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5.
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12.
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53.
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j.1365-2958.1990.tb00671.x.
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006.
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30.
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0.
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12):1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007.
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000.
Isaacs et al., Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. Jul. 2004;22(7):841-7. doi: 10.1038/nbt986. Epub Jun. 20, 2004.
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2):166-72. doi: 10.1016/s0014-5793(99)01220-x.
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006.
Iyama et al., DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). Aug. 2013;12(8):620-36. doi: 10.1016/j.dnarep.2013.04.015. Epub May 16, 2013.
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75.
Jardine et al., HIV-1 Vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244):156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015.
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740.
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3.
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9):1108-22. doi: 10.1261/rna.5430403.
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011.
Jeong et al., Measurement of deoxyinosine adduct: Can it be a reliable tool to assess oxidative or nitrosative DNA damage? Toxicol Lett. Oct. 17, 2012;214(2):226-33. doi: 10.1016/j.toxlet.2012.08.013. Epub Aug. 23, 2012.
Jiricny, The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. May 2006;7(5):335-46. doi: 10.1038/nrm1907.
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992.
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3):176-85. https://doi.org/10.1006/smvy.1997.0120.
Johansson et al., Selenocysteine in proteins—properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1):1-13. Epub Jun. 1, 2005.
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005.
Johnson et al., Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs. Biochemistry. Aug. 9, 2005;44(31):10702-10. doi: 10.1021/bi0504815.
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9.
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4.
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3):122-6.
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8.
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604.
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013;153(1):71-85. doi: 10.1016/j.cell.2013.02.036.
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1.
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009.
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17):14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002.
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130.
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012.
Katafuchi et al., DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res. Nov. 28, 2010;703(1):24-31. doi: 10.1016/j.mrgentox.2010.06.004. Epub Jun. 11, 2010.
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2.
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013.
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93.
Kavli et al., Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. Jul. 1, 1996;15(13):3442-7.
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126.
Kay et al., Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. Jan. 2001;7(1):33-40.
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058.
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886.
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2):135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006.
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science.1974085.
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082.
Ketha et al., Application of bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoprotein of Influenza A virus strain. BMC Cell Biol. Apr. 28, 2008; 9:22. https://doi.org/10.1186/1471-2121-9-22.
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010.
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273.
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011.
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x.
Kim et al., RAD51 mutants cause replication defects and chromosomal instability. Mol Cell Biol. Sep. 2012;32(18):3663-80. doi: 10.1128/MCB.00406-12. Epub Jul. 9, 2012.
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551.
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800.
King et al., No gain, no pain: NaV1.7 as an analgesic target. ACS Chem Neurosci. Sep. 17, 2014;5(9):749-51. doi: 10.1021/cn500171p. Epub Aug. 11, 2014.
Klapacz et al., Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038.
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009.
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33):11779-91. doi: 10.1021/ja104903x.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5 and Supplementary Materials. doi: 10.1038/nature14592. Epub Jun. 22, 2015. 27 pages.
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9.
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009.
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013.
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015.
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720.
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014.
Konishi et al., Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochem Biophys Res Commun. Nov. 14, 2014;454(2):269-74. doi: 10.1016/j.bbrc.2014.10.044. Epub Oct. 17, 2014.
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4.
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265.
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum.1994.5.7-793.
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125.
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015.
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951.
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996.
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583.
Kumar et al., Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? Pain Med. May 2011;12(5):808-22. doi: 10.1111/j.1526-4637.2011.01120.x.
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41.
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34.
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722.
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7.
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007.
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905.
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). Jan. 2011;76(1):131-46.
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236.
Lancaster et al., Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog. Mar. 5, 2010;6(3):e1000791. doi: 10.1371/journal.ppat.1000791.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. J Macromol Sci, Part C, 1983;23(1):61-126. doi: 10.1080/07366578308079439.
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002.
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72.
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33):10110-2. Epub Aug. 1, 2007.
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275.
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5): 1055-1067. doi: 10.1099/13500872-145-5-1055.
Le et al., SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. Mar. 15, 2005;14(6):845-57. doi: 10.1093/hmg/ddi078. Epub Feb. 9, 2005.
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991.
Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8):1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013.
Lee et al., A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. Jun. 5, 2014;157(6):1393-1404. doi: 10.1016/j.cell.2014.03.064. Epub May 22, 2014. Retraction in: Cell. Jun. 25, 2020;181(7):1695.
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713.
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80.
Lee et al., Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111.
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 2010 20: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109.
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
Lefebvre et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell. Jan. 13, 1995;80(1):155-65. doi: 10.1016/0092-8674(95)90460-3.
Leipold et al., A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. Nov. 2013;45(11):1399-404. doi: 10.1038/ng.2767. Epub Sep. 15, 2013.
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011.
Lesinski et al., The potential for targeting the STAT3 pathway as a novel therapy for melanoma. Future Oncol. Jul. 2013;9(7):925-7. doi: 10.2217/fon.13.83. Author Manuscript. 4 pages.
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887.
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9.
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016.
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015.
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009.
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109.
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036.
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009.
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323.
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172.
Liefke et al., The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med. Jun. 30, 2015;7(1):66. doi: 10.1186/s13073-015-0180-0.
Lienert et al., Two- and three-input TALE-based and logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013.
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06.
Lim et al., Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res. Jan. 2010;61(1):14-26. doi: 10.1016/j.phrs.2009.10.002. Epub Oct. 17, 2009.
Lin et al., [Construction and evaluation of DnaB split intein high expression vector and a six amino acids cyclic peptide library]. Sheng Wu Gong Cheng Xue Bao. Nov. 2008;24(11):1924-30. Chinese.
Lin et al., The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. Nov. 15, 1999;27(22):4468-75. doi: 10.1093/nar/27.22.4468.
Lindahl, T., Instability and decay of the primary structure of DNA. Nature. Apr. 22, 1993;362(6422):709-15. doi: 10.1038/362709a0.
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003.
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013.
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h.
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi:10.1146/annurev.biochem.73.012803.092453.
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009;109(5):1948-98. doi: 10.1021/cr030183i.
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007.
Liu et al., Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. Oct. 2010;17(10):1260-2. doi: 10.1038/nsmb.1904. Epub Aug. 22, 2010.
Liu et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234.
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/rna.041178.113. Epub Oct. 18, 2013.
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3):187-200. doi: 10.1007/BF01319905.
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science.1067467.
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
Liu et al., Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A. Mar. 13, 2007;104(11):4413-8. doi: 10.1073/pnas.0610950104. Epub Mar. 5, 2007.
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x.
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015.
Lopez-Girona et al., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. Nov. 2012;26(11):2326-35. doi: 10.1038/leu.2012.119. Epub May 3, 2012.
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26.
Lorson et al., A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. May 25, 1999;96(11):6307-11. doi: 10.1073/pnas.96.11.6307.
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5.
Luckow et al., High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6.
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649.
Lutz et al., Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest. Aug. 2011;121(8):3029-41. doi: 10.1172/JCI57291. Epub Jul. 25, 2011.
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010.
Lüke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7):1764-9. doi: 10.1021/bi00459a015.
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006.
Ma et al., In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45.
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014.
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895.
Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150.
Macrae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(1):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006.
Madura et al., Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides. Eur J Immunol. Feb. 2015;45(2):584-91. doi: 10.1002/eji.201445114. Epub Dec. 28, 2014.
Maerker et al., A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet. Jan. 1, 2008;17(1):71-86. doi: 10.1093/hmg/ddm285. Epub Sep. 28, 2007.
Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438.
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20.
Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006).
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012.
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014.
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1.
Marcovitz et al., Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A. Nov. 1, 2011;108(44):17957-62. doi: 10.1073/pnas.1109594108. Epub Oct. 14, 2011.
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012.
Marsden et al., The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype. PLoS Genet. Aug. 11, 2016;12(8):e1006208. doi: 10.1371/journal.pgen.1006208.
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787.
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4.
Martz, L., Nav-i-gating antibodies for pain. Science-Business eXchange. Jun. 12, 2014;7(662):1-2. doi: 10.1038/scibx.2014.662.
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075.
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(1-2):1-13. doi: 10.1016/s0378-1119(99)00103-1.
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61.
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016.
McCarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42. doi: 10.1038/ng2080.
McDonald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno.1996.4508.
McInerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014.
McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016.
McNaughton et al., Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A. Apr. 14, 2009;106(15):6111-6. doi: 10.1073/pnas.0807883106. Epub Mar. 23, 2009.
McVey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008.
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716.
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016.
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009.
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27.
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008.
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012.
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008.
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105.
Meyer et al., Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. May 19, 2016;44(9):4304-16. doi: 10.1093/nar/gkw244. Epub Apr. 15, 2016.
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014.
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0.
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x.
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299.
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5):1588-96. doi: 10.1093/nar/gkj514.
Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991.
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0.
Mills et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543.
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72.
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007.
Mitani et al., Delivering therapeutic genes—matching approach and application. Trends Biotechnol. May 1993;11(5):162-6. doi: 10.1016/0167-7799(93)90108-L.
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008):1244-7. doi: 10.1126/science.1195858.
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549.
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5.
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/rna.039743.113. Epub May 22, 2013.
Mol et al., Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell. Mar. 24, 1995;80(6):869-78. doi: 10.1016/0092-8674(95)90290-2.
Monani et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. Jul. 1999;8(7):1177-83. doi: 10.1093/hmg/8.7.1177.
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013.
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5.
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5 and Supporting Information. doi: 10.1021/ja026769o. 4 pages.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5.
Moreno-Mateos et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. Oct. 2015;12(10):982-8. doi: 10.1038/nmeth.3543. Epub Aug. 31, 2015.
Morita et al., The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x.
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6.
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705.
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116. PMID: 16061932; PMCID: PMC1182171.
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007.
Murphy, Phage recombinases and their applications. Adv Virus Res. 2012;83:367-414. doi: 10.1016/B978-0-12-394438-2.00008-6. Review.
Murray et al., Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet. Apr. 1, 2008;17(7):949-62. doi: 10.1093/hmg/ddm367. Epub Dec. 8, 2007.
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468.
Myerowitz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9.
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151.
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R.
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50.
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560.
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292.
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200.
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420.
Nelson et al., In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. Jan. 22, 2016;351(6271):403-7. doi: 10.1126/science.aad5143. Epub Dec. 31, 2015.
Nelson et al., The unstable repeats—three evolving faces of neurological disease. Neuron. Mar. 6, 2013;77(5):825-43. doi: 10.1016/j.neuron.2013.02.022.
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011.
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014.
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review.
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251.
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20.
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/rna.055558.115. Epub Jan. 29, 2016.
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91.
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013.
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953.
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016.
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91.
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016.
Odsbu et al., Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11):1039-49.
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6.
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300.
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(1):45-53.
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002.
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112.
Olorunniji et al., Synapsis and catalysis by activated Tn3 resolvase mutants. Nucleic Acids Res. Dec. 2008;36(22):7181-91. doi: 10.1093/nar/gkn885. Epub Nov. 10, 2008.
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010.
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015.
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237.
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9.
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032.
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050.
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j.
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33.
Packer et al., Methods for the directed evolution of proteins. Nat Rev Genet. Jul. 2015;16(7):379-94. doi: 10.1038/nrg3927. Epub Jun. 9, 2015.
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi:10.1126/science.1207339.
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601):125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016.
Passini et al., Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. Mar. 2, 2011;3(72):72ra18. doi: 10.1126/scitranslmed.3001777.
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012.
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013.
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014.
Pellegrini et al., Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. Nov. 21, 2002;420(6913):287-93. doi: 10.1038/nature01230. Epub Nov. 10, 2002.
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833.
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761.
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/s1367-5931(97)80065-8.
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125.
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346.
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2.
Perreault et al., Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. Apr. 5, 1990;344(6266):565-7. doi: 10.1038/344565a0.
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103.
Peyrottes et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8.
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289.
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019.
Pieken et al., Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science. Jul. 19, 1991;253(5017):314-7. doi: 10.1126/science.1857967.
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268.
Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513.
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3.
Popp et al., Sortagging: a versatile method for protein labeling. Nat Chem Biol. Nov. 2007;3(11):707-8. doi: 10.1038/nchembio.2007.31. Epub Sep. 23, 2007.
Porensky et al., A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. Apr. 1, 2012;21(7):1625-38. doi: 10.1093/hmg/ddr600. Epub Dec. 20, 2011.
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71.
Pospísilová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081.
Prasad et al., Visualizing the assembly of human Rad51 filaments on double-stranded DNA. J Mol Biol. Oct. 27, 2006;363(3):713-28. doi: 10.1016/j.jmb.2006.08.046. Epub Aug. 22, 2006.
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x.
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8.
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9.
Raghavan et al., Abstract 27: Therapeutic Targeting of Human Lipid Genes with in vivo CRISPR-Cas9 Genome Editing. Oral Abstract Presentations: Lipoprotein Metabolism and Therapeutic Targets. Arterioscler THromb Vasc Biol. 2015;35(Suppl. 1):Abstract 27. 5 pages.
Raillard et al., Targeting sites within HIV-1 cDNA with a DNA-cleaving ribozyme. Biochemistry. Sep. 10, 1996;35(36):11693-701. doi: 10.1021/bi960845g.
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. Jun. 28, 2016;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016.
Rajagopal et al., High-throughput mapping of regulatory DNA. Nat Biotechnol. Feb. 2016;34(2):167-74. doi: 10.1038/nbt.3468. Epub Jan. 25, 2016.
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2):192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008.
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009.
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15.
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51.
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311.
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49.
Reiners et al., Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet. Dec. 15, 2005;14(24):3933-43. doi: 10.1093/hmg/ddi417. Epub Nov. 21, 2005.
Relph et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839-842. doi:10.1136/bmj.329.7470.839.
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021.
Ren et al., In-line Alignment and Mg2+ Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534.
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016.
Reynaud et al., What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. Jul. 2003;4(7):631-8.
Richardson et al., Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. Jun. 8, 2000;405(6787):697-700. doi: 10.1038/35015097.
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x.
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013.
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015.
Robertson et al., DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. Mar. 2009;66(6):981-93. doi: 10.1007/s00018-009-8736-z.
Robertson et al., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. Mar. 29, 1990;344(6265):467-8. doi: 10.1038/344467a0.
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc.1203957.
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007.
Rongrong et al., Effect of deletion mutation on the recombination activity of Cre recombinase. Acta Biochim Pol. 2005;52(2):541-4. Epub May 15, 2005.
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013.
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35.
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064.
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096.
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x.
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108.
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531.
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011.
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013.
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399.
Saayman et al., The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. Jun. 2015;15(6):819-30. doi: 10.1517/14712598.2015.1036736. Epub Apr. 12, 2015.
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91.
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005.
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015.
Sale et al., Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol. Feb. 23, 2012;13(3):141-52. doi: 10.1038/nrm3289.
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989.
San Filippo et al., Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229-57. doi: 10.1146/annurev.biochem.77.061306.125255.
Sang et al., A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. Sep. 30, 2015;43(17):8452-63. doi: 10.1093/nar/gkv854. Epub Aug. 24, 2015.
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002.
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873.
Sapunar et al., Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. J Pain Res. 2012;5:31-8. doi: 10.2147/JPR.S26603. Epub Feb. 16, 2012.
Sarkar et al., HIV-1 proviral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science.1141453.
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104.
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941.
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3.
Savva et al., The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. Feb. 9, 1995;373(6514):487-93. doi: 10.1038/373487a0.
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5.
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4.
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo.
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386.
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419.
Schlacher et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. May 13, 2011;145(4):529-42. doi: 10.1016/j.cell.2011.03.041. Erratum in: Cell. Jun. 10, 2011;145(6):993.
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746.
Schrank et al., Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA. Sep. 2, 1997;94(18):9920-5. doi: 10.1073/pnas.94.18.9920.
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2.
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′-- >P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73.
SCORE Results for Luetticken et al., Complete genome sequence of a Streptococcus dysgalactiae subsp. RT equisimilis strain possessing Lancefield's group A antigen. RL Submitted to the EMBL/GenBank/DDBJ databases. May 2012. 3 pages.
SCORE Results for Okumura et al., Evolutionary paths of streptococcal and staphylococcal superantigens. RL BMC Genomics. 2012;13:404-404. 3 pages.
SCORE Results for Shimomura et al., Complete Genome Sequencing and Analysis of a Lancefield Group G RT Streptococcus Dysagalactiae Subsp. Equisimilis Strain Causing Streptococcal RT Toxic Shock Syndrome (STSS). RL BMC Genomics. 2011;12:17-17. 3 pages.
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638.
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0.
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010.
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009.
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006.
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007.
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205.
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013.
Shaikh et al., Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre. J Mol Biol. Sep. 8, 2000;302(1):27-48.
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013.
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015.
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553.
Sharma et al., Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. Mar. 2014;42(5):3246-60. doi: 10.1093/nar/gkt1281. Epub Dec. 11, 2013.
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004.
Shechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015.
Shen et al., Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. Apr. 2014;11(4):399-402. doi: 10.1038/nmeth.2857. Epub Mar. 2, 2014.
Shen et al., Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther. Nov. 2006;13(11):975-92. doi: 10.1038/sj.cgt.7700946. Epub Apr. 7, 2006.
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769.
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014.
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260.
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0.
Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077.
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase—Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234.
Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012.
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013.
Singh et al., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. Feb. 2006;26(4):1333-46. doi: 10.1128/MCB.26.4.1333-1346.2006.
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010.
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005.
Slupphaug et al., A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. Nov. 7, 1996;384(6604):87-92. doi: 10.1038/384087a0.
Smith et al., Diversity in the serine recombinases. Mol Microbiol. Apr. 2002;44(2):299-307. Review.
Smith et al., Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153-76. doi: 10.1146/annurev-micro-092611-150051. Epub Jun. 15, 2012.
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156.
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4.
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014.
Somanathan et al., AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res. Aug. 29, 2014;115(6):591-9. doi: 10.1161/CIRCRESAHA.115.304008. Epub Jul. 14, 2014.
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-o.
Song et al., RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. Jan. 28, 2016;7:10548. doi: 10.1038/ncomms10548.
Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918.
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04.
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805.
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365.
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3.
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054.
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100.
Stark et al., ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem. Jun. 7, 2002;277(23):20185-94. doi: 10.1074/jbc.M112132200. Epub Mar. 28, 2002.
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007.
Steiner et al., The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. Nov. 2007;6(11):1015-28. doi: 10.1016/S1474-4422(07)70267-3.
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576):110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015.
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150.
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4.
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97.
Sudarsan et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. Jul. 18, 2008;321(5887):411-3. doi: 10.1126/science.1159519.
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4.
Sullenger et al., Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. Oct. 13, 1994;371(6498):619-22. doi: 10.1038/371619a0.
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33.
Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011.
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015.
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b.
Takimoto et al., Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol. Jul. 15, 2011;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011.
Talbot et al., Spinal muscular atrophy. Semin Neurol. Jun. 2001;21(2):189-97. doi: 10.1055/s-2001-15264.
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378.
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014.
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944.
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016.
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003.
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808.
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013.
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997.
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4):1276-80. doi: 10.1073/pnas.90.4.1276.
Teng et al., Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1). structure-function relationships of RNA editing and dimerization. J Lipid Res. Apr. 1999;40(4):623-35.
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8.
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940.
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014.
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4.
Thomson et al., Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis. Jul. 2003;36(3):162-7. doi: 10.1002/gene.10211.
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007.
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442.
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498.
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage Φ29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb.120587. Epub Dec. 7, 2012.
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803.
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011.
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6.
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009.
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072.
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251.
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011.
Trojan et al., Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology. Jan. 2002;122(1):211-9. doi: 10.1053/gast.2002.30296.
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016.
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496.
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004.
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012.
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011.
Turan et al., Site-specific recombinases: from tag-and-target-to tag-and-exchange-based genomic modifications. FASEB J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review.
UNIPROTKB Submission; Accession No. F0NH53. May 3, 2011. 4 pages.
UNIPROTKB Submission; Accession No. F0NN87. May 3, 2011. 4 pages.
UNIPROTKB Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages.
Urasaki et al., Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006.
Usman et al., Exploiting the chemical synthesis of RNA. Trends Biochem Sci. Sep. 1992;17(9):334-9. doi: 10.1016/0968-0004(92)90306-t.
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015.
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (NY). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149.
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016.
Van Wijk et al., Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet. Apr. 2004;74(4):738-44. doi: 10.1086/383096. Epub Mar. 10, 2004.
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006.
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004.
Venken et al., Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase. Methods Mol Biol. 2012;859:203-28. doi: 10.1007/978-1-61779-603-6_12.
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1):1-38. doi: 10.1016/0304-419x(77)90005-1.
Vidal et al., Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res. Feb. 15, 1999;27(4):919-29. doi: 10.1093/nar/27.4.919.
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208.
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271.
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003.
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97.
Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160.
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009.
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004.
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol Struct. 2006;35:225-49. Review.
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8.
Wang et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481):117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013.
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009.
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014.
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012.
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013.
Wang et al., Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016.
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c.
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014.
Weill et al., DNA polymerases in adaptive immunity. Nat Rev Immunol. Apr. 2008;8(4):302-12. doi: 10.1038/nri2281. Epub Mar. 14, 2008.
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008.
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human CIC-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012.
Weiss et al., Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. Apr. 14, 2011;472(7342):186-90. doi: 10.1038/nature09975. Epub Mar. 23, 2011.
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014.
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9.
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91.
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5.
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016.
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006.
Wills et al., Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. Sep. 1, 1994;13(17):4137-44. doi: 10.1002/j.1460-2075.1994.tb06731.x.
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49.
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989.
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823.
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002.
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6.
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002.
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33.
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241):1376-81. doi:; 10.1126/science.aab1433. Epub May 21, 2015.
Wirth et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. May 2006;119(4):422-8. doi: 10.1007/s00439-006-0156-7. Epub Mar. 1, 2006.
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61.
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005.
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88.
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879.
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011.
Woods et al., The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur J Hum Genet. May 2015;23(5):561-3. doi: 10.1038/ejhg.2014.166. Epub Aug. 13, 2014.
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7.
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015.
Wu et al., A novel SCN9A mutation responsible for primary erythromelalgia and is resistant to the treatment of sodium channel blockers. PLoS One. 2013;8(1):e55212. doi: 10.1371/journal.pone.0055212. Epub Jan. 31, 2013. 15 pages.
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016.
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5.
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226.
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52):14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013.
Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016.
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ΦC31 integrase system. DNA Cell Biol. Jul. 2012;31(7):1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012.
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62.
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87.
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388.
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994;13(23):5517-22.
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014.
Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53.
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32.
Yamane et al., Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol. Jan. 2011;12(1):62-9. doi: 10.1038/ni.1964. Epub Nov. 28, 2010.
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja980776o.
Yang et al., BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. Sep. 13, 2002;297(5588):1837-48. doi: 10.1126/science.297.5588.1837.
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002.
Yang et al., Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. Nov. 27, 2015;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub Oct. 11, 2015.
Yang et al., Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. Mar. 2004;41(3):171-4. doi: 10.1136/jmg.2003.012153.
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013.
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014.
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7.
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6.
Yang et al., The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature. Feb. 10, 2005;433(7026):653-7. doi: 10.1038/nature03234.
Yang, Development of Human Genome Editing Tools for the Study of Genetic Variations and Gene Therapies. Doctoral Dissertation. Harvard University. 2013. Accessible via nrs.harvard.edu/urn-3:HUL.InstRepos:11181072. 277 pages.
Yang, Nucleases: diversity of structure, function and mechanism. Q Rev Biophys. Feb. 2011;44(1):1-93. doi: 10.1017/S0033583510000181. Epub Sep. 21, 2010.
Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007.
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23.
Yasui, Alternative excision repair pathways. Cold Spring Harb Perspect Biol. Jun. 1, 2013;5(6):a012617. doi: 10.1101/cshperspect.a012617.
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008.
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6.
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252.
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010.
Yu et al., Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell. Oct. 2003;12(4):1029-41. doi: 10.1016/s1097-2765(03)00394-0.
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8.
Yu et al., Progress towards gene therapy for HIV infection. Gene Ther. Jan. 1994;1(1):13-26.
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010.
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014.
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009.
Zhang et al., Π-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015.
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46.
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013.
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217.
Zhang et al., Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. Nov. 2003;50(4):1111-24. doi: 10.1046/j.1365-2958.2003.03734.x.
Zhang et al., Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One. Mar. 24, 2015;10(3):e0120396. doi: 10.1371/journal.pone.0120396. 14 pages.
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016.
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012.
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015.
Zhou et al., GISSD: Group I Intron Sequence and Structure Database. Nucleic Acids Res. Jan. 2008;36(Database issue):D31-7. doi: 10.1093/nar/gkm766. Epub Oct. 16, 2007.
Zhou et al., Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804.
Zielenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497.
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014.
Zimmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6.
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67.
Zolotukhin et al., Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. Oct. 2002;28(2):158-67. doi: 10.1016/s1046-2023(02)00220-7.
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005.
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999.
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8, Supplemental Info. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Ousterout et al., Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. Feb. 18, 2015;6:6244. doi: 10.1038/ncomms7244.
Traxler et al., A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016.
[No Author Listed], MutL homolog 1. UniProtKB Acc. No. F1MPG0. May 3, 2011. Accessible at https://rest.uniprot.org/unisave/F1MPG0?format=txt&versions=1. 1 page.
Acharya et al., hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):13629-34. doi: 10.1073/pnas.93.24.13629.
Bertsimas et al., Simulated annealing. Statistical Science. Feb. 1993;8(1):10-15. doi: 10.1214/ss/1177011077.
Chen et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. Dec. 19, 2013;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001. Erratum in: Cell. Jan. 16, 2014;156(1-2):373.
Fang et al., Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J Biol Chem. Jun. 5, 1993;268(16):11838-44.
Fang et al., The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell. Oct. 1, 2015;60(1):131-45. doi: 10.1016/j.molcel.2015.08.015. Epub Sep. 24, 2015.
Feng et al., Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. Oct. 2013;23(10):1229-32. doi: 10.1038/cr.2013.114. Epub Aug. 20, 2013.
Fishel et al., The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. Dec. 3, 1993;75(5):1027-38. doi: 10.1016/0092-8674(93)90546-3. Erratum in: Cell. Apr. 8, 1994;77(1):1 p following 166.
Fu et al., Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Methods Enzymol. 2014;546:21-45. doi: 10.1016/B978-0-12-801185-0.00002-7.
Geisberg et al., Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. Feb. 13, 2014;156(4):812-24. doi: 10.1016/j.cell.2013.12.026.
Geng et al., In vitro studies of DNA mismatch repair proteins. Anal Biochem. Jun. 15, 2011;413(2):179-84. doi: 10.1016/j.ab.2011.02.017. Epub Feb. 15, 2011.
Genschel et al., Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem. Apr. 12, 2002;277(15):13302-11. doi: 10.1074/jbc.M111854200. Epub Jan. 24, 2002.
Genschel et al., Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem. Jul. 31, 1998;273(31):19895-901. doi: 10.1074/jbc.273.31.19895. Erratum in: J Biol Chem Oct. 9, 1998;273(41):27034.
Green et al., Characterization of the mechanical unfolding of RNA pseudoknots. J Mol Biol. Jan. 11, 2008;375(2):511-28. doi: 10.1016/j.jmb.2007.05.058. Epub May 26, 2007.
Gueneau et al., Structure of the MutLα C-terminal domain reveals how M1h1 contributes to Pms1 endonuclease site. Nat Struct Mol Biol. Apr. 2013;20(4):461-8. doi: 10.1038/nsmb.2511. Epub Feb. 24, 2013.
Guerrette et al., The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem. Mar. 5, 1999;274(10):6336-41. doi: 10.1074/jbc.274.10.6336.
Gupta et al., Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat Struct Mol Biol. Dec. 18, 2011;19(1):72-8. doi: 10.1038/nsmb.2175.
Houck-Loomis et al., An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature. Nov. 27, 2011;480(7378):561-4. doi: 10.1038/nature 10657.
Houseley et al., The many pathways of RNA degradation. Cell. Feb. 20, 2009;136(4):763-76. doi: 10.1016/j.cell.2009.01.019.
Iaccarino et al., hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J. May 1, 1998;17(9):2677-86. doi: 10.1093/emboj/17.9.2677.
Ibrahim et al., RNA recognition by 3′-to-5′ exonucleases: the substrate perspective. Biochim Biophys Acta. Apr. 2008;1779(4):256-65. doi: 10.1016/j.bbagrm.2007.11.004. Epub Dec. 3, 2007.
Iyer et al., DNA mismatch repair: functions and mechanisms. Chem Rev. Feb. 2006;106(2):302-23. doi: 10.1021/cr0404794.
Kadyrov et al., Endonucleolytic function of MutLalpha in human mismatch repair. Cell. Jul. 28, 2006;126(2):297-308. doi: 10.1016/j.cell.2006.05.039.
Ku et al., Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors (Basel). Jul. 6, 2015;15(7):16281-313. doi: 10.3390/s150716281.
Kunkel et al., DNA mismatch repair. Annu Rev Biochem. 2005;74:681-710. doi: 10.1146/annurev.biochem.74.082803.133243.
Lahue et al., DNA mismatch correction in a defined system. Science. Jul. 14, 1989;245(4914):160-4. doi: 10.1126/science.2665076.
Leach et al., Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. Dec. 17, 1993;75(6):1215-25. doi: 10.1016/0092-8674(93)90330-s.
Li, Mechanisms and functions of DNA mismatch repair. Cell Res. Jan. 2008;18(1):85-98. doi: 10.1038/cr.2007.115.
Lujan et al., Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. Nov. 2014;24(11):1751-64. doi: 10.1101/gr.178335.114. Epub Sep. 12, 2014.
Mahoney et al., The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clin Ther. Apr. 1, 2015;37(4):764-82. doi: 10.1016/j.clinthera.2015.02.018. Epub Mar. 29, 2015.
Micozzi et al., Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol. Feb. 2014;63:64-74. doi: 10.1016/j.ijbiomac.2013.10.029. Epub Oct. 29, 2013. Erratum in: Int J Biol Macromol. Feb. 2014;63:262.
Millevoi et al., G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA. Jul.-Aug. 2012;3(4):495-507. doi: 10.1002/wrna.1113. Epub Apr. 4, 2012.
Pandey et al., Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J Phys Chem B. Jun. 13, 2013;117(23):6896-905. doi: 10.1021/jp401739m. Epub May 29, 2013. Supplementary Information, 21 pages.
Parsons et al., Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. Dec. 17, 1993;75(6):1227-36. doi: 10.1016/0092-8674(93)90331-j.
Petit et al., Powerful mutators lurking in the genome. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):705-15. doi: 10.1098/rstb.2008.0272.
Piotukh et al., Directed evolution of sortase A mutants with altered substrate selectivity profiles. J Am Chem Soc. Nov. 9, 2011;133(44):17536-9. doi: 10.1021/ja205630g. Epub Oct. 13, 2011.
Plotz et al., N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res. Jun. 15, 2003;31(12):3217-26. doi: 10.1093/nar/gkg420.
Räschle et al., Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem. Jun. 14, 2002;277(24):21810-20. doi: 10.1074/jbc.M108787200. Epub Apr. 10, 2002.
Shcherbakova et al., Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol. Apr. 1999;19(4):3177-83. doi: 10.1128/MCB.19.4.3177.
Strand et al., Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. Sep. 16, 1993;365(6443):274-6. doi: 10.1038/365274a0. Erratum in: Nature Apr. 7, 1994;368(6471);569.
Su et al., Mispair specificity of methyl-directed DNA mismatch correction in vitro. J Biol Chem. May 15, 1988;263(14):6829-35. Erratum in: J Biol Chem Aug. 5, 1988;263(22):11015.
Sugawara et al., Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9315-20. doi: 10.1073/pnas.0305749101. Epub Jun. 15, 2004.
Supek et al., Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature. May 7, 2015;521(7550):81-4. doi: 10.1038/nature14173. Epub Feb. 23, 2015.
Svitashev et al., Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. Oct. 2015;169(2):931-45. doi: 10.1104/pp.15.00793. Epub Aug. 12, 2015.
Thomas et al., Heteroduplex repair in extracts of human HeLa cells. J Biol Chem. Feb. 25, 1991;266(6):3744-51.
Tomer et al., Contribution of human mlh1 and pms2 ATPase activities to DNA mismatch repair. J Biol Chem. Jun. 14, 2002;277(24):21801-9. doi: 10.1074/jbc.M111342200. Epub Mar. 15, 2002.
Tran et al., Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. May 1997;17(5):2859-65. doi: 10.1128/MCB.17.5.2859.
Umar et al., DNA loop repair by human cell extracts. Science. Nov. 4, 1994;266(5186):814-6. doi: 10.1126/science.7973637.
Warren et al., Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell. May 25, 2007;26(4):579-92. doi: 10.1016/j.molcel.2007.04.018.
Wu et al., MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials. Sep. 2014;35(29):8416-26. doi: 10.1016/j.biomaterials.2014.06.006. Epub Jul. 3, 2014.
Xi et al., C-terminal Loop Mutations Determine Folding and Secretion Properties of PCSK9. Biochem Mol Biol J. 2016;2(3):17. doi: 10.21767/2471-8084.100026. 12 pages.
Yi et al., Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A. Apr. 30, 2013;110(18):7229-34. doi: 10.1073/pnas.1215994110. Epub Apr. 15, 2013.
Zhang et al., Reconstitution of 5′-directed human mismatch repair in a purified system. Cell. Sep. 9, 2005;122(5):693-705. doi: 10.1016/j.cell.2005.06.027.
U.S. Appl. No. 17/289,665, filed Apr. 28, 2021, Liu et al.
U.S. Appl. No. 16/756,432, filed Apr. 15, 2020, Liu et al.
U.S. Appl. No. 16/772,747, filed Jun. 12, 2020, Shen et al.
U.S. Appl. No. 17/425,261, filed Jul. 22, 2021, Kim et al.
U.S. Appl. No. 17/057,398, filed Nov. 20, 2020, Liu et al.
U.S. Appl. No. 17/259,147, filed Jan. 8, 2021, Liu et al.
U.S. Appl. No. 17/270,396, filed Feb. 22, 2021, Liu et al.
U.S. Appl. No. 17/273,688, filed Mar. 4, 2021, Liu et al.
U.S. Appl. No. 17/294,287, filed May 14, 2021, Liu et al.
U.S. Appl. No. 17/288,504, filed Apr. 23, 2021, Liu et al.
U.S. Appl. No. 17/633,573, filed Feb. 7, 2022, Liu et al.
U.S. Appl. No. 17/910,552, filed Sep. 9, 2022, Liu et al.
U.S. Appl. No. 17/436,048, filed Sep. 2, 2021, Liu et al.
U.S. Appl. No. 17/219,590, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/603,917, filed Oct. 14, 2021, Liu et al.
U.S. Appl. No. 17/797,700, filed Aug. 4, 2022, Liu et al.
U.S. Appl. No. 17/602,738, filed Oct. 8, 2021, Liu et al.
U.S. Appl. No. 17/613,025, filed Nov. 19, 2021, Liu et al.
U.S. Appl. No. 17/300,668, filed Sep. 17, 2021, Liu et al.
U.S. Appl. No. 17/795,819, filed Jul. 27, 2022, Liu et al.
U.S. Appl. No. 17/779,953, filed May 25, 2022, Liu et al.
U.S. Appl. No. 17/767,777, filed Apr. 8, 2022, Liu et al.
U.S. Appl. No. 17/797,701, filed Aug. 4, 2022, Liu et al.
U.S. Appl. No. 18/053,269, filed Nov. 7, 2022, Liu et al.
U.S. Appl. No. 17/797,697, filed Aug. 4, 2022, Liu et al.
U.S. Appl. No. 17/921,971, filed Oct. 27, 2022, Liu et al.
U.S. Appl. No. 17/219,635, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 18/064,738, filed Dec. 12, 2022, Liu et al.
U.S. Appl. No. 17/219,672, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/751,599, filed May 23, 2022, Liu et al.
U.S. Appl. No. 17/440,682, filed Sep. 17, 2021, Liu et al.
U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al.
U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al.
U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al.
U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al.
U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al.
U.S. Appl. No. 14/911,117, filed Feb. 9, 2016, Liu et al.
U.S. Appl. No. 15/029,602, filed Apr. 14, 2016, Ritter et al.
U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/462,189, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/860,639, filed Apr. 28, 2020, Liu et al.
U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 17/103,233, filed Nov. 24, 2020, Liu et al.
U.S. Appl. No. 17/937,203, filed Sep. 30, 2022, Liu et al.
U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/796,323, filed Feb. 20, 2020, Liu et al.
U.S. Appl. No. 17/688,416, filed Mar. 7, 2022, Liu et al.
U.S. Appl. No. 14/325,815, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al.
U.S. Appl. No. 16/374,634, filed Apr. 3, 2019, Liu et al.
U.S. Appl. No. 17/408,306, filed Aug. 20, 2021, Liu et al.
U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al.
U.S. Appl. No. 16/132,276, filed Sep. 14, 2018, Liu et al.
U.S. Appl. No. 16/888,646, filed May 29, 2020, Liu et al.
U.S. Appl. No. 18/069,898, filed Dec. 21, 2022, Liu et al.
U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al.
U.S. Appl. No. 15/958,721, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 17/130,812, filed Dec. 22, 2020, Liu et al.
U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al.
U.S. Appl. No. 15/960,171, filed Apr. 23, 2018, Liu et al.
U.S. Appl. No. 17/527,011, filed Nov. 15, 2021, Liu et al.
U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al.
U.S. Appl. No. 18/055,274, filed Nov. 14, 2022, Maianti et al.
U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/926,436, filed Jul. 10, 2020, Maianti et al.
U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 16/324,476, filed Feb. 8, 2019, Liu et al.
U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al.
U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al.
U.S. Appl. No. 17/148,059, filed Jan. 13, 2021, Liu et al.
U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Maianti et al.
U.S. Appl. No. 15/784,033, filed Oct. 13, 2017, Liu et al.
U.S. Appl. No. 17/692,925, filed Mar. 11, 2022, Liu et al.
U.S. Appl. No. 16/492,553, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 18/059,308, filed Nov. 28, 2022, Liu et al.
U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al.
U.S. Appl. No. 17/586,688, filed Jan. 27, 2022, Liu et al.
U.S. Appl. No. 18/066,878, filed Dec. 15, 2022, Liu et al.
U.S. Appl. No. 16/643,376, filed Feb. 28, 2020, Liu et al.
U.S. Appl. No. 17/700,109, filed Mar. 21, 2022, Liu et al.
U.S. Appl. No. 16/612,988, filed Nov. 12, 2019, Liu et al.
U.S. Appl. No. 16/634,405, filed Jan. 27, 2020, Liu et al.
U.S. Appl. No. 16/976,047, filed Aug. 26, 2020, Liu et al.
U.S. Appl. No. 17/593,020, filed Sep. 3, 2021, Church et al.
U.S. Appl. No. 18/326,588, filed May 31, 2023, Liu et al.
U.S. Appl. No. 18/326,634, filed May 31, 2023, Liu et al.
U.S. Appl. No. 18/326,689, filed May 31, 2023, Liu et al.
U.S. Appl. No. 18/326,708, filed May 31, 2023, Liu et al.
U.S. Appl. No. 18/323,245, filed May 24, 2023, Liu et al.
U.S. Appl. No. 18/028,183, filed Mar. 23, 2023, Liu et al.
U.S. Appl. No. 18/271,656, filed Jul. 10, 2023, Liu et al.
U.S. Appl. No. 18/324,394, filed May 26, 2002, Liu et al.
U.S. Appl. No. 18/174,569, filed Feb. 24, 2023, Liu et al.
U.S. Appl. No. 18/178,048, filed Mar. 3, 2023, Liu et al.
Related Publications (1)
Number Date Country
20210254127 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
61864289 Aug 2013 US
Divisions (1)
Number Date Country
Parent 14911117 US
Child 17160329 US
Continuations (4)
Number Date Country
Parent 14874123 Oct 2015 US
Child 14911117 US
Parent 14320413 Jun 2014 US
Child PCT/US2014/050283 US
Parent 14320370 Jun 2014 US
Child 14320413 US
Parent 14320370 Jun 2014 US
Child 14874123 US