Nucleic acid molecules and other molecules associated with the carbon assimilation pathway

Information

  • Patent Application
  • 20090193538
  • Publication Number
    20090193538
  • Date Filed
    June 26, 2008
    16 years ago
  • Date Published
    July 30, 2009
    15 years ago
Abstract
The present invention is in the field of plant biochemistry. More specifically the invention relates to nucleic acid sequences from plant cells, in particular, nucleic acid sequences from maize and soybean associated with the carbon assimilation pathway enzymes. The invention encompasses nucleic acid molecules that encode proteins and fragments of proteins. In addition, the invention also encompasses proteins and fragments of proteins so encoded and antibodies capable of binding these proteins or fragments. The invention also relates to methods of using the nucleic acid molecules, proteins and fragments of proteins and antibodies, for example for genome mapping, gene identification and analysis, plant breeding, preparation of constructs for use in plant gene expression and transgenic plants.
Description
FIELD OF THE INVENTION

The present invention is in the field of plant biochemistry. More specifically the invention relates to nucleic acid sequences from plant cells, in particular, nucleic acid sequences from maize and soybean plants associated with the carbon assimilation pathway in plants. The invention encompasses nucleic acid molecules that encode proteins and fragments of proteins. In addition, the invention also encompasses proteins and fragments of proteins so encoded and antibodies capable of binding these proteins or fragments. The invention also relates to methods of using the nucleic acid molecules, proteins and fragments of proteins and antibodies, for example for genome mapping, gene identification and analysis, plant breeding, preparation of constructs for use in plant gene expression and transgenic plants.


BACKGROUND OF THE INVENTION
I. Introduction

The primary sites of photosynthetic activity, generally referred to as “source organs”, are mature leaves and to a lesser extent, other green tissues (e.g., stems). Photosynthesis may be broadly divided into two phases: a light phase, in which the electromagnetic energy of sunlight is trapped and converted into ATP and NADPH, and a dark or synthetic phase, in which the ATP and NADPH generated by the light phase are used, in part, for biosynthetic carbon reduction. In most plants, the major products of photosynthesis are starch (transitory storage form of carbohydrate formed in chloroplasts), and sucrose (formed in the cytosol). Sucrose represents the predominant form of carbon transport in higher plants. Processes that play a role in plant growth and development, crop yield potential and stability, and crop quality and composition include: enhanced carbon assimilation, efficient carbon storage, and increased carbon export and partitioning.


Oxygen-evolving organisms are reported to have a common pathway for the reduction of CO2 to sugar phosphates. This pathway is known as the reductive pentose phosphate (RPP), Calvin-Benson or C3 cycle (Calvin and Bassham, The Photosynthesis of Carbon Compounds, Benjamin, New York (1962); Bassham and Buchanan, In: Photosynthesis, Govindjee, ed., Academic Press, New York, 141-189 (1982), both of which are herein incorporated by reference). A number of plants exhibit adaptations in which CO2 is first fixed by a supplementary pathway and then released in cells in which the RPP cycle operates. From the point of view of the metabolic pathway operating for photosynthetic carbon assimilation, higher plants can be classified by the existence of supplemental pathway such as C3, C4, and crassulacean acid metabolism species (Edwards and Walker, C3-C4: Mechanism and cellular and environmental regulation ofphotosynthesis, Blackwell Scientific Publications, Oxford, (1983), herein incorporated by reference in its entirety).


The RPP pathway is reported to be the main route by which CO2 is ultimately incorporated into organic compounds in all species of higher plants (Edwards and Walker, C3-C4: Mechanism and cellular and environmental regulation ofphotosynthesis, Blackwell Scientific Publications, Oxford, (1983); Macdonald and Buchanan, In: Plant Physiology, Biochemistry and Molecular Biology, Dennis and Turpin, eds., J. Wiley & Sons, Inc., New York, p. 239 (1990), herein incorporated by reference in its entirety; Robinson and Walker, In: The Biochemistry of Plants, Vol. 8, Hatch and Boardman, eds., Academic Press, New York, p. 193 (1981), herein incorporated by reference in its entirety). In C3 plants, the RPP pathway is the sole route for photosynthetic carbon assimilation, whereas in C4 and CAM plants an additional (not alternative) method of carbon fixation, is present separated in space (C4 plants) or in time (CAM plants) from the RPP cycle (Edwards and Walker, C3-C4: Mechanism and cellular and environmental regulation ofphotosynthesis, Blackwell Scientific Publications, Oxford, (1983)). Carbon skeletons are required to incorporate other functional groups, the operation of the RPP cycle for photosynthetic CO2 fixation is a requisite for the biochemical synthesis of carbohydrates, lipids, proteins, and nucleic acids.


II. The Reductive Pentose Phosphate Cycle

The RPP cycle is reported to be the primary carboxylating mechanism in plants. Enzymes which catalyze steps in the RPP cycle are water soluble and are located in the soluble portion of the chloroplast (stroma). Reviews on the mechanism and enzymes involved in the RPP cycle include: Bhagwat, In: Handbook of Photosynthesis, Pessaraki, ed., Marcel Dekker Inc, New York, 461-480 (1997), herein incorporated by reference in its entirety; Iglesias et al., In: Handbook of Photosynthesis, Pessaraki, ed., Marcel Dekker Inc, New York, 481-503 (1997), herein incorporated by reference in its entirety; Robinson and Walker, In: The Biochemistry of Plants, Vol. 8, Hatch and Boardman, eds., Academic Press, New York, 193-236 (1981); Macdonald and Buchanan, In: Plant Metabolism, Dennis et al., eds., Longman, Essex, England, 299-313 (1997).


The RPP pathway is an autocatalytic pathway for the de novo synthesis of carbohydrates from inorganic CO2. The RPP cycle is reported to comprise three phases. The first phase of the cycle is the carboxylation phase, during which ribulose-1,5-bisphosphate (Rbu-1,5-P2) is carboxylated to produce two molecules of 3-phosphoglycerate (3-PGA). The next phase is the reductive phase during which ATP and NADPH produced by the light reaction of photosynthesis are consumed in the reduction of 3-PGA to glyceraldehyde-3-phosphate (GA-3-P). The RPP cycle is completed by the regeneration phase where intermediates formed from GA-3-P are utilized via a series of isomerizations, condensations and rearrangements, resulting in the conversion of five molecules of triose phosphate to three molecules of pentose phosphate, and eventually ribulose 5-phosphate (Rbu-5-P). Phosphorylation of Rbu-5-P by ATP regenerates the original carbon acceptor Rbu-1,5-P2, thus completing the cycle.


The RPP cycle is a metabolic pathway common to all photosynthetic organisms. Many of the enzymes of the metabolic route, as well as proteins involved in metabolite transport and regulation, have been purified.


Ribulose bisphosphate carboxylase (Rubisco, also referred to as ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39)) constitutes about 50% of the total soluble protein in green leaves. Ribulose bisphosphate carboxylase is reported to provide a quantitative link between the pools of inorganic and organic carbon in the biosphere. Ribulose bisphosphate carboxylase catalyses the conversion of atmospheric carbon dioxide into three carbon compounds. Subsequent reactions result in both regeneration of the acceptor molecule and translocation of three molecules of triose-phosphate to the cytosol for synthesis of sucrose and starch. Reviews of the ribulose bisphosphate carboxylase enzyme are provided by Ellis, Trends Biochem. Sci. 4: 241-244 (1979); Hartman and Harpel, Annu. Rev. Biochem. 63: 197-234 (1994); Miziorko and Lorimer, Annu. Rev. Biochem. 52: 507-535 (1983); Andrews and Lorimer, In: The Biochemistry of Plants, Vol 10, Hatch and Boardman, eds., Academic Press, San Diego, p. 131 (1987); Jensen, In: Plant Physiology, Biochemistry, and Molecular Biology, Dennis and Turpin, eds., J. Wiley & Sons, Inc., New York, p 224 (1990), all of which are herein incorporated by reference in their entirety.


Plants are reported to have two phosphoglycerate kinase isoenzymes (EC 2.7.2.3), one in the chloroplast and the other in the cytosol. The two isoenzymes are antigenically related, but can be distinguished on the basis of their isoelectric point (pI) values and on the basis of their affinity for magnesium and other substrates (Anderson and Advani, Plant Physiol. 45:583-585 (1970); Kopke-Secundo et al., Plant Physiol. 93:40-47 (1990), both of which are herein incorporated by reference in their entirety).


Three different glyceraldehyde 3-phosphate dehydrogenase (GAPDH (EC 1.2.1.13)) enzymes are found in eukaryotic cells (Pupillo and Faggiani, Arch. Biochem. Biophys. 194: 581-592 (1979); Iglesias, Biochem. Educ. 18: 2-5 (1990), both of which are herein incorporated by reference in their entirety). In higher plants there are two chloroplast GAPDH subunits: GapA (36 kDa) and GapB (42 kDa). The functional enzyme is reported to be a tetramer with either an A4 or an A2B2 subunit structure (Cerff, In: Methods in Choroplast Molecular Biology, Edelman, ed., Elsevier Press, Amsterdam: 683 (1982), the entirety of which is herein incorporated by reference). Sequence analysis of tobacco cDNA clones encoding the GapA and GapB subunits has revealed that they are homologous (Shih et al., Cell 47: 73-83 (1986), the entirety of which is herein incorporated by reference). The three-dimensional structure of GADPH from both eukaryotes and prokaryotes has been studied, and it seems that the initial binding of the NAD coenzyme triggers a number of structural changes (Skarzynski and Wonacott, J. Mol. Biol. 203: 1097-1118 (1988), the entirety of which is herein incorporated by reference).


Chloroplastic triose phosphate isomerase (TPI (EC 5.3.1.1)) is a homodimer with a subunit molecular weight of about 27 kDa (Pichersky and Gottlieb, Plant Physiol. 74: 340-347 (1984), the entirety of which is herein incorporated by reference). The chloroplastic enzyme is reported to be distinguishable from the cytosolic enzyme by isoelectric focusing and peptide digestion mapping (Pichersky and Gottlieb, Plant Physiol. 74: 340-347 (1984); Kurzok and Feierabend, Biochim. Biophys. Acta 788: 222-233 (1984), herein incorporated by reference in its entirety). TPI, like several other RPP cycle enzymes, binds the substrate in a pocket, which is then reported to be closed by a flexible loop which acts to shield the substrate from attack by water. Even though the active site is formed by residues from one subunit, the second subunit helps to exclude water from the active site domain.


Two reactions of the RPP cycle involve aldolase (EC 4.1.2.13), and both are catalyzed by the same enzyme, which is a tetramer of the 38 kDa subunit. It has been reported that each subunit of aldolase has a beta/alpha barrel structure (Sygusch et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:7846-7850 (1987), the entirety of which is herein incorporated by reference) and that the C-terminal region covers the active site pocket, which is in the barrel and regulates access to the active site pocket.


Fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11) is a homotetramer with a molecular weight of about 160 kDa. The amino acid sequence is reported to be highly conserved (Raines et al., Nucleic Acid Res. 16: 7931-7942 (1988), the entirety of which is herein incorporated by reference). In both wheat and spinach, 12 extra amino acid residues have been identified that seem to be involved in the regulation by light via the ferredoxin/thioredoxin system (Raines et al., Nucleic Acid Res. 16: 7931-7942 (1988); Marcus et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:5379-5383 (1988), the entirety of which is herein incorporated by reference).


Transketolase (EC 2.2.1.1) (152 kDa tetramer) is found in cytosolic and chloroplastic forms. These forms are reported to have similar properties except for their response to Mg2+(Feierbend and Gringel, Zeitschrift fur Pflanzenphysiol. 110:247-258 (1983); Murphy and Walker, Planta 155: 316-320 (1982), both of which are herein incorporated by reference in their entirety).


Sedoheptulose-1,7-bisphosphate phosphatase (SBPase (EC 3.1.3.37)) is not reported to have a cytosolic counterpart and is reported to be found only in the chloroplast. The enzyme is reported to be a homodimer with a subunit molecular weight of 35-38 kDa (Nishizawa and Buchanan, J. Biol. Chem. 256: 6119-6126 (1981); Cadet and Meunier, Biochem. J. 253: 243-248 (1988), both of which are herein incorporated by reference in their entirety).


D-ribulose-5-phosphate-3-epimerase (EC 5.1.3.1) has been reported in animals as a homodimer with a subunit molecular weight of 23 kDa (Karmali et al., Biochem. J. 211:617-623 (1983), the entirety of which is herein incorporated by reference).


Ribose-5-phosphate isomerase (EC 5.3.1.6) has been purified from tobacco and spinach and is reported to be a homodimer with a subunit molecular weight of 26 kDa (Rutner, Biochemistry 9: 178-184 (1970); Babadzhanova and Bakaeva, Biokhimiya 53: 134-140 (1987), both of which are herein incorporated by reference in their entirety).


III. Regulation of C3 Photosynthesis

The regulatory properties of the RPP cycle have been reported by Edwards and Walker, C3-C4: Mechanism and Cellular and Environmental Regulation of Photosynthesis, Blackwell Scientific Publications, Oxford, (1983); Leegood, Photosynthesis Res. 6: 247-259 (1985), herein incorporated by reference in its entirety; Woodrow, Biochim. Biophys. Acta 851:181-192 (1986), the entirety of which is herein incorporated by reference. The conservation of phosphate is reported to play a role in the regulation of C3 photosynthesis, as a change in the level of any phosphorylated intermediate is balanced by an equal and opposite change in terms of phosphate elsewhere in the cycle (Woodrow, Biochim. Biophys. Acta. 851:181-192 (1986); Fell and Sauro, Eur. J. Biochem. 148: 555-561 (1985), herein incorporated by reference in its entirety). Therefore, changes in the activity of any of the RPP cycle enzymes can affect both the substrate concentration and activities of other enzymes in the chloroplast.


IV. The C4 Pathway of Carbon Assimilation

In the C4 pathway, CO2 is concentrated in bundle sheath cells at the site of the RPP cycle initiated by ribulose bisphosphate carboxylase. C3 photosynthesis is documented to be the only mode of carbon assimilation in algae, bryophytes, pteridophytes, gymnosperms, and the majority of angiosperm families. Only about 10 families of known monocots and dicots have been reported to possess the C4 pathway of photosynthesis, these include, for example, Zea mays, sorghum, sugar cane, etc. The C4 pathway has been reviewed by, for example, Edwards et al., In: CO2 Metabolism and Productivity of Plants, Burris and Black, eds., University Park Press, Baltimore, Md., p. 83 (1976); Hatch, Biochim. Biophys. Acta 895: 81-106 (1987); Ashton et al., In: Methods In Plant Biochemistry, Vol. 3, Academic Press Limited, New York, p. 39 (1990), all of which are herein incorporated by reference in their entirety. A feature reported to be common to the enzymes in the C4 pathway is that their activities are 15-100 times higher compared to those reported in C3 plants. For example, adenylate kinase and pyrophosphatase activities are reported to be 20-50 times higher in C4 plants than in C-3 plants. Adenylate kinase and pyrophosphatase are largely located in the mesophyll chloroplast together with pyruvate Pi dikinase (Slack et al., Biochem. J. 114: 489-498 (1969), herein incorporated by reference in its entirety).


In certain plant types (e.g., Zea mays, sorghum and sugar cane), CO2 is initially assimilated in mesophyll cells (with PEP acting as a primary acceptor of CO2) as oxaloacetate, which is reduced to malate by NADP-malate dehydrogenase. It has been reported that malate is moved to bundle sheath cells. In the chloroplast of bundle sheath cells, malate is decarboxylated by NADP-malic enzyme (malate formers) giving rise to pyruvate, and releasing CO2 and NADPH. NADPH can be cycled back to NADP by coupling to PGA reduction in the RPP cycle. The carbon formed moves back to the mesophyll cells where it is converted to PEP by pyruvate Pi dikinase.


Plants of the PEP carboxykinase type are reported to have higher activities of aspartate and alanine aminotransferases than the malate formers. Such plants are reported to be aspartate formers rather than malate formers. In aspartate formers, the activity of PEP carboxykinase is reported to be higher and the activity of NADP-malic enzyme is reported to be lower (Edwards and Black, In: Photosynthesis and Photorespiration, Hatch et al., eds., Wiley Interscience, New York, p. 153 (1971), the entirety of which is herein incorporated by reference). It has been reported that the PEP carboxykinase is located in the cytosol of bundle sheath cells.


This group of C4 plants is not reported to contain either high levels of NAD-malic enzyme activity or high levels of PEP carboxykinase. It has been reported by Hatch and Kagawa (Aust. J. Plant Physiol. 1: 357-369 (1974), the entirety of which is herein incorporated by reference) that these plants contain high NAD-malic enzyme activity in mitochondria and that the number of mitochondria in these plants may be increased by a factor of 3-4.


V. Enzymes Involved in the C4 Pathway

Phosphoenolpyruvate carboxylase (PEP carboxykinase (EC 4.1.1.31)) is reported to initiate the carboxylative phase of the C4 metabolic route by catalyzing the irreversible beta-carboxylation of PEP. The reaction utilizes a divalent metal ion (e.g., Mg2+) as a cofactor. In C4 plants, PEP carboxykinase is reported to play a role in catalyzing the initial fixation of atmospheric CO2 in the cytoplasm of mesophyll cells (O'Leary, Annu. Rev. Plant Physiol. 33: 297-315 (1982); Andreo et al., FEBS Lett. 213: 1-8 (1987), both of which are herein incorporated by reference in their entirety). PEP carboxykinase from C4 plants is reported to be a homotetramer with molecular weight of 400 kDa (O'Leary, Annu. Rev. Plant Physiol. 33: 297-315 (1982); Andreo et al., FEBS Lett. 213: 1-8 (1987)). Each subunit is reported to contain at least one substrate-binding site. The monomeric form is reported to be inactive (Wagner et al., Eur. J. Biochem. 173: 561-568 (1988); Walker et al., Plant Physiol. 80: 848-855 (1986); Wagner et al., Eur. J. Biochem. 164: 661-666 (1987), all of which are herein incorporated by reference in their entirety).


In C4 plants, PEP carboxykinase is reported to be allosterically regulated. Glucose-6-phosphate, triose-phosphate and Pi are reported to be activators, and malate is reported to be an inhibitor of enzyme activity. C4 PEP carboxykinase is also reported to be subject to light regulation. Responses to light/dark involve a post-translational modification of the enzyme (Jiao and Chollet, Plant Physiol. 95: 981 (1991), herein incorporated by reference in its entirety). The PEP carboxykinase is phosphorylated, during the light phase, at a serine residue close to the N-terminal region of the enzyme (Ser-15 in Zea mays) (Jiao and Chollet, Plant Physiol. 95: 981 (1991)). The phosphorylation is reported to be catalyzed by a soluble protein-serine kinase. The phosphorylated form of PEP carboxykinase is reported to be less sensitive to malate inhibition.


NADP-dependent malate dehydrogenase (NADP-MDHase (EC 1.1.1.82)) is reported to be located in the chloroplast of mesophyll cells and is reported to reduce oxaloacetate (OAA) by using photosynthetically generated NADPH. The native enzyme is reported to be a dimer composed of a nuclear-encoded subunit of molecular mass 42 kDa (Jenkins et al., Plant Sci. 45: 1-7 (1986); Kagawa and Bruno, Arch. Biochem. Biophys. 260: 674-695 (1988), both of which are herein incorporated by reference in their entirety). In C4 plants, NADP-MDHase is reported to have an alkaline pH optimum and the reduction of OAA is reported to be inhibited by NADP+. NADP-MDHase is reported to be light regulated with the enzyme active during the light phase and inactive during the dark phase. The activation mechanism involves reversible thiol/disulfide interchanges mediated by ferredoxin and thioredoxin m. The reaction is promoted under conditions of high NADPH:NADP+ ratio in the chloroplast stroma.


Aspartate aminotransferase (EC 2.6.1.1) is a cytoplasmic enzyme that converts OAA and glutamate into aspartate and alpha-ketoglutarate (alpha-KG) in mesophyll cells (Taniguchi et al., Arch. Biochem. Biophys. 282: 427-432 (1990); Rastogi et al., J. Bacteriol. 173: 2879-2887 (1991); Reynolds et al., Plant Mol. Biol. 19: 465-472 (1992); Kirk et al., Plant Physiol. 105: 763-764 (1994); Schultz et al., Plant J. 7: 61-75 (1995), all of which are herein incorporated by reference in their entirety). Aspartate is exported into bundle sheath cells where decarboxylation takes place. Aspartate aminotransferase is reported to be present in aspartate forming C4 plants.


Alanine aminotransferase (EC 2.6.1.2) is reported to be present in C4 plants of the NAD-dependent malic acid enzyme (NAD-ME) type and interconverts in a reversible reaction the metabolites pyruvate and alanine in the cytoplasm of both mesophyll and bundle sheath cells (Son et al., Plant Mol. Biol. 20: 705-713 (1992); Umemura et al., Biosci. Biotechnol. Biochem. 58: 283-287 (1994), both of which are herein incorporated by reference in their entirety). The amino acid alanine is a metabolite transported in this C4 subtype.


NADP-dependent malic enzyme (NADP-ME (EC 1.1.1.40)) is reported to be present in NADP-ME type C4 plants and is located in the chloroplasts of bundle sheath cells. NADP-ME catalyses the conversion of malate into pyruvate and CO2 in the presence of NADP+. This reaction is reported to require a metal ion (Ashton et al., In: Methods in Plant Biochemistry, Lea, ed., Academic Press, New York, p. 39 (1990); Leegood and Osmond, In: Plant Physiology, Biochemistry and Molecular Biology, Dennis and Turpin, eds., Wiley & Sons, Inc., New York, p. 274 (1990), herein incorporated by reference in its entirety). The NADP-ME enzyme in C4 plants is reported to comprise a single subunit with molecular weight of 62 kDa. At least two plastidic isoforms of NADP-ME, “dark” form and “light” form (the light form is also know as the “green” form), have been reported in Zea mays leaves (Andreo et al., In: Proceedings of the International Congress on Photosynthesis, Montepelier, France, Mathis, ed., Kluwer Academic Publishers, Amsterdam, (1995), the entirety of which is herein incorporated by reference). The dark form of the NADP-ME, which is present mainly in etiolated Zea mays leaves, has a molecular weight of 72 kDa and a lower specific activity compared to the “green” form of NADP-ME (62 kDa) found in green leaves (Andreo et al., In: Proceedings of the International Congress on Photosynthesis, Montepelier, France, Mathis, ed., Kluwer Academic Publishers, Amsterdam, (1995)). The “green” form of NADP-ME appears to be enhanced by light. The dark form of the enzyme resembles the NADP-MEs found in C-3 plants in both photosynthetic and nonphotosynthetic tissues.


NAD-dependent malic enzyme (NAD-ME (EC 1.1.1.39)) is reported to be located in the mitochondria where it catalyzes the NAD-dependent decarboxylation of malate in the presence of a divalent cation (e.g., Mg2+). NAD-ME is reported to be ineffective in the decarboxylation of OAA (Artus and Edwards, FEBS Lett. 182: 225-233 (1985), the entirety of which is herein incorporated by reference). NAD-ME is reported to comprise two subunits (alpha and beta) which differ in molecular weights (58 and 62 kDa, respectively).


In C4 plants of the PEP carboxykinase (EC 4.1.1.49) type, aspartate is converted into OAA in bundle sheath cells and ketoacid is decarboxylated by cytoplasmic PEP carboxykinase. PEP carboxykinase is reported to have a requirement for Mn2+ and a preference for ATP (Ashton et al., In: Methods in Plant Biochemistry, Lea, ed., Academic Press, New York, p. 39 (1990)). The native enzyme is reported to be a homohexamer with a molecular weight of 380 kDa (subunit molecular weight of 64 kDa). PEP carboxykinase enzyme is reported to be inhibited by the metabolites 3PGA, fructose-6-phosphate, fructose1,6 bisphosphate and DHAP.


In all three subtypes of C4 plants, regeneration of PEP from pyruvate takes place in mesophyll chloroplasts by the reaction catalyzed by pyruvate Pi dikinase (PPDKase (EC 2.7.9.1)). This is a regulatory step in the C4 pathway (Hatch, Biochim. Biophys. Acta 895: 81-106 (1987); Ashton et al., In: Methods in Plant Biochemistry, Lea, ed., Academic Press, New York, p. 39 (1990)). PPDKase is a homotetrameric protein with a molecular weight of about 390 kDa (Ashton et al., In: Methods in Plant Biochemistry, Lea, ed., Academic Press, New York, p. 39 (1990)). PPDKase is reported to be inactivated by cold temperatures and the absence of Mg2+ and is activated in the light period and inactivated in the dark period ((Ashton et al., In: Methods in Plant Biochemistry, Lea, ed., Academic Press, New York, p. 39 (1990)). Activation by light of PPDKase is a result of dephosphorylation and the switch to inactive dark form involves phosphorylation.


Pyrophosphatase (inorganic pyrophosphatase (EC 3.6.1.1)) promotes the reaction catalyzed by the enzyme pyruvate Pi dikinase in the direction of PEP synthesis through hydrolysis of PPi (Jiang et al., Arch. Biochem. Biophys. 346: 105-112 (1997); Mitchell et al., Can. J. Microbiol. 43: 734-743 (1997), both of which are herein incorporated by reference in their entirety). Pyrophosphatase has been isolated from potato (du Jardin et al., Plant Physiol 109:853-860 (1995), herein incorporated by reference in its entirety) and Arabidopisis (Kieber and Signer, Plant Mol. Biol. 16: 345-348 (1991), herein incorporated by reference in its entirety).


Ribose-5-phosphate kinase (EC 2.7.1.19) is reported to be found in photosynthetic organisms possessing the C-4 pathway. This homodimeric enzyme has a subunit molecular weight of 39.2 kDa (Roeslier and Ogren, Nucleic Acid Res. 16: 7192 (1988); Milanez and Mural, Gene 66:55-63 (1988), both of which are herein incorporated by reference in their entirety). The N-terminal region seems to be involved in the regulation of catalytic activity. Cys16 may form a part of the ATP-binding region. Lys68 has also been implicated in ATP binding (Miziorko et al., J. Biol. Chem. 265: 3642-3647 (1990), the entirety of which is herein incorporated by reference).


VI. Expressed Sequence Tag Nucleic Acid Molecules

Expressed sequence tags, or ESTs are randomly sequenced members of a cDNA library (or complementary DNA)(McCombie et al., Nature Genetics 1:124-130 (1992); Kurata et al., Nature Genetics 8:365-372 (1994); Okubo et al., Nature Genetics 2:173-179 (1992), all of which references are incorporated herein in their entirety). The randomly selected clones comprise insets that can represent a copy of up to the full length of a mRNA transcript.


Using conventional methodologies, cDNA libraries can be constructed from the mRNA (messenger RNA) of a given tissue or organism using poly dT primers and reverse transcriptase (Efstratiadis et al., Cell 7:279-3680 (1976), the entirety of which is herein incorporated by reference; Higuchi et al., Proc. Natl. Acad. Sci. (U.S.A.) 73:3146-3150 (1976), the entirety of which is herein incorporated by reference; Maniatis et al., Cell 8:163-182 (1976) the entirety of which is herein incorporated by reference; Land et al., Nucleic Acids Res. 9:2251-2266 (1981), the entirety of which is herein incorporated by reference; Okayama et al., Mol. Cell. Biol. 2:161-170 (1982), the entirety of which is herein incorporated by reference; Gubler et al., Gene 25:263-269 (1983), the entirety of which is herein incorporated by reference).


Several methods may be employed to obtain full-length cDNA constructs. For example, terminal transferase can be used to add homopolymeric tails of dC residues to the free 3′ hydroxyl groups (Land et al, Nucleic Acids Res. 9:2251-2266 (1981), the entirety of which is herein incorporated by reference). This tail can then be hybridized by a poly dG oligo which can act as a primer for the synthesis of full length second strand cDNA. Okayama and Berg, Mol. Cell. Biol. 2:161-170 (1982), the entirety of which is herein incorporated by reference, report a method for obtaining full length cDNA constructs. This method has been simplified by using synthetic primer-adapters that have both homopolymeric tails for priming the synthesis of the first and second strands and restriction sites for cloning into plasmids (Coleclough et al., Gene 34:305-314 (1985), the entirety of which is herein incorporated by reference) and bacteriophage vectors (Krawinkel et al., Nucleic Acids Res. 14:1913 (1986), the entirety of which is herein incorporated by reference; Han et al., Nucleic Acids Res. 15:6304 (1987), the entirety of which is herein incorporated by reference).


These strategies have been coupled with additional strategies for isolating rare mRNA populations. For example, a typical mammalian cell contains between 10,000 and 30,000 different mRNA sequences (Davidson, Gene Activity in Early Development, 2nd ed., Academic Press, New York (1976), the entirety of which is herein incorporated by reference). The number of clones required to achieve a given probability that a low-abundance mRNA will be present in a cDNA library is N=(ln(1−P))/(ln(1−1/n)) where N is the number of clones required, P is the probability desired and 1/n is the fractional proportion of the total mRNA that is represented by a single rare mRNA (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press (1989), the entirety of which is herein incorporated by reference).


A method to enrich preparations of mRNA for sequences of interest is to fractionate by size. One such method is to fractionate by electrophoresis through an agarose gel (Pennica et al., Nature 301:214-221 (1983), the entirety of which is herein incorporated by reference). Another such method employs sucrose gradient centrifugation in the presence of an agent, such as methylmercuric hydroxide, that denatures secondary structure in RNA (Schweinfest et al., Proc. Natl. Acad. Sci. (U.S.A.) 79:4997-5000 (1982), the entirety of which is herein incorporated by reference).


A frequently adopted method is to construct equalized or normalized cDNA libraries (Ko, Nucleic Acids Res. 18:5705-5711 (1990), the entirety of which is herein incorporated by reference; Patanjali et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:1943-1947 (1991), the entirety of which is herein incorporated by reference). Typically, the cDNA population is normalized by subtractive hybridization (Schmid et al., J. Neurochem. 48:307-312 (1987), the entirety of which is herein incorporated by reference; Fargnoli et al., Anal. Biochem. 187:364-373 (1990), the entirety of which is herein incorporated by reference; Travis et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:1696-1700 (1988), the entirety of which is herein incorporated by reference; Kato, Eur. J. Neurosci. 2:704-711 (1990); and Schweinfest et al., Genet. Anal. Tech. Appl. 7:64-70 (1990), the entirety of which is herein incorporated by reference). Subtraction represents another method for reducing the population of certain sequences in the cDNA library (Swaroop et al., Nucleic Acids Res. 19:1954 (1991), the entirety of which is herein incorporated by reference).


ESTs can be sequenced by a number of methods. Two basic methods may be used for DNA sequencing, the chain termination method of Sanger et al., Proc. Natl. Acad. Sci. (U.S.A.) 74:5463-5467 (1977), the entirety of which is herein incorporated by reference and the chemical degradation method of Maxam and Gilbert, Proc. Nat. Acad. Sci. (U.S.A.) 74:560-564 (1977), the entirety of which is herein incorporated by reference. Automation and advances in technology such as the replacement of radioisotopes with fluorescence-based sequencing have reduced the effort required to sequence DNA (Craxton, Methods 2:20-26 (1991), the entirety of which is herein incorporated by reference; Ju et al., Proc. Natl. Acad. Sci. (U.S.A.) 92:4347-4351 (1995), the entirety of which is herein incorporated by reference; Tabor and Richardson, Proc. Natl. Acad. Sci. (U.S.A.) 92:6339-6343 (1995), the entirety of which is herein incorporated by reference). Automated sequencers are available from, for example, Pharmacia Biotech, Inc., Piscataway, N.J. (Pharmacia ALF), LI-COR, Inc., Lincoln, Nebr. (LI-COR 4,000) and Millipore, Bedford, Mass. (Millipore BaseStation).


In addition, advances in capillary gel electrophoresis have also reduced the effort required to sequence DNA and such advances provide a rapid high resolution approach for sequencing DNA samples (Swerdlow and Gesteland, Nucleic Acids Res. 18:1415-1419 (1990); Smith, Nature 349:812-813 (1991); Luckey et al., Methods Enzymol. 218:154-172 (1993); Lu et al., J. Chromatog. A. 680:497-501 (1994); Carson et al., Anal. Chem. 65:3219-3226 (1993); Huang et al., Anal. Chem. 64:2149-2154 (1992); Kheterpal et al., Electrophoresis 17:1852-1859 (1996); Quesada and Zhang, Electrophoresis 17:1841-1851 (1996); Baba, Yakugaku Zasshi 117:265-281 (1997), all of which are herein incorporated by reference in their entirety).


ESTs longer than 150 nucleotides have been found to be useful for similarity searches and mapping (Adams et al., Science 252:1651-1656 (1991), herein incorporated by reference). ESTs, which can represent copies of up to the full length transcript, may be partially or completely sequenced. Between 150-450 nucleotides of sequence information is usually generated as this is the length of sequence information that is routinely and reliably produced using single run sequence data. Typically, only single run sequence data is obtained from the cDNA library (Adams et al., Science 252:1651-1656 (1991). Automated single run sequencing typically results in an approximately 2-3% error or base ambiguity rate (Boguski et al., Nature Genetics 4:332-333 (1993), the entirety of which is herein incorporated by reference).


EST databases have been constructed or partially constructed from, for example, C. elegans (McCombrie et al., Nature Genetics 1: 124-131 (1992)), human liver cell line HepG2 (Okubo et al., Nature Genetics 2:173-179 (1992)), human brain RNA (Adams et al., Science 252:1651-1656 (1991); Adams et al., Nature 355:632-635 (1992)), Arabidopsis, (Newman et al., Plant Physiol. 106:1241-1255 (1994)); and rice (Kurata et al., Nature Genetics 8:365-372 (1994)).


VII. Sequence Comparisons

A characteristic feature of a DNA sequence is that it can be compared with other DNA sequences. Sequence comparisons can be undertaken by determining the similarity of the test or query sequence with sequences in publicly available or proprietary databases (“similarity analysis”) or by searching for certain motifs (“intrinsic sequence analysis”)(e.g. cis elements)(Coulson, Trends in Biotechnology 12:76-80 (1994), the entirety of which is herein incorporated by reference); Birren et al., Genome Analysis 1: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 543-559 (1997), the entirety of which is herein incorporated by reference).


Similarity analysis includes database search and alignment. Examples of public databases include the DNA Database of Japan (DDBJ) (http://www.ddbj.nig.ac.jp/); Genebank (http://www.ncbi.nlm.nih.gov/Web/Search/Index.htlm); and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) (http://www.ebi.ac.uk/ebi_docs/embl_db/embl-db.html). Other appropriate databases include dbEST (http://www.ncbi.nlm.nih.gov/dbEST/index.html), SwissProt (http://www.ebi.ac.uk/ebi_docs/swisprot_db/swisshome.html), PIR (http://www-nbrt.georgetown.edu/pir/) and The Institute for Genome Research (http://www.tigr.org/tdb/tdb.html)


A number of different search algorithms have been developed, one example of which are the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequences queries (BLASTN, BLASTX and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology 12:76-80 (1994); Birren et al., Genome Analysis 1, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 543-559 (1997)).


BLASTN takes a nucleotide sequence (the query sequence) and its reverse complement and searches them against a nucleotide sequence database. BLASTN was designed for speed, not maximum sensitivity and may not find distantly related coding sequences. BLASTX takes a nucleotide sequence, translates it in three forward reading frames and three reverse complement reading frames and then compares the six translations against a protein sequence database. BLASTX is useful for sensitive analysis of preliminary (single-pass) sequence data and is tolerant of sequencing errors (Gish and States, Nature Genetics 3:266-272 (1993), the entirety of which is herein incorporated by reference). BLASTN and BLASTX may be used in concert for analyzing EST data (Coulson, Trends in Biotechnology 12:76-80 (1994); Birren et al., Genome Analysis 1:543-559 (1997)).


Given a coding nucleotide sequence and the protein it encodes, it is often preferable to use the protein as the query sequence to search a database because of the greatly increased sensitivity to detect more subtle relationships. This is due to the larger alphabet of proteins (20 amino acids) compared with the alphabet of nucleic acid sequences (4 bases), where it is far easier to obtain a match by chance. In addition, with nucleotide alignments, only a match (positive score) or a mismatch (negative score) is obtained, but with proteins, the presence of conservative amino acid substitutions can be taken into account. Here, a mismatch may yield a positive score if the non-identical residue has physical/chemical properties similar to the one it replaced. Various scoring matrices are used to supply the substitution scores of all possible amino acid pairs. A general purpose scoring system is the BLOSUM62 matrix (Henikoff and Henikoff, Proteins 17:49-61 (1993), the entirety of which is herein incorporated by reference), which is currently the default choice for BLAST programs. BLOSUM62 is tailored for alignments of moderately diverged sequences and thus may not yield the best results under all conditions. Altschul, J. Mol. Biol. 36:290-300 (1993), the entirety of which is herein incorporated by reference, describes a combination of three matrices to cover all contingencies. This may improve sensitivity, but at the expense of slower searches. In practice, a single BLOSUM62 matrix is often used but others (PAM40 and PAM250) may be attempted when additional analysis is necessary. Low PAM matrices are directed at detecting very strong but localized sequence similarities, whereas high PAM matrices are directed at detecting long but weak alignments between very distantly related sequences.


Homologues in other organisms are available that can be used for comparative sequence analysis. Multiple alignments are performed to study similarities and differences in a group of related sequences. CLUSTAL W is a multiple sequence alignment package that performs progressive multiple sequence alignments based on the method of Feng and Doolittle, J. Mol. Evol. 25:351-360 (1987), the entirety of which is herein incorporated by reference. Each pair of sequences is aligned and the distance between each pair is calculated; from this distance matrix, a guide tree is calculated and all of the sequences are progressively aligned based on this tree. A feature of the program is its sensitivity to the effect of gaps on the alignment; gap penalties are varied to encourage the insertion of gaps in probable loop regions instead of in the middle of structured regions. Users can specify gap penalties, choose between a number of scoring matrices, or supply their own scoring matrix for both pairwise alignments and multiple alignments. CLUSTAL W for UNIX and VMS systems is available at: ftp.ebi.ac.uk. Another program is MACAW (Schuler et al., Proteins Struct. Func. Genet. 9:180-190 (1991), the entirety of which is herein incorporated by reference, for which both Macintosh and Microsoft Windows versions are available. MACAW uses a graphical interface, provides a choice of several alignment algorithms and is available by anonymous ftp at: ncbi.nlm.nih.gov (directory/pub/macaw).


Sequence motifs are derived from multiple alignments and can be used to examine individual sequences or an entire database for subtle patterns. With motifs, it is sometimes possible to detect distant relationships that may not be demonstrable based on comparisons of primary sequences alone. Currently, the largest collection of sequence motifs in the world is PROSITE (Bairoch and Bucher, Nucleic Acid Research 22:3583-3589 (1994), the entirety of which is herein incorporated by reference). PROSITE may be accessed via either the ExPASy server on the World Wide Web or anonymous ftp site. Many commercial sequence analysis packages also provide search programs that use PROSITE data.


A resource for searching protein motifs is the BLOCKS E-mail server developed by Henikoff, Trends Biochem Sci. 18:267-268 (1993), the entirety of which is herein incorporated by reference; Henikoff and Henikoff, Nucleic Acid Research 19:6565-6572 (1991), the entirety of which is herein incorporated by reference; Henikoff and Henikoff, Proteins 17:49-61 (1993). BLOCKS searches a protein or nucleotide sequence against a database of protein motifs or “blocks.” Blocks are defined as short, ungapped multiple alignments that represent highly conserved protein patterns. The blocks themselves are derived from entries in PROSITE as well as other sources. Either a protein query or a nucleotide query can be submitted to the BLOCKS server; if a nucleotide sequence is submitted, the sequence is translated in all six reading frames and motifs are sought for these conceptual translations. Once the search is completed, the server will return a ranked list of significant matches, along with an alignment of the query sequence to the matched BLOCKS entries.


Conserved protein domains can be represented by two-dimensional matrices, which measure either the frequency or probability of the occurrences of each amino acid residue and deletions or insertions in each position of the domain. This type of model, when used to search against protein databases, is sensitive and usually yields more accurate results than simple motif searches. Two popular implementations of this approach are profile searches such as GCG program ProfileSearch and Hidden Markov Models (HMMs) (Krough et al., J. Mol. Biol. 235:1501-1531, (1994); Eddy, Current Opinion in Structural Biology 6:361-365, (1996), both of which are herein incorporated by reference in their entirety). In both cases, a large number of common protein domains have been converted into profiles, as present in the PROSITE library, or HHM models, as in the Pfam protein domain library (Sonnhammer et al., Proteins 28:405-420 (1997), the entirety of which is herein incorporated by reference). Pfam contains more than 500 HMM models for enzymes, carbon assimilation pathway enzymes, signal transduction molecules and structural proteins. Protein databases can be queried with these profiles or HMM models, which will identify proteins containing the domain of interest. For example, HMMSW or HMMFS, two programs in a public domain package called HMMER (Sonnhammer et al., Proteins 28:405-420 (1997)) can be used.


PROSITE and BLOCKS represent collected families of protein motifs. Thus, searching these databases entails submitting a single sequence to determine whether or not that sequence is similar to the members of an established family. Programs working in the opposite direction compare a collection of sequences with individual entries in the protein databases. An example of such a program is the Motif Search Tool, or MoST (Tatusov et al., Proc. Natl. Acad. Sci. (U.S.A.) 91:12091-12095 (1994), the entirety of which is herein incorporated by reference). On the basis of an aligned set of input sequences, a weight matrix is calculated by using one of four methods (selected by the user). A weight matrix is simply a representation, position by position of how likely a particular amino acid will appear. The calculated weight matrix is then used to search the databases. To increase sensitivity, newly found sequences are added to the original data set, the weight matrix is recalculated and the search is performed again. This procedure continues until no new sequences are found.


SUMMARY OF THE INVENTION

The present invention provides a substantially purified nucleic acid molecule that encodes a maize or soybean carbon assimilation pathway enzyme or fragment thereof, wherein the maize or soybean carbon assimilation pathway enzyme is selected from the group consisting of: (a) ribulose-bisphosphate carboxylase; (b) phosphoglycerate kinase; (c) glyceraldehyde 3-phosphate dehydrogenase; (d) putative glyceraldehyde 3-phosphate dehydrogenase; (e) triose phosphate isomerase; (f) aldolase; (g) fructose-1,6-bisphosphatase; (h) transketolase; (i) putative transketolase; (j) sedoheptulose-1,7-bisphophatase; (k) D-ribulose-5-phosphate-3-epimerase; (l) ribose-5-phosphate isomerase; (m) putative ribose-5-phosphate isomerase; (n) ribose-5-phosphate kinase; (o) phosphoenolpyruvate carboxylase; (p) NADP-dependent malate dehydrogenase; (q) aspartate aminotransferase; (r) putative aspartate aminotransferase; (s) alanine aminotransferase; (t) NADP-dependent malec enzyme; (u) NAD-dependent malic enzyme; (v) PEP carboxykinase; (w) putative PEP carboxykinase; (x) pyruvate, phosphate dikinase; and (y) pyrophosphatase.


The present invention also provides a substantially purified nucleic acid molecule that encodes a plant carbon assimilation pathway enzyme or fragment thereof, wherein the nucleic acid molecule is selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase or fragment thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aldolase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean transketolase or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphophatase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase or fragment thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase or fragment thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase or fragment thereof and a nucleic acid molecule that encodes a maize or soybean pyrophospatase or fragment thereof.


The present invention also provides a substantially purified maize or soybean carbon assimilation pathway enzyme or fragment thereof, wherein the maize or soybean carbon assimilation pathway enzyme is selected from the group consisting of (a) ribulose-bisphosphate carboxylase or fragment thereof; (b) phosphoglycerate kinase; (c) glyceraldehyde 3-phosphate dehydrogenase; (d) putative glyceraldehyde 3-phosphate dehydrogenase; (e) triose phosphate isomerase; (f) aldolase; (g) fructose-1,6-bisphosphatase; (h) transketolase; (i) putative transketolase; (j) sedoheptulose-1,7-bisphophatase; (k) D-ribulose-5-phosphate-3-epimerase; (l) ribose-5-phosphate isomerase; (m) putative ribose-5-phosphate isomerase; (n) ribose-5-phosphate kinase; (o) phosphoenolpyruvate carboxylase; (p) NADP-dependent malate dehydrogenase; (q) aspartate aminotransferase; (r) putative aspartate aminotransferase; (s) alanine aminotransferase; (t) NADP-dependent malic enzyme; (u) NAD-dependent malic enzyme; (v) PEP carboxykinase; (w) putative PEP carboxykinase; (x) pyruvate, phosphate dikinase; and (y) pyrophosphatase.


The present invention also provides a substantially purified maize or soybean carbon assimilation pathway enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 1 through SEQ ID NO: 7341.


The present invention also provides a substantially purified maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 1 through SEQ ID NO: 281 and SEQ ID NO: 282 through SEQ ID NO: 847.


The present invention also provides a substantially purified maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 281 and SEQ ID NO: 282 through SEQ ID NO: 847.


The present invention also provides a substantially purified maize or soybean phosphoglycerate kinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 848 through SEQ ID NO: 1090 and SEQ ID NO: 1091 through SEQ ID NO: 1307.


The present invention also provides a substantially purified maize or soybean phosphoglycerate kinase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 848 through SEQ ID NO: 1090 and SEQ ID NO: 1091 through SEQ ID NO: 1307.


The present invention also provides a substantially purified maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 1308 through SEQ ID NO: 2383 and SEQ ID NO: 2397 through SEQ ID NO: 3540.


The present invention also provides a substantially purified maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof encoded by a nucleic acid sequence consisting of SEQ ID NO: 1308 through SEQ ID NO: 2383 and SEQ ID NO: 2397 through SEQ ID NO: 3540.


The present invention also provides a substantially purified putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 2384 through SEQ ID NO: 2396.


The present invention also provides a substantially purified putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof encoded by a nucleic acid sequence consisting of SEQ ID NO: 2384 through SEQ ID NO: 2396.


The present invention also provides a substantially purified maize or soybean triose phosphate isomerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 3541 through SEQ ID NO: 3746 and SEQ ID NO: 3747 through SEQ ID NO: 3918.


The present invention also provides a substantially purified maize or soybean triose phosphate isomerase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 3541 through SEQ ID NO: 3746 and SEQ ID NO: 3747 through SEQ ID NO: 3918.


The present invention also provides a substantially purified maize or soybean aldolase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 3919 through SEQ ID NO: 3963 and SEQ ID NO: 3964 through SEQ ID NO: 4370.


The present invention also provides a substantially purified maize or soybean aldolase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 3919 through SEQ ID NO: 3963 and SEQ ID NO: 3964 through SEQ ID NO: 4370.


The present invention also provides a substantially purified maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4371 through SEQ ID NO: 4421 and SEQ ID NO: 4422 through SEQ ID NO: 4475.


The present invention also provides a substantially purified soybean fructose-1,6-bisphosphatase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4371 through SEQ ID NO: 4421 and SEQ ID NO: 4422 through SEQ ID NO: 4475.


The present invention also provides a substantially purified maize or soybean transketolase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4476 through SEQ ID NO: 4513 and SEQ ID NO: 4525 through SEQ ID NO: 4605.


The present invention also provides a substantially purified maize or soybean transketolase or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4476 through SEQ ID NO: 4513 and SEQ ID NO: 4525 through SEQ ID NO: 4605.


The present invention also provides a substantially purified putative maize or soybean transketolase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4514 through SEQ ID NO: 4524 and SEQ ID NO: 4606 through SEQ ID NO: 4612.


The present invention also provides a substantially purified putative maize or soybean transketolase or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4514 through SEQ ID NO: 4524 and SEQ ID NO: 4606 through SEQ ID NO: 4612.


The present invention also provides a substantially purified maize or soybean sedoheptulose-1,7-bisphophatase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4613 through SEQ ID NO: 4614 and SEQ ID NO: 4615 through SEQ ID NO: 4677.


The present invention also provides a substantially purified maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4613 through SEQ ID NO: 4614 and SEQ ID NO: 4615 through SEQ ID NO: 4677.


The present invention also provides a substantially purified maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4678 through SEQ ID NO: 4723 and SEQ ID NO: 4724 through SEQ ID NO 4762.


The present invention also provides a substantially purified maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4678 through SEQ ID NO: 723 and SEQ ID NO: 4724 through SEQ ID NO 4762.


The present invention also provides a substantially purified maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 4763 through SEQ ID NO: 4769 and SEQ ID NO: 4772 through SEQ ID NO: 4776.


The present invention also provides a substantially purified maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof encoded by a nucleic acid sequence consisting of SEQ ID NO: 4763 through SEQ ID NO: 4769 and SEQ ID NO: 4772 through SEQ ID NO: 4776.


The present invention also provides a substantially purified putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 4770 through SEQ ID NO: 4771 and SEQ ID NO: 4777 through SEQ ID NO: 4781.


The present invention also provides a substantially purified putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof encoded by a nucleic acid sequence consisting of SEQ ID NO: 4770 through SEQ ID NO: 4771 and SEQ ID NO: 4777 through SEQ ID NO: 4781.


The present invention also provides a substantially purified maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4782 through SEQ ID NO: 4832 and SEQ ID NO: 4833 through SEQ ID NO: 4908.


The present invention also provides a substantially purified maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4782 through SEQ ID NO: 4832 and SEQ ID NO: 4833 through SEQ ID NO: 4908.


The present invention also provides a substantially purified maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4909 through SEQ ID NO: 5282 and SEQ ID NO: 5283 through SEQ ID NO: 5371.


The present invention also provides a substantially purified maize or soybean phosphoenolpyruvate enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 4909 through SEQ ID NO: 5282 and SEQ ID NO: 5283 through SEQ ID NO: 5371.


The present invention also provides a substantially purified maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5372 through SEQ ID NO: 5419 and SEQ ID NO: 5420 through SEQ ID NO: 5423.


The present invention also provides a substantially purified soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5372 through SEQ ID NO: 5419 and SEQ ID NO: 5420 through SEQ ID NO: 5423.


The present invention also provides a substantially purified maize or soybean aspartate aminotransferase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5424 through SEQ ID NO: 5596 and SEQ ID NO: 5601 through SEQ ID NO: 5719.


The present invention also provides a substantially purified maize or soybean aspartate aminotransferase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5424 through SEQ ID NO: 5596 and SEQ ID NO: 5601 through SEQ ID NO: 5719.


The present invention also provides a substantially purified putative maize or soybean aspartate aminotransferase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5597 through SEQ ID NO: 5600 and SEQ ID NO: 5720 through SEQ ID NO: 5727.


The present invention also provides a substantially purified putative maize or soybean aspartate aminotransferase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5597 through SEQ ID NO: 5600 and SEQ ID NO: 5720 through SEQ ID NO: 5727.


The present invention also provides a substantially purified maize or soybean alanine aminotransferase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5728 through SEQ ID NO: 5888 and SEQ ID NO: 5889 through SEQ ID NO: 6004.


The present invention also provides a substantially purified maize or soybean alanine aminotransferase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5728 through SEQ ID NO: 5888 and SEQ ID NO: 5889 through SEQ ID NO: 6004.


The present invention also provides a substantially purified maize or soybean NADP-dependent malic enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6005 through SEQ ID NO: 6223 and SEQ ID NO: 6224 through SEQ ID NO: 6287.


The present invention also provides a substantially purified maize or soybean NADP-dependent malic enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 6005 through SEQ ID NO: 6223 and SEQ ID NO: 6224 through SEQ ID NO: 6287.


The present invention also provides a substantially purified maize or soybean NAD-dependent malic enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 6022 through SEQ ID NO: 6023, SEQ ID NO: 6288 through SEQ ID NO: 6290 and SEQ ID NO: 6291 through SEQ ID NO: 6293.


The present invention also provides a substantially purified maize or soybean NAD-dependent malic enzyme or fragment thereof encoded by a nucleic acid sequence consisting of SEQ ID NO: 6022 through SEQ ID NO: 6023, SEQ ID NO: 6288 through SEQ ID NO: 6290 and SEQ ID NO: 6291 through SEQ ID NO: 6293.


The present invention also provides a substantially purified maize or soybean PEP carboxykinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6294 through SEQ ID NO: 6353 and SEQ ID NO: 6354 through SEQ ID NO: 6387.


The present invention also provides a substantially purified maize or soybean PEP carboxykinase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 6294 through SEQ ID NO: 6353 and SEQ ID NO: 6354 through SEQ ID NO: 6387.


The present invention also provides a substantially purified putative soybean PEP carboxykinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 6388.


The present invention also provides a substantially purified putative soybean PEP carboxykinase enzyme or fragment thereof encoded by a nucleic acid sequence consisting of SEQ ID NO: 6388.


The present invention also provides a substantially purified maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6389 through SEQ ID NO: 6847 and SEQ ID NO: 6848 through SEQ ID NO: 6850.


The present invention also provides a substantially purified maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 6389 through SEQ ID NO: 6847 and SEQ ID NO: 6848 through SEQ ID NO: 6850.


The present invention also provides a substantially purified maize or soybean pyrophosphatase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6851 through SEQ ID NO: 7154 and SEQ ID NO: 7155 through SEQ ID NO: 7341.


The present invention also provides a substantially purified soybean pyrophosphates enzyme or fragment thereof encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 6851 through SEQ ID NO: 7154 and SEQ ID NO: 7155 through SEQ ID NO: 7341.


The present invention also provides a purified antibody or fragment thereof which is capable of specifically binding to a maize or soybean carbon assimilation pathway enzyme or fragment thereof, wherein the maize or soybean or carbon assimilation pathway enzyme or fragment thereof is encoded by a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 1 through SEQ ID NO: 281 and SEQ ID NO: 282 through SEQ ID NO: 847.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean phosphoglycerate kinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 848 through SEQ ID NO: 1090 and SEQ ID NO: 1091 through SEQ ID NO: 1307.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule consisting of a compliment of a nucleic acid sequence having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1308 through SEQ ID NO: 2383 and SEQ ID NO: 2397 through SEQ ID NO: 3540


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule consisting of a compliment of a nucleic acid sequence having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2384 through SEQ ID NO: 2396.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean triose phosphate isomerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 3541 through SEQ ID NO: 3746 and SEQ ID NO: 3747 through SEQ ID NO: 3918.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean aldolase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 3919 through SEQ ID NO: 3963 and SEQ ID NO: 3964 through SEQ ID NO: 4370.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4371 through SEQ ID NO: 4421 and SEQ ID NO: 4422 through SEQ ID NO: 4475.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean transketolase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4476 through SEQ ID NO: 4513 and SEQ ID NO: 4525 through SEQ ID NO: 4605.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a putative maize or soybean transketolase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4514 through SEQ ID NO: 4524 and SEQ ID NO: 4606 through SEQ ID NO: 4612.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4613 through SEQ ID NO: 4614 and SEQ ID NO: 4615 through SEQ ID NO: 4677.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4678 through SEQ ID NO: 4723 and SEQ ID NO: 4724 through SEQ ID NO: 4762.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4763 through SEQ ID NO: 4769 and SEQ ID NO: 4772 through SEQ ID NO: 4776.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4770 through SEQ ID NO: 4771 and SEQ ID NO: 4777 through SEQ ID NO: 4781.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4782 through SEQ ID NO: 4832 and SEQ ID NO: 4833 through SEQ ID NO: 4908.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 4909 through SEQ ID NO: 5282 and SEQ ID NO: 5283 through SEQ ID NO: 5371.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5372 through SEQ ID NO: 5419 and SEQ ID NO: 5420 through SEQ ID NO: 5423.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean aspartate aminotransferase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5424 through SEQ ID NO: 5596 and SEQ ID NO: 5601 through SEQ ID NO: 5719.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5597 through SEQ ID NO: 5600 and SEQ ID NO: 5720 through SEQ ID NO: 5727.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean alanine aminotransferase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 5728 through SEQ ID NO: 5888 and SEQ ID NO: 5889 through SEQ ID NO: 6004.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean NADP-dependent malic enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule consisting of a compliment of a nucleic acid sequence having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 6005 through SEQ ID NO: 6223 and SEQ ID NO: 6224 through SEQ ID NO: 6287.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean NAD-dependent malic enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6022 through SEQ ID NO: 6023, SEQ ID NO: 6288 through SEQ ID NO: 6290 and SEQ ID NO: 6291 through SEQ ID NO: 6293.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean PEP carboxykinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6294 through SEQ ID NO: 6353 and SEQ ID NO: 6354 through SEQ ID NO: 6387.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a putative soybean PEP carboxykinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence consisting of a complement of SEQ ID NO: 6388.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6389 through SEQ ID NO: 6847 and SEQ ID NO: 6848 through SEQ ID NO: 6850.


The present invention also provides a substantially purified antibody or fragment thereof, the antibody or fragment thereof capable of specifically binding to a maize or soybean pyrophosphatase enzyme or fragment thereof encoded by a first nucleic acid molecule which specifically hybridizes to a second nucleic acid molecule, the second nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a complement of SEQ ID NO: 6851 through SEQ ID NO: 7154 and SEQ ID NO: 7155 through SEQ ID NO: 7341.


The present invention also provides a transformed plant having a nucleic acid molecule which comprises: (A) an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule; (B) a structural nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of (a) a nucleic acid sequence which encodes for a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof; (b) a nucleic acid sequence which encodes for a maize or soybean phosphoglycerate kinase enzyme or fragment thereof; (c) a nucleic acid sequence which encodes for a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof; (d) a nucleic acid sequence which encodes for a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof; (e) a nucleic acid sequence which encodes for a maize or soybean triose phosphate isomerase enzyme or fragment thereof; (f) a nucleic acid sequence which encodes for a maize or soybean aldolase enzyme or fragment thereof; (g) a nucleic acid sequence which encodes for a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof; (h) a nucleic acid sequence which encodes for a maize or soybean transketolase enzyme or fragment thereof; (i) a nucleic acid sequence which encodes for a putative maize or soybean transketolase enzyme or fragment thereof; (j) a nucleic acid sequence which encodes for a maize or soybean sedoheptulose-1,7-bisphophatase enzyme or fragment thereof; (k) a nucleic acid sequence which encodes for a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof; (l) a nucleic acid sequence which encodes for a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof; (m) a nucleic acid sequence which encodes for a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof; (n) a nucleic acid sequence which encodes for a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof; (o) a nucleic acid sequence which encodes for a maize or soybean phosphoenolpyruvate dehydrogenase enzyme or fragment thereof; (p) a nucleic acid sequence which encodes for a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof; (q) a nucleic acid sequence which encodes for a maize or soybean aspartate aminotransferase enzyme or fragment thereof; (r) a nucleic acid sequence which encodes for a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof; (s) a nucleic acid sequence which encodes for a maize or soybean alanine aminotransferase enzyme or fragment thereof; (t) a nucleic acid sequence which encodes for a maize or soybean NADP-dependent malic enzyme or fragment thereof; (u) a nucleic acid sequence which encodes for a maize or soybean NAD-dependent malic enzyme or fragment thereof; (v) a nucleic acid sequence which encodes for a maize or soybean PEP carboxykinase enzyme or fragment thereof; (w) a nucleic acid sequence which encodes for a putative soybean PEP carboxykinase enzyme or fragment thereof; (x) a nucleic acid sequence which encodes for a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof; and (y) a nucleic acid sequence which encodes for a maize or soybean pyrophosphatase enzyme or fragment thereof; (z) a nucleic acid sequence which is complementary to any of the nucleic acid sequences of (a) through (y); and (C) a 3′ non-translated sequence that functions in the plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.


The present invention also provides a transformed plant having a nucleic acid molecule which comprises: (A) an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule; which is linked to (B) a structural nucleic acid molecule, wherein the structural nucleic acid molecule encodes a plant carbon assimilation pathway enzyme or fragment thereof, the structural nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof; which is linked to (C) a 3′ non-translated sequence that functions in the plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.


The present invention also provides a transformed plant having a nucleic acid molecule which comprises: (A) an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule; which is linked to (B) a structural nucleic acid molecule, wherein the structural nucleic acid molecule is selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or fragments thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or fragments thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or fragments thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragments thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragments thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof, and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or fragments thereof; which is linked to (C) a 3′ non-translated sequence that functions in the plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.


The present invention also provides a transformed plant having a nucleic acid molecule which comprises: (A) an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule; which is linked to (B) a transcribed nucleic acid molecule with a transcribed strand and a non-transcribed strand, wherein the transcribed strand is complementary to a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof; which is linked to (C) a 3′ non-translated sequence that functions in plant cells to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.


The present invention also provides a transformed plant having a nucleic acid molecule which comprises: (A) an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule; which is linked to: (B) a transcribed nucleic acid molecule with a transcribed strand and a non-transcribed strand, wherein a transcribed mRNA of the transcribed strand is complementary to an endogenous mRNA molecule having a nucleic acid sequence selected from the group consisting of an endogenous mRNA molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean aldolase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean transketolase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a putative maize or soybean transketolase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof; an endogenous mRNA molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof; and an endogenous mRNA molecule that encodes a maize or soybean pyrophosphatase enzyme or fragment thereof; which is linked to (C) a 3′ non-translated sequence that functions in the plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of the mRNA molecule.


The present invention also provides a method for determining a level or pattern of a plant carbon assimilation pathway enzyme in a plant cell or plant tissue comprising: (A) incubating, under conditions permitting nucleic acid hybridization, a marker nucleic acid molecule, the marker nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragment of either, with a complementary nucleic acid molecule obtained from the plant cell or plant tissue, wherein nucleic acid hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant cell or plant tissue permits the detection of the plant carbon assimilation pathway enzyme; (B) permitting hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant cell or plant tissue; and (C) detecting the level or pattern of the complementary nucleic acid, wherein the detection of the complementary nucleic acid is predictive of the level or pattern of the plant carbon assimilation pathway enzyme.


The present invention also provides a method for determining a level or pattern of a plant carbon assimilation pathway enzyme in a plant cell or plant tissue comprising: (A) incubating, under conditions permitting nucleic acid hybridization, a marker nucleic acid molecule, the marker nucleic acid molecule comprising a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof or fragment of either and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof or fragment of either, with a complementary nucleic acid molecule obtained from the plant cell or plant tissue, wherein nucleic acid hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant cell or plant tissue permits the detection of the plant carbon assimilation pathway enzyme; (B) permitting hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant cell or plant tissue; and (C) detecting the level or pattern of the complementary nucleic acid, wherein the detection of the complementary nucleic acid is predictive of the level or pattern of the plant carbon assimilation pathway enzyme.


The present invention also provides a method for determining a level or pattern of a plant carbon assimilation pathway enzyme in a plant cell or plant tissue under evaluation which comprises assaying the concentration of a molecule, whose concentration is dependent upon the expression of a gene, the gene specifically hybridizes to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof, in comparison to the concentration of that molecule present in a reference plant cell or a reference plant tissue with a known level or pattern of the plant carbon assimilation pathway enzyme, wherein the assayed concentration of the molecule is compared to the assayed concentration of the molecule in the reference plant cell or reference plant tissue with the known level or pattern of the plant carbon assimilation pathway enzyme.


The present invention also provides a method for determining a level or pattern of a plant carbon assimilation pathway enzyme in a plant cell or plant tissue under evaluation which comprises assaying the concentration of a molecule, whose concentration is dependent upon the expression of a gene, the gene specifically hybridizes to a nucleic acid molecule selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof, in comparison to the concentration of that molecule present in a reference plant cell or a reference plant tissue with a known level or pattern of the plant carbon assimilation pathway enzyme, wherein the assayed concentration of the molecule is compared to the assayed concentration of the molecule in the reference plant cell or the reference plant tissue with the known level or pattern of the plant carbon assimilation pathway enzyme.


The present invention provides a method of determining a mutation in a plant whose presence is predictive of a mutation affecting a level or pattern of a protein comprising the steps: (A) incubating, under conditions permitting nucleic acid hybridization, a marker nucleic acid, the marker nucleic acid selected from the group of marker nucleic acid molecules which specifically hybridize to a nucleic acid molecule having a nucleic acid sequence selected from the group of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragment of either and a complementary nucleic acid molecule obtained from the plant, wherein nucleic acid hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant permits the detection of a polymorphism whose presence is predictive of a mutation affecting the level or pattern of the protein in the plant; (B) permitting hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant; and (C) detecting the presence of the polymorphism, wherein the detection of the polymorphism is predictive of the mutation.


The present invention also provides a method for determining a mutation in a plant whose presence is predictive of a mutation affecting the level or pattern of a plant carbon assimilation pathway enzyme comprising the steps: (A) incubating, under conditions permitting nucleic acid hybridization, a marker nucleic acid molecule, the marker nucleic acid molecule comprising a nucleic acid molecule that is linked to a gene, the gene specifically hybridizes to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof and a complementary nucleic acid molecule obtained from the plant, wherein nucleic acid hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant permits the detection of a polymorphism whose presence is predictive of a mutation affecting the level or pattern of the plant carbon assimilation pathway enzyme in the plant; (B) permitting hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant; and (C) detecting the presence of the polymorphism, wherein the detection of the polymorphism is predictive of the mutation.


The present invention also provides a method for determining a mutation in a plant whose presence is predictive of a mutation affecting the level or pattern of a plant carbon assimilation pathway enzyme comprising the steps: (A) incubating, under conditions permitting nucleic acid hybridization, a marker nucleic acid molecule, the marker nucleic acid molecule comprising a nucleic acid molecule that is linked to a gene, the gene specifically hybridizes to a nucleic acid molecule selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof, and a complementary nucleic acid molecule obtained from the plant, wherein nucleic acid hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant permits the detection of a polymorphism whose presence is predictive of a mutation affecting the level or pattern of the plant carbon assimilation pathway enzyme in the plant; (B) permitting hybridization between the marker nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant; and (C) detecting the presence of the polymorphism, wherein the detection of the polymorphism is predictive of the mutation.


The present invention also provides a method of producing a plant containing an overexpressed protein comprising: (A) transforming the plant with a functional nucleic acid molecule, wherein the functional nucleic acid molecule comprises a promoter region, wherein the promoter region is linked to a structural region, wherein the structural region has a nucleic acid sequence selected from group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341; wherein the structural region is linked to a 3′ non-translated sequence that functions in the plant to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and wherein the functional nucleic acid molecule results in overexpression of the protein; and (B) growing the transformed plant.


The present invention also provides a method of producing a plant containing an overexpressed plant carbon assimilation pathway enzyme comprising: (A) transforming the plant with a functional nucleic acid molecule, wherein the functional nucleic acid molecule comprises a promoter region, wherein the promoter region is linked to a structural region, wherein the structural region comprises a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof; wherein the structural region is linked to a 3′ non-translated sequence that functions in the plant to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and wherein the functional nucleic acid molecule results in overexpression of the plant carbon assimilation pathway enzyme; and (B) growing the transformed plant.


The present invention also provides a method of producing a plant containing an overexpressed plant carbon assimilation pathway enzyme comprising: (A) transforming the plant with a functional nucleic acid molecule, wherein the functional nucleic acid molecule comprises a promoter region, wherein the promoter region is linked to a structural region, wherein the structural region comprises a nucleic acid molecule selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or fragment thereof a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or fragment thereof; wherein the structural region is linked to a 3′ non-translated sequence that functions in the plant to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and wherein the functional nucleic acid molecule results in overexpression of the plant carbon assimilation pathway enzyme; and (B) growing the transformed plant.


The present invention also provides a method of producing a plant containing reduced levels of a plant carbon assimilation pathway enzyme comprising: (A) transforming the plant with a functional nucleic acid molecule, wherein the functional nucleic acid molecule comprises a promoter region, wherein the promoter region is linked to a structural region, wherein the structural region comprises a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341; wherein the structural region is linked to a 3′ non-translated sequence that functions in the plant to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and wherein the functional nucleic acid molecule results in co-suppression of the plant carbon assimilation pathway enzyme; and (B) growing the transformed plant.


The present invention also provides a method of producing a plant containing reduced levels of a plant carbon assimilation pathway enzyme comprising: (A) transforming the plant with a functional nucleic acid molecule, wherein the functional nucleic acid molecule comprises a promoter region, wherein the promoter region is linked to a structural region, wherein the structural region comprises a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or fragment thereof wherein the structural region is linked to a 3′ non-translated sequence that functions in the plant to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and wherein the functional nucleic acid molecule results in co-suppression of the plant carbon assimilation pathway enzyme; and (B) growing the transformed plant.


The present invention also provides a method for reducing expression of a plant carbon assimilation pathway enzyme in a plant comprising: (A) transforming the plant with a nucleic acid molecule, the nucleic acid molecule having an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule, wherein the exogenous promoter region is linked to a transcribed nucleic acid molecule having a transcribed strand and a non-transcribed strand, wherein the transcribed strand is complementary to a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragments of either and the transcribed strand is complementary to an endogenous mRNA molecule; and wherein the transcribed nucleic acid molecule is linked to a 3′ non-translated sequence that functions in the plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and (B) growing the transformed plant.


The present invention also provides a method for reducing expression of a plant carbon assimilation pathway enzyme in a plant comprising: (A) transforming the plant with a nucleic acid molecule, the nucleic acid molecule having an exogenous promoter region which functions in a plant cell to cause the production of a mRNA molecule, wherein the exogenous promoter region is linked to a transcribed nucleic acid molecule having a transcribed strand and a non-transcribed strand, wherein a transcribed mRNA of the transcribed strand is complementary to a nucleic acid molecule selected from the group consisting of an endogenous mRNA molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof an endogenous mRNA molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean aldolase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean transketolase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a putative maize or soybean transketolase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof, an endogenous mRNA molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof and an endogenous mRNA molecule that encodes a maize or soybean pyrophosphatase enzyme or fragment thereof, and wherein the transcribed nucleic acid molecule is linked to a 3′ non-translated sequence that functions in the plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to a 3′ end of a mRNA molecule; and (B) growing the transformed plant.


The present invention also provides a method of determining an association between a polymorphism and a plant trait comprising: (A) hybridizing a nucleic acid molecule specific for the polymorphism to genetic material of a plant, wherein the nucleic acid molecule has a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragment of either; and (B) calculating the degree of association between the polymorphism and the plant trait.


The present invention also provides a method of determining an association between a polymorphism and a plant trait comprising: (A) hybridizing a nucleic acid molecule specific for the polymorphism to genetic material of a plant, wherein the nucleic acid molecule is selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphophatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof or fragment of either and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof or fragment of either; and (B) calculating the degree of association between the polymorphism and the plant trait.


The present invention also provides a method of isolating a nucleic acid that encodes a plant carbon assimilation pathway enzyme or fragment thereof comprising: (A) incubating under conditions permitting nucleic acid hybridization, a first nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragment of either with a complementary second nucleic acid molecule obtained from a plant cell or plant tissue; (B) permitting hybridization between the first nucleic acid molecule and the second nucleic acid molecule obtained from the plant cell or plant tissue; and (C) isolating the second nucleic acid molecule.


The present invention also provides a method of isolating a nucleic acid molecule that encodes a plant carbon assimilation pathway enzyme or fragment thereof comprising: (A) incubating under conditions permitting nucleic acid hybridization, a first nucleic acid molecule selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof or fragment of either a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphophatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof or fragment of either and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof or fragment of either; with a complementary second nucleic acid molecule obtained from a plant cell or plant tissue; (B) permitting hybridization between the plant carbon assimilation pathway enzyme nucleic acid molecule and the complementary nucleic acid molecule obtained from the plant cell or plant tissue; and (C) isolating the second nucleic acid molecule.







DETAILED DESCRIPTION OF THE INVENTION
Agents of the Present Invention
Agents

(a) Nucleic Acid Molecules


Agents of the present invention include plant nucleic acid molecules and more preferably include maize and soybean nucleic acid molecules and more preferably include nucleic acid molecules of the maize genotypes B73 (Illinois Foundation Seeds, Champaign, Ill. U.S.A.), B73x Mo17 (Illinois Foundation Seeds, Champaign, Ill. U.S.A.), DK604 (Dekalb Genetics, Dekalb, Ill. U.S.A.), H99 (Illinois Foundation Seeds, Champaign, Ill. U.S.A.), RX601 (Asgrow Seed Company, Des Moines, Iowa), Mo17 (Illinois Foundation Seeds, Champaign, Ill. U.S.A.), and soybean types Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa), C1944 (United States Department of Agriculture (USDA) Soybean Germplasm Collection, Urbana, Ill. U.S.A.), Cristalina (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.), FT108 (Monsoy, Brazil), Hartwig (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.), BW211S Null (Tohoku University, Morioka, Japan), PI507354 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.), Asgrow A4922 (Asgrow Seed Company, Des Moines, Iowa U.S.A.), PI227687 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.), PI229358 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) and Asgrow A3237 (Asgrow Seed Company, Des Moines, Iowa U.S.A.).


A subset of the nucleic acid molecules of the present invention includes nucleic acid molecules that are marker molecules. Another subset of the nucleic acid molecules of the present invention include nucleic acid molecules that encode a protein or fragment thereof. Another subset of the nucleic acid molecules of the present invention are EST molecules.


Fragment nucleic acid molecules may encode significant portion(s) of, or indeed most of, these nucleic acid molecules. Alternatively, the fragments may comprise smaller oligonucleotides (having from about 15 to about 250 nucleotide residues and more preferably, about 15 to about 30 nucleotide residues).


As used herein, an agent, be it a naturally occurring molecule or otherwise may be “substantially purified,” if desired, such that one or more molecules that is or may be present in a naturally occurring preparation containing that molecule will have been removed or will be present at a lower concentration than that at which it would normally be found.


The agents of the present invention will preferably be “biologically active” with respect to either a structural attribute, such as the capacity of a nucleic acid to hybridize to another nucleic acid molecule, or the ability of a protein to be bound by an antibody (or to compete with another molecule for such binding). Alternatively, such an attribute may be catalytic and thus involve the capacity of the agent to mediate a chemical reaction or response.


The agents of the present invention may also be recombinant. As used herein, the term recombinant means any agent (e.g. DNA, peptide etc.), that is, or results, however indirect, from human manipulation of a nucleic acid molecule.


It is understood that the agents of the present invention may be labeled with reagents that facilitate detection of the agent (e.g. fluorescent labels, Prober et al, Science 238:336-340 (1987); Albarella et al, EP 144914; chemical labels, Sheldon et al., U.S. Pat. No. 4,582,789; Albarella et al., U.S. Pat. No. 4,563,417; modified bases, Miyoshi et al., EP 119448, all of which are hereby incorporated by reference in their entirety).


It is further understood, that the present invention provides recombinant bacterial, mammalian, microbial, insect, fungal and plant cells and viral constructs comprising the agents of the present invention. (See, for example, Uses of the Agents of the Invention, Section (a) Plant Constructs and Plant Transformants; Section (b) Fungal Constructs and Fungal Transformants; Section (c) Mammalian Constructs and Transformed Mammalian Cells; Section (d) Insect Constructs and Transformed Insect Cells; and Section (e) Bacterial Constructs and Transformed Bacterial Cells)


Nucleic acid molecules or fragments thereof of the present invention are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure. A nucleic acid molecule is said to be the “complement” of another nucleic acid molecule if they exhibit complete complementarity. As used herein, molecules are said to exhibit “complete complementarity” when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional “low-stringency” conditions. Similarly, the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional “high-stringency” conditions. Conventional stringency conditions are described by Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989) and by Haymes et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985), the entirety of which is herein incorporated by reference. Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. Thus, in order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.


Appropriate stringency conditions which promote DNA hybridization, for example, 6.0× sodium chloride/sodium citrate (SSC) at about 45° C., followed by awash of 2.0×SSC at 50° C., are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0×SSC at 50° C. to a high stringency of about 0.2×SSC at 50° C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.


In a preferred embodiment, a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof under moderately stringent conditions, for example at about 2.0×SSC and about 65° C.


In a particularly preferred embodiment, a nucleic acid of the present invention will include those nucleic acid molecules that specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof under high stringency conditions such as 0.2×SSC and about 65° C.


In one aspect of the present invention, the nucleic acid molecules of the present invention have one or more of the nucleic acid sequences set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof. In another aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 90% sequence identity with one or more of the nucleic acid sequences set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof. In a further aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 95% sequence identity with one or more of the nucleic acid sequences set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof. In a more preferred aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 98% sequence identity with one or more of the nucleic acid sequences set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof. In an even more preferred aspect of the present invention, one or more of the nucleic acid molecules of the present invention share between 100% and 99% sequence identity with one or more of the sequences set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof.


In a further more preferred aspect of the present invention, one or more of the nucleic acid molecules of the present invention exhibit 100% sequence identity with a nucleic acid molecule present within MONN01, SATMON001, SATMON003 through SATMON014, SATMON016, SATMON017, SATMON019 through SATMON031, SATMON033, SATMON034, SATMON˜001, SATMONN01, SATMONN04 through SATMONN06, CMz029 through CMz031, CMz033 through CMz037, CMz039 through CMz042, CMz044 through CMz045, CMz047 through CMz050, SOYMON001 through SOYMON038, Soy51 through Soy56, Soy58 through Soy62, Soy65 through Soy71, Soy 73 and Soy76 through Soy77 (Monsanto Company, St. Louis, Mo. U.S.A.).


(i) Nucleic Acid Molecules Encoding Proteins or Fragments Thereof


Nucleic acid molecules of the present invention can comprise sequences that encode a carbon assimilation pathway enzyme or fragment thereof. Such carbon assimilation pathway enzymes or fragments thereof include homologues of known carbon assimilation pathway enzymes in other organisms.


In a preferred embodiment of the present invention, a maize or soybean carbon assimilation pathway enzyme or fragment thereof of the present invention is a homologue of another plant carbon assimilation pathway enzyme. In another preferred embodiment of the present invention, a maize or soybean carbon assimilation pathway enzyme or fragment thereof of the present invention is a homologue of a fungal carbon assimilation pathway enzyme. In another preferred embodiment of the present invention, a maize or soybean carbon assimilation pathway enzyme or fragment thereof of the present invention is a homologue of a bacterial carbon assimilation pathway enzyme. In another preferred embodiment of the present invention, a soybean carbon assimilation pathway enzyme or fragment thereof of the present invention is a homologue of a maize carbon assimilation pathway enzyme. In another preferred embodiment of the present invention, a maize carbon assimilation pathway enzyme homologue or fragment thereof of the present invention is a homologue of a soybean carbon assimilation pathway enzyme. In another preferred embodiment of the present invention, a maize or soybean carbon assimilation pathway enzyme homologue or fragment thereof of the present invention is a homologue of an Arabidopsis thaliana carbon assimilation pathway enzyme.


In a preferred embodiment of the present invention, the nucleic molecule of the present invention encodes a maize or soybean carbon assimilation pathway enzyme or fragment thereof where a maize or soybean carbon assimilation pathway enzyme exhibits a BLAST probability score of greater than 1E-12, preferably a BLAST probability score of between about 1E-30 and about 1E-12, even more preferably a BLAST probability score of greater than 1E-30 with its homologue.


In another preferred embodiment of the present invention, the nucleic acid molecule encoding a maize or soybean carbon assimilation pathway enzyme or fragment thereof exhibits a % identity with its homologue of between about 25% and about 40%, more preferably of between about 40 and about 70%, even more preferably of between about 70% and about 90% and even more preferably between about 90% and 99%. In another preferred embodiment, of the present invention, a maize or soybean carbon assimilation pathway enzyme or fragments thereof exhibits a % identity with its homologue of 100%.


In a preferred embodiment of the present invention, the nucleic molecule of the present invention encodes a maize or soybean carbon assimilation pathway enzyme or fragment thereof where a maize or soybean carbon assimilation pathway enzyme exhibits a BLAST score of greater than 120, preferably a BLAST score of between about 1450 and about 120, even more preferably a BLAST score of greater than 1450 with its homologue.


Nucleic acid molecules of the present invention also include non-maize, non-soybean homologues. Preferred non-maize, non-soybean homologues are selected from the group consisting of alfalfa, Arabidopsis, barley, Brassica, broccoli, cabbage, citrus, cotton, garlic, oat, oilseed rape, onion, canola, flax, an ornamental plant, pea, peanut, pepper, potato, rice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, oil palm and Phaseolus.


In a preferred embodiment, nucleic acid molecules having SEQ ID NO: 1 through SEQ ID NO: 7341 or complements and fragments of either can be utilized to obtain such homologues.


The degeneracy of the genetic code, which allows different nucleic acid sequences to code for the same protein or peptide, is known in the literature. (U.S. Pat. No. 4,757,006, the entirety of which is herein incorporated by reference).


In an aspect of the present invention, one or more of the nucleic acid molecules of the present invention differ in nucleic acid sequence from those encoding a maize or soybean carbon assimilation pathway enzyme or fragment thereof in SEQ ID NO: 1 through SEQ ID NO: 7341 due to the degeneracy in the genetic code in that they encode the same carbon assimilation pathway enzyme but differ in nucleic acid sequence.


In another further aspect of the present invention, one or more of the nucleic acid molecules of the present invention differ in nucleic acid sequence from those encoding a maize or soybean carbon assimilation pathway enzyme or fragment thereof in SEQ ID NO: 1 through SEQ ID NO: 7341 due to fact that the different nucleic acid sequence encodes a carbon assimilation pathway enzyme having one or more conservative amino acid residue. Examples of conservative substitutions are set forth in Table 1. It is understood that codons capable of coding for such conservative substitutions are known in the art.












TABLE 1







Original Residue
Conservative Substitutions









Ala
Ser



Arg
Lys



Asn
Gln; His



Asp
Glu



Cys
Ser; Ala



Gln
Asn



Glu
Asp



Gly
Pro



His
Asn; Gln



Ile
Leu; Val



Leu
Ile; Val



Lys
Arg; Gln; Glu



Met
Leu; Ile



Phe
Met; Leu; Tyr



Ser
Thr



Thr
Ser



Trp
Tyr



Tyr
Trp; Phe



Val
Ile; Leu










In a further aspect of the present invention, one or more of the nucleic acid molecules of the present invention differ in nucleic acid sequence from those encoding a maize or soybean carbon assimilation pathway enzyme or fragment thereof set forth in SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof due to the fact that one or more codons encoding an amino acid has been substituted for a codon that encodes a nonessential substitution of the amino acid originally encoded.


Agents of the present invention include nucleic acid molecules that encode a maize or soybean carbon assimilation pathway enzyme or fragment thereof and particularly substantially purified nucleic acid molecules selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof and a nucleic acid molecule that encodes a maize or soybean pyrophospatase enzyme or fragment thereof.


Non-limiting examples of such nucleic acid molecules of the present invention are nucleic acid molecules comprising: SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof that encode for a plant carbon assimilation pathway enzyme or fragment thereof, SEQ ID NO: 1 through SEQ ID NO: 281 and SEQ ID NO: 282 through SEQ ID NO: 847 or fragment thereof that encode for a ribulose-bisphosphate carboxylase enzyme or fragment thereof, SEQ ID NO: 848 through SEQ ID NO: 1090 and SEQ ID NO: 1091 through SEQ ID NO: 1307 or fragment thereof that encode for a phosphoglycerate kinase enzyme or fragment thereof, SEQ ID NO: 1308 through SEQ ID NO: 2383 and SEQ ID NO: 2397 through SEQ ID NO: 3450 or fragment thereof that encodes for a glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, SEQ ID NO: 2384 through SEQ ID NO: 2396 or fragment thereof that encodes for a putative glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, SEQ ID NO: 3541 through SEQ ID NO: 3746 and SEQ ID NO: 3747 through SEQ ID NO: 3918 or fragment thereof that encode for a triose phosphate isomerase enzyme or fragment thereof, SEQ ID NO: 3919 through SEQ ID NO: 3963 and SEQ ID NO: 3964 through SEQ ID NO: 4370 or fragment thereof that encode for an aldolase enzyme or fragment thereof, SEQ ID NO: 4371 through SEQ ID NO: 4421 and SEQ ID NO: 4422 through SEQ ID NO: 4475 or fragment thereof that encode for a fructose-1,6-bisphosphatase enzyme or fragment thereof, SEQ ID NO: 4476 through SEQ ID NO: 4513 and SEQ ID NO: 4525 through SEQ ID NO: 4605 or fragment thereof that encode for a transketolase enzyme or fragment thereof, SEQ ID NO: 4514 through SEQ ID NO: 4524 and SEQ ID NO: 4606 through SEQ ID NO: 4612 or fragment thereof that encode for a putative transketolase enzyme or fragment thereof, SEQ ID NO: 4613 through SEQ ID NO: 4614 and SEQ ID NO: 4615 through SEQ ID NO: 4677 or fragment thereof that encode for a sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, SEQ ID NO: 4678 through SEQ ID NO: 4723 and SEQ ID NO: 4724 through SEQ ID NO: 4762 or fragment thereof that encode for a ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, SEQ ID NO: 4763 through SEQ ID NO: 4769 and SEQ ID NO: 4772 through SEQ ID NO: 4776 or fragment thereof that encodes for a D-ribose-5-phosphate isomerase enzyme or fragment thereof, SEQ ID NO: 4770 through SEQ ID NO: 4771 and SEQ ID NO: 4777 through SEQ ID NO: 4781 or fragment thereof that encodes for a putative ribose-5-phosphate isomerase enzyme or fragment thereof, SEQ ID NO: 4782 through SEQ ID NO: 4832 and SEQ ID NO: 4833 through SEQ ID NO: 4908 or fragment thereof that encode for a ribose-5-phosphate kinase enzyme or fragment thereof, SEQ ID NO: 4909 through SEQ ED NO: 5282 and SEQ ID NO: 5283 through SEQ ID NO: 5371 or fragment thereof that encode for a phosphoenolpyruvate carboxylase enzyme or fragment thereof, SEQ ID NO: 5372 through SEQ ID NO: 5419 and SEQ ID NO: 5420 through SEQ ID NO: 5423 or fragment thereof that encode for a NADP-dependent malate dehydrogenase enzyme or fragment thereof, SEQ ID NO: 5424 through SEQ ID NO: 5596 and SEQ ID NO: 5601 through SEQ ID NO: 5719 or fragment thereof that encode for an asparate aminotransferase enzyme or fragment thereof, SEQ ID NO: 5597 through SEQ ID NO: 5600 and SEQ ID NO: 5720 through SEQ ID NO: 5727 or fragment thereof that encode for a putative asparate aminotransferase enzyme or fragment thereof, SEQ ID NO: 5728 through SEQ ID NO: 5888 and SEQ ID NO: 5889 through SEQ ID NO: 6004 or fragment thereof that encode for an alanine aminotransferase enzyme or fragment thereof, SEQ ID NO: 6005 through SEQ ID NO: 6223 and SEQ ID NO: 6224 through SEQ ID NO: 6287 or fragment thereof that encode for a NADP-dependent malic enzyme or fragment thereof, SEQ ID NO: 6022 through SEQ ID NO: 6023, SEQ ID NO: 6288 through SEQ ID NO: 6290 and SEQ ID NO: 6291 through SEQ ID NO: 6293 or fragment thereof that encodes for a NAD-dependent malic enzyme or fragment thereof, SEQ ID NO: 6294 through SEQ ID NO: 6353 and SEQ ID NO: 6354 through SEQ ID NO: 6387 or fragment thereof that encode for a PEP carboxykinase enzyme or fragment thereof, SEQ ID NO: 6388 or fragment thereof that encode for a putative PEP carboxykinase enzyme or fragment thereof, SEQ ID NO: 6389 through SEQ ID NO: 6847 and SEQ ID NO: 6848 through SEQ ID NO: 6850 or fragment thereof that encode for a pyruvate, phosphate dikinase enzyme or fragment thereof, and SEQ ID NO: 6851 through SEQ ID NO: 7154 and SEQ ID NO: 7155 through SEQ ID NO: 7341 or fragment thereof that encode for a pyrophosphatase enzyme or fragment thereof.


A nucleic acid molecule of the present invention can also encode an homologue of a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a putative maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a maize or soybean aldolase enzyme or fragment thereof, a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a maize or soybean transketolase enzyme or fragment thereof, a putative maize or soybean transketolase enzyme or fragment thereof, a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, a maize or soybean alanine aminotransferase enzyme or fragment thereof, a maize or soybean NADP-dependent malic enzyme or fragment thereof, a maize or soybean NAD-dependent malic enzyme or fragment thereof, a maize or soybean PEP carboxykinase enzyme or fragment thereof, a putative maize or soybean PEP carboxykinase enzyme or fragment thereof, a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof or a maize soybean pyrophosphatase enzyme or fragment thereof. As used herein a homologue protein molecule or fragment thereof is a counterpart protein molecule or fragment thereof in a second species (e.g., maize ribulose-bisphosphate carboxylase is a homologue of Arabidopsis ribulose-bisphosphate carboxylase).


(ii) Nucleic Acid Molecule Markers and Probes


One aspect of the present invention concerns markers that include nucleic acid molecules SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragments of either that can act as markers or other nucleic acid molecules of the present invention that can act as markers. Genetic markers of the present invention include “dominant” or “codominant” markers “Codominant markers” reveal the presence of two or more alleles (two per diploid individual) at a locus. “Dominant markers” reveal the presence of only a single allele per locus. The presence of the dominant marker phenotype (e.g., a band of DNA) is an indication that one allele is present in either the homozygous or heterozygous condition. The absence of the dominant marker phenotype (e.g. absence of a DNA band) is merely evidence that “some other” undefined allele is present. In the case of populations where individuals are predominantly homozygous and loci are predominately dimorphic, dominant and codominant markers can be equally valuable. As populations become more heterozygous and multi-allelic, codominant markers often become more informative of the genotype than dominant markers. Marker molecules can be, for example, capable of detecting polymorphisms such as single nucleotide polymorphisms (SNPs).


SNPs are single base changes in genomic DNA sequence. They occur at greater frequency and are spaced with a greater uniformly throughout a genome than other reported forms of polymorphism. The greater frequency and uniformity of SNPs means that there is greater probability that such a polymorphism will be found near or in a genetic locus of interest than would be the case for other polymorphisms. SNPs are located in protein-coding regions and noncoding regions of a genome. Some of these SNPs may result in defective or variant protein expression (e.g., as a results of mutations or defective splicing). Analysis (genotyping) of characterized SNPs can require only a plus/minus assay rather than a lengthy measurement, permitting easier automation.


SNPs can be characterized using any of a variety of methods. Such methods include the direct or indirect sequencing of the site, the use of restriction enzymes (Botstein et al., Am. J. Hum. Genet. 32:314-331 (1980), the entirety of which is herein incorporated reference; Konieczny and Ausubel, Plant J. 4:403-410 (1993), the entirety of which is herein incorporated by reference), enzymatic and chemical mismatch assays (Myers et al., Nature 313:495-498 (1985), the entirety of which is herein incorporated by reference), allele-specific PCR (Newton et al., Nucl. Acids Res. 17:2503-2516 (1989), the entirety of which is herein incorporated by reference; Wu et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:2757-2760 (1989), the entirety of which is herein incorporated by reference), ligase chain reaction (Barany, Proc. Natl. Acad. Sci. (U.S.A.) 88:189-193 (1991), the entirety of which is herein incorporated by reference), single-strand conformation polymorphism analysis (Labrune et al., Am. J. Hum. Genet. 48: 1115-1120 (1991), the entirety of which is herein incorporated by reference), primer-directed nucleotide incorporation assays (Kuppuswami et al., Proc. Natl. Acad. Sci. USA 88:1143-1147 (1991), the entirety of which is herein incorporated by reference), dideoxy fingerprinting (Sarkar et al., Genomics 13:441-443 (1992), the entirety of which is herein incorporated by reference), solid-phase ELISA-based oligonucleotide ligation assays (Nikiforov et al., Nucl. Acids Res. 22:4167-4175 (1994), the entirety of which is herein incorporated by reference), oligonucleotide fluorescence-quenching assays (Livak et al., PCR Methods Appl. 4:357-362 (1995), the entirety of which is herein incorporated by reference), 5′-nuclease allele-specific hybridization TaqMan assay (Livak et al., Nature Genet. 9:341-342 (1995), the entirety of which is herein incorporated by reference), template-directed dye-terminator incorporation (TDI) assay (Chen and Kwok, Nucl. Acids Res. 25:347-353 (1997), the entirety of which is herein incorporated by reference), allele-specific molecular beacon assay (Tyagi et al., Nature Biotech. 16: 49-53 (1998), the entirety of which is herein incorporated by reference), PinPoint assay (Haff and Smirnov, Genome Res. 7:378-388 (1997), the entirety of which is herein incorporated by reference) and dCAPS analysis (Neff et al., Plant J. 14:387-392 (1998), the entirety of which is herein incorporated by reference).


Additional markers, such as AFLP markers, RFLP markers and RAPD markers, can be utilized (Walton, Seed World 22-29 (July, 1993), the entirety of which is herein incorporated by reference; Burow and Blake, Molecular Dissection of Complex Traits, 13-29, Paterson (ed.), CRC Press, New York (1988), the entirety of which is herein incorporated by reference). DNA markers can be developed from nucleic acid molecules using restriction endonucleases, the PCR and/or DNA sequence information. RFLP markers result from single base changes or insertions/deletions. These codominant markers are highly abundant in plant genomes, have a medium level of polymorphism and are developed by a combination of restriction endonuclease digestion and Southern blotting hybridization. CAPS are similarly developed from restriction nuclease digestion but only of specific PCR products. These markers are also codominant, have a medium level of polymorphism and are highly abundant in the genome. The CAPS result from single base changes and insertions/deletions.


Another marker type, RAPDs, are developed from DNA amplification with random primers and result from single base changes and insertions/deletions in plant genomes. They are dominant markers with a medium level of polymorphisms and are highly abundant. AFLP markers require using the PCR on a subset of restriction fragments from extended adapter primers. These markers are both dominant and codominant are highly abundant in genomes and exhibit a medium level of polymorphism.


SSRs require DNA sequence information. These codominant markers result from repeat length changes, are highly polymorphic and do not exhibit as high a degree of abundance in the genome as CAPS, AFLPs and RAPDs SNPs also require DNA sequence information. These codominant markers result from single base substitutions. They are highly abundant and exhibit a medium of polymorphism (Rafalski et al., In: Nonmammalian Genomic Analysis, Birren and Lai (ed.), Academic Press, San Diego, Calif., pp. 75-134 (1996), the entirety of which is herein incorporated by reference). It is understood that a nucleic acid molecule of the present invention may be used as a marker.


A PCR probe is a nucleic acid molecule capable of initiating a polymerase activity while in a double-stranded structure to with another nucleic acid. Various methods for determining the structure of PCR probes and PCR techniques exist in the art. Computer generated searches using programs such as Primer3 (www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi), STSPipeline (www-genome.wi.mit.edu/cgi-bin/www-STS_Pipeline), or GeneUp (Pesole et al., BioTechniques 25:112-123 (1998) the entirety of which is herein incorporated by reference), for example, can be used to identify potential PCR primers.


It is understood that a fragment of one or more of the nucleic acid molecules of the present invention may be a probe and specifically a PCR probe.


(b) Protein and Peptide Molecules


A class of agents comprises one or more of the protein or fragments thereof or peptide molecules encoded by SEQ ID NO: 1 through SEQ ID NO: 7341 or one or more of the protein or fragment thereof and peptide molecules encoded by other nucleic acid agents of the present invention. As used herein, the term “protein molecule” or “peptide molecule” includes any molecule that comprises five or more amino acids. It is well known in the art that proteins may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation, or oligomerization. Thus, as used herein, the term “protein molecule” or “peptide molecule” includes any protein molecule that is modified by any biological or non-biological process. The terms “amino acid” and “amino acids” refer to all naturally occurring L-amino acids. This definition is meant to include norleucine, ornithine, homocysteine and homoserine.


Non-limiting examples of the protein or fragment thereof of the present invention include a maize or soybean carbon assimilation pathway enzyme or fragment thereof; a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a maize or soybean aldolase enzyme or fragment thereof, a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a maize or soybean transketolase enzyme or fragment thereof, a putative maize or soybean transketolase enzyme or fragment thereof, a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a maize or soybean alanine aminotransferase enzyme or fragment thereof, a maize or soybean NADP-dependent malic enzyme or fragment thereof, a maize or soybean NAD-dependent malic enzyme or fragment thereof, a maize or soybean PEP carboxykinase enzyme or fragment thereof, a putative soybean PEP carboxykinase enzyme or fragment thereof, a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof, or a maize or soybean pyrophosphatase enzyme or fragment thereof.


Non-limiting examples of the protein or fragment molecules of the present invention are a carbon assimilation pathway enzyme or fragment thereof encoded by: SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof that encode for a carbon assimilation pathway enzyme or fragment thereof, SEQ ID NO: 1 through SEQ ID NO: 281 and SEQ ID NO: 282 through SEQ ID NO: 847 or fragment thereof that encode for a ribulose-bisphosphate carboxylase enzyme or fragment thereof, SEQ ID NO: 848 through SEQ ID NO: 1090 and SEQ ID NO: 1091 through SEQ ID NO: 1307 or fragment thereof that encode for a phosphoglycerate kinase enzyme or fragment thereof, SEQ ID NO: 1308 through SEQ ID NO: 2383 and SEQ ID NO: 2384 through SEQ ID NO: 3540 or fragment thereof that encodes for a glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, SEQ ID NO: 2384 through SEQ ID NO: 2396 or fragment thereof that encodes for a putative glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, SEQ ID NO: 3541 through SEQ ID NO: 3746 and SEQ ID NO: 3747 through SEQ ID NO: 3918 or fragment thereof that encode for a triose phosphate isomerase enzyme or fragment thereof, SEQ ID NO: 3919 through SEQ ID NO: 3963 and SEQ ID NO: 3964 through SEQ ID NO: 4370 or fragment thereof that encode for an aldolase enzyme or fragment thereof, SEQ ID NO: 4371 through SEQ ID NO: 4421 and SEQ ID NO: 4422 through SEQ ID NO: 4475 or fragment thereof that encode for a fructose-1,6-bisphosphatase enzyme or fragment thereof, SEQ ID NO: 4476 through SEQ ID NO: 4513 and SEQ ID NO: 4525 through SEQ ID NO: 4605 or fragment thereof that encode for a transketolase enzyme or fragment thereof, SEQ ID NO: 4514 through SEQ ID NO: 4524 and SEQ ID NO: 4606 through SEQ ID NO: 4612 or fragment thereof that encode for a putative transketolase enzyme or fragment thereof, SEQ ID NO: 4613 through SEQ ID NO: 4614- and SEQ ID NO: 4615 through SEQ ID NO: 4677 or fragment thereof that encode for a sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, SEQ ID NO: 4678 through SEQ ID NO: 4723 and SEQ ID NO: 4724 through SEQ ID NO: 4762 or fragment thereof that encode for a D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, SEQ ID NO: 4763 through SEQ ID NO: 4769 and SEQ ID NO: 4772 through SEQ ID NO: 4776 or fragment thereof that encodes for a ribose-5-phosphate isomerase enzyme or fragment thereof, SEQ ID NO: 4770 through SEQ ID NO: 4771 and SEQ ID NO: 4777 through SEQ ID NO: 4781 or fragment thereof that encodes for a putative ribose-5-phosphate isomerase enzyme or fragment thereof, SEQ ID NO: 4782 through SEQ ID NO: 4832 and SEQ ID NO: 4833 through SEQ ID NO: 4908 or fragment thereof that encode for a ribose-5-phosphate kinase enzyme or fragment thereof, SEQ ID NO: 4909 through SEQ ID NO: 5282 and SEQ ID NO: 5283 through SEQ ID NO: 5371 or fragment thereof that encode for a phosphoenolpyruvate carboxylase enzyme or fragment thereof, SEQ ID NO: 5372 through SEQ ID NO: 5419 and SEQ ID NO: 5420 through SEQ ID NO: 5423 or fragment thereof that encode for a NADP-dependent malate dehydrogenase enzyme or fragment thereof, SEQ ID NO: 5424 through SEQ ID NO: 5596 and SEQ ID NO: 5601 through SEQ ID NO: 5719 or fragment thereof that encode for an asparate aminotransferase enzyme or fragment thereof, SEQ ID NO: 5597 through SEQ ID NO: 5600 and SEQ ID NO: 5720 through SEQ ID NO: 5727 or fragment thereof that encode for a putative asparate aminotransferase enzyme or fragment thereof, SEQ ID NO: 5728 through SEQ ID NO: 5888 and SEQ ID NO: 5889 through SEQ ID NO: 6004 or fragment thereof that encode for an alanine aminotransferase enzyme or fragment thereof, SEQ ID NO: 6005 through SEQ ID NO: 6223 and SEQ ID NO: 6224 through SEQ ID NO: 6287 or fragment thereof that encode for a NADP-dependent malic enzyme or fragment thereof, SEQ ID NO: 6022 through SEQ ID NO: 6023, SEQ ID NO: 6288 through SEQ ID NO: 6290 and SEQ ID NO: 6291 through SEQ ID NO: 6293 or fragment thereof that encodes for a NAD-dependent malic enzyme or fragment thereof, SEQ ID NO: 6294 through SEQ ID NO: 6353 and SEQ ID NO: 6354 through SEQ ID NO: 6387 or fragment thereof that encode for a PEP carboxykinase enzyme or fragment thereof, SEQ ID NO: 6388 or fragment thereof that encode for a putative PEP carboxykinase enzyme or fragment thereof, SEQ ID NO: 6389 through SEQ ID NO: 6847 and SEQ ID NO: 6848 through SEQ ID NO: 6850 or fragment thereof that encode for a pyruvate, phosphate dikinase enzyme or fragment thereof, and SEQ ID NO: 6851 through SEQ ID NO: 7154 and SEQ ID NO: 7155 through SEQ ID NO: 7341 or fragment thereof that encode for a pyrophosphatase enzyme or fragment thereof.


One or more of the protein or fragment of peptide molecules may be produced via chemical synthesis, or more preferably, by expressing in a suitable bacterial or eucaryotic host. Suitable methods for expression are described by Sambrook et al., (In: Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989)), or similar texts. For example, the protein may be expressed in, for example, Uses of the Agents of the Invention, Section (a) Plant Constructs and Plant Transformants; Section (b) Fungal Constructs and Fungal Transformants; Section (c) Mammalian Constructs and Transformed Mammalian Cells; Section (d) Insect Constructs and Transformed Insect Cells; and Section (e) Bacterial Constructs and Transformed Bacterial Cells.


A “protein fragment” is a peptide or polypeptide molecule whose amino acid sequence comprises a subset of the amino acid sequence of that protein. A protein or fragment thereof that comprises one or more additional peptide regions not derived from that protein is a “fusion” protein. Such molecules may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin, etc.). Fusion protein or peptide molecules of the present invention are preferably produced via recombinant means.


Another class of agents comprise protein or peptide molecules or fragments or fusions thereof encoded by SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof in which conservative, non-essential or non-relevant amino acid residues have been added, replaced or deleted. Computerized means for designing modifications in protein structure are known in the art (Dahiyat and Mayo, Science 278:82-87 (1997), the entirety of which is herein incorporated by reference).


The protein molecules of the present invention include plant homologue proteins. An example of such a homologue is a homologue protein of a non-maize or non-soybean plant species, that include but not limited to alfalfa, Arabidopsis, barley, Brassica, broccoli, cabbage, citrus, cotton, garlic, oat, oilseed rape, onion, canola, flax, an ornamental plant, pea, peanut, pepper, potato, rice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, oil palm, Phaseolus etc. Particularly preferred non-maize or non-soybean for use for the isolation of homologs would include, Arabidopsis, barley, cotton, oat, oilseed rape, rice, canola, ornamentals, sugarcane, sugarbeet, tomato, potato, wheat and turf grasses. Such a homologue can be obtained by any of a variety of methods. Most preferably, as indicated above, one or more of the disclosed sequences (SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof) will be used to define a pair of primers that may be used to isolate the homologue-encoding nucleic acid molecules from any desired species. Such molecules can be expressed to yield homologues by recombinant means.


(c) Antibodies


One aspect of the present invention concerns antibodies, single-chain antigen binding molecules, or other proteins that specifically bind to one or more of the protein or peptide molecules of the present invention and their homologues, fusions or fragments. Such antibodies may be used to quantitatively or qualitatively detect the protein or peptide molecules of the present invention. As used herein, an antibody or peptide is said to “specifically bind” to a protein or peptide molecule of the present invention if such binding is not competitively inhibited by the presence of non-related molecules.


Nucleic acid molecules that encode all or part of the protein of the present invention can be expressed, via recombinant means, to yield protein or peptides that can in turn be used to elicit antibodies that are capable of binding the expressed protein or peptide. Such antibodies may be used in immunoassays for that protein. Such protein-encoding molecules, or their fragments may be a “fusion” molecule (i.e., a part of a larger nucleic acid molecule) such that, upon expression, a fusion protein is produced. It is understood that any of the nucleic acid molecules of the present invention may be expressed, via recombinant means, to yield proteins or peptides encoded by these nucleic acid molecules.


The antibodies that specifically bind proteins and protein fragments of the present invention may be polyclonal or monoclonal and may comprise intact immunoglobulins, or antigen binding portions of immunoglobulins fragments (such as (F(ab′), F(ab′)2), or single-chain immunoglobulins producible, for example, via recombinant means. It is understood that practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of antibodies (see, for example, Harlow and Lane, In: Antibodies: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1988), the entirety of which is herein incorporated by reference).


Murine monoclonal antibodies are particularly preferred. BALB/c mice are preferred for this purpose, however, equivalent strains may also be used. The animals are preferably immunized with approximately 25 μg of purified protein (or fragment thereof) that has been emulsified in a suitable adjuvant (such as TiterMax adjuvant (Vaxcel, Norcross, Ga.)). Immunization is preferably conducted at two intramuscular sites, one intraperitoneal site and one subcutaneous site at the base of the tail. An additional i.v. injection of approximately 25 μg of antigen is preferably given in normal saline three weeks later. After approximately 11 days following the second injection, the mice may be bled and the blood screened for the presence of anti-protein or peptide antibodies. Preferably, a direct binding Enzyme-Linked Immunoassay (ELISA) is employed for this purpose.


More preferably, the mouse having the highest antibody titer is given a third i.v. injection of approximately 25 μg of the same protein or fragment. The splenic leukocytes from this animal may be recovered 3 days later and then permitted to fuse, most preferably, using polyethylene glycol, with cells of a suitable myeloma cell line (such as, for example, the P3X63Ag8.653 myeloma cell line). Hybridoma cells are selected by culturing the cells under “HAT” (hypoxanthine-aminopterin-thymine) selection for about one week. The resulting clones may then be screened for their capacity to produce monoclonal antibodies (“mAbs”), preferably by direct ELISA.


In one embodiment, anti-protein or peptide monoclonal antibodies are isolated using a fusion of a protein or peptide of the present invention, or conjugate of a protein or peptide of the present invention, as immunogens. Thus, for example, a group of mice can be immunized using a fusion protein emulsified in Freund's complete adjuvant (e.g. approximately 50 μg of antigen per immunization). At three week intervals, an identical amount of antigen is emulsified in Freund's incomplete adjuvant and used to immunize the animals. Ten days following the third immunization, serum samples are taken and evaluated for the presence of antibody. If antibody titers are too low, a fourth booster can be employed. Polysera capable of binding the protein or peptide can also be obtained using this method.


In a preferred procedure for obtaining monoclonal antibodies, the spleens of the above-described immunized mice are removed, disrupted and immune splenocytes are isolated over a ficoll gradient. The isolated splenocytes are fused, using polyethylene glycol with BALB/c-derived HGPRT (hypoxanthine guanine phosphoribosyl transferase) deficient P3x63xAg8.653 plasmacytoma cells. The fused cells are plated into 96 well microtiter plates and screened for hybridoma fusion cells by their capacity to grow in culture medium supplemented with hypothanthine, aminopterin and thymidine for approximately 2-3 weeks.


Hybridoma cells that arise from such incubation are preferably screened for their capacity to produce an immunoglobulin that binds to a protein of interest. An indirect ELISA may be used for this purpose. In brief, the supernatants of hybridomas are incubated in microtiter wells that contain immobilized protein. After washing, the titer of bound immunoglobulin can be determined using, for example, a goat anti-mouse antibody conjugated to horseradish peroxidase. After additional washing, the amount of immobilized enzyme is determined (for example through the use of a chromogenic substrate). Such screening is performed as quickly as possible after the identification of the hybridoma in order to ensure that a desired clone is not overgrown by non-secreting neighbor cells. Desirably, the fusion plates are screened several times since the rates of hybridoma growth vary. In a preferred sub-embodiment, a different antigenic form may be used to screen the hybridoma. Thus, for example, the splenocytes may be immunized with one immunogen, but the resulting hybridomas can be screened using a different immunogen. It is understood that any of the protein or peptide molecules of the present invention may be used to raise antibodies.


As discussed below, such antibody molecules or their fragments may be used for diagnostic purposes. Where the antibodies are intended for diagnostic purposes, it may be desirable to derivatize them, for example with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a radioisotope or an enzyme).


The ability to produce antibodies that bind the protein or peptide molecules of the present invention permits the identification of mimetic compounds of those molecules. A “mimetic compound” is a compound that is not that compound, or a fragment of that compound, but which nonetheless exhibits an ability to specifically bind to antibodies directed against that compound.


It is understood that any of the agents of the present invention can be substantially purified and/or be biologically active and/or recombinant.


Uses of the Agents of the Invention

Nucleic acid molecules and fragments thereof of the present invention may be employed to obtain other nucleic acid molecules from the same species (e.g., ESTs or fragment thereof from maize may be utilized to obtain other nucleic acid molecules from maize). Such nucleic acid molecules include the nucleic acid molecules that encode the complete coding sequence of a protein and promoters and flanking sequences of such molecules. In addition, such nucleic acid molecules include nucleic acid molecules that encode for other isozymes or gene family members. Such molecules can be readily obtained by using the above-described nucleic acid molecules or fragments thereof to screen cDNA or genomic libraries obtained from maize or soybean. Methods for forming such libraries are well known in the art.


Nucleic acid molecules and fragments thereof of the present invention may also be employed to obtain nucleic acid homologues. Such homologues include the nucleic acid molecule of other plants or other organisms (e.g., alfalfa, Arabidopsis, barley, Brassica, broccoli, cabbage, citrus, cotton, garlic, oat, oilseed rape, onion, canola, flax, an ornamental plant, pea, peanut, pepper, potato, rice, rye, sorghum, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, oil palm, Phaseolus, etc.) including the nucleic acid molecules that encode, in whole or in part, protein homologues of other plant species or other organisms, sequences of genetic elements such as promoters and transcriptional regulatory elements. Such molecules can be readily obtained by using the above-described nucleic acid molecules or fragments thereof to screen cDNA or genomic libraries obtained from such plant species. Methods for forming such libraries are well known in the art. Such homologue molecules may differ in their nucleotide sequences from those found in one or more of SEQ ID NO: 1 through SEQ. ID NO: 7341 or complements thereof because complete complementarity is not needed for stable hybridization. The nucleic acid molecules of the present invention therefore also include molecules that, although capable of specifically hybridizing with the nucleic acid molecules may lack “complete complementarity.”


Any of a variety of methods may be used to obtain one or more of the above-described nucleic acid molecules (Zarnechik et al., Proc. Natl. Acad. Sci. (U.S.A.) 83:4143-4146 (1986), the entirety of which is herein incorporated by reference; Goodchild et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:5507-5511 (1988), the entirety of which is herein incorporated by reference; Wickstrom et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:1028-1032 (1988), the entirety of which, is herein incorporated by reference; Holt et al., Molec. Cell. Biol. 8:963-973 (1988), the entirety of which is herein incorporated by reference; Gerwirtz et al., Science 242:1303-1306 (1988), the entirety of which is herein incorporated by reference; Anfossi et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:3379-3383 (1989), the entirety of which is herein incorporated by reference; Becker et al., EMBO J. 8:3685-3691 (1989); the entirety of which is herein incorporated by reference). Automated nucleic acid synthesizers may be employed for this purpose. In lieu of such synthesis, the disclosed nucleic acid molecules may be used to define a pair of primers that can be used with the polymerase chain reaction (Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al., European Patent 50,424; European Patent 84,796; European Patent 258,017; European Patent 237,362; Mullis, European Patent 201,184; Mullis et al., U.S. Pat. No. 4,683,202; Erlich, U.S. Pat. No. 4,582,788; and Saiki et al., U.S. Pat. No. 4,683,194, all of which are herein incorporated by reference in their entirety) to amplify and obtain any desired nucleic acid molecule or fragment.


Promoter sequence(s) and other genetic elements, including but not limited to transcriptional regulatory flanking sequences, associated with one or more of the disclosed nucleic acid sequences can also be obtained using the disclosed nucleic acid sequence provided herein. In one embodiment, such sequences are obtained by incubating EST nucleic acid molecules or preferably fragments thereof with members of genomic libraries (e.g. maize and soybean) and recovering clones that hybridize to the EST nucleic acid molecule or fragment thereof. In a second embodiment, methods of “chromosome walking,” or inverse PCR may be used to obtain such sequences (Frohman et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:8998-9002 (1988); Ohara et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:5673-5677 (1989); Pang et al., Biotechniques 22:1046-1048 (1977); Huang et al., Methods Mol. Biol. 69:89-96 (1997); Huang et al., Method Mol. Biol. 67:287-294 (1997); Benkel et al., Genet. Anal. 13:123-127 (1996); Hartl et al., Methods Mol. Biol. 58:293-301 (1996), all of which are herein incorporated by reference in their entirety).


The nucleic acid molecules of the present invention may be used to isolate promoters of cell enhanced, cell specific, tissue enhanced, tissue specific, developmentally or environmentally regulated expression profiles. Isolation and functional analysis of the 5′ flanking promoter sequences of these genes from genomic libraries, for example, using genomic screening methods and PCR techniques would result in the isolation of useful promoters and transcriptional regulatory elements. These methods are known to those of skill in the art and have been described (See, for example, Birren et al., Genome Analysis: Analyzing DNA, 1, (1997), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., the entirety of which is herein incorporated by reference). Promoters obtained utilizing the nucleic acid molecules of the present invention could also be modified to affect their control characteristics. Examples of such modifications would include but are not limited to enhanced sequences as reported in Uses of the Agents of the Invention, Section (a) Plant Constructs and Plant Transformants. Such genetic elements could be used to enhance gene expression of new and existing traits for crop improvements.


In one sub-aspect, such an analysis is conducted by determining the presence and/or identity of polymorphism(s) by one or more of the nucleic acid molecules of the present invention and more preferably one or more of the EST nucleic acid molecule or fragment thereof which are associated with a phenotype, or a predisposition to that phenotype.


Any of a variety of molecules can be used to identify such polymorphism(s). In one embodiment, one or more of the EST nucleic acid molecules (or a sub-fragment thereof) may be employed as a marker nucleic acid molecule to identify such polymorphism(s). Alternatively, such polymorphisms can be detected through the use of a marker nucleic acid molecule or a marker protein that is genetically linked to (i.e., a polynucleotide that co-segregates with) such polymorphism(s).


In an alternative embodiment, such polymorphisms can be detected through the use of a marker nucleic acid molecule that is physically linked to such polymorphism(s). For this purpose, marker nucleic acid molecules comprising a nucleotide sequence of a polynucleotide located within 1 mb of the polymorphism(s) and more preferably within 100 kb of the polymorphism(s) and most preferably within 10 kb of the polymorphism(s) can be employed.


The genomes of animals and plants naturally undergo spontaneous mutation in the course of their continuing evolution (Gusella, Ann. Rev. Biochem. 55:831-854 (1986)). A “polymorphism” is a variation or difference in the sequence of the gene or its flanking regions that arises in some of the members of a species. The variant sequence and the “original” sequence co-exist in the species' population. In some instances, such co-existence is in stable or quasi-stable equilibrium.


A polymorphism is thus said to be “allelic,” in that, due to the existence of the polymorphism, some members of a species may have the original sequence (i.e., the original “allele”) whereas other members may have the variant sequence (i.e., the variant “allele”). In the simplest case, only one variant sequence may exist and the polymorphism is thus said to be di-allelic. In other cases, the species' population may contain multiple alleles and the polymorphism is termed tri-allelic, etc. A single gene may have multiple different unrelated polymorphisms. For example, it may have a di-allelic polymorphism at one site and a multi-allelic polymorphism at another site.


The variation that defines the polymorphism may range from a single nucleotide variation to the insertion or deletion of extended regions within a gene. In some cases, the DNA sequence variations are in regions of the genome that are characterized by short tandem repeats (STRs) that include tandem di- or tri-nucleotide repeated motifs of nucleotides. Polymorphisms characterized by such tandem repeats are referred to as “variable number tandem repeat” (“VNTR”) polymorphisms. VNTRs have been used in identity analysis (Weber, U.S. Pat. No. 5,075,217; Armour et al., FEBS Lett. 307:113-115 (1992); Jones et al., Eur. J. Haematol. 39:144-147 (1987); Horn et al., PCT Patent Application WO91/14003; Jeffreys, European Patent Application 370,719; Jeffreys, U.S. Pat. No. 5,175,082; Jeffreys et al., Amer. J. Hum. Genet. 39:11-24 (1986); Jeffreys et al., Nature 316:76-79 (1985); Gray et al., Proc. R. Acad. Soc. Lond. 243:241-253 (1991); Moore et al., Genomics 10:654-660 (1991); Jeffreys et al., Anim. Genet. 18:1-15 (1987); Hillel et al., Anim. Genet. 20:145-155 (1989); Hillel et al., Genet. 124:783-789 (1990), all of which are herein incorporated by reference in their entirety).


The detection of polymorphic sites in a sample of DNA may be facilitated through the use of nucleic acid amplification methods. Such methods specifically increase the concentration of polynucleotides that span the polymorphic site, or include that site and sequences located either distal or proximal to it. Such amplified molecules can be readily detected by gel electrophoresis or other means.


The most preferred method of achieving such amplification employs the polymerase chain reaction (“PCR”) (Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al., European Patent Appln. 50,424; European Patent Appln. 84,796; European Patent Application 258,017; European Patent Appln. 237,362; Mullis, European Patent Appln. 201,184; Mullis et al., U.S. Pat. No. 4,683,202; Erlich, U.S. Pat. No. 4,582,788; and Saiki et al., U.S. Pat. No. 4,683,194), using primer pairs that are capable of hybridizing to the proximal sequences that define a polymorphism in its double-stranded form.


In lieu of PCR, alternative methods, such as the “Ligase Chain Reaction” (“LCR”) may be used (Barany, Proc. Natl. Acad. Sci. (U.S.A.) 88:189-193 (1991), the entirety of which is herein incorporated by reference). LCR uses two pairs of oligonucleotide probes to exponentially amplify a specific target. The sequences of each pair of oligonucleotides is selected to permit the pair to hybridize to abutting sequences of the same strand of the target. Such hybridization forms a substrate for a template-dependent ligase. As with PCR, the resulting products thus serve as a template in subsequent cycles and an exponential amplification of the desired sequence is obtained.


LCR can be performed with oligonucleotides having the proximal and distal sequences of the same strand of a polymorphic site. In one embodiment, either oligonucleotide will be designed to include the actual polymorphic site of the polymorphism. In such an embodiment, the reaction conditions are selected such that the oligonucleotides can be ligated together only if the target molecule either contains or lacks the specific nucleotide that is complementary to the polymorphic site present on the oligonucleotide. Alternatively, the oligonucleotides may be selected such that they do not include the polymorphic site (see, Segev, PCT Application WO 90/01069, the entirety of which is herein incorporated by reference).


The “Oligonucleotide Ligation Assay” (“OLA”) may alternatively be employed (Landegren et al., Science 241:1077-1080 (1988), the entirety of which is herein incorporated by reference). The OLA protocol uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. OLA, like LCR, is particularly suited for the detection of point mutations. Unlike LCR, however, OLA results in “linear” rather than exponential amplification of the target sequence.


Nickerson et al., have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990), the entirety of which is herein incorporated by reference). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA. In addition to requiring multiple and separate, processing steps, one problem associated with such combinations is that they inherit all of the problems associated with PCR and OLA.


Schemes based on ligation of two (or more) oligonucleotides in the presence of nucleic acid having the sequence of the resulting “di-oligonucleotide”, thereby amplifying the di-oligonucleotide, are also known (Wu et al., Genomics 4:560-569 (1989), the entirety of which is herein incorporated by reference) and may be readily adapted to the purposes of the present invention.


Other known nucleic acid amplification procedures, such as allele-specific oligomers, branched DNA technology, transcription-based amplification systems, or isothermal amplification methods may also be used to amplify and analyze such polymorphisms (Malek et al., U.S. Pat. No. 5,130,238; Davey et al., European Patent Application 329,822; Schuster et al., U.S. Pat. No. 5,169,766; Miller et al., PCT Patent Application WO 89/06700; Kwoh et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:1173-1177 (1989); Gingeras et al., PCT Patent Application WO 88/10315; Walker et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:392-396 (1992), all of which are herein incorporated by reference in their entirety).


The identification of a polymorphism can be determined in a variety of ways. By correlating the presence or absence of it in a plant with the presence or absence of a phenotype, it is possible to predict the phenotype of that plant. If a polymorphism creates or destroys a restriction endonuclease cleavage site, or if it results in the loss or insertion of DNA (e.g., a VNTR polymorphism), it will alter the size or profile of the DNA fragments that are generated by digestion with that restriction endonuclease. As such, individuals that possess a variant sequence can be distinguished from those having the original sequence by restriction fragment analysis. Polymorphisms that can be identified in this manner are termed “restriction fragment length polymorphisms” (“RFLPs”). RFLPs have been widely used in human and plant genetic analyses (Glassberg, UK Patent Application 2135774; Skolnick et al., Cytogen. Cell Genet. 32:58-67 (1982); Botstein et al., Ann. J. Hum. Genet. 32:314-331 (1980); Fischer et al., (PCT Application WO90/13668); Uhlen, PCT Application WO90/11369).


Polymorphisms can also be identified by Single Strand Conformation Polymorphism (SSCP) analysis. SSCP is a method capable of identifying most sequence variations in a single strand of DNA, typically between 150 and 250 nucleotides in length (Elles, Methods in Molecular Medicine Molecular Diagnosis of Genetic Diseases, Humana Press (1996), the entirety of which is herein incorporated by reference); Orita et al., Genomics 5:874-879 (1989), the entirety of which is herein incorporated by reference). Under denaturing conditions a single strand of DNA will adopt a conformation that is uniquely dependent on its sequence conformation. This conformation usually will be different, even if only a single base is changed. Most conformations have been reported to alter the physical configuration or size sufficiently to be detectable by electrophoresis. A number of protocols have been described for SSCP including, but not limited to, Lee et al., Anal. Biochem. 205:289-293 (1992), the entirety of which is herein incorporated by reference; Suzuki et al., Anal. Biochem. 192:82-84 (1991), the entirety of which is herein incorporated by reference; Lo et al., Nucleic Acids Research 20:1005-1009 (1992), the entirety of which is herein incorporated by reference; Sarkar et al., Genomics 13:441-443 (1992), the entirety of which is herein incorporated by reference. It is understood that one or more of the nucleic acids of the present invention, may be utilized as markers or probes to detect polymorphisms by SSCP analysis.


Polymorphisms may also be found using a DNA fingerprinting technique called amplified fragment length polymorphism (AFLP), which is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA to profile that DNA (Vos et al., Nucleic Acids Res. 23:4407-4414 (1995), the entirety of which is herein incorporated by reference). This method allows for the specific co-amplification of high numbers of restriction fragments, which can be visualized by PCR without knowledge of the nucleic acid sequence.


AFLP employs basically three steps. Initially, a sample of genomic DNA is cut with restriction enzymes and oligonucleotide adapters are ligated to the restriction fragments of the DNA. The restriction fragments are then amplified using PCR by using the adapter and restriction sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotide flanking the restriction sites. These amplified fragments are then visualized on a denaturing polyacrylamide gel.


AFLP analysis has been performed on Salix (Beismann et al., Mol. Ecol. 6:989-993 (1997), the entirety of which is herein incorporated by reference), Acinetobacter (Janssen et al, Int. J. Syst. Bacteriol. 47:1179-1187 (1997), the entirety of which is herein incorporated by reference), Aeromonas popoffi (Huys et al, Int. J. Syst. Bacteriol. 47:1165-1171 (1997), the entirety of which is herein incorporated by reference), rice (McCouch et al, Plant Mol. Biol. 35:89-99 (1997), the entirety of which is herein incorporated by reference; Nandi et al., Mol. Gen. Genet. 255:1-8 (1997), the entirety of which is herein incorporated by reference; Cho et al., Genome 39:373-378 (1996), the entirety of which is herein incorporated by reference), barley (Hordeum vulgare) (Simons et al., Genomics 44:61-70 (1997), the entirety of which is herein incorporated by reference; Waugh et al., Mol. Gen. Genet. 255:311-321 (1997), the entirety of which is herein incorporated by reference; Qi et al, Mol. Gen. Genet. 254:330-336 (1997), the entirety of which is herein incorporated by reference; Becker et al., Mol. Gen. Genet. 249:65-73 (1995), the entirety of which is herein incorporated by reference), potato (Van der Voort et al., Mol. Gen. Genet. 255:438-447 (1997), the entirety of which is herein incorporated by reference; Meksem et al., Mol. Gen. Genet. 249:74-81 (1995), the entirety of which is herein incorporated by reference), Phytophthora infestans (Van der Lee et al., Fungal Genet. Biol. 21:278-291 (1997), the entirety of which is herein incorporated by reference), Bacillus anthracis (Keim et al, J. Bacteriol. 179:818-824 (1997), the entirety of which is herein incorporated by reference), Astragalus cremnophylax (Travis et al., Mol. Ecol. 5:735-745 (1996), the entirety of which is herein incorporated by reference), Arabidopsis (Cnops et al., Mol. Gen. Genet. 253:32-41 (1996), the entirety of which is herein incorporated by reference), Escherichia coli (Lin et al., Nucleic Acids Res. 24:3649-3650 (1996), the entirety of which is herein incorporated by reference), Aeromonas (Huys et al., Int. J. Syst. Bacteriol. 46:572-580 (1996), the entirety of which is herein incorporated by reference), nematode (Folkertsma et al., Mol. Plant. Microbe Interact. 9:47-54 (1996), the entirety of which is herein incorporated by reference), tomato (Thomas et al., Plant J. 8:785-794 (1995), the entirety of which is herein incorporated by reference) and human (Latorra et al., PCR Methods Appl. 3:351-358 (1994), the entirety of which is herein incorporated by reference). AFLP analysis has also been used for fingerprinting mRNA (Money et al., Nucleic Acids Res. 24:2616-2617 (1996), the entirety of which is herein incorporated by reference; Bachem et al., Plant J. 9:745-753 (1996), the entirety of which is herein incorporated by reference). It is understood that one or more of the nucleic acids of the present invention, may be utilized as markers or probes to detect polymorphisms by AFLP analysis or for fingerprinting RNA.


Polymorphisms may also be found using random amplified polymorphic DNA (RAPD) (Williams et al., Nucl. Acids Res. 18:6531-6535 (1990), the entirety of which is herein incorporated by reference) and cleaveable amplified polymorphic sequences (CAPS) (Lyamichev et al., Science 260:778-783 (1993), the entirety of which is herein incorporated by reference). It is understood that one or more of the nucleic acid molecules of the present invention, may be utilized as markers or probes to detect polymorphisms by RAPD or CAPS analysis.


Through genetic mapping, a fine scale linkage map can be developed using DNA markers and, then, a genomic DNA library of large-sized fragments can be screened with molecular markers linked to the desired trait. Molecular markers are advantageous for agronomic traits that are otherwise difficult to tag, such as resistance to pathogens, insects and nematodes, tolerance to abiotic stress, quality parameters and quantitative traits such as high yield potential.


The essential requirements for marker-assisted selection in a plant breeding program are: (1) the marker(s) should co-segregate or be closely linked with the desired trait; (2) an efficient means of screening large populations for the molecular marker(s) should be available; and (3) the screening technique should have high reproducibility across laboratories and preferably be economical to use and be user-friendly.


The genetic linkage of marker molecules can be established by a gene mapping model such as, without limitation, the flanking marker model reported by Lander and Botstein, Genetics 121:185-199 (1989) and the interval mapping, based on maximum likelihood methods described by Lander and Botstein, Genetics 121:185-199 (1989) and implemented in the software package MAPMAKER/QTL (Lincoln and Lander, Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL, Whitehead Institute for Biomedical Research, Massachusetts, (1990). Additional software includes Qgene, Version 2.23 (1996), Department of Plant Breeding and Biometry, 266 Emerson Hall, Cornell University, Ithaca, N.Y., the manual of which is herein incorporated by reference in its entirety). Use of Qgene software is a particularly preferred approach.


A maximum likelihood estimate (MLE) for the presence of a marker is calculated, together with an MLE assuming no QTL effect, to avoid false positives. A log10 of an odds ratio (LOD) is then calculated as: LOD=log10 (MLE for the presence of a QTL/MLE given no linked QTL).


The LOD score essentially indicates how much more likely the data are to have arisen assuming the presence of a QTL than in its absence. The LOD threshold value for avoiding a false positive with a given confidence, say 95%, depends on the number of markers and the length of the genome. Graphs indicating LOD thresholds are set forth in Lander and Botstein, Genetics 121:185-199 (1989) the entirety of which is herein incorporated by reference and further described by Arús and Moreno-González, Plant Breeding, Hayward et al., (eds.) Chapman & Hall, London, pp. 314-331 (1993), the entirety of which is herein incorporated by reference.


Additional models can be used. Many modifications and alternative approaches to interval mapping have been reported, including the use non-parametric methods (Kruglyak and Lander, Genetics 139:1421-1428 (1995), the entirety of which is herein incorporated by reference). Multiple regression methods or models can be also be used, in which the trait is regressed on a large number of markers (Jansen, Biometrics in Plant Breeding, van Oijen and Jansen (eds.), Proceedings of the Ninth Meeting of the Eucarpia Section Biometrics in Plant Breeding, The Netherlands, pp. 116-124 (1994); Weber and Wricke, Advances in Plant Breeding, Blackwell, Berlin, 16 (1994), both of which is herein incorporated by reference in their entirety). Procedures combining interval mapping with regression analysis, whereby the phenotype is regressed onto a single putative QTL at a given marker interval and at the same time onto a number of markers that serve as ‘cofactors,’ have been reported by Jansen and Stam, Genetics 136:1447-1455 (1994), the entirety of which is herein incorporated by reference and Zeng, Genetics 136:1457-1468 (1994) the entirety of which is herein incorporated by reference. Generally, the use of cofactors reduces the bias and sampling error of the estimated QTL positions (Utz and Melchinger, Biometrics in Plant Breeding, van Oijen and Jansen (eds.) Proceedings of the Ninth Meeting of the Eucarpia Section Biometrics in Plant Breeding, The Netherlands, pp. 195-204 (1994), the entirety of which is herein incorporated by reference, thereby improving the precision and efficiency of QTL mapping (Zeng, Genetics 136:1457-1468 (1994)). These models can be extended to multi-environment experiments to analyze genotype-environment interactions (Jansen et al., Theo. Appl. Genet. 91:33-37 (1995), the entirety of which is herein incorporated by reference).


Selection of an appropriate mapping populations is important to map construction. The choice of appropriate mapping population depends on the type of marker systems employed (Tanksley et al., Molecular mapping plant chromosomes. Chromosome structure and function: Impact of new concepts, Gustafson and Appels (eds.), Plenum Press, New York, pp 157-173 (1988), the entirety of which is herein incorporated by reference). Consideration must be given to the source of parents (adapted vs. exotic) used in the mapping population. Chromosome pairing and recombination rates can be severely disturbed (suppressed) in wide crosses (adapted×exotic) and generally yield greatly reduced linkage distances. Wide crosses will usually provide segregating populations with a relatively large array of polymorphisms when compared to progeny in a narrow cross (adapted×adapted).


An F2 population is the first generation of selfing after the hybrid seed is produced. Usually a single F1 plant is selfed to generate a population segregating for all the genes in Mendelian (1:2:1) fashion. Maximum genetic information is obtained from a completely classified F2 population using a codominant marker system (Mather, Measurement of Linkage in Heredity, Methuen and Co., (1938), the entirety of which is herein incorporated by reference). In the case of dominant markers, progeny tests (e.g. F3, BCF2) are required to identify the heterozygotes, thus making it equivalent to a completely classified F2 population. However, this procedure is often prohibitive because of the cost and time involved in progeny testing. Progeny testing of F2 individuals is often used in map construction where phenotypes do not consistently reflect genotype (e.g. disease resistance) or where trait expression is controlled by a QTL. Segregation data from progeny test populations (e.g. F3 or BCF2) can be used in map construction. Marker-assisted selection can then be applied to cross progeny based on marker-trait map associations (F2, F3), where linkage groups have not been completely disassociated by recombination events (i.e., maximum disequilibrium).


Recombinant inbred lines (RIL) (genetically related lines; usually >F5, developed from continuously selfing F2 lines towards homozygosity) can be used as a mapping population. Information obtained from dominant markers can be maximized by using RIL because all loci are homozygous or nearly so. Under conditions of tight linkage (i.e., about <10% recombination), dominant and co-dominant markers evaluated in RIL populations provide more information per individual than either marker type in backcross populations (Reiter et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:1477-1481 (1992), the entirety of which is herein incorporated by reference). However, as the distance between markers becomes larger (i.e., loci become more independent), the information in RIL populations decreases dramatically when compared to codominant markers.


Backcross populations (e.g., generated from a cross between a successful variety (recurrent parent) and another variety (donor parent) carrying a trait not present in the former) can be utilized as a mapping population. A series of backcrosses to the recurrent parent can be made to recover most of its desirable traits. Thus a population is created consisting of individuals nearly like the recurrent parent but each individual carries varying amounts or mosaic of genomic regions from the donor parent. Backcross populations can be useful for mapping dominant markers if all loci in the recurrent parent are homozygous and the donor and recurrent parent have contrasting polymorphic marker alleles (Reiter et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:1477-1481 (1992)). Information obtained from backcross populations using either codominant or dominant markers is less than that obtained from F2 populations because one, rather than two, recombinant gametes are sampled per plant. Backcross populations, however, are more informative (at low marker saturation) when compared to RILs as the distance between linked loci increases in RIL populations (i.e. about 15% recombination). Increased recombination can be beneficial for resolution of tight linkages, but may be undesirable in the construction of maps with low marker saturation.


Near-isogenic lines (NIL) created by many backcrosses to produce an array of individuals that are nearly identical in genetic composition except for the trait or genomic region under interrogation can be used as a mapping population. In mapping with NILs, only a portion of the polymorphic loci are expected to map to a selected region.


Bulk segregant analysis (BSA) is a method developed for the rapid identification of linkage between markers and traits of interest (Michelmore et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:9828-9832 (1991), the entirety of which is herein incorporated by reference). In BSA, two bulked DNA samples are drawn from a segregating population originating from a single cross. These bulks contain individuals that are identical for a particular trait (resistant or susceptible to particular disease) or genomic region but arbitrary at unlinked regions (i.e. heterozygous). Regions unlinked to the target region will not differ between the bulked samples of many individuals in BSA.


It is understood that one or more of the nucleic acid molecules of the present invention may be used as molecular markers. It is also understood that one or more of the protein molecules of the present invention may be used as molecular markers.


In accordance with this aspect of the present invention, a sample nucleic acid is obtained from plants cells or tissues. Any source of nucleic acid may be used. Preferably, the nucleic acid is genomic DNA. The nucleic acid is subjected to restriction endonuclease digestion. For example, one or more nucleic acid molecule or fragment thereof of the present invention can be used as a probe in accordance with the above-described polymorphic methods. The polymorphism obtained in this approach can then be cloned to identify the mutation at the coding region which alters the protein's structure or regulatory region of the gene which affects its expression level.


In an aspect of the present invention, one or more of the nucleic molecules of the present invention are used to determine the level (i.e., the concentration of mRNA in a sample, etc.) in a plant (preferably maize or soybean) or pattern (i.e., the kinetics of expression, rate of decomposition, stability profile, etc.) of the expression of a protein encoded in part or whole by one or more of the nucleic acid molecule of the present invention (collectively, the “Expression Response” of a cell or tissue). As used herein, the Expression Response manifested by a cell or tissue is said to be “altered” if it differs from the Expression Response of cells or tissues of plants not exhibiting the phenotype. To determine whether an Expression Response is altered, the Expression Response manifested by the cell or tissue of the plant exhibiting the phenotype is compared with that of a similar cell or tissue sample of a plant not exhibiting the phenotype. As will be appreciated, it is not necessary to re-determine the Expression Response of the cell or tissue sample of plants not exhibiting the phenotype each time such a comparison is made; rather, the Expression Response of a particular plant may be compared with previously obtained values of normal plants. As used herein, the phenotype of the organism is any of one or more characteristics of an organism (e.g. disease resistance, pest tolerance, environmental tolerance such as tolerance to abiotic stress, male sterility, quality improvement or yield etc.). A change in genotype or phenotype may be transient or permanent. Also as used herein, a tissue sample is any sample that comprises more than one cell. In a preferred aspect, a tissue sample comprises cells that share a common characteristic (e.g. derived from root, seed, flower, leaf, stem or pollen etc.).


In one aspect of the present invention, an evaluation can be conducted to determine whether a particular mRNA molecule is present. One or more of the nucleic acid molecules of the present invention, preferably one or more of the EST nucleic acid molecules or fragments thereof of the present invention are utilized to detect the presence or quantity of the mRNA species. Such molecules are then incubated with cell or tissue extracts of a plant under conditions sufficient to permit nucleic acid hybridization. The detection of double-stranded probe-mRNA hybrid molecules is indicative of the presence of the mRNA; the amount of such hybrid formed is proportional to the amount of mRNA. Thus, such probes may be used to ascertain the level and extent of the mRNA production in a plant's cells or tissues. Such nucleic acid hybridization may be conducted under quantitative conditions (thereby providing a numerical value of the amount of the mRNA present). Alternatively, the assay may be conducted as a qualitative assay that indicates either that the mRNA is present, or that its level exceeds a user set, predefined value.


A principle of in situ hybridization is that a labeled, single-stranded nucleic acid probe will hybridize to a complementary strand of cellular DNA or RNA and, under the appropriate conditions, these molecules will form a stable hybrid. When nucleic acid hybridization is combined with histological techniques, specific DNA or RNA sequences can be identified within a single cell. An advantage of in situ hybridization over more conventional techniques for the detection of nucleic acids is that it allows an investigator to determine the precise spatial population (Angerer et al., Dev. Biol. 101:477-484 (1984), the entirety of which is herein incorporated by reference; Angerer et al., Dev. Biol. 112:157-166 (1985), the entirety of which is herein incorporated by reference; Dixon et al., EMBO J. 10:1317-1324 (1991), the entirety of which is herein incorporated by reference). In situ hybridization may be used to measure the steady-state level of RNA accumulation. It is a sensitive technique and RNA sequences present in as few as 5-10 copies per cell can be detected (Hardin et al., J. Mol. Biol. 202:417-431 (1989), the entirety of which is herein incorporated by reference). A number of protocols have been devised for in situ hybridization, each with tissue preparation, hybridization and washing conditions (Meyerowitz, Plant Mol. Biol. Rep. 5:242-250 (1987), the entirety of which is herein incorporated by reference; Cox and Goldberg, In: Plant Molecular Biology: A Practical Approach, Shaw (ed.), pp 1-35, IRL Press, Oxford (1988), the entirety of which is herein incorporated by reference; Raikhel et al., In situ RNA hybridization in plant tissues, In: Plant Molecular Biology Manual, vol. B9:1-32, Kluwer Academic Publisher, Dordrecht, Belgium (1989), the entirety of which is herein incorporated by reference).


In situ hybridization also allows for the localization of proteins within a tissue or cell (Wilkinson, In Situ Hybridization, Oxford University Press, Oxford (1992), the entirety of which is herein incorporated by reference; Langdale, In Situ Hybridization In: The Maize Handbook, Freeling and Walbot (eds.), pp 165-179, Springer-Verlag, New York (1994), the entirety of which is herein incorporated by reference). It is understood that one or more of the molecules of the present invention, preferably one or more of the EST nucleic acid molecules or fragments thereof of the present invention or one or more of the antibodies of the present invention may be utilized to detect the level or pattern of a carbon assimilation pathway enzyme or mRNA thereof by in situ hybridization.


Fluorescent in situ hybridization allows the localization of a particular DNA sequence along a chromosome which is useful, among other uses, for gene mapping, following chromosomes in hybrid lines or detecting chromosomes with translocations, transversions or deletions. In situ hybridization has been used to identify chromosomes in several plant species (Griffor et al., Plant Mol. Biol. 17:101-109 (1991), the entirety of which is herein incorporated by reference; Gustafson et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:1899-1902 (1990), herein incorporated by reference; Mukai and Gill, Genome 34:448-452 (1991), the entirety of which is herein incorporated by reference; Schwarzacher and Heslop-Harrison, Genome 34:317-323 (1991); Wang et al., Jpn. J. Genet. 66:313-316 (1991), the entirety of which is herein incorporated by reference; Parra and Windle, Nature Genetics 5:17-21 (1993), the entirety of which is herein incorporated by reference). It is understood that the nucleic acid molecules of the present invention may be used as probes or markers to localize sequences along a chromosome.


Another method to localize the expression of a molecule is tissue printing. Tissue printing provides a way to screen, at the same time on the same membrane many tissue sections from different plants or different developmental stages. Tissue-printing procedures utilize films designed to immobilize proteins and nucleic acids. In essence, a freshly cut section of a tissue is pressed gently onto nitrocellulose paper, nylon membrane or polyvinylidene difluoride membrane. Such membranes are commercially available (e.g. Millipore, Bedford, Mass. U.S.A.). The contents of the cut cell transfer onto the membrane and the contents and are immobilized to the membrane. The immobilized contents form a latent print that can be visualized with appropriate probes. When a plant tissue print is made on nitrocellulose paper, the cell walls leave a physical print that makes the anatomy visible without further treatment (Varner and Taylor, Plant Physiol. 91:31-33 (1989), the entirety of which is herein incorporated by reference).


Tissue printing on substrate films is described by Daoust, Exp. Cell Res. 12:203-211 (1957), the entirety of which is herein incorporated by reference, who detected amylase, protease, ribonuclease and deoxyribonuclease in animal tissues using starch, gelatin and agar films. These techniques can be applied to plant tissues (Yomo and Taylor, Planta 112:35-43 (1973); the entirety of which is herein incorporated by reference; Harris and Chrispeels, Plant Physiol. 56:292-299 (1975), the entirety of which is herein incorporated by reference). Advances in membrane technology have increased the range of applications of Daoust's tissue-printing techniques allowing (Cassab and Varner, J. Cell. Biol. 105:2581-2588 (1987), the entirety of which is herein incorporated by reference) the histochemical localization of various plant enzymes and deoxyribonuclease on nitrocellulose paper and nylon (Spruce et al, Phytochemistry 26:2901-2903 (1987), the entirety of which is herein incorporated by reference; Barres et al, Neuron 5:527-544 (1990), the entirety of which is herein incorporated by reference; Reid and Pont-Lezica, Tissue Printing: Tools for the Study of Anatomy, Histochemistry and Gene Expression, Academic Press, New York, N.Y. (1992), the entirety of which is herein incorporated by reference; Reid et al., Plant Physiol. 93: 160-165 (1990), the entirety of which is herein incorporated by reference; Ye et al, Plant J. 1:175-183 (1991), the entirety of which is herein incorporated by reference).


It is understood that one or more of the molecules of the present invention, preferably one or more of the EST nucleic acid molecules or fragments thereof of the present invention or one or more of the antibodies of the present invention may be utilized to detect the presence or quantity of a carbon assimilation pathway enzyme by tissue printing.


Further it is also understood that any of the nucleic acid molecules of the present invention may be used as marker nucleic acids and or probes in connection with methods that require probes or marker nucleic acids. As used herein, a probe is an agent that is utilized to determine an attribute or feature (e.g. presence or absence, location, correlation, etc.) of a molecule, cell, tissue or plant. As used herein, a marker nucleic acid is a nucleic acid molecule that is utilized to determine an attribute or feature (e.g., presence or absence, location, correlation, etc.) or a molecule, cell, tissue or plant.


A microarray-based method for high-throughput monitoring of plant gene expression may be utilized to measure gene-specific hybridization targets. This ‘chip’-based approach involves using microarrays of nucleic acid molecules as gene-specific hybridization targets to quantitatively measure expression of the corresponding plant genes (Schena et al., Science 270:467-470 (1995), the entirety of which is herein incorporated by reference; Shalon, Ph.D. Thesis, Stanford University (1996), the entirety of which is herein incorporated by reference). Every nucleotide in a large sequence can be queried at the same time. Hybridization can be used to efficiently analyze nucleotide sequences.


Several microarray methods have been described. One method compares the sequences to be analyzed by hybridization to a set of oligonucleotides representing all possible subsequences (Bains and Smith, J. Theor. Biol. 135:303-307 (1989), the entirety of which is herein incorporated by reference). A second method hybridizes the sample to an array of oligonucleotide or cDNA molecules. An array consisting of oligonucleotides complementary to subsequences of a target sequence can be used to determine the identity of a target sequence, measure its amount and detect differences between the target and a reference sequence. Nucleic acid molecules microarrays may also be screened with protein molecules or fragments thereof to determine nucleic acid molecules that specifically bind protein molecules or fragments thereof.


The microarray approach may be used with polypeptide targets (U.S. Pat. No. 5,445,934; U.S. Pat. No. 5,143,854; U.S. Pat. No. 5,079,600; U.S. Pat. No. 4,923,901, all of which are herein incorporated by reference in their entirety). Essentially, polypeptides are synthesized on a substrate (microarray) and these polypeptides can be screened with either protein molecules or fragments thereof or nucleic acid molecules in order to screen for either protein molecules or fragments thereof or nucleic acid molecules that specifically bind the target polypeptides. (Fodor et al., Science 251:767-773 (1991), the entirety of which is herein incorporated by reference). It is understood that one or more of the nucleic acid molecules or protein or fragments thereof of the present invention may be utilized in a microarray based method.


In a preferred embodiment of the present invention microarrays may be prepared that comprise nucleic acid molecules where such nucleic acid molecules encode at least one, preferably at least two, more preferably at least three carbon assimilation pathway enzymes, more preferably at least four carbon assimilation pathway enzymes, more preferably at least five carbon assimilation pathway enzymes, more preferably at least six carbon assimilation pathway enzymes, more preferably at least seven carbon assimilation pathway enzymes, more preferably at least eight carbon assimilation pathway enzymes, more preferably at least nine carbon assimilation pathway enzymes, more preferably at least ten carbon assimilation pathway enzymes, more preferably at least eleven carbon assimilation pathway enzymes, more preferably at least twelve carbon assimilation pathway enzymes, more preferably at least thirteen carbon assimilation pathway enzymes, more preferably at least fourteen carbon assimilation pathway enzymes, more preferably at least fifteen carbon assimilation pathway enzymes, more preferably at least sixteen carbon assimilation pathway enzymes, more preferably at least seventeen carbon assimilation pathway enzymes, more preferably at least eighteen carbon assimilation pathway enzymes, more preferably at least nineteen carbon assimilation pathway enzymes, more preferably at least twenty carbon assimilation pathway enzymes, more preferably at least twenty one carbon assimilation pathway enzymes, more preferably at least twenty two carbon assimilation pathway enzymes, more preferably at least twenty three carbon assimilation pathway enzymes, more preferably at least twenty four carbon assimilation pathway enzymes and even more preferably at least twenty five carbon assimilation pathway enzymes. In a preferred embodiment the nucleic acid molecules are selected from the group consisting of a nucleic acid molecule that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean alanine aminotransferase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or fragment thereof, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or fragment thereof and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or fragment thereof.


Site directed mutagenesis may be utilized to modify nucleic acid sequences, particularly as it is a technique that allows one or more of the amino acids encoded by a nucleic acid molecule to be altered (e.g. a threonine to be replaced by a methionine). Three basic methods for site directed mutagenesis are often employed. These are cassette mutagenesis (Wells et al., Gene 34:315-323 (1985), the entirety of which is herein incorporated by reference), primer extension (Gilliam et al., Gene 12:129-137 (1980), the entirety of which is herein incorporated by reference; Zoller and Smith, Methods Enzymol. 100:468-500 (1983), the entirety of which is herein incorporated by reference; Dalbadie-McFarland et al., Proc. Natl. Acad. Sci. (U.S.A.) 79:6409-6413 (1982), the entirety of which is herein incorporated by reference) and methods based upon PCR (Scharf et al., Science 233:1076-1078 (1986), the entirety of which is herein incorporated by reference; Higuchi et al., Nucleic Acids Res. 16:7351-7367 (1988), the entirety of which is herein incorporated by reference). Site directed mutagenesis approaches are also described in European Patent 0 385 962, the entirety of which is herein incorporated by reference; European Patent 0 359 472, the entirety of which is herein incorporated by reference; and PCT Patent Application WO 93/07278, the entirety of which is herein incorporated by reference.


Site directed mutagenesis strategies have been applied to plants for both in vitro as well as in vivo site directed mutagenesis (Lanz et al., J. Biol. Chem. 266:9971-9976 (1991), the entirety of which is herein incorporated by reference; Kovgan and Zhdanov, Biotekhnologiya 5:148-154; No. 207160n, Chemical Abstracts 110:225 (1989), the entirety of which is herein incorporated by reference; Ge et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:4037-4041 (1989), the entirety of which is herein incorporated by reference; Zhu et al., J. Biol. Chem. 271:18494-18498 (1996), the entirety of which is herein incorporated by reference; Chu et al., Biochemistry 33:6150-6157 (1994), the entirety of which is herein incorporated by reference; Small et al., EMBO J. 11:1291-1296 (1992), the entirety of which is herein incorporated by reference; Cho et al., Mol. Biotechnol. 8:13-16 (1997), the entirety of which is herein incorporated by reference; Kita et al., J. Biol. Chem. 271:26529-26535 (1996), the entirety of which is herein incorporated by reference, Jin et al., Mol. Microbiol. 7:555-562 (1993), the entirety of which is herein incorporated by reference; Hatfield and Vierstra, J. Biol. Chem. 267:14799-14803 (1992), the entirety of which is herein incorporated by reference; Zhao et al., Biochemistry 31:5093-5099 (1992), the entirety of which is herein incorporated by reference).


Any of the nucleic acid molecules of the present invention may either be modified by site directed mutagenesis or used as, for example, nucleic acid molecules that are used to target other nucleic acid molecules for modification. It is understood that mutants with more than one altered nucleotide can be constructed using techniques that practitioners are familiar with such as isolating restriction fragments and ligating such fragments into an expression vector (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989)).


Sequence-specific DNA-binding proteins play a role in the regulation of transcription. The isolation of recombinant cDNAs encoding these proteins facilitates the biochemical analysis of their structural and functional properties. Genes encoding such DNA-binding proteins have been isolated using classical genetics (Vollbrecht et al., Nature 350: 241-243 (1991), the entirety of which is herein incorporated by reference) and molecular biochemical approaches, including the screening of recombinant cDNA libraries with antibodies (Landschulz et al., Genes Dev. 2:786-800 (1988), the entirety of which is herein incorporated by reference) or DNA probes (Bodner et al., Cell 55:505-518 (1988), the entirety of which is herein incorporated by reference). In addition, an in situ screening procedure has been used and has facilitated the isolation of sequence-specific DNA-binding proteins from various plant species (Gilmartin et al., Plant Cell 4:839-849 (1992), the entirety of which is herein incorporated by reference; Schindler et al., EMBO J. 11:1261-1273 (1992), the entirety of which is herein incorporated by reference). An in situ screening protocol does not require the purification of the protein of interest (Vinson et al., Genes Dev. 2:801-806 (1988), the entirety of which is herein incorporated by reference; Singh et al., Cell 52:415-423 (1988), the entirety of which is herein incorporated by reference).


Two steps may be employed to characterize DNA-protein interactions. The first is to identify promoter fragments that interact with DNA-binding proteins, to titrate binding activity, to determine the specificity of binding and to determine whether a given DNA-binding activity can interact with related DNA sequences (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Electrophoretic mobility-shift assay is a widely used assay. The assay provides a rapid and sensitive method for detecting DNA-binding proteins based on the observation that the mobility of a DNA fragment through a nondenaturing, low-ionic strength polyacrylamide gel is retarded upon association with a DNA-binding protein (Fried and Crother, Nucleic Acids Res. 9:6505-6525 (1981), the entirety of which is herein incorporated by reference). When one or more specific binding activities have been identified, the exact sequence of the DNA bound by the protein may be determined. Several procedures for characterizing protein/DNA-binding sites are used, including methylation and ethylation interference assays (Maxam and Gilbert, Methods Enzymol. 65:499-560 (1980), the entirety of which is herein incorporated by reference; Wissman and Hillen, Methods Enzymol. 208:365-379 (1991), the entirety of which is herein incorporated by reference), footprinting techniques employing DNase I (Galas and Schmitz, Nucleic Acids Res. 5:3157-3170 (1978), the entirety of which is herein incorporated by reference), 1,10-phenanthroline-copper ion methods (Sigman et al., Methods Enzymol. 208:414-433 (1991), the entirety of which is herein incorporated by reference) and hydroxyl radicals methods (Dixon et al., Methods Enzymol. 208:414-433 (1991), the entirety of which is herein incorporated by reference). It is understood that one or more of the nucleic acid molecules of the present invention may be utilized to identify a protein or fragment thereof that specifically binds to a nucleic acid molecule of the present invention. It is also understood that one or more of the protein molecules or fragments thereof of the present invention may be utilized to identify a nucleic acid molecule that specifically binds to it.


A two-hybrid system is based on the fact that many cellular functions are carried out by proteins, such as transcription factors, that interact (physically) with one another. Two-hybrid systems have been used to probe the function of new proteins (Chien et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:9578-9582 (1991) the entirety of which is herein incorporated by reference; Durfee et al., Genes Dev. 7:555-569 (1993) the entirety of which is herein incorporated by reference; Choi et al., Cell 78:499-512 (1994), the entirety of which is herein incorporated by reference; Kranz et al., Genes Dev. 8:313-327 (1994), the entirety of which is herein incorporated by reference).


Interaction mating techniques have facilitated a number of two-hybrid studies of protein-protein interaction. Interaction mating has been used to examine interactions between small sets of tens of proteins (Finley and Brent, Proc. Natl. Acad. Sci. (U.S.A.) 91:12098-12984 (1994), the entirety of which is herein incorporated by reference), larger sets of hundreds of proteins (Bendixen et al., Nucl. Acids Res. 22:1778-1779 (1994), the entirety of which is herein incorporated by reference) and to comprehensively map proteins encoded by a small genome (Bartel et al., Nature Genetics 12:72-77 (1996), the entirety of which is herein incorporated by reference). This technique utilizes proteins fused to the DNA-binding domain and proteins fused to the activation domain. They are expressed in two different haploid yeast strains of opposite mating type and the strains are mated to determine if the two proteins interact. Mating occurs when haploid yeast strains come into contact and result in the fusion of the two haploids into a diploid yeast strain. An interaction can be determined by the activation of a two-hybrid reporter gene in the diploid strain. An advantage of this technique is that it reduces the number of yeast transformations needed to test individual interactions. It is understood that the protein-protein interactions of protein or fragments thereof of the present invention may be investigated using the two-hybrid system and that any of the nucleic acid molecules of the present invention that encode such proteins or fragments thereof may be used to transform yeast in the two-hybrid system.


(a) Plant Constructs and Plant Transformants


One or more of the nucleic acid molecules of the present invention may be used in plant transformation or transfection. Exogenous genetic material may be transferred into a plant cell and the plant cell regenerated into a whole, fertile or sterile plant. Exogenous genetic material is any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism. Such genetic material may be transferred into either monocotyledons and dicotyledons including, but not limited to maize (pp 63-69), soybean (pp 50-60), Arabidopsis (p 45), phaseolus (pp 47-49), peanut (pp 49-50), alfalfa (p 60), wheat (pp 69-71), rice (pp 72-79), oat (pp 80-81), sorghum (p 83), rye (p 84), tritordeum (p 84), millet (p 85), fescue (p 85), perennial ryegrass (p 86), sugarcane (p 87), cranberry (p 101), papaya (pp 101-102), banana (p 103), banana (p 103), muskmelon (p 104), apple (p 104), cucumber (p 105), dendrobium (p 109), gladiolus (p 110), chrysanthemum (p 110), liliacea (p 111), cotton (pp 113-114), eucalyptus (p 115), sunflower (p 118), canola (p 118), turfgrass (p 121), sugarbeet (p 122), coffee (p 122) and dioscorea (p 122), (Christou, In: Particle Bombardment for Genetic Engineering of Plants, Biotechnology Intelligence Unit. Academic Press, San Diego, Calif. (1996), the entirety of which is herein incorporated by reference).


Transfer of a nucleic acid that encodes for a protein can result in overexpression of that protein in a transformed cell or transgenic plant. One or more of the proteins or fragments thereof encoded by nucleic acid molecules of the present invention may be overexpressed in a transformed cell or transformed plant. Particularly, any of the carbon assimilation pathway enzymes or fragments thereof may be overexpressed in a transformed cell or transgenic plant. Such overexpression may be the result of transient or stable transfer of the exogenous genetic material.


Exogenous genetic material may be transferred into a plant cell and the plant cell by the use of a DNA vector or construct designed for such a purpose. Design of such a vector is generally within the skill of the art (See, Plant Molecular Biology: A Laboratory Manual, Clark (ed.), Springier, New York (1997), the entirety of which is herein incorporated by reference).


A construct or vector may include a plant promoter to express the protein or protein fragment of choice. A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) promoter (Ebert et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:5745-5749 (1987), the entirety of which is herein incorporated by reference), the octopine synthase (OCS) promoter (which are carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., Plant Mol. Biol. 9:315-324 (1987), the entirety of which is herein incorporated by reference) and the CAMV 35S promoter (Odell et al., Nature 313:810-812 (1985), the entirety of which is herein incorporated by reference), the figwort mosaic virus 35S-promoter, the light-inducible promoter from the small subunit of ribulose-1,5-bis-phosphate carboxylase (ssRUBISCO), the Adh promoter (Walker et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:6624-6628 (1987), the entirety of which is herein incorporated by reference), the sucrose synthase promoter (Yang et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:4144-4148 (1990), the entirety of which is herein incorporated by reference), the R gene complex promoter (Chandler et al., The Plant Cell 1: 1175-1183 (1989), the entirety of which is herein incorporated by reference) and the chlorophyll a/b binding protein gene promoter, etc. These promoters have been used to create DNA constructs which have been expressed in plants; see, e.g., PCT publication WO 84/02913, herein incorporated by reference in its entirety.


Promoters which are known or are found to cause transcription of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant viruses. It is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of the carbon assimilation pathway enzyme to cause the desired phenotype. In addition to promoters that are known to cause transcription of DNA in plant cells, other promoters may be identified for use in the current invention by screening a plant cDNA library for genes which are selectively or preferably expressed in the target tissues or cells.


For the purpose of expression in source tissues of the plant, such as the leaf, seed, root or stem, it is preferred that the promoters utilized in the present invention have relatively high expression in these specific tissues. For this purpose, one may choose from a number of promoters for genes with tissue- or cell-specific or -enhanced expression. Examples of such promoters reported in the literature include the chloroplast glutamine synthetase GS2 promoter from pea (Edwards et al., Proc. Natl. Acad. Sci. (U.S.A.). 87:3459-3463 (1990), herein incorporated by reference in its entirety), the chloroplast fructose-1,6-biphosphatase (FBPase) promoter from wheat (Lloyd et al., Mol. Gen. Genet. 225:209-216 (1991), herein incorporated by reference in its entirety), the nuclear photosynthetic ST-LS1 promoter from potato (Stockhaus et al., EMBO J. 8:2445-2451 (1989), herein incorporated by reference in its entirety), the serine/threonine kinase (PAL) promoter and the glucoamylase (CHS) promoter from Arabidopsis thaliana. Also reported to be active in photosynthetically active tissues are the ribulose-1,5-bisphosphate carboxylase (RbcS) promoter from eastern larch (Larix laricina), the promoter for the cab gene, cab6, from pine (Yamamoto et al., Plant Cell Physiol. 35:773-778 (1994), herein incorporated by reference in its entirety), the promoter for the Cab-1 gene from wheat (Fejes et al., Plant Mol. Biol. 15:921-932 (1990), herein incorporated by reference in its entirety), the promoter for the CAB-1 gene from spinach (Lubberstedt et al., Plant Physiol. 104:997-1006 (1994), herein incorporated by reference in its entirety), the promoter for the cab1R gene from rice (Luan et al., Plant Cell. 4:971-981 (1992), the entirety of which is herein incorporated by reference), the pyruvate, orthophosphate dikinase (PPDK) promoter from maize (Matsuoka et al., Proc. Natl. Acad. Sci. (U.S.A.) 90: 9586-9590 (1993), herein incorporated by reference in its entirety), the promoter for the tobacco Lhcb1*2 gene (Cerdan et al., Plant Mol. Biol. 33:245-255 (1997), herein incorporated by reference in its entirety), the Arabidopsis thaliana SUC2 sucrose-H+ symporter promoter (Truernit et al., Planta. 196:564-570 (1995), herein incorporated by reference in its entirety) and the promoter for the thylakoid membrane proteins from spinach (psaD, psaF, psaE, PC, FNR, atpC, atpD, cab, rbcS). Other promoters for the chlorophyll a/b-binding proteins may also be utilized in the present invention, such as the promoters for LhcB gene and PsbP gene from white mustard (Sinapis alba; Kretsch et al., Plant Mol. Biol. 28:219-229 (1995), the entirety of which is herein incorporated by reference).


For the purpose of expression in sink tissues of the plant, such as the tuber of the potato plant, the fruit of tomato, or the seed of maize, wheat, rice and barley, it is preferred that the promoters utilized in the present invention have relatively high expression in these specific tissues. A number of promoters for genes with tuber-specific or -enhanced expression are known, including the class I patatin promoter (Bevan et al., EMBO J. 8:1899-1906 (1986); Jefferson et al., Plant Mol. Biol. 14:995-1006 (1990), both of which are herein incorporated by reference in its entirety), the promoter for the potato tuber ADPGPP genes, both the large and small subunits, the sucrose synthase promoter (Salanoubat and Belliard, Gene. 60:47-56 (1987), Salanoubat and Belliard, Gene. 84:181-185 (1989), both of which are incorporated by reference in their entirety), the promoter for the major tuber proteins including the 22 kd protein complexes and proteinase inhibitors (Hannapel, Plant Physiol. 101:703-704 (1993), herein incorporated by reference in its entirety), the promoter for the granule bound starch synthase gene (GBSS) (Visser et al., Plant Mol. Biol. 17:691-699 (1991), herein incorporated by reference in its entirety) and other class I and II patatins promoters (Koster-Topfer et al., Mol Gen Genet. 219:390-396 (1989); Mignery et al., Gene. 62:27-44 (1988), both of which are herein incorporated by reference in their entirety).


Other promoters can also be used to express a carbon assimilation pathway enzyme or fragment thereof in specific tissues, such as seeds or fruits. The promoter for β-conglycinin (Chen et al., Dev. Genet. 10: 112-122 (1989), herein incorporated by reference in its entirety) or other seed-specific promoters such as the napin and phaseolin promoters, can be used. The zeins are a group of storage proteins found in maize endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., Cell 29:1015-1026 (1982), herein incorporated by reference in its entirety) and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD and genes, could also be used. Other promoters known to function, for example, in maize include the promoters for the following genes: waxy, Brittle, Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins and sucrose synthases. A particularly preferred promoter for maize endosperm expression is the promoter for the glutelin gene from rice, more particularly the Osgt-1 promoter (Zheng et al., Mol. Cell. Biol. 13:5829-5842 (1993), herein incorporated by reference in its entirety). Examples of promoters suitable for expression in wheat include those promoters for the ADPglucose pyrosynthase (ADPGPP) subunits, the granule bound and other starch synthase, the branching and debranching enzymes, the embryogenesis-abundant proteins, the gliadins and the glutenins. Examples of such promoters in rice include those promoters for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases and the glutelins. A particularly preferred promoter is the promoter for rice glutelin, Osgt-1. Examples of such promoters for barley include those for the ADPGPP subunits, the granule bound and other starch synthase, the branching enzymes, the debranching enzymes, sucrose synthases, the hordeins, the embryo globulins and the aleurone specific proteins.


Root specific promoters may also be used. An example of such a promoter is the promoter for the acid chitinase gene (Samac et al., Plant Mol. Biol. 25:587-596 (1994), the entirety of which is herein incorporated by reference). Expression in root tissue could also be accomplished by utilizing the root specific subdomains of the CaMV35S promoter that have been identified (Lam et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:7890-7894 (1989), herein incorporated by reference in its entirety). Other root cell specific promoters include those reported by Conkling et al. (Conkling et al., Plant Physiol. 93:1203-1211 (1990), the entirety of which is herein incorporated by reference).


Additional promoters that may be utilized are described, for example, in U.S. Pat. Nos. 5,378,619; 5,391,725; 5,428,147; 5,447,858; 5,608,144; 5,608,144; 5,614,399; 5,633,441; 5,633,435; and 4,633,436, all of which are herein incorporated in their entirety. In addition, a tissue specific enhancer may be used (Fromm et al., The Plant Cell 1:977-984 (1989), the entirety of which is herein incorporated by reference).


Constructs or vectors may also include with the coding region of interest a nucleic acid sequence that acts, in whole or in part, to terminate transcription of that region. For example, such sequences have been isolated including the Tr7 3′ sequence and the NOS 3′ sequence (Ingelbrecht et al., The Plant Cell 1:671-680 (1989), the entirety of which is herein incorporated by reference; Bevan et al., Nucleic Acids Res. 11:369-385 (1983), the entirety of which is herein incorporated by reference), or the like.


A vector or construct may also include regulatory elements. Examples of such include the Adh intron 1 (Callis et al., Genes and Develop. 1:1183-1200 (1987), the entirety of which is herein incorporated by reference), the sucrose synthase intron (Vasil et al., Plant Physiol. 91:1575-1579 (1989), the entirety of which is herein incorporated by reference) and the TMV omega element (Gallie et al., The Plant Cell 1:301-311 (1989), the entirety of which is herein incorporated by reference). These and other regulatory elements may be included when appropriate.


A vector or construct may also include a selectable marker. Selectable markers may also be used to select for plants or plant cells that contain the exogenous genetic material. Examples of such include, but are not limited to, a neo gene (Potrykus et al., Mol. Gen. Genet. 199:183-188 (1985), the entirety of which is herein incorporated by reference) which codes for kanamycin resistance and can be selected for using kanamycin, G418, etc.; a bar gene which codes for bialaphos resistance; a mutant EPSP synthase gene (Hinchee et al., Bio/Technology 6:915-922 (1988), the entirety of which is herein incorporated by reference) which encodes glyphosate resistance; a nitrilase gene which confers resistance to bromoxynil (Stalker et al., J. Biol. Chem. 263:6310-6314 (1988), the entirety of which is herein incorporated by reference); a mutant acetolactate synthase gene (ALS) which confers imidazolinone or sulphonylurea resistance (European Patent Application 154,204 (Sep. 11, 1985), the entirety of which is herein incorporated by reference); and a methotrexate resistant DHFR gene (Thillet et al., J. Biol. Chem. 263:12500-12508 (1988), the entirety of which is herein incorporated by reference).


A vector or construct may also include a transit peptide. Incorporation of a suitable chloroplast transit peptide may also be employed (European Patent Application Publication Number 0218571, the entirety of which is herein incorporated by reference). Translational enhancers may also be incorporated as part of the vector DNA. DNA constructs could contain one or more 5′ non-translated leader sequences which may serve to enhance expression of the gene products from the resulting mRNA transcripts. Such sequences may be derived from the promoter selected to express the gene or can be specifically modified to increase translation of the mRNA. Such regions may also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. For a review of optimizing expression of transgenes, see Koziel et al., Plant Mol. Biol. 32:393-405 (1996), the entirety of which is herein incorporated by reference.


A vector or construct may also include a screenable marker. Screenable markers may be used to monitor expression. Exemplary screenable markers include a β-glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known (Jefferson, Plant Mol. Biol, Rep. 5:387-405 (1987), the entirety of which is herein incorporated by reference; Jefferson et al., EMBO J. 6:3901-3907 (1987), the entirety of which is herein incorporated by reference); an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., Stadler Symposium 11:263-282 (1988), the entirety of which is herein incorporated by reference); a lactamase gene (Sutcliffe et al., Proc. Natl. Acad. Sci. (U.S.A.) 75:3737-3741 (1978), the entirety of which is herein incorporated by reference), a gene which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a luciferase gene (Ow et al., Science 234:856-859 (1986), the entirety of which is herein incorporated by reference); a xylE gene (Zukowsky et al., Proc. Natl. Acad. Sci. (U.S.A.) 80:1101-1105 (1983), the entirety of which is herein incorporated by reference) which encodes a catechol diozygenase that can convert chromogenic catechols; an α-amylase gene (Ikatu et al., Bio/Technol. 8:241-242 (1990), the entirety of which is herein incorporated by reference); a tyrosinase gene (Katz et al., J. Gen. Microbiol. 129:2703-2714 (1983), the entirety of which is herein incorporated by reference) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to melanin; an α-galactosidase, which will turn a chromogenic α-galactose substrate.


Included within the terms “selectable or screenable marker genes” are also genes which encode a secretable marker whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes which can be detected catalytically. Secretable proteins fall into a number of classes, including small, diffusible proteins which are detectable, (e.g., by ELISA), small active enzymes which are detectable in extracellular solution (e.g., α-amylase, β-lactamase, phosphinothricin transferase), or proteins which are inserted or trapped in the cell wall (such as proteins which include a leader sequence such as that found in the expression unit of extension or tobacco PR-S). Other possible selectable and/or screenable marker genes will be apparent to those of skill in the art.


There are many methods for introducing transforming nucleic acid molecules into plant cells. Suitable methods are believed to include virtually any method by which nucleic acid molecules may be introduced into a cell, such as by Agrobacterium infection or direct delivery of nucleic acid molecules such as, for example, by PEG-mediated transformation, by electroporation or by acceleration of DNA coated particles, etc (Potrykus, Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (1991), the entirety of which is herein incorporated by reference; Vasil, Plant Mol. Biol. 25:925-937 (1994), the entirety of which is herein incorporated by reference). For example, electroporation has been used to transform maize protoplasts (Fromm et al., Nature 312:791-793 (1986), the entirety of which is herein incorporated by reference).


Other vector systems suitable for introducing transforming DNA into a host plant cell include but are not limited to binary artificial chromosome (BIBAC) vectors (Hamilton et al., Gene 200:107-116 (1997), the entirety of which is herein incorporated by reference); and transfection with RNA viral vectors (Della-Cioppa et al., Ann. N.Y. Acad. Sci. (1996), 792 (Engineering Plants for Commercial Products and Applications), 57-61, the entirety of which is herein incorporated by reference). Additional vector systems also include plant selectable YAC vectors such as those described in Mullen et al., Molecular Breeding 4:449-457 (1988), the entirety of which is herein incorporated by reference).


Technology for introduction of DNA into cells is well known to those of skill in the art. Four general methods for delivering a gene into cells have been described: (1) chemical methods (Graham and van der Eb, Virology 54:536-539 (1973), the entirety of which is herein incorporated by reference); (2) physical methods such as microinjection (Capecchi, Cell 22:479-488 (1980), the entirety of which is herein incorporated by reference), electroporation (Wong and Neumann, Biochem. Biophys. Res. Commun. 107:584-587 (1982); Fromm et al., Proc. Natl. Acad. Sci. (U.S.A.) 82:5824-5828 (1985); U.S. Pat. No. 5,384,253, all of which are herein incorporated in their entirety); and the gene gun (Johnston and Tang, Methods Cell Biol. 43:353-365 (1994), the entirety of which is herein incorporated by reference); (3) viral vectors (Clapp, Clin. Perinatol. 20:155-168 (1993); Lu et al., J. Exp. Med. 178:2089-2096 (1993); Eglitis and Anderson, Biotechniques 6:608-614 (1988), all of which are herein incorporated in their entirety); and (4) receptor-mediated mechanisms (Curiel et al., Hum. Gen. Ther. 3:147-154 (1992), Wagner et al., Proc. Natl. Acad. Sci. (USA) 89:6099-6103 (1992), both of which are incorporated by reference in their entirety).


Acceleration methods that may be used include, for example, microprojectile bombardment and the like. One example of a method for delivering transforming nucleic acid molecules to plant cells is microprojectile bombardment. This method has been reviewed by Yang and Christou (eds.), Particle Bombardment Technology for Gene Transfer, Oxford Press, Oxford, England (1994), the entirety of which is herein incorporated by reference). Non-biological particles (microprojectiles) that may be coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, gold, platinum and the like.


A particular advantage of microprojectile bombardment, in addition to it being an effective means of reproducibly transforming monocots, is that neither the isolation of protoplasts (Cristou et al., Plant Physiol. 87:671-674 (1988), the entirety of which is herein incorporated by reference) nor the susceptibility of Agrobacterium infection are required. An illustrative embodiment of a method for delivering DNA into maize cells by acceleration is a biolistics α-particle delivery system, which can be used to propel particles coated with DNA through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with corn cells cultured in suspension. Gordon-Kamm et al., describes the basic procedure for coating tungsten particles with DNA (Gordon-Kamm et al., Plant Cell 2:603-618 (1990), the entirety of which is herein incorporated by reference). The screen disperses the tungsten nucleic acid particles so that they are not delivered to the recipient cells in large aggregates. A particle delivery system suitable for use with the present invention is the helium acceleration PDS-1000/He gun is available from Bio-Rad Laboratories (Bio-Rad, Hercules, Calif.)(Sanford et al., Technique 3:3-16 (1991), the entirety of which is herein incorporated by reference).


For the bombardment, cells in suspension may be concentrated on filters. Filters containing the cells to be bombarded are positioned at an appropriate distance below the microprojectile stopping plate. If desired, one or more screens are also positioned between the gun and the cells to be bombarded.


Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the microprojectile stopping plate. If desired, one or more screens are also positioned between the acceleration device and the cells to be bombarded. Through the use of techniques set forth herein one may obtain up to 1000 or more foci of cells transiently expressing a marker gene. The number of cells in a focus which express the exogenous gene product 48 hours post-bombardment often range from one to ten and average one to three.


In bombardment transformation, one may optimize the pre-bombardment culturing conditions and the bombardment parameters to yield the maximum numbers of stable transformants. Both the physical and biological parameters for bombardment are important in this technology. Physical factors are those that involve manipulating the DNA/microprojectile precipitate or those that affect the flight and velocity of either the macro- or microprojectiles. Biological factors include all steps involved in manipulation of cells before and immediately after bombardment, the osmotic adjustment of target cells to help alleviate the trauma associated with bombardment and also the nature of the transforming DNA, such as linearized DNA or intact supercoiled plasmids. It is believed that pre-bombardment manipulations are especially important for successful transformation of immature embryos.


In another alternative embodiment, plastids can be stably transformed. Methods disclosed for plastid transformation in higher plants include the particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination (Svab et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8526-8530 (1990); Svab and Maliga, Proc. Natl. Acad. Sci. (U.S.A.) 90:913-917 (1993); Staub and Maliga, EMBO J. 12:601-606 (1993); U.S. Pat. Nos. 5,451,513 and 5,545,818, all of which are herein incorporated by reference in their entirety).


Accordingly, it is contemplated that one may wish to adjust various aspects of the bombardment parameters in small scale studies to fully optimize the conditions. One may particularly wish to adjust physical parameters such as gap distance, flight distance, tissue distance and helium pressure. One may also minimize the trauma reduction factors by modifying conditions which influence the physiological state of the recipient cells and which may therefore influence transformation and integration efficiencies. For example, the osmotic state, tissue hydration and the subculture stage or cell cycle of the recipient cells may be adjusted for optimum transformation. The execution of other routine adjustments will be known to those of skill in the art in light of the present disclosure.



Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example the methods described by Fraley et al., Bio/Technology 3:629-635 (1985) and Rogers et al., Methods Enzymol. 153:253-277 (1987), both of which are herein incorporated by reference in their entirety. Further, the integration of the Ti-DNA is a relatively precise process resulting in few rearrangements. The region of DNA to be transferred is defined by the border sequences and intervening DNA is usually inserted into the plant genome as described (Spielmann et al., Mol. Gen. Genet. 205:34 (1986), the entirety of which is herein incorporated by reference).


Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., In: Plant DNA Infectious Agents, Hohn and Schell (eds.), Springer-Verlag, New York, pp. 179-203 (1985), the entirety of which is herein incorporated by reference. Moreover, technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes. The vectors described have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes (Rogers et al., Methods Enzymol. 153:253-277 (1987)). In addition, Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.


A transgenic plant formed using Agrobacterium transformation methods typically contains a single gene on one chromosome. Such transgenic plants can be referred to as being heterozygous for the added gene. More preferred is a transgenic plant that is homozygous for the added structural gene; i.e., a transgenic plant that contains two added genes, one gene at the same locus on each chromosome of a chromosome pair. A homozygous transgenic plant can be obtained by sexually mating (selfing) an independent segregant transgenic plant that contains a single added gene, germinating some of the seed produced and analyzing the resulting plants produced for the gene of interest.


It is also to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes that encode a polypeptide of interest. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation.


Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation and combinations of these treatments (See, for example, Potrykus et al., Mol. Gen. Genet. 205:193-200 (1986); Lorz et al., Mol. Gen. Genet. 199:178 (1985); Fromm et al., Nature 319:791 (1986); Uchimiya et al., Mol. Gen. Genet. 204:204 (1986); Marcotte et al., Nature 335:454-457 (1988), all of which are herein incorporated by reference in their entirety).


Application of these systems to different plant strains depends upon the ability to regenerate that particular plant strain from protoplasts. Illustrative methods for the regeneration of cereals from protoplasts are described (Fujimura et al., Plant Tissue Culture Letters 2:74 (1985); Toriyama et al., Theor Appl. Genet. 205:34 (1986); Yamada et al., Plant Cell Rep. 4:85 (1986); Abdullah et al., Biotechnology 4:1087 (1986), all of which are herein incorporated by reference in their entirety).


To transform plant strains that cannot be successfully regenerated from protoplasts, other ways to introduce DNA into intact cells or tissues can be utilized. For example, regeneration of cereals from immature embryos or explants can be effected as described (Vasil, Biotechnology 6:397 (1988), the entirety of which is herein incorporated by reference). In addition, “particle gun” or high-velocity microprojectile technology can be utilized (Vasil et al., Bio/Technology 10:667 (1992), the entirety of which is herein incorporated by reference).


Using the latter technology, DNA is carried through the cell wall and into the cytoplasm on the surface of small metal particles as described (Klein et al., Nature 328:70 (1987); Klein et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:8502-8505 (1988); McCabe et al., Bio/Technology 6:923 (1988), all of which are herein incorporated by reference in their entirety). The metal particles penetrate through several layers of cells and thus allow the transformation of cells within tissue explants.


Other methods of cell transformation can also be used and include but are not limited to introduction of DNA into plants by direct DNA transfer into pollen (Zhou et al., Methods Enzymol. 101:433 (1983); Hess et al., Intern Rev. Cytol. 107:367 (1987); Luo et al., Plant Mol. Biol. Reporter 6:165 (1988), all of which are herein incorporated by reference in their entirety), by direct injection of DNA into reproductive organs of a plant (Pena et al., Nature 325:274 (1987), the entirety of which is herein incorporated by reference), or by direct injection of DNA into the cells of immature embryos followed by the rehydration of desiccated embryos (Neuhaus et al., Theor. Appl. Genet. 75:30 (1987), the entirety of which is herein incorporated by reference).


The regeneration, development and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In: Methods for Plant Molecular Biology, Academic Press, San Diego, Calif., (1988), the entirety of which is herein incorporated by reference). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.


The development or regeneration of plants containing the foreign, exogenous gene that encodes a protein of interest is well known in the art. Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.


There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated.


Methods for transforming dicots, primarily by use of Agrobacterium tumefaciens and obtaining transgenic plants have been published for cotton (U.S. Pat. No. 5,004,863; U.S. Pat. No. 5,159,135; U.S. Pat. No. 5,518,908, all of which are herein incorporated by reference in their entirety); soybean (U.S. Pat. No. 5,569,834; U.S. Pat. No. 5,416,011; McCabe et. al., Biotechnology 6:923 (1988); Christou et al., Plant Physiol. 87:671-674 (1988); all of which are herein incorporated by reference in their entirety); Brassica (U.S. Pat. No. 5,463,174, the entirety of which is herein incorporated by reference); peanut (Cheng et al., Plant Cell Rep. 15:653-657 (1996), McKently et al., Plant Cell Rep. 14:699-703 (1995), all of which are herein incorporated by reference in their entirety); papaya; and pea (Grant et al., Plant Cell Rep. 15:254-258 (1995), the entirety of which is herein incorporated by reference).


Transformation of monocotyledons using electroporation, particle bombardment and Agrobacterium have also been reported. Transformation and plant regeneration have been achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. (USA) 84:5354 (1987), the entirety of which is herein incorporated by reference); barley (Wan and Lemaux, Plant Physiol 104:37 (1994), the entirety of which is herein incorporated by reference); maize (Rhodes et al., Science 240:204 (1988); Gordon-Kamm et al., Plant Cell 2:603-618 (1990); Fromm et al., Bio/Technology 8:833 (1990); Koziel et al., Bio/Technology 11:194 (1993); Armstrong et al., Crop Science 35:550-557 (1995); all of which are herein incorporated by reference in their entirety); oat (Somers et al., Bio/Technology 10:1589 (1992), the entirety of which is herein incorporated by reference); orchard grass (Horn et al., Plant Cell Rep. 7:469 (1988), the entirety of which is herein incorporated by reference); rice (Toriyama et al., Theor Appl. Genet. 205:34 (1986); Part et al., Plant Mol. Biol. 32:1135-1148 (1996); Abedinia et al., Aust. J. Plant Physiol. 24:133-141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al., Plant Cell Rep. 7:379 (1988); Battraw and Hall, Plant Sci. 86:191-202 (1992); Christou et al., Bio/Technology 9:957 (1991), all of which are herein incorporated by reference in their entirety); rye (De la Pena et al., Nature 325:274 (1987), the entirety of which is herein incorporated by reference); sugarcane (Bower and Birch, Plant J. 2:409 (1992), the entirety of which is herein incorporated by reference); tall fescue (Wang et al., Bio/Technology 10:691 (1992), the entirety of which is herein incorporated by reference) and wheat (Vasil et al., Bio/Technology 10:667 (1992), the entirety of which is herein incorporated by reference; U.S. Pat. No. 5,631,152, the entirety of which is herein incorporated by reference).


Assays for gene expression based on the transient expression of cloned nucleic acid constructs have been developed by introducing the nucleic acid molecules into plant cells by polyethylene glycol treatment, electroporation, or particle bombardment (Marcotte et al., Nature 335:454-457 (1988), the entirety of which is herein incorporated by reference; Marcotte et al., Plant Cell 1:523-532 (1989), the entirety of which is herein incorporated by reference; McCarty et al., Cell 66:895-905 (1991), the entirety of which is herein incorporated by reference; Hattori et al., Genes Dev. 6:609-618 (1992), the entirety of which is herein incorporated by reference; Goff et al., EMBO J. 9:2517-2522 (1990), the entirety of which is herein incorporated by reference). Transient expression systems may be used to functionally dissect gene constructs (see generally, Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995)).


Any of the nucleic acid molecules of the present invention may be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers etc. Further, any of the nucleic acid molecules of the present invention may be introduced into a plant cell in a manner that allows for overexpression of the protein or fragment thereof encoded by the nucleic acid molecule.


Cosuppression is the reduction in expression levels, usually at the level of RNA, of a particular endogenous gene or gene family by the expression of a homologous sense construct that is capable of transcribing mRNA of the same strandedness as the transcript of the endogenous gene (Napoli et al., Plant Cell 2:279-289 (1990), the entirety of which is herein incorporated by reference; van der Krol et al., Plant Cell 2:291-299 (1990), the entirety of which is herein incorporated by reference). Cosuppression may result from stable transformation with a single copy nucleic acid molecule that is homologous to a nucleic acid sequence found with the cell (Prolls and Meyer, Plant J. 2:465-475 (1992), the entirety of which is herein incorporated by reference) or with multiple copies of a nucleic acid molecule that is homologous to a nucleic acid sequence found with the cell (Mittlesten et al, Mol. Gen. Genet. 244:325-330 (1994), the entirety of which is herein incorporated by reference). Genes, even though different, linked to homologous promoters may result in the cosuppression of the linked genes (Vaucheret, C. R. Acad. Sci. III 316:1471-1483 (1993), the entirety of which is herein incorporated by reference).


This technique has, for example, been applied to generate white flowers from red petunia and tomatoes that do not ripen on the vine. Up to 50% of petunia transformants that contained a sense copy of the glucoamylase (CHS) gene produced white flowers or floral sectors; this was as a result of the post-transcriptional loss of mRNA encoding CHS (Flavell, Proc. Natl. Acad. Sci. (U.S.A.) 91:3490-3496 (1994), the entirety of which is herein incorporated by reference); van Blokland et al., Plant J. 6:861-877 (1994), the entirety of which is herein incorporated by reference). Cosuppression may require the coordinate transcription of the transgene and the endogenous gene and can be reset by a developmental control mechanism (Jorgensen, Trends Biotechnol. 8:340-344 (1990), the entirety of which is herein incorporated by reference; Meins and Kunz, In: Gene Inactivation and Homologous Recombination in Plants, Paszkowski (ed.), pp. 335-348, Kluwer Academic, Netherlands (1994), the entirety of which is herein incorporated by reference).


It is understood that one or more of the nucleic acids of the present invention may be introduced into a plant cell and transcribed using an appropriate promoter with such transcription resulting in the cosuppression of an endogenous carbon assimilation pathway enzyme.


Antisense approaches are a way of preventing or reducing gene function by targeting the genetic material (Mol et al., FEBS Lett. 268:427-430 (1990), the entirety of which is herein incorporated by reference). The objective of the antisense approach is to use a sequence complementary to the target gene to block its expression and create a mutant cell line or organism in which the level of a single chosen protein is selectively reduced or abolished. Antisense techniques have several advantages over other ‘reverse genetic’ approaches. The site of inactivation and its developmental effect can be manipulated by the choice of promoter for antisense genes or by the timing of external application or microinjection. Antisense can manipulate its specificity by selecting either unique regions of the target gene or regions where it shares homology to other related genes (Hiatt et al., In: Genetic Engineering, Setlow (ed.), Vol. 11, New York: Plenum 49-63 (1989), the entirety of which is herein incorporated by reference).


The principle of regulation by antisense RNA is that RNA that is complementary to the target mRNA is introduced into cells, resulting in specific RNA:RNA duplexes being formed by base pairing between the antisense substrate and the target mRNA (Green et al., Annu. Rev. Biochem. 55:569-597 (1986), the entirety of which is herein incorporated by reference). Under one embodiment, the process involves the introduction and expression of an antisense gene sequence. Such a sequence is one in which part or all of the normal gene sequences are placed under a promoter in inverted orientation so that the ‘wrong’ or complementary strand is transcribed into a noncoding antisense RNA that hybridizes with the target mRNA and interferes with its expression (Takayama and Inouye, Crit. Rev. Biochem. Mol. Biol. 25:155-184 (1990), the entirety of which is herein incorporated by reference). An antisense vector is constructed by standard procedures and introduced into cells by transformation, transfection, electroporation, microinjection, infection, etc. The type of transformation and choice of vector will determine whether expression is transient or stable. The promoter used for the antisense gene may influence the level, timing, tissue, specificity, or inducibility of the antisense inhibition.


It is understood that the activity of a carbon assimilation pathway enzyme in a plant cell may be reduced or depressed by growing a transformed plant cell containing a nucleic acid molecule whose non-transcribed strand encodes a carbon assimilation pathway enzyme or fragment thereof.


Antibodies have been expressed in plants (Hiatt et al., Nature 342:76-78 (1989), the entirety of which is herein incorporated by reference; Conrad and Fielder, Plant Mol. Biol. 26:1023-1030 (1994), the entirety of which is herein incorporated by reference). Cytoplasmic expression of a scFv (single-chain Fv antibodies) has been reported to delay infection by artichoke mottled crinkle virus. Transgenic plants that express antibodies directed against endogenous proteins may exhibit a physiological effect (Philips et al., EMBO J. 16:4489-4496 (1997), the entirety of which is herein incorporated by reference; Marion-Poll, Trends in Plant Science 2:447-448 (1997), the entirety of which is herein incorporated by reference). For example, expressed anti-abscisic antibodies have been reported to result in a general perturbation of seed development (Philips et al., EMBO J. 16: 4489-4496 (1997)).


Antibodies that are catalytic may also be expressed in plants (abzymes). The principle behind abzymes is that since antibodies may be raised against many molecules, this recognition ability can be directed toward generating antibodies that bind transition states to force a chemical reaction forward (Persidas, Nature Biotechnology 15:1313-1315 (1997), the entirety of which is herein incorporated by reference; Baca et al., Ann. Rev. Biophys. Biomol. Struct. 26:461-493 (1997), the entirety of which is herein incorporated by reference). The catalytic abilities of abzymes may be enhanced by site directed mutagenesis. Examples of abzymes are, for example, set forth in U.S. Pat. No. 5,658,753; U.S. Pat. No. 5,632,990; U.S. Pat. No. 5,631,137; U.S. Pat. No. 5,602,015; U.S. Pat. No. 5,559,538; U.S. Pat. No. 5,576,174; U.S. Pat. No. 5,500,358; U.S. Pat. No. 5,318,897; U.S. Pat. No. 5,298,409; U.S. Pat. No. 5,258,289 and U.S. Pat. No. 5,194,585, all of which are herein incorporated in their entirety.


It is understood that any of the antibodies of the present invention may be expressed in plants and that such expression can result in a physiological effect. It is also understood that any of the expressed antibodies may be catalytic.


(b) Fungal Constructs and Fungal Transformants


The present invention also relates to a fungal recombinant vector comprising exogenous genetic material. The present invention also relates to a fungal cell comprising a fungal recombinant vector. The present invention also relates to methods for obtaining a recombinant fungal host cell comprising introducing into a fungal host cell exogenous genetic material.


Exogenous genetic material may be transferred into a fungal cell. In a preferred embodiment the exogenous genetic material includes a nucleic acid molecule of the present invention having a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragments of either or other nucleic acid molecule of the present invention. The fungal recombinant vector may be any vector which can be conveniently subjected to recombinant DNA procedures. The choice of a vector will typically depend on the compatibility of the vector with the fungal host cell into which the vector is to be introduced. The vector may be a linear or a closed circular plasmid. The vector system may be a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the fungal host.


The fungal vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one which, when introduced into the fungal cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. For integration, the vector may rely on the nucleic acid sequence of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination. Alternatively, the vector may contain additional nucleic acid sequences for directing integration by homologous recombination into the genome of the fungal host. The additional nucleic acid sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, there should be preferably two nucleic acid sequences which individually contain a sufficient number of nucleic acids, preferably 400 bp to 1500 bp, more preferably 800 bp to 1000 bp, which are highly homologous with the corresponding target sequence to enhance the probability of homologous recombination. These nucleic acid sequences may be any sequence that is homologous with a target sequence in the genome of the fungal host cell and, furthermore, may be non-encoding or encoding sequences.


For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. Examples of origin of replications for use in a yeast host cell are the 2 micron origin of replication and the combination of CEN3 and ARS 1. Any origin of replication may be used which is compatible with the fungal host cell of choice.


The fungal vectors of the present invention preferably contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides, for example biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs and the like. The selectable marker may be selected from the group including, but not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hygB (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5′-phosphate decarboxylase) and sC (sulfate adenyltransferase) and trpC (anthranilate synthase). Preferred for use in an Aspergillus cell are the amdS and pyrG markers of Aspergillus nidulans or Aspergillus oryzae and the bar marker of Streptomyces hygroscopicus. Furthermore, selection may be accomplished by co-transformation, e.g., as described in WO 91/17243, the entirety of which is herein incorporated by reference. A nucleic acid sequence of the present invention may be operably linked to a suitable promoter sequence. The promoter sequence is a nucleic acid sequence which is recognized by the fungal host cell for expression of the nucleic acid sequence. The promoter sequence contains transcription and translation control sequences which mediate the expression of the protein or fragment thereof.


A promoter may be any nucleic acid sequence which shows transcriptional activity in the fungal host cell of choice and may be obtained from genes encoding polypeptides either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of a nucleic acid construct of the invention in a filamentous fungal host are promoters obtained from the genes encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase and hybrids thereof. In a yeast host, a useful promoter is the Saccharomyces cerevisiae enolase (eno-1) promoter. Particularly preferred promoters are the TAKA amylase, NA2-tpi (a hybrid of the promoters from the genes encoding Aspergillus niger neutral alpha-amylase and Aspergillus oryzae triose phosphate isomerase) and glaA promoters.


A protein or fragment thereof encoding nucleic acid molecule of the present invention may also be operably linked to a terminator sequence at its 3′ terminus. The terminator sequence may be native to the nucleic acid sequence encoding the protein or fragment thereof or may be obtained from foreign sources. Any terminator which is functional in the fungal host cell of choice may be used in the present invention, but particularly preferred terminators are obtained from the genes encoding Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase and Saccharomyces cerevisiae enolase.


A protein or fragment thereof encoding nucleic acid molecule of the present invention may also be operably linked to a suitable leader sequence. A leader sequence is a nontranslated region of a mRNA which is important for translation by the fungal host. The leader sequence is operably linked to the 5′ terminus of the nucleic acid sequence encoding the protein or fragment thereof. The leader sequence may be native to the nucleic acid sequence encoding the protein or fragment thereof or may be obtained from foreign sources. Any leader sequence which is functional in the fungal host cell of choice may be used in the present invention, but particularly preferred leaders are obtained from the genes encoding Aspergillus oryzae TAKA amylase and Aspergillus oryzae triose phosphate isomerase.


A polyadenylation sequence may also be operably linked to the 3′ terminus of the nucleic acid sequence of the present invention. The polyadenylation sequence is a sequence which when transcribed is recognized by the fungal host to add polyadenosine residues to transcribed mRNA. The polyadenylation sequence may be native to the nucleic acid sequence encoding the protein or fragment thereof or may be obtained from foreign sources. Any polyadenylation sequence which is functional in the fungal host of choice may be used in the present invention, but particularly preferred polyadenylation sequences are obtained from the genes encoding Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase and Aspergillus niger alpha-glucosidase.


To avoid the necessity of disrupting the cell to obtain the protein or fragment thereof and to minimize the amount of possible degradation of the expressed protein or fragment thereof within the cell, it is preferred that expression of the protein or fragment thereof gives rise to a product secreted outside the cell. To this end, a protein or fragment thereof of the present invention may be linked to a signal peptide linked to the amino terminus of the protein or fragment thereof. A signal peptide is an amino acid sequence which permits the secretion of the protein or fragment thereof from the fungal host into the culture medium. The signal peptide may be native to the protein or fragment thereof of the invention or may be obtained from foreign sources. The 5′ end of the coding sequence of the nucleic acid sequence of the present invention may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted protein or fragment thereof. Alternatively, the 5′ end of the coding sequence may contain a signal peptide coding region which is foreign to that portion of the coding sequence which encodes the secreted protein or fragment thereof. The foreign signal peptide may be required where the coding sequence does not normally contain a signal peptide coding region. Alternatively, the foreign signal peptide may simply replace the natural signal peptide to obtain enhanced secretion of the desired protein or fragment thereof. The foreign signal peptide coding region may be obtained from a glucoamylase or an amylase gene from an Aspergillus species, a lipase or proteinase gene from Rhizomucor miehei, the gene for the alpha-factor from Saccharomyces cerevisiae, or the calf preprochymosin gene. An effective signal peptide for fungal host cells is the Aspergillus oryzae TAKA amylase signal, Aspergillus niger neutral amylase signal, the Rhizomucor miehei aspartic proteinase signal, the Humicola lanuginosus cellulase signal, or the Rhizomucor miehei lipase signal. However, any signal peptide capable of permitting secretion of the protein or fragment thereof in a fungal host of choice may be used in the present invention.


A protein or fragment thereof encoding nucleic acid molecule of the present invention may also be linked to a propeptide coding region. A propeptide is an amino acid sequence found at the amino terminus of a proprotein or proenzyme. Cleavage of the propeptide from the proprotein yields a mature biochemically active protein. The resulting polypeptide is known as a propolypeptide or proenzyme (or a zymogen in some cases). Propolypeptides are generally inactive and can be converted to mature active polypeptides by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide or proenzyme. The propeptide coding region may be native to the protein or fragment thereof or may be obtained from foreign sources. The foreign propeptide coding region may be obtained from the Saccharomyces cerevisiae alpha-factor gene or Myceliophthora thermophila laccase gene (WO 95/33836, the entirety of which is herein incorporated by reference).


The procedures used to ligate the elements described above to construct the recombinant expression vector of the present invention are well known to one skilled in the art (see, for example, Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor, N.Y., (1989)).


The present invention also relates to recombinant fungal host cells produced by the methods of the present invention which are advantageously used with the recombinant vector of the present invention. The cell is preferably transformed with a vector comprising a nucleic acid sequence of the invention followed by integration of the vector into the host chromosome. The choice of fungal host cells will to a large extent depend upon the gene encoding the protein or fragment thereof and its source. The fungal host cell may, for example, be a yeast cell or a filamentous fungal cell.


“Yeast” as used herein includes Ascosporogenous yeast (Endomycetales), Basidiosporogenous yeast and yeast belonging to the Fungi Imperfecti (Blastomycetes). The Ascosporogenous yeasts are divided into the families Spermophthoraceae and Saccharomycetaceae. The latter is comprised of four subfamilies, Schizosaccharomycoideae (for example, genus Schizosaccharomyces), Nadsonioideae, Lipomycoideae and Saccharomycoideae (for example, genera Pichia, Kluyveromyces and Saccharomyces). The Basidiosporogenous yeasts include the genera Leucosporidim, Rhodosporidium, Sporidiobolus, Filobasidium and Filobasidiella. Yeast belonging to the Fungi Imperfecti are divided into two families, Sporobolomycetaceae (for example, genera Sorobolomyces and Bullera) and Cryptococcaceae (for example, genus Candida). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner et al., Soc. App. Bacteriol. Symposium Series No. 9, (1980), the entirety of which is herein incorporated by reference). The biology of yeast and manipulation of yeast genetics are well known in the art (see, for example, Biochemistry and Genetics of Yeast, Bacil et al. (ed.), 2nd edition, 1987; The Yeasts, Rose and Harrison (eds.), 2nd ed., (1987); and The Molecular Biology of the Yeast Saccharomyces, Strathem et al. (eds.), (1981), all of which are herein incorporated by reference in their entirety).


“Fungi” as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota (as defined by Hawksworth et al., In: Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK; the entirety of which is herein incorporated by reference) as well as the Oomycota (as cited in Hawksworth et al., In: Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK) and all mitosporic fingi (Hawksworth et al., In: Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK). Representative groups of Ascomycota include, for example, Neurospora, Eupenicillium (=Penicillium), Emericella (=Aspergillus), Eurotiun (=Aspergillus) and the true yeasts listed above. Examples of Basidiomycota include mushrooms, rusts and smuts. Representative groups of Chytridiomycota include, for example, Allomyces, Blastocladiella, Coelomomyces and aquatic fungi. Representative groups of Oomycota include, for example, Saprolegniomycetous aquatic fungi (water molds) such as Achlya. Examples of mitosporic fungi include Aspergillus, Penicilliun, Candida and Alternaria. Representative groups of Zygomycota include, for example, Rhizopus and Mucor.


“Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., In: Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK). The filamentous fungi are characterized by a vegetative mycelium composed of chitin, cellulose, glucan, chitosan, mannan and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.


In one embodiment, the fungal host cell is a yeast cell. In a preferred embodiment, the yeast host cell is a cell of the species of Candida, Kluyveromyces, Saccharomyces, Schizosaccharomyces, Pichia and Yarrowia. In a preferred embodiment, the yeast host cell is a Saccharomyces cerevisiae cell, a Saccharomyces carisbergensis, Saccharomyces diastaticus cell, a Saccharomyces douglasii cell, a Saccharomyces kluyveri cell, a Saccharomyces norbensis cell, or a Saccharomyces oviformis cell. In another preferred embodiment, the yeast host cell is a Kluyveromyces lactis cell. In another preferred embodiment, the yeast host cell is a Yarrowia lipolytica cell.


In another embodiment, the fungal host cell is a filamentous fungal cell. In a preferred embodiment, the filamentous fungal host cell is a cell of the species of, but not limited to, Acremonium, Aspergillus, Fusarium, Humicola, Myceliophthora, Mucor, Neurospora, Penicillium, Thielavia, Tolypocladium and Trichoderma. In a preferred embodiment, the filamentous fungal host cell is an Aspergillus cell. In another preferred embodiment, the filamentous fungal host cell is an Acremonium cell. In another preferred embodiment, the filamentous fungal host cell is a Fusarium cell. In another preferred embodiment, the filamentous fungal host cell is a Humicola cell. In another preferred embodiment, the filamentous fungal host cell is a Myceliophthora cell. In another even preferred embodiment, the filamentous fungal host cell is a Mucor cell. In another preferred embodiment, the filamentous fungal host cell is a Neurospora cell. In another preferred embodiment, the filamentous fungal host cell is a Penicillium cell. In another preferred embodiment, the filamentous fungal host cell is a Thielavia cell. In another preferred embodiment, the filamentous fungal host cell is a Tolypocladiun cell. In another preferred embodiment, the filamentous fungal host cell is a Trichoderma cell. In a preferred embodiment, the filamentous fungal host cell is an Aspergillus oryzae cell, an Aspergillus niger cell, an Aspergillus foetidus cell, or an Aspergillus japonicus cell. In another preferred embodiment, the filamentous fungal host cell is a Fusarium oxysporum cell or a Fusarium graminearum cell. In another preferred embodiment, the filamentous fungal host cell is a Humicola insolens cell or a Humicola lanuginosus cell. In another preferred embodiment, the filamentous fungal host cell is a Myceliophthora thermophila cell. In a most preferred embodiment, the filamentous fungal host cell is a Mucor miehei cell. In a most preferred embodiment, the filamentous fungal host cell is a Neurospora crassa cell. In a most preferred embodiment, the filamentous fungal host cell is a Penicillium purpurogenum cell. In another most preferred embodiment, the filamentous fungal host cell is a Thielavia terrestris cell. In another most preferred embodiment, the Trichoderma cell is a Trichoderma reesei cell, a Trichoderma viride cell, a Trichoderma longibrachiatum cell, a Trichoderma harzianum cell, or a Trichoderma koningii cell. In a preferred embodiment, the fungal host cell is selected from an A. nidulans cell, an A. niger cell, an A. oryzae cell and an A. sojae cell. In a further preferred embodiment, the fungal host cell is an A. nidulans cell.


The recombinant fungal host cells of the present invention may further comprise one or more sequences which encode one or more factors that are advantageous in the expression of the protein or fragment thereof, for example, an activator (e.g., a trans-acting factor), a chaperone and a processing protease. The nucleic acids encoding one or more of these factors are preferably not operably linked to the nucleic acid encoding the protein or fragment thereof. An activator is a protein which activates transcription of a nucleic acid sequence encoding a polypeptide (Kudla et al., EMBO 9:1355-1364 (1990); Jarai and Buxton, Current Genetics 26:2238-244 (1994); Verdier, Yeast 6:271-297 (1990), all of which are herein incorporated by reference in their entirety). The nucleic acid sequence encoding an activator may be obtained from the genes encoding Saccharomyces cerevisiae heme activator protein 1 (hap1), Saccharomyces cerevisiae galactose metabolizing protein 4 (gal4) and Aspergillus nidulans ammonia regulation protein (areA). For further examples, see Verdier, Yeast 6:271-297 (1990); MacKenzie et al., Journal of Gen. Microbiol. 139:2295-2307 (1993), both of which are herein incorporated by reference in their entirety). A chaperone is a protein which assists another protein in folding properly (Hartl et al., TIBS 19:20-25 (1994); Bergeron et al., TIBS 19:124-128 (1994); Demolder et al., J. Biotechnology 32:179-189 (1994); Craig, Science 260:1902-1903 (1993); Gething and Sambrook, Nature 355:33-45 (1992); Puig and Gilbert, J. Biol. Chem. 269:7764-7771 (1994); Wang and Tsou, FASEB Journal 7:1515-11157 (1993); Robinson et al., Bio/Technology 1:381-384 (1994), all of which are herein incorporated by reference in their entirety). The nucleic acid sequence encoding a chaperone may be obtained from the genes encoding Aspergillus oryzae protein disulphide isomerase, Saccharomyces cerevisiae calnexin, Saccharomyces cerevisiae BiP/GRP78 and Saccharomyces cerevisiae Hsp70. For further examples, see Gething and Sambrook, Nature 355:33-45 (1992); Hartl et al., TIBS 19:20-25 (1994). A processing protease is a protease that cleaves a propeptide to generate a mature biochemically active polypeptide (Enderlin and Ogrydziak, Yeast 10:67-79 (1994); Fuller et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:1434-1438 (1989); Julius et al., Cell 37:1075-1089 (1984); Julius et al., Cell 32:839-852 (1983), all of which are incorporated by reference in their entirety). The nucleic acid sequence encoding a processing protease may be obtained from the genes encoding Aspergillus niger Kex2, Saccharomyces cerevisiae dipeptidylaminopeptidase, Saccharomyces cerevisiae Kex2 and Yarrowia lipolytica dibasic processing endoprotease (xpr6). Any factor that is functional in the fungal host cell of choice may be used in the present invention.


Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus host cells are described in EP 238 023 and Yelton et al., Proc. Natl. Acad. Sci. (U.S.A.) 81:1470-1474 (1984), both of which are herein incorporated by reference in their entirety. A suitable method of transforming Fusarium species is described by Malardier et al., Gene 78:147-156 (1989), the entirety of which is herein incorporated by reference. Yeast may be transformed using the procedures described by Becker and Guarente, In: Abelson and Simon, (eds.), Guide to Yeast Genetics and Molecular Biology, Methods Enzymol. Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., J. Bacteriology 153:163 (1983); Hinnen et al., Proc. Natl. Acad. Sci. (U.S.A.) 75:1920 (1978), all of which are herein incorporated by reference in their entirety.


The present invention also relates to methods of producing the protein or fragment thereof comprising culturing the recombinant fungal host cells under conditions conducive for expression of the protein or fragment thereof. The fungal cells of the present invention are cultivated in a nutrient medium suitable for production of the protein or fragment thereof using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the protein or fragment thereof to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art (see, e.g., Bennett and LaSure (eds.), More Gene Manipulations in Fungi, Academic Press, CA, (1991), the entirety of which is herein incorporated by reference). Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection, Manassas, Va.). If the protein or fragment thereof is secreted into the nutrient medium, a protein or fragment thereof can be recovered directly from the medium. If the protein or fragment thereof is not secreted, it is recovered from cell lysates.


The expressed protein or fragment thereof may be detected using methods known in the art that are specific for the particular protein or fragment. These detection methods may include the use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, if the protein or fragment thereof has enzymatic activity, an enzyme assay may be used. Alternatively, if polyclonal or monoclonal antibodies specific to the protein or fragment thereof are available, immunoassays may be employed using the antibodies to the protein or fragment thereof. The techniques of enzyme assay and immunoassay are well known to those skilled in the art.


The resulting protein or fragment thereof may be recovered by methods known in the arts. For example, the protein or fragment thereof may be recovered from the nutrient medium by conventional procedures including, but not limited to, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation. The recovered protein or fragment thereof may then be further purified by a variety of chromatographic procedures, e.g., ion exchange chromatography, gel filtration chromatography, affinity chromatography, or the like.


(c) Mammalian Constructs and Transformed Mammalian Cells


The present invention also relates to methods for obtaining a recombinant mammalian host cell, comprising introducing into a mammalian host cell exogenous genetic material. The present invention also relates to a mammalian cell comprising a mammalian recombinant vector. The present invention also relates to methods for obtaining a recombinant mammalian host cell, comprising introducing into a mammalian cell exogenous genetic material. In a preferred embodiment the exogenous genetic material includes a nucleic acid molecule of the present invention having a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragments of either or other nucleic acid molecule of the present invention.


Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC, Manassas, Va.), such as HeLa cells, Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK) cells and a number of other cell lines. Suitable promoters for mammalian cells are also known in the art and include viral promoters such as that from Simian, Virus 40 (SV40) (Fiers et al., Nature 273:113 (1978), the entirety of which is herein incorporated by reference), Rous sarcoma virus (RSV), adenovirus (ADV) and bovine papilloma virus (BPV). Mammalian cells may also require terminator sequences and poly-A addition sequences. Enhancer sequences which increase expression may also be included and sequences which promote amplification of the gene may also be desirable (for example methotrexate resistance genes).


Vectors suitable for replication in mammalian cells may include viral replicons, or sequences which insure integration of the appropriate sequences encoding HCV epitopes into the host genome. For example, another vector used to express foreign DNA is vaccinia virus. In this case, for example, a nucleic acid molecule encoding a protein or fragment thereof is inserted into the vaccinia genome. Techniques for the insertion of foreign DNA into the vaccinia virus genome are known in the art and may utilize, for example, homologous recombination. Such heterologous DNA is generally inserted into a gene which is non-essential to the virus, for example, the thymidine kinase gene (tk), which also provides a selectable marker. Plasmid vectors that greatly facilitate the construction of recombinant viruses have been described (see, for example, Mackett et al, J Virol. 49:857 (1984); Chakrabarti et al., Mol. Cell. Biol. 5:3403 (1985); Moss, In: Gene Transfer Vectors For Mammalian Cells (Miller and Calos, eds., Cold Spring Harbor Laboratory, N.Y., p. 10, (1987); all of which are herein incorporated by reference in their entirety). Expression of the HCV polypeptide then occurs in cells or animals which are infected with the live recombinant vaccinia virus.


The sequence to be integrated into the mammalian sequence may be introduced into the primary host by any convenient means, which includes calcium precipitated DNA, spheroplast fusion, transformation, electroporation, biolistics, lipofection, microinjection, or other convenient means. Where an amplifiable gene is being employed, the amplifiable gene may serve as the selection marker for selecting hosts into which the amplifiable gene has been introduced. Alternatively, one may include with the amplifiable gene another marker, such as a drug resistance marker, e.g. neomycin resistance (G418 in mammalian cells), hygromycin in resistance etc., or an auxotrophy marker (HIS3, TRP1, LEU2, URA3, ADE2, LYS2, etc.) for use in yeast cells.


Depending upon the nature of the modification and associated targeting construct, various techniques may be employed for identifying targeted integration. Conveniently, the DNA may be digested with one or more restriction enzymes and the fragments probed with an appropriate DNA fragment which will identify the properly sized restriction fragment associated with integration.


One may use different promoter sequences, enhancer sequences, or other sequence which will allow for enhanced levels of expression in the expression host. Thus, one may combine an enhancer from one source, a promoter region from another source, a 5′-noncoding region upstream from the initiation methionine from the same or different source as the other sequences and the like. One may provide for an intron in the non-coding region with appropriate splice sites or for an alternative 3′-untranslated sequence or polyadenylation site. Depending upon the particular purpose of the modification, any of these sequences may be introduced, as desired.


Where selection is intended, the sequence to be integrated will have with it a marker gene, which allows for selection. The marker gene may conveniently be downstream from the target gene and may include resistance to a cytotoxic agent, e.g. antibiotics, heavy metals, or the like, resistance or susceptibility to HAT, gancyclovir, etc., complementation to an auxotrophic host, particularly by using an auxotrophic yeast as the host for the subject manipulations, or the like. The marker gene may also be on a separate DNA molecule, particularly with primary mammalian cells. Alternatively, one may screen the various transformants, due to the high efficiency of recombination in yeast, by using hybridization analysis, PCR, sequencing, or the like.


For homologous recombination, constructs can be prepared where the amplifiable gene will be flanked, normally on both sides with DNA homologous with the DNA of the target region. Depending upon the nature of the integrating DNA and the purpose of the integration, the homologous DNA will generally be within 100 kb, usually 50 kb, preferably about 25 kb, of the transcribed region of the target gene, more preferably within 2 kb of the target gene. Where modeling of the gene is intended, homology will usually be present proximal to the site of the mutation. The homologous DNA may include the 5′-upstream region outside of the transcriptional regulatory region or comprising any enhancer sequences, transcriptional initiation sequences, adjacent sequences, or the like. The homologous region may include a portion of the coding region, where the coding region may be comprised only of an open reading frame or combination of exons and introns. The homologous region may comprise all or a portion of an intron, where all or a portion of one or more exons may also be present. Alternatively, the homologous region may comprise the 3′-region, so as to comprise all or a portion of the transcriptional termination region, or the region 3′ of this region. The homologous regions may extend over all or a portion of the target gene or be outside the target gene comprising all or a portion of the transcriptional regulatory regions and/or the structural gene.


The integrating constructs may be prepared in accordance with conventional ways, where sequences may be synthesized, isolated from natural sources, manipulated, cloned, ligated, subjected to in vitro mutagenesis, primer repair, or the like. At various stages, the joined sequences may be cloned and analyzed by restriction analysis, sequencing, or the like. Usually during the preparation of a construct where various fragments are joined, the fragments, intermediate constructs and constructs will be carried on a cloning vector comprising a replication system functional in a prokaryotic host, e.g., E. coli and a marker for selection, e.g., biocide resistance, complementation to an auxotrophic host, etc. Other functional sequences may also be present, such as polylinkers, for ease of introduction and excision of the construct or portions thereof, or the like. A large number of cloning vectors are available such as pBR322, the pUC series, etc. These constructs may then be used for integration into the primary mammalian host.


In the case of the primary mammalian host, a replicating vector may be used. Usually, such vector will have a viral replication system, such as SV40, bovine papilloma virus, adenovirus, or the like. The linear DNA sequence vector may also have a selectable marker for identifying transfected cells. Selectable markers include the neo gene, allowing for selection with G418, the herpes tk gene for selection with HAT medium, the gpt gene with mycophenolic acid, complementation of an auxotrophic host, etc.


The vector may or may not be capable of stable maintenance in the host. Where the vector is capable of stable maintenance, the cells will be screened for homologous integration of the vector into the genome of the host, where various techniques for curing the cells may be employed. Where the vector is not capable of stable maintenance, for example, where a temperature sensitive replication system is employed, one may change the temperature from the permissive temperature to the non-permissive temperature, so that the cells may be cured of the vector. In this case, only those cells having integration of the construct comprising the amplifiable gene and, when present, the selectable marker, will be able to survive selection.


Where a selectable marker is present, one may select for the presence of the targeting construct by means of the selectable marker. Where the selectable marker is not present, one may select for the presence of the construct by the amplifiable gene. For the neo gene or the herpes tk gene, one could employ a medium for growth of the transformants of about 0.1-1 mg/ml of G418 or may use HAT medium, respectively. Where DHFR is the amplifiable gene, the selective medium may include from about 0.01-0.5 M of methotrexate or be deficient in glycine-hypoxanthine-thymidine and have dialysed serum (GHT media).


The DNA can be introduced into the expression host by a variety of techniques that include calcium phosphate/DNA co-precipitates, microinjection of DNA into the nucleus, electroporation, yeast protoplast fusion with intact cells, transfection, polycations, e.g., polybrene, polyornithine, etc., or the like. The DNA may be single or double stranded DNA, linear or circular. The various techniques for transforming mammalian cells are well known (see Keown et al., Methods Enzymol. (1989); Keown et al., Methods Enzymol. 185:527-537 (1990); Mansour et al., Nature 336:348-352, (1988); all of which are herein incorporated by reference in their entirety).


(d) Insect Constructs and Transformed Insect Cells


The present invention also relates to an insect recombinant vectors comprising exogenous genetic material. The present invention also relates to an insect cell comprising an insect recombinant vector. The present invention also relates to methods for obtaining a recombinant insect host cell, comprising introducing into an insect cell exogenous genetic material. In a preferred embodiment the exogenous genetic material includes a nucleic acid molecule of the present invention having a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragments of either or other nucleic acid molecule of the present invention.


The insect recombinant vector may be any vector which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleic acid sequence. The choice of a vector will typically depend on the compatibility of the vector with the insect host cell into which the vector is to be introduced. The vector may be a linear or a closed circular plasmid. The vector system may be a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the insect host. In addition, the insect vector may be an expression vector. Nucleic acid molecules can be suitably inserted into a replication vector for expression in the insect cell under a suitable promoter for insect cells. Many vectors are available for this purpose and selection of the appropriate vector will depend mainly on the size of the nucleic acid molecule to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the particular host cell with which it is compatible. The vector components for insect cell transformation generally include, but are not limited to, one or more of the following: a signal sequence, origin of replication, one or more marker genes and an inducible promoter.


The insect vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one which, when introduced into the insect cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. For integration, the vector may rely on the nucleic acid sequence of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination. Alternatively, the vector may contain additional nucleic acid sequences for directing integration by homologous recombination into the genome of the insect host. The additional nucleic acid sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, there should be preferably two nucleic acid sequences which individually contain a sufficient number of nucleic acids, preferably 400 bp to 1500 bp, more preferably 800 bp to 1000 bp, which are highly homologous with the corresponding target sequence to enhance the probability of homologous recombination. These nucleic acid sequences may be any sequence that is homologous with a target sequence in the genome of the insect host cell and, furthermore, may be non-encoding or encoding sequences.


Baculovirus expression vectors (BEVs) have become important tools for the expression of foreign genes, both for basic research and for the production of proteins with direct clinical applications in human and veterinary medicine (Doerfler, Curr. Top. Microbiol. Immunol. 131:51-68 (1968); Luckow and Summers, Bio/Technology 6:47-55 (1988a); Miller, Annual Review of Microbiol. 42:177-199 (1988); Summers, Curr. Comm. Molecular Biology, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1988); all of which are herein incorporated by reference in their entirety). BEVs are recombinant insect viruses in which the coding sequence for a chosen foreign gene has been inserted behind a baculovirus promoter in place of the viral gene, e.g., polyhedrin (Smith and Summers, U.S. Pat. No. 4,745,051, the entirety of which is incorporated herein by reference).


The use of baculovirus vectors relies upon the host cells being derived from Lepidopteran insects such as Spodoptera frugiperda or Trichoplusia ni. The preferred Spodoptera frugiperda cell line is the cell line Sf9. The Spodoptera frugiperda Sf9 cell line was obtained from American Type Culture Collection (Manassas, Va.) and is assigned accession number ATCC CRL 1711 (Summers and Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Ag. Exper. Station Bulletin No. 1555 (1988), the entirety of which is herein incorporated by reference). Other insect cell systems, such as the silkworm B. mori may also be used.


The proteins expressed by the BEVs are, therefore, synthesized, modified and transported in host cells derived from Lepidopteran insects. Most of the genes that have been inserted and produced in the baculovirus expression vector system have been derived from vertebrate species. Other baculovirus genes in addition to the polyhedrin promoter may be employed to advantage in a baculovirus expression system. These include immediate-early (alpha), delayed-early ( ), late ( ), or very late (delta), according to the phase of the viral infection during which they are expressed. The expression of these genes occurs sequentially, probably as the result of a “cascade” mechanism of transcriptional regulation. (Guarino and Summers, J. Virol. 57:563-571 (1986); Guarino and Summers, J. Virol. 61:2091-2099 (1987); Guarino and Summers, Virol. 162:444-451 (1988); all of which are herein incorporated by reference in their entirety).


Insect recombinant vectors are useful as intermediates for the infection or transformation of insect cell systems. For example, an insect recombinant vector containing a nucleic acid molecule encoding a baculovirus transcriptional promoter followed downstream by an insect signal DNA sequence is capable of directing the secretion of the desired biologically active protein from the insect cell. The vector may utilize a baculovirus transcriptional promoter region derived from any of the over 500 baculoviruses generally infecting insects, such as for example the Orders Lepidoptera, Diptera, Orthoptera, Coleoptera and Hymenoptera, including for example but not limited to the viral DNAs of Autographa californica MNPV, Bombyx mori NPV, Trichoplusia ni MNPV, Rachiplusia ou MNPV or Galleria mellonella MNPV, wherein said baculovirus transcriptional promoter is a baculovirus immediate-early gene IEl or IEN promoter; an immediate-early gene in combination with a baculovirus delayed-early gene promoter region selected from the group consisting of 39K and a HindIII-k fragment delayed-early gene; or a baculovirus late gene promoter. The immediate-early or delayed-early promoters can be enhanced with transcriptional enhancer elements. The insect signal DNA sequence may code for a signal peptide of a Lepidopteran adipokinetic hormone precursor or a signal peptide of the Manduca sexta adipokinetic hormone precursor (Summers, U.S. Pat. No. 5,155,037; the entirety of which is herein incorporated by reference). Other insect signal DNA sequences include a signal peptide of the Orthoptera Schistocerca gregaria locust adipokinetic hormone precursor and the Drosophila melanogaster cuticle genes CP1, CP2, CP3 or CP4 or for an insect signal peptide having substantially a similar chemical composition and function (Summers, U.S. Pat. No. 5,155,037).


Insect cells are distinctly different from animal cells. Insects have a unique life cycle and have distinct cellular properties such as the lack of intracellular plasminogen activators in which are present in vertebrate cells. Another difference is the high expression levels of protein products ranging from 1 to greater than 500 mg/liter and the ease at which cDNA can be cloned into cells (Frasier, In Vitro Cell. Dev. Biol. 25:225 (1989); Summers and Smith, In: A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Ag. Exper. Station Bulletin No. 1555 (1988), both of which are incorporated by reference in their entirety).


Recombinant protein expression in insect cells is achieved by viral infection or stable transformation. For viral infection, the desired gene is cloned into baculovirus at the site of the wild-type polyhedron gene (Webb and Summers, Technique 2:173 (1990); Bishop and Posse, Adv. Gene Technol. 1:55 (1990); both of which are incorporated by reference in their entirety). The polyhedron gene is a component of a protein coat in occlusions which encapsulate virus particles. Deletion or insertion in the polyhedron gene results the failure to form occlusion bodies. Occlusion negative viruses are morphologically different from occlusion positive viruses and enable one skilled in the art to identify and purify recombinant viruses.


The vectors of present invention preferably contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides, for example biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs and the like. Selection may be accomplished by co-transformation, e.g., as described in WO 91/17243, a nucleic acid sequence of the present invention may be operably linked to a suitable promoter sequence. The promoter sequence is a nucleic acid sequence which is recognized by the insect host cell for expression of the nucleic acid sequence. The promoter sequence contains transcription and translation control sequences which mediate the expression of the protein or fragment thereof. The promoter may be any nucleic acid sequence which shows transcriptional activity in the insect host cell of choice and may be obtained from genes encoding polypeptides either homologous or heterologous to the host cell.


For example, a nucleic acid molecule encoding a protein or fragment thereof may also be operably linked to a suitable leader sequence. A leader sequence is a nontranslated region of a mRNA which is important for translation by the fungal host. The leader sequence is operably linked to the 5′ terminus of the nucleic acid sequence encoding the protein or fragment thereof. The leader sequence may be native to the nucleic acid sequence encoding the protein or fragment thereof or may be obtained from foreign sources. Any leader sequence which is functional in the insect host cell of choice may be used in the present invention.


A polyadenylation sequence may also be operably linked to the 3′ terminus of the nucleic acid sequence of the present invention. The polyadenylation sequence is a sequence which when transcribed is recognized by the insect host to add polyadenosine residues to transcribed mRNA. The polyadenylation sequence may be native to the nucleic acid sequence encoding the protein or fragment thereof or may be obtained from foreign sources. Any polyadenylation sequence which is functional in the fungal host of choice may be used in the present invention.


To avoid the necessity of disrupting the cell to obtain the protein or fragment thereof and to minimize the amount of possible degradation of the expressed polypeptide within the cell, it is preferred that expression of the polypeptide gene gives rise to a product secreted outside the cell. To this end, the protein or fragment thereof of the present invention may be linked to a signal peptide linked to the amino terminus of the protein or fragment thereof. A signal peptide is an amino acid sequence which permits the secretion of the protein or fragment thereof from the insect host into the culture medium. The signal peptide may be native to the protein or fragment thereof of the invention or may be obtained from foreign sources. The 5′ end of the coding sequence of the nucleic acid sequence of the present invention may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted protein or fragment thereof.


At present, a mode of achieving secretion of a foreign gene product in insect cells is by way of the foreign gene's native signal peptide. Because the foreign genes are usually from non-insect organisms, their signal sequences may be poorly recognized by insect cells and hence, levels of expression may be suboptimal. However, the efficiency of expression of foreign gene products seems to depend primarily on the characteristics of the foreign protein. On average, nuclear localized or non-structural proteins are most highly expressed, secreted proteins are intermediate and integral membrane proteins are the least expressed. One factor generally affecting the efficiency of the production of foreign gene products in a heterologous host system is the presence of native signal sequences (also termed presequences, targeting signals, or leader sequences) associated with the foreign gene. The signal sequence is generally coded by a DNA sequence immediately following (5′ to 3′) the translation start site of the desired foreign gene.


The expression dependence on the type of signal sequence associated with a gene product can be represented by the following example: If a foreign gene is inserted at a site downstream from the translational start site of the baculovirus polyhedrin gene so as to produce a fusion protein (containing the N-terminus of the polyhedrin structural gene), the fused gene is highly expressed. But less expression is achieved when a foreign gene is inserted in a baculovirus expression vector immediately following the transcriptional start site and totally replacing the polyhedrin structural gene.


Insertions into the region −50 to −1 significantly alter (reduce) steady state transcription which, in turn, reduces translation of the foreign gene product. Use of the pVL941 vector optimizes transcription of foreign genes to the level of the polyhedrin gene transcription. Even though the transcription of a foreign gene may be optimal, optimal translation may vary because of several factors involving processing: signal peptide recognition, mRNA and ribosome binding, glycosylation, disulfide bond formation, sugar processing, oligomerization, for example.


The properties of the insect signal peptide are expected to be more optimal for the efficiency of the translation process in insect cells than those from vertebrate proteins. This phenomenon can generally be explained by the fact that proteins secreted from cells are synthesized as precursor molecules containing hydrophobic N-terminal signal peptides. The signal peptides direct transport of the select protein to its target membrane and are then cleaved by a peptidase on the membrane, such as the endoplasmic reticulum, when the protein passes through it.


Another exemplary insect signal sequence is the sequence encoding for Drosophila cuticle proteins such as CP1, CP2, CP3 or CP4 (Summers, U.S. Pat. No. 5,278,050; the entirety of which is herein incorporated by reference). Most of a 9 kb region of the Drosophila genome containing genes for the cuticle proteins has been sequenced. Four of the five cuticle genes contains a signal peptide coding sequence interrupted by a short intervening sequence (about 60 base pairs) at a conserved site. Conserved sequences occur in the 5′ mRNA untranslated region, in the adjacent 35 base pairs of upstream flanking sequence and at −200 base pairs from the mRNA start position in each of the cuticle genes.


Standard methods of insect cell culture, cotransfection and preparation of plasmids are set forth in Summers and Smith (Summers and Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricultural Experiment Station Bulletin No. 1555, Texas A&M University (1987)). Procedures for the cultivation of viruses and cells are described in Volkman and Summers, J. Virol 19:820-832 (1975) and Volkman et al., J. Virol 19:820-832 (1976); both of which are herein incorporated by reference in their entirety.


(e) Bacterial Constructs and Transformed Bacterial Cells


The present invention also relates to a bacterial recombinant vector comprising exogenous genetic material. The present invention also relates to a bacteria cell comprising a bacterial recombinant vector. The present invention also relates to methods for obtaining a recombinant bacteria host cell, comprising introducing into a bacterial host cell exogenous genetic material. In a preferred embodiment the exogenous genetic material includes a nucleic acid molecule of the present invention having a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 or complements thereof or fragments of either or other nucleic acid molecule of the present invention.


The bacterial recombinant vector may be any vector which can be conveniently subjected to recombinant DNA procedures. The choice of a vector will typically depend on the compatibility of the vector with the bacterial host cell into which the vector is to be introduced. The vector may be a linear or a closed circular plasmid. The vector system may be a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the bacterial host. In addition, the bacterial vector may be an expression vector. Nucleic acid molecules encoding protein homologues or fragments thereof can, for example, be suitably inserted into a replicable vector for expression in the bacterium under the control of a suitable promoter for bacteria. Many vectors are available for this purpose and selection of the appropriate vector will depend mainly on the size of the nucleic acid to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the particular host cell with which it is compatible. The vector components for bacterial transformation generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes and an inducible promoter.


In general, plasmid vectors containing replicon and control sequences that are derived from species compatible with the host cell are used in connection with bacterial hosts. The vector ordinarily carries a replication site, as well as marking sequences that are capable of providing phenotypic selection in transformed cells. For example, E. coli is typically transformed using pBR322, a plasmid derived from an E. coli species (see, e.g., Bolivar et al., Gene 2:95 (1977); the entirety of which is herein incorporated by reference). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR322 plasmid, or other microbial plasmid or phage, also generally contains, or is modified to contain, promoters that can be used by the microbial organism for expression of the selectable marker genes.


Nucleic acid molecules encoding protein or fragments thereof may be expressed not only directly, but also as a fusion with another polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the polypeptide DNA that is inserted into the vector. The heterologous signal sequence selected should be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For bacterial host cells that do not recognize and process the native polypeptide signal sequence, the signal sequence is substituted by a bacterial signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.


Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria.


Expression and cloning vectors also generally contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous protein homologue or fragment thereof produce a protein conferring drug resistance and thus survive the selection regimen.


The expression vector for producing a protein or fragment thereof can also contains an inducible promoter that is recognized by the host bacterial organism and is operably linked to the nucleic acid encoding, for example, the nucleic acid molecule encoding the protein homologue or fragment thereof of interest. Inducible promoters suitable for use with bacterial hosts include the -lactamase and lactose promoter systems (Chang et al., Nature 275:615 (1978); Goeddel et al., Nature 281:544 (1979); both of which are herein incorporated by reference in their entirety), the arabinose promoter system (Guzman et al., J. Bacteriol. 174:7716-7728 (1992); the entirety of which is herein incorporated by reference), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res. 8:4057 (1980); EP 36,776; both of which are herein incorporated by reference in their entirety) and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. (USA) 80:21-25 (1983); the entirety of which is herein incorporated by reference). However, other known bacterial inducible promoters are suitable (Siebenlist et al., Cell 20:269 (1980); the entirety of which is herein incorporated by reference).


Promoters for use in bacterial systems also generally contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the polypeptide of interest. The promoter can be removed from the bacterial source DNA by restriction enzyme digestion and inserted into the vector containing the desired DNA.


Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored and re-ligated in the form desired to generate the plasmids required. Examples of available bacterial expression vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as Bluescript™ (Stratagene, La Jolla, Calif.), in which, for example, encoding an A. nidulans protein homologue or fragment thereof homologue, may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of -galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke and Schuster, J. Biol. Chem. 264:5503-5509 (1989), the entirety of which is herein incorporated by reference); and the like. pGEX vectors (Promega, Madison Wis. U.S.A.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems are designed to include heparin, thrombin or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.


Suitable host bacteria for a bacterial vector include archaebacteria and eubacteria, especially eubacteria and most preferably Enterobacteriaceae. Examples of useful bacteria include Escherichia, Enterobacter, Azotobacter, Erwinia, Bacillus, Pseudomonas, Klebsiella, Proteus, Salmonella, Serratia, Shigella, Rhizobia, Vitreoscilla and Paracoccus. Suitable E. coli hosts include E. coli W3110 (American Type Culture Collection (ATCC) 27,325, Manassas, Va. U.S.A.), E. coli 294 (ATCC 31,446), E. coli B and E. coli X1776 (ATCC 31,537). These examples are illustrative rather than limiting. Mutant cells of any of the above-mentioned bacteria may also be employed. It is, of course, necessary to select the appropriate bacteria taking into consideration replicability of the replicon in the cells of a bacterium. For example, E. coli, Serratia, or Salmonella species can be suitably used as the host when well known plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon. E. coli strain W3110 is a preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell should secrete minimal amounts of proteolytic enzymes.


Host cells are transfected and preferably transformed with the above-described vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.


Numerous methods of transfection are known to the ordinarily skilled artisan, for example, calcium phosphate and electroporation. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, (1989), is generally used for bacterial cells that contain substantial cell-wall barriers. Another method for transformation employs polyethylene glycol/DMSO, as described in Chung and Miller (Chung and Miller, Nucleic Acids Res. 16:3580 (1988); the entirety of which is herein incorporated by reference). Yet another method is the use of the technique termed electroporation.


Bacterial cells used to produce the polypeptide of interest for purposes of this invention are cultured in suitable media in which the promoters for the nucleic acid encoding the heterologous polypeptide can be artificially induced as described generally, e.g., in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, (1989). Examples of suitable media are given in U.S. Pat. Nos. 5,304,472 and 5,342,763; both of which are incorporated by reference in their entirety.


In addition to the above discussed procedures, practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolating of clones, (see for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989); Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995), the entirety of which is herein incorporated by reference; Birren et al., Genome Analysis: Analyzing DNA, 1, Cold Spring Harbor, N.Y., the entirety of which is herein incorporated by reference).


(f) Computer Readable Media


The nucleotide sequence provided in SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof, or complement thereof, or a nucleotide sequence at least 90% identical, preferably 95%, identical even more preferably 99% or 100% identical to the sequence provided in SEQ ID NO: 1 through SEQ ID NO: 7341 or fragment thereof, or complement thereof, can be “provided” in a variety of mediums to facilitate use. Such a medium can also provide a subset thereof in a form that allows a skilled artisan to examine the sequences.


A preferred subset of nucleotide sequences are those nucleic acid sequences that encode a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encode a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, nucleic acid sequences that encode a maize or soybean alanine aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof or fragment of either and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof or fragment of either.


A further preferred subset of nucleic acid sequences is where the subset of sequences which encode two proteins or fragments thereof, more preferably three proteins or fragments thereof, more preferable four proteins or fragments thereof, more preferably five proteins or fragments thereof, more preferable six proteins or fragments thereof, more preferably seven proteins or fragments thereof, more preferably eight proteins or fragments thereof, more preferable nine proteins or fragments thereof, more preferably ten proteins or fragments thereof, more preferably eleven proteins or fragments thereof, more preferable twelve proteins or fragments thereof, more preferably thirteen proteins or fragments thereof, more preferably fourteen proteins or fragments thereof, more preferable fifteen proteins or fragments thereof, more preferably sixteen proteins or fragments thereof, more preferably seventeen proteins or fragments thereof, more preferable eighteen proteins or fragments thereof, more preferably nineteen proteins or fragments thereof, more preferably twenty proteins or fragments thereof more preferably twenty one proteins or fragments thereof, more preferable twenty two proteins or fragments thereof, more preferably twenty three proteins or fragments thereof, more preferably twenty four proteins or fragments thereof, and even more preferably twenty five proteins or fragments thereof. These nucleic acid sequences are selected from the group that encodes a maize or soybean ribulose-bisphosphate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoglycerate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize glyceraldehyde 3-phosphate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean triose phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aldolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean fructose-1,6-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean transketolase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encode a maize or soybean sedoheptulose-1,7-bisphosphatase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean D-ribulose-5-phosphate-3-epimerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean ribose-5-phosphate isomerase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean ribose-5-phosphate kinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean phosphoenolpyruvate carboxylase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malate dehydrogenase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative maize or soybean aspartate aminotransferase enzyme or complement thereof or fragment of either, nucleic acid sequences that encode a maize or soybean alanine aminotransferase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NADP-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean NAD-dependent malic enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a maize or soybean PEP carboxykinase enzyme or complement thereof or fragment of either, a nucleic acid molecule that encodes a putative soybean PEP carboxykinase enzyme or complement thereof or fragment either, a nucleic acid molecule that encodes a maize or soybean pyruvate, phosphate dikinase enzyme or complement thereof or fragment of either and a nucleic acid molecule that encodes a maize or soybean pyrophosphatase enzyme or complement thereof or fragment of either.


In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, “computer readable media” refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc, storage medium and magnetic tape: optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention.


As used herein, “recorded” refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate media comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.


By providing one or more of nucleotide sequences of the present invention, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990), the entirety of which is herein incorporated by reference) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993), the entirety of which is herein incorporated by reference) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) within the genome that contain homology to ORFs or proteins from other organisms. Such ORFs are protein-encoding fragments within the sequences of the present invention and are useful in producing commercially important proteins such as enzymes used in amino acid biosynthesis, metabolism, transcription, translation, RNA processing, nucleic acid and a protein degradation, protein modification and DNA replication, restriction, modification, recombination and repair.


The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify commercially important fragments of the nucleic acid molecule of the present invention. As used herein, “a computer-based system” refers to the hardware means, software means and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.


As indicated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, “data storage means” refers to memory that can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention. As used herein, “search means” refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequence of the present invention that match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are available can be used in the computer-based systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTIN and BLASTIX (NCBIA). One of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.


The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that during searches for commercially important fragments of the nucleic acid molecules of the present invention, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.


As used herein, “a target structural motif,” or “target motif,” refers to any rationally selected sequence or combination of sequences in which the sequences the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymatic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, cis elements, hairpin structures and inducible expression elements (protein binding sequences).


Thus, the present invention further provides an input means for receiving a target sequence, a data storage means for storing the target sequences of the present invention sequence identified using a search means as described above and an output means for outputting the identified homologous sequences. A variety of structural formats for the input and output means can be used to input and output information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the sequence of the present invention by varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.


A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments sequence of the present invention. For example, implementing software which implement the BLAST and BLAZE algorithms (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) can be used to identify open frames within the nucleic acid molecules of the present invention. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention.


Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration and are not intended to be limiting of the present invention, unless specified.


EXAMPLE 1

The MONN01 cDNA library is a normalized library generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) total leaf tissue at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The older, more juvenile leaves, which are in a basal position, as well as the younger, more adult leaves, which are more apical are cut at the base of the leaves. The leaves are then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON001 cDNA library is generated from maize (B73, Illinois Foundation Seeds, Champaign, Ill. U.S.A.) immature tassels at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in a greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue from the maize plant is collected at the V6 stage. At that stage the tassel is an immature tassel of about 2-3 cm in length. The tassels are removed and frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON003 library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign, Ill. U.S.A.) roots at the V6 developmental stage. Seeds are planted at a depth of approximately 3 cm in coil into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth, the seedlings are transplanted into 10 inch pots containing the Metro 200 growing medium. Plants are watered daily before transplantation and approximately 3 times a week after transplantation. Peters 15-16-17 fertilizer is applied approximately three times per week after transplanting at a concentration of 150 ppm N. Two to three times during the life time of the plant from transplanting to flowering a total of approximately 900 mg Fe is added to each pot. Maize plants are grown in the green house in approximately 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6 leaf development stage. The root system is cut from maize plant and washed with water to free it from the soil. The tissue is then immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON004 cDNA library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign, Ill. U.S.A.) total leaf tissue at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The older, more juvenile leaves, which are in a basal position, as well as the younger, more adult leaves, which are more apical are cut at the base of the leaves. The leaves are then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON005 cDNA library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign Ill., U.S.A.) root tissue at the V6 development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The root system is cut from the mature maize plant and washed with water to free it from the soil. The tissue is immediately frozen in liquid nitrogen and the harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON006 cDNA library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign Ill., U.S.A.) total leaf tissue at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The older more juvenile leaves, which are in a basal position, as well as the younger more adult leaves, which are more apical are cut at the base of the leaves. The leaves are then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON007 cDNA library is generated from the primary root tissue of 5 day old maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) seedlings. Seeds are planted on a moist filter paper on a covered tray that is kept in the dark until germination (one day). After germination, the trays, along with the moist paper, are moved to a greenhouse where the maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles for approximately 5 days. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. The primary root tissue is collected when the seedlings are 5 days old. At this stage, the primary root (radicle) is pushed through the coleorhiza which itself is pushed through the seed coat. The primary root, which is about 2-3 cm long, is cut and immediately frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON008 cDNA library is generated from the primary shoot (coleoptile 2-3 cm) of maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) seedlings which are approximately 5 days old. Seeds are planted on a moist filter paper on a covered tray that is kept in the dark until germination (one day). Then the trays containing the seeds are moved to a greenhouse at 15 hr daytime/9 hr nighttime cycles and grown until they are 5 days post germination. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Tissue is collected when the seedlings are 5 days old. At this stage, the primary shoot (coleoptile) is pushed through the seed coat and is about 2-3 cm long. The coleoptile is dissected away from the rest of the seedling, immediately frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON009 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) leaves at the 8 leaf stage (V8 plant development stage). Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is 80° F. and the nighttime temperature is 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 8-leaf development stage. The older more juvenile leaves, which are in a basal position, as well as the younger more adult leaves, which are more apical, are cut at the base of the leaves. The leaves are then pooled and then immediately transferred to liquid nitrogen containers in which the pooled leaves are crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON010 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) root tissue at the V8 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is 80° F. and the nighttime temperature is 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the V8 development stage. The root system is cut from this mature maize plant and washed with water to free it from the soil. The tissue is immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON011 cDNA library is generated from undeveloped maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) leaf at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The second youngest leaf which is at the base of the apical leaf of V6 stage maize plant is cut at the base and immediately transferred to liquid nitrogen containers in which the leaf is crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON012 cDNA library is generated from 2 day post germination maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) seedlings. Seeds are planted on a moist filter paper on a covered tray that is kept in the dark until germination (one day). Then the trays containing the seeds are moved to the greenhouse and grown at 15 hr daytime/9 hr nighttime cycles until 2 days post germination. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Tissue is collected when the seedlings are 2 days old. At the two day stage, the coleorhiza is pushed through the seed coat and the primary root (the radicle) is pierced the coleorhiza but is barely visible. Also, at this two day stage, the coleoptile is just emerging from the seed coat. The 2 days post germination seedlings are then immersed in liquid nitrogen and crushed. The harvested tissue is stored at −80° C. until preparation of total RNA. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON013 cDNA library is generated from apical maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) meristem founder at the V4 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Prior to tissue collection, the plant is at the 4 leaf stage. The lead at the apex of the V4 stage maize plant is referred to as the meristem founder. This apical meristem founder is cut, immediately frozen in liquid nitrogen and crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON014 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) endosperm fourteen days after pollination. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. After the V10 stage, the maize plant ear shoots are ready for fertilization. At this stage, the ear shoots are enclosed in a paper bag before silk emergence to withhold the pollen. The ear shoots are pollinated and 14 days after pollination, the ears are pulled out and then the kernels are plucked out of the ears. Each kernel is then dissected into the embryo and the endosperm and the aleurone layer is removed. After dissection, the endosperms are immediately frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON016 library is a maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) sheath library collected at the V8 developmental stage. Seeds are planted in a depth of approximately 3 cm in solid into 2-3 inch pots containing Metro growing medium. After 2-3 weeks growth, they are transplanted into 10″ pots containing the same. Plants are watered daily before transplantation and approximately the times a week after transplantation. Peters 15-16-17 fertilizer is applied approximately three times per week after transplanting, at a strength of 150 ppm N. Two to three times during the life time of the plant from transplanting to flowering, a total of approximately 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. When the maize plants are at the V8 stage the 5th and 6th leaves from the bottom exhibit fully developed leaf blades. At the base of these leaves, the ligule is differentiated and the leaf blade is joined to the sheath. The sheath is dissected away from the base of the leaf then the sheath is frozen in liquid nitrogen and crushed. The tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON017 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) embryo seventeen days after pollination. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth the seeds are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. After the V 10 stage, the ear shoots of maize plant, which are ready for fertilization, are enclosed in a paper bag before silk emergence to withhold the pollen. The ear shoots are fertilized and 21 days after pollination, the ears are pulled out and the kernels are plucked out of the ears. Each kernel is then dissected into the embryo and the endosperm and the aleurone layer is removed. After dissection, the embryos are immediately frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON019 (Lib3054) cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) culm (stem) at the V8 developmental stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. When the maize plant is at the V8 stage, the 5th and 6th leaves from the bottom have fully developed leaf blades. The region between the nodes of the 5th and the sixth leaves from the bottom is the region of the stem that is collected. The leaves are pulled out and the sheath is also torn away from the stem. This stem tissue is completely free of any leaf and sheath tissue. The stem tissue is then frozen in liquid nitrogen and stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON020 cDNA library is from a maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) Hill Type II-Initiated Callus. Petri plates containing approximately 25 ml of Type II initiation media are prepared. This medium contains N6 salts and vitamins, 3% sucrose, 2.3 g/liter proline 0.1 g/liter enzymatic casein hydrolysate, 2 mg/liter 2,4-dichloro phenoxy-acetic acid (2,4, D), 15.3 mg/liter AgNO3 and 0.8% bacto agar and is adjusted to pH 6.0 before autoclaving. At 9-11 days after pollination, an ear with immature embryos measuring approximately 1-2 mm in length is chosen. The husks and silks are removed and then the ear is broken into halves and placed in an autoclaved solution of Clorox/TWEEN 20 sterilizing solution. Then the ear is rinsed with deionized water. Then each embryo is extracted from the kernel. Intact embryos are placed in contact with the medium, scutellar side up). Multiple embryos are plated on each plate and the plates are incubated in the dark at 25° C. Type II calluses are friable, can be subcultured with a spatula, frequently regenerate via somatic embryogenesis and are relatively undifferentiated. As seen in the microscope, the Tape II calluses show color ranging from translucent to light yellow and heterogeneity on with respect to embryoid structure as well as stage of embryoid development. Once Type II callus are formed, the calluses is transferred to type II callus maintenance medium without AgN03. Every 7-10 days, the callus is subcultured. About 4 weeks after embryo isolation the callus is removed from the plates and then frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON021 cDNA library is generated from the immature maize (DK604, Dekalb Genetics, Dekalb Ill., U.S.A.) tassel at the V8 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. As the maize plant enters the V8 stage, tassels which are 15-20 cm in length are collected and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON022 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) ear (growing silks) at the V8 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the plant is in the V8 stage. At this stage, some immature ear shoots are visible. The immature ear shoots (approximately 1 cm in length) are pulled out, frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON23 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) ear (growing silk) at the V8 development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. When the tissue is harvested at the V8 stage, the length of the ear that is harvested is about 10-15 cm and the silks are just exposed (approximately 1 inch). The ear along with the silks is frozen in liquid nitrogen and then the tissue is stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON024 cDNA library is generated from the immature maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) tassel at the V9 development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. As a maize plant enters the V9 stage, the tassel is rapidly developing and a 37 cm tassel along with the glume, anthers and pollen is collected and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON025 cDNA library is from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) Hill Type II-Regenerated Callus. Type II callus is grown in initiation media as described for SATMON020 and then the embryoids on the surface of the Type II callus are allowed to mature and germinate. The 1-2 gm fresh weight of the soft friable type callus containing numerous embryoids are transferred to 100×15 mm petri plates containing 25 ml of regeneration media. Regeneration media consists of Murashige and Skoog (MS) basal salts, modified White's vitamins (0.2 g/liter glycine and 0.5 g/liter myo-inositoland 0.8% bacto agar (6SMS0D)). The plates are then placed in the dark after covering with parafilm. After 1 week, the plates are moved to a lighted growth chamber with 16 hr light and 8 hr dark photoperiod. Three weeks after plating the Type II callus to 6SMS0D, the callus exhibit shoot formation. The callus and the shoots are transferred to fresh 6SMS0D plates for another 2 weeks. The callus and the shoots are then transferred to petri plates with reduced sucrose (3SMSOD). Upon distinct formation of a root and shoot, the newly developed green plants are then removed out with a spatula and frozen in liquid nitrogen containers. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON026 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) juvenile/adult shift leaves at the V8 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plants are at the 8-leaf development stage. Leaves are founded sequentially around the meristem over weeks of time and the older, more juvenile leaves arise earlier and in a more basal position than the younger, more adult leaves, which are in a more apical position. In a V8 plant, some leaves which are in the middle portion of the plant exhibit characteristics of both juvenile as well as adult leaves. They exhibit a yellowing color but also exhibit, in part, a green color. These leaves are termed juvenile/adult shift leaves. The juvenile/adult shift leaves (the 4th, 5th leaves from the bottom) are cut at the base, pooled and transferred to liquid nitrogen in which they are then crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON027 cDNA library is generated from 6 day maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) leaves. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the Metro 200 growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Prior to tissue collection, when the plant is at the 8-leaf stage, water is held back for six days. The older, more juvenile leaves, which are in a basal position, as well as the younger, more adult leaves, which are more apical, are all cut at the base of the leaves. All the leaves exhibit significant wilting. The leaves are then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are then crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON028 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) roots at the V8 developmental stage that are subject to six days water stress. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the Metro 200 growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Prior to tissue collection, when the plant is at the 8-leaf stage, water is held back for six days. The root system is cut, shaken and washed to remove soil. Root tissue is then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are then crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON029 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) seedlings at the etiolated stage. Seeds are planted on a moist filter paper on a covered tray that is kept in the dark for 4 days at approximately 70° F. Tissue is collected when the seedlings are 4 days old. By 4 days, the primary root has penetrated the coleorhiza and is about 4-5 cm and the secondary lateral roots have also made their appearance. The coleoptile has also pushed through the seed coat and is about 4-5 cm long. The seedlings are frozen in liquid nitrogen and crushed. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON030 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) root tissue at the V4 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth, they are transplanted into 10 inch pots containing the same. Plants are watered daily before transplantation and approximately 3 times a week after transplantation. Peters 15-16-17 fertilizer is applied approximately three times per week after transplanting, at a strength of 150 ppm N. Two to three times during the life time of the plant, from transplanting to flowering, a total of approximately 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 sodium vapor lamps. Tissue is collected when the maize plant is at the 4 leaf development stage. The root system is cut from the mature maize plant and washed with water to free it from the soil. The tissue is then immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON031 cDNA library is generated from the maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) leaf tissue at the V4 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is 80° F. and the nighttime temperature is 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 4-leaf development stage. The third leaf from the bottom is cut at the base and immediately frozen in liquid nitrogen and crushed. The tissue is immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON033 cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) embryo tissue 13 days after pollination. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. After the V10 stage, the ear shoots of the maize plant, which are ready for fertilization, are enclosed in a paper bag before silk emergent to withhold the pollen. The ear shoots are pollinated and 13 days after pollination, the ears are pulled out and then the kernels are plucked cut of the ears. Each kernel is then dissected into the embryo and the endosperm and the aleurone layer is removed. After dissection, the embryos are immediately frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON034 cDNA library is generated from cold stressed maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) seedlings. Seeds are planted on a moist filter paper on a covered tray that is kept on at 10° C. for 7 days. After 7 days, the temperature is shifted to 15° C. for one day until germination of the seed. Tissue is collected once the seedlings are 1 day old. At this point, the coleorhiza has just pushed out of the seed coat and the primary root is just making its appearance. The coleoptile has not yet pushed completely through the seed coat and is also just making its appearance. These 1 day old cold stressed seedlings are frozen in liquid nitrogen and crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMON˜001 (Lib36, Lib83, Lib84) cDNA library is generated from maize leaves at the V8 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in a greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue from the maize plant is collected at the V8 stage. The older more juvenile leaves in a basal position was well as the younger more adult leaves which are more apical are all cut at the base, pooled and frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SATMONN01 cDNA library is generated from maize (B73, Illinois Foundation Seeds, Champaign, Ill. U.S.A.) normalized immature tassels at the V6 plant development stage normalized tissue. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in a greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue from the maize plant is collected at the V6 stage. At that stage the tassel is an immature tassel of about 2-3 cm in length. The tassels are removed and frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the normalized cDNA library is constructed as described in Example 2.


The SATMONN04 cDNA library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign, Ill. U.S.A.) normalized total leaf tissue at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The older, more juvenile leaves, which are in a basal position, as well as the younger, more adult leaves, which are more apical are cut at the base of the leaves. The leaves are then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the normalized cDNA library is constructed as described in Example 2.


The SATMONN05 cDNA library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign Ill., U.S.A.) normalized root tissue at the V6 development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The root system is cut from the mature maize plant and washed with water to free it from the soil. The tissue is immediately frozen in liquid nitrogen and the harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the normalized cDNA library is constructed as described in Example 2.


The SATMONN06 cDNA library is generated from maize (B73x Mo17, Illinois Foundation Seeds, Champaign Ill., U.S.A.) normalized total leaf tissue at the V6 plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 6-leaf development stage. The older more juvenile leaves, which are in a basal position, as well as the younger more adult leaves, which are more apical are cut at the base of the leaves. The leaves are then pooled and immediately transferred to liquid nitrogen containers in which the pooled leaves are crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the normalized cDNA library is constructed as described in Example 2.


The CMZ029 (SATMON036) cDNA library is generated from maize (DK604, Dekalb Genetics, Dekalb, Ill. U.S.A.) endosperm 22 days after pollination. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the green house in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. After the V10 stage, the ear shoots of the maize plant, which are ready for fertilization, are enclosed in a paper bag before silk emergent to withhold the pollen. The ear shoots are pollinated and 22 days after pollination, the ears are pulled out and then the kernels are plucked out of the ears. Each kernel is then dissected into the embryo and the endosperm and the alurone layer is removed. After dissection, the endosperms are immediately frozen in liquid nitrogen and then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz030 (Lib143) cDNA library is generated from maize seedling tissue two days post germination. Seeds are planted on a moist filter paper on a covered try that is keep in the dark until germination. The trays are then moved to the bench top at 15 hr daytime/9 hr nighttime cycles for 2 days post-germination. The day time temperature is 80° F. and the nighttime temperature is 70° F. Tissue is collected when the seedlings are 2 days old. At this stage, the colehrhiza has pushed through the seed coat and the primary root (the radicle) is just piercing the colehrhiza and is barely visible. The seedlings are placed at 42° C. for 1 hour. Following the heat shock treatment, the seedlings are immersed in liquid nitrogen and crushed. The harvested tissue is stored at −80° until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz031 (Lib148) cDNA library is generated from maize pollen tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from V10+ stage plants. The ear shoots, which are ready for fertilization, are enclosed in a paper bag to withhold pollen. Twenty-one days after pollination, prior to removing the ears, the paper bag is shaken to collect the mature pollen. The mature pollen is immediately frozen in liquid nitrogen containers and the pollen is crushed. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz033 (Lib189) cDNA library is generated from maize pooled leaf tissue. Samples are harvested from open pollinated plants. Tissue is collected from maize leaves at the anthesis stage. The leaves are collect from 10-12 plants and frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz034 (Lib3060) cDNA library is generated from maize mature tissue at 40 days post pollination plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from leaves located two leaves below the ear leaf. This sample represents those genes expressed during onset and early stages of leaf senescence. The leaves are pooled and immediately transferred to liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz035 (Lib3061) cDNA library is generated from maize endosperm tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from V10+ stage plants. The ear shoots, which are ready for fertilization, are enclosed in a paper bag prior to silk emergence to withhold pollen. Thirty-two days after pollination, the ears are pulled out and the kernels are removed from the cob. Each kernel is dissected into the embryo and the endosperm and the aleurone layer is removed. After dissection, the endosperms are immediately transferred to liquid nitrogen. The harvested tissue is then stored at 80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz036 (Lib3062) cDNA library is generated from maize husk tissue at the 8 week old plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from 8 week old plants. The husk is separated from the ear and immediately transferred to liquid nitrogen containers. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz037 (Lib3059) cDNA library is generated from maize pooled kernel at 12-15 days after pollination plant development stage. Sample were collected from field grown material. Whole kernels from hand pollinated (control pollination) are harvested as whole ears and immediately frozen on dry ice. Kernels from 10-12 ears were pooled and ground together in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz039 (Lib3066) cDNA library is generated from maize immature anther tissue at the 7 week old immature tassel stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 7 week old immature tassel stage. At this stage, prior to anthesis, the immature anthers are green and enclosed in the staminate spikelet. The developing anthers are dissected away from the 7 week old immature tassel and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz040 (Lib3067) cDNA library is generated from maize kernel tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from V10+ stage plants. The ear shoots, which are ready for fertilization, are enclosed in a paper bag before silk emergence to withhold pollen. Five to eight days after controlled pollination. The ears are pulled and the kernels removed. The kernels are immediately frozen in liquid nitrogen. This sample represents genes expressed in early kernel development, during periods of cell division, amyloplast biogenesis and early carbon flow across the material to filial tissue. The harvested kernels tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz041 (Lib3068) cDNA library is generated from maize pollen germinating silk tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from V10+ stage plants when the ear shoots are ready for fertilization at the silk emergence stage. The emerging silks are pollinated with an excess of pollen under controlled pollination conditions in the green house. Eighteen hours after pollination the silks are removed from the ears and immediately frozen in liquid nitrogen. This sample represents genes expressed in both pollen and silk tissue early in pollination. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz042 (Lib3069) cDNA library is generated from maize ear tissue excessively pollinated at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from VI 0+ stage plants and the ear shoots which are ready for fertilization are at the silk emergence stage. The immature ears are pollinated with an excess of pollen under controlled pollination conditions. Eighteen hours post-pollination, the ears are removed and immediately transferred to liquid nitrogen containers. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz044 (Lib3075) cDNA library is generated from maize microspore tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from immature anthers from 7 week old tassels. The immature anthers are first dissected from the 7 week old tassel with a scalpel on a glass slide covered with water. The microspores (immature pollen) are released into the water and are recovered by centrifugation. The microspore suspension is immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz045 (Lib3076) cDNA library is generated from maize immature ear megaspore tissue. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from immature ear (megaspore) obtained from 7 week old plants. The immature ears are harvested from the 7 week old plants and are approximately 2.5 to 3 cm in length. The kernels are removed from the cob immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz047 (Lib3078) cDNA library is generated from maize CO2 treated high-exposure shoot tissue at the V10+ plant development stage. RX601 maize seeds are sterilized for i minute with a 10% clorox solution. The seeds are rolled in germination paper, and germinated in 0.5 mM calcium sulfate solution for two days at 30° C. The seedlings are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium at a rate of 2-3 seedlings per pot. Twenty pots are placed into a high CO2 environment (approximately 1000 ppm CO2). Twenty plants were grown under ambient greenhouse CO2 (approximately 450 ppm CO2). Plants are watered daily before transplantation and three times a week after transplantation. Peters 20-20-20 fertilizer is also lightly applied. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. At ten days post planting, the shoots from both atmosphere are frozen in liquid nitrogen and lightly ground. The roots are washed in deionized water to remove the support media and the tissue is immediately transferred to liquid nitrogen containers. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz048 (Lib3079) cDNA library is generated from maize basal endosperm transfer layer tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected from V10+ maize plants. The ear shoots, which are ready for fertilization, are enclosed in a paper bag prior to silk emergence, to withhold the pollen. Kernels are harvested at 12 days post-pollination and placed on wet ice for dissection. The kernels are cross sectioned laterally, dissecting just above the pedicel region, including 1-2 mm of the lower endosperm and the basal endosperm transfer region. The pedicel and lower endosperm region containing the basal endosperm transfer layer is pooled and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz049 (Lib3088) cDNA library is generated from maize immature anther tissue at the 7 week old immature tassel stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is at the 7 week old immature tassel stage. At this stage, prior to anthesis, the immature anthers are green and enclosed in the staminate spikelet. The developing anthers are dissected away from the 7 week old immature tassel and immediately transferred to liquid nitrogen container. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The CMz050 (Lib3114) cDNA library is generated from maize silk tissue at the V10+ plant development stage. Seeds are planted at a depth of approximately 3 cm into 2-3 inch peat pots containing Metro 200 growing medium. After 2-3 weeks growth they are transplanted into 10 inch pots containing the same growing medium. Plants are watered daily before transplantation and three times a week after transplantation. Peters 15-16-17 fertilizer is applied three times per week after transplanting at a strength of 150 ppm N. Two to three times during the lifetime of the plant, from transplanting to flowering, a total of 900 mg Fe is added to each pot. Maize plants are grown in the greenhouse in 15 hr day/9 hr night cycles. The daytime temperature is approximately 80° F. and the nighttime temperature is approximately 70° F. Supplemental lighting is provided by 1000 W sodium vapor lamps. Tissue is collected when the maize plant is beyond the 10-leaf development stage and the ear shoots are approximately 15-20 cm in length. The ears are pulled and silks are separated from the ears and immediately transferred to liquid nitrogen containers. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON001 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) total leaf tissue at the V4 plant development stage. Leaf tissue from 38, field grown V4 stage plants is harvested from the 4th node. Leaf tissue is removed from the plants and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON002 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) root tissue at the V4 plant development stage. Root tissue from 76, field grown V4 stage plants is harvested. The root systems is cut from the soybean plant and washed with water to free it from the soil and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON003 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seedling hypocotyl axis tissue harvested 2 day post-imbibition. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium. Trays are placed in an environmental chamber and grown at 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Tissue is collected 2 days after the start of imbibition. The 2 days after imbibition samples are separated into 3 collections after removal of any adhering seed coat. At the 2 day stage, the hypocotyl axis is emerging from the soil. A few seedlings have cracked the soil surface and exhibited slight greening of the exposed cotyledons. The seedlings are washed in water to remove soil, hypocotyl axis harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON004 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seedling cotyledon tissue harvested 2 day post-imbibition. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium. Trays are placed in an environmental chamber and grown at 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Tissue is collected 2 days after the start of imbibition. The 2 days after imbibition samples are separated into 3 collections after removal of any adhering seed coat. At the 2 day stage, the hypocotyl axis is emerging from the soil. A few seedlings have cracked the soil surface and exhibited slight greening of the exposed cotyledons. The seedlings are washed in water to remove soil, hypocotyl axis harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON005 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seedling hypocotyl axis tissue harvested 6 hour post-imbibition. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium. Trays are placed in an environmental chamber and grown at 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Tissue is collected 6 hours after the start of imbibition. The 6 hours after imbibition samples are separated into 3 collections after removal of any adhering seed coat. The 6 hours after imbibition sample is collected over the course of approximately 2 hours starting at 6 hours post imbibition. At the 6 hours after imbibition stage, not all cotyledons have become fully hydrated and germination, or radicle protrusion, has not occurred. The seedlings are washed in water to remove soil, hypocotyl axis harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON006 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seedling cotyledons tissue harvest 6 hour post-imbibition. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium. Trays are placed in an environmental chamber and grown at 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Tissue is collected 6 hours after imbibition. The 6 hours after imbibition samples are separated into 3 collections after removal of any adhering seed coat. The 6 hours after imbibition sample is collected over the course of approximately 2 hours starting at 6 hours post-imbibition. At the 6 hours after imbibition, not all cotyledons have become fully hydrated and germination or radicle protrusion, have not occurred. The seedlings are washed in water to remove soil, cotyledon harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON007 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seed tissue harvested 25 and 35 days post-flowering. Seed pods from field grown plants are harvested 25 and 35 days after flowering and the seeds extracted from the pods. Approximately 4.4 g and 19.3 g of seeds are harvested from the respective seed pods and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON008 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) leaf tissue harvested from 25 and 35 days post-flowering plants. Total leaf tissue is harvested from field grown plants. Approximately 19 g and 29 g of leaves are harvested from the fourth node of the plant 25 and 35 days post-flowering and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON009 cDNA library is generated from soybean cultivar C1944 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) pod and seed tissue harvested 15 days post-flowering. Pods from field grown plants are harvested 15 days post-flowering. Approximately 3 g of pod tissue is harvested and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON011 cDNA library is generated from soybean cultivar C1944 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) seed tissue harvested 40 days post-flowering. Pods from field grown plants are harvested 40 days post-flowering. Pods and seeds are separated, approximately 19 g of seed tissue is harvested and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON011 cDNA library is generated from soybean cultivars Cristalina (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) and FT108 (Monsoy, Brazil) (tropical germ plasma) leaf tissue. Leaves are harvested from plants grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Approximately 30 g of leaves are harvested from the 4th node of each of the Cristalina and FT108 cultivars and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON012 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) leaf tissue. Leaves from field grown plants are harvested from the fourth node 15 days post-flowering. Approximately 12 g of leaves are harvested and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON013 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) root and nodule tissue. Approximately, 28 g of root tissue from field grown plants is harvested 15 days post-flowering. The root system is cut from the soybean plant, washed with water to free it from the soil and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON014 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seed tissue harvested 25 and 35 days after flowering. Seed pods from field grown plants are harvested 15 days after flowering and the seeds extracted from the pods. Approximately 5 g of seeds are harvested from the respective seed pods and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON015 cDNA is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seed tissue harvested 45 and 55 days post-flowering. Seed pods from field grown plants are harvested 45 and 55 days after flowering and the seeds extracted from the pods. Approximately 19 g and 31 g of seeds are harvested from the respective seed pods and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON016 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) root tissue. Approximately, 61 g and 38 g of root tissue from field grown plants is harvested 25 and 35 days post-flowering is harvested. The root system is cut from the soybean plant and washed with water to free it from the soil. The tissue is placed in 14 ml polystyrene tubes and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON017 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) root tissue. Approximately 28 g of root tissue from field grown plants is harvested 45 and 55 days post-flowering. The root system is cut from the soybean plant, washed with water to free it from the soil and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON018 cDNA is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) leaf tissue harvested 45 and 55 days post-flowering. Leaves from field grown plants are harvested 45 and 55 days after flowering from the fourth node. Approximately 27 g and 33 g of seeds are harvested from the respective seed pods and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON019 cDNA library is generated from soybean cultivars Cristalina (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) and FT108 (Monsoy, Brazil) (tropical germ plasma) root tissue. Roots are harvested from plants grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Approximately 50 g and 56 g of roots are harvested from each of the Cristalina and FT108 cultivars and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON020 cDNA is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seed tissue harvested 65 and 75 days post-flowering. Seed pods from field grown plants are harvested 45 and 55 days after flowering and the seeds extracted from the pods. Approximately 14 g and 31 g of seeds are harvested from the respective seed pods and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON021 cDNA library is generated from Soybean Cyst Nematode-resistant soybean cultivar Hartwig (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) root tissue. Plants are grown in tissue culture at room temperature. At approximately 6 weeks post-germination, the plants are exposed to sterilized Soybean Cyst Nematode eggs. Infection is then allowed to progress for 10 days. After the 10 day infection process, the tissue is harvested. Agar from the culture medium and nematodes are removed and the root tissue is immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON022 (Lib3030) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) partially opened flower tissue. Partially to fully opened flower tissue is harvested from plants grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. A total of 3 g of flower tissue is harvested and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON023 cDNA library is generated from soybean genotype BW211S Null (Tohoku University, Morioka, Japan) seed tissue harvested 15 and 40 days post-flowering. Seed pods from field grown plants are harvested 15 and 40 days post-flowering and the seeds extracted from the pods. Approximately 0.7 g and 14.2 g of seeds are harvested from the respective seed pods and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON024 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) internode-2 tissue harvested 18 days post-imbibition. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium. The plants are grown in a greenhouse for 18 days after the start of imbibition at ambient temperature. Soil is checked and watered daily to maintain even moisture conditions. Stem tissue is harvested 18 days after the start of imbibition. The samples are divided into hypocotyl and internodes 1 through 5. The fifth internode contains some leaf bud material. Approximately 3 g of each sample is harvested and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON025 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) leaf tissue harvested 65 days post-flowering. Leaves are harvested from the fourth node of field grown plants 65 days post-flowering. Approximately 18.4 g of leaf tissue is harvested and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


SOYMON026 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) root tissue harvested 65 and 75 days post-flowering. Approximately 27 g and 40 g of root tissue from field grown plants is harvested 65 and 75 days post-flowering. The root system is cut from the soybean plant, washed with water to free it from the soil and immediately frozen in dry-ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON027 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) pod tissue, without seeds, harvested 25 days post-flowering. Seed pods from field grown plants are harvested 25 days post-flowering and the seeds extracted from the pods. Approximately 17 g of seed pod tissue is harvested and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON028 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) drought-stressed root tissue. The plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. At the R3 stage of development, water is withheld from half of the plant collection (drought stressed population). After 3 days, half of the plants from the drought stressed condition and half of the plants from the control population are harvested. After another 3 days (6 days post drought induction) the remaining plants are harvested. A total of 27 g and 40 g of root tissue is harvested and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON029 cDNA library is generated from Soybean Cyst Nematode-resistant soybean cultivar PI07354 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) root tissue. Late fall to early winter greenhouse grown plants are exposed to Soybean Cyst Nematode eggs. At 10 days post-infection, the plants are uprooted, rinsed briefly and the roots frozen in liquid nitrogen. Approximately 20 grams of root tissue is harvested from the infected plants. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON030 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) flower bud tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Flower buds are removed from the plant at the pedicel. A total of 100 mg of flower buds are harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON031 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) carpel and stamen tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Flower buds are removed from the plant at the pedicel. Flowers are dissected to separate petals, sepals and reproductive structures (carpels and stamens). A total of 300 mg of carpel and stamen tissue are harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON032 cDNA library is prepared from the Asgrow cultivar A4922 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) rehydrated dry soybean seed meristem tissue. Surface sterilized seeds are germinated in liquid media for 24 hours. The seed axis is then excised from the barely germinating seed, placed on tissue culture media and incubated overnight at 20° C. in the dark. The supportive tissue is removed from the explant prior to harvest. Approximately 570 mg of tissue is harvested and frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON033 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) heat-shocked seedling tissue without cotyledons. Seeds are imbibed and germinated in vermiculite for 2 days under constant illumination. After 48 hours, the seedlings are transferred to an incubator set at 40° C. under constant illumination. After 30, 60 and 180 minutes seedlings are harvested and dissected. A portion of the seedling consisting of the root, hypocotyl and apical hook is frozen in liquid nitrogen and stored at −80° C. The seedlings after 2 days of imbibition are beginning to emerge from the vermiculite surface. The apical hooks are dark green in appearance. Total RNA and poly A+ RNA is prepared from equal amounts of pooled tissue. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON034 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) cold-shocked seedling tissue without cotyledons. Seeds are imbibed and germinated in vermiculite for 2 days under constant illumination. After 48 hours, the seedlings are transferred to a cold room set at 5° C. under constant illumination. After 30, 60 and 180 minutes seedlings are harvested and dissected. The seedlings after 2 days of imbibition are beginning to emerge from the vermiculite surface. The apical hooks are dark green in appearance. A portion of the seedling consisting of the root, hypocotyl and apical hook is frozen in liquid nitrogen and stored at −80° C. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON035 cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seed coat tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. Seeds are harvested from mid to nearly full maturation (seed coats are not yellowing). The entire embryo proper is removed from the seed coat sample and the seed coat tissue are harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON036 cDNA library is generated from soybean cultivars PI171451, PI227687 and PI229358 (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) insect challenged leaves. Plants from each of the three cultivars are grown in screenhouse conditions. The screenhouse is divided in half and one half of the screenhouse is infested with soybean looper and the other half infested with velvetbean caterpillar. A single leaf is taken from each of the representative plants at 3 different time points, 11 days after infestation, 2 weeks after infestation and 5 weeks after infestation and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. Total RNA and poly A+ RNA is isolated from pooled tissue consisting of equal quantities of all 18 samples (3 genotypes X3 sample times X2 insect genotypes). The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON037 cDNA library is generated from soybean cultivar A3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) etiolated axis and radical tissue. Seeds are planted in moist vermiculite, wrapped and kept at room temperature in complete darkness until harvest. Etiolated axis and hypocotyl tissue is harvested at 2, 3 and 4 days post-planting. A total of 1 gram of each tissue type is harvested at 2, 3 and 4 days after planting and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The SOYMON038 cDNA library is generated from soybean variety Asgrow A3237 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) rehydrated dry seeds. Explants are prepared for transformation after germination of surface-sterilized seeds on solid tissue media. After 6 days, at 28° C. and 18 hours of light per day, the germinated seeds are cold shocked at 4° C. for 24 hours. Meristemic tissue and part of the hypocotyl is remove and cotyledon excised. The prepared explant is then wounded for Agrobacterium infection. The 2 grams of harvested tissue is frozen in liquid nitrogen and stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The Soy51 (LIB3027) normalized seed pool cDNA library is prepared from equal amounts tissue harvested from SOYMON007, SOYMON015 and SOYMON020 prepared tissue. Single stranded and double stranded DNA representing approximately 1×106 colony forming units are isolated using standard protocols. RNA, complementary to the single stranded DNA, is synthesized using the double stranded DNA as a template. Biotinylated dATP is incorporated into the RNA during the synthesis reaction. The single stranded DNA is mixed with the biotinylated RNA in a 1:10 molar ratio and allowed to hybridize. DNA-RNA hybrids are captured on Dynabeads M280 streptavidin (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The dynabeads with captured hybrids are collected with a magnet. The non-hybridized single stranded molecules remaining after hybrid capture are converted to double stranded form and represent the primary normalized library.


The Soy52 (LIB3028) cDNA library is generated from normalized flower DNA. Single stranded DNA representing approximately 1×106 colony forming units of SOYMON022 harvested tissue is used as the starting material for normalization. RNA, complementary to the single stranded DNA, is synthesized using the double stranded DNA as a template. Biotinylated dATP is incorporated into the RNA during the synthesis reaction. The single stranded DNA is mixed with the biotinylated RNA in a 1:10 molar ratio and allowed to hybridize. DNA-RNA hybrids are captured on Dynabeads M280 streptavidin (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The dynabeads with captured hybrids are collected with a magnet. The non-hybridized single stranded molecules remaining after hybrid capture are converted to double stranded form and represent the primary normalized library.


The Soy53 (LIB3039) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) seedling shoot apical meristem tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. Apical tissue is harvested from seedling shoot meristem tissue, 7-8 days after the start of imbibition. The apex of each seedling is dissected to include the fifth node to the apical meristem. The fifth node corresponds to the third trifoliate leaf in the very early stages of development. Stipules completely envelop the leaf primordia at this time. A total of 200 mg of apical tissue is harvested and immediately frozen in liquid nitrogen. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


The Soy54 (LIB3040) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) heart to torpedo stage embryo tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. Seeds are collected and embryos removed from surrounding endosperm and maternal tissues. Embryos from globular to young torpedo stages (by corresponding analogy to Arabidopsis) are collected with a bias towards the middle of this spectrum. Embryos which are beginning to show asymmetric development of cotyledons are considered the upper developmental boundary for the collection and are excluded. A total of 12 mg embryo tissue is frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


Soy55 (LIB3049) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) young seed tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. Seeds are collected from very young pods (5 to 15 days after flowering). A total of 100 mg of seeds are harvested and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is purified from the stored tissue and the cDNA library is constructed as described in Example 2.


Soy56 (LIB3029) non-normalized seed pool cDNA library is prepared from equal amounts tissue harvested from SOYMON007, SOYMON015 and SOYMON020 prepared tissue. Single stranded and double stranded DNA representing approximately 1×106 colony forming units are isolated using standard protocols. RNA, complementary to the single stranded DNA, is synthesized using the double stranded DNA as a template. Biotinylated dATP is incorporated into the RNA during the synthesis reaction. The single stranded DNA is mixed with the biotinylated RNA in a 1:10 molar ratio and allowed to hybridize. DNA-RNA hybrids are captured on Dynabeads M280 streptavidin (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The dynabeads with captured hybrids are collected with a magnet. The non-hybridized single stranded molecules remaining after hybrid capture are not converted to double stranded form and represent a non-normalized seed pool for comparison to Soy51 cDNA libraries.


The Soy58 (LIB3050) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) drought stressed root tissue subtracted from control root tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. At the R3 stage of the plant drought is induced by withholding water. After 3 and 6 days root tissue from both drought stressed and control (watered regularly) plants are collected and frozen in dry-ice. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the subtracted cDNA library is constructed as described in Example 2.


The Soy59 (LIB3051) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) endosperm tissue. Seeds are germinated on paper towels under laboratory ambient light conditions. At 8, 10 and 14 hours after imbibition, the seed coats are harvested. The endosperm consists of a very thin layer of tissue affixed to the inside of the seed coat. The seed coat and endosperm are frozen immediately after harvest in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the cDNA library is constructed as described in Example 2.


The Soy60 (LIB3072) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) drought stressed seed plus pod subtracted from control seed plus pod tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 26° C. and the nighttime temperature 21° C. and 70% relative humidity. Soil is checked and watered daily to maintain even moisture conditions. At the R3 stage of the plant drought is induced by withholding water. After 3 and 6 days seeds and pods from both drought stressed and control (watered regularly) plants are collected from the fifth and sixth node and frozen in dry-ice. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the subtracted cDNA library is constructed as described in Example 2.


The Soy61 (LIB3073) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) jasmonic acid treated seedling subtracted from control tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in a greenhouse. The daytime temperature is approximately 29.4° C. and the nighttime temperature 20° C. Soil is checked and watered daily to maintain even moisture conditions. At 9 days post planting, the plantlets are sprayed with either control buffer of 0.1% Tween-20 or jasmonic acid (Sigma J-2500, Sigma, St. Louis, Mo. U.S.A.) at 1 mg/ml in 0.1% Tween-20. Plants are sprayed until runoff and the soil and the stem is socked with the spraying solution. At 18 hours post application of jasmonic acid, the soybean plantlets appear growth retarded. After 18 hours, 24 hours and 48 hours post treatment, the cotyledons are removed and the remaining leaf and stem tissue above the soil is harvested and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. To make RNA, the three sample timepoints were combined and ground. The RNA is prepared from the stored tissue and the subtracted cDNA library is constructed as described in Example 2. For this library's construction, the eighth fraction of the cDNA size fractionation step was used for ligation.


The Soy62 (LIB3074) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) jasmonic acid treated seedling subtracted from control tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in a greenhouse. The daytime temperature is approximately 29.4° C. and the nighttime temperature 20° C. Soil is checked and watered daily to maintain even moisture conditions. At 9 days post planting, the plantlets are sprayed with either control buffer of 0.1% Tween-20 or jasmonic acid (Sigma J-2500, Sigma, St. Louis, Mo. U.S.A.) at 1 mg/ml in 0.1% Tween-20. Plants are sprayed until runoff and the soil and the stem is socked with the spraying solution. At 18 hours post application of jasmonic acid, the soybean plantlets appear growth retarded. After 18 hours, 24 hours and 48 hours post treatment, the cotyledons are removed and the remaining leaf and stem tissue above the soil is harvested and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. To make RNA, the three sample timepoints were combined and ground. The RNA is prepared from the stored tissue and the subtracted cDNA library is constructed as described in Example 2. For this library's construction, the ninth fraction of the cDNA size fractionation step was used for ligation.


The Soy65 (LIB3107) 07cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) drought-stressed abscission zone tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature 24° C. Soil is checked and watered daily to maintain even moisture conditions. Plants are irrigated with 15-16-17 Peter's Mix. At the R3 stage of development, drought is imposed by withholding water. At 3, 4, 5 and 6 days, tissue is harvested and wilting is not obvious until the fourth day. Abscission layers from reproductive organs are harvested by cutting less than one millimeter proximal and distal to the layer and immediately frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the cDNA library is constructed as described in Example 2.


The Soy66 (LIB3109) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) non-drought stressed abscission zone tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Plants are irrigated with 15-16-17 Peter's Mix. At 3, 4, 5 and 6 days, control abscission layer tissue is harvested. Abscission layers from reproductive organs are harvested by cutting less than one millimeter proximal and distal to the layer and immediately frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the cDNA library is constructed as described in Example 2.


Soy67 (LIB3065) normalized seed pool cDNA library is prepared from equal amounts tissue harvested from SOYMON007, SOYMON015 and SOYMON020 prepared tissue. Single stranded and double stranded DNA representing approximately 1×106 colony forming units are isolated using standard protocols. RNA, complementary to the single stranded DNA, is synthesized using the double stranded DNA as a template. Biotinylated dATP is incorporated into the RNA during the synthesis reaction. The single stranded DNA is mixed with the biotinylated RNA in a 1:10 molar ratio) and allowed to hybridize. DNA-RNA hybrids are captured on Dynabeads M280 streptavidin (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The dynabeads with captured hybrids are collected with a magnet. Captured hybrids are eluted with water.


Soy68 (LIB3052) normalized seed pool cDNA library is prepared from equal amounts tissue harvested from SOYMON007, SOYMON015 and SOYMON020 prepared tissue. Single stranded and double stranded DNA representing approximately 1×106 colony forming units are isolated using standard protocols. RNA, complementary to the single stranded DNA, is synthesized using the double stranded DNA as a template. Biotinylated dATP is incorporated into the RNA during the synthesis reaction. The single stranded DNA is mixed with the biotinylated RNA in a 1:10 molar ratio) and allowed to hybridize. DNA-RNA hybrids are captured on Dynabeads M280 streptavidin (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The dynabeads with captured hybrids are collected with a magnet. Captured hybrids are eluted with water.


Soy69 (LIB3053) normalized cDNA library is generated from soybean cultivars Cristalina (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) and FT108 (Monsoy, Brazil) (tropical germ plasma) normalized leaf tissue. Leaves are harvested from plants grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Approximately 30 g of leaves are harvested from the 4th node of each of the Cristalina and FT108 cultivars and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the normalized cDNA library is constructed as described in Example 2.


Soy70 (LIB3055) cDNA library is generated from soybean cultivars Cristalina (USDA Soybean Germplasm Collection, Urbana, Ill. U.S.A.) and FT108 (Monsoy, Brazil) (tropical germ plasma) leaf tissue. Leaves are harvested from plants grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Approximately 30 g of leaves are harvested from the 4th node of each of the Cristalina and FT108 cultivars and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the cDNA library is constructed as described in Example 2.


Soy71 (LIB3056) cDNA library is generated from soybean cultivars Cristalina and FT108 (tropical germ plasma) root tissue. Roots are harvested from plants grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 29° C. and the nighttime temperature approximately 24° C. Soil is checked and watered daily to maintain even moisture conditions. Approximately 50 g and 56 g of roots are harvested from each of the Cristalina and FT108 cultivars and immediately frozen in dry ice. The harvested tissue is then stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the cDNA library is constructed as described in Example 2.


Soy73 (LIB3093) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) drought stressed leaf subtracted from control tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in an environmental chamber under 12 hr daytime/12 hr nighttime cycles. The daytime temperature is approximately 26° C. and the nighttime temperature 21° C. and 70% relative humidity. Soil is checked and watered daily to maintain even moisture conditions. At the R3 stage of the plant drought is induced by withholding water. After 3 and 6 days seeds and pods from both drought stressed and control (watered regularly) plants are collected from the fifth and sixth node and frozen in dry-ice. The harvested tissue is stored at −80° C. until RNA preparation. The RNA is prepared from the stored tissue and the subtraction cDNA library is constructed as described in Example 2.


The Soy76 (Lib3106) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) jasmonic acid and arachidonic treated seedling subtracted from control tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in a greenhouse. The daytime temperature is approximately 29.4° C. and the nighttime temperature 20° C. Soil is checked and watered daily to maintain even moisture conditions. At 9 days post planting, the plantlets are sprayed with either control buffer of 0.1% Tween-20 or jasmonic acid (Sigma J-2500, Sigma, St. Louis, Mo. U.S.A.) at 1 mg/ml in 0.1% Tween-20. Plants are sprayed until runoff and the soil and the stem is socked with the spraying solution. At 18 hours post application of jasmonic acid, the soybean plantlets appear growth retarded. Arachidonic treated seedlings are sprayed with 1 m/ml arachidonic acid in 0.1% Tween-20. After 18 hours, 24 hours and 48 hours post treatment, the cotyledons are removed and the remaining leaf and stem tissue above the soil is harvested and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. To make RNA, the three sample timepoints were combined and ground. The RNA from the arachidonic treated seedlings is isolated separately. The RNA is prepared from the stored tissue and the subtraction cDNA library is constructed as described in Example 2. For this subtraction library, fraction 10 of the size fractionated cDNA is ligated into the pSPORT vector (Invitrogen, Carlsbad Calif. U.S.A.) in order to capture some of the smaller transcripts characteristic of antifungal proteins.


Soy77 (LIB3108) cDNA library is generated from soybean cultivar Asgrow 3244 (Asgrow Seed Company, Des Moines, Iowa U.S.A.) jasmonic acid control tissue. Seeds are planted at a depth of approximately 2 cm into 2-3 inch peat pots containing Metromix 350 medium and the plants are grown in a greenhouse. The daytime temperature is approximately 29.4° C. and the nighttime temperature 20° C. Soil is checked and watered daily to maintain even moisture conditions. At 9 days post planting, the plantlets are sprayed with either control buffer of 0.1% Tween-20 or jasmonic acid (Sigma J-2500, Sigma, St. Louis, Mo. U.S.A.) at 1 mg/ml in 0.1% Tween-20. Plants are sprayed until runoff and the soil and the stem is socked with the spraying solution. At 18 hours post application of jasmonic acid, the soybean plantlets appear growth retarded. Arachidonic treated seedlings are sprayed with 1 m/ml arachidonic acid in 0.1% Tween-20. After 18 hours, 24 hours and 48 hours post treatment, the cotyledons are removed and the remaining leaf and stem tissue above the soil is harvested and frozen in liquid nitrogen. The harvested tissue is stored at −80° C. until RNA preparation. To make RNA, the three sample timepoints were combined and ground. The RNA from the arachidonic treated seedlings is isolated separately. The RNA is prepared from the stored tissue and the subtraction cDNA library is constructed as described in Example 2. For this subtraction cDNA library, fraction 10 of the size fractionated cDNA is ligated into the pSPORT vector in order to capture some of the smaller transcripts characteristic of antifungal proteins.


EXAMPLE 2

The stored RNA is purified using Trizol reagent from Life Technologies (Gibco BRL, Life Technologies, Gaithersburg, Md. U.S.A.), essentially as recommended by the manufacturer. Poly A+ RNA (mRNA) is purified using magnetic oligo dT beads essentially as recommended by the manufacturer (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.).


Construction of plant cDNA libraries is well-known in the art and a number of cloning strategies exist. A number of cDNA library construction kits are commercially available. The Superscript™ Plasmid System for cDNA synthesis and Plasmid Cloning (Gibco BRL, Life Technologies, Gaithersburg, Md. U.S.A.) is used, following the conditions suggested by the manufacturer.


Normalized libraries are made using essentially the Soares procedure (Soares et al., Proc. Natl. Acad. Sci. (U.S.A.) 91:9228-9232 (1994), the entirety of which is herein incorporated by reference). This approach is designed to reduce the initial 10,000-fold variation in individual cDNA frequencies to achieve abundances within one order of magnitude while maintaining the overall sequence complexity of the library. In the normalization process, the prevalence of high-abundance cDNA clones decreases dramatically, clones with mid-level abundance are relatively unaffected and clones for rare transcripts are effectively increased in abundance.


Normalized libraries are prepared from single-stranded and double-stranded DNA. Single-stranded and double-stranded DNA representing approximately 1×106 colony forming units are isolated using standard protocols. RNA, complementary to the single-stranded DNA, is synthesized using the double stranded DNA as a template. Biotinylated dATP is incorporated into the RNA during the synthesis reaction. The single-stranded DNA is mixed with the biotinylated RNA in a 1:10 molar ratio) and allowed to hybridize. DNA-RNA hybrids are captured on Dynabeads M280 streptavidin (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The dynabeads with captured hybrids are collected with a magnet. The non-hybridized single-stranded molecules remaining after hybrid capture are converted to double stranded form and represent the primary normalized library.


For subtraction, target cDNA is made from the drought stressed tissue total RNA using the SMART cDNA synthesis system from Clonetech (Clonetech Laboratories, Palo Alto, Calif. U.S.A.). Driver first strand cDNA is covalently linked to Dynabeads following a protocol similar to that described in the Dynal literature (Dynabeads, Dynal Corporation, Lake Success, N.Y. U.S.A.). The target cDNA is then heat denatured and the second strand trapped using Dynabeads oligo-dT. The target second strand cDNA is then hybridized to the driver cDNA in 400 l 2×SSPE for two rounds of hybridization at 65° C. and 20 hours. After each hybridization, the hybridization solution is removed from the system and the hybridized target cDNA removed from the driver by heat denaturation in water. After hybridization, the remaining cDNA is trapped with Dynabeads oligo-dT. The trapped cDNA is then amplified as in previous PCR based libraries and the resulting cDNA ligated into the pSPORT vector (Invitrogen, Carlsbad Calif. U.S.A.).


EXAMPLE 3

The cDNA libraries are plated on LB agar containing the appropriate antibiotics for selection and incubated at 37° for a sufficient time to allow the growth of individual colonies. Single colonies are individually placed in each well of a 96-well microtiter plates containing LB liquid including the selective antibiotics. The plates are incubated overnight at approximately 37° C. with gentle shaking to promote growth of the cultures. The plasmid DNA is isolated from each clone using Qiaprep plasmid isolation kits, using the conditions recommended by the manufacturer (Qiagen Inc., Santa Clara, Calif. U.S.A.).


Template plasmid DNA clones are used for subsequent sequencing. For sequencing, the ABI PRISM dRhodamine Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq® DNA Polymerase, FS, is used (PE Applied Biosystems, Foster City, Calif. U.S.A.).


EXAMPLE 4

Nucleic acid sequences that encode for the following carbon assimilation pathway enzymes: ribulose-bisphosphate carboxylase, phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, putative glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase, aldolase, fructose-1,6-bisphosphatase, transketolase, putative transketolase, sedoheptulose-1,7-bisphosphatase, D-ribulose-5-phosphate-3-epimerase, ribose-5-phosphate isomerase, putative ribose-5-phosphate isomerase, ribose-5-phosphate kinase, phosphoenolpyruvate carboxylase, NADP-dependent malate dehydrogenase, aspartate aminotransferase, putative aspartate aminotransferase, alanine aminotransferase, NADP-dependent malic enzyme, NAD-dependent malic enzyme, PEP carboxykinase, putative PEP carboxykinase, pyruvate, phosphate dikinase and pyrophosphatase are identified from the Monsanto EST PhytoSeq database using TBLASTN (default values) (TBLASTN compares a protein query against the six reading frames of a nucleic acid sequence). Matches found with BLAST P values equal or less than 0.001 (probability) or BLAST Score of equal or greater than 90 are classified as hits. If the program used to determine the hit is HMMSW then the score refers to HMMSW score.


In addition, the GenBank database is searched with BLASTN and BLASTX (default values) using ESTs as queries. EST that pass the hit probability threshold of 10e−8 for the following enzymes are combined with the hits generated by using TBLASTN (described above) and classified by enzyme (see Table A below).


A cluster refers to a set of overlapping clones in the PhytoSeq database. Such an overlapping relationship among clones is designated as a “cluster” when BLAST scores from pairwise sequence comparisons of the member clones meets a predetermined minimum value or product score of 50 or more (Product Score=(BLAST SCORE×Percentage Identity)/(5×minimum[length(Seq1),length(Seq2)]))


Since clusters are formed on the basis of single-linkage relationships, it is possible for two non-overlapping clones to be members of the same cluster if, for instance, they both overlap a third clone with at least the predetermined minimum BLAST score (stringency). A cluster ID is arbitrarily assigned to all of those clones which belong to the same cluster at a given stringency and a particular clone will belong to only one cluster at a given stringency. If a cluster contains only a single clone (a “singleton”), then the cluster ID number will be negative, with an absolute value equal to the clone ID number of its single member. Clones grouped in a cluster in most cases represent a contiguous sequence.









TABLE A*







MAIZE RIBULOSE-BISPHOSPHATE CARBOXYLASE















Seq No.
Cluster ID
Clone ID
Library
NCBI gi
Method
Score
P-value
% Ident


















1
-700430856
700430856H1
SATMONN01
g22464
BLASTN
215
1e−9
100


2
21707
700433144H1
SATMONN01
g22464
BLASTN
626
1e−45
95


3
21707
700433148H1
SATMONN01
g22464
BLASTN
626
1e−45
95


4
3272
700098783H1
SATMON009
g217963
BLASTN
1535
1e−128
98


5
3272
700097213H1
SATMON009
g217963
BLASTN
1316
1e−121
99


6
3272
700097673H1
SATMON009
g217963
BLASTN
1540
1e−121
96


7
3272
700101767H1
SATMON009
g1673455
BLASTN
1095
1e−120
100


8
3272
700100001H1
SATMON009
g1673455
BLASTN
910
1e−119
99


9
3272
700097382H1
SATMON009
g217963
BLASTN
1517
1e−119
96


10
3272
700099925H1
SATMON009
g217963
BLASTN
1522
1e−119
97


11
3272
700098235H1
SATMON009
g217963
BLASTN
1512
1e−118
97


12
3272
700093043H1
SATMON008
g1673455
BLASTN
1070
1e−117
100


13
3272
700089802H1
SATMON011
g217963
BLASTN
996
1e−115
95


14
3272
700101196H1
SATMON009
g217963
BLASTN
1478
1e−115
99


15
3272
700097309H1
SATMON009
g217963
BLASTN
1482
1e−115
97


16
3272
700100270H1
SATMON009
g217963
BLASTN
1466
1e−114
96


17
3272
700208152H1
SATMON016
g1673455
BLASTN
1090
1e−113
99


18
3272
700215709H1
SATMON016
g1673455
BLASTN
1105
1e−113
98


19
3272
700100795H1
SATMON009
g217963
BLASTN
1452
1e−113
98


20
3272
700097496H1
SATMON009
g217963
BLASTN
1416
1e−110
99


21
3272
700099783H1
SATMON009
g217963
BLASTN
1427
1e−110
97


22
3272
700044355H1
SATMON004
g217963
BLASTN
1326
1e−109
96


23
3272
700099951H1
SATMON009
g217963
BLASTN
1409
1e−109
96


24
3272
700100228H1
SATMON009
g217963
BLASTN
999
1e−108
97


25
3272
700042150H1
SATMON004
g217963
BLASTN
1186
1e−108
99


26
3272
700045728H1
SATMON004
g217963
BLASTN
1313
1e−108
96


27
3272
700098561H1
SATMON009
g217963
BLASTN
1236
1e−107
96


28
3272
700100271H1
SATMON009
g217963
BLASTN
1392
1e−107
93


29
3272
700211770H1
SATMON016
g217963
BLASTN
1097
1e−105
97


30
3272
700095614H1
SATMON008
g217963
BLASTN
1366
1e−105
91


31
3272
700577012H1
SATMON031
g217963
BLASTN
1348
1e−104
97


32
3272
700100637H1
SATMON009
g217963
BLASTN
1357
1e−104
97


33
3272
700045636H1
SATMON004
g217963
BLASTN
1240
1e−103
100


34
3272
700210942H1
SATMON016
g217963
BLASTN
1183
1e−102
97


35
3272
700213737H1
SATMON016
g217963
BLASTN
1286
1e−102
96


36
3272
700097664H1
SATMON009
g1673455
BLASTN
1093
1e−101
99


37
3272
700212658H1
SATMON016
g217963
BLASTN
1312
1e−101
97


38
3272
700101672H1
SATMON009
g217963
BLASTN
1313
1e−101
97


39
3272
700053379H1
SATMON009
g217963
BLASTN
1315
1e−101
95


40
3272
700025653H1
SATMON004
g217963
BLASTN
1316
1e−101
99


41
3272
700333193H1
SATMON019
g217963
BLASTN
1318
1e−101
97


42
3272
700211830H1
SATMON016
g217963
BLASTN
1042
1e−100
94


43
3272
700097362H1
SATMON009
g217963
BLASTN
1300
1e−100
93


44
3272
700214096H1
SATMON016
g217963
BLASTN
1308
1e−100
97


45
3272
700042186H1
SATMON004
g217963
BLASTN
1287
1e−99
97


46
3272
700097564H1
SATMON009
g217963
BLASTN
1293
1e−99
92


47
3272
700097886H1
SATMON009
g217963
BLASTN
1232
1e−98
97


48
3272
700043286H1
SATMON004
g217963
BLASTN
1281
1e−98
99


49
3272
700356225H1
SATMON024
g217963
BLASTN
881
1e−97
95


50
3272
700046066H1
SATMON004
g1673455
BLASTN
930
1e−97
100


51
3272
700433801H1
SATMONN01
g22464
BLASTN
960
1e−97
99


52
3272
701185535H1
SATMONN06
g22464
BLASTN
1271
1e−97
99


53
3272
700044292H1
SATMON004
g217963
BLASTN
1257
1e−96
97


54
3272
700053495H1
SATMON009
g217963
BLASTN
1261
1e−96
96


55
3272
700053373H1
SATMON009
g217963
BLASTN
1058
1e−95
99


56
3272
700224630H1
SATMON011
g217963
BLASTN
1243
1e−95
99


57
3272
700046049H1
SATMON004
g217963
BLASTN
702
1e−94
92


58
3272
700045078H1
SATMON004
g217963
BLASTN
880
1e−94
100


59
3272
700046107H1
SATMON004
g1673455
BLASTN
940
1e−94
100


60
3272
700045287H1
SATMON004
g217963
BLASTN
975
1e−94
100


61
3272
700210539H1
SATMON016
g217963
BLASTN
1230
1e−94
92


62
3272
700212887H1
SATMON016
g217963
BLASTN
896
1e−93
96


63
3272
700421770H1
SATMONN01
g217963
BLASTN
1226
1e−93
96


64
3272
700211658H1
SATMON016
g217963
BLASTN
800
1e−91
99


65
3272
701182334H1
SATMONN06
g1673455
BLASTN
926
1e−90
98


66
3272
700044245H1
SATMON004
g217963
BLASTN
1190
1e−90
100


67
3272
700045992H1
SATMON004
g1673455
BLASTN
931
1e−89
99


68
3272
700215027H1
SATMON016
g217963
BLASTN
937
1e−89
96


69
3272
700042688H1
SATMON004
g217963
BLASTN
1100
1e−89
97


70
3272
700044947H1
SATMON004
g217963
BLASTN
1175
1e−89
100


71
3272
700045847H1
SATMON004
g217963
BLASTN
1180
1e−89
96


72
3272
700215351H1
SATMON016
g1673455
BLASTN
940
1e−88
100


73
3272
700094920H1
SATMON008
g217963
BLASTN
957
1e−88
91


74
3272
700044201H1
SATMON004
g217963
BLASTN
596
1e−87
100


75
3272
700335684H1
SATMON019
g22464
BLASTN
925
1e−87
94


76
3272
700101503H1
SATMON009
g217963
BLASTN
1108
1e−87
92


77
3272
700099376H1
SATMON009
g1673455
BLASTN
940
1e−85
98


78
3272
700099542H1
SATMON009
g217963
BLASTN
1129
1e−85
91


79
3272
700046244H1
SATMON004
g217963
BLASTN
1112
1e−84
97


80
3272
700088638H1
SATMON011
g217963
BLASTN
1100
1e−83
92


81
3272
700044223H1
SATMON004
g1673455
BLASTN
839
1e−82
96


82
3272
700042573H1
SATMON004
g1673455
BLASTN
839
1e−82
96


83
3272
700214068H1
SATMON016
g1673455
BLASTN
940
1e−82
100


84
3272
700198026H1
SATMON016
g217963
BLASTN
1082
1e−81
96


85
3272
700045910H1
SATMON004
g217963
BLASTN
1085
1e−81
92


86
3272
700097189H1
SATMON009
g217963
BLASTN
1051
1e−79
91


87
3272
700042282H1
SATMON004
g217963
BLASTN
1055
1e−79
93


88
3272
700045136H1
SATMON004
g1673455
BLASTN
832
1e−78
96


89
3272
700097141H1
SATMON009
g217963
BLASTN
1045
1e−78
91


90
3272
700025538H1
SATMON004
g1673455
BLASTN
940
1e−76
99


91
3272
700042620H1
SATMON004
g217963
BLASTN
1001
1e−74
92


92
3272
700042070H1
SATMON004
g217963
BLASTN
890
1e−73
93


93
3272
700218243H1
SATMON016
g217963
BLASTN
896
1e−73
99


94
3272
700043362H1
SATMON004
g217963
BLASTN
970
1e−72
93


95
3272
700043484H1
SATMON004
g217963
BLASTN
945
1e−70
93


96
3272
700042923H1
SATMON004
g217963
BLASTN
445
1e−69
88


97
3272
700441659H1
SATMON026
g217963
BLASTN
703
1e−69
95


98
3272
700044543H1
SATMON004
g217963
BLASTN
940
1e−69
93


99
3272
700214747H1
SATMON016
g217963
BLASTN
925
1e−68
97


100
3272
700084502H1
SATMON011
g217963
BLASTN
721
1e−66
85


101
3272
700046322H1
SATMON004
g217963
BLASTN
893
1e−65
92


102
3272
700216096H1
SATMON016
g1673455
BLASTN
877
1e−64
95


103
3272
700043871H1
SATMON004
g217963
BLASTN
880
1e−64
92


104
3272
700429382H1
SATMONN01
g529673
BLASTN
440
1e−63
92


105
3272
700442416H1
SATMON026
g217963
BLASTN
603
1e−60
88


106
3272
700208826H1
SATMON016
g217963
BLASTN
379
1e−59
98


107
3272
700209462H1
SATMON016
g22464
BLASTN
796
1e−59
95


108
3272
700209449H1
SATMON016
g1673455
BLASTN
609
1e−53
94


109
3272
700354501H1
SATMON024
g217963
BLASTN
644
1e−52
94


110
3272
700099672H1
SATMON009
g22464
BLASTN
648
1e−45
95


111
3272
700216452H1
SATMON016
g529673
BLASTN
550
1e−37
84


112
3272
700097732H1
SATMON009
g1673455
BLASTN
453
1e−28
98


113
3272
700334324H1
SATMON019
g1673455
BLASTN
434
1e−27
97


114
8171
700098206H1
SATMON009
g1673455
BLASTN
711
1e−105
94


115
8171
700443785H1
SATMON027
g1673455
BLASTN
727
1e−97
97


116
8171
700444325H1
SATMON027
g1673455
BLASTN
1091
1e−82
98


117
8171
700096125H1
SATMON008
g1673455
BLASTN
749
1e−64
92


118
8171
700447385H1
SATMON027
g1673455
BLASTN
601
1e−54
88


119
8171
700101184H1
SATMON009
g1673455
BLASTN
613
1e−52
90


120
8171
700042451H1
SATMON004
g1673455
BLASTN
507
1e−43
94


121
-L1892710
LIB189-012-
LIB189
g18035
BLASTN
745
1e−53
87




Q1-E1-F5


122
-L1893905
LIB189-022-
LIB189
g1040912
BLASTN
1259
1e−96
84




Q1-E1-A5


123
-L30601614
LIB3060-004-
LIB3060
g12394
BLASTN
497
1e−47
90




Q1-K1-D4


124
-L30601698
LIB3060-005-
LIB3060
g12394
BLASTN
813
1e−82
90




Q1-K1-A3


125
-L30604185
LIB3060-040-
LIB3060
g22464
BLASTN
508
1e−46
83




Q1-K1-G6


126
-L30605233
LIB3060-050-
LIB3060
g18035
BLASTN
425
1e−43
84




Q1-K1-E5


127
-L30623478
LIB3062-029-
LIB3062
g22464
BLASTN
260
1e−27
81




Q1-K1-F9


128
-L30624113
LIB3062-015-
LIB3062
g1673455
BLASTN
264
1e−39
83




Q1-K1-E9


129
-L30626076
LIB3062-057-
LIB3062
g217963
BLASTN
332
1e−18
85




Q1-K1-G7


130
-L30673250
LIB3067-018-
LIB3067
g18035
BLASTN
1123
1e−100
81




Q1-K1-F10


131
-L30681922
LIB3068-020-
LIB3068
g1040894
BLASTN
1180
1e−106
86




Q1-K1-A6


132
-L30686213
LIB3068-050-
LIB3068
g18035
BLASTN
1402
1e−108
96




Q1-K1-B9


133
-L30686456
LIB3068-016-
LIB3068
g11750
BLASTN
337
1e−90
84




Q1-K1-D3


134
-L30781756
LIB3078-015-
LIB3078
g1673455
BLASTN
296
1e−31
82




Q1-K1-A3


135
-L30782307
LIB3078-006-
LIB3078
g217963
BLASTN
313
1e−17
84




Q1-K1-A3


136
-L30782348
LIB3078-006-
LIB3078
g217964
BLASTN
64
1e−26
44




Q1-K1-C8


137
-L30783621
LIB3078-053-
LIB3078
g217963
BLASTN
461
1e−39
69




Q1-K1-B1


138
-L30784234
LIB3078-034-
LIB3078
g217963
BLASTN
288
1e−30
84




Q1-K1-C1


139
-L30784545
LIB3078-039-
LIB3078
g18035
BLASTN
944
1e−96
88




Q1-K1-H12


140
-L361484
LIB36-008-
LIB36
g217963
BLASTN
683
1e−58
92




Q1-E1-E1


141
-L361797
LIB36-020-
LIB36
g12394
BLASTN
290
1e−32
76




Q1-E1-H9


142
-L362703
LIB36-018-
LIB36
g1040892
BLASTN
1253
1e−95
90




Q1-E1-D9


143
-L84236
LIB84-004-
LIB84
g217963
BLASTN
322
1e−50
81




Q1-E1-A2


144
-L84828
LIB84-015-
LIB84
g18035
BLASTN
473
1e−36
86




Q1-E1-B4


145
24099
LIB36-014-
LIB36
g18035
BLASTN
2297
1e−183
99




Q1-E1-C4


146
24099
LIB36-014-
LIB36
g18035
BLASTN
2294
1e−182
99




Q1-E1-B6


147
24099
LIB3068-005-
LIB3068
g18035
BLASTN
2188
1e−179
93




Q1-K1-B1


148
24099
LIB3066-053-
LIB3066
g18035
BLASTN
2252
1e−179
97




Q1-K1-H3


149
24099
LIB36-016-
LIB36
g18035
BLASTN
1369
1e−176
99




Q2-E2-F11


150
24099
LIB3068-022-
LIB3068
g18035
BLASTN
2209
1e−175
98




Q1-K1-C10


151
24099
LIB3078-007-
LIB3078
g18035
BLASTN
2004
1e−172
99




Q1-K1-B11


152
24099
LIB3078-049-
LIB3078
g18035
BLASTN
2154
1e−171
98




Q1-K1-A1


153
24099
LIB3060-016-
LIB3060
g18035
BLASTN
2151
1e−170
99




Q1-K1-C8


154
24099
LIB189-012-
LIB189
g18035
BLASTN
2132
1e−169
98




Q1-E1-F10


155
24099
LIB3078-049-
LIB3078
g18035
BLASTN
2136
1e−169
99




Q1-K1-G3


156
24099
LIB3060-025-
LIB3060
g18035
BLASTN
1587
1e−167
99




Q1-K1-H1


157
24099
LIB3060-016-
LIB3060
g18035
BLASTN
2112
1e−167
98




Q1-K1-D2


158
24099
LIB189-029-
LIB189
g18035
BLASTN
1942
1e−166
98




Q1-E1-H11


159
24099
LIB36-021-
LIB36
g18035
BLASTN
2096
1e−166
99




Q1-E1-H9


160
24099
LIB84-008-
LIB84
g18035
BLASTN
2090
1e−165
100




Q1-E1-G8


161
24099
LIB36-021-
LIB36
g18035
BLASTN
1923
1e−164
98




Q1-E1-B7


162
24099
LIB189-016-
LIB189
g18035
BLASTN
2070
1e−164
97




Q1-E1-A3


163
24099
LIB3060-052-
LIB3060
g18035
BLASTN
1634
1e−163
95




Q1-K1-B5


164
24099
LIB3078-023-
LIB3078
g18035
BLASTN
1659
1e−163
95




Q1-K1-F3


165
24099
LIB3066-005-
LIB3066
g18035
BLASTN
1819
1e−163
97




Q1-K1-D11


166
24099
LIB189-023-
LIB189
g18035
BLASTN
1697
1e−161
96




Q1-E1-H10


167
24099
LIB189-004-
LIB189
g18035
BLASTN
1705
1e−161
92




Q1-E1-B6


168
24099
LIB3078-018-
LIB3078
g18035
BLASTN
1748
1e−161
98




Q1-K1-F2


169
24099
LIB3066-003-
LIB3066
g18035
BLASTN
2034
1e−160
96




Q1-K1-F3


170
24099
LIB3062-053-
LIB3062
g18035
BLASTN
1761
1e−159
96




Q1-K1-D2


171
24099
LIB3069-017-
LIB3069
g11750
BLASTN
1144
1e−157
95




Q1-K1-E6


172
24099
LIB3078-054-
LIB3078
g18035
BLASTN
1980
1e−156
95




Q1-K1-H4


173
24099
LIB3060-036-
LIB3060
g18035
BLASTN
1960
1e−154
96




Q1-K1-F5


174
24099
LIB3078-014-
LIB3078
g18035
BLASTN
1961
1e−154
99




Q1-K1-E11


175
24099
LIB3066-015-
LIB3066
g18035
BLASTN
1526
1e−152
96




Q1-K1-D8


176
24099
LIB3068-016-
LIB3068
g18035
BLASTN
1925
1e−151
91




Q1-K1-D2


177
24099
LIB189-011-
LIB189
g1040894
BLASTN
1675
1e−150
98




Q1-E1-F8


178
24099
LIB3060-002-
LIB3060
g1040894
BLASTN
1578
1e−149
97




Q1-K2-B4


179
24099
LIB3078-004-
LIB3078
g1040912
BLASTN
1609
1e−149
94




Q1-K1-G9


180
24099
LIB189-031-
LIB189
g18035
BLASTN
1775
1e−149
98




Q1-E1-A5


181
24099
LIB36-019-
LIB36
g18035
BLASTN
1718
1e−146
97




Q1-E1-F7


182
24099
LIB84-030-
LIB84
g1040894
BLASTN
1822
1e−146
98




Q1-E1-G10


183
24099
LIB3062-031-
LIB3062
g18035
BLASTN
791
1e−145
93




Q1-K1-A10


184
24099
LIB3078-014-
LIB3078
g18035
BLASTN
1817
1e−142
98




Q1-K1-E2


185
24099
LIB189-020-
LIB189
g1040892
BLASTN
1660
1e−140
96




Q1-E1-G2


186
24099
LIB189-003-
LIB189
g18035
BLASTN
1774
1e−139
97




Q1-E1-G6


187
24099
LIB3060-009-
LIB3060
g18035
BLASTN
1240
1e−138
96




Q1-K1-F8


188
24099
LIB3078-011-
LIB3078
g18035
BLASTN
1771
1e−138
91




Q1-K1-C10


189
24099
LIB3066-027-
LIB3066
g11750
BLASTN
1289
1e−133
94




Q1-K1-H12


190
24099
LIB84-005-
LIB84
g18035
BLASTN
1137
1e−132
96




Q1-E1-B4


191
24099
LIB3078-027-
LIB3078
g18035
BLASTN
1450
1e−131
99




Q1-K1-E11


192
24099
LIB36-016-
LIB36
g18035
BLASTN
1661
1e−129
99




Q2-E2-G10


193
24099
LIB3060-020-
LIB3060
g18035
BLASTN
1334
1e−126
96




Q1-K1-H7


194
24099
LIB3068-045-
LIB3068
g11750
BLASTN
1349
1e−126
91




Q1-K1-F6


195
24099
LIB3060-048-
LIB3060
g18035
BLASTN
1517
1e−126
90




Q1-K1-C5


196
24099
LIB3078-028-
LIB3078
g1040912
BLASTN
1094
1e−125
96




Q1-K1-G7


197
24099
LIB3078-008-
LIB3078
g18035
BLASTN
1282
1e−122
83




Q1-K1-F7


198
24099
LIB3078-035-
LIB3078
g1040892
BLASTN
1194
1e−118
81




Q1-K1-H4


199
24099
LIB36-015-
LIB36
g18035
BLASTN
1508
1e−116
98




Q1-E1-E1


200
24099
LIB3060-029-
LIB3060
g1040894
BLASTN
1400
1e−112
95




Q1-K1-E10


201
24099
LIB3060-038-
LIB3060
g18035
BLASTN
1356
1e−104
97




Q1-K1-B8


202
24099
LIB189-026-
LIB189
g18035
BLASTN
1319
1e−101
93




Q1-E1-D9


203
24099
LIB189-034-
LIB189
g18035
BLASTN
748
1e−97
89




Q1-E1-D10


204
24099
LIB189-023-
LIB189
g18035
BLASTN
635
1e−86
93




Q1-E1-F3


205
24099
LIB83-001-
LIB83
g18035
BLASTN
540
1e−68
99




Q1-E1-E9


206
24099
LIB189-021-
LIB189
g18035
BLASTN
715
1e−50
100




Q1-E1-D6


207
24207
LIB3060-026-
LIB3060
g11797
BLASTN
694
1e−149
90




Q1-K1-C3


208
24207
LIB189-018-
LIB189
g11797
BLASTN
904
1e−143
96




Q1-E1-E9


209
24207
LIB3060-020-
LIB3060
g11797
BLASTN
694
1e−115
91




Q1-K1-A10


210
3272
LIB3078-018-
LIB3078
g217963
BLASTN
2129
1e−180
97




Q1-K1-H8


211
3272
LIB36-009-
LIB36
g217963
BLASTN
2057
1e−178
95




Q1-E1-E12


212
3272
LIB3078-013-
LIB3078
g217963
BLASTN
2154
1e−173
99




Q1-K1-H11


213
3272
LIB83-007-
LIB83
g217963
BLASTN
2008
1e−172
97




Q1-E1-C9


214
3272
LIB36-014-
LIB36
g217963
BLASTN
1905
1e−171
99




Q1-E1-H9


215
3272
LIB3066-002-
LIB3066
g217963
BLASTN
1962
1e−170
96




Q1-K1-B12


216
3272
LIB3062-036-
LIB3062
g217963
BLASTN
2115
1e−170
97




Q1-K1-F11


217
3272
LIB36-007-
LIB36
g217963
BLASTN
1985
1e−169
95




Q1-E1-G2


218
3272
LIB3078-006-
LIB3078
g217963
BLASTN
1876
1e−168
97




Q1-K1-C7


219
3272
LIB3078-034-
LIB3078
g217963
BLASTN
1786
1e−165
98




Q1-K1-B7


220
3272
LIB36-009-
LIB36
g217963
BLASTN
1921
1e−165
95




Q1-E1-H2


221
3272
LIB36-020-
LIB36
g217963
BLASTN
1717
1e−164
92




Q1-E1-F10


222
3272
LIB3078-053-
LIB3078
g217963
BLASTN
1874
1e−162
97




Q1-K1-D9


223
3272
LIB83-015-
LIB83
g217963
BLASTN
1876
1e−161
91




Q1-E1-B8


224
3272
LIB36-004-
LIB36
g217963
BLASTN
1429
1e−160
97




Q1-E1-D2


225
3272
LIB83-011-
LIB83
g217963
BLASTN
1557
1e−160
95




Q1-E1-H7


226
3272
LIB3078-018-
LIB3078
g217963
BLASTN
1844
1e−159
88




Q1-K1-H1


227
3272
LIB189-030-
LIB189
g217963
BLASTN
1436
1e−152
97




Q1-E1-E9


228
3272
LIB189-006-
LIB189
g217963
BLASTN
1825
1e−151
99




Q1-E1-F9


229
3272
LIB36-022-
LIB36
g217963
BLASTN
1635
1e−150
97




Q1-E1-H3


230
3272
LIB83-011-
LIB83
g217963
BLASTN
1414
1e−149
97




Q1-E1-D3


231
3272
LIB3062-047-
LIB3062
g217963
BLASTN
1691
1e−148
89




Q1-K1-B2


232
3272
LIB36-016-
LIB36
g217963
BLASTN
1719
1e−147
93




Q2-E2-D9


233
3272
LIB36-021-
LIB36
g217963
BLASTN
1512
1e−144
93




Q1-E1-G3


234
3272
LIB3078-004-
LIB3078
g217963
BLASTN
1787
1e−142
96




Q1-K1-B4


235
3272
LIB3068-056-
LIB3068
g217963
BLASTN
1145
1e−141
91




Q1-K1-C6


236
3272
LIB3078-052-
LIB3078
g217963
BLASTN
1340
1e−141
96




Q1-K1-F8


237
3272
LIB36-021-
LIB36
g217963
BLASTN
1436
1e−139
93




Q1-E1-A6


238
3272
LIB189-028-
LIB189
g217963
BLASTN
1617
1e−139
98




Q1-E1-B12


239
3272
LIB83-005-
LIB83
g217963
BLASTN
1495
1e−133
92




Q1-E1-B3


240
3272
LIB3060-020-
LIB3060
g217963
BLASTN
750
1e−132
88




Q1-K1-G10


241
3272
LIB36-013-
LIB36
g217963
BLASTN
1367
1e−132
90




Q1-E1-E6


242
3272
LIB84-015-
LIB84
g217963
BLASTN
1545
1e−132
92




Q1-E1-E1


243
3272
LIB36-006-
LIB36
g217963
BLASTN
1640
1e−130
91




Q1-E1-E10


244
3272
LIB84-027-
LIB84
g217963
BLASTN
1333
1e−128
95




Q1-E1-H12


245
3272
LIB3067-001-
LIB3067
g217963
BLASTN
1364
1e−127
90




Q1-K1-B11


246
3272
LIB3062-016-
LIB3062
g217963
BLASTN
1369
1e−127
89




Q1-K1-D11


247
3272
LIB3060-013-
LIB3060
g217963
BLASTN
1607
1e−127
90




Q1-K1-D6


248
3272
LIB3078-028-
LIB3078
g217963
BLASTN
906
1e−126
93




Q1-K1-F4


249
3272
LIB3067-027-
LIB3067
g217963
BLASTN
1364
1e−125
92




Q1-K1-A8


250
3272
LIB189-034-
LIB189
g217963
BLASTN
1139
1e−117
91




Q1-E1-B9


251
3272
LIB189-027-
LIB189
g217963
BLASTN
1264
1e−116
85




Q1-E1-C2


252
3272
LIB3060-034-
LIB3060
g217963
BLASTN
1490
1e−116
86




Q1-K1-E7


253
3272
LIB36-010-
LIB36
g217963
BLASTN
1427
1e−115
88




Q1-E1-A10


254
3272
LIB3078-040-
LIB3078
g217963
BLASTN
1475
1e−115
84




Q1-K1-E5


255
3272
LIB3078-052-
LIB3078
g22464
BLASTN
1141
1e−113
92




Q1-K1-H4


256
3272
LIB3078-001-
LIB3078
g217963
BLASTN
1173
1e−113
93




Q1-K1-B1


257
3272
LIB84-017-
LIB84
g1673455
BLASTN
747
1e−112
91




Q1-E1-D1


258
3272
LIB3060-034-
LIB3060
g217963
BLASTN
1135
1e−112
87




Q1-K1-B7


259
3272
LIB3060-028-
LIB3060
g217963
BLASTN
1012
1e−111
88




Q1-K1-D3


260
3272
LIB36-017-
LIB36
g217963
BLASTN
1398
1e−108
87




Q1-E1-B8


261
3272
LIB84-008-
LIB84
g217963
BLASTN
964
1e−103
93




Q1-E1-G1


262
3272
LIB3078-027-
LIB3078
g217963
BLASTN
894
1e−100
91




Q1-K1-D12


263
3272
LIB36-010-
LIB36
g217963
BLASTN
1257
1e−100
92




Q1-E1-E7


264
3272
LIB3068-029-
LIB3068
g217963
BLASTN
1044
1e−93
94




Q1-K1-F6


265
3272
LIB3060-014-
LIB3060
g217963
BLASTN
934
1e−89
92




Q1-K1-D9


266
3272
LIB3060-023-
LIB3060
g1673455
BLASTN
666
1e−88
96




Q1-K1-H3


267
3272
LIB84-023-
LIB84
g1673455
BLASTN
947
1e−84
91




Q1-E1-B2


268
3272
LIB3062-015-
LIB3062
g217963
BLASTN
1007
1e−75
95




Q1-K1-H5


269
3272
LIB36-013-
LIB36
g1673455
BLASTN
976
1e−72
97




Q1-E1-H2


270
3272
LIB36-009-
LIB36
g22464
BLASTN
881
1e−63
98




Q1-E1-F4


271
3272
46-LIB84-
LIB84
g22464
BLASTN
449
1e−38
95




007-Q1-E1-D6


272
3272
LIB3078-054-
LIB3078
g529673
BLASTN
349
1e−24
94




Q1-K1-D12


273
3272
LIB36-016-
LIB36
g529673
BLASTN
342
1e−19
97




Q2-E2-D1


274
8171
LIB3066-019-
LIB3066
g1673455
BLASTN
1193
1e−161
95




Q1-K1-H5


275
8171
LIB36-005-
LIB36
g1673455
BLASTN
1260
1e−155
99




Q1-E1-C10


276
8171
LIB84-008-
LIB84
g1673455
BLASTN
1300
1e−150
100




Q1-E1-E11


277
8171
LIB36-010-
LIB36
g1673455
BLASTN
1484
1e−125
99




Q1-E1-B4


278
8171
LIB36-017-
LIB36
g1673455
BLASTN
1206
1e−113
98




Q1-E1-D2


279
8171
LIB83-005-
LIB83
g1673455
BLASTN
620
1e−85
93




Q1-E1-B2


280
8171
LIB36-022-
LIB36
g1673455
BLASTN
729
1e−60
95




Q1-E1-E3


281
8171
LIB84-006-
LIB84
g1673455
BLASTN
298
1e−15
67




Q1-E1-B2







SOYBEAN RIBULOSE-BISPHOSPHATE CARBOXYLASE















282
-700646133
700646133H1
SOYMON012
g1079735
BLASTN
249
1e−11
77


283
-700680902
700680902H1
SOYMON008
g1055367
BLASTN
454
1e−46
87


284
-700737728
700737728H1
SOYMON012
g1055367
BLASTN
241
1e−18
91


285
-700873832
700873832H1
SOYMON018
g1055367
BLASTN
424
1e−26
88


286
-700874452
700874452H1
SOYMON018
g1079735
BLASTN
209
1e−8
87


287
-700993404
700993404H1
SOYMON011
g1055367
BLASTN
508
1e−70
87


288
-700995052
700995052H1
SOYMON011
g1079735
BLASTN
235
1e−10
91


289
-701118676
701118676H1
SOYMON037
g1055367
BLASTN
427
1e−44
78


290
10981
700661710H1
SOYMON005
g3168587
BLASTX
194
1e−20
57


291
10981
700661109H1
SOYMON005
g3168587
BLASTX
128
1e−10
51


292
16
700680726H1
SOYMON008
g1055367
BLASTN
1262
1e−126
98


293
16
700680952H1
SOYMON008
g1055367
BLASTN
1362
1e−126
93


294
16
700680959H1
SOYMON008
g1055367
BLASTN
1151
1e−120
98


295
16
700763859H1
SOYMON018
g1055367
BLASTN
1472
1e−116
99


296
16
700557838H1
SOYMON001
g1055367
BLASTN
1456
1e−115
99


297
16
700558916H1
SOYMON001
g1055367
BLASTN
1441
1e−113
99


298
16
700680502H1
SOYMON008
g1055367
BLASTN
665
1e−112
96


299
16
700556877H1
SOYMON001
g1079735
BLASTN
743
1e−109
96


300
16
700606206H1
SOYMON008
g1055367
BLASTN
770
1e−109
100


301
16
700557609H1
SOYMON001
g1055367
BLASTN
1085
1e−109
99


302
16
700646293H1
SOYMON012
g1055367
BLASTN
1400
1e−109
100


303
16
700557441H1
SOYMON001
g1055367
BLASTN
1073
1e−108
99


304
16
700646203H1
SOYMON012
g1055367
BLASTN
1191
1e−108
98


305
16
700787408H2
SOYMON011
g1055367
BLASTN
1386
1e−108
99


306
16
700605320H2
SOYMON004
g1055367
BLASTN
1389
1e−108
99


307
16
700563581H1
SOYMON002
g1055367
BLASTN
1379
1e−107
98


308
16
700553939H1
SOYMON001
g1055367
BLASTN
1063
1e−106
99


309
16
701001329H1
SOYMON018
g1055367
BLASTN
1365
1e−106
97


310
16
700684042H1
SOYMON008
g1055367
BLASTN
1366
1e−106
99


311
16
700555971H1
SOYMON001
g1055367
BLASTN
708
1e−105
97


312
16
700654101H1
SOYMON003
g1055367
BLASTN
715
1e−105
98


313
16
700560889H1
SOYMON001
g1055367
BLASTN
716
1e−105
99


314
16
700963683H1
SOYMON022
g1055367
BLASTN
741
1e−105
98


315
16
700788007H1
SOYMON011
g1055367
BLASTN
1355
1e−105
100


316
16
700556641H1
SOYMON001
g1055367
BLASTN
1359
1e−105
99


317
16
700561084H1
SOYMON001
g1055367
BLASTN
1360
1e−105
100


318
16
700555936H1
SOYMON001
g1055367
BLASTN
720
1e−104
97


319
16
701059184H1
SOYMON033
g1055367
BLASTN
1192
1e−104
98


320
16
700739631H1
SOYMON012
g1055367
BLASTN
1346
1e−104
97


321
16
700683729H1
SOYMON008
g1055367
BLASTN
1346
1e−104
97


322
16
700555221H1
SOYMON001
g1055367
BLASTN
1351
1e−104
99


323
16
700680511H1
SOYMON008
g1079735
BLASTN
789
1e−103
95


324
16
700684247H1
SOYMON008
g1055367
BLASTN
1331
1e−103
99


325
16
700993018H1
SOYMON011
g1055367
BLASTN
1332
1e−103
98


326
16
700560424H1
SOYMON001
g1055367
BLASTN
1338
1e−103
95


327
16
700558552H1
SOYMON001
g1055367
BLASTN
630
1e−102
100


328
16
700980925H1
SOYMON009
g1055367
BLASTN
690
1e−102
98


329
16
700554035H1
SOYMON001
g1079735
BLASTN
730
1e−102
97


330
16
700787457H2
SOYMON011
g1055367
BLASTN
1005
1e−102
100


331
16
701066314H1
SOYMON034
g1055367
BLASTN
1115
1e−102
100


332
16
700984792H1
SOYMON009
g1055367
BLASTN
1327
1e−102
99


333
16
700993845H1
SOYMON011
g1055367
BLASTN
1256
1e−101
99


334
16
700553638H1
SOYMON001
g1055367
BLASTN
1281
1e−101
96


335
16
701108568H1
SOYMON036
g1055367
BLASTN
1309
1e−101
99


336
16
700730203H1
SOYMON009
g1055367
BLASTN
1309
1e−101
99


337
16
700686590H1
SOYMON008
g1055367
BLASTN
1310
1e−101
100


338
16
700684291H1
SOYMON008
g1055367
BLASTN
1313
1e−101
99


339
16
700686641H1
SOYMON008
g1055367
BLASTN
1317
1e−101
98


340
16
700739501H1
SOYMON012
g1055367
BLASTN
988
1e−100
99


341
16
700686672H1
SOYMON008
g1055367
BLASTN
989
1e−100
99


342
16
701105057H1
SOYMON036
g1055367
BLASTN
1170
1e−100
99


343
16
700560247H1
SOYMON001
g1055367
BLASTN
1259
1e−100
94


344
16
700685202H1
SOYMON008
g1055367
BLASTN
1269
1e−100
99


345
16
700741438H1
SOYMON012
g1055367
BLASTN
1296
1e−100
99


346
16
700987146H1
SOYMON009
g1055367
BLASTN
1298
1e−100
99


347
16
700874210H1
SOYMON018
g1055367
BLASTN
1298
1e−100
99


348
16
700558668H1
SOYMON001
g1055367
BLASTN
1299
1e−100
97


349
16
701066793H1
SOYMON034
g1055367
BLASTN
1299
1e−100
96


350
16
700897572H1
SOYMON027
g1055367
BLASTN
1301
1e−100
98


351
16
700788520H1
SOYMON011
g1055367
BLASTN
1304
1e−100
97


352
16
700993424H1
SOYMON011
g1055367
BLASTN
1306
1e−100
99


353
16
700990285H1
SOYMON011
g1055367
BLASTN
1307
1e−100
98


354
16
700559016H1
SOYMON001
g170057
BLASTN
703
1e−99
96


355
16
700684946H1
SOYMON008
g1055367
BLASTN
837
1e−99
96


356
16
700994454H1
SOYMON011
g1079735
BLASTN
891
1e−99
98


357
16
700684022H1
SOYMON008
g1055367
BLASTN
974
1e−99
99


358
16
700981572H1
SOYMON009
g1055367
BLASTN
977
1e−99
97


359
16
700547916H1
SOYMON001
g1055367
BLASTN
1018
1e−99
97


360
16
701210426H1
SOYMON035
g1055367
BLASTN
1175
1e−99
96


361
16
700680983H1
SOYMON008
g1055367
BLASTN
1178
1e−99
96


362
16
700686304H1
SOYMON008
g1055367
BLASTN
1213
1e−99
95


363
16
700656925H1
SOYMON004
g1055367
BLASTN
1248
1e−99
97


364
16
700959008H1
SOYMON022
g1055367
BLASTN
1286
1e−99
99


365
16
700990104H1
SOYMON011
g1055367
BLASTN
1286
1e−99
99


366
16
700733702H1
SOYMON010
g1055367
BLASTN
1291
1e−99
99


367
16
700679911H2
SOYMON008
g1055367
BLASTN
750
1e−98
100


368
16
700683580H1
SOYMON008
g1055367
BLASTN
975
1e−98
99


369
16
701000694H1
SOYMON018
g1055367
BLASTN
981
1e−98
98


370
16
700788434H1
SOYMON011
g1055367
BLASTN
993
1e−98
99


371
16
700977489H1
SOYMON009
g1055367
BLASTN
1115
1e−98
100


372
16
700646244H1
SOYMON012
g1055367
BLASTN
1245
1e−98
93


373
16
700789239H2
SOYMON011
g1055367
BLASTN
1275
1e−98
100


374
16
700941416H1
SOYMON024
g1055367
BLASTN
1277
1e−98
98


375
16
700741114H1
SOYMON012
g1055367
BLASTN
1280
1e−98
100


376
16
700787710H2
SOYMON011
g1055367
BLASTN
1280
1e−98
100


377
16
700738915H1
SOYMON012
g1055367
BLASTN
1281
1e−98
99


378
16
700681172H2
SOYMON008
g1055367
BLASTN
1281
1e−98
97


379
16
700989627H1
SOYMON011
g1055367
BLASTN
1283
1e−98
99


380
16
700992304H1
SOYMON011
g1055367
BLASTN
631
1e−97
95


381
16
700660092H1
SOYMON004
g1055367
BLASTN
655
1e−97
100


382
16
700742022H1
SOYMON012
g1079735
BLASTN
710
1e−97
98


383
16
700787646H2
SOYMON011
g1055367
BLASTN
755
1e−97
100


384
16
700686569H1
SOYMON008
g1055367
BLASTN
955
1e−97
99


385
16
701107113H1
SOYMON036
g1055367
BLASTN
959
1e−97
98


386
16
700553876H1
SOYMON001
g1055367
BLASTN
1186
1e−97
94


387
16
701106749H1
SOYMON036
g1055367
BLASTN
1194
1e−97
94


388
16
700660208H1
SOYMON004
g1055367
BLASTN
1219
1e−97
99


389
16
700738445H1
SOYMON012
g1055367
BLASTN
1263
1e−97
96


390
16
700873776H1
SOYMON018
g1055367
BLASTN
1265
1e−97
100


391
16
700684414H1
SOYMON008
g1055367
BLASTN
1265
1e−97
100


392
16
700790868H1
SOYMON011
g1055367
BLASTN
1268
1e−97
98


393
16
700787726H2
SOYMON011
g1055367
BLASTN
1270
1e−97
100


394
16
700899186H1
SOYMON027
g1055367
BLASTN
1271
1e−97
99


395
16
700726442H1
SOYMON009
g1055367
BLASTN
670
1e−96
100


396
16
700681422H2
SOYMON008
g1055367
BLASTN
680
1e−96
98


397
16
700901301H1
SOYMON027
g1055367
BLASTN
745
1e−96
100


398
16
701214546H1
SOYMON035
g1055367
BLASTN
943
1e−96
99


399
16
701211571H1
SOYMON035
g1055367
BLASTN
970
1e−96
100


400
16
701067621H1
SOYMON034
g1055367
BLASTN
1137
1e−96
92


401
16
700656975H1
SOYMON004
g1055367
BLASTN
1157
1e−96
99


402
16
700679981H2
SOYMON008
g1055367
BLASTN
1192
1e−96
98


403
16
700788456H1
SOYMON011
g1055367
BLASTN
1250
1e−96
98


404
16
700993650H1
SOYMON011
g1055367
BLASTN
1253
1e−96
98


405
16
700738760H1
SOYMON012
g1055367
BLASTN
1255
1e−96
100


406
16
700738920H1
SOYMON012
g1055367
BLASTN
1258
1e−96
99


407
16
700992293H1
SOYMON011
g1055367
BLASTN
1258
1e−96
98


408
16
700849079H1
SOYMON021
g1055367
BLASTN
1258
1e−96
97


409
16
700683157H1
SOYMON008
g1055367
BLASTN
1258
1e−96
99


410
16
700874075H1
SOYMON018
g1055367
BLASTN
1260
1e−96
100


411
16
700988186H1
SOYMON009
g1079735
BLASTN
638
1e−95
93


412
16
700899275H1
SOYMON027
g1055367
BLASTN
920
1e−95
99


413
16
700943511H1
SOYMON024
g1055367
BLASTN
930
1e−95
98


414
16
701062407H1
SOYMON033
g1055367
BLASTN
1026
1e−95
94


415
16
700991032H1
SOYMON011
g1055367
BLASTN
1070
1e−95
98


416
16
700740521H1
SOYMON012
g1055367
BLASTN
1187
1e−95
97


417
16
700685255H1
SOYMON008
g1055367
BLASTN
1191
1e−95
94


418
16
700846540H1
SOYMON021
g1055367
BLASTN
1203
1e−95
96


419
16
700684186H1
SOYMON008
g1055367
BLASTN
1239
1e−95
99


420
16
700565092H1
SOYMON002
g1055367
BLASTN
1239
1e−95
97


421
16
700898668H1
SOYMON027
g1055367
BLASTN
1240
1e−95
100


422
16
700997221H1
SOYMON018
g1055367
BLASTN
1240
1e−95
100


423
16
700737823H1
SOYMON012
g1055367
BLASTN
1240
1e−95
100


424
16
700740566H1
SOYMON012
g1055367
BLASTN
1241
1e−95
99


425
16
700726057H1
SOYMON009
g1055367
BLASTN
1241
1e−95
99


426
16
700658843H1
SOYMON004
g1055367
BLASTN
1243
1e−95
99


427
16
700737902H1
SOYMON012
g1055367
BLASTN
1244
1e−95
97


428
16
700873809H1
SOYMON018
g1055367
BLASTN
1246
1e−95
99


429
16
701210184H1
SOYMON035
g1055367
BLASTN
508
1e−94
96


430
16
700874925H1
SOYMON018
g1055367
BLASTN
655
1e−94
98


431
16
700686258H1
SOYMON008
g1055367
BLASTN
657
1e−94
98


432
16
700742042H1
SOYMON012
g1055367
BLASTN
659
1e−94
97


433
16
700679995H2
SOYMON008
g1055367
BLASTN
731
1e−94
96


434
16
700682014H1
SOYMON008
g1079735
BLASTN
800
1e−94
96


435
16
700741910H1
SOYMON012
g1055367
BLASTN
906
1e−94
98


436
16
701107208H1
SOYMON036
g1055367
BLASTN
907
1e−94
98


437
16
700896405H1
SOYMON027
g1055367
BLASTN
936
1e−94
99


438
16
700961649H1
SOYMON022
g1055367
BLASTN
941
1e−94
96


439
16
700555260H1
SOYMON001
g1055367
BLASTN
1141
1e−94
97


440
16
700646292H1
SOYMON012
g1055367
BLASTN
1155
1e−94
93


441
16
700896794H1
SOYMON027
g1055367
BLASTN
1164
1e−94
99


442
16
700900448H1
SOYMON027
g1055367
BLASTN
1227
1e−94
95


443
16
700978796H1
SOYMON009
g1055367
BLASTN
1228
1e−94
99


444
16
700874579H1
SOYMON018
g1055367
BLASTN
1229
1e−94
99


445
16
700989693H1
SOYMON011
g1055367
BLASTN
1229
1e−94
99


446
16
700872477H1
SOYMON018
g1055367
BLASTN
1230
1e−94
98


447
16
700873947H1
SOYMON018
g1055367
BLASTN
1233
1e−94
99


448
16
700740463H1
SOYMON012
g1055367
BLASTN
1234
1e−94
99


449
16
700846439H1
SOYMON021
g1055367
BLASTN
1235
1e−94
100


450
16
701143505H2
SOYMON038
g1055367
BLASTN
1235
1e−94
100


451
16
700876930H1
SOYMON018
g1055367
BLASTN
1237
1e−94
98


452
16
700787131H2
SOYMON011
g1055367
BLASTN
480
1e−93
98


453
16
701107174H1
SOYMON036
g1055367
BLASTN
908
1e−93
99


454
16
700683318H1
SOYMON008
g1055367
BLASTN
921
1e−93
97


455
16
700738122H1
SOYMON012
g1055367
BLASTN
935
1e−93
100


456
16
700683238H1
SOYMON008
g1055367
BLASTN
975
1e−93
99


457
16
700741164H1
SOYMON012
g1055367
BLASTN
1014
1e−93
98


458
16
700896476H1
SOYMON027
g1055367
BLASTN
1075
1e−93
100


459
16
700993971H1
SOYMON011
g1055367
BLASTN
1149
1e−93
94


460
16
700895401H1
SOYMON027
g1055367
BLASTN
1171
1e−93
99


461
16
700790223H2
SOYMON011
g1055367
BLASTN
1215
1e−93
98


462
16
700945189H1
SOYMON024
g1055367
BLASTN
1215
1e−93
100


463
16
700741390H1
SOYMON012
g1055367
BLASTN
1215
1e−93
100


464
16
700737811H1
SOYMON012
g1055367
BLASTN
1219
1e−93
99


465
16
700785969H2
SOYMON011
g1055367
BLASTN
1220
1e−93
100


466
16
700740478H1
SOYMON012
g1055367
BLASTN
1220
1e−93
100


467
16
700790742H1
SOYMON011
g1055367
BLASTN
1221
1e−93
99


468
16
700740462H1
SOYMON012
g1055367
BLASTN
1222
1e−93
98


469
16
700657760H1
SOYMON004
g1055367
BLASTN
1224
1e−93
99


470
16
700659336H1
SOYMON004
g1055367
BLASTN
1225
1e−93
96


471
16
700790904H1
SOYMON011
g1055367
BLASTN
616
1e−92
99


472
16
700738911H1
SOYMON012
g1055367
BLASTN
741
1e−92
100


473
16
700872532H1
SOYMON018
g1055367
BLASTN
743
1e−92
99


474
16
700967765H1
SOYMON033
g1055367
BLASTN
896
1e−92
99


475
16
700876909H1
SOYMON018
g1055367
BLASTN
913
1e−92
98


476
16
700989032H1
SOYMON011
g1055367
BLASTN
971
1e−92
99


477
16
700872401H1
SOYMON018
g1055367
BLASTN
1011
1e−92
98


478
16
701104761H1
SOYMON036
g1055367
BLASTN
1133
1e−92
93


479
16
700787439H2
SOYMON011
g1055367
BLASTN
1133
1e−92
93


480
16
700682703H1
SOYMON008
g1055367
BLASTN
1136
1e−92
93


481
16
700788179H1
SOYMON011
g1055367
BLASTN
1155
1e−92
98


482
16
700724905H1
SOYMON009
g1055367
BLASTN
1173
1e−92
98


483
16
700660182H1
SOYMON004
g1055367
BLASTN
1208
1e−92
99


484
16
700876415H1
SOYMON018
g1055367
BLASTN
1208
1e−92
99


485
16
700738544H1
SOYMON012
g1055367
BLASTN
1210
1e−92
100


486
16
700894558H1
SOYMON024
g1055367
BLASTN
1211
1e−92
99


487
16
700740901H1
SOYMON012
g1055367
BLASTN
428
1e−91
97


488
16
700683039H1
SOYMON008
g1055367
BLASTN
621
1e−91
97


489
16
700980945H1
SOYMON009
g1055367
BLASTN
624
1e−91
93


490
16
700557890H1
SOYMON001
g1055367
BLASTN
871
1e−91
97


491
16
700863566H1
SOYMON027
g1055367
BLASTN
1127
1e−91
95


492
16
701108362H1
SOYMON036
g1055367
BLASTN
1129
1e−91
95


493
16
700658190H1
SOYMON004
g1055367
BLASTN
1136
1e−91
94


494
16
700994486H1
SOYMON011
g1055367
BLASTN
1144
1e−91
94


495
16
700553851H1
SOYMON001
g1055367
BLASTN
1151
1e−91
93


496
16
700683005H1
SOYMON008
g1055367
BLASTN
1159
1e−91
98


497
16
700789709H1
SOYMON011
g1055367
BLASTN
1191
1e−91
99


498
16
700752960H1
SOYMON014
g1055367
BLASTN
1196
1e−91
99


499
16
700959845H1
SOYMON022
g1055367
BLASTN
1196
1e−91
99


500
16
700738866H1
SOYMON012
g1055367
BLASTN
1201
1e−91
99


501
16
701064223H1
SOYMON034
g1055367
BLASTN
510
1e−90
98


502
16
701002414H1
SOYMON018
g1055367
BLASTN
577
1e−90
97


503
16
700992711H1
SOYMON011
g1055367
BLASTN
751
1e−90
98


504
16
700680079H2
SOYMON008
g1055367
BLASTN
807
1e−90
97


505
16
700992131H1
SOYMON011
g1055367
BLASTN
814
1e−90
98


506
16
700945939H1
SOYMON024
g1055367
BLASTN
872
1e−90
98


507
16
700995283H1
SOYMON011
g1055367
BLASTN
896
1e−90
97


508
16
700790720H1
SOYMON011
g1055367
BLASTN
898
1e−90
98


509
16
700557607H1
SOYMON001
g1055367
BLASTN
908
1e−90
91


510
16
701146551H1
SOYMON031
g1055367
BLASTN
923
1e−90
98


511
16
701002369H1
SOYMON018
g1055367
BLASTN
953
1e−90
99


512
16
700682563H2
SOYMON008
g1055367
BLASTN
1045
1e−90
100


513
16
700555211H1
SOYMON001
g1055367
BLASTN
1115
1e−90
100


514
16
700656287H1
SOYMON004
g1055367
BLASTN
1117
1e−90
96


515
16
700791902H1
SOYMON011
g1055367
BLASTN
1182
1e−90
98


516
16
700876346H1
SOYMON018
g1055367
BLASTN
1183
1e−90
96


517
16
700681759H1
SOYMON008
g1055367
BLASTN
1183
1e−90
99


518
16
701105254H1
SOYMON036
g1055367
BLASTN
1185
1e−90
100


519
16
700873322H1
SOYMON018
g1055367
BLASTN
1187
1e−90
98


520
16
700741118H1
SOYMON012
g1055367
BLASTN
1188
1e−90
96


521
16
700681782H1
SOYMON008
g1055367
BLASTN
1190
1e−90
100


522
16
700746782H1
SOYMON013
g1055367
BLASTN
1190
1e−90
100


523
16
700656875H1
SOYMON004
g1079735
BLASTN
736
1e−89
97


524
16
700993783H1
SOYMON011
g1055367
BLASTN
800
1e−89
100


525
16
700738524H1
SOYMON012
g1055367
BLASTN
846
1e−89
98


526
16
701214655H1
SOYMON035
g1055367
BLASTN
881
1e−89
98


527
16
700740449H1
SOYMON012
g1055367
BLASTN
924
1e−89
97


528
16
700556379H1
SOYMON001
g1055367
BLASTN
1096
1e−89
95


529
16
700660523H1
SOYMON004
g1055367
BLASTN
1097
1e−89
92


530
16
700791055H1
SOYMON011
g1055367
BLASTN
1173
1e−89
99


531
16
700656671H1
SOYMON004
g1055367
BLASTN
1175
1e−89
93


532
16
700740963H1
SOYMON012
g1055367
BLASTN
616
1e−88
99


533
16
701107017H1
SOYMON036
g1055367
BLASTN
617
1e−88
96


534
16
701139539H1
SOYMON038
g1055367
BLASTN
644
1e−88
95


535
16
700946365H1
SOYMON024
g170057
BLASTN
649
1e−88
97


536
16
700682509H2
SOYMON008
g1055367
BLASTN
844
1e−88
97


537
16
700994024H1
SOYMON011
g1055367
BLASTN
844
1e−88
98


538
16
700659886H1
SOYMON004
g1055367
BLASTN
850
1e−88
98


539
16
700755378H1
SOYMON014
g1055367
BLASTN
881
1e−88
98


540
16
700847182H1
SOYMON021
g1055367
BLASTN
916
1e−88
97


541
16
700789017H2
SOYMON011
g1055367
BLASTN
1110
1e−88
96


542
16
700657694H1
SOYMON004
g1055367
BLASTN
1160
1e−88
97


543
16
700894533H1
SOYMON024
g1055367
BLASTN
1164
1e−88
99


544
16
700989594H1
SOYMON011
g1055367
BLASTN
1166
1e−88
99


545
16
700560570H1
SOYMON001
g1055367
BLASTN
978
1e−87
97


546
16
700656095H1
SOYMON004
g1055367
BLASTN
1056
1e−87
95


547
16
700656137H1
SOYMON004
g1055367
BLASTN
1100
1e−87
100


548
16
700900212H1
SOYMON027
g1055367
BLASTN
1106
1e−87
98


549
16
700871945H1
SOYMON018
g1055367
BLASTN
1150
1e−87
100


550
16
701144650H1
SOYMON031
g1055367
BLASTN
1154
1e−87
99


551
16
700740357H1
SOYMON012
g1055367
BLASTN
566
1e−86
100


552
16
700790635H2
SOYMON011
g1079735
BLASTN
630
1e−86
98


553
16
700843795H1
SOYMON021
g1055367
BLASTN
834
1e−86
97


554
16
700790207H2
SOYMON011
g1055367
BLASTN
1062
1e−86
94


555
16
700725303H1
SOYMON009
g1055367
BLASTN
1064
1e−86
94


556
16
700739809H1
SOYMON012
g1055367
BLASTN
1067
1e−86
94


557
16
700659535H1
SOYMON004
g1055367
BLASTN
1068
1e−86
92


558
16
700740653H1
SOYMON012
g1055367
BLASTN
1071
1e−86
94


559
16
700993558H1
SOYMON011
g1055367
BLASTN
1071
1e−86
94


560
16
701153296H1
SOYMON031
g1079735
BLASTN
1101
1e−86
99


561
16
700992113H1
SOYMON011
g1055367
BLASTN
1104
1e−86
98


562
16
700555503H1
SOYMON001
g1055367
BLASTN
1133
1e−86
89


563
16
700792226H1
SOYMON011
g170057
BLASTN
1142
1e−86
99


564
16
701105302H1
SOYMON036
g1055367
BLASTN
1143
1e−86
89


565
16
700871129H1
SOYMON018
g1055367
BLASTN
1143
1e−86
94


566
16
700654859H1
SOYMON004
g1055367
BLASTN
519
1e−85
97


567
16
700656039H1
SOYMON004
g1055367
BLASTN
615
1e−85
98


568
16
700739061H1
SOYMON012
g1055367
BLASTN
642
1e−85
96


569
16
700655048H1
SOYMON004
g1055367
BLASTN
689
1e−85
95


570
16
700680540H1
SOYMON008
g1055367
BLASTN
696
1e−85
98


571
16
700730791H1
SOYMON009
g1055367
BLASTN
811
1e−85
99


572
16
700991246H1
SOYMON011
g1055367
BLASTN
893
1e−85
95


573
16
700876824H1
SOYMON018
g1055367
BLASTN
967
1e−85
98


574
16
700791594H1
SOYMON011
g1055367
BLASTN
1054
1e−85
94


575
16
700739144H1
SOYMON012
g1055367
BLASTN
1090
1e−85
100


576
16
700872171H1
SOYMON018
g1055367
BLASTN
1121
1e−85
99


577
16
700871089H1
SOYMON018
g1055367
BLASTN
1122
1e−85
95


578
16
700787735H2
SOYMON011
g1055367
BLASTN
1123
1e−85
95


579
16
700791676H1
SOYMON011
g1055367
BLASTN
1124
1e−85
96


580
16
700737752H1
SOYMON012
g1055367
BLASTN
1128
1e−85
92


581
16
700681539H1
SOYMON008
g1055367
BLASTN
495
1e−84
97


582
16
700994222H1
SOYMON011
g1055367
BLASTN
653
1e−84
99


583
16
701000001H1
SOYMON018
g1055367
BLASTN
743
1e−84
97


584
16
700874142H1
SOYMON018
g1055367
BLASTN
803
1e−84
99


585
16
701106980H1
SOYMON036
g1055367
BLASTN
837
1e−84
98


586
16
700684527H1
SOYMON008
g1055367
BLASTN
959
1e−84
98


587
16
700738477H1
SOYMON012
g1055367
BLASTN
1111
1e−84
99


588
16
701155411H1
SOYMON031
g1055367
BLASTN
1112
1e−84
99


589
16
700994428H1
SOYMON011
g170057
BLASTN
457
1e−83
98


590
16
700738079H1
SOYMON012
g1079735
BLASTN
496
1e−83
95


591
16
700658259H1
SOYMON004
g1055367
BLASTN
510
1e−83
98


592
16
701062095H1
SOYMON033
g1055367
BLASTN
599
1e−83
94


593
16
700730588H1
SOYMON009
g1055367
BLASTN
652
1e−83
95


594
16
700900426H1
SOYMON027
g1055367
BLASTN
653
1e−83
96


595
16
700994405H1
SOYMON011
g1055367
BLASTN
760
1e−83
98


596
16
700743222H1
SOYMON012
g1055367
BLASTN
874
1e−83
98


597
16
701108454H1
SOYMON036
g1055367
BLASTN
908
1e−83
91


598
16
701061556H1
SOYMON033
g1055367
BLASTN
936
1e−83
99


599
16
700871533H1
SOYMON018
g1055367
BLASTN
1097
1e−83
99


600
16
700558546H1
SOYMON001
g1079735
BLASTN
408
1e−82
95


601
16
700741006H1
SOYMON012
g1055367
BLASTN
446
1e−82
95


602
16
700994239H1
SOYMON011
g1055367
BLASTN
611
1e−82
94


603
16
700685501H1
SOYMON008
g1055367
BLASTN
620
1e−82
100


604
16
700741993H1
SOYMON012
g1055367
BLASTN
775
1e−82
100


605
16
700741994H1
SOYMON012
g1055367
BLASTN
780
1e−82
100


606
16
700741275H1
SOYMON012
g1055367
BLASTN
955
1e−82
100


607
16
700741979H1
SOYMON012
g1055367
BLASTN
1038
1e−82
95


608
16
700873834H1
SOYMON018
g1055367
BLASTN
1088
1e−82
98


609
16
700872831H1
SOYMON018
g1055367
BLASTN
710
1e−81
96


610
16
700684862H1
SOYMON008
g1055367
BLASTN
772
1e−81
98


611
16
700991906H1
SOYMON011
g1055367
BLASTN
777
1e−81
98


612
16
700655544H1
SOYMON004
g1055367
BLASTN
840
1e−81
98


613
16
700740768H1
SOYMON012
g1055367
BLASTN
1007
1e−81
99


614
16
700992972H1
SOYMON011
g1055367
BLASTN
1073
1e−81
97


615
16
700740745H1
SOYMON012
g1055367
BLASTN
1079
1e−81
99


616
16
700728041H1
SOYMON009
g1055367
BLASTN
1080
1e−81
87


617
16
700729690H1
SOYMON009
g1055367
BLASTN
1083
1e−81
95


618
16
700743048H1
SOYMON012
g1055367
BLASTN
388
1e−80
92


619
16
700790361H2
SOYMON011
g1055367
BLASTN
588
1e−80
93


620
16
700896585H1
SOYMON027
g1055367
BLASTN
588
1e−80
100


621
16
701104185H1
SOYMON036
g1055367
BLASTN
740
1e−80
99


622
16
700741286H1
SOYMON012
g1055367
BLASTN
756
1e−80
99


623
16
700737954H1
SOYMON012
g1055367
BLASTN
916
1e−80
91


624
16
700738883H1
SOYMON012
g1055367
BLASTN
1070
1e−80
94


625
16
700872433H1
SOYMON018
g170057
BLASTN
416
1e−79
94


626
16
701059827H1
SOYMON033
g1055367
BLASTN
438
1e−79
95


627
16
701117550H2
SOYMON037
g1055367
BLASTN
488
1e−79
96


628
16
700743227H1
SOYMON012
g1055367
BLASTN
670
1e−79
96


629
16
700990060H1
SOYMON011
g1079735
BLASTN
688
1e−79
96


630
16
700789891H2
SOYMON011
g1079735
BLASTN
892
1e−79
98


631
16
700739160H1
SOYMON012
g1055367
BLASTN
1008
1e−79
95


632
16
700900244H1
SOYMON027
g1055367
BLASTN
1051
1e−79
85


633
16
700680230H2
SOYMON008
g1055367
BLASTN
1057
1e−79
93


634
16
700991489H1
SOYMON011
g1055367
BLASTN
520
1e−78
94


635
16
700744694H1
SOYMON013
g1055367
BLASTN
521
1e−78
97


636
16
700659755H1
SOYMON004
g1055367
BLASTN
711
1e−78
92


637
16
700741013H1
SOYMON012
g1055367
BLASTN
730
1e−78
91


638
16
700990946H1
SOYMON011
g1079735
BLASTN
1046
1e−78
99


639
16
700791542H1
SOYMON011
g1055367
BLASTN
625
1e−77
97


640
16
700682942H1
SOYMON008
g1055367
BLASTN
683
1e−77
98


641
16
700994722H1
SOYMON011
g1055367
BLASTN
801
1e−77
93


642
16
700788601H1
SOYMON011
g1055367
BLASTN
1036
1e−77
99


643
16
700872290H1
SOYMON018
g1079735
BLASTN
1040
1e−77
98


644
16
700741012H1
SOYMON012
g1055367
BLASTN
386
1e−76
95


645
16
700990993H1
SOYMON011
g1055367
BLASTN
712
1e−76
96


646
16
700870628H1
SOYMON018
g1055367
BLASTN
760
1e−76
95


647
16
700740220H1
SOYMON012
g1055367
BLASTN
830
1e−76
94


648
16
700683853H1
SOYMON008
g1079735
BLASTN
972
1e−76
98


649
16
700657177H1
SOYMON004
g1055367
BLASTN
986
1e−76
99


650
16
700740956H1
SOYMON012
g1055367
BLASTN
553
1e−75
93


651
16
700683812H1
SOYMON008
g1055367
BLASTN
672
1e−75
98


652
16
701058565H1
SOYMON033
g1055367
BLASTN
834
1e−75
96


653
16
700789725H1
SOYMON011
g1079735
BLASTN
1014
1e−75
98


654
16
700787907H1
SOYMON011
g1055367
BLASTN
546
1e−74
92


655
16
700870534H1
SOYMON018
g170057
BLASTN
646
1e−74
92


656
16
700743023H1
SOYMON012
g1055367
BLASTN
656
1e−74
93


657
16
700557205H1
SOYMON001
g1079735
BLASTN
775
1e−74
93


658
16
700646080H1
SOYMON011
g1055367
BLASTN
926
1e−74
97


659
16
700998541H1
SOYMON018
g1055367
BLASTN
703
1e−73
100


660
16
700684330H1
SOYMON008
g1079735
BLASTN
863
1e−73
94


661
16
700739656H1
SOYMON012
g1055367
BLASTN
987
1e−73
88


662
16
700739768H1
SOYMON012
g1055367
BLASTN
481
1e−72
88


663
16
700683980H1
SOYMON008
g1055367
BLASTN
654
1e−72
92


664
16
700743962H1
SOYMON012
g1079735
BLASTN
975
1e−72
100


665
16
700742888H1
SOYMON012
g1079735
BLASTN
960
1e−71
100


666
16
700744006H1
SOYMON012
g1079735
BLASTN
962
1e−71
97


667
16
700871648H1
SOYMON018
g1055367
BLASTN
887
1e−70
92


668
16
700656924H1
SOYMON004
g1055367
BLASTN
361
1e−69
88


669
16
700743814H1
SOYMON012
g1079735
BLASTN
942
1e−69
98


670
16
700995036H1
SOYMON011
g1079735
BLASTN
930
1e−68
97


671
16
700991405H1
SOYMON011
g1079735
BLASTN
477
1e−67
96


672
16
700741463H1
SOYMON012
g1055367
BLASTN
537
1e−67
87


673
16
700870507H1
SOYMON018
g1055367
BLASTN
566
1e−67
94


674
16
701123032H1
SOYMON037
g1055367
BLASTN
687
1e−67
85


675
16
700946185H1
SOYMON024
g1055367
BLASTN
862
1e−67
96


676
16
700994265H1
SOYMON011
g1055367
BLASTN
907
1e−67
86


677
16
700742553H1
SOYMON012
g1055367
BLASTN
626
1e−66
98


678
16
700655130H1
SOYMON004
g1055367
BLASTN
895
1e−66
80


679
16
700656978H1
SOYMON004
g1055367
BLASTN
905
1e−66
82


680
16
700743939H1
SOYMON012
g1055367
BLASTN
570
1e−65
100


681
16
700742580H1
SOYMON012
g1055367
BLASTN
580
1e−65
99


682
16
700872884H1
SOYMON018
g1079735
BLASTN
737
1e−65
92


683
16
701157394H1
SOYMON031
g1079735
BLASTN
479
1e−64
95


684
16
700992046H1
SOYMON011
g1079735
BLASTN
853
1e−62
99


685
16
700808471H1
SOYMON024
g18755
BLASTN
805
1e−60
100


686
16
700992056H1
SOYMON011
g1055367
BLASTN
830
1e−60
100


687
16
700975486H1
SOYMON009
g1055367
BLASTN
764
1e−59
93


688
16
700894434H1
SOYMON024
g1055367
BLASTN
622
1e−58
95


689
16
700992089H1
SOYMON011
g1055367
BLASTN
805
1e−58
100


690
16
700744590H1
SOYMON013
g1055367
BLASTN
541
1e−56
90


691
16
700787253H2
SOYMON011
g1055367
BLASTN
783
1e−56
95


692
16
700726279H1
SOYMON009
g1055367
BLASTN
604
1e−55
97


693
16
700995242H1
SOYMON011
g1079735
BLASTN
662
1e−55
82


694
16
700659992H1
SOYMON004
g1055367
BLASTN
768
1e−55
98


695
16
700994961H1
SOYMON011
g1055367
BLASTN
756
1e−54
96


696
16
700742875H1
SOYMON012
g1055367
BLASTN
758
1e−54
93


697
16
700995941H1
SOYMON018
g1055367
BLASTN
436
1e−52
98


698
16
700743887H1
SOYMON012
g1055367
BLASTN
446
1e−51
99


699
16
700656790H1
SOYMON004
g1055367
BLASTN
484
1e−50
89


700
16
700902134H1
SOYMON027
g1055367
BLASTN
711
1e−50
99


701
16
700996857H1
SOYMON018
g1079735
BLASTN
715
1e−50
100


702
16
700685138H1
SOYMON008
g1055367
BLASTN
385
1e−49
97


703
16
700738218H1
SOYMON012
g1079735
BLASTN
701
1e−49
99


704
16
700740869H1
SOYMON012
g1055367
BLASTN
680
1e−48
100


705
16
701002564H1
SOYMON018
g1079735
BLASTN
688
1e−48
99


706
16
700900791H1
SOYMON027
g1055367
BLASTN
361
1e−46
97


707
16
701109964H1
SOYMON036
g1055367
BLASTN
441
1e−45
87


708
16
700991810H1
SOYMON011
g1055367
BLASTN
377
1e−44
92


709
16
700786845H2
SOYMON011
g170057
BLASTN
440
1e−42
95


710
16
700655630H1
SOYMON004
g1055367
BLASTN
486
1e−42
97


711
16
700739315H1
SOYMON012
g1079735
BLASTN
610
1e−42
100


712
16
700788023H1
SOYMON011
g1055367
BLASTN
602
1e−41
75


713
16
700743017H1
SOYMON012
g170057
BLASTN
349
1e−40
89


714
16
700739471H1
SOYMON012
g1055367
BLASTN
590
1e−40
100


715
16
700740508H1
SOYMON012
g1079735
BLASTN
593
1e−40
99


716
16
700790942H1
SOYMON011
g170057
BLASTN
597
1e−40
86


717
16
700902452H1
SOYMON027
g1079735
BLASTN
395
1e−39
96


718
16
700658005H1
SOYMON004
g1079735
BLASTN
575
1e−39
100


719
16
700739396H1
SOYMON012
g1079735
BLASTN
565
1e−38
100


720
16
700863675H1
SOYMON027
g1055367
BLASTN
346
1e−37
93


721
16
700657081H1
SOYMON004
g1055367
BLASTN
461
1e−37
89


722
16
700743310H1
SOYMON012
g1055367
BLASTN
557
1e−37
96


723
16
700739139H1
SOYMON012
g1079735
BLASTN
543
1e−36
99


724
16
700742781H1
SOYMON012
g1055367
BLASTN
355
1e−35
100


725
16
700742729H1
SOYMON012
g1079735
BLASTN
532
1e−35
96


726
16
700740842H1
SOYMON012
g1055367
BLASTN
204
1e−32
97


727
16
700730732H1
SOYMON009
g1055367
BLASTN
320
1e−32
94


728
16
700742728H1
SOYMON012
g1055367
BLASTN
482
1e−31
94


729
16
700845311H1
SOYMON021
g1055367
BLASTN
483
1e−31
98


730
16
700874150H1
SOYMON018
g18754
BLASTN
340
1e−30
93


731
16
700958782H1
SOYMON022
g1055367
BLASTN
475
1e−30
100


732
16
700729671H1
SOYMON009
g1079735
BLASTN
310
1e−26
97


733
16
700989477H1
SOYMON011
g1055367
BLASTN
358
1e−26
98


734
16
700790532H2
SOYMON011
g1055367
BLASTN
330
1e−24
99


735
16
700895830H1
SOYMON027
g1055367
BLASTN
286
1e−23
96


736
16
700560643H1
SOYMON001
g1055367
BLASTN
295
1e−21
92


737
16
700559990H1
SOYMON001
g1079735
BLASTN
238
1e−20
98


738
16
700895956H1
SOYMON027
g1055367
BLASTN
193
1e−19
97


739
16
700680886H1
SOYMON008
g1055367
BLASTN
230
1e−17
82


740
16
700738267H1
SOYMON012
g1055367
BLASTN
246
1e−15
99


741
16
700741928H1
SOYMON012
g1055367
BLASTN
207
1e−12
90


742
16
700657321H1
SOYMON004
g1536889
BLASTX
92
1e−11
88


743
16
700742542H1
SOYMON012
g1079735
BLASTN
212
1e−10
97


744
16
700789463H2
SOYMON011
g1055367
BLASTN
159
1e−8
89


745
317
700998406H1
SOYMON018
g2323417
BLASTN
258
1e−33
80


746
317
700733345H1
SOYMON010
g2323461
BLASTN
292
1e−33
85


747
317
700681456H2
SOYMON008
g2323417
BLASTN
239
1e−23
79


748
317
700992806H1
SOYMON011
g2323461
BLASTN
252
1e−12
62


749
-GM16862
LIB3055-001-
LIB3055
g1055367
BLASTN
482
1e−71
89




Q1-B1-G3


750
-GM16898
LIB3055-001-
LIB3055
g1055367
BLASTN
594
1e−59
97




Q1-B1-H4


751
-GM17216
LIB3055-012-
LIB3055
g1055367
BLASTN
299
1e−44
90




Q1-N1-H2


752
-GM30860
LIB3050-005-
LIB3050
g21049
BLASTN
262
1e−21
68




Q1-K1-D5


753
-GM45237
LIB3073-001-
LIB3073
g1055367
BLASTN
570
1e−38
64




Q1-K1-F7


754
-GM45275
LIB3073-001-
LIB3073
g170057
BLASTN
665
1e−90
83




Q1-K1-H6


755
-GM45440
LIB3073-023-
LIB3073
g1055367
BLASTN
906
1e−66
76




Q1-K1-A11


756
16
LIB3055-005-
LIB3055
g1055367
BLASTN
1704
1e−166
98




Q1-N1-D8


757
16
LIB3073-023-
LIB3073
g1055367
BLASTN
2074
1e−166
98




Q1-K1-C6


758
16
LIB3073-013-
LIB3073
g1055367
BLASTN
2057
1e−165
99




Q1-K1-A5


759
16
LIB3055-007-
LIB3055
g1055367
BLASTN
2065
1e−165
99




Q1-N1-E4


760
16
LIB3055-009-
LIB3055
g1055367
BLASTN
2067
1e−165
98




Q1-N1-A9


761
16
LIB3055-008-
LIB3055
g1055367
BLASTN
2047
1e−164
99




Q1-N1-C9


762
16
LIB3030-009-
LIB3030
g1055367
BLASTN
823
1e−163
96




Q1-B1-G2


763
16
LIB3040-002-
LIB3040
g1055367
BLASTN
1623
1e−163
97




Q1-E1-A4


764
16
LIB3073-023-
LIB3073
g1055367
BLASTN
1671
1e−163
96




Q1-K1-E8


765
16
LIB3073-006-
LIB3073
g1055367
BLASTN
2040
1e−163
100




Q1-K1-E8


766
16
LIB3053-010-
LIB3053
g1055367
BLASTN
2023
1e−162
99




Q1-N1-E7


767
16
LIB3073-024-
LIB3073
g1055367
BLASTN
1608
1e−161
99




Q1-K1-H4


768
16
LIB3055-008-
LIB3055
g1055367
BLASTN
2008
1e−161
97




Q1-N1-A7


769
16
LIB3073-001-
LIB3073
g1055367
BLASTN
1078
1e−160
98




Q1-K1-B10


770
16
LIB3055-013-
LIB3055
g1055367
BLASTN
1726
1e−160
96




Q1-N1-B2


771
16
LIB3073-002-
LIB3073
g1055367
BLASTN
1728
1e−160
96




Q1-K1-C1


772
16
LIB3073-013-
LIB3073
g1055367
BLASTN
1904
1e−160
99




Q1-K1-F11


773
16
LIB3073-022-
LIB3073
g1055367
BLASTN
1885
1e−159
100




Q1-K1-A11


774
16
LIB3073-026-
LIB3073
g1055367
BLASTN
1987
1e−159
99




Q1-K1-G9


775
16
LIB3073-026-
LIB3073
g1055367
BLASTN
1991
1e−159
99




Q1-K1-F9


776
16
LIB3073-024-
LIB3073
g1055367
BLASTN
1740
1e−158
99




Q1-K1-A10


777
16
LIB3073-012-
LIB3073
g1055367
BLASTN
1876
1e−158
98




Q1-K1-D7


778
16
LIB3049-013-
LIB3049
g1055367
BLASTN
1265
1e−157
99




Q1-E1-B3


779
16
LIB3053-014-
LIB3053
g1055367
BLASTN
1592
1e−157
97




Q1-N1-F9


780
16
LIB3054-003-
LIB3054
g1055367
BLASTN
1949
1e−156
99




Q1-N1-G12


781
16
LIB3053-001-
LIB3053
g1055367
BLASTN
1935
1e−155
100




Q1-B1-B3


782
16
LIB3027-005-
LIB3027
g1055367
BLASTN
1943
1e−155
99




Q1-B1-F12


783
16
LIB3054-001-
LIB3054
g1055367
BLASTN
1945
1e−155
100




Q1-B1-E6


784
16
LIB3055-007-
LIB3055
g1055367
BLASTN
1691
1e−154
95




Q1-N1-G11


785
16
LIB3073-026-
LIB3073
g1055367
BLASTN
1917
1e−153
99




Q1-K1-D12


786
16
LIB3053-009-
LIB3053
g1055367
BLASTN
1919
1e−153
98




Q1-N1-C6


787
16
LIB3073-013-
LIB3073
g1055367
BLASTN
1740
1e−151
98




Q1-K1-C1


788
16
LIB3073-006-
LIB3073
g1055367
BLASTN
1789
1e−151
95




Q1-K1-F6


789
16
LIB3073-011-
LIB3073
g1055367
BLASTN
647
1e−150
94




Q1-K1-A12


790
16
LIB3073-007-
LIB3073
g1055367
BLASTN
1110
1e−150
98




Q1-K1-B9


791
16
LIB3055-005-
LIB3055
g1055367
BLASTN
1877
1e−150
93




Q1-N1-G4


792
16
LIB3073-006-
LIB3073
g1055367
BLASTN
1886
1e−150
99




Q1-K1-F5


793
16
LIB3073-022-
LIB3073
g1055367
BLASTN
1765
1e−149
94




Q1-K1-B9


794
16
LIB3073-024-
LIB3073
g1055367
BLASTN
1768
1e−149
95




Q1-K1-F3


795
16
LIB3073-026-
LIB3073
g1055367
BLASTN
1866
1e−149
98




Q1-K1-E6


796
16
LIB3073-025-
LIB3073
g1055367
BLASTN
1855
1e−148
98




Q1-K1-F3


797
16
LIB3073-024-
LIB3073
g1055367
BLASTN
1630
1e−147
94




Q1-K1-B5


798
16
LIB3053-010-
LIB3053
g1055367
BLASTN
1677
1e−147
94




Q1-N1-A2


799
16
LIB3073-007-
LIB3073
g1055367
BLASTN
946
1e−146
97




Q1-K1-F1


800
16
LIB3055-008-
LIB3055
g1055367
BLASTN
1731
1e−146
93




Q1-N1-E12


801
16
LIB3073-001-
LIB3073
g1055367
BLASTN
988
1e−145
97




Q1-K1-B7


802
16
LIB3039-004-
LIB3039
g1055367
BLASTN
1817
1e−145
98




Q1-E1-F7


803
16
LIB3053-006-
LIB3053
g1055367
BLASTN
1823
1e−145
95




Q1-N1-D9


804
16
LIB3039-021-
LIB3039
g1055367
BLASTN
906
1e−143
96




Q1-E1-A3


805
16
LIB3053-001-
LIB3053
g1055367
BLASTN
1367
1e−143
91




Q1-B1-D4


806
16
LIB3039-046-
LIB3039
g1055367
BLASTN
1567
1e−143
99




Q1-E1-E5


807
16
LIB3073-007-
LIB3073
g1055367
BLASTN
1392
1e−142
92




Q1-K1-B2


808
16
LIB3073-023-
LIB3073
g1055367
BLASTN
1683
1e−142
88




Q1-K1-C3


809
16
LIB3055-002-
LIB3055
g1055367
BLASTN
912
1e−141
90




Q1-B1-E1


810
16
LIB3073-025-
LIB3073
g1055367
BLASTN
1769
1e−141
93




Q1-K1-H8


811
16
LIB3039-030-
LIB3039
g1055367
BLASTN
1775
1e−141
99




Q1-E1-H9


812
16
LIB3055-008-
LIB3055
g1055367
BLASTN
659
1e−140
93




Q1-N1-H4


813
16
LIB3054-011-
LIB3054
g1055367
BLASTN
1384
1e−140
90




Q1-N1-A1


814
16
LIB3073-025-
LIB3073
g1055367
BLASTN
1758
1e−140
95




Q1-K1-D2


815
16
LIB3073-025-
LIB3073
g1055367
BLASTN
1763
1e−140
97




Q1-K1-G3


816
16
LIB3053-002-
LIB3053
g1055367
BLASTN
686
1e−139
94




Q1-B1-H2


817
16
LIB3073-013-
LIB3073
g1055367
BLASTN
1590
1e−138
96




Q1-K1-F6


818
16
LIB3073-025-
LIB3073
g1055367
BLASTN
1643
1e−138
94




Q1-K1-B10


819
16
LIB3073-023-
LIB3073
g1055367
BLASTN
1286
1e−137
95




Q1-K1-D3


820
16
LIB3054-011-
LIB3054
g1055367
BLASTN
1507
1e−137
98




Q1-N1-G1


821
16
LIB3073-024-
LIB3073
g1055367
BLASTN
1135
1e−135
97




Q1-K1-H12


822
16
LIB3039-002-
LIB3039
g1055367
BLASTN
1499
1e−135
94




Q1-E1-E5


823
16
LIB3073-026-
LIB3073
g1055367
BLASTN
1696
1e−135
94




Q1-K1-E3


824
16
LIB3054-006-
LIB3054
g1055367
BLASTN
1593
1e−134
93




Q1-N1-F11


825
16
LIB3028-009-
LIB3028
g1055367
BLASTN
1318
1e−133
91




Q1-B1-D4


826
16
LIB3073-026-
LIB3073
g1055367
BLASTN
1681
1e−133
99




Q1-K1-A12


827
16
LIB3073-011-
LIB3073
g1055367
BLASTN
1213
1e−131
94




Q1-K1-C7


828
16
LIB3054-001-
LIB3054
g1055367
BLASTN
1644
1e−130
91




Q1-B1-A6


829
16
LIB3073-002-
LIB3073
g1055367
BLASTN
1414
1e−129
92




Q1-K1-A8


830
16
LIB3073-002-
LIB3073
g1079735
BLASTN
1120
1e−126
91




Q1-K1-E11


831
16
LIB3040-056-
LIB3040
g1055367
BLASTN
1590
1e−126
98




Q1-E1-E11


832
16
LIB3073-025-
LIB3073
g1055367
BLASTN
1503
1e−124
98




Q1-K1-G10


833
16
LIB3054-003-
LIB3054
g1055367
BLASTN
1262
1e−123
95




Q1-N1-G2


834
16
LIB3073-011-
LIB3073
g1055367
BLASTN
1379
1e−122
93




Q1-K1-D5


835
16
LIB3054-011-
LIB3054
g1055367
BLASTN
1477
1e−122
91




Q1-N1-C4


836
16
LIB3049-038-
LIB3049
g1055367
BLASTN
1353
1e−118
89




Q1-E1-G6


837
16
LIB3039-033-
LIB3039
g1055367
BLASTN
1482
1e−117
93




Q1-E1-H12


838
16
LIB3039-031-
LIB3039
g1079735
BLASTN
943
1e−111
94




Q1-E1-D2


839
16
LIB3030-004-
LIB3030
g1055367
BLASTN
1282
1e−109
96




Q1-B1-A8


840
16
LIB3055-004-
LIB3055
g1055367
BLASTN
1142
1e−101
96




Q1-N1-F1


841
16
LIB3053-001-
LIB3053
g1055367
BLASTN
724
1e−97
87




Q1-B1-H1


842
16
LIB3054-001-
LIB3054
g1055367
BLASTN
868
1e−84
91




Q1-B1-C9


843
16
LIB3073-002-
LIB3073
g1079735
BLASTN
917
1e−81
91




Q1-K1-F5


844
16
LIB3073-026-
LIB3073
g1055367
BLASTN
797
1e−79
85




Q1-K1-B9


845
16
LIB3039-005-
LIB3039
g1079735
BLASTN
897
1e−79
92




Q1-E1-E4


846
16
LIB3054-006-
LIB3054
g1055367
BLASTN
839
1e−61
90




Q1-N1-E5


847
16
LIB3055-007-
LIB3055
g1055367
BLASTN
620
1e−42
100




Q1-N1-G1







MAIZE PHOSPHOGLYCERATE KINASE















848
-700073531
700073531H1
SATMON007
g21834
BLASTN
324
1e−16
69


849
-700215712
700215712H1
SATMON016
g21272
BLASTX
87
1e−11
66


850
-700220093
700220093H1
SATMON011
g21834
BLASTN
258
1e−31
82


851
-700336084
700336084H1
SATMON019
g218038
BLASTN
389
1e−21
65


852
-700442802
700442802H1
SATMON026
g21832
BLASTN
298
1e−60
90


853
-700611444
700611444H1
SATMON022
g21832
BLASTN
831
1e−60
82


854
-700623464
700623464H1
SATMON034
g21834
BLASTN
261
1e−24
74


855
-700805505
700805505H1
SATMON036
g21834
BLASTN
512
1e−33
87


856
16294
700101571H1
SATMON009
g21832
BLASTN
891
1e−65
82


857
16294
700218404H1
SATMON016
g21832
BLASTN
595
1e−53
82


858
16294
700093042H1
SATMON008
g1022803
BLASTX
146
1e−13
88


859
16294
700093371H1
SATMON008
g1022803
BLASTX
133
1e−11
88


860
2232
700098158H1
SATMON009
g21832
BLASTN
1303
1e−99
89


861
2232
700210258H1
SATMON016
g21832
BLASTN
1246
1e−95
87


862
2232
700099304H1
SATMON009
g21832
BLASTN
1235
1e−94
87


863
2232
700100457H1
SATMON009
g21832
BLASTN
1240
1e−94
89


864
2232
700097084H1
SATMON009
g21832
BLASTN
1242
1e−94
87


865
2232
700097420H1
SATMON009
g21832
BLASTN
1146
1e−86
88


866
2232
700216186H1
SATMON016
g21832
BLASTN
1128
1e−85
89


867
2232
700098880H1
SATMON009
g21832
BLASTN
1116
1e−84
83


868
2232
700098821H1
SATMON009
g21832
BLASTN
1121
1e−84
83


869
2232
700041819H1
SATMON004
g21832
BLASTN
1081
1e−81
88


870
2232
700210748H1
SATMON016
g21832
BLASTN
1069
1e−80
84


871
2232
700097556H1
SATMON009
g21832
BLASTN
1056
1e−79
84


872
2232
700578230H1
SATMON031
g21832
BLASTN
1060
1e−79
90


873
2232
700580556H1
SATMON031
g21832
BLASTN
1045
1e−78
86


874
2232
700044785H1
SATMON004
g21832
BLASTN
1050
1e−78
88


875
2232
700041775H1
SATMON004
g21832
BLASTN
1035
1e−77
88


876
2232
700045331H1
SATMON004
g21832
BLASTN
996
1e−74
87


877
2232
700046021H1
SATMON004
g21832
BLASTN
1003
1e−74
84


878
2232
700344283H1
SATMON021
g21832
BLASTN
922
1e−73
91


879
2232
700242032H1
SATMON010
g21832
BLASTN
986
1e−73
86


880
2232
700044688H1
SATMON004
g21832
BLASTN
991
1e−73
89


881
2232
700053496H1
SATMON009
g21832
BLASTN
958
1e−71
83


882
2232
700043267H1
SATMON004
g21832
BLASTN
941
1e−69
84


883
2232
700577778H1
SATMON031
g21832
BLASTN
922
1e−68
83


884
2232
700045845H1
SATMON004
g21832
BLASTN
856
1e−62
82


885
2232
700439945H1
SATMON026
g21832
BLASTN
803
1e−58
85


886
2232
700240633H1
SATMON010
g21832
BLASTN
753
1e−53
83


887
2232
700424659H1
SATMONN01
g21832
BLASTN
429
1e−39
80


888
2232
700042421H1
SATMON004
g21832
BLASTN
447
1e−28
93


889
2769
700100967H1
SATMON009
g21834
BLASTN
481
1e−34
90


890
66
700209994H1
SATMON016
g21834
BLASTN
658
1e−100
85


891
66
700103176H1
SATMON010
g21834
BLASTN
1178
1e−97
89


892
66
700262312H1
SATMON017
g21834
BLASTN
1264
1e−96
90


893
66
700103182H1
SATMON010
g21834
BLASTN
1256
1e−95
89


894
66
700216542H1
SATMON016
g21834
BLASTN
1233
1e−94
89


895
66
700104446H1
SATMON010
g21834
BLASTN
1231
1e−93
91


896
66
700236428H1
SATMON010
g21834
BLASTN
1200
1e−91
92


897
66
700257977H1
SATMON017
g21834
BLASTN
1011
1e−88
91


898
66
700072449H1
SATMON007
g21834
BLASTN
1103
1e−88
93


899
66
700089147H1
SATMON011
g21834
BLASTN
1164
1e−88
81


900
66
700208306H1
SATMON016
g21834
BLASTN
1170
1e−88
94


901
66
700104358H1
SATMON010
g21834
BLASTN
1141
1e−86
88


902
66
700266788H1
SATMON017
g21834
BLASTN
1131
1e−85
86


903
66
700219877H1
SATMON011
g21834
BLASTN
1136
1e−85
90


904
66
700083123H1
SATMON011
g21834
BLASTN
1059
1e−84
94


905
66
700087896H1
SATMON011
g21834
BLASTN
1059
1e−84
94


906
66
700265143H1
SATMON017
g21834
BLASTN
1044
1e−83
94


907
66
700097447H1
SATMON009
g21834
BLASTN
1032
1e−82
93


908
66
700072364H1
SATMON007
g21834
BLASTN
1033
1e−82
93


909
66
700099968H1
SATMON009
g21834
BLASTN
1034
1e−82
93


910
66
700075887H1
SATMON007
g21834
BLASTN
1041
1e−82
92


911
66
700027135H1
SATMON003
g21834
BLASTN
1003
1e−81
90


912
66
700097469H1
SATMON009
g21834
BLASTN
1024
1e−81
93


913
66
700267426H1
SATMON017
g21834
BLASTN
1025
1e−81
93


914
66
700215049H1
SATMON016
g21834
BLASTN
1074
1e−80
90


915
66
700619962H1
SATMON034
g21834
BLASTN
733
1e−79
93


916
66
700332089H1
SATMON019
g21834
BLASTN
997
1e−79
94


917
66
700351610H1
SATMON023
g21834
BLASTN
998
1e−79
94


918
66
700075430H1
SATMON007
g21834
BLASTN
1003
1e−79
93


919
66
700092332H1
SATMON008
g21834
BLASTN
1059
1e−79
94


920
66
700405456H1
SATMON029
g21834
BLASTN
858
1e−78
85


921
66
700798970H1
SATMON036
g21834
BLASTN
962
1e−78
89


922
66
700028644H1
SATMON003
g21834
BLASTN
1043
1e−78
88


923
66
700092404H1
SATMON008
g21834
BLASTN
1050
1e−78
81


924
66
700093208H1
SATMON008
g21834
BLASTN
1052
1e−78
81


925
66
700073284H1
SATMON007
g21834
BLASTN
977
1e−77
94


926
66
700620115H1
SATMON034
g21834
BLASTN
773
1e−76
94


927
66
700262412H1
SATMON017
g21834
BLASTN
961
1e−76
93


928
66
700025960H1
SATMON003
g21834
BLASTN
962
1e−76
94


929
66
700549575H1
SATMON022
g21834
BLASTN
996
1e−76
88


930
66
700579774H1
SATMON031
g21834
BLASTN
697
1e−75
78


931
66
700264301H1
SATMON017
g21834
BLASTN
839
1e−75
92


932
66
700333669H1
SATMON019
g21834
BLASTN
904
1e−75
91


933
66
700268190H1
SATMON017
g21834
BLASTN
947
1e−75
94


934
66
700050952H1
SATMON003
g21834
BLASTN
954
1e−75
93


935
66
700349338H1
SATMON023
g21834
BLASTN
762
1e−74
89


936
66
700282206H1
SATMON023
g21834
BLASTN
862
1e−74
88


937
66
700344952H1
SATMON021
g21834
BLASTN
926
1e−74
87


938
66
700043612H1
SATMON004
g21834
BLASTN
916
1e−73
92


939
66
700221930H1
SATMON011
g21834
BLASTN
959
1e−73
81


940
66
700204594H1
SATMON003
g21834
BLASTN
924
1e−72
83


941
66
700099108H1
SATMON009
g21834
BLASTN
975
1e−72
82


942
66
700570931H1
SATMON030
g21834
BLASTN
407
1e−70
89


943
66
700077368H1
SATMON007
g21834
BLASTN
888
1e−70
94


944
66
700044806H1
SATMON004
g21834
BLASTN
892
1e−70
94


945
66
700217737H1
SATMON016
g21834
BLASTN
895
1e−70
94


946
66
700805779H1
SATMON036
g21834
BLASTN
898
1e−70
94


947
66
700211352H1
SATMON016
g21834
BLASTN
903
1e−70
90


948
66
700088868H1
SATMON011
g21834
BLASTN
947
1e−70
88


949
66
700348871H1
SATMON023
g21834
BLASTN
953
1e−70
86


950
66
700243521H1
SATMON010
g21834
BLASTN
874
1e−69
94


951
66
700350430H1
SATMON023
g21834
BLASTN
889
1e−69
94


952
66
700150315H1
SATMON007
g21834
BLASTN
945
1e−69
93


953
66
700350880H1
SATMON023
g21834
BLASTN
424
1e−68
88


954
66
700093908H1
SATMON008
g21834
BLASTN
821
1e−68
87


955
66
700076677H1
SATMON007
g21834
BLASTN
865
1e−68
95


956
66
700091547H1
SATMON011
g21834
BLASTN
867
1e−68
94


957
66
700458384H1
SATMON029
g21834
BLASTN
868
1e−68
93


958
66
700222907H1
SATMON011
g21834
BLASTN
879
1e−68
94


959
66
700618842H1
SATMON034
g21834
BLASTN
526
1e−67
94


960
66
700339442H1
SATMON020
g21834
BLASTN
771
1e−67
82


961
66
700240067H1
SATMON010
g21834
BLASTN
913
1e−67
82


962
66
700266865H1
SATMON017
g21834
BLASTN
907
1e−66
88


963
66
700451654H1
SATMON028
g21834
BLASTN
461
1e−65
93


964
66
700087164H1
SATMON011
g21834
BLASTN
644
1e−65
88


965
66
700343701H1
SATMON021
g21834
BLASTN
699
1e−65
88


966
66
700800530H1
SATMON036
g21834
BLASTN
708
1e−65
94


967
66
700441116H1
SATMON026
g21834
BLASTN
440
1e−64
87


968
66
700094769H1
SATMON008
g21834
BLASTN
779
1e−63
92


969
66
700457925H1
SATMON029
g21834
BLASTN
785
1e−63
85


970
66
700571062H1
SATMON030
g21834
BLASTN
826
1e−63
95


971
66
700258601H1
SATMON017
g21834
BLASTN
708
1e−62
95


972
66
700579874H1
SATMON031
g21834
BLASTN
773
1e−62
83


973
66
700454374H1
SATMON029
g21834
BLASTN
825
1e−62
91


974
66
700094413H1
SATMON008
g21834
BLASTN
668
1e−61
92


975
66
700072959H1
SATMON007
g21834
BLASTN
701
1e−61
95


976
66
700161495H1
SATMON012
g21834
BLASTN
765
1e−61
85


977
66
700153976H1
SATMON007
g21834
BLASTN
778
1e−61
95


978
66
700156134H2
SATMON007
g21834
BLASTN
778
1e−61
95


979
66
700043126H1
SATMON004
g21834
BLASTN
845
1e−61
83


980
66
700159683H1
SATMON012
g21834
BLASTN
845
1e−61
82


981
66
700157671H1
SATMON012
g21834
BLASTN
835
1e−60
83


982
66
700549008H1
SATMON022
g21834
BLASTN
691
1e−59
81


983
66
700104417H1
SATMON010
g21834
BLASTN
756
1e−59
91


984
66
700094721H1
SATMON008
g21834
BLASTN
815
1e−59
94


985
66
700611620H1
SATMON022
g21834
BLASTN
818
1e−59
82


986
66
700455655H1
SATMON029
g21834
BLASTN
357
1e−58
92


987
66
700549606H1
SATMON022
g21834
BLASTN
425
1e−58
79


988
66
700165361H1
SATMON013
g21834
BLASTN
748
1e−58
95


989
66
700076792H1
SATMON007
g21834
BLASTN
749
1e−58
94


990
66
700048731H1
SATMON003
g21834
BLASTN
808
1e−58
78


991
66
700168266H1
SATMON013
g21834
BLASTN
811
1e−58
82


992
66
700045117H1
SATMON004
g21834
BLASTN
812
1e−58
80


993
66
700209421H1
SATMON016
g21834
BLASTN
813
1e−58
95


994
66
700806575H1
SATMON036
g21834
BLASTN
736
1e−57
94


995
66
700456047H1
SATMON029
g21834
BLASTN
796
1e−57
81


996
66
700623432H1
SATMON034
g21834
BLASTN
801
1e−57
91


997
66
700569724H1
SATMON030
g21834
BLASTN
525
1e−56
80


998
66
700220377H1
SATMON011
g21834
BLASTN
732
1e−56
83


999
66
700336275H1
SATMON019
g21834
BLASTN
621
1e−55
87


1000
66
700151932H1
SATMON007
g21834
BLASTN
711
1e−55
94


1001
66
700258488H1
SATMON017
g21834
BLASTN
693
1e−54
94


1002
66
700333184H1
SATMON019
g21834
BLASTN
708
1e−54
93


1003
66
700236590H1
SATMON010
g21834
BLASTN
759
1e−54
94


1004
66
700440409H1
SATMON026
g21834
BLASTN
392
1e−53
83


1005
66
700615448H1
SATMON033
g21834
BLASTN
402
1e−53
91


1006
66
700023196H1
SATMON003
g21834
BLASTN
738
1e−52
80


1007
66
700577864H1
SATMON031
g1161601
BLASTN
399
1e−51
76


1008
66
700073368H1
SATMON007
g1161601
BLASTN
429
1e−51
78


1009
66
700344214H1
SATMON021
g21834
BLASTN
400
1e−49
86


1010
66
700019682H1
SATMON001
g21834
BLASTN
694
1e−49
83


1011
66
700153175H1
SATMON007
g21834
BLASTN
701
1e−49
79


1012
66
700236532H1
SATMON010
g1161601
BLASTN
435
1e−48
76


1013
66
700263441H1
SATMON017
g21834
BLASTN
688
1e−48
91


1014
66
700473818H1
SATMON025
g21834
BLASTN
667
1e−46
92


1015
66
700471618H1
SATMON025
g21834
BLASTN
591
1e−45
95


1016
66
700612632H1
SATMON033
g21834
BLASTN
591
1e−45
91


1017
66
700266580H1
SATMON017
g21834
BLASTN
455
1e−43
84


1018
66
700474244H1
SATMON025
g21834
BLASTN
563
1e−43
92


1019
66
700195129H1
SATMON014
g21834
BLASTN
627
1e−43
86


1020
66
700104765H1
SATMON010
g21834
BLASTN
627
1e−43
86


1021
66
700029314H1
SATMON003
g21834
BLASTN
627
1e−43
86


1022
66
700041618H1
SATMON004
g21834
BLASTN
627
1e−43
86


1023
66
700050511H1
SATMON003
g21834
BLASTN
618
1e−42
86


1024
66
700195775H1
SATMON014
g21834
BLASTN
620
1e−42
86


1025
66
700195425H1
SATMON014
g21834
BLASTN
604
1e−41
75


1026
66
700440268H1
SATMON026
g21834
BLASTN
608
1e−41
86


1027
66
700160639H1
SATMON012
g21834
BLASTN
609
1e−41
85


1028
66
700617741H1
SATMON033
g2982312
BLASTN
402
1e−40
77


1029
66
700578506H1
SATMON031
g21834
BLASTN
580
1e−39
82


1030
66
700618491H2
SATMON033
g21834
BLASTN
591
1e−39
85


1031
66
700803231H1
SATMON036
g21834
BLASTN
455
1e−38
86


1032
66
700195008H1
SATMON014
g21834
BLASTN
559
1e−37
80


1033
66
700257337H1
SATMON017
g21834
BLASTN
463
1e−35
90


1034
66
700153701H1
SATMON007
g21834
BLASTN
529
1e−35
86


1035
66
700458028H1
SATMON029
g21834
BLASTN
270
1e−33
85


1036
66
700350024H1
SATMON023
g21834
BLASTN
387
1e−33
83


1037
66
700150871H1
SATMON007
g21834
BLASTN
431
1e−32
90


1038
66
700804078H1
SATMON036
g21834
BLASTN
491
1e−32
83


1039
66
700267617H1
SATMON017
g21834
BLASTN
423
1e−31
93


1040
66
701165809H1
SATMONN04
g21834
BLASTN
279
1e−26
83


1041
66
700552775H1
SATMON022
g21834
BLASTN
429
1e−25
79


1042
66
700616491H1
SATMON033
g21835
BLASTX
89
1e−16
82


1043
66
700450825H1
SATMON028
g21834
BLASTN
240
1e−16
90


1044
66
700334736H1
SATMON019
g1161602
BLASTX
126
1e−14
76


1045
66
700202264H1
SATMON003
g21834
BLASTN
214
1e−14
92


1046
66
700583352H1
SATMON031
g1161602
BLASTX
117
1e−9
100


1047
66
700802543H1
SATMON036
g21834
BLASTN
233
1e−9
94


1048
66
700018689H1
SATMON001
g3309631
BLASTX
103
1e−8
89


1049
-L30621557
LIB3062-018-
LIB3062
g313266
BLASTN
776
1e−60
79




Q1-K1-F2


1050
-L30624706
LIB3062-049-
LIB3062
g21832
BLASTN
906
1e−102
79




Q1-K1-H7


1051
-L30672623
LIB3067-004-
LIB3067
g21834
BLASTN
571
1e−38
89




Q1-K1-A5


1052
16294
LIB3078-050-
LIB3078
g21832
BLASTN
747
1e−60
83




Q1-K1-D12


1053
16294
LIB3078-049-
LIB3078
g21832
BLASTN
207
1e−14
84




Q1-K1-H7


1054
2232
LIB3078-002-
LIB3078
g21832
BLASTN
1606
1e−125
87




Q1-K1-C4


1055
2232
LIB36-001-
LIB36
g21832
BLASTN
1293
1e−123
84




Q1-E1-B11


1056
2232
LIB36-009-
LIB36
g21832
BLASTN
1591
1e−123
88




Q1-E1-G7


1057
2232
LIB3078-003-
LIB3078
g21832
BLASTN
1429
1e−117
88




Q1-K1-G10


1058
2232
LIB36-008-
LIB36
g21832
BLASTN
1340
1e−110
84




Q1-E1-H5


1059
2232
LIB3078-014-
LIB3078
g21832
BLASTN
1422
1e−109
86




Q1-K1-F7


1060
2232
LIB36-017-
LIB36
g21832
BLASTN
1230
1e−99
84




Q1-E1-D8


1061
2232
LIB3078-052-
LIB3078
g21832
BLASTN
1045
1e−96
79




Q1-K1-F3


1062
2232
11-LIB189-
LIB189
g21832
BLASTN
912
1e−72
81




015-Q1-E1-




C11


1063
2769
LIB143-014-
LIB143
g21834
BLASTN
199
1e−10
82




Q1-E1-A9


1064
66
LIB3060-012-
LIB3060
g21834
BLASTN
1691
1e−132
87




Q1-K1-H11


1065
66
LIB3069-045-
LIB3069
g21834
BLASTN
1224
1e−124
92




Q1-K1-C4


1066
66
LIB3059-047-
LIB3059
g21834
BLASTN
1338
1e−115
92




Q1-K1-A8


1067
66
LIB189-027-
LIB189
g21834
BLASTN
1485
1e−115
88




Q1-E1-D10


1068
66
LIB83-006-
LIB83
g21834
BLASTN
1148
1e−114
80




Q1-E1-F2


1069
66
LIB3060-017-
LIB3060
g21834
BLASTN
1187
1e−113
79




Q1-K1-G5


1070
66
LIB143-011-
LIB143
g21834
BLASTN
1412
1e−113
93




Q1-E1-B6


1071
66
LIB3059-006-
LIB3059
g21834
BLASTN
1452
1e−112
82




Q1-K1-A4


1072
66
LIB143-011-
LIB143
g21834
BLASTN
1460
1e−112
89




Q1-E1-E3


1073
66
LIB3059-041-
LIB3059
g21834
BLASTN
1441
1e−111
82




Q1-K1-D2


1074
66
LIB3079-002-
LIB3079
g21834
BLASTN
977
1e−101
85




Q1-K1-H3


1075
66
LIB3061-049-
LIB3061
g21834
BLASTN
1247
1e−99
79




Q1-K1-G6


1076
66
LIB3059-038-
LIB3059
g21834
BLASTN
1094
1e−97
81




Q1-K1-H8


1077
66
LIB3062-017-
LIB3062
g21834
BLASTN
1236
1e−97
93




Q1-K1-D10


1078
66
LIB3059-022-
LIB3059
g21834
BLASTN
982
1e−94
82




Q1-K1-C10


1079
66
LIB3059-027-
LIB3059
g21834
BLASTN
1029
1e−89
78




Q1-K1-C7


1080
66
LIB3060-011-
LIB3060
g21834
BLASTN
1139
1e−86
81




Q1-K1-A10


1081
66
LIB3067-046-
LIB3067
g21834
BLASTN
967
1e−82
75




Q1-K1-A9


1082
66
LIB3061-049-
LIB3061
g21834
BLASTN
950
1e−79
91




Q1-K1-G5


1083
66
LIB3067-007-
LIB3067
g21834
BLASTN
979
1e−72
81




Q1-K1-E6


1084
66
LIB143-052-
LIB143
g1161601
BLASTN
528
1e−69
77




Q1-E1-C5


1085
66
LIB143-068-
LIB143
g21834
BLASTN
879
1e−67
90




Q1-E1-H4


1086
66
LIB3069-052-
LIB3069
g21834
BLASTN
843
1e−65
93




Q1-K1-E12


1087
66
LIB3059-012-
LIB3059
g21834
BLASTN
611
1e−62
82




Q1-K1-B7


1088
66
LIB3078-056-
LIB3078
g1161601
BLASTN
467
1e−58
77




Q1-K1-D5


1089
66
LIB3062-035-
LIB3062
g21834
BLASTN
320
1e−47
81




Q1-K1-H2


1090
66
LIB3069-045-
LIB3069
g21834
BLASTN
627
1e−41
86




Q1-K1-D11







SOYBEAN PHOSPHOGLYCERATE KINASE















1091
-700561750
700561750H1
SOYMON002
g1161602
BLASTX
98
1e−16
90


1092
-700655290
700655290H1
SOYMON004
g1177860
BLASTX
58
1e−14
67


1093
-700846548
700846548H1
SOYMON021
g21833
BLASTX
158
1e−14
83


1094
-700867263
700867263H1
SOYMON016
g1161602
BLASTX
132
1e−11
85


1095
-700989319
700989319H1
SOYMON011
g1022803
BLASTX
99
1e−15
72


1096
-700998533
700998533H1
SOYMON018
g2257597
BLASTN
406
1e−25
75


1097
-701104514
701104514H1
SOYMON036
g21272
BLASTX
169
1e−17
78


1098
-701108251
701108251H1
SOYMON036
g21271
BLASTN
561
1e−37
83


1099
16
701045420H1
SOYMON032
g2257597
BLASTN
937
1e−69
92


1100
16
700979939H1
SOYMON009
g21271
BLASTN
921
1e−67
82


1101
16
700962832H1
SOYMON022
g1022804
BLASTN
882
1e−64
82


1102
16
700648009H1
SOYMON003
g21271
BLASTN
859
1e−62
75


1103
16
700901512H1
SOYMON027
g1022804
BLASTN
840
1e−61
79


1104
16
701120901H1
SOYMON037
g21271
BLASTN
816
1e−59
76


1105
16
700731242H1
SOYMON009
g1022804
BLASTN
803
1e−58
80


1106
16
700995275H1
SOYMON011
g1022804
BLASTN
791
1e−57
84


1107
16
700566593H1
SOYMON002
g1161601
BLASTN
795
1e−57
75


1108
16
701152346H1
SOYMON031
g1161599
BLASTN
636
1e−56
78


1109
16
700999851H1
SOYMON018
g21271
BLASTN
769
1e−55
83


1110
16
700877067H1
SOYMON018
g1022804
BLASTN
774
1e−55
82


1111
16
700743313H1
SOYMON012
g1022804
BLASTN
765
1e−54
84


1112
16
700605425H2
SOYMON004
g1161601
BLASTN
747
1e−53
75


1113
16
700846107H1
SOYMON021
g1161601
BLASTN
750
1e−53
76


1114
16
700755167H1
SOYMON014
g1022804
BLASTN
730
1e−52
80


1115
16
700986996H1
SOYMON009
g21271
BLASTN
736
1e−52
73


1116
16
700873077H1
SOYMON018
g1161601
BLASTN
721
1e−51
75


1117
16
700995849H1
SOYMON011
g1161601
BLASTN
698
1e−49
76


1118
16
700754326H1
SOYMON014
g1022804
BLASTN
301
1e−48
84


1119
16
701063449H1
SOYMON033
g1161601
BLASTN
685
1e−48
75


1120
16
700906269H1
SOYMON022
g1161601
BLASTN
687
1e−48
73


1121
16
701121153H1
SOYMON037
g1161601
BLASTN
669
1e−46
76


1122
16
700750611H1
SOYMON014
g1161601
BLASTN
653
1e−45
75


1123
16
701051356H1
SOYMON032
g1161601
BLASTN
636
1e−44
74


1124
16
701040938H1
SOYMON029
g1161601
BLASTN
637
1e−44
76


1125
16
701141327H1
SOYMON038
g1161601
BLASTN
638
1e−44
76


1126
16
701041022H1
SOYMON029
g1161601
BLASTN
642
1e−44
76


1127
16
700560223H1
SOYMON001
g1161601
BLASTN
548
1e−42
77


1128
16
701069688H1
SOYMON034
g1161601
BLASTN
610
1e−42
74


1129
16
700868226H1
SOYMON016
g1161601
BLASTN
593
1e−40
75


1130
16
700867389H1
SOYMON016
g1022804
BLASTN
476
1e−39
82


1131
16
700792652H1
SOYMON017
g1161601
BLASTN
574
1e−39
75


1132
16
701206846H1
SOYMON035
g1161601
BLASTN
576
1e−39
78


1133
16
700966925H1
SOYMON029
g1161601
BLASTN
577
1e−39
76


1134
16
700676242H1
SOYMON007
g1161601
BLASTN
579
1e−39
75


1135
16
700982087H1
SOYMON009
g1161601
BLASTN
533
1e−38
76


1136
16
701206122H1
SOYMON035
g1161601
BLASTN
541
1e−38
76


1137
16
700561967H1
SOYMON002
g1161601
BLASTN
566
1e−38
78


1138
16
701038580H1
SOYMON029
g1161601
BLASTN
568
1e−38
78


1139
16
700831261H1
SOYMON019
g21834
BLASTN
569
1e−38
77


1140
16
700909538H1
SOYMON022
g1161601
BLASTN
475
1e−37
75


1141
16
701109480H1
SOYMON036
g1161601
BLASTN
551
1e−37
76


1142
16
700754158H1
SOYMON014
g1161601
BLASTN
552
1e−37
74


1143
16
701138938H1
SOYMON038
g1161601
BLASTN
558
1e−37
77


1144
16
700728645H1
SOYMON009
g1161601
BLASTN
559
1e−37
77


1145
16
701037523H1
SOYMON029
g1161601
BLASTN
560
1e−37
73


1146
16
700746355H1
SOYMON013
g1161601
BLASTN
544
1e−36
81


1147
16
700753250H1
SOYMON014
g1161601
BLASTN
544
1e−36
81


1148
16
700742113H1
SOYMON012
g1022804
BLASTN
546
1e−36
85


1149
16
700754067H1
SOYMON014
g1161599
BLASTN
547
1e−36
76


1150
16
701060528H1
SOYMON033
g1161601
BLASTN
548
1e−36
77


1151
16
701002709H2
SOYMON019
g1161601
BLASTN
549
1e−36
76


1152
16
700958261H1
SOYMON022
g1161601
BLASTN
549
1e−36
76


1153
16
701212692H1
SOYMON035
g1161601
BLASTN
549
1e−36
76


1154
16
701129677H1
SOYMON037
g1161601
BLASTN
301
1e−35
75


1155
16
700755130H1
SOYMON014
g1161601
BLASTN
526
1e−35
80


1156
16
700855106H1
SOYMON023
g1161601
BLASTN
528
1e−35
75


1157
16
700672102H1
SOYMON006
g1161601
BLASTN
530
1e−35
75


1158
16
700985023H1
SOYMON009
g1161601
BLASTN
530
1e−35
73


1159
16
700561815H1
SOYMON002
g1161601
BLASTN
531
1e−35
77


1160
16
700650261H1
SOYMON003
g1161601
BLASTN
535
1e−35
81


1161
16
701155840H1
SOYMON031
g1161601
BLASTN
535
1e−35
81


1162
16
701011614H1
SOYMON019
g1161601
BLASTN
535
1e−35
75


1163
16
700756614H1
SOYMON014
g1161601
BLASTN
536
1e−35
80


1164
16
700753242H1
SOYMON014
g1161601
BLASTN
537
1e−35
77


1165
16
701062065H1
SOYMON033
g1161601
BLASTN
343
1e−34
76


1166
16
700734980H1
SOYMON010
g1161601
BLASTN
372
1e−34
78


1167
16
700894670H1
SOYMON024
g1161601
BLASTN
515
1e−34
80


1168
16
701004704H1
SOYMON019
g1161601
BLASTN
521
1e−34
80


1169
16
701125560H1
SOYMON037
g1161601
BLASTN
504
1e−33
81


1170
16
700673963H1
SOYMON007
g1161601
BLASTN
512
1e−33
80


1171
16
700664685H1
SOYMON005
g218212
BLASTN
417
1e−32
71


1172
16
700756635H1
SOYMON014
g1161601
BLASTN
498
1e−32
66


1173
16
701066933H1
SOYMON034
g1161601
BLASTN
487
1e−31
80


1174
16
701156137H1
SOYMON031
g1161601
BLASTN
412
1e−30
81


1175
16
701043044H1
SOYMON029
g1161601
BLASTN
456
1e−29
79


1176
16
700832331H1
SOYMON019
g1161601
BLASTN
387
1e−28
79


1177
16
701046244H1
SOYMON032
g1161601
BLASTN
451
1e−28
81


1178
16
700555893H1
SOYMON001
g1161602
BLASTX
153
1e−26
81


1179
16
700999829H1
SOYMON018
g21271
BLASTN
355
1e−26
73


1180
16
701142924H2
SOYMON038
g1161601
BLASTN
428
1e−26
81


1181
16
701156281H1
SOYMON031
g1161601
BLASTN
428
1e−26
81


1182
16
701015402H1
SOYMON019
g1161602
BLASTX
126
1e−23
78


1183
16
700870906H1
SOYMON018
g1161602
BLASTX
108
1e−19
85


1184
16
701060159H1
SOYMON033
g1161601
BLASTN
348
1e−18
72


1185
16
700830018H1
SOYMON019
g1161602
BLASTX
116
1e−16
73


1186
16
700910043H1
SOYMON022
g1161601
BLASTN
328
1e−16
75


1187
16
701043760H1
SOYMON032
g1161602
BLASTX
154
1e−14
83


1188
16
700845883H1
SOYMON021
g1022805
BLASTX
86
1e−13
77


1189
16
700967838H1
SOYMON033
g1161602
BLASTX
87
1e−11
59


1190
16
700731857H1
SOYMON010
g21835
BLASTX
71
1e−10
58


1191
16
701064594H1
SOYMON034
g1161602
BLASTX
125
1e−10
86


1192
16
701062162H1
SOYMON033
g1161599
BLASTN
255
1e−10
72


1193
1699
700560995H1
SOYMON001
g1022804
BLASTN
986
1e−73
82


1194
1699
700562380H1
SOYMON002
g1022804
BLASTN
954
1e−70
82


1195
1699
700985880H1
SOYMON009
g1161599
BLASTN
957
1e−70
82


1196
1699
700560287H1
SOYMON001
g1022802
BLASTN
924
1e−68
80


1197
1699
700963530H1
SOYMON022
g3328121
BLASTN
886
1e−65
80


1198
1699
700875947H1
SOYMON018
g1161599
BLASTN
862
1e−63
83


1199
1699
701000877H1
SOYMON018
g3328121
BLASTN
871
1e−63
78


1200
1699
700875149H1
SOYMON018
g1161599
BLASTN
854
1e−62
82


1201
1699
700562040H1
SOYMON002
g1022804
BLASTN
589
1e−60
82


1202
1699
700988386H1
SOYMON009
g1022804
BLASTN
831
1e−60
80


1203
1699
700684389H1
SOYMON008
g3328121
BLASTN
834
1e−60
81


1204
1699
700561801H1
SOYMON002
g1161599
BLASTN
769
1e−59
77


1205
1699
700898022H1
SOYMON027
g1022802
BLASTN
817
1e−59
80


1206
1699
700790662H2
SOYMON011
g1161599
BLASTN
806
1e−58
82


1207
1699
700684507H1
SOYMON008
g1022802
BLASTN
609
1e−57
80


1208
1699
700844926H1
SOYMON021
g1022802
BLASTN
777
1e−56
81


1209
1699
700875409H1
SOYMON018
g21271
BLASTN
585
1e−55
80


1210
1699
700677812H1
SOYMON007
g21271
BLASTN
776
1e−55
82


1211
1699
701133849H1
SOYMON038
g21832
BLASTN
759
1e−54
80


1212
1699
700978393H1
SOYMON009
g21271
BLASTN
440
1e−53
82


1213
1699
700741608H1
SOYMON012
g3328121
BLASTN
669
1e−53
79


1214
1699
700741228H1
SOYMON012
g1022804
BLASTN
753
1e−53
81


1215
1699
700562038H1
SOYMON002
g21271
BLASTN
662
1e−52
82


1216
1699
700740204H1
SOYMON012
g3328121
BLASTN
730
1e−52
81


1217
1699
700740733H1
SOYMON012
g1161599
BLASTN
662
1e−51
80


1218
1699
700685870H1
SOYMON008
g1022802
BLASTN
720
1e−51
81


1219
1699
700554310H1
SOYMON001
g1161599
BLASTN
558
1e−49
76


1220
1699
700863147H1
SOYMON023
g21832
BLASTN
704
1e−49
83


1221
1699
700991401H1
SOYMON011
g3328121
BLASTN
591
1e−48
80


1222
1699
700998332H1
SOYMON018
g1022802
BLASTN
678
1e−47
81


1223
1699
700945115H1
SOYMON024
g21271
BLASTN
408
1e−46
77


1224
1699
700556386H1
SOYMON001
g21271
BLASTN
615
1e−46
81


1225
1699
700566403H1
SOYMON002
g21271
BLASTN
667
1e−46
80


1226
1699
700683958H1
SOYMON008
g1161599
BLASTN
299
1e−45
83


1227
1699
700686245H1
SOYMON008
g1022802
BLASTN
456
1e−40
84


1228
1699
700787536H1
SOYMON011
g1161599
BLASTN
581
1e−39
81


1229
1699
700740635H1
SOYMON012
g1022804
BLASTN
363
1e−38
84


1230
1699
700875038H1
SOYMON018
g1161599
BLASTN
551
1e−37
81


1231
1699
700677613H1
SOYMON007
g3328121
BLASTN
552
1e−37
83


1232
1699
700683146H1
SOYMON008
g21834
BLASTN
467
1e−29
82


1233
182
700652503H1
SOYMON003
g2257597
BLASTN
861
1e−102
87


1234
182
700653271H1
SOYMON003
g2257597
BLASTN
1303
1e−102
92


1235
182
700653809H1
SOYMON003
g2257597
BLASTN
1303
1e−102
92


1236
182
700653270H1
SOYMON003
g2257597
BLASTN
1303
1e−102
92


1237
182
700653817H1
SOYMON003
g2257597
BLASTN
1289
1e−101
91


1238
182
701105168H1
SOYMON036
g2257597
BLASTN
1219
1e−93
91


1239
182
701045331H1
SOYMON032
g2257597
BLASTN
1194
1e−91
91


1240
182
701049149H1
SOYMON032
g2257597
BLASTN
1162
1e−88
90


1241
182
700661992H1
SOYMON005
g2257597
BLASTN
499
1e−85
86


1242
182
701051265H1
SOYMON032
g2257597
BLASTN
1119
1e−85
91


1243
182
701058557H1
SOYMON033
g2257597
BLASTN
893
1e−83
88


1244
182
700956835H1
SOYMON022
g2257597
BLASTN
1102
1e−83
91


1245
182
701054480H1
SOYMON032
g2257597
BLASTN
918
1e−82
87


1246
182
700903222H1
SOYMON022
g2257597
BLASTN
1074
1e−81
90


1247
182
700959058H1
SOYMON022
g2257597
BLASTN
1078
1e−81
91


1248
182
701105272H1
SOYMON036
g2257597
BLASTN
1081
1e−81
89


1249
182
701058567H1
SOYMON033
g2257597
BLASTN
617
1e−80
91


1250
182
701206133H1
SOYMON035
g2257597
BLASTN
1068
1e−80
88


1251
182
701061140H1
SOYMON033
g2257597
BLASTN
556
1e−79
87


1252
182
700749775H1
SOYMON013
g2257597
BLASTN
1054
1e−79
88


1253
182
700946208H1
SOYMON024
g2257597
BLASTN
1056
1e−79
87


1254
182
700952526H1
SOYMON022
g2257597
BLASTN
1027
1e−77
89


1255
182
700902915H1
SOYMON022
g2257597
BLASTN
1028
1e−77
90


1256
182
700739757H1
SOYMON012
g2257597
BLASTN
1029
1e−77
90


1257
182
700685033H1
SOYMON008
g2257597
BLASTN
1034
1e−77
89


1258
182
700890918H1
SOYMON024
g2257597
BLASTN
1017
1e−76
90


1259
182
700849869H1
SOYMON021
g2257597
BLASTN
1006
1e−75
91


1260
182
701132415H1
SOYMON038
g2257597
BLASTN
521
1e−74
89


1261
182
700835725H1
SOYMON019
g2257597
BLASTN
572
1e−74
88


1262
182
701125828H1
SOYMON037
g2257597
BLASTN
988
1e−74
89


1263
182
700891372H1
SOYMON024
g2257597
BLASTN
967
1e−72
90


1264
182
700898167H1
SOYMON027
g2257597
BLASTN
967
1e−72
87


1265
182
700891730H1
SOYMON024
g2257597
BLASTN
941
1e−70
88


1266
182
700901850H1
SOYMON027
g2257597
BLASTN
933
1e−69
93


1267
182
700838329H1
SOYMON020
g2257597
BLASTN
935
1e−69
91


1268
182
700895548H1
SOYMON027
g2257597
BLASTN
916
1e−67
88


1269
182
700645519H1
SOYMON009
g2257597
BLASTN
904
1e−66
91


1270
182
701102605H1
SOYMON028
g2257597
BLASTN
882
1e−65
91


1271
182
701039360H1
SOYMON029
g2257597
BLASTN
546
1e−64
87


1272
182
701151305H1
SOYMON031
g2257597
BLASTN
661
1e−53
93


1273
182
701151405H1
SOYMON031
g2257597
BLASTN
696
1e−49
93


1274
182
700940911H1
SOYMON024
g2257597
BLASTN
356
1e−38
72


1275
182
700648994H1
SOYMON003
g2257597
BLASTN
529
1e−35
85


1276
182
700564729H1
SOYMON002
g2257597
BLASTN
451
1e−28
84


1277
23349
700894074H1
SOYMON024
g143760
BLASTX
137
1e−13
83


1278
5614
700558488H1
SOYMON001
g1161599
BLASTN
949
1e−70
84


1279
5614
700792287H1
SOYMON011
g1161599
BLASTN
935
1e−69
84


1280
5614
701000168H1
SOYMON018
g1161599
BLASTN
916
1e−67
81


1281
5614
700739376H1
SOYMON012
g1161599
BLASTN
920
1e−67
85


1282
5614
700854915H1
SOYMON023
g1161599
BLASTN
894
1e−65
87


1283
5614
700874304H1
SOYMON018
g1161599
BLASTN
827
1e−60
82


1284
5614
700656867H1
SOYMON004
g1161599
BLASTN
626
1e−43
84


1285
5614
700996544H1
SOYMON018
g1161599
BLASTN
385
1e−40
75


1286
5614
700742706H1
SOYMON012
g1161600
BLASTX
160
1e−15
88


1287
-GM16843
LIB3055-001-
LIB3055
g1022802
BLASTN
665
1e−48
71




Q1-B1-B7


1288
-GM3918
LIB3029-012-
LIB3029
g21834
BLASTN
241
1e−8
66




Q1-B1-G1


1289
16
LIB3040-022-
LIB3040
g1161601
BLASTN
1074
1e−78
72




Q1-E1-D5


1290
16
LIB3039-049-
LIB3039
g1161601
BLASTN
906
1e−66
75




Q1-E1-D8


1291
16
LIB3052-002-
LIB3052
g1161601
BLASTN
858
1e−62
75




Q1-B1-H2


1292
16
LIB3040-020-
LIB3040
g1161601
BLASTN
842
1e−61
75




Q1-E1-C8


1293
16
LIB3056-007-
LIB3056
g1161601
BLASTN
849
1e−61
75




Q1-N1-G5


1294
16
LIB3039-040-
LIB3039
g1161601
BLASTN
767
1e−55
74




Q1-E1-D8


1295
16
LIB3040-033-
LIB3040
g1161601
BLASTN
418
1e−47
75




Q1-E1-B5


1296
16
LIB3039-012-
LIB3039
g1161601
BLASTN
643
1e−42
74




Q1-E1-F12


1297
16
LIB3053-014-
LIB3053
g1161602
BLASTX
101
1e−39
58




Q1-N1-A3


1298
1699
LIB3028-001-
LIB3028
g21271
BLASTN
1151
1e−87
78




Q1-B1-A12


1299
1699
LIB3065-008-
LIB3065
g21832
BLASTN
606
1e−40
79




Q1-N1-F5


1300
1699
LIB3055-012-
LIB3055
g21832
BLASTN
457
1e−26
83




Q1-N1-E3


1301
1699
LIB3055-005-
LIB3055
g21832
BLASTN
263
1e−13
76




Q1-N1-A2


1302
182
LIB3051-039-
LIB3051
g2257597
BLASTN
1757
1e−140
90




Q1-K1-B6


1303
182
LIB3054-007-
LIB3054
g2257597
BLASTN
1354
1e−112
88




Q1-N1-A7


1304
182
LIB3039-027-
LIB3039
g2257597
BLASTN
1089
1e−110
90




Q1-E1-H9


1305
5614
LIB3049-026-
LIB3049
g1161599
BLASTN
798
1e−88
84




Q1-E1-D8


1306
5614
LIB3028-006-
LIB3028
g1161599
BLASTN
935
1e−69
86




Q1-B1-C12


1307
5614
LIB3028-007-
LIB3028
g1161599
BLASTN
665
1e−44
83




Q1-B1-C11







MAIZE GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE















1308
-700016883
700016883H1
SATMON001
g1185553
BLASTN
459
1e−35
95


1309
-700021845
700021845H1
SATMON001
g1185553
BLASTN
379
1e−22
95


1310
-700042428
700042428H1
SATMON004
g168520
BLASTN
810
1e−61
87


1311
-700042586
700042586H1
SATMON004
g168478
BLASTN
572
1e−68
96


1312
-700076627
700076627H1
SATMON007
g1185553
BLASTN
406
1e−23
89


1313
-700082565
700082565H1
SATMON011
g1185553
BLASTN
415
1e−23
78


1314
-700083976
700083976H1
SATMON011
g22237
BLASTN
365
1e−21
90


1315
-700085105
700085105H1
SATMON011
g1185553
BLASTN
344
1e−17
74


1316
-700087058
700087058H1
SATMON011
g1184773
BLASTN
278
1e−14
98


1317
-700087967
700087967H1
SATMON011
g168478
BLASTN
1240
1e−94
100


1318
-700095618
700095618H1
SATMON008
g168478
BLASTN
567
1e−84
89


1319
-700098365
700098365H1
SATMON009
g168478
BLASTN
222
1e−9
80


1320
-700100580
700100580H1
SATMON009
g168478
BLASTN
463
1e−54
96


1321
-700103906
700103906H1
SATMON010
g1185553
BLASTN
329
1e−32
86


1322
-700152882
700152882H1
SATMON007
g293886
BLASTN
578
1e−39
94


1323
-700155165
700155165H1
SATMON007
g1184771
BLASTN
450
1e−28
100


1324
-700157523
700157523H1
SATMON012
g1185553
BLASTN
337
1e−17
97


1325
-700163947
700163947H1
SATMON013
g717080
BLASTN
327
1e−16
82


1326
-700197939
700197939H1
SATMON016
g22237
BLASTN
635
1e−44
82


1327
-700201904
700201904H1
SATMON003
g1185553
BLASTN
397
1e−22
88


1328
-700204190
700204190H1
SATMON003
g22302
BLASTN
295
1e−43
90


1329
-700236061
700236061H1
SATMON010
g1185553
BLASTN
273
1e−12
79


1330
-700238253
700238253H1
SATMON010
g2143408
BLASTN
1099
1e−82
96


1331
-700256918
700256918H1
SATMON017
g474407
BLASTN
1367
1e−112
98


1332
-700259576
700259576H1
SATMON017
g717080
BLASTN
280
1e−48
81


1333
-700263524
700263524H1
SATMON017
g22302
BLASTN
547
1e−59
97


1334
-700281884
700281884H2
SATMON021
g717080
BLASTN
296
1e−14
65


1335
-700340490
700340490H1
SATMON020
g1185553
BLASTN
372
1e−22
88


1336
-700346430
700346430H1
SATMON021
g1185553
BLASTN
334
1e−20
85


1337
-700349202
700349202H1
SATMON023
g157476
BLASTX
126
1e−22
71


1338
-700349272
700349272H1
SATMON023
g1100222
BLASTN
466
1e−28
67


1339
-700356209
700356209H1
SATMON024
g1184773
BLASTN
325
1e−24
95


1340
-700377496
700377496H1
SATMON019
g1184773
BLASTN
549
1e−70
93


1341
-700404753
700404753H1
SATMON026
g168520
BLASTN
455
1e−29
88


1342
-700421516
700421516H1
SATMONN01
g717080
BLASTN
269
1e−17
83


1343
-700427941
700427941H1
SATMONN01
g717080
BLASTN
524
1e−34
68


1344
-700428888
700428888H1
SATMONN01
g22302
BLASTN
232
1e−10
70


1345
-700432127
700432127H1
SATMONN01
g168521
BLASTN
269
1e−21
97


1346
-700438281
700438281H1
SATMON026
g168478
BLASTN
283
1e−38
92


1347
-700551026
700551026H1
SATMON022
g1185553
BLASTN
243
1e−9
72


1348
-700553346
700553346H1
SATMON022
g717080
BLASTN
218
1e−12
80


1349
-700570760
700570760H1
SATMON030
g1184773
BLASTN
358
1e−21
76


1350
-700580159
700580159H1
SATMON031
g1185553
BLASTN
381
1e−22
76


1351
-700616468
700616468H1
SATMON033
g1100225
BLASTX
160
1e−15
85


1352
-700616996
700616996H1
SATMON033
g20732
BLASTN
468
1e−30
80


1353
-700618295
700618295H1
SATMON033
g1184773
BLASTN
307
1e−47
89


1354
-700622760
700622760H1
SATMON034
g1184771
BLASTN
358
1e−24
86


1355
-700799777
700799777H1
SATMON036
g12158
BLASTN
198
1e−14
76


1356
-700801109
700801109H1
SATMON036
g22302
BLASTN
978
1e−92
99


1357
-701161482
701161482H1
SATMONN04
g1185553
BLASTN
310
1e−26
91


1358
-701166637
701166637H1
SATMONN04
g1184771
BLASTN
398
1e−24
86


1359
-701169309
701169309H1
SATMONN05
g168478
BLASTN
303
1e−14
69


1360
-701182137
701182137H1
SATMONN06
g168478
BLASTN
235
1e−8
91


1361
-701186041
701186041H1
SATMONN06
g1185555
BLASTN
261
1e−12
67


1362
11871
700017162H1
SATMON001
g1185553
BLASTN
479
1e−34
88


1363
11871
700100796H1
SATMON009
g1185553
BLASTN
480
1e−31
87


1364
11926
700623916H1
SATMON034
g168478
BLASTN
255
1e−10
76


1365
11926
700623908H1
SATMON034
g168478
BLASTN
241
1e−9
75


1366
1334
700470437H1
SATMON025
g717080
BLASTN
312
1e−19
80


1367
1334
700578860H1
SATMON031
g717080
BLASTN
310
1e−14
83


1368
14664
700163212H1
SATMON013
g1100222
BLASTN
844
1e−61
80


1369
14664
700382256H1
SATMON024
g1100222
BLASTN
764
1e−54
81


1370
1692
700085317H1
SATMON011
g3059121
BLASTN
970
1e−72
79


1371
1692
700222942H1
SATMON011
g1100222
BLASTN
898
1e−66
81


1372
1692
700618371H1
SATMON033
g3059121
BLASTN
554
1e−65
78


1373
1692
700381022H1
SATMON023
g1100222
BLASTN
660
1e−48
76


1374
1692
700264023H1
SATMON017
g1100222
BLASTN
678
1e−47
84


1375
1692
700258875H1
SATMON017
g1100222
BLASTN
556
1e−44
80


1376
1692
700612308H1
SATMON033
g460978
BLASTN
442
1e−28
80


1377
1692
700552370H1
SATMON022
g624679
BLASTX
124
1e−22
69


1378
1692
700458135H1
SATMON029
g1100222
BLASTN
299
1e−20
83


1379
17968
700339973H1
SATMON020
g1184775
BLASTN
1235
1e−98
100


1380
17968
700800152H1
SATMON036
g1184775
BLASTN
625
1e−43
100


1381
18309
700381457H1
SATMON023
g3101
BLASTN
444
1e−28
72


1382
19858
700102991H1
SATMON010
g1100223
BLASTX
118
1e−9
69


1383
20203
700017766H1
SATMON001
g1185553
BLASTN
525
1e−37
91


1384
20203
700020155H1
SATMON001
g1185553
BLASTN
518
1e−36
90


1385
2148
700617018H1
SATMON033
g474407
BLASTN
960
1e−112
95


1386
2148
701166093H1
SATMONN04
g474407
BLASTN
1005
1e−80
96


1387
2148
700430939H1
SATMONN01
g474407
BLASTN
438
1e−46
91


1388
22918
701175483H1
SATMONN05
g1185553
BLASTN
492
1e−32
88


1389
22918
701176645H1
SATMONN05
g1185553
BLASTN
397
1e−23
81


1390
2468
700100660H1
SATMON009
g168478
BLASTN
1490
1e−115
100


1391
2468
700097261H1
SATMON009
g22239
BLASTN
1135
1e−114
100


1392
2468
700097360H1
SATMON009
g168478
BLASTN
1468
1e−113
99


1393
2468
700098573H1
SATMON009
g22239
BLASTN
1305
1e−100
100


1394
2468
700101255H1
SATMON009
g168478
BLASTN
840
1e−85
96


1395
2468
700580636H1
SATMON031
g22239
BLASTN
903
1e−74
95


1396
2468
700044915H1
SATMON004
g22239
BLASTN
870
1e−63
100


1397
27323
700166009H1
SATMON013
g474407
BLASTN
1166
1e−88
99


1398
27323
700075283H1
SATMON007
g474407
BLASTN
997
1e−74
99


1399
30327
700158422H1
SATMON012
g22302
BLASTN
339
1e−44
83


1400
31280
700470273H1
SATMON025
g1185553
BLASTN
160
1e−8
71


1401
32165
700212044H1
SATMON016
g474407
BLASTN
1468
1e−113
99


1402
325
700201678H1
SATMON003
g22237
BLASTN
1478
1e−132
99


1403
325
700618123H1
SATMON033
g1184775
BLASTN
1007
1e−130
99


1404
325
700091437H1
SATMON011
g1184771
BLASTN
1162
1e−129
97


1405
325
700096907H1
SATMON008
g1184771
BLASTN
1650
1e−128
100


1406
325
700090956H1
SATMON011
g22237
BLASTN
1635
1e−127
100


1407
325
700573711H1
SATMON030
g1184773
BLASTN
1624
1e−126
99


1408
325
700208421H1
SATMON016
g22237
BLASTN
1606
1e−125
99


1409
325
700573153H1
SATMON030
g1184771
BLASTN
1392
1e−124
97


1410
325
700106667H1
SATMON010
g1184771
BLASTN
1595
1e−124
100


1411
325
700266257H1
SATMON017
g1184771
BLASTN
1595
1e−124
100


1412
325
700082726H1
SATMON011
g1184771
BLASTN
1599
1e−124
99


1413
325
700092552H1
SATMON008
g1184771
BLASTN
1585
1e−123
100


1414
325
700075862H1
SATMON007
g1184773
BLASTN
1589
1e−123
99


1415
325
700621325H1
SATMON034
g1184771
BLASTN
1589
1e−123
99


1416
325
700282389H2
SATMON023
g1184771
BLASTN
1590
1e−123
100


1417
325
700082207H1
SATMON011
g1184773
BLASTN
1568
1e−122
99


1418
325
700103258H1
SATMON010
g1184771
BLASTN
1575
1e−122
98


1419
325
700331931H1
SATMON019
g1184771
BLASTN
1575
1e−122
100


1420
325
700575033H1
SATMON030
g22237
BLASTN
763
1e−121
95


1421
325
700073504H1
SATMON007
g1184771
BLASTN
1412
1e−121
97


1422
325
700573737H1
SATMON030
g1184771
BLASTN
1540
1e−121
94


1423
325
700077448H1
SATMON007
g1184775
BLASTN
1555
1e−121
100


1424
325
700082338H1
SATMON011
g1184771
BLASTN
1560
1e−121
100


1425
325
700575985H1
SATMON030
g1184771
BLASTN
1208
1e−120
96


1426
325
700091658H1
SATMON011
g1184771
BLASTN
1453
1e−120
99


1427
325
700259305H1
SATMON017
g22237
BLASTN
1476
1e−120
99


1428
325
700092013H1
SATMON008
g22237
BLASTN
1545
1e−120
100


1429
325
700104625H1
SATMON010
g1184771
BLASTN
1545
1e−120
100


1430
325
700082934H1
SATMON011
g22237
BLASTN
1546
1e−120
99


1431
325
700083987H1
SATMON011
g1184771
BLASTN
1548
1e−120
99


1432
325
700084648H1
SATMON011
g22237
BLASTN
1551
1e−120
99


1433
325
700095742H1
SATMON008
g22237
BLASTN
1552
1e−120
99


1434
325
700049963H1
SATMON003
g1184771
BLASTN
1554
1e−120
99


1435
325
700086285H1
SATMON011
g1184771
BLASTN
1555
1e−120
100


1436
325
700622187H1
SATMON034
g1184771
BLASTN
1555
1e−120
98


1437
325
700082208H1
SATMON011
g1184771
BLASTN
1076
1e−119
99


1438
325
700615142H1
SATMON033
g1184775
BLASTN
1141
1e−119
98


1439
325
700072750H1
SATMON007
g1184773
BLASTN
1538
1e−119
99


1440
325
700210619H1
SATMON016
g22237
BLASTN
1540
1e−119
100


1441
325
700083321H1
SATMON011
g1184771
BLASTN
1540
1e−119
100


1442
325
700090105H1
SATMON011
g1184771
BLASTN
1541
1e−119
99


1443
325
700049167H1
SATMON003
g1184771
BLASTN
1033
1e−118
97


1444
325
700074010H1
SATMON007
g1184773
BLASTN
1523
1e−118
98


1445
325
700101165H1
SATMON009
g22237
BLASTN
1524
1e−118
99


1446
325
700049769H1
SATMON003
g1184771
BLASTN
1525
1e−118
100


1447
325
700263267H1
SATMON017
g1184771
BLASTN
1510
1e−117
100


1448
325
700265580H1
SATMON017
g22237
BLASTN
1510
1e−117
100


1449
325
700266447H1
SATMON017
g22237
BLASTN
1513
1e−117
99


1450
325
700026705H1
SATMON003
g1184771
BLASTN
1515
1e−117
100


1451
325
700098736H1
SATMON009
g22237
BLASTN
1515
1e−117
100


1452
325
700106693H1
SATMON010
g1184775
BLASTN
1517
1e−117
99


1453
325
700086276H1
SATMON011
g22237
BLASTN
1364
1e−116
92


1454
325
700087952H1
SATMON011
g1184771
BLASTN
1381
1e−116
99


1455
325
700206583H1
SATMON003
g22237
BLASTN
1400
1e−116
98


1456
325
700088779H1
SATMON011
g22237
BLASTN
1497
1e−116
99


1457
325
700212176H1
SATMON016
g1184773
BLASTN
1499
1e−116
99


1458
325
700085815H1
SATMON011
g1184773
BLASTN
1500
1e−116
100


1459
325
700085668H1
SATMON011
g22237
BLASTN
1501
1e−116
99


1460
325
700106805H1
SATMON010
g1184771
BLASTN
1501
1e−116
99


1461
325
700103136H1
SATMON010
g1184773
BLASTN
1502
1e−116
99


1462
325
700089503H1
SATMON011
g22237
BLASTN
1507
1e−116
99


1463
325
700260534H2
SATMON017
g22237
BLASTN
792
1e−115
97


1464
325
700083056H1
SATMON011
g1184771
BLASTN
970
1e−115
100


1465
325
700211911H1
SATMON016
g1184771
BLASTN
1300
1e−115
100


1466
325
700343952H1
SATMON021
g22237
BLASTN
1485
1e−115
100


1467
325
700220468H1
SATMON011
g1184771
BLASTN
1485
1e−115
100


1468
325
700331968H1
SATMON019
g1184771
BLASTN
1485
1e−115
100


1469
325
700077160H1
SATMON007
g1184775
BLASTN
1487
1e−115
99


1470
325
700466212H1
SATMON025
g22237
BLASTN
1487
1e−115
98


1471
325
700085480H1
SATMON011
g1184771
BLASTN
1488
1e−115
99


1472
325
700097118H1
SATMON009
g1184773
BLASTN
1489
1e−115
97


1473
325
700267631H1
SATMON017
g22237
BLASTN
1491
1e−115
99


1474
325
700106452H1
SATMON010
g1184771
BLASTN
1492
1e−115
98


1475
325
700349721H1
SATMON023
g1184775
BLASTN
1493
1e−115
99


1476
325
700084191H1
SATMON011
g1184773
BLASTN
1494
1e−115
99


1477
325
700265560H1
SATMON017
g22237
BLASTN
1495
1e−115
100


1478
325
700083729H1
SATMON011
g22237
BLASTN
1495
1e−115
100


1479
325
700074701H1
SATMON007
g1184773
BLASTN
779
1e−114
97


1480
325
700620211H1
SATMON034
g1184771
BLASTN
1149
1e−114
99


1481
325
700026713H1
SATMON003
g22237
BLASTN
1210
1e−114
100


1482
325
700102767H1
SATMON010
g1184773
BLASTN
1256
1e−114
98


1483
325
700048868H1
SATMON003
g1184773
BLASTN
1328
1e−114
99


1484
325
700211328H1
SATMON016
g1184771
BLASTN
1332
1e−114
97


1485
325
700348453H1
SATMON023
g22237
BLASTN
1473
1e−114
99


1486
325
700622770H1
SATMON034
g1184771
BLASTN
1474
1e−114
99


1487
325
700213013H1
SATMON016
g1184773
BLASTN
1479
1e−114
97


1488
325
700093628H1
SATMON008
g22237
BLASTN
1480
1e−114
100


1489
325
700201306H1
SATMON003
g1184775
BLASTN
1480
1e−114
100


1490
325
700083087H1
SATMON011
g22237
BLASTN
1480
1e−114
100


1491
325
700085692H1
SATMON011
g1184773
BLASTN
1481
1e−114
99


1492
325
700263282H1
SATMON017
g22237
BLASTN
1481
1e−114
99


1493
325
700049783H1
SATMON003
g1184773
BLASTN
1133
1e−113
99


1494
325
700446715H1
SATMON027
g22237
BLASTN
1228
1e−113
99


1495
325
700077235H1
SATMON007
g1184773
BLASTN
1460
1e−113
100


1496
325
700028530H1
SATMON003
g1184771
BLASTN
1460
1e−113
100


1497
325
700048175H1
SATMON003
g1184773
BLASTN
1460
1e−113
98


1498
325
700343356H1
SATMON021
g1184773
BLASTN
1464
1e−113
99


1499
325
700073041H1
SATMON007
g1184773
BLASTN
1465
1e−113
100


1500
325
700092544H1
SATMON008
g1184773
BLASTN
1466
1e−113
99


1501
325
700086852H1
SATMON011
g1184773
BLASTN
1470
1e−113
100


1502
325
700357153H1
SATMON024
g1184775
BLASTN
785
1e−112
99


1503
325
700576167H1
SATMON030
g1184771
BLASTN
1151
1e−112
96


1504
325
700262594H1
SATMON017
g22237
BLASTN
1241
1e−112
99


1505
325
700553438H1
SATMON022
g22237
BLASTN
1450
1e−112
100


1506
325
700053639H1
SATMON010
g22237
BLASTN
1450
1e−112
100


1507
325
700093171H1
SATMON008
g1184771
BLASTN
1451
1e−112
99


1508
325
700257051H1
SATMON017
g22237
BLASTN
1451
1e−112
97


1509
325
700106505H1
SATMON010
g1184771
BLASTN
1452
1e−112
99


1510
325
700104544H1
SATMON010
g1184773
BLASTN
1452
1e−112
98


1511
325
700072406H2
SATMON007
g1184771
BLASTN
1455
1e−112
100


1512
325
700048728H1
SATMON003
g1184773
BLASTN
1456
1e−112
98


1513
325
700076367H1
SATMON007
g1184771
BLASTN
1456
1e−112
99


1514
325
700381774H1
SATMON023
g22237
BLASTN
1458
1e−112
95


1515
325
700347358H1
SATMON021
g1184771
BLASTN
1036
1e−111
99


1516
325
700049511H1
SATMON003
g1184771
BLASTN
1051
1e−111
99


1517
325
700075705H1
SATMON007
g22237
BLASTN
1066
1e−111
99


1518
325
700047687H1
SATMON003
g1184771
BLASTN
1191
1e−111
99


1519
325
700206516H1
SATMON003
g1184773
BLASTN
1209
1e−111
97


1520
325
700210478H1
SATMON016
g1184771
BLASTN
1351
1e−111
99


1521
325
700087443H1
SATMON011
g1184771
BLASTN
1390
1e−111
97


1522
325
700103213H1
SATMON010
g1184771
BLASTN
1440
1e−111
100


1523
325
700071776H1
SATMON007
g22237
BLASTN
1442
1e−111
99


1524
325
700073331H1
SATMON007
g1184771
BLASTN
1444
1e−111
99


1525
325
700212530H1
SATMON016
g1184771
BLASTN
1446
1e−111
99


1526
325
700346220H1
SATMON021
g1184775
BLASTN
962
1e−110
98


1527
325
700346201H1
SATMON021
g22237
BLASTN
1089
1e−110
99


1528
325
700434507H1
SATMONN01
g22302
BLASTN
1375
1e−110
100


1529
325
700077047H1
SATMON007
g1184771
BLASTN
1425
1e−110
98


1530
325
700028536H1
SATMON003
g1184771
BLASTN
1425
1e−110
100


1531
325
700096704H1
SATMON008
g1184771
BLASTN
1425
1e−110
100


1532
325
700263591H1
SATMON017
g1184771
BLASTN
1426
1e−110
99


1533
325
700219528H1
SATMON011
g22237
BLASTN
1426
1e−110
99


1534
325
700094978H1
SATMON008
g22237
BLASTN
1431
1e−110
99


1535
325
700549520H1
SATMON022
g22237
BLASTN
1432
1e−110
99


1536
325
700082071H1
SATMON011
g1184773
BLASTN
1434
1e−110
99


1537
325
700092419H1
SATMON008
g1184773
BLASTN
1434
1e−110
93


1538
325
700347660H1
SATMON023
g1184771
BLASTN
1435
1e−110
100


1539
325
700100257H1
SATMON009
g1184771
BLASTN
1048
1e−109
96


1540
325
700381813H1
SATMON023
g22237
BLASTN
1090
1e−109
99


1541
325
700095790H1
SATMON008
g22237
BLASTN
1412
1e−109
99


1542
325
700342267H1
SATMON021
g1184773
BLASTN
1415
1e−109
98


1543
325
700349135H1
SATMON023
g1184771
BLASTN
1416
1e−109
99


1544
325
700344742H1
SATMON021
g22237
BLASTN
1423
1e−109
98


1545
325
700027120H1
SATMON003
g1184775
BLASTN
777
1e−108
99


1546
325
700029549H1
SATMON003
g1184771
BLASTN
1178
1e−108
99


1547
325
700051917H1
SATMON003
g1184775
BLASTN
1349
1e−108
97


1548
325
700053569H1
SATMON010
g22237
BLASTN
1401
1e−108
99


1549
325
700105941H1
SATMON010
g22237
BLASTN
1405
1e−108
100


1550
325
700219201H1
SATMON011
g22237
BLASTN
1406
1e−108
99


1551
325
700050951H1
SATMON003
g1184771
BLASTN
1406
1e−108
99


1552
325
700258792H1
SATMON017
g22237
BLASTN
1411
1e−108
97


1553
325
700084946H1
SATMON011
g22237
BLASTN
793
1e−107
99


1554
325
700571888H1
SATMON030
g1184775
BLASTN
1146
1e−107
96


1555
325
700029725H1
SATMON003
g1184771
BLASTN
1390
1e−107
100


1556
325
700802139H1
SATMON036
g1184773
BLASTN
1391
1e−107
99


1557
325
700030653H1
SATMON003
g22237
BLASTN
1395
1e−107
100


1558
325
700217462H1
SATMON016
g1184771
BLASTN
1395
1e−107
100


1559
325
700382314H1
SATMON024
g1184773
BLASTN
1396
1e−107
99


1560
325
700263059H1
SATMON017
g22237
BLASTN
1342
1e−106
98


1561
325
700332495H1
SATMON019
g1184773
BLASTN
1378
1e−106
98


1562
325
700053881H1
SATMON011
g1184773
BLASTN
1379
1e−106
97


1563
325
700216184H1
SATMON016
g22237
BLASTN
1385
1e−106
100


1564
325
700442583H1
SATMON026
g22237
BLASTN
1385
1e−106
100


1565
325
700089492H1
SATMON011
g1184771
BLASTN
1385
1e−106
100


1566
325
700211930H1
SATMON016
g1184773
BLASTN
1385
1e−106
97


1567
325
700262445H1
SATMON017
g22237
BLASTN
1386
1e−106
99


1568
325
700074068H1
SATMON007
g1184773
BLASTN
1387
1e−106
98


1569
325
700444054H1
SATMON027
g1184771
BLASTN
1387
1e−106
98


1570
325
700207212H1
SATMON017
g1184771
BLASTN
700
1e−105
97


1571
325
700349424H1
SATMON023
g1184773
BLASTN
723
1e−105
96


1572
325
700348215H1
SATMON023
g1184771
BLASTN
990
1e−105
96


1573
325
700345971H1
SATMON021
g1184773
BLASTN
1090
1e−105
98


1574
325
700048167H1
SATMON003
g1184771
BLASTN
1116
1e−105
98


1575
325
700081996H1
SATMON011
g1184771
BLASTN
1143
1e−105
96


1576
325
700104353H1
SATMON010
g1184771
BLASTN
1158
1e−105
96


1577
325
700026169H1
SATMON003
g1184771
BLASTN
1365
1e−105
100


1578
325
700405492H1
SATMON029
g1184771
BLASTN
1366
1e−105
99


1579
325
700354644H1
SATMON024
g1184773
BLASTN
1370
1e−105
100


1580
325
700442572H1
SATMON026
g1184771
BLASTN
1370
1e−105
100


1581
325
700612003H1
SATMON022
g22237
BLASTN
1370
1e−105
100


1582
325
700082158H1
SATMON011
g22237
BLASTN
1371
1e−105
99


1583
325
700348605H1
SATMON023
g1184771
BLASTN
1373
1e−105
98


1584
325
700045650H1
SATMON004
g22237
BLASTN
1375
1e−105
100


1585
325
700053842H1
SATMON011
g1184773
BLASTN
1375
1e−105
98


1586
325
700083488H1
SATMON011
g1184771
BLASTN
1375
1e−105
100


1587
325
700344378H1
SATMON021
g1184771
BLASTN
1040
1e−104
99


1588
325
700102971H1
SATMON010
g1184771
BLASTN
1143
1e−104
96


1589
325
700347294H1
SATMON021
g1184771
BLASTN
1177
1e−104
99


1590
325
700236512H1
SATMON010
g1184773
BLASTN
1205
1e−104
99


1591
325
700550622H1
SATMON022
g1184773
BLASTN
1311
1e−104
98


1592
325
700550613H1
SATMON022
g1184773
BLASTN
1322
1e−104
99


1593
325
700241417H1
SATMON010
g1184775
BLASTN
1353
1e−104
99


1594
325
700050635H1
SATMON003
g1184771
BLASTN
1354
1e−104
93


1595
325
700045260H1
SATMON004
g1184771
BLASTN
1355
1e−104
100


1596
325
700343844H1
SATMON021
g1184771
BLASTN
1355
1e−104
100


1597
325
700347975H1
SATMON023
g22237
BLASTN
1357
1e−104
98


1598
325
700345348H1
SATMON021
g1184773
BLASTN
1360
1e−104
100


1599
325
700345878H1
SATMON021
g22237
BLASTN
1360
1e−104
98


1600
325
700469928H1
SATMON025
g1184771
BLASTN
1361
1e−104
99


1601
325
700093631H1
SATMON008
g1184773
BLASTN
961
1e−103
99


1602
325
700427662H1
SATMONN01
g22302
BLASTN
1088
1e−103
99


1603
325
700099528H1
SATMON009
g1184771
BLASTN
1133
1e−103
96


1604
325
700347950H1
SATMON023
g1184773
BLASTN
1138
1e−103
98


1605
325
700267976H1
SATMON017
g1184771
BLASTN
1231
1e−103
96


1606
325
700224847H1
SATMON011
g22237
BLASTN
1255
1e−103
100


1607
325
700465854H1
SATMON025
g1184773
BLASTN
1294
1e−103
99


1608
325
700257309H1
SATMON017
g1184771
BLASTN
1302
1e−103
97


1609
325
700577862H1
SATMON031
g22237
BLASTN
1341
1e−103
99


1610
325
700550007H1
SATMON022
g1184773
BLASTN
1341
1e−103
99


1611
325
700573448H2
SATMON030
g1184771
BLASTN
1342
1e−103
99


1612
325
700217477H1
SATMON016
g1184771
BLASTN
1345
1e−103
100


1613
325
700381851H1
SATMON023
g1184771
BLASTN
734
1e−102
92


1614
325
700095091H1
SATMON008
g1184771
BLASTN
1112
1e−102
97


1615
325
700444008H1
SATMON027
g1184771
BLASTN
1123
1e−102
98


1616
325
700470785H1
SATMON025
g22237
BLASTN
1142
1e−102
98


1617
325
700551739H1
SATMON022
g22237
BLASTN
1245
1e−102
100


1618
325
700237938H1
SATMON010
g1184771
BLASTN
1292
1e−102
97


1619
325
700215507H1
SATMON016
g22237
BLASTN
1330
1e−102
98


1620
325
700350778H1
SATMON023
g1184771
BLASTN
1330
1e−102
98


1621
325
700029783H1
SATMON003
g22237
BLASTN
1330
1e−102
98


1622
325
701161421H1
SATMONN04
g1184771
BLASTN
1330
1e−102
100


1623
325
700209510H1
SATMON016
g22237
BLASTN
1331
1e−102
99


1624
325
700552375H1
SATMON022
g1184771
BLASTN
1332
1e−102
99


1625
325
701183327H1
SATMONN06
g1184771
BLASTN
1333
1e−102
98


1626
325
700611372H1
SATMON022
g22237
BLASTN
1335
1e−102
100


1627
325
700243589H1
SATMON010
g1184771
BLASTN
1335
1e−102
100


1628
325
700805727H1
SATMON036
g1184773
BLASTN
1339
1e−102
99


1629
325
700051631H1
SATMON003
g1184771
BLASTN
1339
1e−102
97


1630
325
700465454H1
SATMON025
g1184773
BLASTN
780
1e−101
100


1631
325
700348239H1
SATMON023
g1184773
BLASTN
989
1e−101
98


1632
325
700353680H1
SATMON024
g1184773
BLASTN
1171
1e−101
99


1633
325
700265106H1
SATMON017
g1184773
BLASTN
1292
1e−101
95


1634
325
700053220H1
SATMON008
g1184775
BLASTN
1317
1e−101
99


1635
325
700052903H1
SATMON007
g1184771
BLASTN
1317
1e−101
99


1636
325
700053069H1
SATMON007
g1184773
BLASTN
1319
1e−101
97


1637
325
700352222H1
SATMON023
g1184773
BLASTN
1322
1e−101
94


1638
325
700458334H1
SATMON029
g1184773
BLASTN
1323
1e−101
99


1639
325
700072219H1
SATMON007
g1184773
BLASTN
1323
1e−101
97


1640
325
700082679H1
SATMON011
g22237
BLASTN
1326
1e−101
99


1641
325
700219959H1
SATMON011
g1184775
BLASTN
1327
1e−101
99


1642
325
700216192H1
SATMON016
g1184771
BLASTN
1327
1e−101
99


1643
325
700453649H1
SATMON028
g1184771
BLASTN
1328
1e−101
99


1644
325
700611371H1
SATMON022
g22237
BLASTN
1328
1e−101
99


1645
325
700261174H1
SATMON017
g1184771
BLASTN
706
1e−100
95


1646
325
700378143H1
SATMON019
g1184771
BLASTN
1032
1e−100
95


1647
325
700345693H1
SATMON021
g1184773
BLASTN
1108
1e−100
98


1648
325
700075095H1
SATMON007
g1184773
BLASTN
1113
1e−100
99


1649
325
700549026H1
SATMON022
g1184771
BLASTN
1187
1e−100
98


1650
325
700333933H1
SATMON019
g22237
BLASTN
1228
1e−100
99


1651
325
700027389H1
SATMON003
g1184773
BLASTN
1305
1e−100
98


1652
325
700798802H1
SATMON036
g1184773
BLASTN
1306
1e−100
99


1653
325
700045878H1
SATMON004
g22237
BLASTN
1310
1e−100
98


1654
325
700087030H1
SATMON011
g1184773
BLASTN
1311
1e−100
94


1655
325
700221038H1
SATMON011
g1184771
BLASTN
1311
1e−100
99


1656
325
700333822H1
SATMON019
g1184771
BLASTN
1311
1e−100
93


1657
325
700085206H1
SATMON011
g1184773
BLASTN
1311
1e−100
99


1658
325
700161303H1
SATMON012
g1184775
BLASTN
1313
1e−100
98


1659
325
700087502H1
SATMON011
g1184771
BLASTN
1313
1e−100
98


1660
325
700105477H1
SATMON010
g1184773
BLASTN
1314
1e−100
99


1661
325
700441823H1
SATMON026
g1184771
BLASTN
1315
1e−100
100


1662
325
700196854H1
SATMON014
g1184771
BLASTN
1315
1e−100
100


1663
325
700457283H1
SATMON029
g1184771
BLASTN
1315
1e−100
100


1664
325
700223356H1
SATMON011
g1184773
BLASTN
1316
1e−100
99


1665
325
700550323H1
SATMON022
g1184771
BLASTN
1316
1e−100
99


1666
325
700212296H1
SATMON016
g1184771
BLASTN
895
1e−99
100


1667
325
700073907H1
SATMON007
g1184771
BLASTN
1154
1e−99
95


1668
325
700550683H1
SATMON022
g1184771
BLASTN
1266
1e−99
99


1669
325
700041553H1
SATMON004
g22302
BLASTN
1286
1e−99
97


1670
325
700197418H1
SATMON014
g1184775
BLASTN
1292
1e−99
99


1671
325
700083704H1
SATMON011
g22237
BLASTN
1293
1e−99
98


1672
325
700218362H1
SATMON016
g1184771
BLASTN
1295
1e−99
100


1673
325
700082314H1
SATMON011
g1184773
BLASTN
1295
1e−99
93


1674
325
700045668H1
SATMON004
g1184771
BLASTN
1297
1e−99
99


1675
325
700158619H1
SATMON012
g1184771
BLASTN
1297
1e−99
98


1676
325
700611967H1
SATMON022
g1184773
BLASTN
1298
1e−99
99


1677
325
700336112H1
SATMON019
g22237
BLASTN
1299
1e−99
98


1678
325
700444055H1
SATMON027
g1184771
BLASTN
1300
1e−99
100


1679
325
700236678H1
SATMON010
g1184771
BLASTN
1300
1e−99
100


1680
325
700214048H1
SATMON016
g1184773
BLASTN
1303
1e−99
99


1681
325
700351262H1
SATMON023
g1184773
BLASTN
1304
1e−99
94


1682
325
700583372H1
SATMON031
g1184771
BLASTN
632
1e−98
95


1683
325
700339709H1
SATMON020
g22237
BLASTN
852
1e−98
94


1684
325
700211842H1
SATMON016
g22237
BLASTN
920
1e−98
94


1685
325
700355436H1
SATMON024
g1184771
BLASTN
953
1e−98
98


1686
325
700221763H1
SATMON011
g22237
BLASTN
1011
1e−98
99


1687
325
700619245H1
SATMON034
g1184771
BLASTN
1012
1e−98
95


1688
325
700262781H1
SATMON017
g1184771
BLASTN
1016
1e−98
98


1689
325
700243153H1
SATMON010
g22237
BLASTN
1065
1e−98
100


1690
325
700344173H1
SATMON021
g1184771
BLASTN
1137
1e−98
97


1691
325
700349565H1
SATMON023
g1184771
BLASTN
1145
1e−98
96


1692
325
700157320H1
SATMON012
g1184773
BLASTN
1281
1e−98
99


1693
325
700611471H1
SATMON022
g22237
BLASTN
1282
1e−98
98


1694
325
700550503H1
SATMON022
g1184771
BLASTN
1283
1e−98
99


1695
325
700222893H1
SATMON011
g22237
BLASTN
1285
1e−98
100


1696
325
700242404H1
SATMON010
g1184771
BLASTN
1285
1e−98
100


1697
325
700218820H1
SATMON011
g1184771
BLASTN
1285
1e−98
100


1698
325
700220021H1
SATMON011
g22237
BLASTN
1286
1e−98
99


1699
325
700243542H1
SATMON010
g1184773
BLASTN
1286
1e−98
99


1700
325
700354379H1
SATMON024
g1184771
BLASTN
1288
1e−98
93


1701
325
700799328H1
SATMON036
g1184773
BLASTN
1289
1e−98
99


1702
325
700452454H1
SATMON028
g1184771
BLASTN
1290
1e−98
100


1703
325
700085246H1
SATMON011
g1184771
BLASTN
1290
1e−98
100


1704
325
700218590H1
SATMON011
g1184771
BLASTN
1290
1e−98
100


1705
325
700456377H1
SATMON029
g1184771
BLASTN
1291
1e−98
99


1706
325
700050750H1
SATMON003
g1185553
BLASTN
559
1e−97
99


1707
325
700351952H1
SATMON023
g1184771
BLASTN
797
1e−97
97


1708
325
700345594H1
SATMON021
g1184773
BLASTN
851
1e−97
99


1709
325
700267853H1
SATMON017
g1184771
BLASTN
890
1e−97
94


1710
325
700350105H1
SATMON023
g1184773
BLASTN
1006
1e−97
99


1711
325
700334557H1
SATMON019
g1184773
BLASTN
1028
1e−97
95


1712
325
700457542H1
SATMON029
g1184773
BLASTN
1067
1e−97
99


1713
325
700352772H1
SATMON024
g22237
BLASTN
1181
1e−97
98


1714
325
700550657H1
SATMON022
g22237
BLASTN
1226
1e−97
99


1715
325
700224772H1
SATMON011
g1184771
BLASTN
1270
1e−97
100


1716
325
700618874H1
SATMON034
g1184775
BLASTN
1270
1e−97
100


1717
325
700162968H1
SATMON013
g22237
BLASTN
1270
1e−97
100


1718
325
700025839H1
SATMON003
g1184775
BLASTN
1270
1e−97
100


1719
325
700075210H1
SATMON007
g1184773
BLASTN
1272
1e−97
93


1720
325
700025602H1
SATMON004
g22237
BLASTN
1275
1e−97
98


1721
325
700573453H2
SATMON030
g1184771
BLASTN
1276
1e−97
99


1722
325
700268153H1
SATMON017
g1184773
BLASTN
1277
1e−97
94


1723
325
700085062H1
SATMON011
g1184773
BLASTN
1279
1e−97
99


1724
325
700197210H1
SATMON014
g1184773
BLASTN
1280
1e−97
98


1725
325
700053187H1
SATMON008
g22237
BLASTN
1280
1e−97
100


1726
325
700239541H1
SATMON010
g1184771
BLASTN
1280
1e−97
100


1727
325
700381789H1
SATMON023
g1184773
BLASTN
1280
1e−97
93


1728
325
700382074H1
SATMON024
g1184773
BLASTN
737
1e−96
93


1729
325
700615886H1
SATMON033
g1184771
BLASTN
814
1e−96
96


1730
325
700203271H1
SATMON003
g1184771
BLASTN
1047
1e−96
96


1731
325
700090047H1
SATMON011
g1184771
BLASTN
1047
1e−96
96


1732
325
700345983H1
SATMON021
g1184771
BLASTN
1048
1e−96
96


1733
325
700580224H1
SATMON031
g1184771
BLASTN
1060
1e−96
94


1734
325
700163304H1
SATMON013
g1184771
BLASTN
1260
1e−96
100


1735
325
700218377H1
SATMON016
g1184771
BLASTN
1260
1e−96
100


1736
325
700090628H1
SATMON011
g22237
BLASTN
1262
1e−96
98


1737
325
700205936H1
SATMON003
g1184773
BLASTN
1265
1e−96
91


1738
325
700087928H1
SATMON011
g22237
BLASTN
1265
1e−96
100


1739
325
700195069H1
SATMON014
g1184775
BLASTN
1266
1e−96
98


1740
325
700552795H1
SATMON022
g1184773
BLASTN
658
1e−95
94


1741
325
700093666H1
SATMON008
g22237
BLASTN
873
1e−95
96


1742
325
700196963H1
SATMON014
g1184773
BLASTN
957
1e−95
98


1743
325
700083992H1
SATMON011
g1184773
BLASTN
1034
1e−95
96


1744
325
700334351H1
SATMON019
g1184773
BLASTN
1162
1e−95
96


1745
325
700165979H1
SATMON013
g22237
BLASTN
1211
1e−95
98


1746
325
700612175H1
SATMON022
g1184773
BLASTN
1245
1e−95
100


1747
325
700157886H1
SATMON012
g1184771
BLASTN
1245
1e−95
100


1748
325
700218843H1
SATMON011
g22237
BLASTN
1246
1e−95
99


1749
325
700223241H1
SATMON011
g22237
BLASTN
1253
1e−95
99


1750
325
700382157H1
SATMON024
g1184773
BLASTN
1254
1e−95
93


1751
325
700163655H1
SATMON013
g22237
BLASTN
1255
1e−95
100


1752
325
700219734H1
SATMON011
g1184773
BLASTN
1256
1e−95
99


1753
325
700258401H1
SATMON017
g22237
BLASTN
744
1e−94
91


1754
325
700569409H2
SATMON030
g1184771
BLASTN
755
1e−94
100


1755
325
700449985H1
SATMON028
g22237
BLASTN
1041
1e−94
99


1756
325
700209417H1
SATMON016
g22237
BLASTN
1192
1e−94
96


1757
325
700218233H1
SATMON016
g1184773
BLASTN
1235
1e−94
98


1758
325
700023172H1
SATMON003
g1184773
BLASTN
1241
1e−94
99


1759
325
700165002H1
SATMON013
g1184771
BLASTN
1242
1e−94
99


1760
325
700240575H1
SATMON010
g1184771
BLASTN
1243
1e−94
98


1761
325
700193127H1
SATMON014
g1184775
BLASTN
1243
1e−94
98


1762
325
700202138H1
SATMON003
g1184771
BLASTN
635
1e−93
94


1763
325
700619314H1
SATMON034
g1184771
BLASTN
697
1e−93
93


1764
325
700611272H1
SATMON022
g22237
BLASTN
743
1e−93
97


1765
325
700235577H1
SATMON010
g1184771
BLASTN
810
1e−93
98


1766
325
700048739H1
SATMON003
g1184771
BLASTN
1012
1e−93
97


1767
325
700337602H1
SATMON020
g22237
BLASTN
1097
1e−93
97


1768
325
700457423H1
SATMON029
g22237
BLASTN
1138
1e−93
98


1769
325
700048682H1
SATMON003
g1184773
BLASTN
1154
1e−93
92


1770
325
700456449H1
SATMON029
g1184773
BLASTN
1221
1e−93
94


1771
325
700239518H1
SATMON010
g1184771
BLASTN
1228
1e−93
98


1772
325
700457982H1
SATMON029
g22237
BLASTN
1229
1e−93
96


1773
325
700103576H1
SATMON010
g1184771
BLASTN
1230
1e−93
98


1774
325
700454265H1
SATMON029
g1184771
BLASTN
555
1e−92
96


1775
325
700340854H1
SATMON020
g22237
BLASTN
580
1e−92
97


1776
325
700458888H1
SATMON029
g1184771
BLASTN
769
1e−92
98


1777
325
700581403H1
SATMON031
g1184771
BLASTN
775
1e−92
96


1778
325
700224722H1
SATMON011
g22237
BLASTN
979
1e−92
94


1779
325
700217644H1
SATMON016
g1184771
BLASTN
1072
1e−92
96


1780
325
700454195H1
SATMON029
g22237
BLASTN
1084
1e−92
96


1781
325
700215504H1
SATMON016
g1184775
BLASTN
1122
1e−92
96


1782
325
700214190H1
SATMON016
g1184771
BLASTN
1210
1e−92
100


1783
325
700456941H1
SATMON029
g1184771
BLASTN
1211
1e−92
94


1784
325
700193816H1
SATMON014
g1184775
BLASTN
1212
1e−92
99


1785
325
700241930H1
SATMON010
g1184771
BLASTN
1213
1e−92
98


1786
325
700160162H1
SATMON012
g1184775
BLASTN
1215
1e−92
98


1787
325
700171289H1
SATMON013
g22237
BLASTN
1220
1e−92
100


1788
325
700549474H1
SATMON022
g1184773
BLASTN
665
1e−91
100


1789
325
700422573H1
SATMONN01
g22237
BLASTN
715
1e−91
92


1790
325
700377664H1
SATMON019
g1184771
BLASTN
747
1e−91
94


1791
325
700193034H1
SATMON014
g1184775
BLASTN
881
1e−91
99


1792
325
700163652H1
SATMON013
g1184771
BLASTN
990
1e−91
100


1793
325
700212649H1
SATMON016
g22237
BLASTN
1159
1e−91
99


1794
325
700165066H1
SATMON013
g1184771
BLASTN
1201
1e−91
99


1795
325
700152004H1
SATMON007
g1184773
BLASTN
1202
1e−91
99


1796
325
700243428H1
SATMON010
g1184773
BLASTN
1203
1e−91
99


1797
325
700167249H1
SATMON013
g1184771
BLASTN
1206
1e−91
99


1798
325
700150450H1
SATMON007
g1184773
BLASTN
1206
1e−91
99


1799
325
700089949H1
SATMON011
g1184771
BLASTN
599
1e−90
83


1800
325
700443495H1
SATMON027
g1184771
BLASTN
617
1e−90
97


1801
325
700469283H1
SATMON025
g1184771
BLASTN
672
1e−90
98


1802
325
700072276H1
SATMON007
g1184771
BLASTN
916
1e−90
96


1803
325
700457552H1
SATMON029
g1184771
BLASTN
953
1e−90
96


1804
325
700351671H1
SATMON023
g1184771
BLASTN
984
1e−90
99


1805
325
700571583H1
SATMON030
g22237
BLASTN
1059
1e−90
94


1806
325
700803969H1
SATMON036
g1184773
BLASTN
1186
1e−90
93


1807
325
700150936H1
SATMON007
g1184773
BLASTN
1196
1e−90
94


1808
325
700570929H1
SATMON030
g1184773
BLASTN
495
1e−89
100


1809
325
700338407H1
SATMON020
g1184773
BLASTN
1065
1e−89
95


1810
325
700021640H1
SATMON001
g1184771
BLASTN
1173
1e−89
99


1811
325
700151914H1
SATMON007
g1184773
BLASTN
1175
1e−89
100


1812
325
700167480H1
SATMON013
g22237
BLASTN
1176
1e−89
98


1813
325
700236453H1
SATMON010
g1184771
BLASTN
1178
1e−89
98


1814
325
700238168H1
SATMON010
g1184771
BLASTN
1182
1e−89
99


1815
325
700613413H1
SATMON033
g1184771
BLASTN
484
1e−88
91


1816
325
700357450H1
SATMON024
g1184773
BLASTN
527
1e−88
98


1817
325
700450090H2
SATMON028
g1184771
BLASTN
684
1e−88
93


1818
325
700801459H1
SATMON036
g1184773
BLASTN
850
1e−88
99


1819
325
700457313H1
SATMON029
g22237
BLASTN
855
1e−88
100


1820
325
700382823H1
SATMON024
g1184773
BLASTN
875
1e−88
96


1821
325
700085440H1
SATMON011
g1184771
BLASTN
951
1e−88
97


1822
325
700216971H1
SATMON016
g1184771
BLASTN
951
1e−88
97


1823
325
700239980H1
SATMON010
g1184771
BLASTN
1123
1e−88
98


1824
325
700801083H1
SATMON036
g1184773
BLASTN
1162
1e−88
93


1825
325
700202393H1
SATMON003
g1184775
BLASTN
1166
1e−88
98


1826
325
700105153H1
SATMON010
g1184771
BLASTN
1169
1e−88
99


1827
325
700087788H1
SATMON011
g1184771
BLASTN
1169
1e−88
96


1828
325
700152166H1
SATMON007
g22237
BLASTN
1171
1e−88
99


1829
325
700332968H1
SATMON019
g22237
BLASTN
437
1e−87
93


1830
325
700204350H1
SATMON003
g1184771
BLASTN
441
1e−87
96


1831
325
700150168H1
SATMON007
g1184773
BLASTN
901
1e−87
98


1832
325
700449984H1
SATMON028
g22237
BLASTN
907
1e−87
94


1833
325
700156642H1
SATMON012
g1184773
BLASTN
1149
1e−87
98


1834
325
700152779H1
SATMON007
g1184773
BLASTN
1150
1e−87
100


1835
325
700160261H1
SATMON012
g1184775
BLASTN
1151
1e−87
99


1836
325
700804718H1
SATMON036
g1184775
BLASTN
1153
1e−87
97


1837
325
700356233H1
SATMON024
g1184775
BLASTN
1156
1e−87
99


1838
325
700043272H1
SATMON004
g1184771
BLASTN
1160
1e−87
92


1839
325
700456666H1
SATMON029
g1184771
BLASTN
519
1e−86
94


1840
325
700205926H1
SATMON003
g1184771
BLASTN
587
1e−86
98


1841
325
700454102H1
SATMON029
g1184771
BLASTN
670
1e−86
94


1842
325
700207045H1
SATMON003
g1184771
BLASTN
935
1e−86
95


1843
325
700377244H1
SATMON019
g1184771
BLASTN
985
1e−86
99


1844
325
700549440H1
SATMON022
g1184773
BLASTN
990
1e−86
100


1845
325
700166882H1
SATMON013
g22237
BLASTN
1141
1e−86
97


1846
325
700167140H1
SATMON013
g1184771
BLASTN
1143
1e−86
97


1847
325
700152640H1
SATMON007
g1184773
BLASTN
1145
1e−86
100


1848
325
700020603H1
SATMON001
g22237
BLASTN
1146
1e−86
99


1849
325
700152109H1
SATMON007
g1184773
BLASTN
1147
1e−86
99


1850
325
700442690H1
SATMON026
g1184771
BLASTN
635
1e−85
95


1851
325
700156713H1
SATMON012
g1184775
BLASTN
705
1e−85
100


1852
325
700239313H1
SATMON010
g1184771
BLASTN
907
1e−85
92


1853
325
700102871H1
SATMON010
g1184771
BLASTN
916
1e−85
96


1854
325
700224872H1
SATMON011
g1184771
BLASTN
916
1e−85
96


1855
325
700448596H1
SATMON028
g1184771
BLASTN
951
1e−85
95


1856
325
700218841H1
SATMON011
g1184771
BLASTN
998
1e−85
93


1857
325
700258654H1
SATMON017
g1184771
BLASTN
1090
1e−85
97


1858
325
700798771H1
SATMON036
g1184771
BLASTN
1125
1e−85
100


1859
325
700152891H1
SATMON007
g22237
BLASTN
1126
1e−85
99


1860
325
700805450H1
SATMON036
g1184773
BLASTN
1130
1e−85
94


1861
325
700152783H1
SATMON007
g22237
BLASTN
1131
1e−85
99


1862
325
700085765H1
SATMON011
g1184771
BLASTN
1135
1e−85
100


1863
325
700263179H1
SATMON017
g22237
BLASTN
827
1e−84
99


1864
325
700163973H1
SATMON013
g22237
BLASTN
1113
1e−84
97


1865
325
700152630H1
SATMON007
g1184773
BLASTN
1115
1e−84
100


1866
325
700152546H1
SATMON007
g22237
BLASTN
1116
1e−84
99


1867
325
700217728H1
SATMON016
g1184773
BLASTN
1118
1e−84
99


1868
325
700336157H1
SATMON019
g1184773
BLASTN
1119
1e−84
91


1869
325
700332651H1
SATMON019
g1184775
BLASTN
908
1e−83
96


1870
325
700348702H1
SATMON023
g1184771
BLASTN
963
1e−83
87


1871
325
700611336H1
SATMON022
g22237
BLASTN
1042
1e−83
90


1872
325
700151934H1
SATMON007
g1184773
BLASTN
1105
1e−83
100


1873
325
700150270H1
SATMON007
g1184773
BLASTN
1106
1e−83
99


1874
325
700021115H1
SATMON001
g1184771
BLASTN
1111
1e−83
97


1875
325
700213761H1
SATMON016
g1184773
BLASTN
1111
1e−83
97


1876
325
700083759H1
SATMON011
g1184773
BLASTN
596
1e−82
93


1877
325
700263853H1
SATMON017
g1184771
BLASTN
883
1e−82
95


1878
325
700347719H1
SATMON023
g1184775
BLASTN
996
1e−82
96


1879
325
700048938H1
SATMON003
g1184775
BLASTN
1014
1e−82
97


1880
325
700150141H1
SATMON007
g1184771
BLASTN
1095
1e−82
100


1881
325
700019545H1
SATMON001
g1184773
BLASTN
1095
1e−82
100


1882
325
700019463H1
SATMON001
g1184773
BLASTN
1096
1e−82
97


1883
325
700455246H1
SATMON029
g1184771
BLASTN
1100
1e−82
92


1884
325
700382892H1
SATMON024
g1184773
BLASTN
613
1e−81
89


1885
325
700346309H1
SATMON021
g1184771
BLASTN
858
1e−81
92


1886
325
700257372H1
SATMON017
g1184771
BLASTN
903
1e−81
94


1887
325
700802008H1
SATMON036
g1184775
BLASTN
969
1e−81
97


1888
325
700083602H1
SATMON011
g22237
BLASTN
1081
1e−81
96


1889
325
700266939H1
SATMON017
g22237
BLASTN
1083
1e−81
98


1890
325
700431491H1
SATMONN01
g22237
BLASTN
1084
1e−81
87


1891
325
700611180H1
SATMON022
g22237
BLASTN
481
1e−80
91


1892
325
700348016H1
SATMON023
g1184773
BLASTN
611
1e−80
89


1893
325
700577294H1
SATMON031
g1184771
BLASTN
809
1e−80
92


1894
325
700457970H1
SATMON029
g1184771
BLASTN
934
1e−80
96


1895
325
700239677H1
SATMON010
g1184773
BLASTN
1066
1e−80
93


1896
325
700242889H1
SATMON010
g1184773
BLASTN
1066
1e−80
99


1897
325
700016313H1
SATMON001
g22237
BLASTN
1072
1e−80
99


1898
325
700155241H1
SATMON007
g1184771
BLASTN
1076
1e−80
99


1899
325
700223882H1
SATMON011
g1184771
BLASTN
696
1e−79
90


1900
325
700047915H1
SATMON003
g1184771
BLASTN
724
1e−79
98


1901
325
700449818H2
SATMON028
g1184771
BLASTN
761
1e−79
91


1902
325
700804993H1
SATMON036
g1184773
BLASTN
827
1e−79
98


1903
325
700570972H1
SATMON030
g1184773
BLASTN
867
1e−79
97


1904
325
700016664H1
SATMON001
g1185553
BLASTN
885
1e−79
100


1905
325
700213557H1
SATMON016
g1184773
BLASTN
908
1e−79
92


1906
325
700613214H1
SATMON033
g1184771
BLASTN
997
1e−79
88


1907
325
700343710H1
SATMON021
g1184773
BLASTN
1055
1e−79
88


1908
325
700442421H1
SATMON026
g22237
BLASTN
501
1e−78
96


1909
325
700265008H1
SATMON017
g1184773
BLASTN
866
1e−78
98


1910
325
700218525H1
SATMON011
g1184771
BLASTN
899
1e−78
96


1911
325
700551922H1
SATMON022
g22237
BLASTN
1045
1e−78
97


1912
325
700017612H1
SATMON001
g22237
BLASTN
1047
1e−78
96


1913
325
700579349H1
SATMON031
g22237
BLASTN
791
1e−77
87


1914
325
700197914H1
SATMON016
g1184771
BLASTN
811
1e−77
96


1915
325
700083456H1
SATMON011
g1184773
BLASTN
1035
1e−77
86


1916
325
700018387H1
SATMON001
g1184771
BLASTN
1035
1e−77
100


1917
325
700611470H1
SATMON022
g22237
BLASTN
618
1e−76
87


1918
325
700074067H1
SATMON007
g22237
BLASTN
837
1e−76
95


1919
325
700237659H1
SATMON010
g1184771
BLASTN
957
1e−76
96


1920
325
700018236H1
SATMON001
g1184773
BLASTN
1025
1e−76
100


1921
325
700240687H1
SATMON010
g1184771
BLASTN
957
1e−75
96


1922
325
700152594H1
SATMON007
g1184773
BLASTN
1009
1e−75
93


1923
325
700050944H1
SATMON003
g1184771
BLASTN
1009
1e−75
94


1924
325
700016175H1
SATMON001
g1184775
BLASTN
1015
1e−75
96


1925
325
700238172H1
SATMON010
g1184771
BLASTN
1016
1e−75
99


1926
325
700349862H1
SATMON023
g22237
BLASTN
459
1e−74
96


1927
325
700336123H1
SATMON019
g1184771
BLASTN
842
1e−74
89


1928
325
700151243H1
SATMON007
g22237
BLASTN
994
1e−74
99


1929
325
700164181H1
SATMON013
g1184773
BLASTN
998
1e−74
98


1930
325
700149684H1
SATMON007
g1184773
BLASTN
999
1e−74
93


1931
325
700615060H1
SATMON033
g1184773
BLASTN
469
1e−73
90


1932
325
700456658H1
SATMON029
g1184771
BLASTN
580
1e−73
93


1933
325
700151426H1
SATMON007
g1184771
BLASTN
618
1e−73
100


1934
325
700261414H1
SATMON017
g1184771
BLASTN
709
1e−73
95


1935
325
700353168H1
SATMON024
g1184773
BLASTN
716
1e−73
91


1936
325
700350156H1
SATMON023
g1184771
BLASTN
757
1e−73
88


1937
325
700171133H1
SATMON013
g1184771
BLASTN
771
1e−73
94


1938
325
700150636H1
SATMON007
g1184771
BLASTN
771
1e−73
96


1939
325
700354231H1
SATMON024
g1184773
BLASTN
984
1e−73
98


1940
325
700454489H1
SATMON029
g22237
BLASTN
565
1e−72
94


1941
325
700241567H1
SATMON010
g1184771
BLASTN
622
1e−72
94


1942
325
700171506H1
SATMON013
g22237
BLASTN
847
1e−72
98


1943
325
700354944H1
SATMON024
g1184773
BLASTN
974
1e−72
93


1944
325
700160388H1
SATMON012
g1184773
BLASTN
974
1e−72
93


1945
325
700806125H1
SATMON036
g1184773
BLASTN
976
1e−72
87


1946
325
700072347H2
SATMON007
g1184773
BLASTN
962
1e−71
92


1947
325
700264638H1
SATMON017
g1185553
BLASTN
568
1e−70
95


1948
325
701181725H1
SATMONN06
g1184773
BLASTN
796
1e−70
91


1949
325
700439643H1
SATMON026
g1184771
BLASTN
885
1e−70
89


1950
325
700473276H1
SATMON025
g1184771
BLASTN
953
1e−70
99


1951
325
700335504H1
SATMON019
g1184773
BLASTN
597
1e−69
82


1952
325
700439983H1
SATMON026
g1184771
BLASTN
810
1e−69
99


1953
325
700803685H1
SATMON036
g1184773
BLASTN
825
1e−69
94


1954
325
700089572H1
SATMON011
g1184773
BLASTN
943
1e−69
99


1955
325
700620191H1
SATMON034
g1184771
BLASTN
838
1e−68
90


1956
325
700336318H1
SATMON019
g22237
BLASTN
930
1e−68
100


1957
325
700218257H1
SATMON016
g22237
BLASTN
584
1e−67
88


1958
325
700471821H1
SATMON025
g1184771
BLASTN
590
1e−67
100


1959
325
700335407H1
SATMON019
g22237
BLASTN
912
1e−67
79


1960
325
700242905H1
SATMON010
g1184771
BLASTN
577
1e−66
93


1961
325
700333089H1
SATMON019
g1184773
BLASTN
760
1e−66
93


1962
325
700615210H1
SATMON033
g1184773
BLASTN
824
1e−66
93


1963
325
700197701H1
SATMON014
g1184773
BLASTN
901
1e−66
82


1964
325
700017877H1
SATMON001
g1184771
BLASTN
526
1e−64
93


1965
325
700467503H1
SATMON025
g293888
BLASTN
510
1e−63
94


1966
325
700457187H1
SATMON029
g1184771
BLASTN
648
1e−63
86


1967
325
700381477H1
SATMON023
g1184773
BLASTN
837
1e−63
98


1968
325
700614350H1
SATMON033
g22237
BLASTN
868
1e−63
96


1969
325
700092925H1
SATMON008
g22237
BLASTN
752
1e−62
94


1970
325
700016350H1
SATMON001
g22237
BLASTN
853
1e−62
98


1971
325
700019729H1
SATMON001
g22237
BLASTN
853
1e−62
98


1972
325
700167419H1
SATMON013
g1184771
BLASTN
860
1e−62
100


1973
325
700152703H1
SATMON007
g22237
BLASTN
860
1e−62
100


1974
325
700449337H1
SATMON028
g1184771
BLASTN
860
1e−62
100


1975
325
700151887H1
SATMON007
g1184775
BLASTN
848
1e−61
99


1976
325
700578028H1
SATMON031
g1184771
BLASTN
618
1e−60
91


1977
325
700440305H1
SATMON026
g1184771
BLASTN
660
1e−60
97


1978
325
700354945H1
SATMON024
g1184775
BLASTN
837
1e−60
98


1979
325
700341302H1
SATMON020
g1184771
BLASTN
375
1e−59
91


1980
325
700026117H1
SATMON003
g1185553
BLASTN
501
1e−58
98


1981
325
700150218H1
SATMON007
g1184771
BLASTN
732
1e−58
93


1982
325
700446832H1
SATMON027
g1184771
BLASTN
802
1e−58
97


1983
325
700171562H1
SATMON013
g1184771
BLASTN
805
1e−58
100


1984
325
700156216H1
SATMON007
g1184773
BLASTN
779
1e−56
87


1985
325
700095551H1
SATMON008
g22237
BLASTN
779
1e−56
98


1986
325
701165479H1
SATMONN04
g1184771
BLASTN
786
1e−56
98


1987
325
700151917H1
SATMON007
g1184773
BLASTN
682
1e−55
90


1988
325
700153313H1
SATMON007
g22237
BLASTN
771
1e−55
99


1989
325
700204963H1
SATMON003
g1184771
BLASTN
472
1e−54
93


1990
325
700450961H1
SATMON028
g22237
BLASTN
480
1e−54
99


1991
325
700434230H1
SATMONN01
g1184771
BLASTN
765
1e−54
93


1992
325
700265994H1
SATMON017
g22237
BLASTN
748
1e−53
88


1993
325
700090231H1
SATMON011
g1184773
BLASTN
750
1e−53
100


1994
325
700073935H1
SATMON007
g1184773
BLASTN
751
1e−53
99


1995
325
700084392H1
SATMON011
g22237
BLASTN
640
1e−52
100


1996
325
700382560H1
SATMON024
g1184773
BLASTN
730
1e−52
81


1997
325
700257449H2
SATMON017
g1184771
BLASTN
555
1e−51
97


1998
325
700210766H1
SATMON016
g22237
BLASTN
723
1e−51
99


1999
325
700427913H1
SATMONN01
g22237
BLASTN
728
1e−51
98


2000
325
700351216H1
SATMON023
g1184771
BLASTN
550
1e−50
98


2001
325
700806073H1
SATMON036
g1184773
BLASTN
390
1e−49
79


2002
325
700207249H1
SATMON017
g1184771
BLASTN
480
1e−49
95


2003
325
700261719H1
SATMON017
g1184771
BLASTN
611
1e−49
94


2004
325
700430989H1
SATMONN01
g22237
BLASTN
631
1e−49
90


2005
325
700807308H1
SATMON036
g1184773
BLASTN
698
1e−49
86


2006
325
700334327H1
SATMON019
g1184771
BLASTN
704
1e−49
97


2007
325
700172805H1
SATMON013
g1184771
BLASTN
705
1e−49
95


2008
325
700422633H1
SATMONN01
g1184771
BLASTN
411
1e−47
89


2009
325
700353962H1
SATMON024
g1184773
BLASTN
678
1e−47
99


2010
325
701161133H1
SATMONN04
g1184771
BLASTN
655
1e−45
100


2011
325
700802550H1
SATMON036
g1184773
BLASTN
438
1e−44
92


2012
325
700440239H1
SATMON026
g22237
BLASTN
449
1e−44
95


2013
325
700454565H1
SATMON029
g1184771
BLASTN
524
1e−44
89


2014
325
700053528H1
SATMON010
g22237
BLASTN
635
1e−44
100


2015
325
700257743H1
SATMON017
g1184771
BLASTN
352
1e−43
92


2016
325
700072283H1
SATMON007
g1184773
BLASTN
626
1e−43
99


2017
325
700260796H1
SATMON017
g22237
BLASTN
628
1e−43
99


2018
325
700262496H1
SATMON017
g1184771
BLASTN
455
1e−42
90


2019
325
700155358H1
SATMON007
g1184771
BLASTN
610
1e−42
100


2020
325
700196762H1
SATMON014
g1184773
BLASTN
615
1e−42
100


2021
325
700450601H1
SATMON028
g22237
BLASTN
615
1e−42
96


2022
325
700581050H1
SATMON031
g22237
BLASTN
618
1e−42
99


2023
325
700072316H2
SATMON007
g1184773
BLASTN
366
1e−40
92


2024
325
700427659H1
SATMONN01
g22302
BLASTN
416
1e−38
94


2025
325
700356507H1
SATMON024
g1184773
BLASTN
422
1e−38
89


2026
325
700169472H1
SATMON013
g1184773
BLASTN
339
1e−37
93


2027
325
700377362H1
SATMON019
g1184773
BLASTN
550
1e−37
97


2028
325
700378460H1
SATMON020
g1184771
BLASTN
345
1e−36
100


2029
325
700440218H1
SATMON026
g22237
BLASTN
538
1e−36
91


2030
325
700440230H1
SATMON026
g22237
BLASTN
364
1e−35
97


2031
325
700072350H1
SATMON007
g1184773
BLASTN
470
1e−35
99


2032
325
700241920H1
SATMON010
g22302
BLASTN
528
1e−35
99


2033
325
700347048H1
SATMON021
g1184773
BLASTN
537
1e−35
90


2034
325
700802555H1
SATMON036
g1184773
BLASTN
438
1e−34
88


2035
325
700615893H1
SATMON033
g1184773
BLASTN
372
1e−33
92


2036
325
700257073H1
SATMON017
g1184771
BLASTN
430
1e−32
90


2037
325
700220433H1
SATMON011
g1184773
BLASTN
490
1e−32
91


2038
325
700073453H1
SATMON007
g1184773
BLASTN
497
1e−32
92


2039
325
700086779H1
SATMON011
g1184771
BLASTN
480
1e−31
96


2040
325
700621224H1
SATMON034
g1184771
BLASTN
278
1e−30
98


2041
325
700344636H1
SATMON021
g22237
BLASTN
461
1e−29
98


2042
325
700240570H1
SATMON010
g1184771
BLASTN
463
1e−29
95


2043
325
700349592H1
SATMON023
g1184773
BLASTN
325
1e−28
90


2044
325
700454979H1
SATMON029
g22237
BLASTN
412
1e−25
92


2045
325
700206008H1
SATMON003
g22237
BLASTN
191
1e−23
99


2046
325
700263545H1
SATMON017
g22237
BLASTN
300
1e−23
95


2047
325
700802094H1
SATMON036
g1184773
BLASTN
382
1e−23
79


2048
325
700206976H1
SATMON003
g1184773
BLASTN
388
1e−23
87


2049
325
700799153H1
SATMON036
g293886
BLASTN
232
1e−22
92


2050
325
700456230H1
SATMON029
g1184771
BLASTN
333
1e−22
71


2051
325
700354919H1
SATMON024
g1184771
BLASTN
230
1e−20
100


2052
325
700614147H1
SATMON033
g22237
BLASTN
256
1e−18
91


2053
325
701181137H1
SATMONN06
g22237
BLASTN
322
1e−18
97


2054
325
700458047H1
SATMON029
g1184771
BLASTN
275
1e−14
100


2055
325
700807468H1
SATMON036
g1184773
BLASTN
179
1e−13
92


2056
3520
700212510H1
SATMON016
g168478
BLASTN
1590
1e−123
99


2057
3520
700097780H1
SATMON009
g168520
BLASTN
637
1e−122
97


2058
3520
700101968H1
SATMON009
g168520
BLASTN
1002
1e−117
98


2059
3520
700099736H1
SATMON009
g168520
BLASTN
1030
1e−116
97


2060
3520
700096850H1
SATMON008
g168520
BLASTN
938
1e−115
97


2061
3520
700101454H1
SATMON009
g168520
BLASTN
977
1e−115
97


2062
3520
700092378H1
SATMON008
g168520
BLASTN
651
1e−114
98


2063
3520
700099257H1
SATMON009
g22239
BLASTN
1478
1e−114
99


2064
3520
700209837H1
SATMON016
g168520
BLASTN
1012
1e−112
99


2065
3520
700097148H1
SATMON009
g168520
BLASTN
1030
1e−112
97


2066
3520
700100043H1
SATMON009
g168520
BLASTN
888
1e−111
96


2067
3520
700099516H1
SATMON009
g168520
BLASTN
991
1e−111
95


2068
3520
700097454H1
SATMON009
g168520
BLASTN
1028
1e−111
98


2069
3520
700099582H1
SATMON009
g168520
BLASTN
873
1e−109
98


2070
3520
700101028H1
SATMON009
g168520
BLASTN
963
1e−109
97


2071
3520
700101288H1
SATMON009
g168520
BLASTN
967
1e−109
98


2072
3520
700098981H1
SATMON009
g168520
BLASTN
1023
1e−109
98


2073
3520
700053377H1
SATMON009
g168478
BLASTN
1420
1e−109
100


2074
3520
700101538H1
SATMON009
g168520
BLASTN
958
1e−108
98


2075
3520
700093413H1
SATMON008
g168520
BLASTN
1037
1e−108
99


2076
3520
700098960H1
SATMON009
g168478
BLASTN
1004
1e−106
96


2077
3520
700212674H1
SATMON016
g168520
BLASTN
977
1e−105
98


2078
3520
700098986H1
SATMON009
g168478
BLASTN
1033
1e−105
98


2079
3520
700099244H1
SATMON009
g168520
BLASTN
976
1e−104
98


2080
3520
700100392H1
SATMON009
g168520
BLASTN
1002
1e−104
96


2081
3520
700044021H1
SATMON004
g168478
BLASTN
1350
1e−103
98


2082
3520
700043432H1
SATMON004
g168520
BLASTN
950
1e−102
97


2083
3520
700045175H1
SATMON004
g168520
BLASTN
963
1e−102
99


2084
3520
700099592H1
SATMON009
g168520
BLASTN
972
1e−102
94


2085
3520
700101559H1
SATMON009
g168478
BLASTN
1236
1e−102
94


2086
3520
700045717H1
SATMON004
g168478
BLASTN
1337
1e−102
96


2087
3520
700100711H1
SATMON009
g168520
BLASTN
996
1e−101
96


2088
3520
700098021H1
SATMON009
g168478
BLASTN
1189
1e−101
99


2089
3520
700044254H1
SATMON004
g22239
BLASTN
1327
1e−101
98


2090
3520
700041717H1
SATMON004
g168520
BLASTN
1010
1e−100
97


2091
3520
700044347H1
SATMON004
g168520
BLASTN
1028
1e−99
98


2092
3520
700097318H1
SATMON009
g168478
BLASTN
1121
1e−99
97


2093
3520
700045244H1
SATMON004
g22239
BLASTN
1295
1e−99
98


2094
3520
700041539H1
SATMON004
g168478
BLASTN
1300
1e−99
100


2095
3520
700100339H1
SATMON009
g168520
BLASTN
1014
1e−98
97


2096
3520
700099768H1
SATMON009
g168520
BLASTN
519
1e−97
96


2097
3520
700043795H1
SATMON004
g168520
BLASTN
973
1e−97
97


2098
3520
700043117H1
SATMON004
g168520
BLASTN
1007
1e−97
97


2099
3520
700211227H1
SATMON016
g168520
BLASTN
694
1e−96
92


2100
3520
700044187H1
SATMON004
g168520
BLASTN
958
1e−96
98


2101
3520
700025676H1
SATMON004
g168478
BLASTN
1259
1e−95
98


2102
3520
700094879H1
SATMON008
g168478
BLASTN
843
1e−94
95


2103
3520
700217617H1
SATMON016
g168520
BLASTN
898
1e−94
93


2104
3520
700404848H1
SATMON026
g168520
BLASTN
1039
1e−94
88


2105
3520
700044959H1
SATMON004
g168520
BLASTN
1000
1e−93
95


2106
3520
700213689H1
SATMON016
g168520
BLASTN
1007
1e−93
97


2107
3520
700210347H1
SATMON016
g168520
BLASTN
1191
1e−92
90


2108
3520
700045145H1
SATMON004
g168520
BLASTN
988
1e−91
98


2109
3520
700217745H1
SATMON016
g168520
BLASTN
1037
1e−91
98


2110
3520
700099288H1
SATMON009
g168478
BLASTN
1120
1e−91
93


2111
3520
700099630H1
SATMON009
g168520
BLASTN
445
1e−88
92


2112
3520
700214977H1
SATMON016
g22239
BLASTN
1084
1e−88
96


2113
3520
700045545H1
SATMON004
g22239
BLASTN
1161
1e−88
95


2114
3520
700198007H1
SATMON016
g22239
BLASTN
1167
1e−88
99


2115
3520
700216050H1
SATMON016
g168520
BLASTN
681
1e−85
88


2116
3520
700214595H1
SATMON016
g168478
BLASTN
975
1e−84
98


2117
3520
700215383H1
SATMON016
g168478
BLASTN
1021
1e−84
98


2118
3520
700098015H1
SATMON009
g168478
BLASTN
1080
1e−81
79


2119
3520
700210596H1
SATMON016
g168520
BLASTN
575
1e−79
92


2120
3520
700440284H1
SATMON026
g168478
BLASTN
914
1e−76
93


2121
3520
700215096H1
SATMON016
g168478
BLASTN
866
1e−75
95


2122
3520
700207885H1
SATMON016
g168520
BLASTN
408
1e−70
97


2123
3520
700044936H1
SATMON004
g168520
BLASTN
414
1e−68
89


2124
3520
700042261H1
SATMON004
g22239
BLASTN
579
1e−67
97


2125
3520
700213316H1
SATMON016
g22239
BLASTN
742
1e−53
98


2126
3520
700101372H1
SATMON009
g22239
BLASTN
625
1e−43
100


2127
3520
700053328H1
SATMON009
g168478
BLASTN
628
1e−43
99


2128
3520
700100601H1
SATMON009
g168478
BLASTN
610
1e−41
97


2129
3520
700101784H1
SATMON009
g168520
BLASTN
495
1e−40
99


2130
3520
700100849H1
SATMON009
g168520
BLASTN
505
1e−33
100


2131
3520
700098705H1
SATMON009
g168520
BLASTN
445
1e−32
99


2132
3520
700098336H1
SATMON009
g168478
BLASTN
450
1e−28
90


2133
3520
700404788H1
SATMON026
g22239
BLASTN
413
1e−25
96


2134
3520
700097106H1
SATMON009
g168520
BLASTN
300
1e−16
100


2135
4750
700267791H1
SATMON017
g1100222
BLASTN
685
1e−48
69


2136
4750
700346835H1
SATMON021
g1100222
BLASTN
689
1e−48
71


2137
4750
700205354H1
SATMON003
g1100222
BLASTN
576
1e−39
66


2138
4750
700213067H1
SATMON016
g1100222
BLASTN
558
1e−37
69


2139
4750
700073493H1
SATMON007
g1100222
BLASTN
513
1e−32
68


2140
482
700281924H2
SATMON021
g1100224
BLASTN
835
1e−60
79


2141
482
700076167H1
SATMON007
g1100224
BLASTN
765
1e−54
78


2142
482
700106880H1
SATMON010
g1100222
BLASTN
713
1e−50
79


2143
482
700343834H1
SATMON021
g1100224
BLASTN
650
1e−45
79


2144
482
700612539H1
SATMON033
g1100224
BLASTN
584
1e−39
80


2145
482
700017623H1
SATMON001
g1100224
BLASTN
535
1e−35
81


2146
5054
700043423H1
SATMON004
g1185553
BLASTN
241
1e−9
90


2147
5609
700098586H1
SATMON009
g2331136
BLASTN
1069
1e−80
80


2148
5609
700101965H1
SATMON009
g2331136
BLASTN
973
1e−72
78


2149
5609
700097652H1
SATMON009
g22239
BLASTN
530
1e−70
77


2150
5609
700045073H1
SATMON004
g2331136
BLASTN
908
1e−67
83


2151
5609
700100461H1
SATMON009
g2331136
BLASTN
896
1e−66
84


2152
5609
700100784H1
SATMON009
g22239
BLASTN
306
1e−65
79


2153
5609
700041674H1
SATMON004
g22239
BLASTN
893
1e−65
81


2154
5609
700101071H1
SATMON009
g22239
BLASTN
867
1e−63
79


2155
5609
700099485H1
SATMON009
g168478
BLASTN
462
1e−61
83


2156
5609
700101345H1
SATMON009
g2331136
BLASTN
744
1e−61
78


2157
5609
700043784H1
SATMON004
g22239
BLASTN
842
1e−61
80


2158
5609
700099589H1
SATMON009
g2331136
BLASTN
707
1e−60
76


2159
5609
700099264H1
SATMON009
g168478
BLASTN
568
1e−58
78


2160
5609
700041766H1
SATMON004
g168478
BLASTN
615
1e−58
86


2161
5609
700098403H1
SATMON009
g168521
BLASTN
798
1e−58
80


2162
5609
700042111H1
SATMON004
g21251
BLASTN
791
1e−57
75


2163
5609
700042979H1
SATMON004
g21251
BLASTN
783
1e−56
75


2164
5609
700579708H1
SATMON031
g21251
BLASTN
770
1e−55
76


2165
5609
700097230H1
SATMON009
g1181547
BLASTN
677
1e−47
75


2166
5609
700097983H1
SATMON009
g1181547
BLASTN
644
1e−44
76


2167
5609
700099990H1
SATMON009
g22239
BLASTN
633
1e−43
78


2168
5609
700404886H1
SATMON026
g22239
BLASTN
621
1e−42
79


2169
5609
700101261H1
SATMON009
g22239
BLASTN
306
1e−41
78


2170
5609
700025513H1
SATMON004
g21251
BLASTN
592
1e−40
72


2171
5609
700042534H1
SATMON004
g1181547
BLASTN
575
1e−39
73


2172
5609
700404890H1
SATMON026
g168520
BLASTN
324
1e−27
81


2173
5609
700100028H1
SATMON009
g1181547
BLASTN
435
1e−25
77


2174
5609
700097683H1
SATMON009
g170239
BLASTX
211
1e−22
92


2175
5609
700045480H1
SATMON004
g170239
BLASTX
202
1e−20
92


2176
5609
700101596H1
SATMON009
g21252
BLASTX
129
1e−17
80


2177
5609
700434377H1
SATMONN01
g168524
BLASTX
70
1e−16
94


2178
5609
700043206H1
SATMON004
g170239
BLASTX
150
1e−16
87


2179
5609
700025514H1
SATMON004
g21251
BLASTN
276
1e−14
69


2180
5609
700198075H1
SATMON016
g170239
BLASTX
138
1e−13
79


2181
5609
700100768H1
SATMON009
g21252
BLASTX
50
1e−10
78


2182
5609
700043373H1
SATMON004
g21252
BLASTX
67
1e−10
86


2183
5609
700097375H1
SATMON009
g21252
BLASTX
70
1e−9
77


2184
5609
700208045H1
SATMON016
g256965
BLASTX
72
1e−9
61


2185
7791
700426721H1
SATMONN01
g1185553
BLASTN
273
1e−12
83


2186
9845
700573046H1
SATMON030
g1185555
BLASTN
283
1e−23
70


2187
-L1431834
LIB143-029-
LIB143
g22237
BLASTN
369
1e−65
94




Q1-E1-H1


2188
-L1433328
LIB143-020-
LIB143
g22237
BLASTN
269
1e−11
82




Q1-E1-F2


2189
-L1435669
LIB143-049-
LIB143
g1184773
BLASTN
409
1e−48
82




Q1-E1-H3


2190
-L1435747
LIB143-049-
LIB143
g1184775
BLASTN
161
1e−13
85




Q1-E1-H4


2191
-L1482841
LIB148-009-
LIB148
g717080
BLASTN
683
1e−46
75




Q1-E1-G2


2192
-L1891511
LIB189-007-
LIB189
g168478
BLASTN
186
1e−12
85




Q1-E1-B4


2193
-L1893431
LIB189-023-
LIB189
g168520
BLASTN
780
1e−58
80




Q1-E1-B8


2194
-L30591771
LIB3059-004-
LIB3059
g1184773
BLASTN
253
1e−10
79




Q1-K1-C3


2195
-L30592823
LIB3059-013-
LIB3059
g1184775
BLASTN
876
1e−64
94




Q1-K1-B4


2196
-L30595676
LIB3059-059-
LIB3059
g1912310
BLASTX
138
1e−27
82




Q1-K1-D6


2197
-L30596448
LIB3059-052-
LIB3059
g22302
BLASTN
207
1e−13
70




Q1-K1-E5


2198
-L30596730
LIB3059-055-
LIB3059
g717080
BLASTN
234
1e−10
78




Q1-K1-C8


2199
-L30601281
LIB3060-001-
LIB3060
g168520
BLASTN
762
1e−77
84




Q1-K1-A9


2200
-L30601466
LIB3060-002-
LIB3060
g22239
BLASTN
153
1e−9
76




Q1-K2-G3


2201
-L30602361
LIB3060-004-
LIB3060
g168521
BLASTN
935
1e−71
93




Q1-K1-E12


2202
-L30603772
LIB3060-040-
LIB3060
g168520
BLASTN
766
1e−78
87




Q1-K1-H9


2203
-L30604121
LIB3060-037-
LIB3060
g168478
BLASTN
238
1e−9
70




Q1-K1-B8


2204
-L30604680
LIB3060-024-
LIB3060
g168520
BLASTN
490
1e−57
81




Q1-K1-C10


2205
-L30604772
LIB3060-020-
LIB3060
g22237
BLASTN
344
1e−19
75




Q1-K1-B1


2206
-L30605068
LIB3060-023-
LIB3060
g21252
BLASTX
77
1e−25
55




Q1-K1-D10


2207
-L30614406
LIB3061-034-
LIB3061
g1184773
BLASTN
138
1e−20
95




Q1-K1-H4


2208
-L30621659
LIB3062-004-
LIB3062
g1185553
BLASTN
263
1e−10
73




Q1-K1-D3


2209
-L30624091
LIB3062-022-
LIB3062
g1184771
BLASTN
457
1e−29
61




Q1-K1-G4


2210
-L30625111
LIB3062-047-
LIB3062
g168478
BLASTN
268
1e−13
77




Q1-K1-F4


2211
-L30625390
LIB3062-045-
LIB3062
g3059121
BLASTN
246
1e−9
71




Q1-K1-B5


2212
-L30625502
LIB3062-045-
LIB3062
g1184771
BLASTN
749
1e−93
78




Q1-K1-H6


2213
-L30626082
LIB3062-057-
LIB3062
g22237
BLASTN
344
1e−19
80




Q1-K1-A6


2214
-L30661786
LIB3066-011-
LIB3066
g1185553
BLASTN
410
1e−25
84




Q1-K1-G4


2215
-L30662411
LIB3066-035-
LIB3066
g1184773
BLASTN
270
1e−13
93




Q1-K1-C8


2216
-L30664919
LIB3066-021-
LIB3066
g1185553
BLASTN
346
1e−30
87




Q1-K1-B3


2217
-L30672802
LIB3067-016-
LIB3067
g1184771
BLASTN
681
1e−53
70




Q1-K1-F10


2218
-L30673570
LIB3067-005-
LIB3067
g1185553
BLASTN
466
1e−29
92




Q1-K1-A12


2219
-L30675145
LIB3067-055-
LIB3067
g22237
BLASTN
438
1e−27
79




Q1-K1-H11


2220
-L30681335
LIB3068-001-
LIB3068
g169851
BLASTN
540
1e−34
68




Q1-K1-F4


2221
-L30683415
LIB3068-036-
LIB3068
g1628381
BLASTX
78
1e−30
55




Q1-K1-F4


2222
-L30692589
LIB3069-019-
LIB3069
g22238
BLASTX
132
1e−26
40




Q1-K1-H1


2223
-L30693586
LIB3069-025-
LIB3069
g1185553
BLASTN
327
1e−15
86




Q1-K1-F9


2224
-L30784053
LIB3078-029-
LIB3078
g168479
BLASTX
130
1e−32
47




Q1-K1-F12


2225
-L30784418
LIB3078-039-
LIB3078
g2331136
BLASTN
566
1e−38
74




Q1-K1-A2


2226
-L30791369
LIB3079-001-
LIB3079
g1184771
BLASTN
1199
1e−96
84




Q1-K1-G1


2227
-L361450
LIB36-002-
LIB36
g168478
BLASTN
698
1e−48
77




Q1-E1-C8


2228
-L362980
LIB36-019-
LIB36
g22239
BLASTN
409
1e−25
83




Q1-E1-H2


2229
-L363043
LIB36-015-
LIB36
g1184771
BLASTN
312
1e−58
83




Q1-E1-G8


2230
-L831348
LIB83-003-
LIB83
g168478
BLASTN
286
1e−12
98




Q1-E1-A11


2231
-L832266
LIB83-007-
LIB83
g1185555
BLASTN
381
1e−22
68




Q1-E1-C2


2232
-L841577
LIB84-027-
LIB84
g168478
BLASTN
457
1e−29
95




Q1-E1-H4


2233
-L841855
LIB84-030-
LIB84
g1185555
BLASTN
231
1e−10
75




Q1-E1-C10


2234
-L84758
LIB84-016-
LIB84
g474407
BLASTN
1346
1e−133
97




Q1-E1-E5


2235
12126
LIB3062-056-
LIB3062
g169851
BLASTN
890
1e−65
71




Q1-K1-C9


2236
1334
LIB143-061-
LIB143
g717080
BLASTN
310
1e−14
83




Q1-E1-G2


2237
1334
LIB84-012-
LIB84
g717080
BLASTN
289
1e−12
79




Q1-E12-B5


2238
13427
LIB3067-056-
LIB3067
g1185553
BLASTN
489
1e−30
88




Q1-K1-B4


2239
13947
LIB3061-037-
LIB3061
g1185553
BLASTN
334
1e−16
83




Q1-K1-C8


2240
17968
LIB3059-042-
LIB3059
g1184775
BLASTN
1641
1e−128
98




Q1-K1-G12


2241
2468
LIB84-002-
LIB84
g168478
BLASTN
1251
1e−95
99




Q1-E1-A7


2242
2468
LIB83-001-
LIB83
g22239
BLASTN
860
1e−62
100




Q1-E1-E4


2243
26686
LIB3069-013-
LIB3069
g1184772
BLASTX
155
1e−29
42




Q1-K1-H10


2244
27323
LIB3078-024-
LIB3078
g474407
BLASTN
1386
1e−106
99




Q1-K1-G1


2245
27323
LIB3069-038-
LIB3069
g474407
BLASTN
1025
1e−93
99




Q1-K1-F4


2246
27785
LIB148-039-
LIB148
g1185553
BLASTN
495
1e−30
83




Q1-E1-A11


2247
27785
LIB148-006-
LIB148
g1185553
BLASTN
267
1e−10
79




Q1-E1-B8


2248
29041
LIB148-017-
LIB148
g1185553
BLASTN
410
1e−27
86




Q1-E1-D6


2249
29041
LIB148-024-
LIB148
g1185553
BLASTN
441
1e−27
86




Q1-E1-C10


2250
29041
LIB148-058-
LIB148
g1185553
BLASTN
441
1e−27
86




Q1-E1-D8


2251
29041
LIB143-040-
LIB143
g1185553
BLASTN
441
1e−26
86




Q1-E1-H8


2252
30017
LIB148-057-
LIB148
g717080
BLASTN
264
1e−10
65




Q1-E1-H7


2253
30327
LIB36-012-
LIB36
g22302
BLASTN
266
1e−30
83




Q1-E1-B4


2254
31280
LIB36-002-
LIB36
g1185553
BLASTN
337
1e−16
79




Q1-E1-A4


2255
32165
LIB36-013-
LIB36
g474407
BLASTN
1417
1e−109
91




Q1-E1-F8


2256
325
LIB3062-009-
LIB3062
g22237
BLASTN
2130
1e−169
100




Q1-K1-B6


2257
325
LIB3059-029-
LIB3059
g1184771
BLASTN
2098
1e−166
98




Q1-K1-E5


2258
325
LIB3066-001-
LIB3066
g1184773
BLASTN
2063
1e−163
95




Q1-K1-C3


2259
325
LIB3067-029-
LIB3067
g1184775
BLASTN
1334
1e−162
96




Q1-K1-F10


2260
325
LIB3062-012-
LIB3062
g22237
BLASTN
1952
1e−162
99




Q1-K1-C5


2261
325
LIB3061-011-
LIB3061
g1184773
BLASTN
1973
1e−160
99




Q1-K1-H1


2262
325
LIB3061-034-
LIB3061
g1184773
BLASTN
2027
1e−160
98




Q1-K1-H6


2263
325
LIB3061-011-
LIB3061
g22237
BLASTN
1691
1e−159
98




Q1-K1-D5


2264
325
LIB3068-026-
LIB3068
g22237
BLASTN
1899
1e−159
98




Q1-K1-E3


2265
325
LIB3061-034-
LIB3061
g1184773
BLASTN
1890
1e−158
98




Q1-K1-A7


2266
325
LIB143-006-
LIB143
g1184773
BLASTN
1454
1e−157
95




Q1-E1-F5


2267
325
LIB3068-008-
LIB3068
g1184771
BLASTN
1673
1e−157
94




Q1-K1-H2


2268
325
LIB3060-001-
LIB3060
g1184771
BLASTN
1673
1e−155
96




Q1-K2-C11


2269
325
LIB3059-042-
LIB3059
g1184773
BLASTN
1751
1e−154
97




Q1-K1-G11


2270
325
LIB3060-053-
LIB3060
g1184771
BLASTN
1954
1e−154
99




Q1-K1-H6


2271
325
LIB3062-001-
LIB3062
g22237
BLASTN
1836
1e−152
93




Q1-K2-B9


2272
325
LIB143-050-
LIB143
g1184773
BLASTN
1837
1e−152
94




Q1-E1-C2


2273
325
LIB3059-002-
LIB3059
g1184773
BLASTN
1933
1e−152
94




Q1-K2-D10


2274
325
LIB3066-021-
LIB3066
g1184773
BLASTN
1482
1e−151
92




Q1-K1-G1


2275
325
LIB36-006-
LIB36
g1184771
BLASTN
1915
1e−151
96




Q1-E1-G10


2276
325
LIB3061-013-
LIB3061
g1184773
BLASTN
1918
1e−151
96




Q1-K1-D10


2277
325
LIB3062-035-
LIB3062
g22237
BLASTN
849
1e−150
94




Q1-K1-B9


2278
325
LIB3068-002-
LIB3068
g1184771
BLASTN
1056
1e−150
97




Q1-K1-D3


2279
325
LIB3059-030-
LIB3059
g1184773
BLASTN
1912
1e−150
99




Q1-K1-E12


2280
325
LIB3059-048-
LIB3059
g1184773
BLASTN
1649
1e−148
90




Q1-K1-D4


2281
325
LIB143-025-
LIB143
g22237
BLASTN
1887
1e−148
94




Q1-E1-E8


2282
325
LIB143-057-
LIB143
g1184773
BLASTN
1496
1e−146
95




Q1-E1-E6


2283
325
LIB143-015-
LIB143
g1184771
BLASTN
1855
1e−146
100




Q1-E1-F12


2284
325
LIB3060-049-
LIB3060
g1184771
BLASTN
1858
1e−146
99




Q1-K1-H7


2285
325
LIB143-025-
LIB143
g1184771
BLASTN
1413
1e−142
95




Q1-E1-H7


2286
325
LIB84-027-
LIB84
g22237
BLASTN
1654
1e−142
97




Q1-E1-F5


2287
325
LIB36-003-
LIB36
g1184771
BLASTN
1536
1e−141
96




Q1-E1-C2


2288
325
LIB3067-032-
LIB3067
g1184773
BLASTN
1121
1e−139
94




Q1-K1-B12


2289
325
LIB3069-038-
LIB3069
g22237
BLASTN
1372
1e−137
90




Q1-K1-F9


2290
325
LIB3066-021-
LIB3066
g1184773
BLASTN
1535
1e−136
94




Q1-K1-G2


2291
325
LIB3069-043-
LIB3069
g22237
BLASTN
1483
1e−134
93




Q1-K1-A1


2292
325
LIB3060-020-
LIB3060
g1184771
BLASTN
1110
1e−132
95




Q1-K1-A12


2293
325
LIB143-014-
LIB143
g1184773
BLASTN
1625
1e−130
93




Q1-E1-F8


2294
325
LIB3066-021-
LIB3066
g1184773
BLASTN
1221
1e−127
86




Q1-K1-G3


2295
325
LIB3066-004-
LIB3066
g1184771
BLASTN
1482
1e−125
91




Q1-K1-G9


2296
325
LIB143-055-
LIB143
g1184771
BLASTN
1503
1e−125
87




Q1-E1-B3


2297
325
LIB3060-046-
LIB3060
g1184771
BLASTN
1315
1e−124
95




Q1-K1-C4


2298
325
LIB3060-012-
LIB3060
g22237
BLASTN
1432
1e−123
94




Q1-K1-E9


2299
325
LIB3066-037-
LIB3066
g1184771
BLASTN
837
1e−121
90




Q1-K1-A2


2300
325
LIB3067-031-
LIB3067
g1184773
BLASTN
923
1e−121
90




Q1-K1-G12


2301
325
LIB143-049-
LIB143
g1184771
BLASTN
1497
1e−119
99




Q1-E1-D6


2302
325
LIB3060-022-
LIB3060
g22237
BLASTN
1168
1e−117
89




Q1-K1-E7


2303
325
LIB143-012-
LIB143
g1184773
BLASTN
1501
1e−116
95




Q1-E1-C2


2304
325
LIB36-006-
LIB36
g22237
BLASTN
1464
1e−113
95




Q1-E1-D9


2305
325
LIB3060-001-
LIB3060
g1184771
BLASTN
981
1e−112
88




Q1-K2-C12


2306
325
LIB143-063-
LIB143
g1184773
BLASTN
1354
1e−110
87




Q1-E1-G8


2307
325
LIB3060-028-
LIB3060
g22237
BLASTN
613
1e−109
93




Q1-K1-E1


2308
325
LIB3061-001-
LIB3061
g1184771
BLASTN
743
1e−107
86




Q1-K2-H1


2309
325
LIB143-017-
LIB143
g1184773
BLASTN
1217
1e−107
92




Q1-E1-G4


2310
325
30-LIB84-
LIB84
g1184771
BLASTN
988
1e−106
95




007-Q1-E1-H5


2311
325
LIB3061-056-
LIB3061
g1184773
BLASTN
1382
1e−106
89




Q1-K1-F11


2312
325
LIB3062-023-
LIB3062
g22237
BLASTN
1373
1e−105
79




Q1-K1-F7


2313
325
LIB3068-055-
LIB3068
g1184771
BLASTN
566
1e−101
90




Q1-K1-G2


2314
325
LIB143-050-
LIB143
g1184773
BLASTN
980
1e−100
87




Q1-E1-C3


2315
325
LIB3061-005-
LIB3061
g1184773
BLASTN
816
1e−99
92




Q1-K1-B3


2316
325
LIB3068-051-
LIB3068
g1184771
BLASTN
658
1e−95
96




Q1-K1-C5


2317
325
LIB3068-021-
LIB3068
g22237
BLASTN
1074
1e−92
94




Q1-K1-C5


2318
325
LIB3059-002-
LIB3059
g1184773
BLASTN
905
1e−91
86




Q1-K2-D11


2319
325
LIB143-029-
LIB143
g22237
BLASTN
979
1e−91
96




Q1-E1-E1


2320
325
LIB3062-016-
LIB3062
g1184775
BLASTN
1164
1e−91
98




Q1-K1-E1


2321
325
LIB3062-035-
LIB3062
g1184771
BLASTN
1058
1e−89
90




Q1-K1-H4


2322
325
LIB189-023-
LIB189
g22237
BLASTN
589
1e−88
87




Q1-E1-F1


2323
325
LIB143-067-
LIB143
g1184771
BLASTN
777
1e−84
88




Q1-E1-H11


2324
325
LIB3061-024-
LIB3061
g1184773
BLASTN
838
1e−78
94




Q1-K1-C11


2325
325
LIB3068-041-
LIB3068
g1184771
BLASTN
680
1e−77
95




Q1-K1-B11


2326
325
LIB3068-026-
LIB3068
g1184771
BLASTN
680
1e−69
94




Q1-K1-D5


2327
325
LIB3061-012-
LIB3061
g1184773
BLASTN
744
1e−66
87




Q1-K1-C11


2328
325
LIB143-066-
LIB143
g1184771
BLASTN
634
1e−64
93




Q1-E1-H11


2329
325
LIB3059-004-
LIB3059
g1184771
BLASTN
818
1e−59
93




Q1-K1-G1


2330
325
LIB3069-053-
LIB3069
g1184771
BLASTN
347
1e−46
89




Q1-K1-D10


2331
325
LIB143-021-
LIB143
g1184773
BLASTN
367
1e−35
90




Q1-E1-E2


2332
325
LIB3062-057-
LIB3062
g22237
BLASTN
536
1e−35
99




Q1-K1-A8


2333
325
LIB189-019-
LIB189
g1184773
BLASTN
485
1e−31
91




Q1-E1-C5


2334
325
LIB143-037-
LIB143
g22237
BLASTN
486
1e−31
98




Q1-E1-C8


2335
325
LIB3059-012-
LIB3059
g1184773
BLASTN
253
1e−12
98




Q1-K1-F6


2336
3520
LIB3078-050-
LIB3078
g168478
BLASTN
2101
1e−166
94




Q1-K1-G8


2337
3520
LIB3060-041-
LIB3060
g22239
BLASTN
2038
1e−161
95




Q1-K1-E8


2338
3520
LIB3078-055-
LIB3078
g168478
BLASTN
1903
1e−149
92




Q1-K1-H5


2339
3520
LIB3060-001-
LIB3060
g168520
BLASTN
1862
1e−148
98




Q1-K2-A9


2340
3520
LIB3060-043-
LIB3060
g168520
BLASTN
1848
1e−147
97




Q1-K1-C11


2341
3520
LIB3060-003-
LIB3060
g168520
BLASTN
1853
1e−147
97




Q1-K1-D9


2342
3520
LIB3060-041-
LIB3060
g168520
BLASTN
1830
1e−145
97




Q1-K1-F6


2343
3520
LIB3060-043-
LIB3060
g168520
BLASTN
1327
1e−144
96




Q1-K1-F2


2344
3520
LIB3060-047-
LIB3060
g168520
BLASTN
1797
1e−143
97




Q1-K1-C9


2345
3520
LIB84-017-
LIB84
g168520
BLASTN
1536
1e−142
97




Q1-E1-D3


2346
3520
LIB36-002-
LIB36
g168520
BLASTN
1573
1e−142
97




Q1-E1-B8


2347
3520
LIB3060-029-
LIB3060
g168520
BLASTN
1675
1e−140
97




Q1-K1-B7


2348
3520
LIB36-010-
LIB36
g168520
BLASTN
1550
1e−139
96




Q1-E1-C7


2349
3520
LIB3060-042-
LIB3060
g168520
BLASTN
1601
1e−139
97




Q1-K1-A10


2350
3520
LIB3060-018-
LIB3060
g22239
BLASTN
1773
1e−139
95




Q1-K1-F11


2351
3520
LIB36-003-
LIB36
g22239
BLASTN
1523
1e−137
98




Q1-E1-H7


2352
3520
LIB189-029-
LIB189
g168520
BLASTN
1531
1e−136
96




Q1-E1-F9


2353
3520
LIB36-006-
LIB36
g168478
BLASTN
1118
1e−130
96




Q1-E1-B1


2354
3520
LIB3060-021-
LIB3060
g168520
BLASTN
1627
1e−129
96




Q1-K1-F4


2355
3520
LIB3060-037-
LIB3060
g168520
BLASTN
1625
1e−128
95




Q1-K1-B6


2356
3520
LIB84-003-
LIB84
g168520
BLASTN
726
1e−121
92




Q1-E1-C1


2357
3520
LIB36-021-
LIB36
g168520
BLASTN
1537
1e−121
97




Q1-E1-H3


2358
3520
LIB3078-056-
LIB3078
g22239
BLASTN
1539
1e−119
96




Q1-K1-G1


2359
3520
LIB3060-025-
LIB3060
g168520
BLASTN
1416
1e−118
96




Q1-K1-B12


2360
3520
LIB189-004-
LIB189
g168520
BLASTN
1499
1e−118
88




Q1-E1-F9


2361
3520
LIB3060-035-
LIB3060
g168520
BLASTN
1339
1e−117
96




Q1-K1-A11


2362
3520
LIB3078-004-
LIB3078
g22239
BLASTN
1256
1e−116
91




Q1-K1-D8


2363
3520
LIB36-009-
LIB36
g168478
BLASTN
1318
1e−115
98




Q1-E1-H1


2364
3520
LIB3060-013-
LIB3060
g168478
BLASTN
1205
1e−112
92




Q1-K1-F8


2365
3520
LIB3060-041-
LIB3060
g168520
BLASTN
1332
1e−104
84




Q1-K1-G11


2366
3520
LIB3060-018-
LIB3060
g22239
BLASTN
718
1e−100
90




Q1-K1-F10


2367
3520
LIB3060-008-
LIB3060
g168520
BLASTN
532
1e−36
83




Q1-K1-F1


2368
3520
LIB3060-039-
LIB3060
g168520
BLASTN
441
1e−35
88




Q1-K1-E4


2369
5609
LIB3060-016-
LIB3060
g22239
BLASTN
787
1e−99
78




Q1-K1-F3


2370
5609
LIB36-020-
LIB36
g168478
BLASTN
756
1e−91
81




Q1-E1-A6


2371
5609
LIB189-011-
LIB189
g2331136
BLASTN
945
1e−90
77




Q1-E1-H7


2372
5609
LIB36-019-
LIB36
g168478
BLASTN
950
1e−90
77




Q1-E1-B10


2373
5609
LIB3060-049-
LIB3060
g336389
BLASTN
1076
1e−80
73




Q1-K1-A12


2374
5609
LIB36-021-
LIB36
g168478
BLASTN
926
1e−76
79




Q1-E1-H8


2375
5609
LIB84-028-
LIB84
g21251
BLASTN
866
1e−66
77




Q1-E1-H5


2376
5609
LIB3060-036-
LIB3060
g21251
BLASTN
827
1e−60
70




Q1-K1-B9


2377
5609
LIB36-001-
LIB36
g168478
BLASTN
680
1e−58
86




Q1-E1-A3


2378
5609
LIB189-017-
LIB189
g21252
BLASTX
228
1e−52
68




Q1-E1-C6


2379
5609
LIB189-015-
LIB189
g168478
BLASTN
430
1e−51
75




Q1-E1-C5


2380
5609
LIB3060-035-
LIB3060
g21252
BLASTX
215
1e−49
72




Q1-K1-F2


2381
5609
LIB36-003-
LIB36
g21252
BLASTX
222
1e−43
76




Q1-E1-D2


2382
5609
LIB3060-023-
LIB3060
g21252
BLASTX
105
1e−41
68




Q1-K1-D9


2383
5609
LIB3060-018-
LIB3060
g168520
BLASTN
254
1e−26
75




Q1-K1-E11







MAIZE PUTATIVE GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE















2384
5609
700043392H1
SATMON004
g168567
BLASTN
926
1e−70
98


2385
5609
700041871H1
SATMON004
g168567
BLASTN
738
1e−54
99


2386
5609
700426511H1
SATMONN01
g168567
BLASTN
625
1e−45
100


2387
5609
700044710H1
SATMON004
g168567
BLASTN
570
1e−40
100


2388
5609
700216320H1
SATMON016
g168567
BLASTN
571
1e−40
99


2389
5609
700216328H1
SATMON016
g168567
BLASTN
413
1e−26
98


2390
5609
LIB36-006-
LIB36
g168567
BLASTN
931
1e−70
99




Q1-E1-A7


2391
5609
LIB189-010-
LIB189
g168567
BLASTN
915
1e−69
98




Q1-E1-F11


2392
5609
LIB83-006-
LIB83
g168567
BLASTN
917
1e−69
98




Q1-E1-H8


2393
5609
LIB36-017-
LIB36
g168567
BLASTN
486
1e−68
96




Q1-E1-A1


2394
5609
LIB3078-014-
LIB3078
g168567
BLASTN
906
1e−68
97




Q1-K1-H3


2395
5609
LIB189-022-
LIB189
g168567
BLASTN
931
1e−70
99




Q1-E1-H11


2396
5609
LIB3078-002-
LIB3078
g168567
BLASTN
880
1e−66
97




Q1-K1-B8







SOYBEAN GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE















2397
-700556687
700556687H1
SOYMON001
g2905771
BLASTN
315
1e−27
91


2398
-700652993
700652993H1
SOYMON003
g20732
BLASTN
538
1e−34
84


2399
-700669859
700669859H1
SOYMON006
g19565
BLASTN
404
1e−24
78


2400
-700682023
700682023H1
SOYMON008
g1184775
BLASTN
659
1e−89
95


2401
-700739645
700739645H1
SOYMON012
g20732
BLASTN
906
1e−70
91


2402
-700744137
700744137H1
SOYMON013
g12158
BLASTN
344
1e−32
77


2403
-700749096
700749096H1
SOYMON013
g425795
BLASTN
337
1e−17
75


2404
-700763386
700763386H1
SOYMON015
g20550
BLASTN
560
1e−37
80


2405
-700854894
700854894H1
SOYMON023
g1184771
BLASTN
300
1e−19
79


2406
-700870634
700870634H1
SOYMON018
g20728
BLASTN
374
1e−21
68


2407
-700871731
700871731H1
SOYMON018
g309671
BLASTX
76
1e−8
49


2408
-700891638
700891638H1
SOYMON024
g496493
BLASTN
771
1e−55
82


2409
-700954983
700954983H1
SOYMON022
g1185556
BLASTX
131
1e−17
86


2410
-700961364
700961364H1
SOYMON022
g20732
BLASTN
267
1e−11
88


2411
-700961396
700961396H1
SOYMON022
g20732
BLASTN
330
1e−17
87


2412
-700963442
700963442H1
SOYMON022
g169090
BLASTN
485
1e−31
77


2413
-700984474
700984474H1
SOYMON009
g167293
BLASTN
432
1e−51
81


2414
-700989533
700989533H1
SOYMON011
g496493
BLASTN
1057
1e−79
90


2415
-700990284
700990284H1
SOYMON011
g2331137
BLASTX
177
1e−17
88


2416
-700991120
700991120H1
SOYMON011
g2905771
BLASTN
262
1e−11
96


2417
-700991826
700991826H1
SOYMON011
g20732
BLASTN
344
1e−29
71


2418
-700993359
700993359H1
SOYMON011
g19565
BLASTN
620
1e−42
76


2419
-701000288
701000288H1
SOYMON018
g20728
BLASTN
550
1e−43
77


2420
-701049142
701049142H1
SOYMON032
g3059121
BLASTN
612
1e−42
67


2421
-701049262
701049262H1
SOYMON032
g1100222
BLASTN
781
1e−56
77


2422
-701064532
701064532H1
SOYMON034
g19565
BLASTN
345
1e−19
87


2423
-701107753
701107753H1
SOYMON036
g496493
BLASTN
773
1e−55
77


2424
-701128594
701128594H1
SOYMON037
g19565
BLASTN
489
1e−31
83


2425
-701140262
701140262H1
SOYMON038
g169090
BLASTN
449
1e−28
85


2426
-701146678
701146678H1
SOYMON031
g2078298
BLASTX
52
1e−10
66


2427
-701151833
701151833H1
SOYMON031
g1931618
BLASTN
567
1e−38
81


2428
-701203691
701203691H2
SOYMON035
g169090
BLASTN
264
1e−11
87


2429
-701208478
701208478H1
SOYMON035
g169090
BLASTN
262
1e−22
69


2430
1061
700763870H1
SOYMON018
g20728
BLASTN
1054
1e−91
88


2431
1061
700556966H1
SOYMON001
g20728
BLASTN
1199
1e−91
91


2432
1061
700980735H1
SOYMON009
g20728
BLASTN
1140
1e−86
89


2433
1061
700983864H1
SOYMON009
g20728
BLASTN
1147
1e−86
88


2434
1061
700786535H1
SOYMON011
g12158
BLASTN
1086
1e−81
86


2435
1061
700728027H1
SOYMON009
g20728
BLASTN
767
1e−79
89


2436
1061
700684426H1
SOYMON008
g20728
BLASTN
1045
1e−78
90


2437
1061
700559635H1
SOYMON001
g20728
BLASTN
799
1e−77
85


2438
1061
700555476H1
SOYMON001
g20728
BLASTN
891
1e−77
87


2439
1061
700876005H1
SOYMON018
g20728
BLASTN
595
1e−76
88


2440
1061
700646201H1
SOYMON012
g12158
BLASTN
784
1e−75
88


2441
1061
700873429H1
SOYMON018
g20728
BLASTN
853
1e−75
88


2442
1061
700685875H1
SOYMON008
g20728
BLASTN
894
1e−75
89


2443
1061
700554131H1
SOYMON001
g20728
BLASTN
925
1e−75
88


2444
1061
700686559H1
SOYMON008
g20728
BLASTN
1012
1e−75
86


2445
1061
700873329H1
SOYMON018
g20728
BLASTN
1013
1e−75
89


2446
1061
701061532H1
SOYMON033
g20728
BLASTN
1017
1e−75
88


2447
1061
700876258H1
SOYMON018
g20728
BLASTN
562
1e−73
91


2448
1061
700991748H1
SOYMON011
g20728
BLASTN
646
1e−73
85


2449
1061
700752804H1
SOYMON014
g20728
BLASTN
984
1e−73
86


2450
1061
700873301H1
SOYMON018
g20728
BLASTN
988
1e−73
87


2451
1061
700977867H1
SOYMON009
g20728
BLASTN
974
1e−72
86


2452
1061
700558508H1
SOYMON001
g12158
BLASTN
562
1e−71
85


2453
1061
700558346H1
SOYMON001
g12158
BLASTN
800
1e−71
89


2454
1061
701104595H1
SOYMON036
g20728
BLASTN
958
1e−71
85


2455
1061
701107372H1
SOYMON036
g20728
BLASTN
959
1e−71
83


2456
1061
700877182H1
SOYMON018
g20728
BLASTN
963
1e−71
85


2457
1061
700682345H2
SOYMON008
g20728
BLASTN
965
1e−71
87


2458
1061
700999844H1
SOYMON018
g20728
BLASTN
965
1e−71
85


2459
1061
700962204H1
SOYMON022
g12158
BLASTN
968
1e−71
85


2460
1061
700962351H1
SOYMON022
g20728
BLASTN
525
1e−69
86


2461
1061
700743037H1
SOYMON012
g20728
BLASTN
563
1e−69
85


2462
1061
700975367H1
SOYMON009
g20728
BLASTN
938
1e−69
84


2463
1061
700844411H1
SOYMON021
g20728
BLASTN
944
1e−69
92


2464
1061
700891407H1
SOYMON024
g12158
BLASTN
946
1e−69
87


2465
1061
700556475H1
SOYMON001
g20728
BLASTN
743
1e−68
85


2466
1061
700739632H1
SOYMON012
g20728
BLASTN
849
1e−68
83


2467
1061
700752141H1
SOYMON014
g12158
BLASTN
928
1e−68
85


2468
1061
700654954H1
SOYMON004
g20728
BLASTN
932
1e−68
83


2469
1061
700874388H1
SOYMON018
g12158
BLASTN
932
1e−68
88


2470
1061
701156507H1
SOYMON031
g20728
BLASTN
485
1e−67
88


2471
1061
700646112H1
SOYMON012
g20728
BLASTN
715
1e−67
86


2472
1061
700873965H1
SOYMON018
g20728
BLASTN
911
1e−67
85


2473
1061
700741948H1
SOYMON012
g20728
BLASTN
898
1e−66
86


2474
1061
700875513H1
SOYMON018
g20728
BLASTN
900
1e−66
87


2475
1061
700874967H1
SOYMON018
g20728
BLASTN
546
1e−65
86


2476
1061
700559242H1
SOYMON001
g20728
BLASTN
743
1e−65
84


2477
1061
700559801H1
SOYMON001
g20728
BLASTN
743
1e−65
84


2478
1061
700659588H1
SOYMON004
g12158
BLASTN
888
1e−65
84


2479
1061
700725516H1
SOYMON009
g12158
BLASTN
495
1e−64
87


2480
1061
700901411H1
SOYMON027
g20728
BLASTN
793
1e−64
87


2481
1061
700790272H2
SOYMON011
g12158
BLASTN
883
1e−64
84


2482
1061
700942783H1
SOYMON024
g12158
BLASTN
507
1e−63
86


2483
1061
700876055H1
SOYMON018
g20728
BLASTN
535
1e−63
85


2484
1061
700554719H1
SOYMON001
g20728
BLASTN
726
1e−63
85


2485
1061
700993112H1
SOYMON011
g20728
BLASTN
402
1e−62
85


2486
1061
700684688H1
SOYMON008
g12158
BLASTN
519
1e−62
84


2487
1061
700890177H1
SOYMON024
g20728
BLASTN
579
1e−62
85


2488
1061
700554380H1
SOYMON001
g20728
BLASTN
712
1e−62
84


2489
1061
700876338H1
SOYMON018
g12158
BLASTN
856
1e−62
86


2490
1061
700993901H1
SOYMON011
g20728
BLASTN
583
1e−61
88


2491
1061
701103760H1
SOYMON036
g12158
BLASTN
843
1e−61
80


2492
1061
700684581H1
SOYMON008
g12158
BLASTN
850
1e−61
83


2493
1061
701049681H1
SOYMON032
g20728
BLASTN
545
1e−60
84


2494
1061
700681925H1
SOYMON008
g20728
BLASTN
355
1e−59
81


2495
1061
700680184H2
SOYMON008
g20728
BLASTN
478
1e−59
85


2496
1061
701108645H1
SOYMON036
g12158
BLASTN
775
1e−55
85


2497
1061
701106940H1
SOYMON036
g12158
BLASTN
775
1e−55
85


2498
1061
700984503H1
SOYMON009
g20728
BLASTN
516
1e−54
83


2499
1061
700738754H1
SOYMON012
g166701
BLASTN
759
1e−54
78


2500
1061
700685581H1
SOYMON008
g12158
BLASTN
375
1e−53
85


2501
1061
700977296H1
SOYMON009
g12158
BLASTN
470
1e−53
82


2502
1061
700999412H1
SOYMON018
g166701
BLASTN
617
1e−53
80


2503
1061
700898819H1
SOYMON027
g12158
BLASTN
722
1e−53
81


2504
1061
700994354H1
SOYMON011
g20728
BLASTN
743
1e−53
85


2505
1061
700685709H1
SOYMON008
g20728
BLASTN
743
1e−53
85


2506
1061
700738315H1
SOYMON012
g20728
BLASTN
743
1e−53
85


2507
1061
700873275H1
SOYMON018
g20728
BLASTN
743
1e−53
85


2508
1061
700555226H1
SOYMON001
g20728
BLASTN
743
1e−53
85


2509
1061
700892169H1
SOYMON024
g20728
BLASTN
743
1e−53
85


2510
1061
701107458H1
SOYMON036
g20728
BLASTN
743
1e−53
85


2511
1061
701047451H1
SOYMON032
g20728
BLASTN
743
1e−53
85


2512
1061
700994065H1
SOYMON011
g20728
BLASTN
744
1e−53
86


2513
1061
700968347H1
SOYMON036
g20728
BLASTN
746
1e−53
85


2514
1061
700740108H1
SOYMON012
g20728
BLASTN
732
1e−52
88


2515
1061
700556578H1
SOYMON001
g20728
BLASTN
735
1e−52
86


2516
1061
700646223H1
SOYMON012
g20728
BLASTN
735
1e−52
86


2517
1061
700686442H1
SOYMON008
g20728
BLASTN
735
1e−52
86


2518
1061
700995540H1
SOYMON011
g20728
BLASTN
735
1e−52
86


2519
1061
700997359H1
SOYMON018
g20728
BLASTN
735
1e−52
86


2520
1061
700863529H1
SOYMON027
g20728
BLASTN
735
1e−52
86


2521
1061
700874946H1
SOYMON018
g20728
BLASTN
735
1e−52
86


2522
1061
700789664H2
SOYMON011
g20728
BLASTN
735
1e−52
86


2523
1061
700559731H1
SOYMON001
g20728
BLASTN
735
1e−52
86


2524
1061
701141680H1
SOYMON038
g20728
BLASTN
735
1e−52
86


2525
1061
700555668H1
SOYMON001
g20728
BLASTN
735
1e−52
86


2526
1061
700553965H1
SOYMON001
g20728
BLASTN
735
1e−52
86


2527
1061
700989276H1
SOYMON011
g20728
BLASTN
735
1e−52
86


2528
1061
701213488H1
SOYMON035
g20728
BLASTN
735
1e−52
86


2529
1061
701120382H1
SOYMON037
g20728
BLASTN
735
1e−52
86


2530
1061
700740875H1
SOYMON012
g20728
BLASTN
735
1e−52
86


2531
1061
700741835H1
SOYMON012
g20728
BLASTN
736
1e−52
85


2532
1061
700995653H1
SOYMON011
g20728
BLASTN
736
1e−52
85


2533
1061
700906218H1
SOYMON022
g20728
BLASTN
736
1e−52
85


2534
1061
700684347H1
SOYMON008
g20728
BLASTN
736
1e−52
85


2535
1061
700728605H1
SOYMON009
g20728
BLASTN
737
1e−52
86


2536
1061
700789578H2
SOYMON011
g20728
BLASTN
740
1e−52
87


2537
1061
700787421H2
SOYMON011
g20728
BLASTN
718
1e−51
84


2538
1061
700560934H1
SOYMON001
g20728
BLASTN
719
1e−51
84


2539
1061
700876650H1
SOYMON018
g20728
BLASTN
722
1e−51
84


2540
1061
700740868H1
SOYMON012
g20728
BLASTN
722
1e−51
84


2541
1061
700741374H1
SOYMON012
g20728
BLASTN
722
1e−51
84


2542
1061
700994074H1
SOYMON011
g20728
BLASTN
723
1e−51
86


2543
1061
701109502H1
SOYMON036
g20728
BLASTN
728
1e−51
86


2544
1061
700875104H1
SOYMON018
g20728
BLASTN
728
1e−51
86


2545
1061
700786270H2
SOYMON011
g20728
BLASTN
728
1e−51
86


2546
1061
700556484H1
SOYMON001
g20728
BLASTN
729
1e−51
84


2547
1061
700998979H1
SOYMON018
g20728
BLASTN
729
1e−51
84


2548
1061
701109358H1
SOYMON036
g20728
BLASTN
729
1e−51
84


2549
1061
700763760H1
SOYMON018
g12158
BLASTN
730
1e−51
83


2550
1061
701001681H1
SOYMON018
g20728
BLASTN
422
1e−50
85


2551
1061
700991945H1
SOYMON011
g20728
BLASTN
706
1e−50
83


2552
1061
700789781H1
SOYMON011
g20728
BLASTN
709
1e−50
87


2553
1061
700554372H1
SOYMON001
g20728
BLASTN
709
1e−50
83


2554
1061
700993753H1
SOYMON011
g12158
BLASTN
709
1e−50
87


2555
1061
700876992H1
SOYMON018
g20728
BLASTN
714
1e−50
85


2556
1061
700960223H1
SOYMON022
g20728
BLASTN
714
1e−50
85


2557
1061
700686495H1
SOYMON008
g20728
BLASTN
717
1e−50
85


2558
1061
700557711H1
SOYMON001
g20728
BLASTN
469
1e−49
83


2559
1061
700984028H1
SOYMON009
g20728
BLASTN
560
1e−49
82


2560
1061
700556584H1
SOYMON001
g20728
BLASTN
563
1e−49
86


2561
1061
700870942H1
SOYMON018
g20728
BLASTN
576
1e−49
78


2562
1061
700871710H1
SOYMON018
g166701
BLASTN
695
1e−49
79


2563
1061
700738589H1
SOYMON012
g20728
BLASTN
697
1e−49
86


2564
1061
700738856H1
SOYMON012
g20728
BLASTN
704
1e−49
86


2565
1061
701002335H1
SOYMON018
g20728
BLASTN
704
1e−49
85


2566
1061
701001628H1
SOYMON018
g20728
BLASTN
704
1e−49
85


2567
1061
700787485H2
SOYMON011
g20728
BLASTN
415
1e−48
83


2568
1061
700683818H1
SOYMON008
g12158
BLASTN
442
1e−48
82


2569
1061
700554247H1
SOYMON001
g20728
BLASTN
480
1e−48
84


2570
1061
700744021H1
SOYMON012
g20728
BLASTN
554
1e−48
84


2571
1061
700787533H1
SOYMON011
g20728
BLASTN
573
1e−48
84


2572
1061
700985942H1
SOYMON009
g20728
BLASTN
598
1e−48
85


2573
1061
701104728H1
SOYMON036
g20728
BLASTN
609
1e−48
83


2574
1061
700988933H1
SOYMON011
g20728
BLASTN
637
1e−48
85


2575
1061
701109795H1
SOYMON036
g20728
BLASTN
644
1e−48
87


2576
1061
700984329H1
SOYMON009
g20728
BLASTN
655
1e−48
86


2577
1061
701000601H1
SOYMON018
g20728
BLASTN
682
1e−48
86


2578
1061
700686572H1
SOYMON008
g20728
BLASTN
684
1e−48
86


2579
1061
700791971H1
SOYMON011
g20728
BLASTN
692
1e−48
86


2580
1061
700740621H1
SOYMON012
g20728
BLASTN
343
1e−47
84


2581
1061
700994492H1
SOYMON011
g20728
BLASTN
413
1e−47
86


2582
1061
701108677H1
SOYMON036
g20728
BLASTN
553
1e−47
85


2583
1061
700740371H1
SOYMON012
g12158
BLASTN
640
1e−47
84


2584
1061
700737944H1
SOYMON012
g20728
BLASTN
670
1e−47
81


2585
1061
700788840H2
SOYMON011
g20728
BLASTN
676
1e−47
87


2586
1061
700741626H1
SOYMON012
g20728
BLASTN
676
1e−47
87


2587
1061
700789225H2
SOYMON011
g20728
BLASTN
339
1e−46
87


2588
1061
700548027H1
SOYMON001
g20728
BLASTN
368
1e−46
88


2589
1061
701070385H1
SOYMON034
g20728
BLASTN
370
1e−46
87


2590
1061
700681469H2
SOYMON008
g20728
BLASTN
411
1e−46
85


2591
1061
700548037H1
SOYMON001
g20728
BLASTN
526
1e−46
87


2592
1061
700646084H1
SOYMON011
g12158
BLASTN
564
1e−46
79


2593
1061
700752275H1
SOYMON014
g20728
BLASTN
629
1e−46
85


2594
1061
700683806H1
SOYMON008
g20728
BLASTN
660
1e−46
88


2595
1061
700654909H1
SOYMON004
g12158
BLASTN
666
1e−46
80


2596
1061
700986823H1
SOYMON009
g20728
BLASTN
667
1e−46
81


2597
1061
700741156H1
SOYMON012
g20728
BLASTN
304
1e−45
87


2598
1061
700906879H1
SOYMON022
g20728
BLASTN
398
1e−45
85


2599
1061
700875004H1
SOYMON018
g12158
BLASTN
647
1e−45
86


2600
1061
700996131H1
SOYMON018
g20728
BLASTN
648
1e−45
86


2601
1061
700873575H1
SOYMON018
g20728
BLASTN
648
1e−45
81


2602
1061
700990142H1
SOYMON011
g20728
BLASTN
648
1e−45
86


2603
1061
700981885H1
SOYMON009
g12158
BLASTN
651
1e−45
80


2604
1061
700874783H1
SOYMON018
g20728
BLASTN
653
1e−45
86


2605
1061
701110202H1
SOYMON036
g20728
BLASTN
656
1e−45
81


2606
1061
700683388H1
SOYMON008
g20728
BLASTN
640
1e−44
84


2607
1061
700875643H1
SOYMON018
g20728
BLASTN
643
1e−44
85


2608
1061
701001467H1
SOYMON018
g20728
BLASTN
414
1e−43
83


2609
1061
700787152H2
SOYMON011
g20728
BLASTN
428
1e−43
82


2610
1061
700683930H1
SOYMON008
g20728
BLASTN
339
1e−42
86


2611
1061
700740930H1
SOYMON012
g20728
BLASTN
367
1e−42
85


2612
1061
700787113H2
SOYMON011
g20728
BLASTN
394
1e−42
78


2613
1061
700739178H1
SOYMON012
g20728
BLASTN
415
1e−42
86


2614
1061
700986609H1
SOYMON009
g20728
BLASTN
529
1e−42
85


2615
1061
700683409H1
SOYMON008
g12158
BLASTN
582
1e−42
81


2616
1061
700743479H1
SOYMON012
g20728
BLASTN
545
1e−41
87


2617
1061
700681635H1
SOYMON008
g20728
BLASTN
553
1e−41
80


2618
1061
701109104H1
SOYMON036
g12158
BLASTN
596
1e−40
81


2619
1061
700871765H1
SOYMON018
g20728
BLASTN
578
1e−39
84


2620
1061
700992456H1
SOYMON011
g20728
BLASTN
403
1e−38
84


2621
1061
700554130H1
SOYMON001
g20728
BLASTN
563
1e−38
87


2622
1061
700742575H1
SOYMON012
g20728
BLASTN
564
1e−38
89


2623
1061
700875165H1
SOYMON018
g12158
BLASTN
568
1e−38
90


2624
1061
700686144H1
SOYMON008
g20728
BLASTN
569
1e−38
87


2625
1061
700990232H1
SOYMON011
g20728
BLASTN
572
1e−38
83


2626
1061
700657137H1
SOYMON004
g12158
BLASTN
574
1e−38
82


2627
1061
700731288H1
SOYMON009
g20728
BLASTN
339
1e−36
85


2628
1061
700741126H1
SOYMON012
g166703
BLASTN
465
1e−35
82


2629
1061
700975280H1
SOYMON009
g20728
BLASTN
517
1e−34
75


2630
1061
700788092H1
SOYMON011
g20728
BLASTN
264
1e−33
78


2631
1061
700683952H1
SOYMON008
g20728
BLASTN
364
1e−33
88


2632
1061
700992834H1
SOYMON011
g20728
BLASTN
380
1e−33
89


2633
1061
700991505H1
SOYMON011
g20728
BLASTN
460
1e−33
77


2634
1061
701110056H1
SOYMON036
g20728
BLASTN
490
1e−32
88


2635
1061
700679803H1
SOYMON007
g20728
BLASTN
490
1e−32
88


2636
1061
700686648H1
SOYMON008
g20728
BLASTN
483
1e−31
87


2637
1061
701000893H1
SOYMON018
g12158
BLASTN
253
1e−30
90


2638
1061
700729743H1
SOYMON009
g12158
BLASTN
362
1e−30
82


2639
1061
700656983H1
SOYMON004
g12158
BLASTN
379
1e−30
81


2640
1061
700742961H1
SOYMON012
g166701
BLASTN
469
1e−30
80


2641
1061
700995207H1
SOYMON011
g20728
BLASTN
322
1e−28
86


2642
1061
700960745H1
SOYMON022
g20728
BLASTN
444
1e−28
73


2643
1061
700873668H1
SOYMON018
g12158
BLASTN
337
1e−27
76


2644
1061
700991519H1
SOYMON011
g166701
BLASTN
435
1e−27
88


2645
1061
700743185H1
SOYMON012
g20728
BLASTN
427
1e−26
88


2646
1061
700554408H1
SOYMON001
g12158
BLASTN
221
1e−25
77


2647
1061
700686096H1
SOYMON008
g12158
BLASTN
326
1e−24
78


2648
1061
700739363H1
SOYMON012
g20728
BLASTN
401
1e−24
89


2649
1061
700996585H1
SOYMON018
g20728
BLASTN
416
1e−24
84


2650
1061
700991823H1
SOYMON011
g20728
BLASTN
422
1e−24
78


2651
1061
701000661H1
SOYMON018
g166702
BLASTX
130
1e−23
74


2652
1061
700606165H2
SOYMON008
g20728
BLASTN
389
1e−23
90


2653
1061
700999082H1
SOYMON018
g12158
BLASTN
364
1e−22
81


2654
1061
700738051H1
SOYMON012
g20728
BLASTN
376
1e−22
93


2655
1061
700740881H1
SOYMON012
g20728
BLASTN
377
1e−22
92


2656
1061
700987548H1
SOYMON009
g20728
BLASTN
347
1e−21
91


2657
1061
700739359H1
SOYMON012
g20728
BLASTN
357
1e−20
90


2658
1061
700979451H1
SOYMON009
g20728
BLASTN
357
1e−20
88


2659
1061
700991851H1
SOYMON011
g20728
BLASTN
351
1e−18
84


2660
1061
700989348H1
SOYMON011
g20728
BLASTN
295
1e−14
85


2661
1061
700558380H1
SOYMON001
g12159
BLASTX
80
1e−12
81


2662
1061
700738070H1
SOYMON012
g12158
BLASTN
160
1e−10
85


2663
1061
700992942H1
SOYMON011
g20728
BLASTN
243
1e−9
94


2664
1061
700986029H1
SOYMON009
g20728
BLASTN
208
1e−8
76


2665
1061
700743737H1
SOYMON012
g20728
BLASTN
231
1e−8
84


2666
12847
700680701H1
SOYMON008
g20732
BLASTN
547
1e−35
87


2667
12847
700874711H1
SOYMON018
g20732
BLASTN
486
1e−31
87


2668
1392
701051645H1
SOYMON032
g2078297
BLASTN
1065
1e−80
86


2669
1392
700563915H1
SOYMON002
g2078297
BLASTN
1072
1e−80
88


2670
1392
701204320H2
SOYMON035
g2078297
BLASTN
1005
1e−75
88


2671
1392
700652968H1
SOYMON003
g19565
BLASTN
1012
1e−75
83


2672
1392
700748683H1
SOYMON013
g169090
BLASTN
968
1e−71
86


2673
1392
700981771H1
SOYMON009
g2078297
BLASTN
552
1e−70
88


2674
1392
700605826H2
SOYMON006
g21142
BLASTN
618
1e−68
85


2675
1392
700666839H1
SOYMON005
g2078297
BLASTN
809
1e−68
88


2676
1392
700944037H1
SOYMON024
g19565
BLASTN
899
1e−66
83


2677
1392
700969575H1
SOYMON005
g19565
BLASTN
854
1e−62
83


2678
1392
701118935H1
SOYMON037
g19565
BLASTN
838
1e−61
83


2679
1392
700725758H1
SOYMON009
g19565
BLASTN
846
1e−61
81


2680
1392
701054027H1
SOYMON032
g19565
BLASTN
818
1e−59
83


2681
1392
700954591H1
SOYMON022
g19565
BLASTN
825
1e−59
83


2682
1392
700653724H1
SOYMON003
g19565
BLASTN
781
1e−56
83


2683
1392
701052969H1
SOYMON032
g19565
BLASTN
788
1e−56
82


2684
1392
700836192H1
SOYMON019
g19565
BLASTN
769
1e−55
84


2685
1392
701014006H1
SOYMON019
g19565
BLASTN
769
1e−55
84


2686
1392
700849014H1
SOYMON021
g19565
BLASTN
770
1e−55
83


2687
1392
700747177H1
SOYMON013
g19565
BLASTN
770
1e−55
83


2688
1392
700733933H1
SOYMON010
g19565
BLASTN
775
1e−55
83


2689
1392
701045883H1
SOYMON032
g19565
BLASTN
754
1e−54
83


2690
1392
700561161H1
SOYMON002
g19565
BLASTN
760
1e−54
83


2691
1392
701002757H2
SOYMON019
g19565
BLASTN
764
1e−54
84


2692
1392
701150827H1
SOYMON031
g21142
BLASTN
428
1e−53
88


2693
1392
701043855H1
SOYMON032
g19565
BLASTN
432
1e−53
84


2694
1392
701138753H1
SOYMON038
g166705
BLASTN
395
1e−52
80


2695
1392
700746913H1
SOYMON013
g19565
BLASTN
596
1e−52
84


2696
1392
701004953H1
SOYMON019
g19565
BLASTN
734
1e−52
83


2697
1392
700900882H1
SOYMON027
g19565
BLASTN
740
1e−52
83


2698
1392
700987148H1
SOYMON009
g19565
BLASTN
691
1e−51
83


2699
1392
701054872H1
SOYMON032
g19565
BLASTN
719
1e−51
81


2700
1392
701056763H1
SOYMON032
g166705
BLASTN
632
1e−50
83


2701
1392
700748607H1
SOYMON013
g19565
BLASTN
707
1e−50
82


2702
1392
700830473H1
SOYMON019
g19565
BLASTN
694
1e−49
83


2703
1392
700762033H1
SOYMON015
g19565
BLASTN
696
1e−49
82


2704
1392
700987949H1
SOYMON009
g19565
BLASTN
700
1e−49
83


2705
1392
701135194H1
SOYMON038
g19565
BLASTN
705
1e−49
82


2706
1392
700748676H1
SOYMON013
g19565
BLASTN
379
1e−48
83


2707
1392
701046095H1
SOYMON032
g166705
BLASTN
386
1e−48
83


2708
1392
701045383H1
SOYMON032
g21142
BLASTN
623
1e−48
82


2709
1392
701052575H1
SOYMON032
g19565
BLASTN
683
1e−48
83


2710
1392
700667935H1
SOYMON006
g19565
BLASTN
690
1e−48
82


2711
1392
701055287H1
SOYMON032
g19565
BLASTN
690
1e−48
80


2712
1392
700660946H1
SOYMON005
g19565
BLASTN
691
1e−48
82


2713
1392
700891889H1
SOYMON024
g19565
BLASTN
670
1e−47
82


2714
1392
700670279H1
SOYMON006
g19565
BLASTN
672
1e−47
83


2715
1392
700865105H1
SOYMON016
g21142
BLASTN
674
1e−47
82


2716
1392
700664974H1
SOYMON005
g19565
BLASTN
677
1e−47
83


2717
1392
700727084H1
SOYMON009
g19565
BLASTN
680
1e−47
82


2718
1392
700748807H1
SOYMON013
g19565
BLASTN
628
1e−46
80


2719
1392
700749971H1
SOYMON013
g21142
BLASTN
662
1e−46
81


2720
1392
700664177H1
SOYMON005
g19565
BLASTN
657
1e−45
83


2721
1392
700969206H1
SOYMON005
g166705
BLASTN
634
1e−44
84


2722
1392
700668696H1
SOYMON006
g19565
BLASTN
636
1e−44
83


2723
1392
700677777H1
SOYMON007
g19565
BLASTN
640
1e−44
83


2724
1392
700969506H1
SOYMON005
g21142
BLASTN
642
1e−44
81


2725
1392
700667829H1
SOYMON006
g166705
BLASTN
643
1e−44
82


2726
1392
700730321H1
SOYMON009
g166705
BLASTN
643
1e−44
82


2727
1392
700972412H1
SOYMON005
g166705
BLASTN
644
1e−44
82


2728
1392
701043160H1
SOYMON029
g21142
BLASTN
623
1e−43
84


2729
1392
700896562H1
SOYMON027
g21142
BLASTN
623
1e−43
84


2730
1392
700678284H1
SOYMON007
g21142
BLASTN
623
1e−43
84


2731
1392
700674379H1
SOYMON007
g21142
BLASTN
623
1e−43
84


2732
1392
700973321H1
SOYMON005
g21142
BLASTN
626
1e−43
82


2733
1392
700848568H1
SOYMON021
g166705
BLASTN
632
1e−43
84


2734
1392
700973272H1
SOYMON005
g19565
BLASTN
429
1e−42
83


2735
1392
700735988H1
SOYMON010
g21142
BLASTN
615
1e−42
80


2736
1392
701002533H1
SOYMON018
g19565
BLASTN
402
1e−41
83


2737
1392
700726201H1
SOYMON009
g19565
BLASTN
454
1e−41
81


2738
1392
701004758H1
SOYMON019
g166705
BLASTN
544
1e−41
83


2739
1392
701047055H1
SOYMON032
g166705
BLASTN
599
1e−41
85


2740
1392
700970781H1
SOYMON005
g166705
BLASTN
604
1e−41
83


2741
1392
700726274H1
SOYMON009
g19565
BLASTN
442
1e−40
82


2742
1392
701011762H1
SOYMON019
g166705
BLASTN
287
1e−39
79


2743
1392
700669086H1
SOYMON006
g21142
BLASTN
460
1e−39
83


2744
1392
700833089H1
SOYMON019
g166705
BLASTN
472
1e−39
82


2745
1392
700745795H1
SOYMON013
g19565
BLASTN
576
1e−39
76


2746
1392
700651350H1
SOYMON003
g166705
BLASTN
567
1e−38
83


2747
1392
700748761H1
SOYMON013
g166705
BLASTN
556
1e−37
83


2748
1392
701012075H1
SOYMON019
g166705
BLASTN
558
1e−37
84


2749
1392
700564585H1
SOYMON002
g21065
BLASTN
309
1e−36
85


2750
1392
701051053H1
SOYMON032
g166705
BLASTN
543
1e−36
84


2751
1392
700661104H1
SOYMON005
g166705
BLASTN
544
1e−35
85


2752
1392
701051845H1
SOYMON032
g19565
BLASTN
501
1e−32
84


2753
1392
700748992H1
SOYMON013
g21142
BLASTN
374
1e−22
82


2754
1392
700845656H1
SOYMON021
g166705
BLASTN
391
1e−22
83


2755
1392
700988562H1
SOYMON009
g1184773
BLASTN
397
1e−22
83


2756
1392
701003233H1
SOYMON019
g166705
BLASTN
249
1e−20
83


2757
1392
701048025H1
SOYMON032
g166705
BLASTN
335
1e−19
84


2758
14902
700977778H1
SOYMON009
g496493
BLASTN
1158
1e−87
90


2759
14902
700742004H1
SOYMON012
g496493
BLASTN
618
1e−81
90


2760
14902
700962586H1
SOYMON022
g496493
BLASTN
1023
1e−76
90


2761
14902
700994796H1
SOYMON011
g496493
BLASTN
480
1e−59
86


2762
16
700680820H1
SOYMON008
g169090
BLASTN
1392
1e−107
90


2763
16
700651027H1
SOYMON003
g169090
BLASTN
782
1e−101
87


2764
16
700661720H1
SOYMON005
g169090
BLASTN
1280
1e−98
84


2765
16
700653620H1
SOYMON003
g169090
BLASTN
783
1e−92
86


2766
16
701212010H1
SOYMON035
g169090
BLASTN
1193
1e−90
90


2767
16
700653624H1
SOYMON003
g169090
BLASTN
711
1e−86
86


2768
16
700684013H1
SOYMON008
g20732
BLASTN
1139
1e−86
89


2769
16
701130927H1
SOYMON038
g169090
BLASTN
1135
1e−85
90


2770
16
701118656H1
SOYMON037
g169090
BLASTN
927
1e−83
90


2771
16
701050807H1
SOYMON032
g169090
BLASTN
1101
1e−83
90


2772
16
700900304H1
SOYMON027
g169090
BLASTN
1108
1e−83
91


2773
16
700560856H1
SOYMON001
g20732
BLASTN
594
1e−82
88


2774
16
701127846H1
SOYMON037
g169090
BLASTN
1093
1e−82
90


2775
16
700746107H1
SOYMON013
g169090
BLASTN
1093
1e−82
91


2776
16
700957321H1
SOYMON022
g169090
BLASTN
1094
1e−82
90


2777
16
700556167H1
SOYMON001
g20732
BLASTN
1094
1e−82
87


2778
16
700685605H1
SOYMON008
g20732
BLASTN
1095
1e−82
89


2779
16
700982024H1
SOYMON009
g169090
BLASTN
1097
1e−82
87


2780
16
701136318H1
SOYMON038
g169090
BLASTN
912
1e−81
90


2781
16
701045985H1
SOYMON032
g169090
BLASTN
1083
1e−81
91


2782
16
700896756H1
SOYMON027
g169090
BLASTN
1083
1e−81
89


2783
16
700738664H1
SOYMON012
g20732
BLASTN
1087
1e−81
89


2784
16
700982290H1
SOYMON009
g169090
BLASTN
1088
1e−81
88


2785
16
701039411H1
SOYMON029
g169090
BLASTN
1068
1e−80
88


2786
16
700760151H1
SOYMON015
g169090
BLASTN
1076
1e−80
87


2787
16
701037105H1
SOYMON029
g169090
BLASTN
706
1e−79
90


2788
16
700653646H1
SOYMON003
g169090
BLASTN
723
1e−79
83


2789
16
701003361H1
SOYMON019
g169090
BLASTN
913
1e−79
88


2790
16
700684871H1
SOYMON008
g169090
BLASTN
1058
1e−79
90


2791
16
700972333H1
SOYMON005
g169090
BLASTN
1059
1e−79
89


2792
16
700660117H1
SOYMON004
g20732
BLASTN
1060
1e−79
91


2793
16
700681841H1
SOYMON008
g169090
BLASTN
1060
1e−79
89


2794
16
701063487H1
SOYMON033
g169090
BLASTN
1063
1e−79
87


2795
16
701118518H1
SOYMON037
g169090
BLASTN
1064
1e−79
92


2796
16
700998228H1
SOYMON018
g169090
BLASTN
599
1e−78
91


2797
16
700667222H1
SOYMON006
g169090
BLASTN
1042
1e−78
87


2798
16
701205378H1
SOYMON035
g169090
BLASTN
1047
1e−78
89


2799
16
701109009H1
SOYMON036
g169090
BLASTN
1050
1e−78
85


2800
16
700902080H1
SOYMON027
g20732
BLASTN
1051
1e−78
88


2801
16
701065402H1
SOYMON034
g20732
BLASTN
1051
1e−78
85


2802
16
700905151H1
SOYMON022
g169090
BLASTN
1052
1e−78
89


2803
16
700660104H1
SOYMON004
g20732
BLASTN
1053
1e−78
91


2804
16
701122747H1
SOYMON037
g169090
BLASTN
1029
1e−77
85


2805
16
700681958H1
SOYMON008
g20732
BLASTN
1033
1e−77
87


2806
16
701045633H1
SOYMON032
g169090
BLASTN
1036
1e−77
86


2807
16
700870706H1
SOYMON018
g169090
BLASTN
1038
1e−77
89


2808
16
700957310H1
SOYMON022
g169090
BLASTN
1040
1e−77
91


2809
16
700981914H1
SOYMON009
g169090
BLASTN
455
1e−76
83


2810
16
700873416H1
SOYMON018
g20732
BLASTN
544
1e−76
88


2811
16
700562964H1
SOYMON002
g169090
BLASTN
824
1e−76
88


2812
16
700829678H1
SOYMON019
g169090
BLASTN
1021
1e−76
88


2813
16
700668218H1
SOYMON006
g20732
BLASTN
1023
1e−76
87


2814
16
701206845H1
SOYMON035
g169090
BLASTN
1024
1e−76
90


2815
16
700835082H1
SOYMON019
g169090
BLASTN
1024
1e−76
88


2816
16
701011483H1
SOYMON019
g169090
BLASTN
1024
1e−76
90


2817
16
700605436H2
SOYMON004
g20732
BLASTN
1027
1e−76
86


2818
16
700963428H1
SOYMON022
g20732
BLASTN
1027
1e−76
89


2819
16
700975672H1
SOYMON009
g20732
BLASTN
852
1e−75
90


2820
16
700907957H1
SOYMON022
g169090
BLASTN
1005
1e−75
91


2821
16
700960608H1
SOYMON022
g169090
BLASTN
1005
1e−75
88


2822
16
700837794H1
SOYMON020
g169090
BLASTN
1006
1e−75
91


2823
16
701138460H1
SOYMON038
g169090
BLASTN
1006
1e−75
88


2824
16
700646202H1
SOYMON012
g20732
BLASTN
1007
1e−75
88


2825
16
700874447H1
SOYMON018
g20732
BLASTN
1007
1e−75
90


2826
16
700667967H1
SOYMON006
g20732
BLASTN
1007
1e−75
89


2827
16
701131790H1
SOYMON038
g169090
BLASTN
1011
1e−75
91


2828
16
700970954H1
SOYMON005
g169090
BLASTN
1012
1e−75
87


2829
16
701120441H1
SOYMON037
g169090
BLASTN
1013
1e−75
87


2830
16
701120055H1
SOYMON037
g169090
BLASTN
1015
1e−75
83


2831
16
701001031H1
SOYMON018
g20732
BLASTN
1017
1e−75
83


2832
16
700652931H1
SOYMON003
g169090
BLASTN
853
1e−74
79


2833
16
700981202H1
SOYMON009
g169090
BLASTN
955
1e−74
87


2834
16
701142183H1
SOYMON038
g169090
BLASTN
1000
1e−74
85


2835
16
700978682H1
SOYMON009
g169090
BLASTN
1000
1e−74
85


2836
16
701122065H1
SOYMON037
g169090
BLASTN
1004
1e−74
87


2837
16
700558895H1
SOYMON001
g20732
BLASTN
566
1e−73
86


2838
16
700686234H1
SOYMON008
g20732
BLASTN
573
1e−73
89


2839
16
700566271H1
SOYMON002
g169090
BLASTN
863
1e−73
84


2840
16
700558604H1
SOYMON001
g20732
BLASTN
982
1e−73
82


2841
16
700684166H1
SOYMON008
g169090
BLASTN
984
1e−73
86


2842
16
700873924H1
SOYMON018
g169090
BLASTN
986
1e−73
88


2843
16
700738880H1
SOYMON012
g20732
BLASTN
987
1e−73
89


2844
16
700741816H1
SOYMON012
g20732
BLASTN
992
1e−73
86


2845
16
700892371H1
SOYMON024
g169090
BLASTN
992
1e−73
88


2846
16
700560702H1
SOYMON001
g20732
BLASTN
993
1e−73
82


2847
16
700968331H1
SOYMON036
g20732
BLASTN
993
1e−73
88


2848
16
701063318H1
SOYMON033
g169090
BLASTN
787
1e−72
88


2849
16
700996472H1
SOYMON018
g20732
BLASTN
821
1e−72
86


2850
16
701065057H1
SOYMON034
g169090
BLASTN
924
1e−72
84


2851
16
700863670H1
SOYMON027
g169090
BLASTN
943
1e−72
90


2852
16
701212013H1
SOYMON035
g169090
BLASTN
969
1e−72
85


2853
16
701012801H1
SOYMON019
g169090
BLASTN
969
1e−72
85


2854
16
701004406H1
SOYMON019
g169090
BLASTN
969
1e−72
85


2855
16
700751116H1
SOYMON014
g169090
BLASTN
970
1e−72
90


2856
16
700675491H1
SOYMON007
g169090
BLASTN
972
1e−72
92


2857
16
701131360H1
SOYMON038
g169090
BLASTN
972
1e−72
84


2858
16
700562740H1
SOYMON002
g169090
BLASTN
976
1e−72
83


2859
16
701099556H1
SOYMON028
g169090
BLASTN
979
1e−72
88


2860
16
700558534H1
SOYMON001
g20732
BLASTN
469
1e−71
84


2861
16
700565245H1
SOYMON002
g169090
BLASTN
715
1e−71
90


2862
16
700944452H1
SOYMON024
g169090
BLASTN
780
1e−71
86


2863
16
701009629H1
SOYMON019
g169090
BLASTN
828
1e−71
84


2864
16
700725661H1
SOYMON009
g169090
BLASTN
838
1e−71
87


2865
16
701066885H1
SOYMON034
g169090
BLASTN
856
1e−71
86


2866
16
701009856H1
SOYMON019
g169090
BLASTN
958
1e−71
83


2867
16
700560569H1
SOYMON001
g169090
BLASTN
963
1e−71
84


2868
16
700867802H1
SOYMON016
g169090
BLASTN
964
1e−71
85


2869
16
701117421H1
SOYMON037
g169090
BLASTN
967
1e−71
83


2870
16
700963317H1
SOYMON022
g20732
BLASTN
830
1e−70
85


2871
16
700646149H1
SOYMON012
g20732
BLASTN
864
1e−70
87


2872
16
701002213H1
SOYMON018
g20732
BLASTN
946
1e−70
88


2873
16
700999509H1
SOYMON018
g20732
BLASTN
948
1e−70
83


2874
16
701003210H1
SOYMON019
g169090
BLASTN
949
1e−70
83


2875
16
700738832H1
SOYMON012
g20732
BLASTN
952
1e−70
86


2876
16
701212329H1
SOYMON035
g169090
BLASTN
952
1e−70
85


2877
16
700683783H1
SOYMON008
g169090
BLASTN
953
1e−70
83


2878
16
700874828H1
SOYMON018
g20732
BLASTN
953
1e−70
85


2879
16
700839986H1
SOYMON020
g169090
BLASTN
954
1e−70
89


2880
16
700661155H1
SOYMON005
g169090
BLASTN
955
1e−70
84


2881
16
700686453H1
SOYMON008
g20732
BLASTN
956
1e−70
85


2882
16
701104636H1
SOYMON036
g169090
BLASTN
956
1e−70
84


2883
16
700682277H1
SOYMON008
g20732
BLASTN
444
1e−69
88


2884
16
700556648H1
SOYMON001
g20732
BLASTN
526
1e−69
83


2885
16
701133126H1
SOYMON038
g169090
BLASTN
526
1e−69
86


2886
16
700659056H1
SOYMON004
g169090
BLASTN
655
1e−69
91


2887
16
701009405H1
SOYMON019
g169090
BLASTN
665
1e−69
91


2888
16
700554721H1
SOYMON001
g169090
BLASTN
743
1e−69
81


2889
16
700833925H1
SOYMON019
g169090
BLASTN
938
1e−69
85


2890
16
700848119H1
SOYMON021
g20550
BLASTN
942
1e−69
85


2891
16
700559336H1
SOYMON001
g169090
BLASTN
943
1e−69
80


2892
16
701207095H1
SOYMON035
g169090
BLASTN
944
1e−69
83


2893
16
701125617H1
SOYMON037
g169090
BLASTN
944
1e−69
84


2894
16
700756418H1
SOYMON014
g169090
BLASTN
944
1e−69
84


2895
16
700738263H1
SOYMON012
g20732
BLASTN
945
1e−69
89


2896
16
700743026H1
SOYMON012
g169090
BLASTN
497
1e−68
85


2897
16
700978803H1
SOYMON009
g169090
BLASTN
931
1e−68
80


2898
16
700852390H1
SOYMON023
g20732
BLASTN
489
1e−67
87


2899
16
700681390H2
SOYMON008
g20732
BLASTN
506
1e−67
88


2900
16
700554330H1
SOYMON001
g20732
BLASTN
794
1e−67
83


2901
16
700746738H1
SOYMON013
g169090
BLASTN
910
1e−67
86


2902
16
700962884H1
SOYMON022
g169090
BLASTN
919
1e−67
85


2903
16
700683756H1
SOYMON008
g20732
BLASTN
919
1e−67
83


2904
16
700898676H1
SOYMON027
g169090
BLASTN
919
1e−67
91


2905
16
700685076H1
SOYMON008
g20732
BLASTN
921
1e−67
85


2906
16
700836262H1
SOYMON019
g169090
BLASTN
898
1e−66
84


2907
16
700674865H1
SOYMON007
g169090
BLASTN
902
1e−66
90


2908
16
700967318H1
SOYMON031
g20732
BLASTN
906
1e−66
85


2909
16
700955044H1
SOYMON022
g169090
BLASTN
907
1e−66
85


2910
16
700755131H1
SOYMON014
g20732
BLASTN
908
1e−66
85


2911
16
700743643H1
SOYMON012
g20732
BLASTN
909
1e−66
84


2912
16
700979861H2
SOYMON009
g169090
BLASTN
293
1e−65
88


2913
16
700907981H1
SOYMON022
g20550
BLASTN
681
1e−65
85


2914
16
701001058H1
SOYMON018
g20732
BLASTN
690
1e−65
81


2915
16
700547949H1
SOYMON001
g20732
BLASTN
835
1e−65
88


2916
16
700678780H1
SOYMON007
g169090
BLASTN
854
1e−65
92


2917
16
700851960H1
SOYMON023
g20550
BLASTN
890
1e−65
85


2918
16
701099668H1
SOYMON028
g169090
BLASTN
493
1e−64
83


2919
16
701103733H1
SOYMON036
g169090
BLASTN
684
1e−64
80


2920
16
700985604H1
SOYMON009
g169090
BLASTN
873
1e−64
79


2921
16
700849622H1
SOYMON021
g169090
BLASTN
877
1e−64
84


2922
16
700752648H1
SOYMON014
g169090
BLASTN
879
1e−64
85


2923
16
700952882H1
SOYMON022
g20732
BLASTN
884
1e−64
85


2924
16
701006721H1
SOYMON019
g169090
BLASTN
884
1e−64
86


2925
16
700895879H1
SOYMON027
g169090
BLASTN
884
1e−64
84


2926
16
700740632H1
SOYMON012
g20732
BLASTN
375
1e−63
84


2927
16
700981723H1
SOYMON009
g20732
BLASTN
690
1e−63
81


2928
16
700657114H1
SOYMON004
g169090
BLASTN
861
1e−63
87


2929
16
700661319H1
SOYMON005
g169090
BLASTN
862
1e−63
82


2930
16
700987848H1
SOYMON009
g169090
BLASTN
862
1e−63
79


2931
16
700664376H1
SOYMON005
g169090
BLASTN
865
1e−63
83


2932
16
700848760H1
SOYMON021
g169090
BLASTN
868
1e−63
82


2933
16
700734932H1
SOYMON010
g169090
BLASTN
871
1e−63
90


2934
16
700894550H1
SOYMON024
g169090
BLASTN
872
1e−63
86


2935
16
700754237H1
SOYMON014
g169090
BLASTN
443
1e−62
83


2936
16
700654194H1
SOYMON003
g169090
BLASTN
449
1e−62
83


2937
16
701002119H1
SOYMON018
g20732
BLASTN
459
1e−62
89


2938
16
700899445H1
SOYMON027
g20732
BLASTN
473
1e−62
86


2939
16
700648324H1
SOYMON003
g169090
BLASTN
531
1e−62
80


2940
16
700897837H1
SOYMON027
g169090
BLASTN
582
1e−62
82


2941
16
701056234H1
SOYMON032
g169090
BLASTN
737
1e−62
79


2942
16
700906196H1
SOYMON022
g169090
BLASTN
852
1e−62
83


2943
16
701002126H1
SOYMON018
g20732
BLASTN
853
1e−62
82


2944
16
700853304H1
SOYMON023
g169090
BLASTN
857
1e−62
84


2945
16
701015618H1
SOYMON037
g169090
BLASTN
857
1e−62
81


2946
16
700875928H1
SOYMON018
g20732
BLASTN
861
1e−62
86


2947
16
700676860H1
SOYMON007
g169090
BLASTN
461
1e−61
84


2948
16
700983517H1
SOYMON009
g409574
BLASTN
615
1e−61
86


2949
16
700841881H1
SOYMON020
g20550
BLASTN
717
1e−61
86


2950
16
700853082H1
SOYMON023
g169090
BLASTN
842
1e−61
84


2951
16
701106263H1
SOYMON036
g20732
BLASTN
844
1e−61
90


2952
16
700678241H1
SOYMON007
g169090
BLASTN
845
1e−61
83


2953
16
701133107H1
SOYMON038
g169090
BLASTN
845
1e−61
79


2954
16
700976170H1
SOYMON009
g169090
BLASTN
848
1e−61
78


2955
16
700646259H1
SOYMON012
g20732
BLASTN
650
1e−60
82


2956
16
700682750H1
SOYMON008
g169090
BLASTN
654
1e−60
83


2957
16
700556141H1
SOYMON001
g20732
BLASTN
690
1e−60
81


2958
16
700870652H1
SOYMON018
g20732
BLASTN
702
1e−60
86


2959
16
700893834H1
SOYMON024
g169090
BLASTN
826
1e−60
82


2960
16
700970819H1
SOYMON005
g169090
BLASTN
828
1e−60
81


2961
16
700890650H1
SOYMON024
g169090
BLASTN
830
1e−60
88


2962
16
701122211H1
SOYMON037
g169090
BLASTN
830
1e−60
83


2963
16
700980742H1
SOYMON009
g169090
BLASTN
830
1e−60
84


2964
16
701137606H1
SOYMON038
g169090
BLASTN
832
1e−60
83


2965
16
700682612H2
SOYMON008
g20732
BLASTN
834
1e−60
81


2966
16
700971830H1
SOYMON005
g169090
BLASTN
835
1e−60
79


2967
16
700909405H1
SOYMON022
g169090
BLASTN
835
1e−60
79


2968
16
700981291H1
SOYMON009
g169090
BLASTN
835
1e−60
79


2969
16
700953564H1
SOYMON022
g169090
BLASTN
836
1e−60
82


2970
16
700747612H1
SOYMON013
g409574
BLASTN
836
1e−60
83


2971
16
700975021H1
SOYMON005
g169090
BLASTN
439
1e−59
82


2972
16
700729321H1
SOYMON009
g309670
BLASTN
485
1e−59
81


2973
16
701001137H1
SOYMON018
g20732
BLASTN
578
1e−59
79


2974
16
700554280H1
SOYMON001
g20732
BLASTN
596
1e−59
88


2975
16
701135387H1
SOYMON038
g169090
BLASTN
609
1e−59
80


2976
16
700655905H1
SOYMON004
g169090
BLASTN
646
1e−59
82


2977
16
701048613H1
SOYMON032
g169090
BLASTN
814
1e−59
79


2978
16
701062603H1
SOYMON033
g166705
BLASTN
814
1e−59
83


2979
16
700741884H1
SOYMON012
g169090
BLASTN
815
1e−59
83


2980
16
701014048H1
SOYMON019
g169090
BLASTN
815
1e−59
84


2981
16
700556774H1
SOYMON001
g20732
BLASTN
817
1e−59
82


2982
16
701212143H1
SOYMON035
g169090
BLASTN
819
1e−59
79


2983
16
700977724H1
SOYMON009
g169090
BLASTN
819
1e−59
83


2984
16
701052505H1
SOYMON032
g169090
BLASTN
821
1e−59
84


2985
16
701048090H1
SOYMON032
g169090
BLASTN
823
1e−59
85


2986
16
700850111H1
SOYMON023
g169090
BLASTN
802
1e−58
80


2987
16
700748768H1
SOYMON013
g169090
BLASTN
804
1e−58
85


2988
16
701215404H1
SOYMON035
g169090
BLASTN
806
1e−58
84


2989
16
700686206H1
SOYMON008
g20732
BLASTN
807
1e−58
82


2990
16
701137704H1
SOYMON038
g409574
BLASTN
808
1e−58
82


2991
16
700876594H1
SOYMON018
g169090
BLASTN
809
1e−58
83


2992
16
700743816H1
SOYMON012
g20732
BLASTN
809
1e−58
90


2993
16
701037342H1
SOYMON029
g409574
BLASTN
812
1e−58
82


2994
16
700853152H1
SOYMON023
g169090
BLASTN
576
1e−57
87


2995
16
700905876H1
SOYMON022
g169090
BLASTN
606
1e−57
84


2996
16
700790719H1
SOYMON011
g409574
BLASTN
710
1e−57
82


2997
16
701106994H1
SOYMON036
g169090
BLASTN
790
1e−57
79


2998
16
700752366H1
SOYMON014
g169090
BLASTN
790
1e−57
81


2999
16
700952951H1
SOYMON022
g169090
BLASTN
791
1e−57
84


3000
16
700998563H1
SOYMON018
g20732
BLASTN
792
1e−57
88


3001
16
700840245H1
SOYMON020
g169090
BLASTN
792
1e−57
79


3002
16
700556140H1
SOYMON001
g166705
BLASTN
794
1e−57
82


3003
16
701056981H1
SOYMON033
g169090
BLASTN
795
1e−57
83


3004
16
700953045H1
SOYMON022
g169090
BLASTN
796
1e−57
83


3005
16
701137408H1
SOYMON038
g169090
BLASTN
797
1e−57
82


3006
16
700972258H1
SOYMON005
g169090
BLASTN
797
1e−57
79


3007
16
700980774H1
SOYMON009
g169090
BLASTN
797
1e−57
88


3008
16
700972064H1
SOYMON005
g169090
BLASTN
797
1e−57
79


3009
16
700685812H1
SOYMON008
g169090
BLASTN
798
1e−57
79


3010
16
700740477H1
SOYMON012
g409574
BLASTN
801
1e−57
84


3011
16
701062012H1
SOYMON033
g409574
BLASTN
451
1e−56
82


3012
16
701108736H1
SOYMON036
g20732
BLASTN
529
1e−56
80


3013
16
701104521H1
SOYMON036
g169090
BLASTN
680
1e−56
84


3014
16
700659833H1
SOYMON004
g2905771
BLASTN
754
1e−56
97


3015
16
700786076H2
SOYMON011
g2905771
BLASTN
754
1e−56
97


3016
16
700666231H1
SOYMON005
g2905771
BLASTN
754
1e−56
97


3017
16
700556330H1
SOYMON001
g20732
BLASTN
779
1e−56
81


3018
16
700964614H1
SOYMON022
g19565
BLASTN
780
1e−56
84


3019
16
700985844H1
SOYMON009
g19565
BLASTN
780
1e−56
84


3020
16
701126134H1
SOYMON037
g409574
BLASTN
781
1e−56
83


3021
16
700968036H1
SOYMON034
g169090
BLASTN
786
1e−56
85


3022
16
701110182H1
SOYMON036
g169090
BLASTN
786
1e−56
85


3023
16
700995174H1
SOYMON011
g169090
BLASTN
787
1e−56
85


3024
16
701044955H1
SOYMON032
g2905771
BLASTN
404
1e−55
96


3025
16
701203714H2
SOYMON035
g2905771
BLASTN
413
1e−55
97


3026
16
700847062H1
SOYMON021
g169090
BLASTN
528
1e−55
83


3027
16
700876923H1
SOYMON018
g20732
BLASTN
568
1e−55
81


3028
16
700738183H1
SOYMON012
g20732
BLASTN
586
1e−55
81


3029
16
701001383H1
SOYMON018
g20732
BLASTN
590
1e−55
81


3030
16
700877113H1
SOYMON018
g20732
BLASTN
681
1e−55
80


3031
16
700562672H1
SOYMON002
g169090
BLASTN
693
1e−55
83


3032
16
700956242H1
SOYMON022
g2905771
BLASTN
740
1e−55
96


3033
16
701058012H1
SOYMON033
g2905771
BLASTN
747
1e−55
96


3034
16
701070207H1
SOYMON034
g2905771
BLASTN
747
1e−55
96


3035
16
700901724H1
SOYMON027
g2905771
BLASTN
747
1e−55
96


3036
16
700792920H1
SOYMON017
g169090
BLASTN
767
1e−55
83


3037
16
700964732H1
SOYMON022
g169090
BLASTN
768
1e−55
84


3038
16
700994809H1
SOYMON011
g409574
BLASTN
768
1e−55
83


3039
16
700987118H1
SOYMON009
g19565
BLASTN
769
1e−55
84


3040
16
701007268H2
SOYMON019
g169090
BLASTN
769
1e−55
83


3041
16
700650971H1
SOYMON003
g169090
BLASTN
770
1e−55
91


3042
16
700964742H1
SOYMON022
g169090
BLASTN
771
1e−55
85


3043
16
700662524H1
SOYMON005
g169090
BLASTN
772
1e−55
79


3044
16
700895349H1
SOYMON027
g20732
BLASTN
772
1e−55
89


3045
16
701008593H1
SOYMON019
g169090
BLASTN
776
1e−55
82


3046
16
701004062H1
SOYMON019
g169090
BLASTN
326
1e−54
81


3047
16
700731710H1
SOYMON010
g169090
BLASTN
456
1e−54
84


3048
16
700742019H1
SOYMON012
g409574
BLASTN
483
1e−54
83


3049
16
700944396H1
SOYMON024
g169090
BLASTN
610
1e−54
84


3050
16
701139717H1
SOYMON038
g169090
BLASTN
639
1e−54
81


3051
16
700555467H1
SOYMON001
g20732
BLASTN
688
1e−54
81


3052
16
701041622H1
SOYMON029
g2905771
BLASTN
738
1e−54
96


3053
16
700736350H1
SOYMON010
g409574
BLASTN
754
1e−54
83


3054
16
700996720H1
SOYMON018
g409574
BLASTN
755
1e−54
82


3055
16
700987832H1
SOYMON009
g169090
BLASTN
759
1e−54
79


3056
16
700841935H1
SOYMON020
g20732
BLASTN
763
1e−54
81


3057
16
700808443H1
SOYMON024
g169090
BLASTN
765
1e−54
84


3058
16
700959733H1
SOYMON022
g409574
BLASTN
435
1e−53
81


3059
16
700646537H1
SOYMON014
g169090
BLASTN
445
1e−53
85


3060
16
701006244H2
SOYMON019
g169090
BLASTN
541
1e−53
85


3061
16
701059852H1
SOYMON033
g2905771
BLASTN
661
1e−53
92


3062
16
700876815H1
SOYMON018
g169090
BLASTN
668
1e−53
81


3063
16
700749752H1
SOYMON013
g19565
BLASTN
742
1e−53
84


3064
16
700736445H1
SOYMON010
g169090
BLASTN
746
1e−53
84


3065
16
700990431H1
SOYMON011
g20732
BLASTN
747
1e−53
86


3066
16
700990414H1
SOYMON011
g20732
BLASTN
749
1e−53
86


3067
16
700740171H1
SOYMON012
g169090
BLASTN
749
1e−53
83


3068
16
700875936H1
SOYMON018
g20732
BLASTN
400
1e−52
84


3069
16
701132471H1
SOYMON038
g409574
BLASTN
479
1e−52
82


3070
16
701064163H1
SOYMON034
g169090
BLASTN
519
1e−52
85


3071
16
701120529H1
SOYMON037
g169090
BLASTN
602
1e−52
80


3072
16
700787014H2
SOYMON011
g169090
BLASTN
622
1e−52
84


3073
16
701214833H1
SOYMON035
g169090
BLASTN
677
1e−52
82


3074
16
700741593H1
SOYMON012
g409574
BLASTN
707
1e−52
83


3075
16
700792328H1
SOYMON017
g2905771
BLASTN
715
1e−52
100


3076
16
700838427H1
SOYMON020
g169090
BLASTN
730
1e−52
79


3077
16
700985453H1
SOYMON009
g169090
BLASTN
731
1e−52
84


3078
16
700732002H1
SOYMON010
g169090
BLASTN
732
1e−52
77


3079
16
700906172H1
SOYMON022
g169090
BLASTN
732
1e−52
79


3080
16
701137118H1
SOYMON038
g19565
BLASTN
734
1e−52
84


3081
16
701013823H1
SOYMON019
g169090
BLASTN
736
1e−52
84


3082
16
700686616H1
SOYMON008
g309670
BLASTN
736
1e−52
88


3083
16
700962944H1
SOYMON022
g169090
BLASTN
737
1e−52
79


3084
16
700945903H1
SOYMON024
g169090
BLASTN
737
1e−52
79


3085
16
700863880H1
SOYMON016
g169090
BLASTN
737
1e−52
79


3086
16
700754937H1
SOYMON014
g169090
BLASTN
737
1e−52
79


3087
16
701059066H1
SOYMON033
g169090
BLASTN
737
1e−52
79


3088
16
700757083H1
SOYMON015
g169090
BLASTN
737
1e−52
81


3089
16
701043292H1
SOYMON029
g409574
BLASTN
739
1e−52
83


3090
16
700839971H1
SOYMON020
g169090
BLASTN
740
1e−52
78


3091
16
700897536H1
SOYMON027
g20732
BLASTN
740
1e−52
85


3092
16
700748758H1
SOYMON013
g169090
BLASTN
741
1e−52
80


3093
16
700737167H1
SOYMON010
g20550
BLASTN
474
1e−51
83


3094
16
700792472H1
SOYMON017
g409574
BLASTN
489
1e−51
84


3095
16
701002831H1
SOYMON019
g409574
BLASTN
495
1e−51
83


3096
16
701147120H1
SOYMON031
g169090
BLASTN
592
1e−51
86


3097
16
700993103H1
SOYMON011
g409574
BLASTN
679
1e−51
81


3098
16
700681212H1
SOYMON008
g20732
BLASTN
684
1e−51
82


3099
16
700787050H2
SOYMON011
g20732
BLASTN
722
1e−51
82


3100
16
700964087H1
SOYMON022
g169090
BLASTN
723
1e−51
83


3101
16
701131690H1
SOYMON038
g169090
BLASTN
724
1e−51
80


3102
16
701013216H1
SOYMON019
g169090
BLASTN
724
1e−51
84


3103
16
700752307H1
SOYMON014
g169090
BLASTN
727
1e−51
79


3104
16
700963986H1
SOYMON022
g169090
BLASTN
727
1e−51
79


3105
16
700945596H1
SOYMON024
g19565
BLASTN
728
1e−51
83


3106
16
700786782H2
SOYMON011
g169090
BLASTN
728
1e−51
79


3107
16
700686279H1
SOYMON008
g20732
BLASTN
415
1e−50
82


3108
16
700558939H1
SOYMON001
g20732
BLASTN
472
1e−50
78


3109
16
701118441H1
SOYMON037
g169090
BLASTN
495
1e−50
80


3110
16
701046150H1
SOYMON032
g169090
BLASTN
605
1e−50
83


3111
16
700876929H1
SOYMON018
g20732
BLASTN
681
1e−50
82


3112
16
700945352H1
SOYMON024
g2905771
BLASTN
685
1e−50
91


3113
16
700725046H1
SOYMON009
g2905771
BLASTN
688
1e−50
94


3114
16
700869271H1
SOYMON016
g2905771
BLASTN
688
1e−50
94


3115
16
700841465H1
SOYMON020
g19565
BLASTN
707
1e−50
83


3116
16
701213349H1
SOYMON035
g169090
BLASTN
712
1e−50
85


3117
16
700726069H1
SOYMON009
g19565
BLASTN
712
1e−50
84


3118
16
701055733H1
SOYMON032
g19565
BLASTN
712
1e−50
84


3119
16
700663235H1
SOYMON005
g169090
BLASTN
712
1e−50
79


3120
16
700963289H1
SOYMON022
g169090
BLASTN
712
1e−50
85


3121
16
700686557H1
SOYMON008
g169090
BLASTN
712
1e−50
85


3122
16
701127887H1
SOYMON037
g169090
BLASTN
713
1e−50
80


3123
16
700833351H1
SOYMON019
g169090
BLASTN
717
1e−50
85


3124
16
700975879H1
SOYMON009
g167043
BLASTN
379
1e−49
82


3125
16
700731970H1
SOYMON010
g2905771
BLASTN
675
1e−49
100


3126
16
700750149H1
SOYMON013
g169090
BLASTN
695
1e−49
85


3127
16
700953068H1
SOYMON022
g169090
BLASTN
696
1e−49
79


3128
16
700847286H1
SOYMON021
g19565
BLASTN
696
1e−49
82


3129
16
701043647H1
SOYMON029
g19565
BLASTN
696
1e−49
82


3130
16
700985440H1
SOYMON009
g169090
BLASTN
698
1e−49
84


3131
16
701204172H1
SOYMON035
g169090
BLASTN
698
1e−49
84


3132
16
700944204H1
SOYMON024
g169090
BLASTN
701
1e−49
79


3133
16
700906132H1
SOYMON022
g169090
BLASTN
702
1e−49
85


3134
16
701145287H1
SOYMON031
g19565
BLASTN
702
1e−49
83


3135
16
700748555H1
SOYMON013
g19565
BLASTN
703
1e−49
83


3136
16
700791357H1
SOYMON011
g169090
BLASTN
704
1e−49
85


3137
16
701132090H1
SOYMON038
g409574
BLASTN
704
1e−49
83


3138
16
700998663H1
SOYMON018
g20732
BLASTN
705
1e−49
78


3139
16
701060890H1
SOYMON033
g2078297
BLASTN
429
1e−48
81


3140
16
700986781H1
SOYMON009
g166705
BLASTN
453
1e−48
83


3141
16
700953335H1
SOYMON022
g19565
BLASTN
623
1e−48
84


3142
16
701014706H1
SOYMON019
g19565
BLASTN
644
1e−48
85


3143
16
701119782H1
SOYMON037
g2905771
BLASTN
658
1e−48
92


3144
16
701108783H1
SOYMON036
g2905771
BLASTN
664
1e−48
97


3145
16
700866439H1
SOYMON016
g169090
BLASTN
682
1e−48
77


3146
16
700762316H1
SOYMON015
g169090
BLASTN
682
1e−48
83


3147
16
700901056H1
SOYMON027
g169090
BLASTN
686
1e−48
79


3148
16
701104412H1
SOYMON036
g20732
BLASTN
690
1e−48
79


3149
16
700738192H1
SOYMON012
g20732
BLASTN
690
1e−48
79


3150
16
700752442H1
SOYMON014
g20732
BLASTN
690
1e−48
79


3151
16
700740385H1
SOYMON012
g20732
BLASTN
690
1e−48
79


3152
16
701137084H1
SOYMON038
g169090
BLASTN
691
1e−48
84


3153
16
701010003H2
SOYMON019
g169090
BLASTN
692
1e−48
85


3154
16
700833047H1
SOYMON019
g169090
BLASTN
546
1e−47
86


3155
16
700855933H1
SOYMON023
g169090
BLASTN
550
1e−47
85


3156
16
701014245H1
SOYMON019
g19565
BLASTN
581
1e−47
84


3157
16
700762962H1
SOYMON015
g169090
BLASTN
604
1e−47
86


3158
16
700975559H1
SOYMON009
g2905771
BLASTN
645
1e−47
100


3159
16
701151663H1
SOYMON031
g169090
BLASTN
671
1e−47
85


3160
16
700840645H1
SOYMON020
g169090
BLASTN
672
1e−47
80


3161
16
700787505H1
SOYMON011
g20732
BLASTN
674
1e−47
80


3162
16
700672894H1
SOYMON006
g169090
BLASTN
675
1e−47
83


3163
16
700678041H1
SOYMON007
g20732
BLASTN
677
1e−47
80


3164
16
701205624H1
SOYMON035
g409574
BLASTN
680
1e−47
82


3165
16
701044525H1
SOYMON032
g169090
BLASTN
681
1e−47
90


3166
16
700998789H1
SOYMON018
g169090
BLASTN
681
1e−47
78


3167
16
700997577H1
SOYMON018
g20732
BLASTN
681
1e−47
79


3168
16
700849115H1
SOYMON021
g2905771
BLASTN
350
1e−46
95


3169
16
700660742H1
SOYMON005
g169090
BLASTN
351
1e−46
76


3170
16
700752256H1
SOYMON014
g309670
BLASTN
374
1e−46
80


3171
16
700907488H1
SOYMON022
g169090
BLASTN
467
1e−46
82


3172
16
701146736H1
SOYMON031
g19565
BLASTN
568
1e−46
81


3173
16
700872466H1
SOYMON018
g20732
BLASTN
596
1e−46
81


3174
16
701057780H1
SOYMON033
g169090
BLASTN
610
1e−46
87


3175
16
701145459H1
SOYMON031
g169090
BLASTN
660
1e−46
88


3176
16
701210858H1
SOYMON035
g19565
BLASTN
660
1e−46
84


3177
16
700877001H1
SOYMON018
g20732
BLASTN
662
1e−46
77


3178
16
700742465H1
SOYMON012
g169090
BLASTN
664
1e−46
86


3179
16
700763342H1
SOYMON015
g169090
BLASTN
668
1e−46
79


3180
16
700685380H1
SOYMON008
g20732
BLASTN
669
1e−46
78


3181
16
701149865H1
SOYMON031
g2905771
BLASTN
330
1e−45
100


3182
16
700891972H1
SOYMON024
g169090
BLASTN
434
1e−45
78


3183
16
700750391H1
SOYMON013
g169090
BLASTN
436
1e−45
78


3184
16
700683883H1
SOYMON008
g169090
BLASTN
436
1e−45
84


3185
16
700729088H1
SOYMON009
g2078297
BLASTN
509
1e−45
85


3186
16
700903141H1
SOYMON022
g19565
BLASTN
577
1e−45
84


3187
16
701202337H1
SOYMON035
g169090
BLASTN
603
1e−45
84


3188
16
701155013H1
SOYMON031
g19565
BLASTN
647
1e−45
86


3189
16
700844326H1
SOYMON021
g19565
BLASTN
651
1e−45
86


3190
16
700741362H1
SOYMON012
g169090
BLASTN
651
1e−45
84


3191
16
700755283H1
SOYMON014
g169090
BLASTN
652
1e−45
87


3192
16
700751536H1
SOYMON014
g20732
BLASTN
652
1e−45
79


3193
16
700684196H1
SOYMON008
g20732
BLASTN
654
1e−45
79


3194
16
700684881H1
SOYMON008
g20732
BLASTN
657
1e−45
92


3195
16
700680531H1
SOYMON008
g20732
BLASTN
429
1e−44
79


3196
16
701106044H1
SOYMON036
g20732
BLASTN
592
1e−44
78


3197
16
700979630H2
SOYMON009
g2905771
BLASTN
618
1e−44
97


3198
16
700751095H1
SOYMON014
g169090
BLASTN
634
1e−44
82


3199
16
701153515H1
SOYMON031
g19565
BLASTN
639
1e−44
85


3200
16
700741789H1
SOYMON012
g20732
BLASTN
641
1e−44
82


3201
16
701204330H2
SOYMON035
g19565
BLASTN
643
1e−44
86


3202
16
700967679H1
SOYMON032
g409574
BLASTN
643
1e−44
83


3203
16
700972372H1
SOYMON005
g169090
BLASTN
644
1e−44
74


3204
16
700974446H1
SOYMON005
g19565
BLASTN
644
1e−44
85


3205
16
701146670H1
SOYMON031
g19565
BLASTN
341
1e−43
81


3206
16
701102507H1
SOYMON028
g169090
BLASTN
432
1e−43
86


3207
16
701006744H1
SOYMON019
g169090
BLASTN
453
1e−43
85


3208
16
700835690H1
SOYMON019
g169090
BLASTN
479
1e−43
84


3209
16
700983742H1
SOYMON009
g169090
BLASTN
529
1e−43
87


3210
16
700654457H1
SOYMON004
g169090
BLASTN
601
1e−43
80


3211
16
700555371H1
SOYMON001
g20732
BLASTN
623
1e−43
78


3212
16
700991260H1
SOYMON011
g19565
BLASTN
623
1e−43
86


3213
16
701109867H1
SOYMON036
g20732
BLASTN
623
1e−43
78


3214
16
701151625H1
SOYMON031
g19565
BLASTN
626
1e−43
84


3215
16
700748787H1
SOYMON013
g169090
BLASTN
630
1e−43
78


3216
16
700754611H1
SOYMON014
g19565
BLASTN
631
1e−43
85


3217
16
700852565H1
SOYMON023
g169090
BLASTN
611
1e−42
78


3218
16
700791713H1
SOYMON011
g20732
BLASTN
612
1e−42
72


3219
16
701205047H1
SOYMON035
g19565
BLASTN
613
1e−42
85


3220
16
700972230H1
SOYMON005
g169090
BLASTN
614
1e−42
79


3221
16
701157734H1
SOYMON031
g19565
BLASTN
617
1e−42
86


3222
16
700567308H1
SOYMON002
g169090
BLASTN
621
1e−42
81


3223
16
700741053H1
SOYMON012
g20732
BLASTN
454
1e−41
83


3224
16
701124645H1
SOYMON037
g19565
BLASTN
505
1e−41
81


3225
16
700738430H1
SOYMON012
g169090
BLASTN
598
1e−41
83


3226
16
700980387H1
SOYMON009
g169090
BLASTN
607
1e−41
86


3227
16
701109905H1
SOYMON036
g169090
BLASTN
609
1e−41
87


3228
16
700756857H1
SOYMON014
g169090
BLASTN
352
1e−40
80


3229
16
700685415H1
SOYMON008
g20732
BLASTN
373
1e−40
83


3230
16
700999463H1
SOYMON018
g20732
BLASTN
373
1e−40
79


3231
16
700899494H1
SOYMON027
g169090
BLASTN
472
1e−40
88


3232
16
701152616H1
SOYMON031
g19565
BLASTN
587
1e−40
84


3233
16
700682787H1
SOYMON008
g20732
BLASTN
588
1e−40
75


3234
16
700997526H1
SOYMON018
g20732
BLASTN
588
1e−40
88


3235
16
701152717H1
SOYMON031
g19565
BLASTN
589
1e−40
87


3236
16
701156106H1
SOYMON031
g19565
BLASTN
590
1e−40
87


3237
16
700757283H1
SOYMON015
g169090
BLASTN
592
1e−40
75


3238
16
701153845H1
SOYMON031
g19565
BLASTN
595
1e−40
87


3239
16
701152664H1
SOYMON031
g19565
BLASTN
596
1e−40
86


3240
16
700960557H1
SOYMON022
g169090
BLASTN
280
1e−39
82


3241
16
701046409H1
SOYMON032
g409574
BLASTN
371
1e−39
76


3242
16
700648740H1
SOYMON003
g409574
BLASTN
385
1e−39
89


3243
16
700728066H1
SOYMON009
g169090
BLASTN
461
1e−39
73


3244
16
700740668H1
SOYMON012
g20732
BLASTN
575
1e−39
73


3245
16
701149559H1
SOYMON031
g19565
BLASTN
575
1e−39
86


3246
16
701124058H1
SOYMON037
g20732
BLASTN
576
1e−39
80


3247
16
701154958H1
SOYMON031
g19565
BLASTN
577
1e−39
86


3248
16
701149995H1
SOYMON031
g19565
BLASTN
583
1e−39
87


3249
16
701145383H1
SOYMON031
g19565
BLASTN
585
1e−39
84


3250
16
701064544H1
SOYMON034
g2905771
BLASTN
326
1e−38
93


3251
16
700992479H1
SOYMON011
g2078297
BLASTN
374
1e−38
80


3252
16
700739262H1
SOYMON012
g20732
BLASTN
441
1e−38
80


3253
16
700999632H1
SOYMON018
g20732
BLASTN
509
1e−38
79


3254
16
700743974H1
SOYMON012
g20732
BLASTN
562
1e−38
80


3255
16
700835707H1
SOYMON019
g169090
BLASTN
562
1e−38
86


3256
16
700844641H1
SOYMON021
g19565
BLASTN
562
1e−38
88


3257
16
701048040H1
SOYMON032
g169090
BLASTN
571
1e−38
87


3258
16
700829978H1
SOYMON019
g19565
BLASTN
573
1e−38
84


3259
16
700875006H1
SOYMON018
g20732
BLASTN
336
1e−37
91


3260
16
700830281H1
SOYMON019
g19565
BLASTN
376
1e−37
83


3261
16
700990514H1
SOYMON011
g20732
BLASTN
550
1e−37
79


3262
16
701153744H1
SOYMON031
g19565
BLASTN
557
1e−37
88


3263
16
700742768H1
SOYMON012
g169090
BLASTN
558
1e−37
90


3264
16
701149314H1
SOYMON031
g19565
BLASTN
559
1e−37
88


3265
16
700961862H1
SOYMON022
g169090
BLASTN
559
1e−37
86


3266
16
700875647H1
SOYMON018
g20732
BLASTN
560
1e−37
81


3267
16
700958014H1
SOYMON022
g19565
BLASTN
465
1e−36
81


3268
16
700854826H1
SOYMON023
g2905771
BLASTN
517
1e−36
95


3269
16
701106984H1
SOYMON036
g20732
BLASTN
539
1e−36
79


3270
16
700740352H1
SOYMON012
g20732
BLASTN
539
1e−36
79


3271
16
700903658H1
SOYMON022
g19565
BLASTN
542
1e−36
85


3272
16
700756593H1
SOYMON014
g19565
BLASTN
545
1e−36
88


3273
16
700789341H2
SOYMON011
g169090
BLASTN
546
1e−36
86


3274
16
700751528H1
SOYMON014
g20732
BLASTN
549
1e−36
78


3275
16
701046242H1
SOYMON032
g169090
BLASTN
549
1e−36
86


3276
16
700606131H2
SOYMON008
g20732
BLASTN
257
1e−35
80


3277
16
701063749H1
SOYMON034
g2905771
BLASTN
355
1e−35
97


3278
16
701156830H1
SOYMON031
g19565
BLASTN
401
1e−35
88


3279
16
701123759H1
SOYMON037
g20732
BLASTN
527
1e−35
77


3280
16
700833470H1
SOYMON019
g19565
BLASTN
533
1e−35
86


3281
16
701043561H1
SOYMON029
g169090
BLASTN
307
1e−34
81


3282
16
700685547H1
SOYMON008
g20732
BLASTN
352
1e−34
77


3283
16
701215104H1
SOYMON035
g169090
BLASTN
424
1e−34
87


3284
16
701156675H1
SOYMON031
g169090
BLASTN
439
1e−34
84


3285
16
700650109H1
SOYMON003
g169090
BLASTN
505
1e−34
83


3286
16
700996816H1
SOYMON018
g20732
BLASTN
514
1e−34
89


3287
16
700875986H1
SOYMON018
g20732
BLASTN
517
1e−34
79


3288
16
700875036H1
SOYMON018
g20732
BLASTN
520
1e−34
79


3289
16
700760859H1
SOYMON015
g169090
BLASTN
521
1e−34
85


3290
16
701203868H1
SOYMON035
g19565
BLASTN
522
1e−34
75


3291
16
700684625H1
SOYMON008
g20732
BLASTN
523
1e−34
88


3292
16
700743827H1
SOYMON012
g20550
BLASTN
277
1e−33
84


3293
16
700895366H1
SOYMON027
g20732
BLASTN
509
1e−33
71


3294
16
701155325H1
SOYMON031
g169090
BLASTN
393
1e−32
78


3295
16
700979884H2
SOYMON009
g19565
BLASTN
493
1e−32
87


3296
16
700956948H1
SOYMON022
g19565
BLASTN
497
1e−32
82


3297
16
700983542H1
SOYMON009
g19565
BLASTN
326
1e−31
76


3298
16
700750157H1
SOYMON013
g169090
BLASTN
483
1e−31
79


3299
16
700856401H1
SOYMON023
g19565
BLASTN
485
1e−31
79


3300
16
701153529H1
SOYMON031
g19565
BLASTN
487
1e−31
89


3301
16
700740510H1
SOYMON012
g169090
BLASTN
404
1e−30
84


3302
16
700742952H1
SOYMON012
g20732
BLASTN
472
1e−30
83


3303
16
700754658H1
SOYMON014
g2078297
BLASTN
385
1e−29
85


3304
16
700876748H1
SOYMON018
g20732
BLASTN
457
1e−29
74


3305
16
700673094H1
SOYMON006
g19565
BLASTN
460
1e−29
78


3306
16
700741756H1
SOYMON012
g20732
BLASTN
462
1e−29
79


3307
16
701209936H1
SOYMON035
g169090
BLASTN
464
1e−29
86


3308
16
700997818H1
SOYMON018
g20732
BLASTN
473
1e−29
78


3309
16
701150960H1
SOYMON031
g169090
BLASTN
447
1e−28
83


3310
16
700685752H1
SOYMON008
g20732
BLASTN
467
1e−28
80


3311
16
700981608H1
SOYMON009
g20732
BLASTN
467
1e−28
80


3312
16
700742082H1
SOYMON012
g20732
BLASTN
322
1e−27
83


3313
16
701146456H1
SOYMON031
g169090
BLASTN
352
1e−27
86


3314
16
700977936H1
SOYMON009
g2905771
BLASTN
423
1e−27
98


3315
16
700897772H1
SOYMON027
g20732
BLASTN
446
1e−27
83


3316
16
701064028H1
SOYMON034
g20732
BLASTN
454
1e−27
82


3317
16
701044915H1
SOYMON032
g19565
BLASTN
316
1e−26
88


3318
16
700976839H1
SOYMON009
g2905771
BLASTN
423
1e−26
98


3319
16
700830091H1
SOYMON019
g19565
BLASTN
426
1e−26
86


3320
16
700961412H1
SOYMON022
g19565
BLASTN
427
1e−26
83


3321
16
701104716H1
SOYMON036
g20732
BLASTN
441
1e−26
81


3322
16
700738003H1
SOYMON012
g19565
BLASTN
413
1e−25
87


3323
16
700908925H1
SOYMON022
g21142
BLASTN
262
1e−24
87


3324
16
701130161H1
SOYMON037
g19565
BLASTN
398
1e−24
75


3325
16
700754740H1
SOYMON014
g309670
BLASTN
304
1e−21
76


3326
16
700990677H1
SOYMON011
g169090
BLASTN
361
1e−21
88


3327
16
700662952H1
SOYMON005
g19565
BLASTN
349
1e−20
86


3328
16
700890971H1
SOYMON024
g2905771
BLASTN
355
1e−20
100


3329
16
700745113H1
SOYMON013
g166705
BLASTN
376
1e−20
86


3330
16
700683049H1
SOYMON008
g256965
BLASTX
95
1e−19
72


3331
16
701043808H1
SOYMON032
g2078297
BLASTN
192
1e−17
76


3332
16
700563254H1
SOYMON002
g2905771
BLASTN
326
1e−17
99


3333
16
701068370H1
SOYMON034
g2905771
BLASTN
329
1e−17
95


3334
16
700840885H1
SOYMON020
g21066
BLASTX
83
1e−16
77


3335
16
701146974H1
SOYMON031
g18978
BLASTX
99
1e−16
79


3336
16
700874586H1
SOYMON018
g309671
BLASTX
171
1e−16
89


3337
16
701156431H1
SOYMON031
g309671
BLASTX
172
1e−16
68


3338
16
700731566H1
SOYMON010
g1185556
BLASTX
152
1e−15
91


3339
16
700739659H1
SOYMON012
g309671
BLASTX
161
1e−15
71


3340
16
700678096H1
SOYMON007
g169090
BLASTN
177
1e−15
81


3341
16
700957692H1
SOYMON022
g1185556
BLASTX
147
1e−14
88


3342
16
700554603H1
SOYMON001
g20732
BLASTN
195
1e−14
81


3343
16
701126861H1
SOYMON037
g19565
BLASTN
246
1e−14
85


3344
16
700679091H2
SOYMON007
g166705
BLASTN
266
1e−13
76


3345
16
700737463H1
SOYMON010
g1185556
BLASTX
130
1e−12
89


3346
16
700870957H1
SOYMON018
g309670
BLASTN
282
1e−12
80


3347
16
700651065H1
SOYMON003
g2905772
BLASTX
121
1e−11
100


3348
16
701064564H1
SOYMON034
g1185556
BLASTX
123
1e−11
89


3349
16
701000079H1
SOYMON018
g1185556
BLASTX
126
1e−11
81


3350
16
700606257H1
SOYMON008
g309671
BLASTX
136
1e−11
72


3351
16
700752373H1
SOYMON014
g19565
BLASTN
270
1e−11
92


3352
16
701130139H1
SOYMON037
g2905772
BLASTX
86
1e−10
96


3353
16
700646156H1
SOYMON012
g1185556
BLASTX
110
1e−9
92


3354
16
700743668H1
SOYMON012
g20551
BLASTX
121
1e−9
85


3355
16
700648908H1
SOYMON003
g19565
BLASTN
217
1e−9
90


3356
16
700563235H1
SOYMON002
g169090
BLASTN
220
1e−9
85


3357
1976
700961292H1
SOYMON022
g496493
BLASTN
1040
1e−77
90


3358
1976
700963585H1
SOYMON022
g496493
BLASTN
1027
1e−76
86


3359
1976
700683563H1
SOYMON008
g496493
BLASTN
1007
1e−75
86


3360
1976
700791132H1
SOYMON011
g496493
BLASTN
949
1e−70
86


3361
1976
700890465H1
SOYMON024
g496493
BLASTN
529
1e−68
87


3362
1976
700983190H1
SOYMON009
g496493
BLASTN
904
1e−66
85


3363
1976
700983490H1
SOYMON009
g496493
BLASTN
887
1e−65
81


3364
1976
700992647H1
SOYMON011
g496493
BLASTN
460
1e−56
85


3365
1976
701128429H1
SOYMON037
g496493
BLASTN
718
1e−51
86


3366
1976
700726390H1
SOYMON009
g496493
BLASTN
694
1e−49
81


3367
1976
700764629H1
SOYMON022
g496493
BLASTN
529
1e−35
83


3368
1976
700729434H1
SOYMON009
g496493
BLASTN
382
1e−34
85


3369
1976
700957553H1
SOYMON022
g496493
BLASTN
520
1e−34
91


3370
2207
700726706H1
SOYMON009
g496493
BLASTN
1080
1e−81
88


3371
2207
700553529H1
SOYMON001
g496493
BLASTN
1041
1e−77
87


3372
2207
700739431H1
SOYMON012
g496493
BLASTN
937
1e−69
85


3373
2207
700875340H1
SOYMON018
g496493
BLASTN
875
1e−64
83


3374
2207
700962678H1
SOYMON022
g496493
BLASTN
844
1e−61
83


3375
2207
701214788H1
SOYMON035
g496493
BLASTN
613
1e−42
80


3376
26781
701213755H1
SOYMON035
g1100222
BLASTN
535
1e−55
79


3377
26781
701213579H1
SOYMON035
g1100222
BLASTN
535
1e−45
79


3378
3953
701061621H1
SOYMON033
g172766
BLASTX
104
1e−12
62


3379
4979
700566452H1
SOYMON002
g166705
BLASTN
1068
1e−80
85


3380
4979
701051147H1
SOYMON032
g166705
BLASTN
993
1e−74
83


3381
4979
700851348H1
SOYMON023
g166705
BLASTN
603
1e−73
87


3382
4979
700851470H1
SOYMON023
g166705
BLASTN
978
1e−72
87


3383
4979
701014769H1
SOYMON019
g166705
BLASTN
979
1e−72
84


3384
4979
700667186H1
SOYMON006
g21065
BLASTN
964
1e−71
86


3385
4979
700734161H1
SOYMON010
g21065
BLASTN
956
1e−70
89


3386
4979
700669545H1
SOYMON006
g166705
BLASTN
783
1e−65
84


3387
4979
700895425H1
SOYMON027
g16021
BLASTN
834
1e−65
82


3388
4979
701050651H1
SOYMON032
g409574
BLASTN
892
1e−65
84


3389
4979
701014770H1
SOYMON019
g409574
BLASTN
680
1e−62
83


3390
4979
700786662H1
SOYMON011
g166709
BLASTN
445
1e−60
85


3391
4979
700974162H1
SOYMON005
g167259
BLASTN
824
1e−59
83


3392
4979
700843984H1
SOYMON021
g16021
BLASTN
801
1e−57
84


3393
4979
700893406H1
SOYMON024
g166705
BLASTN
485
1e−56
82


3394
4979
700740022H1
SOYMON012
g167259
BLASTN
654
1e−56
84


3395
4979
701051962H1
SOYMON032
g166709
BLASTN
509
1e−53
87


3396
4979
700899741H1
SOYMON027
g2078297
BLASTN
746
1e−53
84


3397
4979
700890234H1
SOYMON024
g167259
BLASTN
671
1e−47
82


3398
4979
701043720H1
SOYMON032
g166705
BLASTN
571
1e−38
87


3399
4979
700893919H1
SOYMON024
g1345501
BLASTX
179
1e−17
88


3400
535
701064754H1
SOYMON034
g496493
BLASTN
1077
1e−80
88


3401
535
700660246H1
SOYMON004
g496493
BLASTN
1022
1e−76
90


3402
535
700725553H1
SOYMON009
g496493
BLASTN
978
1e−72
86


3403
535
700906586H1
SOYMON022
g496493
BLASTN
745
1e−62
89


3404
535
700555311H1
SOYMON001
g496493
BLASTN
855
1e−62
78


3405
535
700655860H1
SOYMON004
g496493
BLASTN
792
1e−57
86


3406
535
700656931H1
SOYMON004
g496493
BLASTN
669
1e−46
86


3407
535
700684630H1
SOYMON008
g496493
BLASTN
528
1e−35
83


3408
535
700999674H1
SOYMON018
g1842115
BLASTX
183
1e−18
92


3409
667
700763868H1
SOYMON018
g496493
BLASTN
973
1e−74
83


3410
667
700789653H2
SOYMON011
g496493
BLASTN
928
1e−68
85


3411
667
700986940H1
SOYMON009
g496493
BLASTN
929
1e−68
81


3412
667
700982690H1
SOYMON009
g496493
BLASTN
845
1e−64
85


3413
667
700975608H1
SOYMON009
g496493
BLASTN
875
1e−64
82


3414
667
700874732H1
SOYMON018
g496493
BLASTN
679
1e−63
82


3415
667
700956280H1
SOYMON022
g496493
BLASTN
809
1e−61
84


3416
667
700891885H1
SOYMON024
g496493
BLASTN
816
1e−61
83


3417
667
701145577H1
SOYMON031
g496493
BLASTN
764
1e−60
84


3418
667
700975787H1
SOYMON009
g496493
BLASTN
487
1e−59
83


3419
667
700989677H1
SOYMON011
g496493
BLASTN
590
1e−58
84


3420
667
700941396H1
SOYMON024
g496493
BLASTN
781
1e−58
85


3421
667
700985895H1
SOYMON009
g496493
BLASTN
449
1e−57
82


3422
667
700788465H1
SOYMON011
g496493
BLASTN
800
1e−57
80


3423
667
700898809H1
SOYMON027
g496493
BLASTN
743
1e−55
82


3424
667
700659510H1
SOYMON004
g496493
BLASTN
712
1e−53
83


3425
667
700957466H1
SOYMON022
g496493
BLASTN
477
1e−52
82


3426
667
700957672H1
SOYMON022
g496493
BLASTN
730
1e−52
83


3427
667
700752023H1
SOYMON014
g496493
BLASTN
710
1e−50
79


3428
667
700684123H1
SOYMON008
g496493
BLASTN
657
1e−48
82


3429
667
701204216H2
SOYMON035
g496493
BLASTN
632
1e−46
77


3430
667
700684018H1
SOYMON008
g496493
BLASTN
502
1e−44
83


3431
667
700981833H1
SOYMON009
g496493
BLASTN
320
1e−43
81


3432
667
700685767H1
SOYMON008
g496493
BLASTN
566
1e−38
83


3433
667
701119840H1
SOYMON037
g496493
BLASTN
518
1e−37
82


3434
667
700739439H1
SOYMON012
g496493
BLASTN
535
1e−35
86


3435
667
701108638H1
SOYMON036
g496493
BLASTN
420
1e−26
80


3436
667
700681550H1
SOYMON008
g496493
BLASTN
247
1e−20
82


3437
667
700838733H1
SOYMON020
g474408
BLASTX
185
1e−18
80


3438
667
700874784H1
SOYMON018
g474408
BLASTX
174
1e−17
83


3439
667
700796275H1
SOYMON017
g474408
BLASTX
167
1e−16
83


3440
-GM11584
LIB3049-013-
LIB3049
g2905771
BLASTN
257
1e−10
83




Q1-E1-F2


3441
-GM12588
LIB3049-035-
LIB3049
g20728
BLASTN
448
1e−35
75




Q1-E1-B2


3442
-GM15977
LIB3054-003-
LIB3054
g12158
BLASTN
601
1e−41
70




Q1-N1-B6


3443
-GM1666
LIB3028-009-
LIB3028
g169090
BLASTN
647
1e−43
74




Q1-B1-C6


3444
-GM17526
LIB3055-013-
LIB3055
g20728
BLASTN
249
1e−22
77




Q1-N1-E4


3445
-GM22093
LIB3030-004-
LIB3030
g20551
BLASTX
102
1e−35
75




Q1-B1-G2


3446
-GM41500
LIB3051-097-
LIB3051
g2905772
BLASTX
106
1e−25
44




Q1-K1-H1


3447
-GM4481
LIB3039-010-
LIB3039
g169090
BLASTN
692
1e−48
65




Q1-E1-B9


3448
-GM5704
LIB3039-017-
LIB3039
g166705
BLASTN
276
1e−24
75




Q1-E1-F2


3449
1061
LIB3028-008-
LIB3028
g20728
BLASTN
743
1e−99
84




Q1-B1-F6


3450
1061
LIB3053-005-
LIB3053
g12158
BLASTN
1302
1e−99
82




Q1-N1-D9


3451
1061
LIB3054-004-
LIB3054
g20728
BLASTN
743
1e−92
84




Q1-N1-E12


3452
1061
LIB3053-006-
LIB3053
g20728
BLASTN
729
1e−89
80




Q1-N1-E5


3453
1061
LIB3053-006-
LIB3053
g12158
BLASTN
1096
1e−82
81




Q1-N1-C11


3454
1061
LIB3028-003-
LIB3028
g20728
BLASTN
728
1e−80
86




Q1-B1-D12


3455
1061
LIB3040-023-
LIB3040
g12158
BLASTN
741
1e−79
83




Q1-E1-D10


3456
1061
LIB3040-036-
LIB3040
g20728
BLASTN
735
1e−71
86




Q1-E1-A12


3457
1061
LIB3055-006-
LIB3055
g20728
BLASTN
667
1e−56
83




Q1-N1-B3


3458
1061
LIB3055-002-
LIB3055
g20728
BLASTN
735
1e−50
86




Q1-B1-A9


3459
1061
LIB3040-053-
LIB3040
g20728
BLASTN
579
1e−43
84




Q1-E1-D5


3460
1392
LIB3051-059-
LIB3051
g21142
BLASTN
1165
1e−101
82




Q1-K2-D8


3461
1392
LIB3039-009-
LIB3039
g19565
BLASTN
923
1e−68
80




Q1-E1-H2


3462
16
LIB3052-014-
LIB3052
g20732
BLASTN
1436
1e−110
84




Q1-N1-E5


3463
16
LIB3055-002-
LIB3055
g169090
BLASTN
1404
1e−108
82




Q1-B1-A6


3464
16
LIB3028-004-
LIB3028
g169090
BLASTN
1399
1e−107
82




Q1-B1-C2


3465
16
LIB3065-011-
LIB3065
g169090
BLASTN
1382
1e−106
83




Q1-N1-E4


3466
16
LIB3053-014-
LIB3053
g20732
BLASTN
727
1e−104
82




Q1-N1-D3


3467
16
LIB3051-063-
LIB3051
g169090
BLASTN
1150
1e−103
78




Q1-K1-F4


3468
16
LIB3040-052-
LIB3040
g169090
BLASTN
1247
1e−102
83




Q1-E1-B5


3469
16
LIB3054-006-
LIB3054
g169090
BLASTN
1160
1e−100
83




Q1-N1-C1


3470
16
LIB3052-001-
LIB3052
g169090
BLASTN
1142
1e−98
82




Q1-B1-C6


3471
16
LIB3055-004-
LIB3055
g20732
BLASTN
690
1e−94
83




Q1-N1-F6


3472
16
LIB3051-087-
LIB3051
g169090
BLASTN
1190
1e−94
77




Q1-K1-E1


3473
16
LIB3051-018-
LIB3051
g169090
BLASTN
772
1e−91
83




Q1-E1-H11


3474
16
LIB3056-012-
LIB3056
g169090
BLASTN
1132
1e−89
77




Q1-N1-H7


3475
16
LIB3052-014-
LIB3052
g20732
BLASTN
1027
1e−86
79




Q1-N1-E1


3476
16
LIB3039-015-
LIB3039
g169090
BLASTN
1138
1e−86
83




Q1-E1-A12


3477
16
LIB3039-003-
LIB3039
g169090
BLASTN
719
1e−85
81




Q1-E1-C4


3478
16
LIB3040-015-
LIB3040
g169090
BLASTN
1127
1e−85
82




Q1-E1-H5


3479
16
LIB3040-041-
LIB3040
g169090
BLASTN
952
1e−84
80




Q1-E1-A4


3480
16
LIB3040-004-
LIB3040
g169090
BLASTN
952
1e−84
79




Q1-E1-E11


3481
16
LIB3039-036-
LIB3039
g169090
BLASTN
1110
1e−83
79




Q1-E1-D10


3482
16
LIB3039-030-
LIB3039
g169090
BLASTN
1093
1e−82
79




Q1-E1-D5


3483
16
LIB3055-008-
LIB3055
g169090
BLASTN
634
1e−81
84




Q1-N1-E2


3484
16
LIB3039-003-
LIB3039
g169090
BLASTN
890
1e−81
78




Q1-E1-G1


3485
16
LIB3049-020-
LIB3049
g169090
BLASTN
957
1e−81
78




Q1-E1-A4


3486
16
LIB3030-012-
LIB3030
g169090
BLASTN
691
1e−80
74




Q1-B1-D5


3487
16
LIB3039-007-
LIB3039
g169090
BLASTN
1066
1e−80
78




Q1-E1-F8


3488
16
LIB3056-003-
LIB3056
g169090
BLASTN
1070
1e−80
78




Q1-N1-H12


3489
16
LIB3049-044-
LIB3049
g169090
BLASTN
958
1e−79
78




Q1-E1-H6


3490
16
LIB3051-042-
LIB3051
g169090
BLASTN
1047
1e−78
81




Q1-K1-D7


3491
16
LIB3039-005-
LIB3039
g169090
BLASTN
957
1e−77
78




Q1-E1-F7


3492
16
LIB3040-028-
LIB3040
g169090
BLASTN
974
1e−77
81




Q1-E1-C3


3493
16
LIB3049-014-
LIB3049
g169090
BLASTN
737
1e−76
78




Q1-E1-A10


3494
16
LIB3040-012-
LIB3040
g169090
BLASTN
800
1e−76
78




Q1-E1-G8


3495
16
LIB3040-061-
LIB3040
g169090
BLASTN
957
1e−76
79




Q1-E11-F6


3496
16
LIB3049-044-
LIB3049
g169090
BLASTN
976
1e−75
80




Q1-E1-G1


3497
16
LIB3039-040-
LIB3039
g169090
BLASTN
994
1e−74
78




Q1-E1-A8


3498
16
LIB3049-054-
LIB3049
g169090
BLASTN
766
1e−73
79




Q1-E1-G11


3499
16
LIB3051-062-
LIB3051
g166705
BLASTN
869
1e−73
77




Q1-K1-B9


3500
16
LIB3040-039-
LIB3040
g169090
BLASTN
970
1e−72
83




Q1-E1-A5


3501
16
LIB3039-031-
LIB3039
g19565
BLASTN
970
1e−72
83




Q1-E1-E11


3502
16
LIB3040-043-
LIB3040
g169090
BLASTN
970
1e−72
83




Q1-E1-G3


3503
16
LIB3039-031-
LIB3039
g19565
BLASTN
971
1e−72
83




Q1-E1-A7


3504
16
LIB3039-047-
LIB3039
g169090
BLASTN
713
1e−71
78




Q1-E1-B12


3505
16
LIB3039-033-
LIB3039
g409574
BLASTN
965
1e−71
82




Q1-E1-D8


3506
16
LIB3040-010-
LIB3040
g19565
BLASTN
969
1e−71
83




Q1-E1-A11


3507
16
LIB3040-015-
LIB3040
g169090
BLASTN
726
1e−70
78




Q1-E1-G5


3508
16
LIB3040-008-
LIB3040
g169090
BLASTN
842
1e−70
81




Q1-E1-G6


3509
16
LIB3049-045-
LIB3049
g19565
BLASTN
955
1e−70
82




Q1-E1-H2


3510
16
LIB3065-008-
LIB3065
g169090
BLASTN
416
1e−69
80




Q1-N1-B3


3511
16
LIB3039-028-
LIB3039
g169090
BLASTN
713
1e−69
78




Q1-E1-D6


3512
16
LIB3039-045-
LIB3039
g169090
BLASTN
940
1e−69
83




Q1-E1-D5


3513
16
LIB3040-058-
LIB3040
g20732
BLASTN
396
1e−68
80




Q1-E1-G12


3514
16
LIB3049-034-
LIB3049
g169090
BLASTN
633
1e−67
80




Q1-E1-F1


3515
16
LIB3039-050-
LIB3039
g169090
BLASTN
730
1e−67
79




Q1-E1-C11


3516
16
LIB3040-042-
LIB3040
g19565
BLASTN
762
1e−67
80




Q1-E1-E12


3517
16
LIB3040-030-
LIB3040
g169090
BLASTN
847
1e−67
79




Q1-E1-E11


3518
16
LIB3040-054-
LIB3040
g169090
BLASTN
909
1e−67
78




Q1-E1-E9


3519
16
LIB3039-046-
LIB3039
g19565
BLASTN
917
1e−67
82




Q1-E1-H3


3520
16
LIB3039-020-
LIB3039
g19565
BLASTN
908
1e−66
82




Q1-E1-E1


3521
16
LIB3040-036-
LIB3040
g19565
BLASTN
693
1e−63
83




Q1-E1-F9


3522
16
LIB3039-054-
LIB3039
g169090
BLASTN
633
1e−62
79




Q1-E1-G11


3523
16
LIB3040-053-
LIB3040
g169090
BLASTN
508
1e−60
77




Q1-E1-C6


3524
16
LIB3040-006-
LIB3040
g409574
BLASTN
855
1e−60
82




Q1-E1-H9


3525
16
LIB3027-011-
LIB3027
g2905771
BLASTN
754
1e−56
97




Q1-B1-C6


3526
16
LIB3039-045-
LIB3039
g169090
BLASTN
751
1e−52
73




Q1-E1-E3


3527
16
LIB3039-029-
LIB3039
g169090
BLASTN
422
1e−50
80




Q1-E1-D8


3528
16
LIB3049-022-
LIB3049
g166705
BLASTN
376
1e−46
79




Q1-E1-G9


3529
16
LIB3039-027-
LIB3039
g19565
BLASTN
417
1e−45
83




Q1-E1-C2


3530
16
LIB3040-026-
LIB3040
g169090
BLASTN
514
1e−43
69




Q1-E1-C12


3531
16
LIB3040-042-
LIB3040
g19565
BLASTN
575
1e−42
80




Q1-E1-E1


3532
16
LIB3039-003-
LIB3039
g2905771
BLASTN
422
1e−39
87




Q1-E1-A2


3533
16
LIB3039-048-
LIB3039
g169090
BLASTN
422
1e−36
77




Q1-E1-D6


3534
16
LIB3040-018-
LIB3040
g22238
BLASTX
79
1e−34
78




Q1-E1-G2


3535
16
LIB3050-020-
LIB3050
g19565
BLASTN
549
1e−34
87




Q1-K1-A10


3536
16
LIB3051-022-
LIB3051
g19565
BLASTN
480
1e−31
85




Q1-K1-D1


3537
16
LIB3039-051-
LIB3039
g1345567
BLASTX
110
1e−28
63




Q1-E1-F10


3538
1976
LIB3053-010-
LIB3053
g496493
BLASTN
341
1e−57
83




Q1-N1-B4


3539
33625
LIB3054-008-
LIB3054
g20732
BLASTN
227
1e−11
85




Q1-N1-D12


3540
535
LIB3053-009-
LIB3053
g496493
BLASTN
808
1e−58
86




Q1-N1-D11







MAIZE TRIOSE PHOSPHATE ISOMERASE















3541
-700019675
700019675H1
SATMON001
g546735
BLASTX
134
1e−11
78


3542
-700073894
700073894H1
SATMON007
g609261
BLASTN
257
1e−10
84


3543
-700167260
700167260H1
SATMON013
g609261
BLASTN
644
1e−44
79


3544
-700380595
700380595H1
SATMON021
g609261
BLASTN
1121
1e−84
87


3545
-700449667
700449667H1
SATMON028
g217973
BLASTN
204
1e−18
93


3546
-700449720
700449720H2
SATMON028
g217973
BLASTN
216
1e−18
88


3547
-700570661
700570661H1
SATMON030
g168647
BLASTX
131
1e−11
88


3548
-700616770
700616770H1
SATMON033
g407525
BLASTX
149
1e−13
83


3549
-701170944
701170944H1
SATMONN05
g217921
BLASTX
188
1e−20
53


3550
11337
700337974H1
SATMON020
g256119
BLASTN
535
1e−61
78


3551
11337
700027829H1
SATMON003
g256119
BLASTN
726
1e−51
80


3552
126
700050046H1
SATMON003
g1785947
BLASTN
440
1e−26
92


3553
282
700077320H1
SATMON007
g217973
BLASTN
666
1e−108
97


3554
282
700104541H1
SATMON010
g217973
BLASTN
631
1e−106
97


3555
282
700047476H1
SATMON003
g217973
BLASTN
648
1e−105
97


3556
282
700211559H1
SATMON016
g217973
BLASTN
525
1e−104
97


3557
282
700073553H1
SATMON007
g217973
BLASTN
981
1e−103
98


3558
282
700613011H1
SATMON033
g217973
BLASTN
552
1e−102
98


3559
282
700352119H1
SATMON023
g217973
BLASTN
666
1e−101
97


3560
282
700088148H1
SATMON011
g217973
BLASTN
666
1e−100
98


3561
282
700351626H1
SATMON023
g217973
BLASTN
401
1e−99
98


3562
282
700240096H1
SATMON010
g217973
BLASTN
666
1e−98
97


3563
282
700083660H1
SATMON011
g217973
BLASTN
666
1e−97
99


3564
282
700208721H1
SATMON016
g217973
BLASTN
497
1e−96
98


3565
282
700203144H1
SATMON003
g217973
BLASTN
511
1e−96
96


3566
282
700430425H1
SATMONN01
g217973
BLASTN
666
1e−96
98


3567
282
700206091H1
SATMON003
g217973
BLASTN
497
1e−94
97


3568
282
700077017H1
SATMON007
g217973
BLASTN
614
1e−93
93


3569
282
700618792H1
SATMON034
g217973
BLASTN
546
1e−92
96


3570
282
700572532H1
SATMON030
g407524
BLASTN
1212
1e−92
84


3571
282
700106512H1
SATMON010
g217973
BLASTN
632
1e−91
97


3572
282
700195031H1
SATMON014
g217973
BLASTN
471
1e−90
97


3573
282
700168131H1
SATMON013
g217973
BLASTN
497
1e−89
98


3574
282
700197039H1
SATMON014
g217973
BLASTN
546
1e−89
98


3575
282
700572688H1
SATMON030
g169820
BLASTN
1114
1e−89
85


3576
282
700021313H1
SATMON001
g217973
BLASTN
913
1e−87
97


3577
282
700452417H1
SATMON028
g217973
BLASTN
425
1e−86
95


3578
282
700346119H1
SATMON021
g217973
BLASTN
444
1e−86
96


3579
282
700082359H1
SATMON011
g217973
BLASTN
542
1e−86
93


3580
282
700240042H1
SATMON010
g217973
BLASTN
596
1e−86
97


3581
282
700030064H1
SATMON003
g217973
BLASTN
587
1e−85
94


3582
282
700615185H1
SATMON033
g217973
BLASTN
430
1e−84
98


3583
282
700196125H1
SATMON014
g217973
BLASTN
581
1e−84
100


3584
282
700243429H1
SATMON010
g217973
BLASTN
632
1e−84
97


3585
282
700474112H1
SATMON025
g217973
BLASTN
570
1e−83
98


3586
282
700572282H1
SATMON030
g407524
BLASTN
838
1e−83
82


3587
282
700622238H1
SATMON034
g169820
BLASTN
917
1e−80
86


3588
282
700095609H1
SATMON008
g169820
BLASTN
1067
1e−80
82


3589
282
700218886H1
SATMON011
g217973
BLASTN
551
1e−79
93


3590
282
700018688H1
SATMON001
g217973
BLASTN
1066
1e−79
99


3591
282
700049775H1
SATMON003
g217973
BLASTN
362
1e−78
91


3592
282
700575972H1
SATMON030
g169820
BLASTN
894
1e−78
79


3593
282
700215519H1
SATMON016
g217973
BLASTN
497
1e−76
97


3594
282
700161120H1
SATMON012
g217973
BLASTN
622
1e−76
98


3595
282
700581760H1
SATMON031
g217973
BLASTN
533
1e−75
90


3596
282
700104672H1
SATMON010
g169820
BLASTN
1012
1e−75
83


3597
282
700346053H1
SATMON021
g169820
BLASTN
1012
1e−75
83


3598
282
701166592H1
SATMONN04
g217973
BLASTN
661
1e−74
95


3599
282
700968667H1
SATMONN04
g217973
BLASTN
497
1e−73
92


3600
282
700205627H1
SATMON003
g217973
BLASTN
666
1e−73
99


3601
282
700029005H1
SATMON003
g169820
BLASTN
979
1e−72
85


3602
282
700476479H1
SATMON025
g169820
BLASTN
554
1e−71
84


3603
282
700050148H1
SATMON003
g169820
BLASTN
608
1e−70
83


3604
282
700259846H1
SATMON017
g217973
BLASTN
283
1e−69
94


3605
282
700344093H1
SATMON021
g169820
BLASTN
934
1e−69
83


3606
282
700082327H1
SATMON011
g169820
BLASTN
943
1e−69
85


3607
282
700020156H1
SATMON001
g217973
BLASTN
420
1e−68
99


3608
282
700577714H1
SATMON031
g169820
BLASTN
928
1e−68
85


3609
282
700104904H1
SATMON010
g169820
BLASTN
913
1e−67
84


3610
282
700104685H1
SATMON010
g169820
BLASTN
897
1e−66
84


3611
282
700053463H1
SATMON009
g169820
BLASTN
907
1e−66
85


3612
282
700171639H1
SATMON013
g217973
BLASTN
401
1e−65
98


3613
282
700574233H1
SATMON030
g169820
BLASTN
651
1e−65
83


3614
282
700262653H1
SATMON017
g169820
BLASTN
877
1e−64
84


3615
282
700456738H1
SATMON029
g169820
BLASTN
877
1e−64
84


3616
282
700611806H1
SATMON022
g169820
BLASTN
877
1e−64
83


3617
282
700381177H1
SATMON023
g169820
BLASTN
884
1e−64
84


3618
282
700103347H1
SATMON010
g169820
BLASTN
861
1e−63
84


3619
282
700103605H1
SATMON010
g169820
BLASTN
868
1e−63
84


3620
282
700578536H1
SATMON031
g169820
BLASTN
856
1e−62
84


3621
282
700258606H1
SATMON017
g169820
BLASTN
807
1e−61
83


3622
282
700335703H1
SATMON019
g217973
BLASTN
376
1e−60
90


3623
282
700351044H1
SATMON023
g169820
BLASTN
471
1e−59
83


3624
282
700346364H1
SATMON021
g169820
BLASTN
813
1e−59
85


3625
282
700619037H1
SATMON034
g169820
BLASTN
814
1e−59
84


3626
282
700465160H1
SATMON025
g169820
BLASTN
751
1e−57
84


3627
282
700235687H1
SATMON010
g169820
BLASTN
791
1e−57
82


3628
282
700105645H1
SATMON010
g169820
BLASTN
793
1e−57
83


3629
282
700082237H1
SATMON011
g169820
BLASTN
793
1e−57
84


3630
282
700261906H1
SATMON017
g169820
BLASTN
796
1e−57
83


3631
282
700456154H1
SATMON029
g169820
BLASTN
799
1e−57
84


3632
282
700047696H1
SATMON003
g169820
BLASTN
561
1e−56
83


3633
282
700449905H1
SATMON028
g169820
BLASTN
788
1e−56
84


3634
282
700336106H1
SATMON019
g217973
BLASTN
325
1e−55
92


3635
282
700381867H1
SATMON023
g2529386
BLASTN
422
1e−55
97


3636
282
700051335H1
SATMON003
g169820
BLASTN
608
1e−55
83


3637
282
700050988H1
SATMON003
g169820
BLASTN
768
1e−55
86


3638
282
700029471H1
SATMON003
g169820
BLASTN
772
1e−55
84


3639
282
700106806H1
SATMON010
g169820
BLASTN
773
1e−55
84


3640
282
700071749H1
SATMON007
g217973
BLASTN
362
1e−54
85


3641
282
700207607H1
SATMON016
g217973
BLASTN
362
1e−54
85


3642
282
700573465H2
SATMON030
g169820
BLASTN
753
1e−54
86


3643
282
700220908H1
SATMON011
g169820
BLASTN
758
1e−54
84


3644
282
700467719H1
SATMON025
g169820
BLASTN
761
1e−54
85


3645
282
700456018H1
SATMON029
g169820
BLASTN
764
1e−54
81


3646
282
700453767H1
SATMON029
g217973
BLASTN
296
1e−52
94


3647
282
700026118H1
SATMON003
g217973
BLASTN
341
1e−52
93


3648
282
700026760H1
SATMON003
g217973
BLASTN
421
1e−52
99


3649
282
700029525H1
SATMON003
g169820
BLASTN
738
1e−52
85


3650
282
700457972H1
SATMON029
g169820
BLASTN
723
1e−51
85


3651
282
700455866H1
SATMON029
g169820
BLASTN
726
1e−51
84


3652
282
700165290H1
SATMON013
g169820
BLASTN
726
1e−51
84


3653
282
700351190H1
SATMON023
g169820
BLASTN
672
1e−50
81


3654
282
700154095H1
SATMON007
g169820
BLASTN
696
1e−49
84


3655
282
700450438H1
SATMON028
g217973
BLASTN
430
1e−48
99


3656
282
700044892H1
SATMON004
g169820
BLASTN
683
1e−48
85


3657
282
700185095H1
SATMON014
g169820
BLASTN
673
1e−47
84


3658
282
700575506H1
SATMON030
g169820
BLASTN
680
1e−47
83


3659
282
700161966H1
SATMON012
g217973
BLASTN
335
1e−46
98


3660
282
700343401H1
SATMON021
g169820
BLASTN
426
1e−45
77


3661
282
700152354H1
SATMON007
g169820
BLASTN
653
1e−45
84


3662
282
701164924H1
SATMONN04
g169820
BLASTN
397
1e−44
84


3663
282
700346896H1
SATMON021
g169820
BLASTN
496
1e−42
84


3664
282
700210157H1
SATMON016
g169820
BLASTN
617
1e−42
84


3665
282
700383103H1
SATMON024
g169820
BLASTN
531
1e−41
84


3666
282
701158829H1
SATMONN04
g407524
BLASTN
549
1e−40
80


3667
282
700619883H1
SATMON034
g217973
BLASTN
325
1e−38
99


3668
282
700168219H1
SATMON013
g169820
BLASTN
540
1e−36
83


3669
282
700155210H1
SATMON007
g169820
BLASTN
545
1e−36
83


3670
282
700334861H1
SATMON019
g169820
BLASTN
484
1e−31
82


3671
282
700355663H1
SATMON024
g217973
BLASTN
213
1e−30
88


3672
282
700074764H1
SATMON007
g546734
BLASTN
387
1e−27
84


3673
282
700621934H1
SATMON034
g217973
BLASTN
430
1e−26
100


3674
282
700802084H1
SATMON036
g217973
BLASTN
270
1e−24
98


3675
3039
700620444H1
SATMON034
g1785947
BLASTN
473
1e−56
75


3676
3039
700356205H1
SATMON024
g1785947
BLASTN
332
1e−32
72


3677
3039
700215549H1
SATMON016
g414549
BLASTN
443
1e−26
72


3678
3039
700620318H1
SATMON034
g556171
BLASTX
214
1e−25
79


3679
3039
700028742H1
SATMON003
g556171
BLASTX
156
1e−20
86


3680
3039
700150060H1
SATMON007
g556171
BLASTX
181
1e−17
89


3681
3039
700448477H1
SATMON027
g556171
BLASTX
137
1e−12
85


3682
3039
700336489H1
SATMON019
g556171
BLASTX
126
1e−10
81


3683
3414
700099709H1
SATMON009
g609261
BLASTN
600
1e−49
84


3684
3414
700075837H1
SATMON007
g609261
BLASTN
494
1e−41
84


3685
3414
700045678H1
SATMON004
g609261
BLASTN
340
1e−29
73


3686
3414
700097852H1
SATMON009
g609261
BLASTN
436
1e−27
84


3687
3414
700053342H1
SATMON009
g609261
BLASTN
346
1e−25
73


3688
3414
700041954H1
SATMON004
g609261
BLASTN
340
1e−24
82


3689
3414
700217471H1
SATMON016
g609261
BLASTN
265
1e−21
71


3690
3414
700264437H1
SATMON017
g609261
BLASTN
231
1e−17
69


3691
3414
700218371H1
SATMON016
g609261
BLASTN
156
1e−10
68


3692
5593
700381686H1
SATMON023
g609261
BLASTN
534
1e−44
89


3693
5593
700356082H1
SATMON024
g609261
BLASTN
246
1e−24
90


3694
5593
700622077H1
SATMON034
g609261
BLASTN
292
1e−20
86


3695
5593
700470822H1
SATMON025
g609262
BLASTX
134
1e−11
79


3696
6525
700083139H1
SATMON011
g256119
BLASTN
880
1e−64
76


3697
6525
700205474H1
SATMON003
g169820
BLASTN
849
1e−62
77


3698
6991
700336856H1
SATMON019
g609261
BLASTN
1131
1e−85
85


3699
6991
700042717H1
SATMON004
g609261
BLASTN
1028
1e−76
85


3700
6991
700379491H1
SATMON020
g609261
BLASTN
995
1e−74
81


3701
6991
700156635H1
SATMON012
g609261
BLASTN
877
1e−64
84


3702
6991
700046340H1
SATMON004
g609261
BLASTN
852
1e−62
84


3703
6991
700081869H1
SATMON011
g609261
BLASTN
266
1e−14
80


3704
6991
700426102H1
SATMONN01
g806312
BLASTX
134
1e−13
89


3705
7384
700613626H1
SATMON033
g609261
BLASTN
920
1e−87
85


3706
7384
700101506H1
SATMON009
g609261
BLASTN
1124
1e−84
85


3707
7384
700206445H1
SATMON003
g609261
BLASTN
987
1e−73
79


3708
7384
700220160H1
SATMON011
g609261
BLASTN
878
1e−64
85


3709
-L1431527
LIB143-004-
LIB143
g217973
BLASTN
290
1e−13
93




Q1-E1-C5


3710
-L30613868
LIB3061-017-
LIB3061
g217973
BLASTN
182
1e−13
70




Q1-K1-C9


3711
-L30623620
LIB3062-034-
LIB3062
g609261
BLASTN
599
1e−39
74




Q1-K1-A8


3712
-L361705
LIB36-021-
LIB36
g609261
BLASTN
266
1e−14
80




Q1-E1-E7


3713
23992
LIB3062-056-
LIB3062
g1200507
BLASTX
285
1e−64
61




Q1-K1-F9


3714
282
LIB3067-047-
LIB3067
g217973
BLASTN
1076
1e−164
96




Q1-K1-H2


3715
282
LIB3067-055-
LIB3067
g217973
BLASTN
1076
1e−133
93




Q1-K1-G8


3716
282
LIB3067-059-
LIB3067
g169820
BLASTN
1401
1e−115
84




Q1-K1-D10


3717
282
LIB3067-027-
LIB3067
g407524
BLASTN
995
1e−113
83




Q1-K1-B10


3718
282
LIB189-032-
LIB189
g217973
BLASTN
629
1e−111
93




Q1-E1-H2


3719
282
LIB3059-023-
LIB3059
g407524
BLASTN
1436
1e−111
83




Q1-K1-A7


3720
282
LIB3069-016-
LIB3069
g169820
BLASTN
1301
1e−107
81




Q1-K1-D9


3721
282
LIB143-006-
LIB143
g169820
BLASTN
1373
1e−105
84




Q1-E1-A8


3722
282
LIB3068-054-
LIB3068
g169820
BLASTN
1327
1e−102
82




Q1-K1-C11


3723
282
LIB3067-034-
LIB3067
g407524
BLASTN
1321
1e−101
83




Q1-K1-B7


3724
282
LIB143-031-
LIB143
g169820
BLASTN
1311
1e−100
84




Q1-E1-E5


3725
282
LIB3069-055-
LIB3069
g169820
BLASTN
1046
1e−97
75




Q1-K1-H12


3726
282
LIB3061-027-
LIB3061
g169820
BLASTN
936
1e−96
83




Q1-K1-A8


3727
282
LIB3078-008-
LIB3078
g169820
BLASTN
1210
1e−92
82




Q1-K1-E5


3728
282
LIB3066-027-
LIB3066
g407524
BLASTN
1196
1e−91
82




Q1-K1-E1


3729
282
LIB3067-032-
LIB3067
g169820
BLASTN
1122
1e−84
84




Q1-K1-E5


3730
282
LIB3078-029-
LIB3078
g169820
BLASTN
827
1e−83
82




Q1-K1-F7


3731
282
LIB3061-006-
LIB3061
g169820
BLASTN
1091
1e−82
78




Q1-K1-B7


3732
282
LIB143-048-
LIB143
g169820
BLASTN
644
1e−74
75




Q1-E1-F8


3733
282
LIB3078-033-
LIB3078
g169820
BLASTN
584
1e−73
79




Q1-K1-B10


3734
282
LIB3069-046-
LIB3069
g169820
BLASTN
819
1e−59
79




Q1-K1-C4


3735
282
LIB3061-049-
LIB3061
g169820
BLASTN
587
1e−47
80




Q1-K1-H2


3736
282
LIB143-029-
LIB143
g169820
BLASTN
679
1e−47
84




Q1-E1-G4


3737
282
LIB84-027-
LIB84
g169820
BLASTN
613
1e−46
78




Q1-E1-E5


3738
282
LIB3062-001-
LIB3062
g169820
BLASTN
507
1e−33
80




Q1-K2-F7


3739
282
LIB3066-014-
LIB3066
g169820
BLASTN
385
1e−25
76




Q1-K1-H11


3740
29645
LIB3069-014-
LIB3069
g168647
BLASTX
131
1e−27
34




Q1-K1-C11


3741
29645
LIB3069-013-
LIB3069
g168647
BLASTX
124
1e−24
33




Q1-K1-C11


3742
3039
LIB3062-045-
LIB3062
g1785947
BLASTN
1119
1e−84
72




Q1-K1-F6


3743
5593
LIB3067-045-
LIB3067
g609261
BLASTN
702
1e−58
75




Q1-K1-E5


3744
6991
LIB3059-026-
LIB3059
g609261
BLASTN
1493
1e−115
84




Q1-K1-G9


3745
6991
LIB3078-049-
LIB3078
g609261
BLASTN
747
1e−55
83




Q1-K1-E4


3746
7384
LIB3062-034-
LIB3062
g609261
BLASTN
1351
1e−107
85




Q1-K1-A4







SOYBEAN TRIOSE PHOSPHATE ISOMERASE















3747
-700743237
700743237H1
SOYMON012
g407525
BLASTX
173
1e−17
91


3748
-700977730
700977730H1
SOYMON009
g602589
BLASTN
373
1e−20
71


3749
-701056176
701056176H1
SOYMON032
g806311
BLASTN
752
1e−53
74


3750
-701110172
701110172H1
SOYMON036
g806311
BLASTN
801
1e−57
78


3751
10244
700995141H1
SOYMON011
g806311
BLASTN
470
1e−30
87


3752
10244
701124548H1
SOYMON037
g806311
BLASTN
490
1e−30
88


3753
10244
700739771H1
SOYMON012
g806311
BLASTN
329
1e−16
77


3754
10244
700999820H1
SOYMON018
g806312
BLASTX
147
1e−13
84


3755
10244
701119858H1
SOYMON037
g806312
BLASTX
118
1e−9
72


3756
10535
700988684H1
SOYMON009
g806311
BLASTN
905
1e−66
79


3757
10535
700902425H1
SOYMON027
g806311
BLASTN
872
1e−63
80


3758
1357
701069004H1
SOYMON034
g806311
BLASTN
832
1e−60
81


3759
1357
701151554H1
SOYMON031
g806311
BLASTN
568
1e−38
82


3760
1357
700659936H1
SOYMON004
g806311
BLASTN
545
1e−36
79


3761
16
700680927H1
SOYMON008
g256119
BLASTN
1020
1e−81
78


3762
16
700656871H1
SOYMON004
g256119
BLASTN
903
1e−66
81


3763
16
701124364H1
SOYMON037
g256119
BLASTN
872
1e−64
80


3764
16
701134707H2
SOYMON038
g256119
BLASTN
874
1e−64
81


3765
16
700673750H1
SOYMON007
g256119
BLASTN
781
1e−60
81


3766
16
701123269H1
SOYMON037
g602589
BLASTN
819
1e−59
78


3767
16
701004846H1
SOYMON019
g256119
BLASTN
801
1e−58
80


3768
16
700993362H1
SOYMON011
g256119
BLASTN
808
1e−58
80


3769
16
701005445H1
SOYMON019
g256119
BLASTN
630
1e−56
78


3770
16
701134327H1
SOYMON038
g602589
BLASTN
782
1e−56
79


3771
16
701148169H1
SOYMON031
g602589
BLASTN
574
1e−51
76


3772
16
701153410H1
SOYMON031
g602589
BLASTN
451
1e−50
80


3773
16
700830168H1
SOYMON019
g256119
BLASTN
705
1e−50
77


3774
16
701120627H1
SOYMON037
g602589
BLASTN
715
1e−50
78


3775
16
700975358H1
SOYMON009
g602589
BLASTN
628
1e−49
77


3776
16
700755979H1
SOYMON014
g602589
BLASTN
697
1e−49
79


3777
16
701131374H1
SOYMON038
g602589
BLASTN
703
1e−49
79


3778
16
700994166H1
SOYMON011
g602589
BLASTN
513
1e−47
77


3779
16
701138038H1
SOYMON038
g602589
BLASTN
672
1e−47
77


3780
16
700974248H1
SOYMON005
g602589
BLASTN
658
1e−46
77


3781
16
700655832H1
SOYMON004
g602589
BLASTN
664
1e−46
78


3782
16
700758320H1
SOYMON015
g602589
BLASTN
409
1e−45
80


3783
16
701064709H1
SOYMON034
g602589
BLASTN
477
1e−45
78


3784
16
701138504H1
SOYMON038
g602589
BLASTN
591
1e−45
76


3785
16
700980284H1
SOYMON009
g602589
BLASTN
652
1e−45
79


3786
16
701133585H2
SOYMON038
g602589
BLASTN
634
1e−44
78


3787
16
700674706H1
SOYMON007
g602589
BLASTN
634
1e−44
78


3788
16
700964927H1
SOYMON022
g602589
BLASTN
639
1e−44
78


3789
16
700830923H1
SOYMON019
g602589
BLASTN
626
1e−43
76


3790
16
700662845H1
SOYMON005
g602589
BLASTN
617
1e−42
76


3791
16
701133824H1
SOYMON038
g602589
BLASTN
619
1e−42
78


3792
16
700848913H1
SOYMON021
g602589
BLASTN
603
1e−41
77


3793
16
701005984H1
SOYMON019
g602589
BLASTN
604
1e−41
78


3794
16
701140769H1
SOYMON038
g602589
BLASTN
605
1e−41
76


3795
16
700753357H1
SOYMON014
g602589
BLASTN
328
1e−40
78


3796
16
701056336H1
SOYMON032
g602589
BLASTN
344
1e−40
77


3797
16
700895411H1
SOYMON027
g602589
BLASTN
593
1e−40
78


3798
16
701060188H1
SOYMON033
g602589
BLASTN
277
1e−39
80


3799
16
700739461H1
SOYMON012
g602589
BLASTN
573
1e−39
77


3800
16
700941104H1
SOYMON024
g602589
BLASTN
579
1e−39
79


3801
16
700732960H1
SOYMON010
g602589
BLASTN
581
1e−39
78


3802
16
700686476H1
SOYMON008
g602589
BLASTN
583
1e−39
79


3803
16
701054231H1
SOYMON032
g602589
BLASTN
583
1e−39
77


3804
16
700671690H1
SOYMON006
g602589
BLASTN
566
1e−38
77


3805
16
700941174H1
SOYMON024
g602589
BLASTN
569
1e−38
78


3806
16
701125091H1
SOYMON037
g256119
BLASTN
358
1e−37
74


3807
16
700989827H1
SOYMON011
g602589
BLASTN
555
1e−37
78


3808
16
700835006H1
SOYMON019
g602589
BLASTN
555
1e−37
75


3809
16
700834847H1
SOYMON019
g602589
BLASTN
559
1e−37
78


3810
16
700953411H1
SOYMON022
g602589
BLASTN
314
1e−36
80


3811
16
700869222H1
SOYMON016
g602589
BLASTN
541
1e−36
78


3812
16
700850633H1
SOYMON023
g602589
BLASTN
544
1e−36
78


3813
16
700890283H1
SOYMON024
g602589
BLASTN
310
1e−35
80


3814
16
700727079H1
SOYMON009
g414549
BLASTN
358
1e−35
73


3815
16
700892544H1
SOYMON024
g602589
BLASTN
486
1e−35
78


3816
16
700869230H1
SOYMON016
g602589
BLASTN
528
1e−35
78


3817
16
700993034H1
SOYMON011
g602589
BLASTN
518
1e−34
75


3818
16
700975553H1
SOYMON009
g414549
BLASTN
524
1e−34
79


3819
16
700651326H1
SOYMON003
g602589
BLASTN
356
1e−33
80


3820
16
701215308H1
SOYMON035
g414549
BLASTN
450
1e−33
75


3821
16
700654480H1
SOYMON004
g414549
BLASTN
511
1e−33
80


3822
16
701045128H1
SOYMON032
g414549
BLASTN
512
1e−33
78


3823
16
701060759H1
SOYMON033
g414549
BLASTN
513
1e−33
80


3824
16
700741652H1
SOYMON012
g602589
BLASTN
493
1e−32
79


3825
16
700675469H1
SOYMON007
g602589
BLASTN
494
1e−32
78


3826
16
700983693H1
SOYMON009
g414549
BLASTN
495
1e−32
80


3827
16
701156784H1
SOYMON031
g602589
BLASTN
495
1e−32
78


3828
16
701009957H2
SOYMON019
g414549
BLASTN
495
1e−32
80


3829
16
700657787H1
SOYMON004
g414549
BLASTN
495
1e−32
79


3830
16
700893935H1
SOYMON024
g602589
BLASTN
481
1e−31
79


3831
16
701144619H1
SOYMON031
g414549
BLASTN
485
1e−31
78


3832
16
701148851H1
SOYMON031
g602589
BLASTN
487
1e−31
79


3833
16
701058218H1
SOYMON033
g602589
BLASTN
495
1e−31
78


3834
16
700975165H1
SOYMON009
g414549
BLASTN
466
1e−30
80


3835
16
701100165H1
SOYMON028
g602589
BLASTN
485
1e−30
79


3836
16
701150241H1
SOYMON031
g602589
BLASTN
455
1e−29
79


3837
16
701098308H1
SOYMON028
g414549
BLASTN
460
1e−29
79


3838
16
701150440H1
SOYMON031
g602589
BLASTN
462
1e−29
78


3839
16
700685125H1
SOYMON008
g414549
BLASTN
471
1e−29
81


3840
16
701061565H1
SOYMON033
g414549
BLASTN
471
1e−29
81


3841
16
700991418H1
SOYMON011
g602589
BLASTN
394
1e−28
68


3842
16
701156156H1
SOYMON031
g602589
BLASTN
456
1e−28
78


3843
16
701007231H2
SOYMON019
g602589
BLASTN
461
1e−28
79


3844
16
700829667H1
SOYMON019
g414549
BLASTN
333
1e−27
73


3845
16
701156033H1
SOYMON031
g602589
BLASTN
432
1e−27
78


3846
16
701014293H1
SOYMON019
g414549
BLASTN
446
1e−27
77


3847
16
700945665H1
SOYMON024
g414549
BLASTN
450
1e−27
81


3848
16
701152138H1
SOYMON031
g414549
BLASTN
450
1e−27
81


3849
16
701001407H1
SOYMON018
g169820
BLASTN
219
1e−26
72


3850
16
700983185H1
SOYMON009
g414549
BLASTN
435
1e−26
72


3851
16
700752364H1
SOYMON014
g414549
BLASTN
441
1e−26
76


3852
16
700992409H1
SOYMON011
g414549
BLASTN
427
1e−25
75


3853
16
701109396H1
SOYMON036
g414549
BLASTN
420
1e−24
76


3854
16
701151402H1
SOYMON031
g556171
BLASTX
151
1e−23
85


3855
16
701149617H1
SOYMON031
g556171
BLASTX
158
1e−23
86


3856
16
700747310H1
SOYMON013
g414549
BLASTN
406
1e−23
73


3857
16
701139569H1
SOYMON038
g556171
BLASTX
191
1e−22
84


3858
16
701213275H1
SOYMON035
g602589
BLASTN
255
1e−22
80


3859
16
701157185H1
SOYMON031
g556171
BLASTX
197
1e−20
90


3860
16
700655520H1
SOYMON004
g556171
BLASTX
166
1e−19
86


3861
16
701010779H1
SOYMON019
g556171
BLASTX
173
1e−19
64


3862
16
701044104H1
SOYMON032
g556171
BLASTX
188
1e−19
89


3863
16
700867605H1
SOYMON016
g556171
BLASTX
160
1e−17
70


3864
16
701125521H1
SOYMON037
g414550
BLASTX
166
1e−16
81


3865
16
701058593H1
SOYMON033
g168647
BLASTX
169
1e−16
94


3866
16
701070286H1
SOYMON034
g168647
BLASTX
164
1e−15
91


3867
16
700649007H1
SOYMON003
g414550
BLASTX
152
1e−14
88


3868
16
700876790H1
SOYMON018
g168647
BLASTX
154
1e−14
93


3869
16
700877219H1
SOYMON018
g168647
BLASTX
154
1e−14
93


3870
16
700877212H1
SOYMON018
g168647
BLASTX
154
1e−14
93


3871
16
700760847H1
SOYMON015
g556171
BLASTX
138
1e−13
86


3872
16
700893711H1
SOYMON024
g168647
BLASTX
140
1e−13
82


3873
16
700557532H1
SOYMON001
g256120
BLASTX
115
1e−12
88


3874
16
700793802H1
SOYMON017
g556171
BLASTX
138
1e−12
93


3875
16
700659725H1
SOYMON004
g556171
BLASTX
144
1e−12
47


3876
16
701044545H1
SOYMON032
g556171
BLASTX
144
1e−12
92


3877
16
701037485H1
SOYMON029
g556171
BLASTX
135
1e−11
96


3878
16
700683524H1
SOYMON008
g168647
BLASTX
136
1e−11
90


3879
16
700876711H1
SOYMON018
g168647
BLASTX
109
1e−10
85


3880
16
701155437H1
SOYMON031
g556171
BLASTX
130
1e−10
92


3881
28599
700997892H1
SOYMON018
g806311
BLASTN
834
1e−60
78


3882
31
701053174H1
SOYMON032
g806311
BLASTN
572
1e−37
73


3883
31
700754467H1
SOYMON014
g806312
BLASTX
145
1e−21
66


3884
31
701107430H1
SOYMON036
g806312
BLASTX
199
1e−20
63


3885
31
700985855H1
SOYMON009
g806312
BLASTX
145
1e−18
64


3886
31
701038167H1
SOYMON029
g806312
BLASTX
179
1e−17
61


3887
31
700670393H1
SOYMON006
g806312
BLASTX
167
1e−16
78


3888
31
700559280H1
SOYMON001
g609262
BLASTX
164
1e−15
69


3889
31
700793048H1
SOYMON017
g806312
BLASTX
97
1e−12
60


3890
31
700993683H1
SOYMON011
g806312
BLASTX
103
1e−11
60


3891
31
700663233H1
SOYMON005
g806312
BLASTX
130
1e−11
56


3892
31
700908079H1
SOYMON022
g806312
BLASTX
103
1e−10
60


3893
31
701043447H1
SOYMON029
g609262
BLASTX
126
1e−10
84


3894
31
700740188H1
SOYMON012
g806312
BLASTX
103
1e−8
60


3895
7466
700742922H1
SOYMON012
g806311
BLASTN
435
1e−27
76


3896
7466
700606255H1
SOYMON008
g806312
BLASTX
117
1e−17
80


3897
16
LIB3053-005-
LIB3053
g602589
BLASTN
1000
1e−74
77




Q1-N1-F9


3898
16
LIB3039-035-
LIB3039
g602589
BLASTN
979
1e−72
78




Q1-E1-C5


3899
16
LIB3039-031-
LIB3039
g256119
BLASTN
911
1e−71
80




Q1-E1-A8


3900
16
LIB3030-003-
LIB3030
g602589
BLASTN
949
1e−70
78




Q1-B1-C9


3901
16
LIB3039-023-
LIB3039
g602589
BLASTN
913
1e−67
78




Q1-E1-H12


3902
16
LIB3039-047-
LIB3039
g602589
BLASTN
566
1e−65
75




Q1-E1-D8


3903
16
LIB3039-052-
LIB3039
g602589
BLASTN
890
1e−65
77




Q1-E1-D6


3904
16
LIB3039-051-
LIB3039
g602589
BLASTN
855
1e−62
78




Q1-E1-A1


3905
16
LIB3049-009-
LIB3049
g602589
BLASTN
783
1e−56
78




Q1-E1-G5


3906
16
LIB3039-009-
LIB3039
g602589
BLASTN
805
1e−56
78




Q1-E1-C1


3907
16
LIB3055-006-
LIB3055
g256119
BLASTN
481
1e−54
78




Q1-N1-H3


3908
16
LIB3055-013-
LIB3055
g256119
BLASTN
769
1e−54
79




Q1-N1-C3


3909
16
LIB3049-034-
LIB3049
g602589
BLASTN
626
1e−51
76




Q1-E1-A2


3910
16
LIB3049-022-
LIB3049
g602589
BLASTN
519
1e−43
78




Q1-E1-F9


3911
16
LIB3049-030-
LIB3049
g602589
BLASTN
572
1e−38
77




Q1-E1-C7


3912
16
LIB3040-035-
LIB3040
g556171
BLASTX
175
1e−33
82




Q1-E1-C5


3913
16
LIB3040-005-
LIB3040
g169820
BLASTN
324
1e−33
76




Q1-E1-H8


3914
16
LIB3028-025-
LIB3028
g602589
BLASTN
464
1e−33
78




Q1-B1-D1


3915
16
LIB3039-022-
LIB3039
g602589
BLASTN
357
1e−32
73




Q1-E1-D5


3916
16
LIB3052-001-
LIB3052
g414549
BLASTN
327
1e−29
73




Q1-B1-C5


3917
28599
LIB3039-047-
LIB3039
g806311
BLASTN
1183
1e−94
81




Q1-E1-D9


3918
28599
LIB3039-048-
LIB3039
g806311
BLASTN
1007
1e−92
81




Q1-E1-D12







MAIZE ALDOLASE















3919
-700026544
700026544H1
SATMON003
g22144
BLASTN
215
1e−30
88


3920
-700073329
700073329H1
SATMON007
g22144
BLASTN
590
1e−89
95


3921
-700151987
700151987H1
SATMON007
g22144
BLASTN
212
1e−8
78


3922
-700206575
700206575H1
SATMON003
g22144
BLASTN
1009
1e−109
96


3923
-700333727
700333727H1
SATMON019
g1217893
BLASTX
154
1e−16
61


3924
-700335938
700335938H1
SATMON019
g1730326
BLASTX
76
1e−19
59


3925
-700429795
700429795H1
SATMONN01
g1619605
BLASTX
102
1e−16
77


3926
-700453040
700453040H1
SATMON028
g2213867
BLASTX
96
1e−14
65


3927
-700804137
700804137H1
SATMON036
g22144
BLASTN
742
1e−52
92


3928
1182
700449930H1
SATMON028
g22632
BLASTN
856
1e−62
79


3929
1182
701185559H1
SATMONN06
g22632
BLASTN
793
1e−57
79


3930
1182
700203130H1
SATMON003
g22632
BLASTN
799
1e−57
78


3931
1182
700083459H1
SATMON011
g22632
BLASTN
800
1e−57
76


3932
1182
700465449H1
SATMON025
g22632
BLASTN
405
1e−50
76


3933
1182
701165344H1
SATMONN04
g22632
BLASTN
326
1e−29
78


3934
1461
700101296H1
SATMON009
g218155
BLASTX
164
1e−15
80


3935
1461
700101839H1
SATMON009
g218155
BLASTX
140
1e−12
93


3936
1461
700044840H1
SATMON004
g218155
BLASTX
140
1e−12
93


3937
1461
700045985H1
SATMON004
g218155
BLASTX
140
1e−12
93


3938
1461
700101549H1
SATMON009
g218155
BLASTX
93
1e−11
91


3939
1461
700100334H1
SATMON009
g218155
BLASTX
123
1e−9
59


3940
1461
700100704H1
SATMON009
g218155
BLASTX
112
1e−8
96


3941
28693
700041744H1
SATMON004
g20203
BLASTN
696
1e−49
75


3942
38
700224356H1
SATMON011
g22144
BLASTN
1290
1e−98
96


3943
38
700048169H1
SATMON003
g22144
BLASTN
528
1e−72
98


3944
38
700616610H1
SATMON033
g22144
BLASTN
278
1e−31
91


3945
38
700355765H1
SATMON024
g20204
BLASTX
141
1e−12
96


3946
4416
700342330H1
SATMON021
g218155
BLASTX
96
1e−14
66


3947
4416
700223989H1
SATMON011
g218155
BLASTX
98
1e−10
63


3948
6547
700194431H1
SATMON014
g2636513
BLASTX
181
1e−17
47


3949
6547
700469777H1
SATMON025
g2636513
BLASTX
174
1e−16
48


3950
8494
700426129H1
SATMONN01
g20203
BLASTN
250
1e−20
73


3951
8494
700425929H1
SATMONN01
g927507
BLASTX
67
1e−11
89


3952
-L30603643
LIB3060-046-
LIB3060
g169037
BLASTX
155
1e−44
66




Q1-K1-G7


3953
-L30604872
LIB3060-022-
LIB3060
g218155
BLASTX
86
1e−27
57




Q1-K1-C10


3954
-L30605671
LIB3060-046-
LIB3060
g3695
BLASTN
440
1e−29
71




Q1-K1-B12


3955
1182
LIB3079-006-
LIB3079
g22632
BLASTN
598
1e−39
65




Q1-K1-H8


3956
1461
LIB3060-017-
LIB3060
g218155
BLASTX
196
1e−41
67




Q1-K1-F3


3957
1461
LIB3059-040-
LIB3059
g218155
BLASTX
112
1e−40
84




Q1-K1-C12


3958
1461
LIB3060-030-
LIB3060
g218155
BLASTX
112
1e−38
66




Q1-K1-H11


3959
28633
LIB3062-015-
LIB3062
g1208898
BLASTX
116
1e−24
45




Q1-K1-G12


3960
28693
LIB3060-018-
LIB3060
g20203
BLASTN
926
1e−74
74




Q1-K1-E6


3961
28693
LIB3060-044-
LIB3060
g20203
BLASTN
748
1e−62
74




Q1-K1-F10


3962
38
LIB3061-025-
LIB3061
g22144
BLASTN
895
1e−133
94




Q1-K1-C9


3963
38
LIB3059-020-
LIB3059
g22144
BLASTN
745
1e−53
98




Q1-K1-H3







SOYBEAN ALDOLASE















3964
-700565253
700565253H1
SOYMON002
g3021337
BLASTN
352
1e−39
76


3965
-700865276
700865276H1
SOYMON016
g3021337
BLASTN
629
1e−43
76


3966
-700873022
700873022H1
SOYMON018
g3696
BLASTX
211
1e−26
70


3967
-700943855
700943855H1
SOYMON024
g20204
BLASTX
202
1e−20
86


3968
-700974965
700974965H1
SOYMON005
g3021337
BLASTN
259
1e−10
84


3969
-701039850
701039850H1
SOYMON029
g22632
BLASTN
408
1e−23
76


3970
-701206840
701206840H1
SOYMON035
g3021338
BLASTX
151
1e−13
83


3971
11792
700654881H1
SOYMON004
g20204
BLASTX
150
1e−13
76


3972
11792
700746016H1
SOYMON013
g3021337
BLASTN
284
1e−12
67


3973
12314
701037190H1
SOYMON029
g3021337
BLASTN
634
1e−44
78


3974
12314
701042664H1
SOYMON029
g3021338
BLASTX
197
1e−20
66


3975
16
700651596H1
SOYMON003
g3021337
BLASTN
1101
1e−83
86


3976
16
700750439H1
SOYMON013
g3021337
BLASTN
1078
1e−81
86


3977
16
700649475H1
SOYMON003
g3021337
BLASTN
1082
1e−81
84


3978
16
700652995H1
SOYMON003
g3021337
BLASTN
1084
1e−81
82


3979
16
700981967H1
SOYMON009
g3021337
BLASTN
1071
1e−80
85


3980
16
700863243H1
SOYMON023
g3021337
BLASTN
1044
1e−78
86


3981
16
700558625H1
SOYMON001
g3021337
BLASTN
1041
1e−77
84


3982
16
700564806H1
SOYMON002
g3021337
BLASTN
1021
1e−76
80


3983
16
700746368H1
SOYMON013
g3021337
BLASTN
897
1e−75
86


3984
16
700960290H1
SOYMON022
g3021337
BLASTN
1009
1e−75
87


3985
16
701055132H1
SOYMON032
g3021337
BLASTN
1011
1e−75
86


3986
16
701056109H1
SOYMON032
g3021337
BLASTN
1012
1e−75
84


3987
16
701119884H1
SOYMON037
g3021337
BLASTN
1014
1e−75
87


3988
16
700898149H1
SOYMON027
g3021337
BLASTN
1015
1e−75
86


3989
16
700661436H1
SOYMON005
g3021337
BLASTN
596
1e−74
83


3990
16
701042223H1
SOYMON029
g3021337
BLASTN
997
1e−74
84


3991
16
700676004H1
SOYMON007
g3021337
BLASTN
984
1e−73
85


3992
16
700747718H1
SOYMON013
g3021337
BLASTN
988
1e−73
87


3993
16
700751133H1
SOYMON014
g3021337
BLASTN
989
1e−73
86


3994
16
701215247H1
SOYMON035
g3021337
BLASTN
989
1e−73
84


3995
16
700652484H1
SOYMON003
g3021337
BLASTN
910
1e−72
85


3996
16
700981960H1
SOYMON009
g3021337
BLASTN
970
1e−72
87


3997
16
700869785H1
SOYMON016
g3021337
BLASTN
970
1e−72
87


3998
16
700969335H1
SOYMON005
g3021337
BLASTN
972
1e−72
82


3999
16
700854174H1
SOYMON023
g3021337
BLASTN
965
1e−71
84


4000
16
700761638H1
SOYMON015
g3021337
BLASTN
966
1e−71
86


4001
16
701005716H1
SOYMON019
g3021337
BLASTN
967
1e−71
83


4002
16
700984860H1
SOYMON009
g3021337
BLASTN
967
1e−71
84


4003
16
700941053H1
SOYMON024
g3021337
BLASTN
968
1e−71
86


4004
16
700561358H1
SOYMON002
g3021337
BLASTN
968
1e−71
82


4005
16
700564906H1
SOYMON002
g3021337
BLASTN
562
1e−70
82


4006
16
700833951H1
SOYMON019
g3021337
BLASTN
954
1e−70
88


4007
16
701117626H1
SOYMON037
g3021337
BLASTN
957
1e−70
85


4008
16
700729103H1
SOYMON009
g3021337
BLASTN
535
1e−69
86


4009
16
700670615H1
SOYMON006
g3021337
BLASTN
936
1e−69
83


4010
16
701053635H1
SOYMON032
g3021337
BLASTN
941
1e−69
84


4011
16
700982280H1
SOYMON009
g3021337
BLASTN
923
1e−68
82


4012
16
701119874H1
SOYMON037
g3021337
BLASTN
925
1e−68
88


4013
16
700758937H1
SOYMON015
g3021337
BLASTN
926
1e−68
87


4014
16
701214027H1
SOYMON035
g3021337
BLASTN
928
1e−68
82


4015
16
700972858H1
SOYMON005
g3021337
BLASTN
929
1e−68
84


4016
16
701099780H1
SOYMON028
g3021337
BLASTN
930
1e−68
85


4017
16
700829560H1
SOYMON019
g3021337
BLASTN
932
1e−68
85


4018
16
700971973H1
SOYMON005
g3021337
BLASTN
576
1e−67
85


4019
16
701142336H1
SOYMON038
g3021337
BLASTN
750
1e−67
81


4020
16
701132605H1
SOYMON038
g3021337
BLASTN
759
1e−67
85


4021
16
700969222H1
SOYMON005
g3021337
BLASTN
913
1e−67
84


4022
16
700670956H1
SOYMON006
g3021337
BLASTN
920
1e−67
84


4023
16
701013771H1
SOYMON019
g3021337
BLASTN
921
1e−67
81


4024
16
700895725H1
SOYMON027
g3021337
BLASTN
921
1e−67
84


4025
16
701055481H1
SOYMON032
g3021337
BLASTN
654
1e−66
80


4026
16
700753940H1
SOYMON014
g3021337
BLASTN
899
1e−66
84


4027
16
700974141H1
SOYMON005
g3021337
BLASTN
900
1e−66
81


4028
16
700562408H1
SOYMON002
g3021337
BLASTN
902
1e−66
82


4029
16
700685292H1
SOYMON008
g3021337
BLASTN
903
1e−66
83


4030
16
700985157H1
SOYMON009
g3021337
BLASTN
907
1e−66
82


4031
16
701038194H1
SOYMON029
g3021337
BLASTN
907
1e−66
82


4032
16
700986633H1
SOYMON009
g3021337
BLASTN
908
1e−66
83


4033
16
700564282H1
SOYMON002
g3021337
BLASTN
517
1e−65
83


4034
16
700733754H1
SOYMON010
g3021337
BLASTN
680
1e−65
84


4035
16
700988179H1
SOYMON009
g3021337
BLASTN
887
1e−65
82


4036
16
700555591H1
SOYMON001
g3021337
BLASTN
887
1e−65
82


4037
16
701206717H1
SOYMON035
g3021337
BLASTN
888
1e−65
81


4038
16
700968494H1
SOYMON036
g3021337
BLASTN
889
1e−65
86


4039
16
700677674H1
SOYMON007
g3021337
BLASTN
894
1e−65
83


4040
16
700906271H1
SOYMON022
g3021337
BLASTN
894
1e−65
82


4041
16
700970391H1
SOYMON005
g3021337
BLASTN
896
1e−65
83


4042
16
700753641H1
SOYMON014
g3021337
BLASTN
897
1e−65
82


4043
16
700646593H1
SOYMON014
g3021337
BLASTN
468
1e−64
80


4044
16
700565615H1
SOYMON002
g3021337
BLASTN
667
1e−64
80


4045
16
700746523H1
SOYMON013
g3021337
BLASTN
744
1e−64
83


4046
16
700899019H1
SOYMON027
g3021337
BLASTN
875
1e−64
83


4047
16
701127167H1
SOYMON037
g3021337
BLASTN
876
1e−64
84


4048
16
701131053H1
SOYMON038
g3021337
BLASTN
879
1e−64
84


4049
16
701055811H1
SOYMON032
g3021337
BLASTN
881
1e−64
85


4050
16
700670980H1
SOYMON006
g3021337
BLASTN
881
1e−64
83


4051
16
700900103H1
SOYMON027
g3021337
BLASTN
882
1e−64
83


4052
16
700975609H1
SOYMON009
g3021337
BLASTN
882
1e−64
84


4053
16
701102865H1
SOYMON028
g3021337
BLASTN
883
1e−64
85


4054
16
701145255H1
SOYMON031
g3021337
BLASTN
509
1e−63
80


4055
16
701210875H1
SOYMON035
g3021337
BLASTN
616
1e−63
84


4056
16
700646664H1
SOYMON014
g3021337
BLASTN
862
1e−63
85


4057
16
700897337H1
SOYMON027
g3021337
BLASTN
865
1e−63
86


4058
16
700736783H1
SOYMON010
g3021337
BLASTN
867
1e−63
83


4059
16
701059586H1
SOYMON033
g3021337
BLASTN
869
1e−63
81


4060
16
701127063H1
SOYMON037
g3021337
BLASTN
412
1e−62
84


4061
16
700556614H1
SOYMON001
g3021337
BLASTN
475
1e−62
86


4062
16
700672681H1
SOYMON006
g3021337
BLASTN
818
1e−62
82


4063
16
700727057H1
SOYMON009
g3021337
BLASTN
850
1e−62
82


4064
16
701042141H1
SOYMON029
g3021337
BLASTN
851
1e−62
83


4065
16
700561860H1
SOYMON002
g3021337
BLASTN
854
1e−62
81


4066
16
700677460H1
SOYMON007
g3021337
BLASTN
855
1e−62
83


4067
16
700749578H1
SOYMON013
g3021337
BLASTN
856
1e−62
81


4068
16
700971671H1
SOYMON005
g3021337
BLASTN
856
1e−62
81


4069
16
700672288H1
SOYMON006
g3021337
BLASTN
860
1e−62
81


4070
16
701068481H1
SOYMON034
g3021337
BLASTN
861
1e−62
81


4071
16
700729913H1
SOYMON009
g3021337
BLASTN
661
1e−61
79


4072
16
700739449H1
SOYMON012
g3021337
BLASTN
724
1e−61
85


4073
16
700830902H1
SOYMON019
g3021337
BLASTN
814
1e−61
83


4074
16
700895304H1
SOYMON027
g3021337
BLASTN
840
1e−61
82


4075
16
700605676H2
SOYMON005
g3021337
BLASTN
842
1e−61
84


4076
16
700677453H1
SOYMON007
g3021337
BLASTN
843
1e−61
83


4077
16
700983108H1
SOYMON009
g3021337
BLASTN
843
1e−61
81


4078
16
700889170H1
SOYMON024
g3021337
BLASTN
845
1e−61
86


4079
16
701004956H1
SOYMON019
g3021337
BLASTN
849
1e−61
82


4080
16
700958213H1
SOYMON022
g3021337
BLASTN
849
1e−61
82


4081
16
701129305H1
SOYMON037
g3021337
BLASTN
659
1e−60
85


4082
16
701014446H1
SOYMON019
g3021337
BLASTN
669
1e−60
85


4083
16
700832047H1
SOYMON019
g3021337
BLASTN
738
1e−60
83


4084
16
700669966H1
SOYMON006
g3021337
BLASTN
829
1e−60
82


4085
16
700659491H1
SOYMON004
g3021337
BLASTN
829
1e−60
83


4086
16
701003560H1
SOYMON019
g3021337
BLASTN
829
1e−60
82


4087
16
700758028H1
SOYMON015
g3021337
BLASTN
829
1e−60
81


4088
16
701060964H1
SOYMON033
g3021337
BLASTN
833
1e−60
81


4089
16
700548284H1
SOYMON002
g3021337
BLASTN
834
1e−60
82


4090
16
700894957H1
SOYMON024
g3021337
BLASTN
837
1e−60
81


4091
16
700646551H1
SOYMON014
g3021337
BLASTN
479
1e−59
83


4092
16
700967633H1
SOYMON032
g3021337
BLASTN
530
1e−59
81


4093
16
700754430H1
SOYMON014
g3021337
BLASTN
654
1e−59
85


4094
16
700865919H1
SOYMON016
g3021337
BLASTN
814
1e−59
81


4095
16
700980426H1
SOYMON009
g3021337
BLASTN
815
1e−59
80


4096
16
701048203H1
SOYMON032
g3021337
BLASTN
816
1e−59
81


4097
16
700846414H1
SOYMON021
g3021337
BLASTN
819
1e−59
81


4098
16
700851608H1
SOYMON023
g3021337
BLASTN
822
1e−59
81


4099
16
700970160H1
SOYMON005
g3021337
BLASTN
822
1e−59
82


4100
16
701206312H1
SOYMON035
g3021337
BLASTN
823
1e−59
85


4101
16
700834462H1
SOYMON019
g3021337
BLASTN
823
1e−59
81


4102
16
700562478H1
SOYMON002
g3021337
BLASTN
487
1e−58
84


4103
16
700788114H1
SOYMON011
g3021337
BLASTN
751
1e−58
83


4104
16
700753792H1
SOYMON014
g3021337
BLASTN
804
1e−58
84


4105
16
700837427H1
SOYMON020
g3021337
BLASTN
805
1e−58
86


4106
16
700753668H1
SOYMON014
g3021337
BLASTN
806
1e−58
85


4107
16
700667315H1
SOYMON006
g3021337
BLASTN
809
1e−58
81


4108
16
700808315H1
SOYMON024
g3021337
BLASTN
558
1e−57
80


4109
16
700839033H1
SOYMON020
g3021337
BLASTN
791
1e−57
81


4110
16
700670207H1
SOYMON006
g3021337
BLASTN
791
1e−57
87


4111
16
700849886H1
SOYMON021
g3021337
BLASTN
791
1e−57
83


4112
16
700751117H1
SOYMON014
g3021337
BLASTN
799
1e−57
86


4113
16
700851803H1
SOYMON023
g3021337
BLASTN
799
1e−57
86


4114
16
700669164H1
SOYMON006
g3021337
BLASTN
800
1e−57
80


4115
16
700548285H1
SOYMON002
g3021337
BLASTN
801
1e−57
85


4116
16
701065620H1
SOYMON034
g3021337
BLASTN
426
1e−56
82


4117
16
700727996H1
SOYMON009
g3021337
BLASTN
468
1e−56
79


4118
16
700869176H1
SOYMON016
g3021337
BLASTN
786
1e−56
85


4119
16
700973141H1
SOYMON005
g3021337
BLASTN
440
1e−55
79


4120
16
700969555H1
SOYMON005
g3021337
BLASTN
448
1e−55
81


4121
16
700866138H1
SOYMON016
g3021337
BLASTN
641
1e−55
86


4122
16
700904813H1
SOYMON022
g3021337
BLASTN
699
1e−55
85


4123
16
700669945H1
SOYMON006
g3021337
BLASTN
773
1e−55
86


4124
16
700894146H1
SOYMON024
g3021337
BLASTN
773
1e−55
86


4125
16
701060489H1
SOYMON033
g3021337
BLASTN
664
1e−54
85


4126
16
701125675H1
SOYMON037
g3021337
BLASTN
721
1e−54
85


4127
16
700754750H1
SOYMON014
g3021337
BLASTN
722
1e−54
86


4128
16
701142770H1
SOYMON038
g3021337
BLASTN
755
1e−54
88


4129
16
700731095H1
SOYMON009
g3021337
BLASTN
755
1e−54
87


4130
16
700667966H1
SOYMON006
g3021337
BLASTN
756
1e−54
84


4131
16
700673606H1
SOYMON007
g3021337
BLASTN
760
1e−54
83


4132
16
700965253H1
SOYMON022
g3021337
BLASTN
763
1e−54
86


4133
16
700605289H2
SOYMON003
g3021337
BLASTN
763
1e−54
84


4134
16
700732985H1
SOYMON010
g3021337
BLASTN
765
1e−54
87


4135
16
700986523H1
SOYMON009
g3021337
BLASTN
474
1e−53
85


4136
16
701100040H2
SOYMON028
g3021337
BLASTN
602
1e−53
85


4137
16
700895328H1
SOYMON027
g3021337
BLASTN
742
1e−53
83


4138
16
701141083H1
SOYMON038
g3021337
BLASTN
751
1e−53
85


4139
16
700829878H1
SOYMON019
g3021337
BLASTN
417
1e−52
86


4140
16
700671825H1
SOYMON006
g3021337
BLASTN
431
1e−52
79


4141
16
700755240H1
SOYMON014
g3021337
BLASTN
731
1e−52
88


4142
16
701011659H1
SOYMON019
g3021337
BLASTN
734
1e−52
86


4143
16
701011547H1
SOYMON019
g3021337
BLASTN
381
1e−51
84


4144
16
700835614H1
SOYMON019
g3021337
BLASTN
437
1e−51
80


4145
16
700671849H1
SOYMON006
g3021337
BLASTN
471
1e−51
87


4146
16
700734822H1
SOYMON010
g3021337
BLASTN
486
1e−51
79


4147
16
700830223H1
SOYMON019
g3021337
BLASTN
622
1e−51
84


4148
16
700659970H1
SOYMON004
g3021337
BLASTN
722
1e−51
82


4149
16
701101779H1
SOYMON028
g3021337
BLASTN
728
1e−51
86


4150
16
700852553H1
SOYMON023
g3021337
BLASTN
490
1e−50
88


4151
16
700853857H1
SOYMON023
g3021337
BLASTN
711
1e−50
88


4152
16
700980358H1
SOYMON009
g3021337
BLASTN
712
1e−50
85


4153
16
700672182H1
SOYMON006
g3021337
BLASTN
714
1e−50
89


4154
16
700748455H1
SOYMON013
g3021337
BLASTN
396
1e−49
85


4155
16
700657257H1
SOYMON004
g3021337
BLASTN
694
1e−49
75


4156
16
700729301H1
SOYMON009
g3021337
BLASTN
702
1e−49
80


4157
16
700726175H1
SOYMON009
g3021337
BLASTN
704
1e−49
80


4158
16
700966844H1
SOYMON028
g3021337
BLASTN
414
1e−47
81


4159
16
700960965H1
SOYMON022
g3021337
BLASTN
452
1e−47
85


4160
16
700678326H1
SOYMON007
g3021337
BLASTN
480
1e−47
83


4161
16
700751042H1
SOYMON014
g3021337
BLASTN
675
1e−47
87


4162
16
700830863H1
SOYMON019
g3021337
BLASTN
343
1e−46
84


4163
16
700870215H1
SOYMON016
g3021337
BLASTN
667
1e−46
80


4164
16
701213640H1
SOYMON035
g3021337
BLASTN
667
1e−46
87


4165
16
700658278H1
SOYMON004
g3021337
BLASTN
425
1e−44
87


4166
16
700942532H1
SOYMON024
g3021337
BLASTN
583
1e−44
83


4167
16
700986276H1
SOYMON009
g3021337
BLASTN
630
1e−43
81


4168
16
700870216H1
SOYMON016
g3021337
BLASTN
457
1e−42
82


4169
16
700899828H1
SOYMON027
g3021337
BLASTN
464
1e−42
83


4170
16
700678816H1
SOYMON007
g3021337
BLASTN
618
1e−42
86


4171
16
700666809H1
SOYMON005
g3021337
BLASTN
621
1e−42
82


4172
16
701098073H1
SOYMON028
g3021337
BLASTN
285
1e−41
83


4173
16
700669492H1
SOYMON006
g3021337
BLASTN
504
1e−39
83


4174
16
700975340H1
SOYMON009
g3021337
BLASTN
574
1e−39
81


4175
16
700753528H1
SOYMON014
g3021337
BLASTN
576
1e−39
81


4176
16
700665923H1
SOYMON005
g3021337
BLASTN
373
1e−35
84


4177
16
701038320H1
SOYMON029
g3021337
BLASTN
518
1e−34
84


4178
16
700755605H1
SOYMON014
g3021337
BLASTN
431
1e−33
81


4179
16
700890349H1
SOYMON024
g3021337
BLASTN
511
1e−33
88


4180
16
700669817H1
SOYMON006
g3021337
BLASTN
363
1e−31
87


4181
16
701097640H1
SOYMON028
g3021337
BLASTN
476
1e−30
67


4182
16
700562959H1
SOYMON002
g3021337
BLASTN
482
1e−30
81


4183
16
700852454H1
SOYMON023
g3021337
BLASTN
446
1e−28
77


4184
16
701121443H1
SOYMON037
g3021337
BLASTN
418
1e−24
84


4185
16
701118247H1
SOYMON037
g3021337
BLASTN
280
1e−18
85


4186
16
700665401H1
SOYMON005
g927505
BLASTX
172
1e−16
94


4187
16
700750038H1
SOYMON013
g3021338
BLASTX
162
1e−15
84


4188
16
700665414H1
SOYMON005
g3021337
BLASTN
273
1e−13
88


4189
16
700889072H1
SOYMON024
g3021338
BLASTX
136
1e−11
83


4190
16
700727964H1
SOYMON009
g927505
BLASTX
137
1e−11
86


4191
16
700680648H1
SOYMON008
g3021337
BLASTN
226
1e−10
73


4192
16
701044547H1
SOYMON032
g927505
BLASTX
91
1e−9
76


4193
16
700649174H1
SOYMON003
g3021338
BLASTX
126
1e−9
83


4194
16531
701120682H1
SOYMON037
g3021337
BLASTN
716
1e−50
77


4195
1701
700993909H1
SOYMON011
g22633
BLASTX
112
1e−31
78


4196
1701
700955490H1
SOYMON022
g22633
BLASTX
176
1e−25
70


4197
1701
700682081H1
SOYMON008
g22633
BLASTX
147
1e−20
68


4198
1701
700988843H1
SOYMON011
g22633
BLASTX
90
1e−14
67


4199
1701
700740531H1
SOYMON012
g22633
BLASTX
92
1e−12
64


4200
1701
700790059H2
SOYMON011
g22633
BLASTX
92
1e−12
67


4201
1701
700872670H1
SOYMON018
g169037
BLASTX
144
1e−12
90


4202
1701
700990591H1
SOYMON011
g22632
BLASTN
199
1e−11
68


4203
1701
700743120H1
SOYMON012
g22633
BLASTX
92
1e−9
68


4204
1701
700994931H1
SOYMON011
g22633
BLASTX
92
1e−8
64


4205
1938
700738074H1
SOYMON012
g927507
BLASTX
134
1e−11
90


4206
239
701126904H1
SOYMON037
g169037
BLASTX
231
1e−24
81


4207
239
700668532H1
SOYMON006
g169037
BLASTX
202
1e−20
83


4208
239
700666028H1
SOYMON005
g218155
BLASTX
186
1e−18
78


4209
239
701009915H2
SOYMON019
g169037
BLASTX
180
1e−17
84


4210
239
700943660H1
SOYMON024
g169037
BLASTX
180
1e−17
84


4211
239
701100047H2
SOYMON028
g169037
BLASTX
160
1e−15
84


4212
239
700794458H1
SOYMON017
g22633
BLASTX
131
1e−10
58


4213
239
700738441H1
SOYMON012
g169037
BLASTX
118
1e−8
78


4214
3425
700984050H1
SOYMON009
g3021337
BLASTN
874
1e−64
80


4215
3425
701014509H1
SOYMON019
g3021337
BLASTN
520
1e−60
80


4216
3425
701138819H1
SOYMON038
g3021337
BLASTN
815
1e−59
80


4217
3425
700977309H1
SOYMON009
g3021337
BLASTN
809
1e−58
80


4218
3425
700984876H1
SOYMON009
g3021337
BLASTN
813
1e−58
80


4219
3425
701046151H1
SOYMON032
g3021337
BLASTN
730
1e−52
80


4220
3425
700976571H1
SOYMON009
g3021337
BLASTN
737
1e−52
81


4221
3425
700889668H1
SOYMON024
g3021337
BLASTN
737
1e−52
81


4222
3425
701045371H1
SOYMON032
g3021337
BLASTN
716
1e−50
79


4223
3425
700548283H1
SOYMON002
g3021337
BLASTN
700
1e−49
81


4224
3425
701103461H1
SOYMON028
g3021337
BLASTN
705
1e−49
81


4225
3425
700898446H1
SOYMON027
g3021337
BLASTN
686
1e−48
83


4226
3425
701006432H1
SOYMON019
g3021337
BLASTN
688
1e−48
83


4227
3425
701041476H1
SOYMON029
g3021337
BLASTN
693
1e−48
81


4228
3425
700568335H1
SOYMON002
g3021337
BLASTN
678
1e−47
82


4229
3425
701046312H1
SOYMON032
g3021337
BLASTN
650
1e−45
85


4230
3425
701050171H1
SOYMON032
g3021337
BLASTN
650
1e−45
85


4231
3425
700685063H1
SOYMON008
g3021337
BLASTN
643
1e−44
83


4232
3425
701010250H2
SOYMON019
g3021337
BLASTN
542
1e−36
86


4233
3425
700665454H1
SOYMON005
g3021337
BLASTN
520
1e−34
80


4234
3425
701043888H1
SOYMON032
g3021337
BLASTN
495
1e−32
85


4235
3425
700726806H1
SOYMON009
g3021337
BLASTN
213
1e−23
76


4236
491
700997879H1
SOYMON018
g22632
BLASTN
789
1e−56
77


4237
491
700646208H1
SOYMON012
g22632
BLASTN
733
1e−52
76


4238
491
700559796H1
SOYMON001
g22632
BLASTN
715
1e−50
76


4239
491
700789784H1
SOYMON011
g22632
BLASTN
664
1e−46
76


4240
491
700683122H1
SOYMON008
g22632
BLASTN
485
1e−41
86


4241
491
701105914H1
SOYMON036
g22632
BLASTN
504
1e−41
73


4242
491
700558789H1
SOYMON001
g22632
BLASTN
607
1e−41
74


4243
491
700873051H1
SOYMON018
g22632
BLASTN
608
1e−41
75


4244
491
700684010H1
SOYMON008
g22632
BLASTN
597
1e−40
75


4245
491
700786096H2
SOYMON011
g22632
BLASTN
576
1e−39
75


4246
491
700731865H1
SOYMON010
g22632
BLASTN
582
1e−39
75


4247
491
701108111H1
SOYMON036
g22632
BLASTN
467
1e−38
75


4248
491
700740887H1
SOYMON012
g22632
BLASTN
567
1e−38
74


4249
491
700559579H1
SOYMON001
g22632
BLASTN
572
1e−38
75


4250
491
700996104H1
SOYMON018
g22632
BLASTN
476
1e−37
76


4251
491
700682145H1
SOYMON008
g22632
BLASTN
542
1e−36
74


4252
491
700737263H1
SOYMON010
g22632
BLASTN
526
1e−35
74


4253
491
700547963H1
SOYMON001
g22632
BLASTN
527
1e−35
73


4254
491
700686296H1
SOYMON008
g22632
BLASTN
527
1e−35
73


4255
491
700646072H1
SOYMON011
g22632
BLASTN
537
1e−35
74


4256
491
701106662H1
SOYMON036
g22632
BLASTN
514
1e−34
74


4257
491
700684335H1
SOYMON008
g22632
BLASTN
516
1e−34
74


4258
491
701000609H1
SOYMON018
g22632
BLASTN
520
1e−34
74


4259
491
700685658H1
SOYMON008
g22632
BLASTN
520
1e−34
74


4260
491
700875532H1
SOYMON018
g22632
BLASTN
521
1e−34
73


4261
491
700685813H1
SOYMON008
g22632
BLASTN
502
1e−33
74


4262
491
700872948H1
SOYMON018
g22632
BLASTN
502
1e−33
74


4263
491
700730264H1
SOYMON009
g22632
BLASTN
502
1e−33
74


4264
491
701104554H1
SOYMON036
g22632
BLASTN
503
1e−33
74


4265
491
700960601H1
SOYMON022
g22632
BLASTN
503
1e−33
74


4266
491
700876633H1
SOYMON018
g22632
BLASTN
503
1e−33
74


4267
491
700739662H1
SOYMON012
g22632
BLASTN
504
1e−33
72


4268
491
700685904H1
SOYMON008
g22632
BLASTN
505
1e−33
72


4269
491
700995183H1
SOYMON011
g22632
BLASTN
513
1e−33
73


4270
491
700901996H1
SOYMON027
g22632
BLASTN
513
1e−33
74


4271
491
700727070H1
SOYMON009
g22632
BLASTN
490
1e−32
72


4272
491
700685790H1
SOYMON008
g22632
BLASTN
492
1e−32
74


4273
491
700998652H1
SOYMON018
g22632
BLASTN
494
1e−32
72


4274
491
700740465H1
SOYMON012
g22632
BLASTN
482
1e−31
74


4275
491
700682621H2
SOYMON008
g22632
BLASTN
484
1e−31
74


4276
491
700874316H1
SOYMON018
g22632
BLASTN
466
1e−30
73


4277
491
700686477H1
SOYMON008
g22632
BLASTN
473
1e−30
73


4278
491
700739979H1
SOYMON012
g22632
BLASTN
476
1e−30
74


4279
491
700739416H1
SOYMON012
g22632
BLASTN
476
1e−30
74


4280
491
700685976H1
SOYMON008
g22632
BLASTN
476
1e−30
74


4281
491
700739629H1
SOYMON012
g22632
BLASTN
486
1e−30
70


4282
491
700989163H1
SOYMON011
g22632
BLASTN
468
1e−29
72


4283
491
701000555H1
SOYMON018
g22632
BLASTN
477
1e−29
72


4284
491
700872702H1
SOYMON018
g22632
BLASTN
436
1e−28
72


4285
491
701000781H1
SOYMON018
g22632
BLASTN
460
1e−28
73


4286
491
700682760H1
SOYMON008
g22632
BLASTN
463
1e−28
72


4287
491
700740390H1
SOYMON012
g22632
BLASTN
440
1e−27
73


4288
491
700685346H1
SOYMON008
g22632
BLASTN
451
1e−27
72


4289
491
700557272H1
SOYMON001
g22632
BLASTN
250
1e−26
78


4290
491
700953343H1
SOYMON022
g22632
BLASTN
349
1e−26
74


4291
491
700741960H1
SOYMON012
g22632
BLASTN
430
1e−26
73


4292
491
700680247H2
SOYMON008
g22632
BLASTN
425
1e−25
67


4293
491
700680002H2
SOYMON008
g22632
BLASTN
241
1e−24
72


4294
491
700684827H1
SOYMON008
g22632
BLASTN
379
1e−24
74


4295
491
700956353H1
SOYMON022
g22632
BLASTN
410
1e−24
72


4296
491
700787513H1
SOYMON011
g22632
BLASTN
235
1e−22
72


4297
491
700725070H1
SOYMON009
g22632
BLASTN
241
1e−22
71


4298
491
700741111H1
SOYMON012
g22632
BLASTN
304
1e−22
73


4299
491
700738230H1
SOYMON012
g22632
BLASTN
241
1e−21
72


4300
491
700985308H1
SOYMON009
g22632
BLASTN
241
1e−21
80


4301
491
700991396H1
SOYMON011
g22632
BLASTN
350
1e−21
72


4302
491
700741276H1
SOYMON012
g22632
BLASTN
379
1e−21
71


4303
491
700740223H1
SOYMON012
g22632
BLASTN
241
1e−20
72


4304
491
700738808H1
SOYMON012
g22632
BLASTN
241
1e−20
72


4305
491
700997995H1
SOYMON018
g22632
BLASTN
241
1e−19
81


4306
491
700989713H1
SOYMON011
g22632
BLASTN
241
1e−19
73


4307
491
700875139H1
SOYMON018
g22632
BLASTN
241
1e−19
71


4308
491
700958366H1
SOYMON022
g22632
BLASTN
241
1e−18
71


4309
491
700683887H1
SOYMON008
g22632
BLASTN
344
1e−18
70


4310
491
700740788H1
SOYMON012
g22632
BLASTN
339
1e−17
70


4311
491
700743058H1
SOYMON012
g22632
BLASTN
205
1e−16
81


4312
491
700996423H1
SOYMON018
g22632
BLASTN
234
1e−16
80


4313
491
700686075H1
SOYMON008
g22632
BLASTN
241
1e−16
71


4314
491
700738811H1
SOYMON012
g22632
BLASTN
193
1e−15
72


4315
491
700998312H1
SOYMON018
g22632
BLASTN
234
1e−15
73


4316
491
700681825H1
SOYMON008
g22632
BLASTN
241
1e−15
81


4317
491
701109105H1
SOYMON036
g22632
BLASTN
290
1e−14
69


4318
491
701203741H2
SOYMON035
g22632
BLASTN
230
1e−13
78


4319
491
700740785H1
SOYMON012
g22632
BLASTN
287
1e−13
68


4320
491
700738486H1
SOYMON012
g22632
BLASTN
295
1e−13
64


4321
491
700739078H1
SOYMON012
g22632
BLASTN
178
1e−12
73


4322
491
701002287H1
SOYMON018
g22632
BLASTN
255
1e−12
74


4323
491
700742470H1
SOYMON012
g22632
BLASTN
278
1e−12
69


4324
491
700743421H1
SOYMON012
g22632
BLASTN
261
1e−11
71


4325
491
700744039H1
SOYMON012
g22632
BLASTN
265
1e−11
69


4326
491
700789444H2
SOYMON011
g22632
BLASTN
158
1e−10
87


4327
491
700741074H1
SOYMON012
g22632
BLASTN
178
1e−10
77


4328
491
700998877H1
SOYMON018
g22632
BLASTN
235
1e−10
72


4329
491
700740005H1
SOYMON012
g22633
BLASTX
75
1e−9
64


4330
491
700872703H1
SOYMON018
g169037
BLASTX
116
1e−9
83


4331
491
700990557H1
SOYMON011
g22632
BLASTN
241
1e−9
76


4332
491
701001909H1
SOYMON018
g22632
BLASTN
241
1e−9
76


4333
491
700875039H1
SOYMON018
g22632
BLASTN
241
1e−9
72


4334
491
700743495H1
SOYMON012
g22632
BLASTN
241
1e−9
76


4335
491
700743995H1
SOYMON012
g22632
BLASTN
241
1e−9
76


4336
491
700743301H1
SOYMON012
g22632
BLASTN
241
1e−9
76


4337
491
700742515H1
SOYMON012
g22632
BLASTN
241
1e−9
76


4338
491
701001445H1
SOYMON018
g169037
BLASTX
115
1e−8
92


4339
491
700554881H1
SOYMON001
g169037
BLASTX
116
1e−8
94


4340
491
700954194H1
SOYMON022
g169037
BLASTX
116
1e−8
94


4341
491
700996869H1
SOYMON018
g22632
BLASTN
230
1e−8
76


4342
491
700897820H1
SOYMON027
g22632
BLASTN
234
1e−8
74


4343
491
700742574H1
SOYMON012
g22632
BLASTN
234
1e−8
74


4344
491
700684738H1
SOYMON008
g22632
BLASTN
235
1e−8
75


4345
7368
700739343H1
SOYMON012
g927507
BLASTX
164
1e−15
88


4346
-GM32379
LIB3051-015-
LIB3051
g3021337
BLASTN
260
1e−28
77




Q1-E1-B12


4347
-GM8265
LIB3039-048-
LIB3039
g3021337
BLASTN
481
1e−29
65




Q1-E1-F11


4348
16
LIB3027-010-
LIB3027
g3021337
BLASTN
1393
1e−107
82




Q1-B1-B7


4349
16
LIB3039-049-
LIB3039
g3021337
BLASTN
1297
1e−99
83




Q1-E1-B8


4350
16
LIB3051-061-
LIB3051
g3021337
BLASTN
1303
1e−99
84




Q1-K1-E11


4351
16
LIB3056-009-
LIB3056
g3021337
BLASTN
1126
1e−96
84




Q1-N1-A10


4352
16
LIB3051-025-
LIB3051
g3021337
BLASTN
1262
1e−96
83




Q1-K1-E11


4353
16
LIB3056-014-
LIB3056
g3021337
BLASTN
1077
1e−94
81




Q1-N1-E1


4354
16
LIB3055-005-
LIB3055
g3021337
BLASTN
1227
1e−93
84




Q1-N1-A8


4355
16
LIB3040-045-
LIB3040
g3021337
BLASTN
1211
1e−92
83




Q1-E1-A4


4356
16
LIB3028-010-
LIB3028
g3021337
BLASTN
1215
1e−92
83




Q1-B1-G9


4357
16
LIB3056-010-
LIB3056
g3021337
BLASTN
1217
1e−92
84




Q1-N1-G8


4358
16
LIB3039-029-
LIB3039
g3021337
BLASTN
1128
1e−85
85




Q1-E1-A6


4359
16
LIB3051-014-
LIB3051
g3021337
BLASTN
716
1e−80
83




Q1-E1-D2


4360
16
LIB3030-010-
LIB3030
g3021337
BLASTN
1052
1e−78
83




Q1-B1-D7


4361
16
LIB3051-094-
LIB3051
g3021337
BLASTN
778
1e−74
83




Q1-K1-A9


4362
16
LIB3028-030-
LIB3028
g3021337
BLASTN
953
1e−70
85




Q1-B1-C9


4363
16
LIB3052-004-
LIB3052
g3021337
BLASTN
868
1e−63
82




Q1-N1-D8


4364
16
LIB3065-014-
LIB3065
g3021337
BLASTN
540
1e−61
79




Q1-N1-A3


4365
16
LIB3050-019-
LIB3050
g168420
BLASTX
223
1e−40
63




Q1-K1-H1


4366
16
LIB3051-062-
LIB3051
g3021337
BLASTN
541
1e−38
79




Q1-K1-B5


4367
3425
LIB3051-067-
LIB3051
g3021337
BLASTN
1082
1e−81
78




Q1-K1-E7


4368
3425
LIB3050-006-
LIB3050
g3021337
BLASTN
752
1e−57
75




Q1-E1-G7


4369
491
LIB3028-011-
LIB3028
g22632
BLASTN
911
1e−67
75




Q1-B1-B9


4370
491
LIB3028-011-
LIB3028
g22632
BLASTN
886
1e−65
77




Q1-B1-F2







MAIZE FRUCTOSE-1,6-BISPHOSPHATASE















4371
-700262935
700262935H1
SATMON017
g3041775
BLASTX
184
1e−18
94


4372
-700432173
700432173H1
SATMONN01
g1790679
BLASTX
123
1e−16
56


4373
-700455709
700455709H1
SATMON029
g3041776
BLASTN
597
1e−40
85


4374
-700573083
700573083H1
SATMON030
g3041775
BLASTX
69
1e−10
64


4375
-701158577
701158577H1
SATMONN04
g895908
BLASTN
200
1e−10
84


4376
12846
700101851H1
SATMON009
g3041776
BLASTN
1312
1e−100
91


4377
12846
700101541H1
SATMON009
g3041776
BLASTN
1252
1e−95
90


4378
12846
700581510H1
SATMON031
g3041776
BLASTN
872
1e−82
90


4379
15627
700046054H1
SATMON004
g21736
BLASTN
1213
1e−92
91


4380
15627
700421605H1
SATMONN01
g3041776
BLASTN
664
1e−77
90


4381
15627
700445495H1
SATMON027
g21736
BLASTN
1004
1e−74
84


4382
15627
700042188H1
SATMON004
g3041776
BLASTN
875
1e−64
88


4383
16870
700100752H1
SATMON009
g3041776
BLASTN
257
1e−33
75


4384
16870
700044805H1
SATMON004
g3041776
BLASTN
194
1e−14
76


4385
16870
700099217H1
SATMON009
g21736
BLASTN
246
1e−9
59


4386
25562
701166271H1
SATMONN04
g895908
BLASTN
352
1e−43
91


4387
25562
701163676H1
SATMONN04
g895908
BLASTN
299
1e−37
91


4388
32637
700097620H1
SATMON009
g895908
BLASTN
1380
1e−106
92


4389
32637
700580175H1
SATMON031
g895908
BLASTN
930
1e−68
89


4390
5480
700098780H1
SATMON009
g895908
BLASTN
1103
1e−90
95


4391
5480
700043335H1
SATMON004
g895908
BLASTN
1026
1e−76
93


4392
5480
700043111H1
SATMON004
g895908
BLASTN
879
1e−64
97


4393
5480
700442189H1
SATMON026
g3041774
BLASTN
536
1e−54
93


4394
5480
700208394H1
SATMON016
g895908
BLASTN
520
1e−43
92


4395
5480
700045530H1
SATMON004
g895908
BLASTN
613
1e−42
97


4396
5480
700098393H1
SATMON009
g895908
BLASTN
308
1e−16
88


4397
8243
700264654H1
SATMON017
g3041774
BLASTN
942
1e−69
84


4398
8243
700479624H1
SATMON034
g3041774
BLASTN
902
1e−66
82


4399
8243
700448974H1
SATMON028
g3041774
BLASTN
876
1e−64
84


4400
8666
700100948H1
SATMON009
g895908
BLASTN
1327
1e−101
92


4401
8666
700212964H1
SATMON016
g895908
BLASTN
1189
1e−90
91


4402
8666
700578027H1
SATMON031
g895908
BLASTN
1076
1e−80
91


4403
-L1485381
LIB148-057-
LIB148
g440591
BLASTX
80
1e−30
63




Q1-E1-E6


4404
-L30662838
LIB3066-032-
LIB3066
g895908
BLASTN
640
1e−58
86




Q1-K1-F11


4405
-L30662839
LIB3066-035-
LIB3066
g3041774
BLASTN
215
1e−15
77




Q1-K1-F11


4406
-L362913
LIB36-013-
LIB36
g3041776
BLASTN
937
1e−69
88




Q1-E1-D10


4407
-L831319
LIB83-003-
LIB83
g895908
BLASTN
341
1e−58
86




Q1-E1-B4


4408
-L832444
LIB83-005-
LIB83
g3041776
BLASTN
575
1e−37
93




Q1-E1-D2


4409
-L841984
LIB84-023-
LIB84
g895908
BLASTN
937
1e−69
82




Q1-E1-F10


4410
12846
LIB83-008-
LIB83
g3041776
BLASTN
1610
1e−135
92




Q1-E1-A8


4411
12846
LIB3078-003-
LIB3078
g3041776
BLASTN
873
1e−98
93




Q1-K1-C7


4412
16870
LIB3060-052-
LIB3060
g21736
BLASTN
377
1e−66
70




Q1-K1-D11


4413
26002
LIB83-008-
LIB83
g3041776
BLASTN
378
1e−20
86




Q1-E1-B10


4414
32637
LIB189-010-
LIB189
g895908
BLASTN
1182
1e−138
92




Q1-E1-C10


4415
5480
LIB83-002-
LIB83
g895908
BLASTN
1773
1e−139
94




Q1-E1-C2


4416
5480
LIB36-016-
LIB36
g895908
BLASTN
1615
1e−125
94




Q2-E2-H10


4417
5480
LIB189-032-
LIB189
g895908
BLASTN
1598
1e−124
95




Q1-E1-B6


4418
5480
LIB36-010-
LIB36
g895908
BLASTN
1574
1e−122
93




Q1-E1-C4


4419
5480
LIB3060-010-
LIB3060
g895908
BLASTN
990
1e−82
91




Q1-K1-D2


4420
5480
LIB189-021-
LIB189
g895908
BLASTN
1045
1e−78
93




Q1-E1-E10


4421
5480
LIB84-013-
LIB84
g895908
BLASTN
1032
1e−77
96




Q1-E1-F7







SOYBEAN FRUCTOSE-1,6-BISPHOSPHATASE















4422
-700685384
700685384H1
SOYMON008
g21244
BLASTN
597
1e−49
80


4423
-700737915
700737915H1
SOYMON012
g515746
BLASTN
1316
1e−100
97


4424
-700741457
700741457H1
SOYMON012
g3041774
BLASTN
692
1e−58
80


4425
-700873234
700873234H1
SOYMON018
g166955
BLASTN
417
1e−33
83


4426
-700874831
700874831H1
SOYMON018
g515746
BLASTN
1295
1e−99
100


4427
-700983024
700983024H1
SOYMON009
g166955
BLASTN
575
1e−60
76


4428
-700993304
700993304H1
SOYMON011
g166955
BLASTN
902
1e−66
84


4429
-700996155
700996155H1
SOYMON018
g3041774
BLASTN
651
1e−45
83


4430
-700996632
700996632H1
SOYMON018
g515746
BLASTN
507
1e−51
90


4431
-700998027
700998027H1
SOYMON018
g515746
BLASTN
636
1e−65
94


4432
-701209548
701209548H1
SOYMON035
g3041774
BLASTN
642
1e−44
83


4433
10129
700870828H1
SOYMON018
g21244
BLASTN
827
1e−60
79


4434
10129
700741669H1
SOYMON012
g21244
BLASTN
657
1e−53
80


4435
10348
700555754H1
SOYMON001
g21244
BLASTN
466
1e−29
77


4436
10348
700991527H1
SOYMON011
g440591
BLASTX
169
1e−16
88


4437
13716
700898719H1
SOYMON027
g515746
BLASTN
1186
1e−90
97


4438
13716
700993540H1
SOYMON011
g515746
BLASTN
1179
1e−89
98


4439
13716
700909657H1
SOYMON022
g515746
BLASTN
568
1e−57
86


4440
1894
700555054H1
SOYMON001
g515746
BLASTN
1320
1e−101
100


4441
1894
700685264H1
SOYMON008
g515746
BLASTN
1323
1e−101
99


4442
1894
700558854H1
SOYMON001
g515746
BLASTN
695
1e−98
100


4443
1894
700554755H1
SOYMON001
g515746
BLASTN
767
1e−98
99


4444
1894
701000504H1
SOYMON018
g515746
BLASTN
626
1e−95
98


4445
1894
700738115H1
SOYMON012
g515746
BLASTN
1230
1e−93
100


4446
1894
700992933H1
SOYMON011
g515746
BLASTN
1074
1e−91
98


4447
1894
701107444H1
SOYMON036
g515746
BLASTN
1201
1e−91
99


4448
1894
700852823H1
SOYMON023
g515746
BLASTN
1041
1e−90
98


4449
1894
700733478H1
SOYMON010
g515746
BLASTN
1150
1e−90
97


4450
1894
701105185H1
SOYMON036
g515746
BLASTN
641
1e−87
89


4451
1894
700737830H1
SOYMON012
g515746
BLASTN
1060
1e−87
100


4452
1894
700685110H1
SOYMON008
g515746
BLASTN
597
1e−86
90


4453
1894
700968307H1
SOYMON036
g515746
BLASTN
1113
1e−84
97


4454
1894
700653014H1
SOYMON003
g515746
BLASTN
587
1e−82
90


4455
1894
700555504H1
SOYMON001
g515746
BLASTN
626
1e−81
88


4456
1894
700751540H1
SOYMON014
g515746
BLASTN
585
1e−77
91


4457
1894
700901976H1
SOYMON027
g515746
BLASTN
505
1e−73
87


4458
1894
700986496H1
SOYMON009
g515746
BLASTN
559
1e−73
90


4459
1894
700751580H1
SOYMON014
g515746
BLASTN
569
1e−72
89


4460
1894
700751532H1
SOYMON014
g515746
BLASTN
571
1e−72
90


4461
1894
700990937H1
SOYMON011
g515746
BLASTN
544
1e−71
88


4462
1894
700740789H1
SOYMON012
g515746
BLASTN
630
1e−69
100


4463
1894
700743994H1
SOYMON012
g515746
BLASTN
945
1e−69
100


4464
1894
700754374H1
SOYMON014
g515746
BLASTN
460
1e−62
91


4465
1894
701001295H1
SOYMON018
g515746
BLASTN
541
1e−62
97


4466
1894
701155952H1
SOYMON031
g515746
BLASTN
568
1e−51
83


4467
1894
700872212H1
SOYMON018
g515746
BLASTN
670
1e−47
100


4468
1894
700682196H1
SOYMON008
g515746
BLASTN
609
1e−41
98


4469
1894
700738779H1
SOYMON012
g515746
BLASTN
252
1e−16
82


4470
26568
700844816H1
SOYMON021
g21244
BLASTN
649
1e−45
78


4471
27512
701128049H1
SOYMON037
g440591
BLASTX
185
1e−18
87


4472
27512
701152064H1
SOYMON031
g895908
BLASTN
243
1e−9
77


4473
7128
700649626H1
SOYMON003
g166955
BLASTN
326
1e−25
79


4474
7128
700649846H1
SOYMON003
g440591
BLASTX
125
1e−15
81


4475
10348
LIB3030-010-
LIB3030
g21244
BLASTN
476
1e−28
76




Q1-B1-C7







MAIZE TRANSKETOLASE















4476
-700097383
700097383H1
SATMON009
g664902
BLASTN
1029
1e−76
80


4477
-701159054
701159054H1
SATMONN04
g2529342
BLASTX
214
1e−27
79


4478
-701184582
701184582H1
SATMONN06
g1658321
BLASTN
745
1e−53
74


4479
1244
700553205H1
SATMON022
g1658321
BLASTN
816
1e−59
75


4480
1244
700473792H1
SATMON025
g1658321
BLASTN
826
1e−59
75


4481
1244
700405168H1
SATMON028
g1658321
BLASTN
805
1e−58
75


4482
1244
700089307H1
SATMON011
g1658321
BLASTN
743
1e−53
74


4483
1244
700355533H1
SATMON024
g1658321
BLASTN
589
1e−51
76


4484
1244
700085136H1
SATMON011
g1658321
BLASTN
690
1e−48
76


4485
1244
700382850H1
SATMON024
g664900
BLASTN
537
1e−47
72


4486
1244
700454437H1
SATMON029
g1658321
BLASTN
655
1e−45
75


4487
1244
700150022H1
SATMON007
g1658321
BLASTN
606
1e−41
76


4488
1244
700212701H1
SATMON016
g1658321
BLASTN
507
1e−40
74


4489
1244
700438654H1
SATMON026
g2529342
BLASTX
160
1e−24
89


4490
1244
700458530H1
SATMON029
g2529342
BLASTX
177
1e−20
87


4491
2946
700262031H1
SATMON017
g1658321
BLASTN
467
1e−30
74


4492
3403
700075930H1
SATMON007
g664900
BLASTN
968
1e−71
81


4493
3403
700381012H1
SATMON023
g1658321
BLASTN
949
1e−70
80


4494
3403
700243701H1
SATMON010
g1658321
BLASTN
874
1e−63
80


4495
3403
700220485H1
SATMON011
g664900
BLASTN
666
1e−54
74


4496
3403
700045165H1
SATMON004
g664900
BLASTN
734
1e−52
73


4497
3403
701185190H1
SATMONN06
g664900
BLASTN
709
1e−50
77


4498
3403
700552475H1
SATMON022
g664900
BLASTN
591
1e−49
81


4499
3403
700044755H1
SATMON004
g664900
BLASTN
690
1e−48
72


4500
3403
700051910H1
SATMON003
g664900
BLASTN
671
1e−47
77


4501
3403
700027425H1
SATMON003
g664900
BLASTN
675
1e−47
71


4502
3403
700048347H1
SATMON003
g664900
BLASTN
662
1e−46
71


4503
3403
700380608H1
SATMON021
g1658321
BLASTN
623
1e−43
82


4504
3403
700448484H1
SATMON027
g664900
BLASTN
522
1e−33
71


4505
3403
700184906H1
SATMON014
g2529342
BLASTX
251
1e−27
77


4506
3403
700048819H1
SATMON003
g664900
BLASTN
453
1e−27
74


4507
3403
701167994H1
SATMONN05
g2529342
BLASTX
193
1e−19
76


4508
8097
700084375H1
SATMON011
g664900
BLASTN
855
1e−76
79


4509
8097
700445226H1
SATMON027
g664900
BLASTN
464
1e−60
79


4510
8097
700240770H1
SATMON010
g664900
BLASTN
750
1e−60
80


4511
8097
700045122H1
SATMON004
g664900
BLASTN
638
1e−54
80


4512
3403
LIB3060-013-
LIB3060
g664900
BLASTN
1052
1e−78
72




Q1-K1-A12


4513
3403
LIB3078-007-
LIB3078
g664900
BLASTN
629
1e−41
69




Q1-K1-G3







MAIZE PUTATIVE TRANSKETOLASE















4514
-700045462
700045462H1
SATMON004
g2612940
BLASTN
1219
1e−92
89


4515
-700223919
700223919H1
SATMON011
g2612940
BLASTN
1025
1e−76
87


4516
-700256830
700256830H1
SATMON017
g2612940
BLASTN
1029
1e−76
87


4517
-701169515
701169515H1
SATMONN05
g2612940
BLASTN
327
1e−40
92


4518
23377
700263420H1
SATMON017
g2612940
BLASTN
489
1e−31
75


4519
23377
701185311H1
SATMONN06
g2612940
BLASTN
460
1e−27
78


4520
7446
700624329H1
SATMON034
g2612940
BLASTN
1046
1e−87
88


4521
7446
700159091H1
SATMON012
g2612940
BLASTN
898
1e−77
89


4522
-L30626416
LIB3062-048-
LIB3062
g2612940
BLASTN
808
1e−74
86




Q1-K1-D12


4523
-L30684293
LIB3068-046-
LIB3068
g2612940
BLASTN
846
1e−90
87




Q1-K1-B2


4524
28081
LIB36-007-
LIB36
g2612940
BLASTN
521
1e−32
92




Q1-E1-F12







SOYBEAN TRANSKETOLASE















4525
-700646481
700646481H1
SOYMON013
g1658321
BLASTN
967
1e−71
83


4526
-700734535
700734535H1
SOYMON010
g1658321
BLASTN
822
1e−59
82


4527
-700865886
700865886H1
SOYMON016
g1658321
BLASTN
568
1e−38
82


4528
-700943688
700943688H1
SOYMON024
g1658321
BLASTN
902
1e−66
82


4529
-700954594
700954594H1
SOYMON022
g2529342
BLASTX
172
1e−16
75


4530
-701064360
701064360H1
SOYMON034
g664901
BLASTX
179
1e−17
80


4531
1039
700662776H1
SOYMON005
g1658321
BLASTN
755
1e−78
83


4532
1039
700663764H1
SOYMON005
g1658321
BLASTN
839
1e−61
82


4533
1039
700952282H1
SOYMON022
g1658321
BLASTN
785
1e−56
81


4534
1039
700835426H1
SOYMON019
g1658321
BLASTN
748
1e−53
81


4535
1039
700738038H1
SOYMON012
g1658321
BLASTN
559
1e−37
80


4536
1040
700606230H1
SOYMON008
g1658321
BLASTN
532
1e−69
82


4537
1040
700681196H2
SOYMON008
g1658321
BLASTN
866
1e−63
80


4538
1040
700876408H1
SOYMON018
g1658321
BLASTN
475
1e−60
82


4539
1040
700901259H1
SOYMON027
g1658321
BLASTN
821
1e−59
81


4540
1040
700996991H1
SOYMON018
g1658321
BLASTN
450
1e−58
80


4541
1040
700876984H1
SOYMON018
g1658321
BLASTN
807
1e−58
81


4542
1040
700871885H1
SOYMON018
g1658321
BLASTN
812
1e−58
81


4543
1040
700740158H1
SOYMON012
g1658321
BLASTN
767
1e−55
78


4544
1040
700787592H1
SOYMON011
g1658321
BLASTN
770
1e−55
80


4545
1040
700789355H2
SOYMON011
g1658321
BLASTN
727
1e−51
81


4546
1040
700786173H2
SOYMON011
g1658321
BLASTN
523
1e−47
79


4547
1040
700987027H1
SOYMON009
g1658321
BLASTN
680
1e−47
78


4548
1040
700683335H1
SOYMON008
g1658321
BLASTN
567
1e−38
80


4549
1040
700742402H1
SOYMON012
g1658321
BLASTN
521
1e−34
78


4550
1040
700682934H1
SOYMON008
g1658322
BLASTX
111
1e−22
79


4551
1040
701001535H1
SOYMON018
g664900
BLASTN
337
1e−18
85


4552
1381
701002017H1
SOYMON018
g1658321
BLASTN
860
1e−62
81


4553
1381
700680946H1
SOYMON008
g1658321
BLASTN
848
1e−61
75


4554
1381
700785920H2
SOYMON011
g1658321
BLASTN
715
1e−60
80


4555
1381
700741325H1
SOYMON012
g1658321
BLASTN
836
1e−60
81


4556
1381
700737257H1
SOYMON010
g1658321
BLASTN
783
1e−56
83


4557
1381
700743637H1
SOYMON012
g1658321
BLASTN
456
1e−47
79


4558
1381
700683536H1
SOYMON008
g1658321
BLASTN
682
1e−47
82


4559
1381
700899577H1
SOYMON027
g1658321
BLASTN
632
1e−43
73


4560
1381
700655539H1
SOYMON004
g1658321
BLASTN
399
1e−32
77


4561
1381
700743117H1
SOYMON012
g664901
BLASTX
144
1e−12
88


4562
1381
701047167H1
SOYMON032
g1658321
BLASTN
147
1e−10
88


4563
1694
700557862H1
SOYMON001
g1658321
BLASTN
918
1e−67
81


4564
1694
701124388H1
SOYMON037
g1658321
BLASTN
884
1e−64
84


4565
1694
700977906H1
SOYMON009
g1658321
BLASTN
741
1e−60
81


4566
1694
700741633H1
SOYMON012
g1658321
BLASTN
753
1e−60
83


4567
20534
701214424H1
SOYMON035
g1658321
BLASTN
855
1e−62
80


4568
20534
701214345H1
SOYMON035
g1658321
BLASTN
845
1e−61
81


4569
20534
700737144H1
SOYMON010
g1658321
BLASTN
743
1e−53
79


4570
20534
700737045H1
SOYMON010
g1658321
BLASTN
716
1e−50
80


4571
2081
700684191H1
SOYMON008
g1658321
BLASTN
243
1e−11
68


4572
2081
700871634H1
SOYMON018
g1658321
BLASTN
243
1e−9
65


4573
2081
700896859H1
SOYMON027
g1658321
BLASTN
243
1e−9
65


4574
2081
700741968H1
SOYMON012
g1658321
BLASTN
243
1e−9
65


4575
2081
700743285H1
SOYMON012
g1658321
BLASTN
234
1e−8
65


4576
2081
701105794H1
SOYMON036
g1658321
BLASTN
236
1e−8
65


4577
2081
700646243H1
SOYMON012
g1658321
BLASTN
236
1e−8
65


4578
2081
701104160H1
SOYMON036
g1658321
BLASTN
236
1e−8
65


4579
2081
700741863H1
SOYMON012
g1658321
BLASTN
238
1e−8
65


4580
2091
700651076H1
SOYMON003
g1658321
BLASTN
1055
1e−79
79


4581
2091
700874803H1
SOYMON018
g1658321
BLASTN
888
1e−65
82


4582
2091
700988611H1
SOYMON009
g1658321
BLASTN
419
1e−61
79


4583
2091
700657810H1
SOYMON004
g1658321
BLASTN
805
1e−58
81


4584
2091
700739094H1
SOYMON012
g1658321
BLASTN
425
1e−54
82


4585
2091
700962626H1
SOYMON022
g1658321
BLASTN
742
1e−52
78


4586
2091
700990046H1
SOYMON011
g1658321
BLASTN
376
1e−34
79


4587
3782
700870543H1
SOYMON018
g1658322
BLASTX
157
1e−25
68


4588
4096
700556949H1
SOYMON001
g664901
BLASTX
188
1e−18
92


4589
4096
700877014H1
SOYMON018
g664901
BLASTX
188
1e−18
92


4590
4096
700877022H1
SOYMON018
g664901
BLASTX
188
1e−18
92


4591
4096
700999039H1
SOYMON018
g664901
BLASTX
169
1e−16
91


4592
7870
700998419H1
SOYMON018
g1658321
BLASTN
430
1e−51
80


4593
7870
700557019H1
SOYMON001
g1658321
BLASTN
685
1e−48
80


4594
7870
700786020H2
SOYMON011
g1658321
BLASTN
531
1e−41
78


4595
7870
700740475H1
SOYMON012
g1658321
BLASTN
609
1e−41
74


4596
7870
700875020H1
SOYMON018
g1658321
BLASTN
525
1e−34
79


4597
7870
700674249H1
SOYMON007
g1658321
BLASTN
510
1e−33
82


4598
7870
700658256H1
SOYMON004
g2529342
BLASTX
178
1e−22
61


4599
7870
700677401H1
SOYMON007
g664901
BLASTX
158
1e−14
91


4600
9031
700874020H1
SOYMON018
g1658321
BLASTN
789
1e−56
79


4601
9031
700726463H1
SOYMON009
g1658321
BLASTN
758
1e−54
76


4602
9031
700869017H1
SOYMON016
g664900
BLASTN
743
1e−53
77


4603
9031
700566216H1
SOYMON002
g664901
BLASTX
201
1e−20
92


4604
1039
LIB3051-053-
LIB3051
g1658321
BLASTN
1326
1e−101
80




Q1-K2-F1


4605
9031
LIB3039-045-
LIB3039
g1658321
BLASTN
1033
1e−77
79




Q1-E1-D1







SOYBEAN PUTATIVE TRANSKETOLASE















4606
19183
700907766H1
SOYMON022
g2612940
BLASTN
395
1e−30
68


4607
-700764341
700764341H1
SOYMON021
g2612941
BLASTX
247
1e−39
75


4608
-700888745
700888745H1
SOYMON024
g2612941
BLASTX
237
1e−27
76


4609
-700909473
700909473H1
SOYMON022
g2612941
BLASTX
114
1e−16
53


4610
7224
700681472H2
SOYMON008
g2612941
BLASTX
107
1e−12
72


4611
19325
700751059H1
SOYMON014
g2244912
BLASTX
160
1e−15
78


4612
-GM40396
LIB3051-093-
LIB3051
g2612941
BLASTX
246
1e−73
90




Q1-K1-D2







MAIZE SEDOHEPTULOSE-1,7-BISPHOSPHATASE















4613
1006
700423931H1
SATMONN01
g14265
BLASTX
128
1e−14
86


4614
29810
LIB36-010-
LIB36
g2529375
BLASTN
911
1e−67
69




Q1-E1-H12







SOYBEAN SEDOHEPTULOSE-1,7-BISPHOSPHATASE















4615
-700895707
700895707H1
SOYMON027
g2529375
BLASTN
696
1e−49
74


4616
24265
701154827H1
SOYMON031
g2529375
BLASTN
893
1e−65
83


4617
24265
701157439H1
SOYMON031
g2529375
BLASTN
851
1e−62
83


4618
3027
700988602H1
SOYMON009
g2529375
BLASTN
911
1e−67
77


4619
3027
701001010H1
SOYMON018
g2529375
BLASTN
915
1e−67
79


4620
3027
700997516H1
SOYMON018
g2529375
BLASTN
504
1e−60
80


4621
3027
700788686H1
SOYMON011
g2529375
BLASTN
837
1e−60
79


4622
3027
700556469H1
SOYMON001
g2529375
BLASTN
816
1e−59
76


4623
3027
700999494H1
SOYMON018
g2529375
BLASTN
806
1e−58
76


4624
3027
701106923H1
SOYMON036
g2529375
BLASTN
812
1e−58
78


4625
3027
700557386H1
SOYMON001
g2529375
BLASTN
473
1e−57
78


4626
3027
700996203H1
SOYMON018
g2529375
BLASTN
787
1e−56
79


4627
3027
700951860H1
SOYMON022
g2529375
BLASTN
771
1e−55
76


4628
3027
700683415H1
SOYMON008
g2529375
BLASTN
762
1e−54
79


4629
3027
700872306H1
SOYMON018
g2529375
BLASTN
734
1e−52
78


4630
3027
700876576H1
SOYMON018
g2529375
BLASTN
739
1e−52
79


4631
3027
700876860H1
SOYMON018
g2529375
BLASTN
741
1e−52
78


4632
3027
700874809H1
SOYMON018
g2529375
BLASTN
426
1e−50
76


4633
3027
700992772H1
SOYMON011
g2529375
BLASTN
707
1e−50
79


4634
3027
700740276H1
SOYMON012
g2529375
BLASTN
700
1e−49
76


4635
3027
700876171H1
SOYMON018
g786465
BLASTN
454
1e−47
80


4636
3027
700557859H1
SOYMON001
g2529375
BLASTN
633
1e−43
71


4637
3027
700556904H1
SOYMON001
g2529375
BLASTN
523
1e−42
70


4638
3027
701124349H1
SOYMON037
g2529375
BLASTN
565
1e−38
74


4639
3027
700554878H1
SOYMON001
g2529375
BLASTN
390
1e−36
68


4640
3027
700556561H1
SOYMON001
g2529375
BLASTN
540
1e−36
66


4641
3027
701001629H1
SOYMON018
g2529375
BLASTN
517
1e−34
66


4642
3027
700789624H2
SOYMON011
g2529375
BLASTN
507
1e−33
66


4643
3027
700993071H1
SOYMON011
g2529375
BLASTN
511
1e−33
66


4644
3027
700556185H1
SOYMON001
g2529375
BLASTN
513
1e−33
66


4645
3027
700554166H1
SOYMON001
g2529375
BLASTN
520
1e−33
66


4646
3027
700680116H2
SOYMON008
g2529375
BLASTN
486
1e−31
65


4647
3027
700557591H1
SOYMON001
g2529375
BLASTN
497
1e−31
66


4648
3027
701108330H1
SOYMON036
g2529375
BLASTN
486
1e−30
65


4649
3027
700875128H1
SOYMON018
g2529375
BLASTN
460
1e−29
65


4650
3027
700991275H1
SOYMON011
g2529375
BLASTN
462
1e−29
64


4651
3027
700556249H1
SOYMON001
g2529375
BLASTN
466
1e−28
65


4652
3027
700559069H1
SOYMON001
g2529375
BLASTN
467
1e−28
72


4653
3027
700990985H1
SOYMON011
g2529375
BLASTN
444
1e−27
62


4654
3027
701062648H1
SOYMON033
g2529375
BLASTN
438
1e−26
64


4655
3027
700560603H1
SOYMON001
g2529375
BLASTN
441
1e−26
73


4656
3027
701109375H1
SOYMON036
g2529376
BLASTX
128
1e−23
59


4657
3027
700787023H2
SOYMON011
g2529376
BLASTX
158
1e−21
55


4658
3027
701053814H1
SOYMON032
g2529376
BLASTX
127
1e−19
52


4659
3027
701103839H1
SOYMON036
g2529376
BLASTX
162
1e−17
60


4660
3027
700874009H1
SOYMON018
g2529376
BLASTX
180
1e−17
50


4661
3027
700557201H1
SOYMON001
g14265
BLASTX
154
1e−16
70


4662
3027
701001319H1
SOYMON018
g2529375
BLASTN
324
1e−16
59


4663
3027
701105211H1
SOYMON036
g2529376
BLASTX
159
1e−15
62


4664
3027
700558314H1
SOYMON001
g2529376
BLASTX
149
1e−13
47


4665
3027
700786134H2
SOYMON011
g2529376
BLASTX
76
1e−12
57


4666
3027
700875943H1
SOYMON018
g2529376
BLASTX
107
1e−12
42


4667
3027
700741681H1
SOYMON012
g2529376
BLASTX
108
1e−10
46


4668
3027
701001530H1
SOYMON018
g14265
BLASTX
128
1e−10
83


4669
3027
701109215H1
SOYMON036
g2529375
BLASTN
257
1e−10
60


4670
3027
700891544H1
SOYMON024
g2529376
BLASTX
123
1e−9
44


4671
3027
LIB3054-002-
LIB3054
g2529375
BLASTN
1026
1e−76
71




Q1-N1-B7


4672
3027
LIB3055-004-
LIB3055
g2529375
BLASTN
423
1e−74
80




Q1-N1-B1


4673
3027
LIB3053-006-
LIB3053
g2529375
BLASTN
973
1e−72
71




Q1-N1-B2


4674
3027
LIB3055-008-
LIB3055
g2529375
BLASTN
684
1e−63
69




Q1-N1-H3


4675
3027
LIB3055-011-
LIB3055
g2529375
BLASTN
483
1e−33
77




Q1-N1-F4


4676
3027
LIB3030-005-
LIB3030
g2529375
BLASTN
315
1e−31
65




Q1-B1-E5


4677
3027
LIB3054-003-
LIB3054
g2529375
BLASTN
256
1e−10
60




Q1-N1-E12







MAIZE D-RIBULOSE-5-PHOSPHATE-3-EPIMERASE















4678
-700222465
700222465H1
SATMON011
g1162980
BLASTX
149
1e−27
84


4679
-700618106
700618106H1
SATMON033
g902739
BLASTX
80
1e−25
76


4680
10201
700101610H1
SATMON009
g902738
BLASTN
1009
1e−75
80


4681
10201
700098237H1
SATMON009
g902738
BLASTN
1000
1e−74
80


4682
10201
700209605H1
SATMON016
g1162979
BLASTN
976
1e−72
78


4683
10201
700101988H1
SATMON009
g902738
BLASTN
626
1e−69
80


4684
10201
700091966H1
SATMON011
g902738
BLASTN
905
1e−66
80


4685
10201
700101445H1
SATMON009
g1162979
BLASTN
844
1e−61
80


4686
10201
700159349H1
SATMON012
g902738
BLASTN
681
1e−48
73


4687
10201
700380926H1
SATMON023
g902738
BLASTN
463
1e−45
81


4688
17215
700048475H1
SATMON003
g1008313
BLASTX
177
1e−17
61


4689
17215
700105805H1
SATMON010
g1008313
BLASTX
123
1e−10
59


4690
1795
700432796H1
SATMONN01
g902739
BLASTX
139
1e−12
93


4691
6043
700104089H1
SATMON010
g1162979
BLASTN
583
1e−39
79


4692
6043
700099362H1
SATMON009
g1162980
BLASTX
156
1e−29
71


4693
6043
700042321H1
SATMON004
g1162979
BLASTN
271
1e−27
79


4694
6043
700457795H1
SATMON029
g902739
BLASTX
132
1e−25
64


4695
6043
700096215H1
SATMON008
g1162980
BLASTX
120
1e−19
65


4696
6043
700378379H1
SATMON019
g1162980
BLASTX
119
1e−17
86


4697
6043
700239692H1
SATMON010
g1162980
BLASTX
167
1e−16
63


4698
6043
700093535H1
SATMON008
g1162980
BLASTX
120
1e−13
61


4699
6043
700098183H1
SATMON009
g1162980
BLASTX
121
1e−13
60


4700
6043
700093175H1
SATMON008
g902739
BLASTX
126
1e−12
59


4701
6043
700098056H1
SATMON009
g1162980
BLASTX
120
1e−9
57


4702
6043
700101650H1
SATMON009
g1162980
BLASTX
120
1e−9
57


4703
6043
700053356H1
SATMON009
g1162980
BLASTX
121
1e−9
57


4704
6043
700099441H1
SATMON009
g902739
BLASTX
122
1e−9
58


4705
7043
700162921H1
SATMON013
g1008313
BLASTX
130
1e−17
60


4706
7043
700552657H1
SATMON022
g902739
BLASTX
154
1e−16
51


4707
-L1891463
LIB189-001-
LIB189
g1162979
BLASTN
596
1e−39
78




Q1-E1-F4


4708
-L30781313
LIB3078-002-
LIB3078
g1162979
BLASTN
440
1e−25
79




Q1-K1-A2


4709
10201
LIB3078-034-
LIB3078
g1162979
BLASTN
1271
1e−97
78




Q1-K1-E8


4710
10201
LIB189-018-
LIB189
g902738
BLASTN
1263
1e−96
79




Q1-E1-G1


4711
10201
LIB3060-022-
LIB3060
g902738
BLASTN
1228
1e−93
76




Q1-K1-G2


4712
10201
LIB3060-034-
LIB3060
g902738
BLASTN
1205
1e−91
79




Q1-K1-D3


4713
10201
LIB36-007-
LIB36
g1162979
BLASTN
989
1e−83
78




Q1-E1-D10


4714
10201
LIB3078-053-
LIB3078
g1162979
BLASTN
850
1e−62
68




Q1-K1-F4


4715
10201
LIB189-034-
LIB189
g902738
BLASTN
761
1e−53
74




Q1-E1-B12


4716
1795
LIB3067-056-
LIB3067
g902738
BLASTN
645
1e−43
80




Q1-K1-A4


4717
6043
LIB189-017-
LIB189
g1162979
BLASTN
842
1e−61
78




Q1-E1-F12


4718
6043
LIB36-012-
LIB36
g1162979
BLASTN
742
1e−51
78




Q1-E1-H11


4719
6043
LIB3060-018-
LIB3060
g1162979
BLASTN
653
1e−43
77




Q1-K1-B5


4720
6043
LIB3062-015-
LIB3062
g1162979
BLASTN
637
1e−42
77




Q1-K1-A11


4721
6043
LIB189-031-
LIB189
g1162979
BLASTN
532
1e−33
76




Q1-E1-D1


4722
6043
LIB3060-013-
LIB3060
g1162979
BLASTN
466
1e−27
75




Q1-K1-A2


4723
7043
LIB148-032-
LIB148
g2564973
BLASTX
238
1e−42
48




Q1-E1-A4







SOYBEAN D-RIBULOSE-5-PHOSPHATE-3-EPIMERASE















4724
-700677209
700677209H1
SOYMON007
g1162980
BLASTX
130
1e−30
85


4725
10469
700971857H1
SOYMON005
g1008313
BLASTX
208
1e−27
55


4726
10469
701064495H1
SOYMON034
g1008313
BLASTX
208
1e−27
56


4727
10469
701007767H1
SOYMON019
g1008313
BLASTX
129
1e−25
54


4728
10469
700656367H1
SOYMON004
g1008313
BLASTX
182
1e−22
57


4729
15209
700791582H1
SOYMON011
g2388956
BLASTX
129
1e−10
66


4730
15209
701001180H1
SOYMON018
g1008313
BLASTX
122
1e−9
65


4731
18337
700739263H1
SOYMON012
g902738
BLASTN
481
1e−50
82


4732
18337
700681545H1
SOYMON008
g1162979
BLASTN
342
1e−44
83


4733
18818
700866167H1
SOYMON016
g1162979
BLASTN
853
1e−62
89


4734
18818
700983968H1
SOYMON009
g1162979
BLASTN
422
1e−55
76


4735
5784
700999796H1
SOYMON018
g1162979
BLASTN
535
1e−43
78


4736
5784
700788240H1
SOYMON011
g902738
BLASTN
455
1e−36
77


4737
5784
701000905H1
SOYMON018
g902738
BLASTN
501
1e−36
77


4738
5784
701040171H1
SOYMON029
g902738
BLASTN
510
1e−33
78


4739
5784
700754807H1
SOYMON014
g902738
BLASTN
447
1e−31
72


4740
5784
700904930H1
SOYMON022
g902738
BLASTN
465
1e−29
77


4741
5784
700739828H1
SOYMON012
g902738
BLASTN
455
1e−28
76


4742
5784
700741008H1
SOYMON012
g1162980
BLASTX
142
1e−16
81


4743
5784
700738184H1
SOYMON012
g1162980
BLASTX
167
1e−16
81


4744
5784
700790753H1
SOYMON011
g1162980
BLASTX
149
1e−15
79


4745
5784
701110183H1
SOYMON036
g1162980
BLASTX
161
1e−15
81


4746
5784
700876264H1
SOYMON018
g1162980
BLASTX
140
1e−12
87


4747
5784
700787492H2
SOYMON011
g1162980
BLASTX
141
1e−12
76


4748
5784
700788242H1
SOYMON011
g1162980
BLASTX
80
1e−11
89


4749
5784
700741612H1
SOYMON012
g1162980
BLASTX
103
1e−11
78


4750
5784
700789926H2
SOYMON011
g1162980
BLASTX
119
1e−11
74


4751
5784
701105542H1
SOYMON036
g1162980
BLASTX
117
1e−10
66


4752
5784
700741161H1
SOYMON012
g1162980
BLASTX
101
1e−8
63


4753
5784
700877044H1
SOYMON018
g902738
BLASTN
236
1e−8
73


4754
9624
700659817H1
SOYMON004
g1162979
BLASTN
959
1e−71
85


4755
9624
700558457H1
SOYMON001
g1162979
BLASTN
533
1e−64
81


4756
9624
700898624H1
SOYMON027
g1162979
BLASTN
867
1e−63
83


4757
9624
700848716H1
SOYMON021
g1162979
BLASTN
680
1e−61
83


4758
9624
700990488H1
SOYMON011
g1162979
BLASTN
763
1e−54
83


4759
9624
700980873H1
SOYMON009
g1162979
BLASTN
722
1e−51
77


4760
9624
700654880H1
SOYMON004
g1162979
BLASTN
473
1e−36
71


4761
10469
LIB3040-057-
LIB3040
g1008313
BLASTX
205
1e−60
54




Q1-E1-C5


4762
9624
LIB3030-001-
LIB3030
g1162979
BLASTN
1185
1e−90
80




Q1-B1-F10







MAIZE RIBOSE-5-PHOSPHATE ISOMERASE















4763
5053
700206243H1
SATMON003
g1669358
BLASTX
165
1e−20
59


4764
5053
700157368H1
SATMON012
g1001678
BLASTX
188
1e−19
59


4765
-L30672312
LIB3067-007-
LIB3067
g1789280
BLASTX
114
1e−24
54




Q1-K1-C3


4766
-L841459
LIB84-028-
LIB84
g1789280
BLASTX
117
1e−25
53




Q1-E1-A11


4767
5053
LIB3078-033-
LIB3078
g1001678
BLASTX
217
1e−42
50




Q1-K1-A2


4768
5053
LIB3060-054-
LIB3060
g2649655
BLASTX
100
1e−34
48




Q1-K1-G1


4769
5053
LIB3078-054-
LIB3078
g1669358
BLASTX
65
1e−24
40




Q1-K1-B9







MAIZE PUTATIVE RIBOSE-5-PHOSPHATE ISOMERASE















4770
-700622640
700622640H1
SATMON034
g3257798
BLASTX
128
1e−10
63


4771
5053
700213140H1
SATMON016
g500774
BLASTX
195
1e−20
43







SOYBEAN RIBOSE-5-PHOSPHATE ISOMERASE















4772
17047
700737894H1
SOYMON012
g1001678
BLASTX
93
1e−14
62


4773
17047
700790677H2
SOYMON011
g2649655
BLASTX
68
1e−9
47


4774
17047
700891079H1
SOYMON024
g1001678
BLASTX
122
1e−9
56


4775
8783
701120985H1
SOYMON037
g1789280
BLASTX
115
1e−9
51


4776
8783
700745725H1
SOYMON013
g1789280
BLASTX
113
1e−8
51







SOYBEAN PUTATIVE RIBOSE-5-PHOSPHATE ISOMERASE















4777
-700840778
700840778H1
SOYMON020
g500774
BLASTX
203
1e−21
51


4778
-700898355
700898355H1
SOYMON027
g3257798
BLASTX
108
1e−17
60


4779
16333
700562390H1
SOYMON002
g500774
BLASTX
211
1e−22
44


4780
16333
700961206H1
SOYMON022
g500774
BLASTX
145
1e−14
51


4781
8873
701120413H1
SOYMON037
g3257798
BLASTX
134
1e−11
48







MAIZE RIBOSE-5-PHOSPHATE KINASE















4782
-700427028
700427028H1
SATMONN01
g1885326
BLASTX
88
1e−11
60


4783
-700441954
700441954H1
SATMON026
g21840
BLASTN
186
1e−16
72


4784
-700448070
700448070H1
SATMON027
g16440
BLASTN
289
1e−39
75


4785
-700581778
700581778H1
SATMON031
g16441
BLASTX
117
1e−14
76


4786
3680
700044442H1
SATMON004
g21840
BLASTN
1134
1e−85
89


4787
3680
700044434H1
SATMON004
g21840
BLASTN
1122
1e−84
89


4788
3680
700430775H1
SATMONN01
g21840
BLASTN
1109
1e−83
87


4789
3680
700043261H1
SATMON004
g21840
BLASTN
1097
1e−82
90


4790
3680
700101266H1
SATMON009
g21840
BLASTN
1098
1e−82
88


4791
3680
700440552H1
SATMON026
g21840
BLASTN
1047
1e−78
89


4792
3680
700430385H1
SATMONN01
g21838
BLASTN
964
1e−71
88


4793
3680
700441643H1
SATMON026
g21840
BLASTN
852
1e−62
84


4794
3680
700042294H1
SATMON004
g21838
BLASTN
842
1e−61
86


4795
7956
700099212H1
SATMON009
g21840
BLASTN
1192
1e−90
86


4796
7956
700099715H1
SATMON009
g21840
BLASTN
1066
1e−80
85


4797
7956
700100470H1
SATMON009
g21840
BLASTN
925
1e−68
79


4798
7956
700438420H1
SATMON026
g21840
BLASTN
921
1e−67
84


4799
7956
700353611H1
SATMON024
g21838
BLASTN
812
1e−58
77


4800
7956
700100342H1
SATMON009
g21838
BLASTN
665
1e−46
76


4801
7956
700043758H1
SATMON004
g21840
BLASTN
394
1e−44
74


4802
7956
700100269H1
SATMON009
g21838
BLASTN
510
1e−32
73


4803
7956
700099313H1
SATMON009
g21838
BLASTN
516
1e−32
73


4804
7956
700097674H1
SATMON009
g21839
BLASTX
162
1e−30
76


4805
7956
700097907H1
SATMON009
g21840
BLASTN
455
1e−27
72


4806
7956
700098314H1
SATMON009
g21838
BLASTN
460
1e−27
72


4807
7956
700098714H1
SATMON009
g21840
BLASTN
462
1e−27
72


4808
7956
700101077H1
SATMON009
g21840
BLASTN
417
1e−24
69


4809
7956
700439560H1
SATMON026
g21838
BLASTN
421
1e−24
89


4810
7956
700094395H1
SATMON008
g21840
BLASTN
424
1e−24
70


4811
7956
700208768H1
SATMON016
g21840
BLASTN
424
1e−24
70


4812
7956
700100913H1
SATMON009
g21840
BLASTN
424
1e−24
70


4813
7956
700042685H1
SATMON004
g21840
BLASTN
401
1e−23
75


4814
7956
700097183H1
SATMON009
g21840
BLASTN
407
1e−23
75


4815
7956
700101216H1
SATMON009
g21839
BLASTX
97
1e−15
72


4816
-L361538
LIB36-008-
LIB36
g21840
BLASTN
707
1e−48
82




Q1-E1-F4


4817
3680
LIB189-012-
LIB189
g21840
BLASTN
1443
1e−130
86




Q1-E1-H11


4818
3680
LIB3078-011-
LIB3078
g21840
BLASTN
1659
1e−129
88




Q1-K1-B10


4819
3680
LIB3066-004-
LIB3066
g21840
BLASTN
1648
1e−128
87




Q1-K1-D6


4820
3680
LIB3060-025-
LIB3060
g21840
BLASTN
1604
1e−127
88




Q1-K1-F6


4821
3680
LIB189-006-
LIB189
g21840
BLASTN
1380
1e−106
89




Q1-E1-A5


4822
3680
LIB36-001-
LIB36
g21840
BLASTN
1329
1e−101
78




Q1-E1-G1


4823
3680
LIB84-013-
LIB84
g21840
BLASTN
919
1e−82
85




Q1-E1-B8


4824
3680
LIB36-014-
LIB36
g21838
BLASTN
870
1e−70
86




Q1-E1-D8


4825
3680
LIB36-017-
LIB36
g21838
BLASTN
589
1e−43
85




Q1-E1-H3


4826
7956
LIB189-029-
LIB189
g21840
BLASTN
1559
1e−121
84




Q1-E1-D12


4827
7956
LIB3078-055-
LIB3078
g21840
BLASTN
1370
1e−105
82




Q1-K1-D12


4828
7956
LIB36-020-
LIB36
g21838
BLASTN
908
1e−93
76




Q1-E1-D1


4829
7956
LIB36-013-
LIB36
g21838
BLASTN
792
1e−83
76




Q1-E1-B5


4830
7956
LIB3060-028-
LIB3060
g21840
BLASTN
470
1e−73
76




Q1-K1-B7


4831
7956
LIB189-020-
LIB189
g21840
BLASTN
411
1e−45
74




Q1-E1-B11


4832
7956
LIB3062-047-
LIB3062
g21840
BLASTN
419
1e−28
71




Q1-K1-H1







SOYBEAN RIBOSE-5-PHOSPHATE KINASE















4833
-700657358
700657358H1
SOYMON004
g16441
BLASTX
134
1e−16
95


4834
-700790008
700790008H2
SOYMON011
g1885325
BLASTN
725
1e−51
75


4835
-700872439
700872439H1
SOYMON018
g1885325
BLASTN
562
1e−38
75


4836
4157
701055931H1
SOYMON032
g1885325
BLASTN
1147
1e−86
91


4837
4157
700680979H1
SOYMON008
g1885325
BLASTN
981
1e−84
85


4838
4157
700990472H1
SOYMON011
g1885325
BLASTN
1114
1e−84
88


4839
4157
700556547H1
SOYMON001
g1885325
BLASTN
1079
1e−81
87


4840
4157
700684029H1
SOYMON008
g1885325
BLASTN
1066
1e−80
87


4841
4157
700684302H1
SOYMON008
g1885325
BLASTN
1042
1e−78
89


4842
4157
700877162H1
SOYMON018
g1885325
BLASTN
922
1e−76
87


4843
4157
700875857H1
SOYMON018
g1885325
BLASTN
1021
1e−76
90


4844
4157
700875895H1
SOYMON018
g1885325
BLASTN
1027
1e−76
90


4845
4157
700791057H1
SOYMON011
g1885325
BLASTN
785
1e−75
89


4846
4157
700990257H1
SOYMON011
g1885325
BLASTN
1003
1e−74
86


4847
4157
700991766H1
SOYMON011
g1885325
BLASTN
622
1e−73
86


4848
4157
700875789H1
SOYMON018
g1885325
BLASTN
787
1e−71
90


4849
4157
700791651H1
SOYMON011
g1885325
BLASTN
949
1e−70
87


4850
4157
701106902H1
SOYMON036
g1885325
BLASTN
925
1e−68
85


4851
4157
700739192H1
SOYMON012
g1885325
BLASTN
916
1e−67
90


4852
4157
700681723H1
SOYMON008
g1885325
BLASTN
902
1e−66
85


4853
4157
700755385H1
SOYMON014
g1885325
BLASTN
883
1e−64
84


4854
4157
700870864H1
SOYMON018
g1885325
BLASTN
865
1e−63
78


4855
4157
701107593H1
SOYMON036
g1885325
BLASTN
872
1e−63
84


4856
4157
701002558H1
SOYMON018
g1885325
BLASTN
617
1e−62
84


4857
4157
700875430H1
SOYMON018
g1885325
BLASTN
860
1e−62
83


4858
4157
700654704H1
SOYMON004
g1885325
BLASTN
535
1e−58
86


4859
4157
701070469H1
SOYMON034
g1885325
BLASTN
214
1e−18
92


4860
4157
700739393H1
SOYMON012
g16441
BLASTX
182
1e−17
94


4861
4157
700657046H1
SOYMON004
g1885325
BLASTN
141
1e−10
86


4862
6097
700984236H1
SOYMON009
g1885325
BLASTN
1039
1e−77
87


4863
6097
701109839H1
SOYMON036
g1885325
BLASTN
952
1e−70
88


4864
6097
700731201H1
SOYMON009
g1885325
BLASTN
885
1e−64
85


4865
668
700959747H1
SOYMON022
g1885325
BLASTN
414
1e−65
84


4866
668
700994042H1
SOYMON011
g1885325
BLASTN
863
1e−63
82


4867
668
700899089H1
SOYMON027
g1885325
BLASTN
849
1e−61
84


4868
668
700787854H2
SOYMON011
g167265
BLASTN
330
1e−47
84


4869
668
700873392H1
SOYMON018
g167265
BLASTN
530
1e−35
85


4870
668
700553732H1
SOYMON001
g167265
BLASTN
483
1e−30
84


4871
668
700560501H1
SOYMON001
g167265
BLASTN
460
1e−27
84


4872
668
701105881H1
SOYMON036
g167265
BLASTN
439
1e−26
84


4873
668
700681112H2
SOYMON008
g167265
BLASTN
395
1e−22
85


4874
668
700997513H1
SOYMON018
g167265
BLASTN
383
1e−21
84


4875
668
700763831H1
SOYMON018
g167266
BLASTX
131
1e−16
84


4876
668
701055857H1
SOYMON032
g167266
BLASTX
163
1e−15
94


4877
668
700559450H1
SOYMON001
g167265
BLASTN
273
1e−15
78


4878
668
701000176H1
SOYMON018
g167266
BLASTX
155
1e−14
93


4879
668
700996108H1
SOYMON018
g167266
BLASTX
158
1e−14
84


4880
668
700791528H1
SOYMON011
g167265
BLASTN
298
1e−14
84


4881
668
700901050H1
SOYMON027
g167265
BLASTN
288
1e−13
83


4882
668
700979790H2
SOYMON009
g167265
BLASTN
288
1e−13
81


4883
668
700877128H1
SOYMON018
g167265
BLASTN
290
1e−13
74


4884
668
700743001H1
SOYMON012
g167266
BLASTX
140
1e−12
78


4885
668
700995911H1
SOYMON018
g167265
BLASTN
197
1e−12
86


4886
668
701106835H1
SOYMON036
g167265
BLASTN
278
1e−12
89


4887
668
700675621H1
SOYMON007
g167265
BLASTN
261
1e−11
75


4888
668
701002519H1
SOYMON018
g167266
BLASTX
125
1e−10
83


4889
668
700686660H1
SOYMON008
g167266
BLASTX
130
1e−10
83


4890
668
700738677H1
SOYMON012
g167265
BLASTN
196
1e−10
89


4891
668
700963637H1
SOYMON022
g167265
BLASTN
196
1e−10
88


4892
668
700791287H1
SOYMON011
g167265
BLASTN
236
1e−10
82


4893
668
700553943H1
SOYMON001
g167265
BLASTN
258
1e−10
83


4894
668
700876063H1
SOYMON018
g167266
BLASTX
116
1e−9
92


4895
668
700555924H1
SOYMON001
g167266
BLASTX
118
1e−9
79


4896
668
700686037H1
SOYMON008
g167265
BLASTN
249
1e−9
81


4897
668
700791185H1
SOYMON011
g167265
BLASTN
249
1e−9
86


4898
8098
700726396H1
SOYMON009
g1885325
BLASTN
711
1e−54
87


4899
8098
700683768H1
SOYMON008
g1885325
BLASTN
614
1e−45
87


4900
8098
700741625H1
SOYMON012
g1885325
BLASTN
479
1e−37
88


4901
8098
700737803H1
SOYMON012
g1885325
BLASTN
441
1e−29
86


4902
8098
700995703H1
SOYMON011
g1885325
BLASTN
286
1e−14
85


4903
4157
LIB3055-013-
LIB3055
g1885325
BLASTN
1123
1e−131
87




Q1-N1-F6


4904
4157
LIB3028-012-
LIB3028
g1885325
BLASTN
645
1e−82
81




Q1-B1-F10


4905
668
LIB3039-054-
LIB3039
g167265
BLASTN
815
1e−64
80




Q1-E1-C11


4906
668
LIB3055-013-
LIB3055
g167265
BLASTN
817
1e−59
83




Q1-N1-D11


4907
668
LIB3055-013-
LIB3055
g167265
BLASTN
676
1e−45
79




Q1-N1-H7


4908
668
LIB3055-004-
LIB3055
g1885325
BLASTN
318
1e−36
83




Q1-N1-F5







MAIZE PHOSPHOENOLPYRUVATE CARBOXYLASE















4909
-700029657
700029657H1
SATMON003
g22614
BLASTN
275
1e−13
83


4910
-700043027
700043027H1
SATMON004
g22407
BLASTN
497
1e−38
80


4911
-700073205
700073205H1
SATMON007
g3132309
BLASTN
1480
1e−114
100


4912
-700073954
700073954H1
SATMON007
g22614
BLASTN
243
1e−28
79


4913
-700075634
700075634H1
SATMON007
g3132309
BLASTN
471
1e−75
83


4914
-700076492
700076492H1
SATMON007
g429148
BLASTN
909
1e−109
98


4915
-700097250
700097250H1
SATMON009
g22396
BLASTN
366
1e−21
88


4916
-700100473
700100473H1
SATMON009
g22407
BLASTN
644
1e−63
98


4917
-700101359
700101359H1
SATMON009
g22415
BLASTN
1530
1e−118
99


4918
-700152625
700152625H1
SATMON007
g3132309
BLASTN
1154
1e−87
99


4919
-700154435
700154435H1
SATMON007
g3132309
BLASTN
761
1e−54
98


4920
-700162895
700162895H1
SATMON013
g169843
BLASTN
438
1e−27
85


4921
-700201740
700201740H1
SATMON003
g21629
BLASTN
498
1e−32
86


4922
-700224677
700224677H1
SATMON011
g429148
BLASTN
729
1e−84
95


4923
-700238706
700238706H1
SATMON010
g429148
BLASTN
1431
1e−110
99


4924
-700257537
700257537H1
SATMON017
g22409
BLASTN
391
1e−50
91


4925
-700331923
700331923H1
SATMON019
g429148
BLASTN
1338
1e−102
97


4926
-700356223
700356223H1
SATMON024
g21629
BLASTN
471
1e−79
96


4927
-700356594
700356594H1
SATMON024
g21629
BLASTN
117
1e−8
95


4928
-700428887
700428887H1
SATMONN01
g22407
BLASTN
303
1e−31
85


4929
-700429388
700429388H1
SATMONN01
g22468
BLASTN
221
1e−22
89


4930
-700441559
700441559H1
SATMON026
g22396
BLASTN
194
1e−10
90


4931
-700552009
700552009H1
SATMON022
g169843
BLASTN
739
1e−84
94


4932
-700578607
700578607H1
SATMON031
g22390
BLASTN
380
1e−35
99


4933
-701169553
701169553H1
SATMONN05
g18463
BLASTN
271
1e−13
66


4934
10799
700074427H1
SATMON007
g3132309
BLASTN
1458
1e−112
99


4935
10799
700154441H1
SATMON007
g3132309
BLASTN
1090
1e−81
100


4936
1418
700097963H1
SATMON009
g22396
BLASTN
1635
1e−127
100


4937
1418
700097754H1
SATMON009
g22415
BLASTN
1080
1e−124
100


4938
1418
700097792H1
SATMON009
g22407
BLASTN
1598
1e−124
99


4939
1418
700098551H1
SATMON009
g22407
BLASTN
1296
1e−123
97


4940
1418
700098302H1
SATMON009
g22415
BLASTN
1588
1e−123
99


4941
1418
700098121H1
SATMON009
g22415
BLASTN
1582
1e−122
99


4942
1418
700101619H1
SATMON009
g22396
BLASTN
1561
1e−121
99


4943
1418
700098581H1
SATMON009
g22415
BLASTN
1571
1e−121
98


4944
1418
700099632H1
SATMON009
g22407
BLASTN
1556
1e−120
99


4945
1418
700101969H1
SATMON009
g22562
BLASTN
1539
1e−119
99


4946
1418
700083104H1
SATMON011
g22415
BLASTN
1082
1e−118
97


4947
1418
700100275H1
SATMON009
g22407
BLASTN
1534
1e−118
99


4948
1418
700098816H1
SATMON009
g22562
BLASTN
926
1e−117
98


4949
1418
700101994H1
SATMON009
g22415
BLASTN
1512
1e−117
99


4950
1418
700101641H1
SATMON009
g22396
BLASTN
1515
1e−117
100


4951
1418
700101001H1
SATMON009
g22415
BLASTN
1500
1e−116
100


4952
1418
700099730H1
SATMON009
g22396
BLASTN
1500
1e−116
100


4953
1418
700097140H1
SATMON009
g22562
BLASTN
1506
1e−116
99


4954
1418
700100324H1
SATMON009
g22415
BLASTN
1260
1e−115
100


4955
1418
700098727H1
SATMON009
g22415
BLASTN
1487
1e−115
99


4956
1418
700097485H1
SATMON009
g22415
BLASTN
1496
1e−115
99


4957
1418
700097789H1
SATMON009
g22407
BLASTN
1479
1e−114
99


4958
1418
700099540H1
SATMON009
g22415
BLASTN
1485
1e−114
100


4959
1418
700097905H1
SATMON009
g22415
BLASTN
1224
1e−113
98


4960
1418
700099338H1
SATMON009
g22407
BLASTN
1248
1e−113
99


4961
1418
700101618H1
SATMON009
g22415
BLASTN
1395
1e−113
100


4962
1418
700100382H1
SATMON009
g22415
BLASTN
1465
1e−113
100


4963
1418
700097861H1
SATMON009
g22396
BLASTN
1473
1e−113
99


4964
1418
700099369H1
SATMON009
g22415
BLASTN
1457
1e−112
99


4965
1418
700097270H1
SATMON009
g22407
BLASTN
1383
1e−111
97


4966
1418
700042158H1
SATMON004
g22415
BLASTN
1440
1e−111
100


4967
1418
700097169H1
SATMON009
g22415
BLASTN
1427
1e−110
97


4968
1418
700099238H1
SATMON009
g22415
BLASTN
1428
1e−110
99


4969
1418
700045908H1
SATMON004
g22415
BLASTN
1424
1e−109
97


4970
1418
700101654H1
SATMON009
g22415
BLASTN
985
1e−108
99


4971
1418
700041622H1
SATMON004
g22415
BLASTN
1403
1e−108
99


4972
1418
700099014H1
SATMON009
g22415
BLASTN
1403
1e−108
99


4973
1418
700045755H1
SATMON004
g22415
BLASTN
1405
1e−108
100


4974
1418
700097929H1
SATMON009
g22415
BLASTN
1405
1e−108
95


4975
1418
700101507H1
SATMON009
g22415
BLASTN
927
1e−107
98


4976
1418
700101139H1
SATMON009
g22415
BLASTN
1394
1e−107
97


4977
1418
700042011H1
SATMON004
g22415
BLASTN
1395
1e−107
100


4978
1418
700099449H1
SATMON009
g22415
BLASTN
1399
1e−107
98


4979
1418
700097495H1
SATMON009
g22407
BLASTN
1028
1e−106
99


4980
1418
700404862H1
SATMON026
g22415
BLASTN
1276
1e−106
99


4981
1418
700041640H1
SATMON004
g22562
BLASTN
1385
1e−106
100


4982
1418
700042815H1
SATMON004
g22396
BLASTN
1385
1e−106
100


4983
1418
700099760H1
SATMON009
g22415
BLASTN
751
1e−105
97


4984
1418
700098974H1
SATMON009
g22407
BLASTN
900
1e−105
97


4985
1418
700046051H1
SATMON004
g22396
BLASTN
1341
1e−105
99


4986
1418
700098022H1
SATMON009
g22415
BLASTN
1367
1e−105
99


4987
1418
700044753H1
SATMON004
g22407
BLASTN
1370
1e−105
100


4988
1418
700044255H1
SATMON004
g22415
BLASTN
1370
1e−105
100


4989
1418
700043411H1
SATMON004
g22396
BLASTN
1375
1e−105
100


4990
1418
700046087H1
SATMON004
g22415
BLASTN
1375
1e−105
100


4991
1418
700041663H1
SATMON004
g22407
BLASTN
1378
1e−105
99


4992
1418
700099451H1
SATMON009
g22415
BLASTN
1301
1e−104
95


4993
1418
700043646H1
SATMON004
g22407
BLASTN
1350
1e−103
100


4994
1418
700045303H1
SATMON004
g22415
BLASTN
1350
1e−103
100


4995
1418
700223981H1
SATMON011
g22407
BLASTN
1352
1e−103
99


4996
1418
700043601H1
SATMON004
g22396
BLASTN
1115
1e−102
100


4997
1418
700043020H1
SATMON004
g22415
BLASTN
1331
1e−102
99


4998
1418
700046435H1
SATMON004
g22415
BLASTN
1335
1e−102
100


4999
1418
700100821H1
SATMON009
g22415
BLASTN
1340
1e−102
100


5000
1418
700044311H1
SATMON004
g22396
BLASTN
1290
1e−101
100


5001
1418
700042492H1
SATMON004
g22415
BLASTN
1325
1e−101
100


5002
1418
700045679H1
SATMON004
g22562
BLASTN
1326
1e−101
99


5003
1418
700043854H1
SATMON004
g22396
BLASTN
1328
1e−101
99


5004
1418
700097174H1
SATMON009
g22407
BLASTN
579
1e−100
97


5005
1418
700043617H1
SATMON004
g22415
BLASTN
1172
1e−100
98


5006
1418
700043213H1
SATMON004
g22415
BLASTN
1307
1e−100
99


5007
1418
700044283H1
SATMON004
g22562
BLASTN
1315
1e−100
100


5008
1418
700044758H1
SATMON004
g22562
BLASTN
1317
1e−100
99


5009
1418
700045971H1
SATMON004
g22415
BLASTN
1318
1e−100
99


5010
1418
700045753H1
SATMON004
g22415
BLASTN
1268
1e−99
95


5011
1418
700044982H1
SATMON004
g22415
BLASTN
1300
1e−99
100


5012
1418
700045990H1
SATMON004
g22415
BLASTN
1303
1e−99
99


5013
1418
700222578H1
SATMON011
g22415
BLASTN
1286
1e−98
97


5014
1418
700101090H1
SATMON009
g22396
BLASTN
1152
1e−97
99


5015
1418
700044587H1
SATMON004
g22396
BLASTN
1279
1e−97
99


5016
1418
700100745H1
SATMON009
g22396
BLASTN
1280
1e−97
100


5017
1418
700043547H1
SATMON004
g22562
BLASTN
1281
1e−97
95


5018
1418
700428356H1
SATMONN01
g22407
BLASTN
1035
1e−96
98


5019
1418
700219747H1
SATMON011
g22562
BLASTN
1261
1e−96
99


5020
1418
700045081H1
SATMON004
g22396
BLASTN
1263
1e−96
99


5021
1418
700101816H1
SATMON009
g22396
BLASTN
1250
1e−95
100


5022
1418
700042889H1
SATMON004
g22562
BLASTN
722
1e−94
98


5023
1418
700041694H1
SATMON004
g22415
BLASTN
831
1e−94
98


5024
1418
700098977H1
SATMON009
g22562
BLASTN
933
1e−94
97


5025
1418
700423950H1
SATMONN01
g22396
BLASTN
1187
1e−94
99


5026
1418
700053467H1
SATMON009
g22415
BLASTN
821
1e−92
93


5027
1418
700042228H1
SATMON004
g22415
BLASTN
841
1e−91
98


5028
1418
700044924H1
SATMON004
g22396
BLASTN
1205
1e−91
100


5029
1418
700438595H1
SATMON026
g22407
BLASTN
620
1e−90
99


5030
1418
700422253H1
SATMONN01
g22396
BLASTN
781
1e−89
95


5031
1418
700044946H1
SATMON004
g22396
BLASTN
1170
1e−88
100


5032
1418
700025647H1
SATMON004
g22407
BLASTN
1128
1e−87
98


5033
1418
700213665H1
SATMON016
g22415
BLASTN
1161
1e−87
99


5034
1418
700100741H1
SATMON009
g22407
BLASTN
1137
1e−85
95


5035
1418
700045039H1
SATMON004
g22562
BLASTN
722
1e−84
99


5036
1418
700042588H1
SATMON004
g22396
BLASTN
1119
1e−84
99


5037
1418
700209485H1
SATMON016
g22415
BLASTN
771
1e−82
95


5038
1418
700198048H1
SATMON016
g22407
BLASTN
812
1e−80
97


5039
1418
700424537H1
SATMONN01
g22396
BLASTN
1070
1e−80
87


5040
1418
700439340H1
SATMON026
g22415
BLASTN
725
1e−76
97


5041
1418
700439420H1
SATMON026
g22415
BLASTN
1017
1e−75
94


5042
1418
700098640H1
SATMON009
g22562
BLASTN
991
1e−73
99


5043
1418
700427059H1
SATMONN01
g22396
BLASTN
523
1e−69
92


5044
1418
700099478H1
SATMON009
g22415
BLASTN
721
1e−69
100


5045
1418
700425005H1
SATMONN01
g22415
BLASTN
939
1e−69
97


5046
1418
700101925H1
SATMON009
g22562
BLASTN
878
1e−64
99


5047
1418
700099430H1
SATMON009
g22415
BLASTN
824
1e−59
98


5048
1418
700429358H1
SATMONN01
g22407
BLASTN
548
1e−57
98


5049
1418
700447220H1
SATMON027
g22562
BLASTN
799
1e−57
98


5050
1418
700100706H1
SATMON009
g22407
BLASTN
770
1e−55
100


5051
1418
700209112H1
SATMON016
g22415
BLASTN
593
1e−54
98


5052
1418
700098367H1
SATMON009
g22415
BLASTN
698
1e−49
99


5053
1418
700045489H1
SATMON004
g22407
BLASTN
642
1e−44
92


5054
1418
700043353H1
SATMON004
g22396
BLASTN
645
1e−44
100


5055
1418
700097654H1
SATMON009
g22407
BLASTN
618
1e−42
99


5056
1418
700423550H1
SATMONN01
g22396
BLASTN
599
1e−41
88


5057
1418
700439981H1
SATMON026
g22407
BLASTN
590
1e−40
96


5058
1418
700097894H1
SATMON009
g22407
BLASTN
570
1e−38
100


5059
1418
700423563H1
SATMONN01
g22407
BLASTN
516
1e−34
99


5060
1418
700213765H1
SATMON016
g22407
BLASTN
484
1e−31
97


5061
1418
700043914H1
SATMON004
g22407
BLASTN
261
1e−26
93


5062
1418
700434554H1
SATMONN01
g22396
BLASTN
397
1e−24
87


5063
1418
700088748H1
SATMON011
g22396
BLASTN
292
1e−15
89


5064
1418
700097692H1
SATMON009
g22396
BLASTN
255
1e−13
98


5065
16592
700098887H1
SATMON009
g22415
BLASTN
1526
1e−118
99


5066
16592
700101171H1
SATMON009
g22415
BLASTN
1481
1e−114
99


5067
16592
700098335H1
SATMON009
g22415
BLASTN
1455
1e−112
100


5068
16592
700101419H1
SATMON009
g22415
BLASTN
1450
1e−111
100


5069
16592
700098187H1
SATMON009
g22562
BLASTN
877
1e−110
98


5070
16592
700099874H1
SATMON009
g22562
BLASTN
1427
1e−109
97


5071
16592
700098983H1
SATMON009
g22415
BLASTN
1355
1e−104
98


5072
16592
700045302H1
SATMON004
g22412
BLASTN
704
1e−99
96


5073
16592
700218247H1
SATMON016
g22412
BLASTN
710
1e−99
98


5074
16592
700100826H1
SATMON009
g22412
BLASTN
710
1e−98
97


5075
16592
700098774H1
SATMON009
g22562
BLASTN
1190
1e−97
93


5076
16592
700101312H1
SATMON009
g22562
BLASTN
1210
1e−96
91


5077
16592
700053403H1
SATMON009
g22415
BLASTN
1260
1e−96
94


5078
16592
700045034H1
SATMON004
g22562
BLASTN
1189
1e−90
99


5079
16592
700097293H1
SATMON009
g22412
BLASTN
667
1e−86
92


5080
17901
700578474H1
SATMON031
g22415
BLASTN
979
1e−72
98


5081
17901
700578374H1
SATMON031
g22415
BLASTN
491
1e−63
98


5082
1943
700549932H1
SATMON022
g429148
BLASTN
914
1e−67
80


5083
1943
700020030H1
SATMON001
g429148
BLASTN
686
1e−48
79


5084
19736
700264360H1
SATMON017
g429148
BLASTN
1519
1e−117
98


5085
19736
700238856H1
SATMON010
g429148
BLASTN
754
1e−102
99


5086
201
700074903H1
SATMON007
g3132309
BLASTN
820
1e−119
100


5087
201
700620292H1
SATMON034
g3132309
BLASTN
940
1e−113
100


5088
201
700616392H1
SATMON033
g3132309
BLASTN
1008
1e−107
99


5089
201
700049716H1
SATMON003
g3132309
BLASTN
1018
1e−107
99


5090
201
700028563H1
SATMON003
g3132309
BLASTN
1361
1e−104
99


5091
201
700105527H1
SATMON010
g3132309
BLASTN
1319
1e−100
99


5092
201
700615230H1
SATMON033
g3132309
BLASTN
955
1e−99
99


5093
201
700550579H1
SATMON022
g3132309
BLASTN
737
1e−98
99


5094
201
700381592H1
SATMON023
g3132309
BLASTN
974
1e−97
92


5095
201
701186231H1
SATMONN06
g3132309
BLASTN
918
1e−96
97


5096
201
700572736H1
SATMON030
g3132309
BLASTN
963
1e−96
96


5097
201
700158658H1
SATMON012
g3132309
BLASTN
936
1e−93
99


5098
201
701186212H1
SATMONN06
g3132309
BLASTN
971
1e−92
98


5099
201
700616621H1
SATMON033
g3132309
BLASTN
780
1e−87
92


5100
201
701161255H1
SATMONN04
g3132309
BLASTN
856
1e−87
98


5101
201
700222259H1
SATMON011
g3132309
BLASTN
1148
1e−86
92


5102
201
701161671H1
SATMONN04
g3132309
BLASTN
886
1e−81
98


5103
201
700028609H1
SATMON003
g21629
BLASTN
525
1e−75
92


5104
201
700570011H1
SATMON030
g3132309
BLASTN
696
1e−75
98


5105
201
700467579H1
SATMON025
g3132309
BLASTN
901
1e−70
96


5106
201
700020751H1
SATMON001
g3132309
BLASTN
489
1e−44
89


5107
201
700612494H1
SATMON033
g3132309
BLASTN
341
1e−28
97


5108
20363
700028168H1
SATMON003
g429148
BLASTN
891
1e−109
98


5109
20363
700150081H1
SATMON007
g429148
BLASTN
660
1e−75
99


5110
21797
700104081H1
SATMON010
g22468
BLASTN
1240
1e−96
100


5111
21797
700258244H1
SATMON017
g3132309
BLASTN
1115
1e−84
100


5112
21797
700206542H1
SATMON003
g22468
BLASTN
1000
1e−76
100


5113
22719
700238111H1
SATMON010
g3132309
BLASTN
1286
1e−105
98


5114
22719
700804782H1
SATMON036
g3132309
BLASTN
725
1e−90
100


5115
23787
700050530H1
SATMON003
g169843
BLASTN
1266
1e−96
92


5116
23787
701180159H1
SATMONN05
g169843
BLASTN
1108
1e−83
92


5117
2554
700160214H1
SATMON012
g429148
BLASTN
1310
1e−100
100


5118
2554
700553034H1
SATMON022
g429148
BLASTN
1111
1e−83
99


5119
2554
700168584H1
SATMON013
g429148
BLASTN
1075
1e−80
100


5120
2594
700257383H1
SATMON017
g3132309
BLASTN
469
1e−51
91


5121
2594
700263133H1
SATMON017
g3132309
BLASTN
545
1e−42
97


5122
2724
700213133H1
SATMON016
g429148
BLASTN
1190
1e−106
98


5123
2724
700087946H1
SATMON011
g429148
BLASTN
1103
1e−83
99


5124
30586
700170629H1
SATMON013
g169843
BLASTN
880
1e−64
88


5125
3591
700451602H1
SATMON028
g429148
BLASTN
730
1e−102
99


5126
3591
700243536H1
SATMON010
g429148
BLASTN
926
1e−90
99


5127
3591
700104327H1
SATMON010
g429148
BLASTN
1038
1e−77
97


5128
3591
701160410H1
SATMONN04
g429148
BLASTN
568
1e−65
85


5129
4329
700051281H1
SATMON003
g3132309
BLASTN
1520
1e−117
100


5130
4329
700075340H1
SATMON007
g3132309
BLASTN
1490
1e−115
100


5131
4329
700259374H1
SATMON017
g3132309
BLASTN
1451
1e−111
99


5132
4329
700026464H1
SATMON003
g3132309
BLASTN
1405
1e−108
100


5133
4329
700075594H1
SATMON007
g3132309
BLASTN
1395
1e−107
100


5134
4329
700074584H1
SATMON007
g3132309
BLASTN
1397
1e−107
97


5135
4329
700211639H1
SATMON016
g3132309
BLASTN
1310
1e−100
95


5136
4329
700477352H1
SATMON025
g3132309
BLASTN
685
1e−98
99


5137
4329
700212885H1
SATMON016
g3132309
BLASTN
1262
1e−96
97


5138
4329
700150132H1
SATMON007
g3132309
BLASTN
1193
1e−90
99


5139
4329
700150124H1
SATMON007
g3132309
BLASTN
1175
1e−89
100


5140
4329
700382807H1
SATMON024
g3132309
BLASTN
785
1e−87
98


5141
4329
700219884H1
SATMON011
g3132309
BLASTN
905
1e−81
98


5142
4329
700203986H1
SATMON003
g3132309
BLASTN
1078
1e−80
99


5143
4329
700155306H1
SATMON007
g21629
BLASTN
838
1e−60
92


5144
4329
700474781H1
SATMON025
g3132309
BLASTN
353
1e−39
94


5145
4530
700574802H1
SATMON030
g429148
BLASTN
1236
1e−113
98


5146
4530
700049340H1
SATMON003
g429148
BLASTN
1185
1e−110
100


5147
4530
701180032H1
SATMONN05
g429148
BLASTN
954
1e−95
99


5148
4530
700611642H1
SATMON022
g429148
BLASTN
1059
1e−84
94


5149
4530
700203138H1
SATMON003
g429148
BLASTN
883
1e−71
96


5150
4530
700029976H1
SATMON003
g429148
BLASTN
805
1e−68
97


5151
7486
700614328H1
SATMON033
g169843
BLASTN
1437
1e−110
96


5152
7486
700352909H1
SATMON024
g169843
BLASTN
1035
1e−77
96


5153
8267
700073585H1
SATMON007
g429148
BLASTN
1395
1e−107
100


5154
8267
700023118H1
SATMON003
g429148
BLASTN
1266
1e−96
99


5155
8267
700456524H1
SATMON029
g429148
BLASTN
743
1e−92
95


5156
8267
700030070H1
SATMON003
g429148
BLASTN
890
1e−70
95


5157
8340
700077313H1
SATMON007
g3132309
BLASTN
1575
1e−122
100


5158
8340
700381893H1
SATMON023
g21629
BLASTN
1329
1e−101
96


5159
8340
700574357H2
SATMON030
g3132309
BLASTN
1040
1e−100
100


5160
8340
700548421H1
SATMON022
g3132309
BLASTN
1217
1e−99
94


5161
8340
700029043H1
SATMON003
g3132309
BLASTN
1273
1e−97
99


5162
8340
700553323H1
SATMON022
g3132309
BLASTN
1276
1e−97
99


5163
8340
700167824H1
SATMON013
g3132309
BLASTN
1190
1e−90
100


5164
8340
700153945H1
SATMON007
g3132309
BLASTN
1113
1e−83
99


5165
8340
700615517H1
SATMON033
g3132309
BLASTN
874
1e−76
96


5166
8340
700265822H1
SATMON017
g3132309
BLASTN
755
1e−54
100


5167
9226
700223020H1
SATMON011
g169843
BLASTN
1098
1e−82
92


5168
9226
700613182H1
SATMON033
g169843
BLASTN
936
1e−76
91


5169
-L1437153
LIB143-036-
LIB143
g18463
BLASTN
262
1e−12
66




Q1-E1-D6


5170
-L1482958
LIB148-011-
LIB148
g18463
BLASTN
211
1e−8
72




Q1-E1-D6


5171
-L1893647
LIB189-031-
LIB189
g22407
BLASTN
888
1e−76
81




Q1-E1-H12


5172
-L30596200
LIB3059-060-
LIB3059
g169843
BLASTN
276
1e−11
76




Q1-K1-G6


5173
-L30602129
LIB3060-009-
LIB3060
g22415
BLASTN
369
1e−70
91




Q1-K1-C3


5174
-L30602452
LIB3060-011-
LIB3060
g22396
BLASTN
198
1e−15
82




Q1-K1-F9


5175
-L30603203
LIB3060-029-
LIB3060
g22407
BLASTN
1486
1e−114
83




Q1-K1-A8


5176
-L30604116
LIB3060-040-
LIB3060
g18463
BLASTN
260
1e−12
64




Q1-K1-D7


5177
-L30604857
LIB3060-020-
LIB3060
g22407
BLASTN
459
1e−40
86




Q1-K1-G9


5178
-L30606181
LIB3060-019-
LIB3060
g22407
BLASTN
254
1e−38
69




Q1-K1-B5


5179
-L30684867
LIB3068-040-
LIB3068
g18463
BLASTN
216
1e−9
69




Q1-K1-A3


5180
-L30684926
LIB3068-040-
LIB3068
g18463
BLASTN
264
1e−11
64




Q1-K1-H6


5181
-L30686577
LIB3068-010-
LIB3068
g18463
BLASTN
209
1e−8
71




Q1-K1-E2


5182
-L30695246
LIB3069-036-
LIB3069
g169843
BLASTN
257
1e−10
79




Q1-K1-G3


5183
-L30695363
LIB3069-035-
LIB3069
g429148
BLASTN
371
1e−35
91




Q1-K1-D7


5184
-L30782259
LIB3078-007-
LIB3078
g22415
BLASTN
548
1e−46
72




Q1-K1-E3


5185
-L30783285
LIB3078-051-
LIB3078
g22415
BLASTN
941
1e−84
78




Q1-K1-F1


5186
-L361508
LIB36-008-
LIB36
g22415
BLASTN
825
1e−59
90




Q1-E1-B4


5187
-L362677
LIB36-007-
LIB36
g22614
BLASTN
235
1e−8
77




Q1-E1-G11


5188
-L841179
LIB84-013-
LIB84
g22415
BLASTN
594
1e−40
81




Q1-E1-A10


5189
-L841868
LIB84-029-
LIB84
g18463
BLASTN
237
1e−10
66




Q1-E1-F12


5190
1418
LIB36-002-
LIB36
g22562
BLASTN
2116
1e−177
99




Q1-E1-G4


5191
1418
LIB36-002-
LIB36
g22562
BLASTN
2184
1e−173
98




Q1-E1-E9


5192
1418
LIB36-002-
LIB36
g22415
BLASTN
2175
1e−172
98




Q1-E1-D11


5193
1418
LIB3060-035-
LIB3060
g22415
BLASTN
2143
1e−169
98




Q1-K1-E11


5194
1418
LIB3060-003-
LIB3060
g22407
BLASTN
2003
1e−168
98




Q1-K1-E12


5195
1418
LIB3060-012-
LIB3060
g22407
BLASTN
2127
1e−168
98




Q1-K1-F9


5196
1418
LIB36-009-
LIB36
g22396
BLASTN
2133
1e−168
99




Q1-E1-D9


5197
1418
LIB3078-014-
LIB3078
g22415
BLASTN
2117
1e−167
99




Q1-K1-G9


5198
1418
LIB36-003-
LIB36
g22396
BLASTN
2107
1e−166
98




Q1-E1-G4


5199
1418
LIB3060-016-
LIB3060
g22407
BLASTN
2096
1e−165
99




Q1-K1-A6


5200
1418
LIB3060-021-
LIB3060
g22415
BLASTN
1532
1e−164
97




Q1-K1-E1


5201
1418
LIB36-013-
LIB36
g22415
BLASTN
2067
1e−163
98




Q1-E1-A10


5202
1418
LIB36-012-
LIB36
g22415
BLASTN
1865
1e−161
97




Q1-E1-E3


5203
1418
LIB36-003-
LIB36
g22415
BLASTN
2048
1e−161
97




Q1-E1-B9


5204
1418
LIB3078-015-
LIB3078
g22396
BLASTN
2005
1e−158
99




Q1-K1-F11


5205
1418
LIB189-024-
LIB189
g22396
BLASTN
2007
1e−158
99




Q1-E1-A11


5206
1418
LIB36-002-
LIB36
g22415
BLASTN
2013
1e−158
92




Q1-E1-C1


5207
1418
LIB3078-056-
LIB3078
g22562
BLASTN
1612
1e−157
90




Q1-K1-B2


5208
1418
LIB3060-048-
LIB3060
g22415
BLASTN
1824
1e−156
92




Q1-K1-A9


5209
1418
LIB189-011-
LIB189
g22415
BLASTN
1849
1e−156
96




Q1-E1-F6


5210
1418
LIB3060-054-
LIB3060
g22415
BLASTN
1912
1e−156
96




Q1-K1-E7


5211
1418
LIB3078-016-
LIB3078
g22562
BLASTN
1960
1e−156
99




Q1-K1-C2


5212
1418
LIB3060-009-
LIB3060
g22562
BLASTN
1626
1e−155
94




Q1-K1-C11


5213
1418
LIB36-003-
LIB36
g22562
BLASTN
1841
1e−154
97




Q1-E1-F7


5214
1418
LIB3060-045-
LIB3060
g22407
BLASTN
1353
1e−153
95




Q1-K1-B2


5215
1418
LIB3060-052-
LIB3060
g22407
BLASTN
1041
1e−152
95




Q1-K1-B6


5216
1418
LIB36-018-
LIB36
g22415
BLASTN
1637
1e−152
92




Q1-E1-D4


5217
1418
LIB189-024-
LIB189
g22396
BLASTN
1939
1e−152
93




Q1-E1-E3


5218
1418
LIB36-010-
LIB36
g22396
BLASTN
1004
1e−151
94




Q1-E1-H4


5219
1418
LIB3060-012-
LIB3060
g22415
BLASTN
1532
1e−150
90




Q1-K1-B10


5220
1418
LIB3060-019-
LIB3060
g22415
BLASTN
1919
1e−150
97




Q1-K1-G7


5221
1418
LIB36-022-
LIB36
g22562
BLASTN
1851
1e−149
95




Q1-E1-E7


5222
1418
LIB3060-021-
LIB3060
g22562
BLASTN
869
1e−147
94




Q1-K1-C2


5223
1418
LIB3060-053-
LIB3060
g22415
BLASTN
1578
1e−145
93




Q1-K1-D6


5224
1418
LIB189-006-
LIB189
g22415
BLASTN
1682
1e−145
99




Q1-E1-D4


5225
1418
LIB3060-011-
LIB3060
g22415
BLASTN
1712
1e−144
96




Q1-K1-A5


5226
1418
LIB189-022-
LIB189
g22562
BLASTN
1774
1e−144
96




Q1-E1-H8


5227
1418
LIB3061-017-
LIB3061
g22562
BLASTN
1533
1e−142
93




Q1-K1-E11


5228
1418
LIB83-002-
LIB83
g22415
BLASTN
1122
1e−140
95




Q1-E1-E1


5229
1418
LIB3060-020-
LIB3060
g22415
BLASTN
1542
1e−139
93




Q1-K1-C10


5230
1418
LIB3060-041-
LIB3060
g22407
BLASTN
1602
1e−136
98




Q1-K1-G7


5231
1418
LIB189-016-
LIB189
g22562
BLASTN
1318
1e−135
95




Q1-E1-C1


5232
1418
LIB189-031-
LIB189
g22415
BLASTN
1613
1e−134
95




Q1-E1-H11


5233
1418
LIB189-028-
LIB189
g22562
BLASTN
1600
1e−130
100




Q1-E1-B6


5234
1418
LIB36-019-
LIB36
g22415
BLASTN
1245
1e−129
96




Q1-E1-A5


5235
1418
LIB3060-023-
LIB3060
g22415
BLASTN
1650
1e−128
81




Q1-K1-G11


5236
1418
LIB36-018-
LIB36
g22396
BLASTN
1228
1e−127
96




Q1-E1-A4


5237
1418
LIB3060-008-
LIB3060
g22396
BLASTN
1570
1e−126
99




Q1-K1-B10


5238
1418
LIB83-009-
LIB83
g22562
BLASTN
1421
1e−123
98




Q1-E1-A11


5239
1418
LIB189-002-
LIB189
g22562
BLASTN
1477
1e−122
99




Q1-E1-B7


5240
1418
LIB3060-045-
LIB3060
g22562
BLASTN
1078
1e−121
90




Q1-K1-B1


5241
1418
LIB36-007-
LIB36
g22415
BLASTN
1536
1e−119
98




Q1-E1-A11


5242
1418
LIB36-006-
LIB36
g22407
BLASTN
1304
1e−117
97




Q1-E1-D3


5243
1418
LIB36-002-
LIB36
g22396
BLASTN
1505
1e−116
94




Q1-E1-E7


5244
1418
LIB36-012-
LIB36
g22396
BLASTN
1241
1e−113
97




Q1-E1-F6


5245
1418
LIB189-032-
LIB189
g22407
BLASTN
803
1e−106
92




Q1-E1-E4


5246
1418
LIB36-018-
LIB36
g22396
BLASTN
916
1e−104
92




Q1-E1-H1


5247
1418
LIB3078-023-
LIB3078
g22396
BLASTN
1052
1e−96
84




Q1-K1-H1


5248
1418
LIB3060-019-
LIB3060
g22415
BLASTN
1109
1e−96
88




Q1-K1-E7


5249
1418
LIB3060-042-
LIB3060
g22407
BLASTN
1236
1e−94
94




Q1-K1-E5


5250
1418
LIB3060-019-
LIB3060
g22415
BLASTN
978
1e−92
75




Q1-K1-B3


5251
1418
LIB36-009-
LIB36
g22396
BLASTN
1128
1e−90
98




Q1-E1-D2


5252
1418
LIB189-009-
LIB189
g22407
BLASTN
1107
1e−89
96




Q1-E1-G7


5253
1418
LIB83-007-
LIB83
g22396
BLASTN
1151
1e−86
99




Q1-E1-G12


5254
1418
LIB36-007-
LIB36
g22396
BLASTN
1136
1e−85
99




Q1-E1-G7


5255
1418
LIB3060-004-
LIB3060
g22415
BLASTN
521
1e−82
92




Q1-K1-C8


5256
1418
LIB3060-026-
LIB3060
g22407
BLASTN
339
1e−76
81




Q1-K1-C11


5257
1418
LIB3060-022-
LIB3060
g22407
BLASTN
845
1e−72
88




Q1-K1-G9


5258
1418
LIB189-029-
LIB189
g22407
BLASTN
611
1e−67
93




Q1-E1-C4


5259
1418
LIB3060-019-
LIB3060
g22407
BLASTN
389
1e−66
87




Q1-K1-E3


5260
1418
LIB36-004-
LIB36
g22407
BLASTN
649
1e−62
83




Q1-E1-E2


5261
1418
LIB83-005-
LIB83
g22396
BLASTN
656
1e−45
99




Q1-E1-A6


5262
1418
LIB84-026-
LIB84
g22407
BLASTN
337
1e−43
89




Q1-E1-F1


5263
1418
LIB84-014-
LIB84
g22396
BLASTN
435
1e−27
100




Q1-E1-A8


5264
1418
LIB36-021-
LIB36
g22396
BLASTN
346
1e−19
99




Q1-E1-H5


5265
16592
LIB3060-041-
LIB3060
g22415
BLASTN
1550
1e−173
99




Q1-K1-A12


5266
16592
LIB3060-007-
LIB3060
g22562
BLASTN
2092
1e−165
98




Q1-K1-C8


5267
16592
LIB3060-014-
LIB3060
g22562
BLASTN
2034
1e−160
96




Q1-K1-D4


5268
16592
LIB3060-029-
LIB3060
g22562
BLASTN
1998
1e−157
97




Q1-K1-H6


5269
16592
LIB3060-011-
LIB3060
g22562
BLASTN
1805
1e−155
96




Q1-K1-G8


5270
16592
LIB3060-007-
LIB3060
g22562
BLASTN
1875
1e−155
94




Q1-K1-E2


5271
16592
LIB3060-003-
LIB3060
g22415
BLASTN
1266
1e−135
89




Q1-K1-E9


5272
16592
LIB3060-026-
LIB3060
g22415
BLASTN
1712
1e−133
91




Q1-K1-H9


5273
16592
LIB3060-020-
LIB3060
g22412
BLASTN
699
1e−113
95




Q1-K1-F11


5274
201
LIB3067-017-
LIB3067
g3132309
BLASTN
905
1e−98
81




Q1-K1-H10


5275
21797
LIB3067-036-
LIB3067
g3132309
BLASTN
993
1e−117
89




Q1-K1-C4


5276
26948
LIB3069-056-
LIB3069
g21629
BLASTN
273
1e−15
85




Q1-K1-C9


5277
26948
LIB36-004-
LIB36
g21629
BLASTN
273
1e−14
83




Q1-E1-E1


5278
30586
LIB3067-044-
LIB3067
g467551
BLASTN
1151
1e−87
79




Q1-K1-F10


5279
3591
LIB3059-005-
LIB3059
g429148
BLASTN
2207
1e−174
99




Q1-K1-A6


5280
4329
LIB3060-051-
LIB3060
g21629
BLASTN
1872
1e−147
91




Q1-K1-H4


5281
4530
LIB3059-014-
LIB3059
g429148
BLASTN
2071
1e−163
98




Q1-K1-E8


5282
9226
LIB3069-044-
LIB3069
g169843
BLASTN
1596
1e−123
89




Q1-K1-F2







SOYBEAN PHOSPHOENOLPYRUVATE CARBOXYLASE















5283
-700564927
700564927H1
SOYMON002
g218266
BLASTN
522
1e−79
95


5284
-700567858
700567858H1
SOYMON002
g2266946
BLASTN
892
1e−69
83


5285
-700648673
700648673H1
SOYMON003
g467551
BLASTN
1020
1e−106
97


5286
-700659068
700659068H1
SOYMON004
g218266
BLASTN
1095
1e−95
100


5287
-700728930
700728930H1
SOYMON009
g166416
BLASTX
114
1e−12
49


5288
-700739901
700739901H1
SOYMON012
g2266946
BLASTN
868
1e−63
81


5289
-700741179
700741179H1
SOYMON012
g2959439
BLASTX
190
1e−20
88


5290
-700742902
700742902H1
SOYMON012
g147341
BLASTX
71
1e−9
46


5291
-700751669
700751669H1
SOYMON014
g169844
BLASTX
263
1e−29
58


5292
-700753587
700753587H1
SOYMON014
g2266946
BLASTN
750
1e−53
81


5293
-700755512
700755512H1
SOYMON014
g218266
BLASTN
1173
1e−88
99


5294
-700755528
700755528H1
SOYMON014
g218266
BLASTN
623
1e−48
88


5295
-700834546
700834546H1
SOYMON019
g2266946
BLASTN
826
1e−59
85


5296
-700864136
700864136H1
SOYMON016
g2266946
BLASTN
637
1e−44
79


5297
-700876401
700876401H1
SOYMON018
g22560
BLASTN
540
1e−64
84


5298
-700890236
700890236H1
SOYMON024
g467551
BLASTN
491
1e−63
94


5299
-700955462
700955462H1
SOYMON022
g467551
BLASTN
521
1e−74
95


5300
-700959358
700959358H1
SOYMON022
g218266
BLASTN
1245
1e−94
100


5301
-700971291
700971291H1
SOYMON005
g218266
BLASTN
1307
1e−100
99


5302
-700979408
700979408H1
SOYMON009
g2266946
BLASTN
798
1e−70
85


5303
-700987250
700987250H1
SOYMON009
g2266946
BLASTN
656
1e−58
78


5304
-700987503
700987503H1
SOYMON009
g218266
BLASTN
890
1e−65
80


5305
-700991194
700991194H1
SOYMON011
g2266946
BLASTN
600
1e−41
78


5306
-701002203
701002203H1
SOYMON018
g2626748
BLASTN
420
1e−57
94


5307
-701043122
701043122H1
SOYMON029
g467551
BLASTN
823
1e−59
96


5308
-701043454
701043454H1
SOYMON029
g218266
BLASTN
631
1e−75
98


5309
-701046608
701046608H1
SOYMON032
g218266
BLASTN
891
1e−87
95


5310
-701062388
701062388H1
SOYMON033
g2626744
BLASTN
476
1e−40
93


5311
-701119910
701119910H1
SOYMON037
g2626742
BLASTN
630
1e−49
78


5312
-701213104
701213104H1
SOYMON035
g2266946
BLASTN
475
1e−57
78


5313
10663
700732365H1
SOYMON010
g2266946
BLASTN
875
1e−64
82


5314
10663
700981524H1
SOYMON009
g2266946
BLASTN
596
1e−62
80


5315
11125
700663617H1
SOYMON005
g218266
BLASTN
410
1e−38
98


5316
11125
700663717H1
SOYMON005
g218266
BLASTN
410
1e−35
85


5317
11125
700870993H1
SOYMON018
g218266
BLASTN
231
1e−9
96


5318
11227
700686116H1
SOYMON008
g2266946
BLASTN
995
1e−74
85


5319
11227
700944212H1
SOYMON024
g2266946
BLASTN
936
1e−69
85


5320
12325
700985848H1
SOYMON009
g2626742
BLASTN
1275
1e−97
94


5321
12325
701120339H1
SOYMON037
g467551
BLASTN
1210
1e−91
100


5322
12325
701214949H1
SOYMON035
g2626742
BLASTN
1175
1e−89
100


5323
12325
701096990H1
SOYMON028
g467551
BLASTN
1054
1e−78
94


5324
12325
701038039H1
SOYMON029
g467551
BLASTN
666
1e−77
98


5325
12325
701006212H2
SOYMON019
g467551
BLASTN
716
1e−62
95


5326
14728
700730704H1
SOYMON009
g2145426
BLASTX
147
1e−17
54


5327
14728
700685609H1
SOYMON008
g3341490
BLASTX
177
1e−17
43


5328
15298
701041573H1
SOYMON029
g2626742
BLASTN
1325
1e−101
100


5329
15298
701099785H1
SOYMON028
g2626742
BLASTN
1145
1e−100
100


5330
15298
700897382H1
SOYMON027
g2626742
BLASTN
972
1e−81
98


5331
17279
700874273H1
SOYMON018
g218266
BLASTN
980
1e−92
100


5332
17279
700684541H1
SOYMON008
g218266
BLASTN
328
1e−79
98


5333
18846
700836067H1
SOYMON019
g2626746
BLASTN
687
1e−97
99


5334
18846
700567643H1
SOYMON002
g2626746
BLASTN
1082
1e−83
99


5335
21305
700744392H1
SOYMON013
g19535
BLASTN
330
1e−33
78


5336
21305
700747092H1
SOYMON013
g19535
BLASTN
264
1e−28
80


5337
21695
700666285H1
SOYMON005
g218266
BLASTN
1251
1e−95
99


5338
21695
700945580H1
SOYMON024
g218266
BLASTN
1079
1e−81
88


5339
21940
701068565H1
SOYMON034
g218266
BLASTN
1334
1e−102
98


5340
21940
700943287H1
SOYMON024
g218266
BLASTN
945
1e−74
96


5341
22008
701040960H1
SOYMON029
g2626742
BLASTN
1321
1e−101
99


5342
22008
701038869H1
SOYMON029
g2626742
BLASTN
711
1e−66
99


5343
25805
700834887H1
SOYMON019
g2626742
BLASTN
1132
1e−85
95


5344
25805
701127019H1
SOYMON037
g467551
BLASTN
748
1e−80
96


5345
26379
701154209H1
SOYMON031
g2266946
BLASTN
799
1e−57
81


5346
26379
701154248H1
SOYMON031
g2626742
BLASTN
735
1e−52
81


5347
27397
701122563H1
SOYMON037
g2266946
BLASTN
753
1e−53
85


5348
27397
701122647H1
SOYMON037
g2266946
BLASTN
602
1e−41
76


5349
28129
701123443H1
SOYMON037
g1146155
BLASTX
102
1e−14
58


5350
6467
700648723H1
SOYMON003
g1213341
BLASTX
165
1e−19
68


5351
6467
700648341H1
SOYMON003
g1146154
BLASTN
257
1e−12
74


5352
7471
700889346H1
SOYMON024
g2266946
BLASTN
921
1e−67
85


5353
7471
700741422H1
SOYMON012
g2266946
BLASTN
891
1e−65
85


5354
7951
700962862H1
SOYMON022
g467551
BLASTN
1236
1e−94
99


5355
7951
700729127H1
SOYMON009
g467551
BLASTN
665
1e−93
100


5356
7951
700962754H1
SOYMON022
g467551
BLASTN
1127
1e−87
94


5357
9942
701042717H1
SOYMON029
g2626742
BLASTN
1275
1e−97
100


5358
9942
700943121H1
SOYMON024
g467551
BLASTN
1243
1e−94
99


5359
-GM12190
LIB3049-036-
LIB3049
g18463
BLASTN
319
1e−16
69




Q1-E1-F5


5360
-GM13015
LIB3049-037-
LIB3049
g18463
BLASTN
248
1e−11
74




Q1-E1-D7


5361
-GM13035
LIB3049-037-
LIB3049
g18463
BLASTN
250
1e−11
65




Q1-E1-A8


5362
-GM13114
LIB3049-037-
LIB3049
g18463
BLASTN
239
1e−9
63




Q1-E1-E12


5363
-GM13510
LIB3049-046-
LIB3049
g2959438
BLASTN
531
1e−33
88




Q1-E1-A2


5364
-GM13784
LIB3049-048-
LIB3049
g18463
BLASTN
242
1e−9
62




Q1-E1-E12


5365
-GM13839
LIB3049-051-
LIB3049
g18463
BLASTN
230
1e−10
60




Q1-E1-C6


5366
-GM14450
LIB3049-056-
LIB3049
g18463
BLASTN
231
1e−8
61




Q1-E1-D1


5367
-GM24091
LIB3040-011-
LIB3040
g18463
BLASTN
221
1e−9
66




Q1-E1-G3


5368
-GM2515
LIB3028-013-
LIB3028
g18463
BLASTN
242
1e−11
66




Q1-B1-H1


5369
-GM6973
LIB3039-025-
LIB3039
g18463
BLASTN
240
1e−11
66




Q1-E1-C6


5370
-GM7231
LIB3039-024-
LIB3039
g18463
BLASTN
264
1e−12
65




Q1-E1-C7


5371
12325
LIB3056-009-
LIB3056
g467551
BLASTN
1487
1e−123
93




Q1-N1-H12







MAIZE NADP-DEPENDENT MALATE DEHYDROGENASE















5372
-700579267
700579267H1
SATMON031
g22367
BLASTN
472
1e−43
88


5373
4577
700098054H1
SATMON009
g22367
BLASTN
835
1e−121
100


5374
4577
700097706H1
SATMON009
g22367
BLASTN
1536
1e−119
98


5375
4577
700097409H1
SATMON009
g22367
BLASTN
1497
1e−116
98


5376
4577
700100389H1
SATMON009
g22367
BLASTN
1431
1e−110
98


5377
4577
700098228H1
SATMON009
g22367
BLASTN
1405
1e−108
93


5378
4577
700042625H1
SATMON004
g22367
BLASTN
1366
1e−105
99


5379
4577
700044532H1
SATMON004
g22367
BLASTN
1366
1e−105
99


5380
4577
700426221H1
SATMONN01
g22367
BLASTN
761
1e−103
98


5381
4577
700045403H1
SATMON004
g22367
BLASTN
1145
1e−103
100


5382
4577
700100550H1
SATMON009
g22367
BLASTN
747
1e−101
97


5383
4577
700439608H1
SATMON026
g22367
BLASTN
1187
1e−100
97


5384
4577
700578318H1
SATMON031
g22367
BLASTN
755
1e−97
98


5385
4577
700084313H1
SATMON011
g22367
BLASTN
589
1e−96
98


5386
4577
700434067H1
SATMONN01
g22367
BLASTN
697
1e−95
98


5387
4577
700578011H1
SATMON031
g22367
BLASTN
1125
1e−93
99


5388
4577
700099962H1
SATMON009
g22367
BLASTN
1231
1e−93
87


5389
4577
700445309H1
SATMON027
g22367
BLASTN
452
1e−92
96


5390
4577
700213872H1
SATMON016
g22367
BLASTN
1181
1e−89
92


5391
4577
700578418H1
SATMON031
g22367
BLASTN
981
1e−85
95


5392
4577
700429351H1
SATMONN01
g22367
BLASTN
624
1e−84
96


5393
4577
700045012H1
SATMON004
g22367
BLASTN
1125
1e−84
94


5394
4577
700197938H1
SATMON016
g22367
BLASTN
1108
1e−83
99


5395
4577
700433880H1
SATMONN01
g22367
BLASTN
755
1e−73
97


5396
4577
700043693H1
SATMON004
g22367
BLASTN
886
1e−73
95


5397
4577
700581629H1
SATMON031
g22367
BLASTN
335
1e−69
91


5398
4577
700422827H1
SATMONN01
g22367
BLASTN
831
1e−69
96


5399
4577
700167037H1
SATMON013
g22367
BLASTN
889
1e−65
94


5400
4577
700438770H1
SATMON026
g22367
BLASTN
666
1e−53
94


5401
4577
700425253H1
SATMONN01
g22367
BLASTN
436
1e−50
95


5402
4577
700423354H1
SATMONN01
g22367
BLASTN
462
1e−50
97


5403
4577
700211538H1
SATMON016
g22367
BLASTN
540
1e−43
100


5404
4577
700097126H1
SATMON009
g22367
BLASTN
504
1e−33
97


5405
4577
700098826H1
SATMON009
g22367
BLASTN
488
1e−31
90


5406
4577
700100862H1
SATMON009
g22367
BLASTN
189
1e−13
92


5407
-L30602059
LIB3060-016-
LIB3060
g22367
BLASTN
838
1e−128
87




Q1-K1-C12


5408
4577
LIB36-016-
LIB36
g22367
BLASTN
2081
1e−164
98




Q2-E2-D10


5409
4577
LIB3078-033-
LIB3078
g22367
BLASTN
2048
1e−162
93




Q1-K1-F11


5410
4577
LIB36-013-
LIB36
g22367
BLASTN
2051
1e−162
97




Q1-E1-D5


5411
4577
LIB3060-021-
LIB3060
g22367
BLASTN
1589
1e−156
96




Q1-K1-F9


5412
4577
LIB36-015-
LIB36
g22367
BLASTN
1805
1e−153
98




Q1-E1-A7


5413
4577
LIB36-002-
LIB36
g22367
BLASTN
1723
1e−149
91




Q1-E1-D3


5414
4577
LIB3060-013-
LIB3060
g22367
BLASTN
1836
1e−149
96




Q1-K1-G5


5415
4577
LIB3060-013-
LIB3060
g22367
BLASTN
1091
1e−135
95




Q1-K1-G2


5416
4577
LIB36-020-
LIB36
g22367
BLASTN
1400
1e−130
96




Q1-E1-F1


5417
4577
LIB3079-013-
LIB3079
g22367
BLASTN
1474
1e−128
98




Q1-K1-G10


5418
4577
LIB189-018-
LIB189
g22367
BLASTN
1427
1e−125
93




Q1-E1-C10


5419
4577
LIB3078-052-
LIB3078
g22367
BLASTN
1306
1e−114
90




Q1-K1-B9







SOYBEAN NADP-DEPENDENT MALATE DEHYDROGENASE















5420
-701120823
701120823H1
SOYMON037
g397474
BLASTN
410
1e−52
84


5421
13458
700897079H1
SOYMON027
g397474
BLASTN
874
1e−64
83


5422
5228
701139976H1
SOYMON038
g397474
BLASTN
1145
1e−86
92


5423
5228
700738591H1
SOYMON012
g397474
BLASTN
991
1e−73
91







MAIZE ASPARTATE AMINOTRANSFERASE















5424
-700028003
700028003H1
SATMON003
g63066
BLASTX
125
1e−10
79


5425
-700072842
700072842H1
SATMON007
g1001121
BLASTX
259
1e−28
50


5426
-700194011
700194011H1
SATMON014
g435456
BLASTN
324
1e−18
73


5427
-700196486
700196486H1
SATMON014
g20599
BLASTX
68
1e−10
74


5428
-700331820
700331820H1
SATMON019
g20600
BLASTN
1192
1e−90
90


5429
-700454550
700454550H1
SATMON029
g435458
BLASTN
198
1e−20
82


5430
-700454567
700454567H1
SATMON029
g435458
BLASTN
333
1e−24
82


5431
-700454642
700454642H1
SATMON029
g435458
BLASTN
269
1e−23
89


5432
-700454849
700454849H1
SATMON029
g435458
BLASTN
318
1e−26
87


5433
-700468560
700468560H1
SATMON025
g3328816
BLASTX
139
1e−19
58


5434
-700476413
700476413H1
SATMON025
g2984217
BLASTX
156
1e−22
52


5435
-700615109
700615109H1
SATMON033
g20598
BLASTN
256
1e−17
81


5436
-701161385
701161385H1
SATMONN04
g435458
BLASTN
523
1e−45
80


5437
10165
700341126H1
SATMON020
g20596
BLASTN
743
1e−71
91


5438
10165
700160220H1
SATMON012
g20596
BLASTN
769
1e−55
92


5439
10165
700158802H1
SATMON012
g20596
BLASTN
617
1e−42
94


5440
10192
700204319H1
SATMON003
g2984217
BLASTX
148
1e−13
55


5441
10329
700095671H1
SATMON008
g20600
BLASTN
816
1e−59
87


5442
10329
700214146H1
SATMON016
g20596
BLASTN
610
1e−42
88


5443
10329
700041823H1
SATMON004
g20596
BLASTN
615
1e−42
78


5444
10329
700094321H1
SATMON008
g20596
BLASTN
559
1e−40
88


5445
1148
700089060H1
SATMON011
g633094
BLASTN
1397
1e−107
92


5446
1148
700044414H1
SATMON004
g633094
BLASTN
1272
1e−97
92


5447
1148
700101429H1
SATMON009
g633094
BLASTN
1221
1e−92
91


5448
1148
700221366H1
SATMON011
g633094
BLASTN
1205
1e−91
94


5449
1148
700101604H1
SATMON009
g633094
BLASTN
1167
1e−88
89


5450
1148
700041864H1
SATMON004
g633094
BLASTN
1159
1e−87
91


5451
1148
700157048H1
SATMON012
g633094
BLASTN
1121
1e−84
93


5452
1148
700581463H1
SATMON031
g633094
BLASTN
1124
1e−84
90


5453
1148
700579938H1
SATMON031
g633094
BLASTN
661
1e−83
91


5454
1148
700432477H1
SATMONN01
g633094
BLASTN
1050
1e−78
90


5455
1148
700154706H1
SATMON007
g633094
BLASTN
997
1e−74
90


5456
1148
700043761H1
SATMON004
g633094
BLASTN
905
1e−66
92


5457
1148
700423679H1
SATMONN01
g633094
BLASTN
555
1e−54
81


5458
1148
700424076H1
SATMONN01
g633094
BLASTN
228
1e−19
87


5459
1148
701166426H1
SATMONN04
g633094
BLASTN
221
1e−16
79


5460
16872
700211160H1
SATMON016
g633094
BLASTN
482
1e−56
88


5461
16872
700043705H1
SATMON004
g633094
BLASTN
293
1e−42
85


5462
16872
700208983H1
SATMON016
g633094
BLASTN
250
1e−15
84


5463
16872
700101375H1
SATMON009
g633094
BLASTN
154
1e−11
87


5464
17829
700581970H1
SATMON031
g1001309
BLASTX
107
1e−11
53


5465
17829
700194282H1
SATMON014
g1001309
BLASTX
107
1e−11
53


5466
18047
700206971H1
SATMON003
g1103380
BLASTX
107
1e−12
53


5467
19241
700472363H1
SATMON025
g20598
BLASTN
1010
1e−81
89


5468
19241
700472263H1
SATMON025
g20598
BLASTN
916
1e−78
89


5469
19241
700806145H1
SATMON036
g20598
BLASTN
947
1e−74
92


5470
319
700076939H1
SATMON007
g20598
BLASTN
1102
1e−83
89


5471
319
700349974H1
SATMON023
g20598
BLASTN
1018
1e−80
84


5472
319
700235923H1
SATMON010
g20598
BLASTN
1017
1e−79
88


5473
319
700206180H1
SATMON003
g20598
BLASTN
838
1e−78
86


5474
319
700476547H1
SATMON025
g20598
BLASTN
794
1e−76
88


5475
319
700258893H1
SATMON017
g20598
BLASTN
897
1e−73
89


5476
319
700612236H1
SATMON022
g20598
BLASTN
820
1e−72
86


5477
319
700806537H1
SATMON036
g20598
BLASTN
949
1e−70
87


5478
319
700450338H1
SATMON028
g20598
BLASTN
912
1e−67
85


5479
319
700806243H1
SATMON036
g20598
BLASTN
782
1e−66
87


5480
319
700263732H1
SATMON017
g435456
BLASTN
662
1e−61
86


5481
319
700806094H1
SATMON036
g20598
BLASTN
375
1e−59
91


5482
319
700152610H1
SATMON007
g20598
BLASTN
806
1e−58
85


5483
319
700614581H1
SATMON033
g20598
BLASTN
729
1e−51
89


5484
319
700349161H1
SATMON023
g20598
BLASTN
270
1e−30
87


5485
319
700805964H1
SATMON036
g20598
BLASTN
463
1e−29
79


5486
319
700450544H1
SATMON028
g20598
BLASTN
280
1e−27
86


5487
319
700618252H1
SATMON033
g20598
BLASTN
407
1e−26
86


5488
319
700615189H1
SATMON033
g20598
BLASTN
309
1e−25
87


5489
319
700264196H1
SATMON017
g20598
BLASTN
412
1e−25
84


5490
4431
700211615H1
SATMON016
g1001309
BLASTX
96
1e−9
32


5491
541
700073508H1
SATMON007
g633094
BLASTN
1388
1e−106
91


5492
541
700098793H1
SATMON009
g633094
BLASTN
1329
1e−101
90


5493
541
700101956H1
SATMON009
g633094
BLASTN
1307
1e−100
89


5494
541
700100132H1
SATMON009
g633094
BLASTN
1314
1e−100
93


5495
541
700799335H1
SATMON036
g633094
BLASTN
1216
1e−92
95


5496
541
700446909H1
SATMON027
g633094
BLASTN
1154
1e−87
91


5497
541
700444305H1
SATMON027
g633094
BLASTN
988
1e−86
97


5498
541
700222187H1
SATMON011
g633094
BLASTN
1116
1e−84
89


5499
541
700093340H1
SATMON008
g633094
BLASTN
1121
1e−84
90


5500
541
700576310H1
SATMON030
g633094
BLASTN
1107
1e−83
91


5501
541
700443474H1
SATMON027
g633094
BLASTN
584
1e−82
93


5502
541
700440955H1
SATMON026
g633094
BLASTN
803
1e−82
92


5503
541
700446111H1
SATMON027
g633094
BLASTN
939
1e−81
87


5504
541
700259835H1
SATMON017
g633094
BLASTN
1073
1e−80
87


5505
541
700551206H1
SATMON022
g633094
BLASTN
968
1e−76
89


5506
541
700445905H1
SATMON027
g633094
BLASTN
464
1e−75
89


5507
541
700446192H1
SATMON027
g633094
BLASTN
774
1e−55
92


5508
541
700614693H1
SATMON033
g633094
BLASTN
600
1e−54
80


5509
7402
700439746H1
SATMON026
g20596
BLASTN
1353
1e−103
97


5510
7402
700621225H1
SATMON034
g20596
BLASTN
709
1e−72
97


5511
7402
700456918H1
SATMON029
g20596
BLASTN
968
1e−71
95


5512
7402
700453876H1
SATMON029
g20600
BLASTN
761
1e−54
96


5513
7402
700623616H1
SATMON034
g20596
BLASTN
432
1e−39
96


5514
7402
700454592H1
SATMON029
g20600
BLASTN
380
1e−30
81


5515
7402
700454593H1
SATMON029
g20600
BLASTN
310
1e−28
96


5516
7482
700197666H1
SATMON014
g2621088
BLASTX
145
1e−24
55


5517
7482
700615228H1
SATMON033
g3328816
BLASTX
201
1e−20
61


5518
7482
700030129H1
SATMON003
g3328816
BLASTX
178
1e−17
56


5519
7482
700579227H1
SATMON031
g2621088
BLASTX
132
1e−15
44


5520
786
700476002H1
SATMON025
g20598
BLASTN
1119
1e−90
92


5521
786
700461103H1
SATMON033
g20598
BLASTN
1196
1e−90
91


5522
786
700240702H1
SATMON010
g20598
BLASTN
1174
1e−89
91


5523
786
700470851H1
SATMON025
g20598
BLASTN
1138
1e−86
91


5524
786
700262654H1
SATMON017
g20598
BLASTN
1138
1e−86
91


5525
786
700452647H1
SATMON028
g20598
BLASTN
1115
1e−84
88


5526
786
700194349H1
SATMON014
g20598
BLASTN
1115
1e−84
92


5527
786
700472225H1
SATMON025
g20598
BLASTN
645
1e−82
86


5528
786
700461203H1
SATMON033
g20598
BLASTN
1019
1e−82
90


5529
786
700581588H1
SATMON031
g20598
BLASTN
561
1e−79
90


5530
786
700194330H1
SATMON014
g20598
BLASTN
1043
1e−78
90


5531
786
700194016H1
SATMON014
g20598
BLASTN
1044
1e−78
90


5532
786
700157347H1
SATMON012
g20598
BLASTN
1049
1e−78
90


5533
786
700195805H1
SATMON014
g20598
BLASTN
1049
1e−78
90


5534
786
700160255H1
SATMON012
g20598
BLASTN
1040
1e−77
93


5535
786
700582138H1
SATMON031
g20598
BLASTN
885
1e−75
88


5536
786
700197148H1
SATMON014
g20598
BLASTN
1007
1e−75
90


5537
786
700159366H1
SATMON012
g20598
BLASTN
1016
1e−75
91


5538
786
701184326H1
SATMONN06
g20598
BLASTN
815
1e−72
89


5539
786
700159491H1
SATMON012
g20598
BLASTN
979
1e−72
93


5540
786
700104663H1
SATMON010
g20598
BLASTN
966
1e−71
86


5541
786
700195003H1
SATMON014
g20598
BLASTN
779
1e−69
86


5542
786
700218254H1
SATMON016
g20598
BLASTN
942
1e−69
89


5543
786
700802451H1
SATMON036
g20598
BLASTN
581
1e−68
90


5544
786
700157772H1
SATMON012
g20598
BLASTN
887
1e−65
90


5545
786
700473425H1
SATMON025
g20598
BLASTN
466
1e−64
85


5546
786
700800486H1
SATMON036
g20598
BLASTN
868
1e−63
91


5547
786
700185039H1
SATMON014
g20598
BLASTN
859
1e−62
86


5548
786
700800057H1
SATMON036
g20598
BLASTN
567
1e−59
85


5549
786
700451832H1
SATMON028
g20598
BLASTN
501
1e−58
88


5550
786
700799994H1
SATMON036
g20598
BLASTN
570
1e−55
91


5551
786
700801486H1
SATMON036
g20598
BLASTN
750
1e−53
91


5552
786
700802086H1
SATMON036
g20598
BLASTN
459
1e−51
89


5553
786
700477105H1
SATMON025
g20598
BLASTN
708
1e−50
90


5554
786
700260426H1
SATMON017
g20598
BLASTN
702
1e−49
84


5555
786
700799811H1
SATMON036
g20598
BLASTN
409
1e−48
84


5556
786
700427005H1
SATMONN01
g20598
BLASTN
691
1e−48
89


5557
786
700803487H1
SATMON036
g20598
BLASTN
423
1e−46
83


5558
786
700262695H1
SATMON017
g20598
BLASTN
367
1e−43
89


5559
786
700471602H1
SATMON025
g20598
BLASTN
601
1e−41
90


5560
786
701185813H2
SATMONN06
g20598
BLASTN
320
1e−39
83


5561
786
700196744H1
SATMON014
g20598
BLASTN
490
1e−32
92


5562
786
701184204H1
SATMONN06
g20598
BLASTN
247
1e−10
78


5563
786
700622453H1
SATMON034
g20598
BLASTN
230
1e−8
79


5564
786
700618768H1
SATMON034
g20598
BLASTN
230
1e−8
79


5565
-L30591931
LIB3059-009-
LIB3059
g20596
BLASTN
1989
1e−157
95




Q1-K1-C12


5566
-L30593805
LIB3059-022-
LIB3059
g20596
BLASTN
377
1e−56
79




Q1-K1-H6


5567
-L30596704
LIB3059-055-
LIB3059
g20596
BLASTN
733
1e−52
89




Q1-K1-E5


5568
-L30624957
LIB3062-040-
LIB3062
g633095
BLASTX
112
1e−27
56




Q1-K1-H1


5569
-L30671766
LIB3067-014-
LIB3067
g20596
BLASTN
1132
1e−122
86




Q1-K1-B8


5570
-L30693715
LIB3069-012-
LIB3069
g142538
BLASTX
98
1e−24
47




Q1-K1-F3


5571
10329
LIB3079-007-
LIB3079
g20596
BLASTN
1201
1e−97
87




Q1-K1-B3


5572
10329
LIB143-052-
LIB143
g20596
BLASTN
751
1e−53
86




Q1-E1-E4


5573
1148
LIB3078-040-
LIB3078
g633094
BLASTN
1675
1e−130
87




Q1-K1-H1


5574
1148
LIB3062-040-
LIB3062
g633094
BLASTN
1310
1e−100
88




Q1-K1-H3


5575
1148
LIB143-054-
LIB143
g633094
BLASTN
1234
1e−94
88




Q1-E1-F1


5576
1148
LIB83-001-
LIB83
g633094
BLASTN
1030
1e−77
81




Q1-E1-A10


5577
16872
LIB36-018-
LIB36
g633094
BLASTN
542
1e−69
85




Q1-E1-D12


5578
25099
LIB3059-012-
LIB3059
g1001309
BLASTX
130
1e−36
38




Q1-K1-G3


5579
319
LIB143-022-
LIB143
g20598
BLASTN
1698
1e−135
89




Q1-E1-G3


5580
319
LIB143-048-
LIB143
g20598
BLASTN
1562
1e−126
87




Q1-E1-G12


5581
319
LIB143-001-
LIB143
g20598
BLASTN
1462
1e−113
90




Q1-E1-H6


5582
319
LIB143-002-
LIB143
g20598
BLASTN
484
1e−66
88




Q1-E1-H2


5583
32047
LIB148-034-
LIB148
g435456
BLASTN
262
1e−12
68




Q1-E1-F3


5584
32047
LIB148-032-
LIB148
g435456
BLASTN
255
1e−11
71




Q1-E1-H8


5585
541
LIB3062-033-
LIB3062
g633094
BLASTN
1706
1e−133
90




Q1-K1-G2


5586
541
LIB3062-033-
LIB3062
g633094
BLASTN
1123
1e−94
84




Q1-K1-G3


5587
541
LIB3060-005-
LIB3060
g633094
BLASTN
1061
1e−90
84




Q1-K1-C1


5588
7402
LIB3059-004-
LIB3059
g20596
BLASTN
1461
1e−142
92




Q1-K1-F4


5589
786
LIB3061-042-
LIB3061
g20598
BLASTN
1811
1e−142
88




Q1-K1-E8


5590
786
LIB143-040-
LIB143
g20598
BLASTN
1462
1e−113
92




Q1-E1-D11


5591
786
LIB143-030-
LIB143
g20598
BLASTN
1141
1e−101
90




Q1-E1-D9


5592
786
LIB3068-035-
LIB3068
g20598
BLASTN
533
1e−99
78




Q1-K1-A4


5593
786
LIB143-017-
LIB143
g20598
BLASTN
678
1e−92
82




Q1-E1-C8


5594
786
LIB143-030-
LIB143
g20598
BLASTN
1165
1e−88
86




Q1-E1-D11


5595
786
LIB3061-048-
LIB3061
g20598
BLASTN
299
1e−15
78




Q1-K1-D7


5596
786
LIB3059-056-
LIB3059
g20598
BLASTN
283
1e−12
74




Q1-K1-B1







MAIZE PUTATIVE ASPARTATE AMINOTRANSFERASE















5597
-700201453
700201453H1
SATMON003
g1049345
BLASTX
178
1e−17
64


5598
23836
700243862H1
SATMON010
g1778518
BLASTX
133
1e−11
49


5599
23836
701169557H1
SATMONN05
g1778518
BLASTX
126
1e−10
54


5600
7482
LIB3059-049-
LIB3059
g2621088
BLASTX
138
1e−48
51




Q1-K1-E5







SOYBEAN ASPARTATE AMINOTRANSFERASE















5601
-700668054
700668054H1
SOYMON006
g3328816
BLASTX
172
1e−16
53


5602
-700685655
700685655H1
SOYMON008
g387106
BLASTX
165
1e−15
62


5603
-700729138
700729138H1
SOYMON009
g2621088
BLASTX
136
1e−17
47


5604
-700734818
700734818H1
SOYMON010
g3201622
BLASTX
234
1e−25
54


5605
-700787411
700787411H2
SOYMON011
g20598
BLASTN
908
1e−66
90


5606
-700868646
700868646H1
SOYMON016
g435458
BLASTN
513
1e−33
75


5607
-700874369
700874369H1
SOYMON018
g2654093
BLASTN
808
1e−63
90


5608
-700974412
700974412H1
SOYMON005
g169914
BLASTN
249
1e−11
83


5609
-701009475
701009475H1
SOYMON019
g1001309
BLASTX
111
1e−15
49


5610
-701050301
701050301H1
SOYMON032
g169914
BLASTN
263
1e−11
75


5611
-701061267
701061267H1
SOYMON033
g169914
BLASTN
235
1e−35
88


5612
-701129551
701129551H1
SOYMON037
g169914
BLASTN
1232
1e−93
93


5613
13413
700904367H1
SOYMON022
g1001121
BLASTX
231
1e−24
52


5614
13413
700895714H1
SOYMON027
g2266762
BLASTX
175
1e−22
49


5615
13413
700727795H1
SOYMON009
g1001121
BLASTX
190
1e−19
48


5616
13503
700974712H1
SOYMON005
g169914
BLASTN
1358
1e−104
99


5617
13503
700895483H1
SOYMON027
g169914
BLASTN
1236
1e−94
97


5618
13503
700846207H1
SOYMON021
g169914
BLASTN
1136
1e−85
94


5619
14358
700909477H1
SOYMON022
g710595
BLASTN
1309
1e−100
98


5620
14358
700732673H1
SOYMON010
g710595
BLASTN
1296
1e−99
98


5621
14358
700890192H1
SOYMON024
g710595
BLASTN
913
1e−83
98


5622
14358
700727008H1
SOYMON009
g710595
BLASTN
553
1e−55
99


5623
15432
700567458H1
SOYMON002
g1001309
BLASTX
115
1e−8
31


5624
15529
701045375H1
SOYMON032
g3201622
BLASTX
189
1e−19
55


5625
15529
700567374H1
SOYMON002
g3201622
BLASTX
186
1e−18
55


5626
15529
701102885H1
SOYMON028
g3201622
BLASTX
172
1e−16
56


5627
15529
701213187H1
SOYMON035
g3201622
BLASTX
174
1e−16
55


5628
15529
701055675H1
SOYMON032
g3201622
BLASTX
166
1e−15
60


5629
15529
701052631H1
SOYMON032
g3201622
BLASTX
159
1e−14
53


5630
15529
701213639H1
SOYMON035
g3201622
BLASTX
110
1e−13
59


5631
1566
700651242H1
SOYMON003
g2654093
BLASTN
1433
1e−146
98


5632
1566
700661083H1
SOYMON005
g2654093
BLASTN
898
1e−102
95


5633
1566
700668434H1
SOYMON006
g2654093
BLASTN
1289
1e−98
99


5634
1566
700677640H1
SOYMON007
g2654093
BLASTN
758
1e−97
99


5635
1566
700655909H1
SOYMON004
g2654093
BLASTN
730
1e−95
100


5636
1566
700660728H1
SOYMON005
g2654093
BLASTN
634
1e−81
90


5637
1566
700807523H1
SOYMON016
g2654093
BLASTN
478
1e−31
87


5638
16634
700660070H1
SOYMON004
g2621088
BLASTX
111
1e−20
54


5639
16634
700746670H1
SOYMON013
g2621088
BLASTX
118
1e−18
53


5640
1703
700749933H1
SOYMON013
g2654093
BLASTN
1385
1e−106
100


5641
1703
700793749H1
SOYMON017
g2654093
BLASTN
1370
1e−105
100


5642
1703
701127031H1
SOYMON037
g2654093
BLASTN
716
1e−94
96


5643
1703
700997259H1
SOYMON018
g2654093
BLASTN
1089
1e−81
97


5644
1703
700670783H1
SOYMON006
g2654093
BLASTN
767
1e−79
93


5645
25132
700678487H1
SOYMON007
g2654093
BLASTN
1175
1e−104
98


5646
25132
701049020H1
SOYMON032
g2654093
BLASTN
1260
1e−96
100


5647
25542
701151325H1
SOYMON031
g1001309
BLASTX
96
1e−15
51


5648
25542
700964436H1
SOYMON022
g1001309
BLASTX
107
1e−13
51


5649
26671
701106241H1
SOYMON036
g1001309
BLASTX
121
1e−9
39


5650
26671
701149504H1
SOYMON031
g1001309
BLASTX
122
1e−9
36


5651
27066
700605347H2
SOYMON004
g169914
BLASTN
1147
1e−104
99


5652
27066
701053078H1
SOYMON032
g169914
BLASTN
833
1e−87
96


5653
6297
700971234H1
SOYMON005
g169914
BLASTN
1303
1e−99
99


5654
6297
701205146H1
SOYMON035
g169914
BLASTN
1269
1e−96
94


5655
6297
701137753H1
SOYMON038
g169914
BLASTN
335
1e−85
93


5656
6297
700741154H1
SOYMON012
g169914
BLASTN
1135
1e−85
100


5657
6297
700954813H1
SOYMON022
g169914
BLASTN
1095
1e−84
100


5658
6297
701000832H1
SOYMON018
g169914
BLASTN
410
1e−83
95


5659
6297
701039262H1
SOYMON029
g169914
BLASTN
650
1e−82
97


5660
6297
701108365H1
SOYMON036
g169914
BLASTN
1032
1e−80
97


5661
6297
700953963H1
SOYMON022
g169914
BLASTN
1058
1e−79
92


5662
6297
700971364H1
SOYMON005
g169914
BLASTN
865
1e−63
95


5663
6297
701002832H1
SOYMON019
g169914
BLASTN
599
1e−62
90


5664
6297
700650013H1
SOYMON003
g169914
BLASTN
686
1e−61
88


5665
6297
701139166H1
SOYMON038
g169914
BLASTN
632
1e−43
83


5666
6297
701055975H1
SOYMON032
g169914
BLASTN
611
1e−42
99


5667
6297
701131513H1
SOYMON038
g169914
BLASTN
600
1e−41
96


5668
6297
701065138H1
SOYMON034
g169914
BLASTN
432
1e−38
89


5669
6297
701010254H2
SOYMON019
g169914
BLASTN
427
1e−36
88


5670
7549
700666429H1
SOYMON005
g169914
BLASTN
1249
1e−95
96


5671
7549
701001911H1
SOYMON018
g169914
BLASTN
819
1e−59
98


5672
7585
701127651H1
SOYMON037
g2654093
BLASTN
1360
1e−104
100


5673
7585
700668614H1
SOYMON006
g2654093
BLASTN
1341
1e−102
99


5674
7585
701054030H1
SOYMON032
g2654093
BLASTN
1341
1e−102
99


5675
7585
700890128H1
SOYMON024
g2654093
BLASTN
1285
1e−98
100


5676
7585
701056607H1
SOYMON032
g2654093
BLASTN
1069
1e−96
96


5677
7585
700973306H1
SOYMON005
g2654093
BLASTN
1250
1e−95
100


5678
7585
700845404H1
SOYMON021
g2654093
BLASTN
890
1e−94
96


5679
7585
700650253H1
SOYMON003
g2654093
BLASTN
1232
1e−93
98


5680
7585
700672829H1
SOYMON006
g2654093
BLASTN
1188
1e−90
99


5681
7585
700664509H1
SOYMON005
g2654093
BLASTN
1074
1e−87
97


5682
7585
701056892H1
SOYMON032
g2654093
BLASTN
1158
1e−87
93


5683
7585
700605686H2
SOYMON005
g2654093
BLASTN
1048
1e−86
97


5684
7585
700894006H1
SOYMON024
g2654093
BLASTN
1052
1e−85
96


5685
7585
700955412H1
SOYMON022
g2654093
BLASTN
625
1e−84
95


5686
7585
700560909H1
SOYMON001
g2654093
BLASTN
1119
1e−84
93


5687
7585
700895972H1
SOYMON027
g2654093
BLASTN
1105
1e−83
100


5688
7585
700663309H1
SOYMON005
g2654093
BLASTN
888
1e−82
95


5689
7585
700787774H2
SOYMON011
g2654093
BLASTN
943
1e−82
96


5690
7585
701069589H1
SOYMON034
g2654093
BLASTN
539
1e−81
93


5691
7585
700663096H1
SOYMON005
g2654093
BLASTN
498
1e−80
95


5692
7585
700836390H1
SOYMON020
g2654093
BLASTN
898
1e−80
95


5693
7585
700967858H1
SOYMON033
g2654093
BLASTN
978
1e−80
92


5694
7585
701101575H1
SOYMON028
g2654093
BLASTN
1032
1e−80
97


5695
7585
700750565H1
SOYMON014
g2654093
BLASTN
812
1e−79
95


5696
7585
701064276H1
SOYMON034
g2654093
BLASTN
820
1e−75
90


5697
7585
700995223H1
SOYMON011
g2654093
BLASTN
765
1e−68
89


5698
7585
700756072H1
SOYMON014
g2654093
BLASTN
899
1e−66
93


5699
7585
701147945H1
SOYMON031
g2654093
BLASTN
648
1e−64
95


5700
7585
700888603H1
SOYMON024
g2654093
BLASTN
865
1e−63
96


5701
9138
700562918H1
SOYMON002
g152149
BLASTX
195
1e−26
61


5702
9138
700654444H1
SOYMON004
g152149
BLASTX
191
1e−24
60


5703
9138
701037102H1
SOYMON029
g152149
BLASTX
123
1e−16
53


5704
-GM17331
LIB3055-010-
LIB3055
g169914
BLASTN
456
1e−27
85




Q1-N1-G4


5705
-GM25144
LIB3040-027-
LIB3040
g2654093
BLASTN
526
1e−65
85




Q1-E1-F2


5706
-GM41298
LIB3051-109-
LIB3051
g2654093
BLASTN
207
1e−29
83




Q1-K1-F6


5707
14358
LIB3051-106-
LIB3051
g710595
BLASTN
2246
1e−178
99




Q1-K1-G8


5708
25132
LIB3051-063-
LIB3051
g2654093
BLASTN
1347
1e−103
96




Q1-K1-D12


5709
3196
LIB3065-006-
LIB3065
g1778518
BLASTX
170
1e−32
50




Q1-N1-B10


5710
32509
LIB3056-012-
LIB3056
g2648397
BLASTX
152
1e−29
43




Q1-N1-C3


5711
6297
LIB3055-010-
LIB3055
g169914
BLASTN
1721
1e−134
99




Q1-N1-G6


5712
6297
LIB3055-010-
LIB3055
g169914
BLASTN
1246
1e−123
97




Q1-N1-G7


5713
6297
LIB3055-010-
LIB3055
g169914
BLASTN
1120
1e−84
93




Q1-N1-G8


5714
6297
LIB3049-021-
LIB3049
g169914
BLASTN
864
1e−63
91




Q1-E1-C8


5715
7585
LIB3051-105-
LIB3051
g2654093
BLASTN
2108
1e−167
99




Q1-K1-F8


5716
7585
LIB3028-010-
LIB3028
g2654093
BLASTN
1973
1e−158
97




Q1-B1-C7


5717
7585
LIB3030-001-
LIB3030
g2654093
BLASTN
1117
1e−138
95




Q1-B1-B7


5718
7585
LIB3051-040-
LIB3051
g2654093
BLASTN
1166
1e−116
94




Q1-K1-D4


5719
9138
LIB3065-001-
LIB3065
g152149
BLASTX
168
1e−38
52




Q1-N1-G1







SOYBEAN PUTATIVE ASPARTATE AMINOTRANSFERASE















5720
9138
700830720H1
SOYMON019
g3257794
BLASTX
186
1e−27
58


5721
9138
701100721H1
SOYMON028
g3257794
BLASTX
206
1e−23
56


5722
9138
700958391H1
SOYMON022
g3257794
BLASTX
217
1e−23
60


5723
9138
701119543H1
SOYMON037
g3257794
BLASTX
152
1e−13
58


5724
-700669394
700669394H1
SOYMON006
g1778518
BLASTX
75
1e−9
50


5725
3196
700753821H1
SOYMON014
g1778518
BLASTX
117
1e−9
59


5726
-700999272
700999272H1
SOYMON018
g1326254
BLASTX
153
1e−15
57


5727
32509
LIB3055-011-
LIB3055
g1778518
BLASTX
124
1e−27
35




Q1-N1-G1







MAIZE ALANINE AMINOTRANSFERASE















5728
-700049393
700049393H1
SATMON003
g296204
BLASTX
143
1e−12
100


5729
-700104304
700104304H1
SATMON010
g1353351
BLASTN
655
1e−45
70


5730
-700172189
700172189H1
SATMON013
g1353352
BLASTX
211
1e−22
70


5731
-700222553
700222553H1
SATMON011
g1353352
BLASTX
292
1e−33
54


5732
-700257069
700257069H1
SATMON017
g469147
BLASTN
610
1e−42
70


5733
-700264090
700264090H1
SATMON017
g296203
BLASTN
798
1e−57
77


5734
-700264413
700264413H1
SATMON017
g296204
BLASTX
319
1e−37
59


5735
-700457290
700457290H1
SATMON029
g296203
BLASTN
640
1e−44
70


5736
-700461128
700461128H1
SATMON033
g469147
BLASTN
482
1e−31
65


5737
-700461228
700461228H1
SATMON033
g296204
BLASTX
120
1e−19
61


5738
-700579019
700579019H1
SATMON031
g1353352
BLASTX
149
1e−16
39


5739
-700584206
700584206H1
SATMON031
g1353352
BLASTX
175
1e−17
62


5740
-700617436
700617436H1
SATMON033
g296204
BLASTX
206
1e−24
51


5741
-700624223
700624223H1
SATMON034
g1353351
BLASTN
476
1e−29
72


5742
-701164032
701164032H1
SATMONN04
g296204
BLASTX
85
1e−11
65


5743
-701166826
701166826H1
SATMONN04
g296203
BLASTN
219
1e−12
84


5744
15087
700801716H1
SATMON036
g296203
BLASTN
434
1e−25
91


5745
15087
700806781H1
SATMON036
g469147
BLASTN
198
1e−11
87


5746
15418
700102926H1
SATMON010
g1353351
BLASTN
550
1e−35
65


5747
15418
700423101H1
SATMONN01
g1353351
BLASTN
475
1e−29
66


5748
22920
701172883H2
SATMONN05
g469147
BLASTN
778
1e−56
77


5749
22920
701172884H2
SATMONN05
g469147
BLASTN
460
1e−51
77


5750
2698
700099203H1
SATMON009
g1353352
BLASTX
192
1e−18
82


5751
29667
700210632H1
SATMON016
g1353352
BLASTX
260
1e−28
57


5752
31650
700580511H1
SATMON031
g1353352
BLASTX
192
1e−35
68


5753
3823
700217635H1
SATMON016
g296203
BLASTN
650
1e−45
76


5754
3823
700349242H1
SATMON023
g296203
BLASTN
524
1e−34
76


5755
414
700473110H1
SATMON025
g296204
BLASTX
204
1e−35
57


5756
414
700264510H1
SATMON017
g469147
BLASTN
456
1e−27
60


5757
414
700262355H1
SATMON017
g469148
BLASTX
241
1e−26
55


5758
414
700263001H1
SATMON017
g469148
BLASTX
230
1e−24
56


5759
414
700474691H1
SATMON025
g296204
BLASTX
179
1e−17
44


5760
414
700615134H1
SATMON033
g469148
BLASTX
127
1e−10
62


5761
6080
700218182H1
SATMON016
g296203
BLASTN
684
1e−48
74


5762
6080
700239054H1
SATMON010
g296203
BLASTN
649
1e−45
74


5763
6080
700207743H1
SATMON016
g296203
BLASTN
592
1e−40
74


5764
6080
700049234H1
SATMON003
g296204
BLASTX
144
1e−12
64


5765
8847
700257223H1
SATMON017
g296204
BLASTX
218
1e−23
54


5766
8847
700267629H1
SATMON017
g296204
BLASTX
184
1e−18
50


5767
8847
700267912H1
SATMON017
g296204
BLASTX
184
1e−18
50


5768
8847
700265819H1
SATMON017
g296204
BLASTX
136
1e−11
43


5769
923
700047471H1
SATMON003
g296203
BLASTN
1211
1e−103
92


5770
923
700446631H1
SATMON027
g296203
BLASTN
766
1e−102
92


5771
923
700263484H1
SATMON017
g296203
BLASTN
1332
1e−102
94


5772
923
700076095H1
SATMON007
g296203
BLASTN
1284
1e−98
93


5773
923
700042264H1
SATMON004
g296203
BLASTN
1267
1e−96
93


5774
923
700041605H1
SATMON004
g296203
BLASTN
1245
1e−94
92


5775
923
700258238H1
SATMON017
g296203
BLASTN
933
1e−93
89


5776
923
700620967H1
SATMON034
g296203
BLASTN
1011
1e−92
91


5777
923
700046079H1
SATMON004
g296203
BLASTN
1211
1e−92
94


5778
923
700073909H1
SATMON007
g296203
BLASTN
1203
1e−91
91


5779
923
701179662H1
SATMONN05
g296203
BLASTN
1194
1e−90
93


5780
923
700045425H1
SATMON004
g296203
BLASTN
1196
1e−90
92


5781
923
700043325H1
SATMON004
g296203
BLASTN
1178
1e−89
93


5782
923
700042080H1
SATMON004
g296203
BLASTN
1061
1e−86
92


5783
923
700799695H1
SATMON036
g296203
BLASTN
1139
1e−86
92


5784
923
700347121H1
SATMON021
g296203
BLASTN
1017
1e−85
88


5785
923
700194649H1
SATMON014
g296203
BLASTN
1129
1e−85
91


5786
923
700803015H1
SATMON036
g296203
BLASTN
959
1e−84
91


5787
923
700046202H1
SATMON004
g296203
BLASTN
1118
1e−84
94


5788
923
700621382H1
SATMON034
g296203
BLASTN
648
1e−83
92


5789
923
700194809H1
SATMON014
g296203
BLASTN
1083
1e−81
94


5790
923
700194576H1
SATMON014
g296203
BLASTN
1089
1e−81
92


5791
923
700045006H1
SATMON004
g296203
BLASTN
1076
1e−80
91


5792
923
700195835H1
SATMON014
g296203
BLASTN
1057
1e−79
91


5793
923
700194814H1
SATMON014
g296203
BLASTN
1058
1e−79
92


5794
923
700046245H1
SATMON004
g296203
BLASTN
1046
1e−78
94


5795
923
700161109H1
SATMON012
g296203
BLASTN
1047
1e−78
94


5796
923
700194345H1
SATMON014
g296203
BLASTN
1037
1e−77
94


5797
923
700472892H1
SATMON025
g296203
BLASTN
505
1e−76
88


5798
923
700617757H1
SATMON033
g296203
BLASTN
863
1e−76
90


5799
923
700805426H1
SATMON036
g296203
BLASTN
523
1e−74
93


5800
923
700801191H1
SATMON036
g296203
BLASTN
724
1e−74
90


5801
923
700472860H1
SATMON025
g296203
BLASTN
876
1e−74
86


5802
923
700100107H1
SATMON009
g296203
BLASTN
999
1e−74
88


5803
923
700465264H1
SATMON025
g296203
BLASTN
784
1e−72
92


5804
923
700455079H1
SATMON029
g296203
BLASTN
930
1e−72
89


5805
923
700620492H1
SATMON034
g296203
BLASTN
718
1e−71
92


5806
923
700801419H1
SATMON036
g296203
BLASTN
909
1e−71
92


5807
923
700155082H1
SATMON007
g296203
BLASTN
949
1e−70
93


5808
923
700045844H1
SATMON004
g296203
BLASTN
808
1e−69
90


5809
923
700477823H1
SATMON025
g296203
BLASTN
922
1e−68
88


5810
923
700475452H1
SATMON025
g296203
BLASTN
824
1e−65
91


5811
923
700802280H1
SATMON036
g296203
BLASTN
874
1e−64
92


5812
923
700156653H1
SATMON012
g296203
BLASTN
780
1e−63
87


5813
923
700444754H1
SATMON027
g296203
BLASTN
831
1e−60
89


5814
923
700099483H1
SATMON009
g296203
BLASTN
724
1e−59
88


5815
923
700101871H1
SATMON009
g296203
BLASTN
821
1e−59
91


5816
923
700076559H1
SATMON007
g296203
BLASTN
765
1e−57
89


5817
923
700442606H1
SATMON026
g296203
BLASTN
791
1e−57
91


5818
923
700800871H1
SATMON036
g296203
BLASTN
494
1e−56
86


5819
923
700197582H1
SATMON014
g296203
BLASTN
786
1e−56
90


5820
923
700100451H1
SATMON009
g296203
BLASTN
476
1e−54
90


5821
923
700405018H1
SATMON027
g296203
BLASTN
597
1e−54
86


5822
923
700099885H1
SATMON009
g296203
BLASTN
653
1e−53
91


5823
923
700043273H1
SATMON004
g296203
BLASTN
721
1e−51
90


5824
923
700476434H1
SATMON025
g296203
BLASTN
449
1e−47
91


5825
923
700438820H1
SATMON026
g296203
BLASTN
671
1e−47
89


5826
923
700428681H1
SATMONN01
g296203
BLASTN
673
1e−47
91


5827
923
700042259H1
SATMON004
g296203
BLASTN
675
1e−47
93


5828
923
700801436H1
SATMON036
g296203
BLASTN
677
1e−47
86


5829
923
700257814H1
SATMON017
g296203
BLASTN
647
1e−45
85


5830
923
700044879H1
SATMON004
g296203
BLASTN
648
1e−45
91


5831
923
700207027H1
SATMON003
g296203
BLASTN
595
1e−42
87


5832
923
700257265H1
SATMON017
g296203
BLASTN
610
1e−42
87


5833
923
700571949H1
SATMON030
g296203
BLASTN
576
1e−39
91


5834
923
701166609H1
SATMONN04
g296203
BLASTN
514
1e−38
83


5835
923
701182932H1
SATMONN06
g296203
BLASTN
383
1e−37
88


5836
923
700281788H1
SATMON020
g296203
BLASTN
398
1e−37
88


5837
923
700151478H1
SATMON007
g296203
BLASTN
554
1e−37
89


5838
923
700423955H1
SATMONN01
g296203
BLASTN
539
1e−36
85


5839
923
700472592H1
SATMON025
g296203
BLASTN
291
1e−34
87


5840
923
700621067H2
SATMON034
g296203
BLASTN
480
1e−31
84


5841
923
700621082H2
SATMON034
g296203
BLASTN
457
1e−29
90


5842
923
700426976H1
SATMONN01
g296203
BLASTN
431
1e−27
93


5843
923
700098538H1
SATMON009
g296204
BLASTX
117
1e−9
69


5844
9316
700263427H1
SATMON017
g1353352
BLASTX
318
1e−36
63


5845
9316
700222070H1
SATMON011
g1353352
BLASTX
296
1e−33
61


5846
9316
700085696H1
SATMON011
g1353352
BLASTX
259
1e−28
67


5847
-L30601398
LIB3060-001-
LIB3060
g296203
BLASTN
610
1e−67
88




Q1-K2-F11


5848
-L30603921
LIB3060-042-
LIB3060
g296203
BLASTN
740
1e−63
83




Q1-K1-E6


5849
-L30672268
LIB3067-007-
LIB3067
g296203
BLASTN
601
1e−41
85




Q1-K1-H12


5850
-L30695453
LIB3069-036-
LIB3069
g296203
BLASTN
868
1e−63
75




Q1-K1-C10


5851
-L832403
LIB83-005-
LIB83
g469148
BLASTX
210
1e−37
81




Q1-E1-A7


5852
29667
LIB3060-015-
LIB3060
g1353351
BLASTN
631
1e−42
61




Q1-K1-B3


5853
31650
LIB148-034-
LIB148
g1353352
BLASTX
127
1e−53
63




Q1-E1-A6


5854
923
LIB3067-040-
LIB3067
g296203
BLASTN
1949
1e−153
94




Q1-K1-B11


5855
923
LIB3060-017-
LIB3060
g296203
BLASTN
1832
1e−143
92




Q1-K1-F12


5856
923
LIB143-053-
LIB143
g296203
BLASTN
1814
1e−142
91




Q1-E1-G9


5857
923
LIB148-002-
LIB148
g296203
BLASTN
1821
1e−142
94




Q1-E1-B9


5858
923
LIB36-012-
LIB36
g296203
BLASTN
1766
1e−140
92




Q1-E1-B11


5859
923
LIB84-004-
LIB84
g296203
BLASTN
1797
1e−140
91




Q1-E1-F6


5860
923
LIB3066-019-
LIB3066
g296203
BLASTN
1520
1e−139
94




Q1-K1-E9


5861
923
LIB3059-045-
LIB3059
g296203
BLASTN
1777
1e−139
92




Q1-K1-G1


5862
923
LIB3059-014-
LIB3059
g296203
BLASTN
1785
1e−139
91




Q1-K1-H7


5863
923
LIB3060-044-
LIB3060
g296203
BLASTN
1007
1e−136
92




Q1-K1-E2


5864
923
LIB3060-012-
LIB3060
g296203
BLASTN
1662
1e−134
91




Q1-K1-C8


5865
923
LIB189-019-
LIB189
g296203
BLASTN
1642
1e−131
92




Q1-E1-D11


5866
923
LIB3059-014-
LIB305
g296203
BLASTN
1232
1e−129
88




Q1-K1-A8


5867
923
LIB143-053-
LIB143
g296203
BLASTN
1377
1e−129
90




Q1-E1-G10


5868
923
LIB3059-006-
LIB3059
g296203
BLASTN
1532
1e−124
88




Q1-K1-H5


5869
923
LIB3060-023-
LIB3060
g296203
BLASTN
1176
1e−122
85




Q1-K1-E6


5870
923
LIB36-017-
LIB36
g296203
BLASTN
1545
1e−119
91




Q1-E1-D3


5871
923
LIB3060-023-
LIB3060
g296203
BLASTN
1418
1e−109
79




Q1-K1-E7


5872
923
LIB3060-036-
LIB3060
g296203
BLASTN
1410
1e−108
92




Q1-K1-D2


5873
923
LIB3060-002-
LIB3060
g296203
BLASTN
1400
1e−107
91




Q1-K2-C11


5874
923
LIB36-013-
LIB36
g296203
BLASTN
1202
1e−100
87




Q1-E1-C3


5875
923
LIB3079-021-
LIB3079
g296203
BLASTN
1236
1e−100
90




Q1-K1-D8


5876
923
LIB3060-051-
LIB3060
g296203
BLASTN
1281
1e−97
88




Q1-K1-B8


5877
923
LIB3059-048-
LIB3059
g296203
BLASTN
1224
1e−93
94




Q1-K1-A4


5878
923
LIB3060-043-
LIB3060
g296203
BLASTN
816
1e−90
92




Q1-K1-G9


5879
923
LIB3060-034-
LIB3060
g296203
BLASTN
816
1e−87
88




Q1-K1-A5


5880
923
LIB3060-042-
LIB3060
g296203
BLASTN
1126
1e−85
91




Q1-K1-E4


5881
923
LIB3060-011-
LIB3060
g296203
BLASTN
790
1e−78
86




Q1-K1-A9


5882
923
LIB189-033-
LIB189
g296203
BLASTN
566
1e−74
83




Q1-E1-F2


5883
923
LIB3061-041-
LIB3061
g296203
BLASTN
809
1e−68
89




Q1-K1-B2


5884
923
LIB3060-030-
LIB3060
g296203
BLASTN
472
1e−65
73




Q1-K1-E1


5885
923
LIB3060-004-
LIB3060
g296203
BLASTN
407
1e−38
78




Q1-K1-A8


5886
9316
LIB3062-014-
LIB3062
g1353352
BLASTX
448
1e−71
60




Q1-K1-A12


5887
9316
LIB3060-041-
LIB3060
g1353352
BLASTX
393
1e−68
58




Q1-K1-C8


5888
9316
LIB84-028-
LIB84
g1353352
BLASTX
202
1e−61
61




Q1-E1-H9







SOYBEAN ALANINE AMINOTRANSFERASE















5889
-700743719
700743719H1
SOYMON012
g1353352
BLASTX
78
1e−8
61


5890
-700959696
700959696H1
SOYMON022
g296204
BLASTX
195
1e−20
79


5891
-700996510
700996510H1
SOYMON018
g296204
BLASTX
187
1e−18
71


5892
-701069323
701069323H1
SOYMON034
g296204
BLASTX
116
1e−21
63


5893
10017
700605618H2
SOYMON005
g296203
BLASTN
496
1e−32
73


5894
10017
700682253H1
SOYMON008
g296204
BLASTX
143
1e−16
71


5895
10017
700990421H1
SOYMON011
g296204
BLASTX
160
1e−15
69


5896
10017
700747761H1
SOYMON013
g296204
BLASTX
164
1e−15
70


5897
10017
701038703H1
SOYMON029
g296204
BLASTX
164
1e−15
70


5898
10017
700975277H1
SOYMON009
g296204
BLASTX
140
1e−14
67


5899
10017
700984821H1
SOYMON009
g296204
BLASTX
155
1e−14
69


5900
10017
700756842H1
SOYMON014
g296204
BLASTX
139
1e−12
68


5901
10017
700746942H1
SOYMON013
g469147
BLASTN
241
1e−9
76


5902
10118
701120663H1
SOYMON037
g296204
BLASTX
350
1e−41
85


5903
10118
701049525H1
SOYMON032
g296204
BLASTX
355
1e−41
88


5904
10118
701119423H1
SOYMON037
g296203
BLASTN
575
1e−39
67


5905
10118
700872879H1
SOYMON018
g296204
BLASTX
312
1e−35
82


5906
10118
700973420H1
SOYMON005
g296204
BLASTX
260
1e−31
66


5907
12859
700562950H1
SOYMON002
g296203
BLASTN
685
1e−48
74


5908
12859
700971319H1
SOYMON005
g296204
BLASTX
273
1e−38
76


5909
17267
700555074H1
SOYMON001
g1353352
BLASTX
378
1e−45
79


5910
17267
700555060H1
SOYMON001
g1353352
BLASTX
378
1e−45
79


5911
17267
700743751H1
SOYMON012
g1353352
BLASTX
133
1e−11
61


5912
19812
700896952H1
SOYMON027
g296203
BLASTN
468
1e−30
67


5913
19812
700659743H1
SOYMON004
g296203
BLASTN
451
1e−27
67


5914
31650
700874484H1
SOYMON018
g1353352
BLASTX
118
1e−9
59


5915
5883
701001504H1
SOYMON018
g296203
BLASTN
714
1e−50
73


5916
5883
700969537H1
SOYMON005
g296203
BLASTN
598
1e−41
70


5917
5883
700672092H1
SOYMON006
g296203
BLASTN
601
1e−41
72


5918
5883
700961520H1
SOYMON022
g296203
BLASTN
584
1e−39
72


5919
5883
701141195H1
SOYMON038
g296204
BLASTX
153
1e−14
75


5920
6292
700559647H1
SOYMON001
g1353352
BLASTX
292
1e−33
51


5921
6292
700556715H1
SOYMON001
g1353352
BLASTX
292
1e−33
53


5922
6292
701001051H1
SOYMON018
g1353352
BLASTX
293
1e−33
58


5923
6292
700682468H2
SOYMON008
g1353352
BLASTX
261
1e−29
51


5924
6292
700973534H1
SOYMON005
g1353352
BLASTX
263
1e−29
54


5925
6292
700874672H1
SOYMON018
g1353352
BLASTX
150
1e−28
55


5926
6292
700893193H1
SOYMON024
g296204
BLASTX
256
1e−28
58


5927
6292
700681610H1
SOYMON008
g296204
BLASTX
259
1e−28
58


5928
6292
701002246H1
SOYMON018
g296204
BLASTX
159
1e−27
56


5929
6292
700956467H1
SOYMON022
g1353352
BLASTX
238
1e−27
58


5930
6292
700888645H1
SOYMON024
g296204
BLASTX
196
1e−20
60


5931
6292
701002201H1
SOYMON018
g296204
BLASTX
156
1e−16
57


5932
6292
700680675H1
SOYMON008
g469148
BLASTX
119
1e−9
63


5933
6292
701050803H1
SOYMON032
g296204
BLASTX
120
1e−9
58


5934
6594
700684722H1
SOYMON008
g1353352
BLASTX
157
1e−22
69


5935
6594
700872191H1
SOYMON018
g1353352
BLASTX
129
1e−16
61


5936
698
700738627H1
SOYMON012
g1353352
BLASTX
333
1e−39
73


5937
698
700681703H1
SOYMON008
g1353352
BLASTX
319
1e−37
76


5938
698
700961778H1
SOYMON022
g1353352
BLASTX
316
1e−36
79


5939
698
700666316H1
SOYMON005
g1353352
BLASTX
298
1e−34
77


5940
698
700685706H1
SOYMON008
g1353352
BLASTX
293
1e−33
72


5941
698
700739093H1
SOYMON012
g1353352
BLASTX
172
1e−29
73


5942
698
700666387H1
SOYMON005
g1353352
BLASTX
267
1e−29
76


5943
698
700993520H1
SOYMON011
g1353352
BLASTX
255
1e−28
63


5944
698
700896371H1
SOYMON027
g1353352
BLASTX
255
1e−28
80


5945
698
700997253H1
SOYMON018
g1353352
BLASTX
260
1e−28
65


5946
698
700995571H1
SOYMON011
g1353352
BLASTX
260
1e−28
63


5947
698
700648011H1
SOYMON003
g1353352
BLASTX
239
1e−25
66


5948
698
700850732H1
SOYMON023
g1353352
BLASTX
204
1e−21
78


5949
698
700557773H1
SOYMON001
g1353352
BLASTX
208
1e−21
81


5950
698
700874138H1
SOYMON018
g1353352
BLASTX
208
1e−21
81


5951
698
700559725H1
SOYMON001
g1353352
BLASTX
201
1e−20
82


5952
698
701105639H1
SOYMON036
g1353352
BLASTX
202
1e−20
80


5953
698
700994494H1
SOYMON011
g1353352
BLASTX
186
1e−18
83


5954
698
700738237H1
SOYMON012
g1353352
BLASTX
186
1e−18
78


5955
698
700555071H1
SOYMON001
g1353352
BLASTX
186
1e−18
83


5956
698
700786177H2
SOYMON011
g1353352
BLASTX
171
1e−17
54


5957
698
700554414H1
SOYMON001
g1353352
BLASTX
176
1e−17
84


5958
698
700741128H1
SOYMON012
g1353352
BLASTX
176
1e−17
82


5959
698
700965158H1
SOYMON022
g1353352
BLASTX
176
1e−17
82


5960
698
700685250H1
SOYMON008
g1353352
BLASTX
179
1e−17
80


5961
698
700991457H1
SOYMON011
g1353352
BLASTX
180
1e−17
82


5962
698
700684192H1
SOYMON008
g1353352
BLASTX
180
1e−17
82


5963
698
700871122H1
SOYMON018
g1353352
BLASTX
180
1e−17
82


5964
698
700997304H1
SOYMON018
g1353352
BLASTX
182
1e−17
70


5965
698
700685731H1
SOYMON008
g1353352
BLASTX
172
1e−16
82


5966
698
700685724H1
SOYMON008
g1353352
BLASTX
172
1e−16
82


5967
698
700739069H1
SOYMON012
g1353352
BLASTX
161
1e−15
83


5968
698
700741337H1
SOYMON012
g1353352
BLASTX
164
1e−15
81


5969
698
700683155H1
SOYMON008
g1353352
BLASTX
164
1e−15
81


5970
698
700994202H1
SOYMON011
g1353352
BLASTX
165
1e−15
73


5971
698
700555575H1
SOYMON001
g1353352
BLASTX
166
1e−15
79


5972
698
701000739H1
SOYMON018
g1353352
BLASTX
167
1e−15
63


5973
698
700740011H1
SOYMON012
g1353352
BLASTX
153
1e−14
83


5974
698
700994043H1
SOYMON011
g1353352
BLASTX
157
1e−14
81


5975
698
700555709H1
SOYMON001
g1353352
BLASTX
87
1e−12
76


5976
698
701107588H1
SOYMON036
g1353352
BLASTX
114
1e−12
68


5977
698
700871057H1
SOYMON018
g1353352
BLASTX
139
1e−12
77


5978
698
700744973H1
SOYMON013
g1353352
BLASTX
141
1e−12
79


5979
698
700741744H1
SOYMON012
g1353352
BLASTX
141
1e−12
79


5980
698
700792044H1
SOYMON011
g1353352
BLASTX
142
1e−12
63


5981
698
700993716H1
SOYMON011
g1353352
BLASTX
83
1e−11
83


5982
698
700684326H1
SOYMON008
g1353352
BLASTX
137
1e−11
81


5983
698
700989256H1
SOYMON011
g1353352
BLASTX
124
1e−10
77


5984
698
700791590H1
SOYMON011
g1353352
BLASTX
130
1e−10
78


5985
698
700872519H1
SOYMON018
g1353352
BLASTX
78
1e−9
78


5986
698
700645949H1
SOYMON011
g1353352
BLASTX
106
1e−9
63


5987
698
700996252H1
SOYMON018
g1353352
BLASTX
125
1e−9
77


5988
698
700876656H1
SOYMON018
g1353352
BLASTX
74
1e−8
79


5989
698
700874318H1
SOYMON018
g1353352
BLASTX
113
1e−8
73


5990
698
700737927H1
SOYMON012
g1353352
BLASTX
114
1e−8
73


5991
9687
700740448H1
SOYMON012
g1353352
BLASTX
262
1e−29
57


5992
9687
700954623H1
SOYMON022
g1353352
BLASTX
265
1e−29
56


5993
9687
701142577H1
SOYMON038
g1353352
BLASTX
247
1e−27
56


5994
9687
701000510H1
SOYMON018
g1353352
BLASTX
235
1e−25
65


5995
9687
700874683H1
SOYMON018
g1353352
BLASTX
212
1e−22
58


5996
9687
700874576H1
SOYMON018
g1353352
BLASTX
117
1e−17
54


5997
9687
700999910H1
SOYMON018
g1353352
BLASTX
163
1e−15
54


5998
9687
701001711H1
SOYMON018
g1353352
BLASTX
116
1e−8
64


5999
10017
LIB3030-005-
LIB3030
g296204
BLASTX
159
1e−38
72




Q1-B1-F1


6000
10017
LIB3051-078-
LIB3051
g296204
BLASTX
207
1e−37
61




Q1-K1-B5


6001
10017
LIB3051-006-
LIB3051
g296203
BLASTN
543
1e−34
68




Q1-K1-D5


6002
10017
LIB3051-006-
LIB3051
g469147
BLASTN
306
1e−14
69




Q1-E1-D5


6003
10017
LIB3051-113-
LIB3051
g469147
BLASTN
301
1e−13
63




Q1-K1-B4


6004
698
LIB3028-005-
LIB3028
g1353352
BLASTX
110
1e−34
69




Q1-B1-A11







MAIZE NADP-DEPENDENT MALIC ENZYME















6005
-700041501
700041501H1
SATMON004
g168527
BLASTN
529
1e−35
93


6006
-700051224
700051224H1
SATMON003
g20468
BLASTN
514
1e−32
81


6007
-700073375
700073375H1
SATMON007
g168527
BLASTN
584
1e−58
77


6008
-700101813
700101813H1
SATMON009
g168527
BLASTN
920
1e−88
100


6009
-700104958
700104958H1
SATMON010
g168527
BLASTN
363
1e−19
92


6010
-700219021
700219021H1
SATMON011
g1785859
BLASTN
467
1e−28
80


6011
-700346164
700346164H1
SATMON021
g510876
BLASTX
102
1e−18
78


6012
-700453338
700453338H1
SATMON028
g20468
BLASTN
716
1e−50
79


6013
-700460886
700460886H1
SATMON031
g168527
BLASTN
191
1e−14
92


6014
-700573176
700573176H1
SATMON030
g168527
BLASTN
277
1e−25
80


6015
-701182650
701182650H1
SATMONN06
g169326
BLASTN
572
1e−51
79


6016
10304
700349609H1
SATMON023
g20468
BLASTN
939
1e−69
81


6017
10304
700050528H1
SATMON003
g20468
BLASTN
945
1e−69
80


6018
10304
700242979H1
SATMON010
g20468
BLASTN
926
1e−68
82


6019
10304
700577075H1
SATMON031
g20468
BLASTN
919
1e−67
81


6020
10304
700381724H1
SATMON023
g20468
BLASTN
507
1e−59
76


6021
18769
700050667H1
SATMON003
g20468
BLASTN
452
1e−29
76


6022
18769
700076676H1
SATMON007
g20469
BLASTX
181
1e−18
77


6023
18769
700155440H1
SATMON007
g20469
BLASTX
140
1e−12
73


6024
2190
700071978H1
SATMON007
g425803
BLASTN
1045
1e−80
83


6025
2190
700202802H1
SATMON003
g425803
BLASTN
440
1e−79
81


6026
2190
700104846H1
SATMON010
g425803
BLASTN
537
1e−73
83


6027
2190
700444338H1
SATMON027
g425803
BLASTN
677
1e−65
84


6028
2190
700457069H1
SATMON029
g425803
BLASTN
428
1e−56
81


6029
2190
700457021H1
SATMON029
g425803
BLASTN
753
1e−56
83


6030
2190
701181152H1
SATMONN06
g1785859
BLASTN
577
1e−54
78


6031
2190
700445983H1
SATMON027
g1785859
BLASTN
607
1e−52
74


6032
2190
700142607H2
SATMON013
g1785859
BLASTN
684
1e−48
78


6033
412
700097657H1
SATMON009
g168527
BLASTN
1648
1e−128
99


6034
412
700098574H1
SATMON009
g168527
BLASTN
1605
1e−124
99


6035
412
700099850H1
SATMON009
g168527
BLASTN
1537
1e−119
97


6036
412
700097455H1
SATMON009
g168527
BLASTN
1527
1e−118
99


6037
412
700097222H1
SATMON009
g168527
BLASTN
1530
1e−118
98


6038
412
700097391H1
SATMON009
g168527
BLASTN
1520
1e−117
98


6039
412
700097849H1
SATMON009
g168527
BLASTN
1504
1e−116
99


6040
412
700101666H1
SATMON009
g168527
BLASTN
1495
1e−115
100


6041
412
700099890H1
SATMON009
g168527
BLASTN
1468
1e−113
98


6042
412
700097237H1
SATMON009
g168527
BLASTN
1313
1e−112
98


6043
412
700101278H1
SATMON009
g168527
BLASTN
1441
1e−111
99


6044
412
700101431H1
SATMON009
g168527
BLASTN
1450
1e−111
100


6045
412
700100860H1
SATMON009
g168527
BLASTN
1431
1e−110
99


6046
412
700581218H1
SATMON031
g168527
BLASTN
1403
1e−108
98


6047
412
700101446H1
SATMON009
g168527
BLASTN
1407
1e−108
99


6048
412
700044315H1
SATMON004
g168527
BLASTN
1390
1e−106
100


6049
412
700045610H1
SATMON004
g168527
BLASTN
1301
1e−105
98


6050
412
700434125H1
SATMONN01
g168527
BLASTN
1374
1e−105
97


6051
412
700041705H1
SATMON004
g168527
BLASTN
1311
1e−104
99


6052
412
700104088H1
SATMON010
g168527
BLASTN
1361
1e−104
92


6053
412
700614919H1
SATMON033
g168527
BLASTN
1103
1e−103
86


6054
412
700613108H1
SATMON033
g168527
BLASTN
1345
1e−103
89


6055
412
700042025H1
SATMON004
g168527
BLASTN
1352
1e−103
99


6056
412
700467944H1
SATMON025
g168527
BLASTN
1353
1e−103
95


6057
412
700617354H1
SATMON033
g168527
BLASTN
1354
1e−103
89


6058
412
700095156H1
SATMON008
g168527
BLASTN
1354
1e−103
92


6059
412
700448457H1
SATMON027
g168527
BLASTN
722
1e−102
93


6060
412
700581224H1
SATMON031
g168527
BLASTN
872
1e−101
98


6061
412
700426724H1
SATMONN01
g168527
BLASTN
1322
1e−101
98


6062
412
700105096H1
SATMON010
g168527
BLASTN
707
1e−100
93


6063
412
700045272H1
SATMON004
g168527
BLASTN
1311
1e−100
99


6064
412
700577375H1
SATMON031
g168527
BLASTN
1300
1e−99
100


6065
412
700044113H1
SATMON004
g168527
BLASTN
1300
1e−99
100


6066
412
700042068H1
SATMON004
g168527
BLASTN
1301
1e−99
99


6067
412
700582457H1
SATMON031
g168527
BLASTN
1305
1e−99
98


6068
412
700580693H1
SATMON031
g168527
BLASTN
975
1e−98
97


6069
412
700577922H1
SATMON031
g168527
BLASTN
1111
1e−98
95


6070
412
700043222H1
SATMON004
g168527
BLASTN
1289
1e−98
99


6071
412
700103882H1
SATMON010
g168527
BLASTN
1277
1e−97
92


6072
412
700579779H1
SATMON031
g168527
BLASTN
1282
1e−97
98


6073
412
700615410H1
SATMON033
g168527
BLASTN
829
1e−96
91


6074
412
700439978H1
SATMON026
g168527
BLASTN
1264
1e−96
99


6075
412
700045066H1
SATMON004
g168527
BLASTN
1268
1e−96
98


6076
412
700439024H1
SATMON026
g168527
BLASTN
1041
1e−95
96


6077
412
700263465H1
SATMON017
g168527
BLASTN
1088
1e−94
90


6078
412
700046417H1
SATMON004
g168527
BLASTN
1240
1e−94
100


6079
412
700347845H1
SATMON023
g168527
BLASTN
1241
1e−94
92


6080
412
700043227H1
SATMON004
g168527
BLASTN
1241
1e−94
97


6081
412
700469957H1
SATMON025
g168527
BLASTN
1243
1e−94
95


6082
412
700044725H1
SATMON004
g168527
BLASTN
1246
1e−94
99


6083
412
700615834H1
SATMON033
g168527
BLASTN
777
1e−93
93


6084
412
700224349H1
SATMON011
g168527
BLASTN
1230
1e−93
92


6085
412
700438840H1
SATMON026
g168527
BLASTN
675
1e−92
100


6086
412
700465188H1
SATMON025
g168527
BLASTN
1133
1e−92
91


6087
412
700223493H1
SATMON011
g168527
BLASTN
1222
1e−92
94


6088
412
700442430H1
SATMON026
g168527
BLASTN
490
1e−91
95


6089
412
700479665H1
SATMON034
g168527
BLASTN
1199
1e−91
93


6090
412
700242318H1
SATMON010
g168527
BLASTN
1200
1e−91
96


6091
412
700262339H1
SATMON017
g168527
BLASTN
924
1e−90
91


6092
412
700551426H1
SATMON022
g168527
BLASTN
1197
1e−90
93


6093
412
700580501H1
SATMON031
g168527
BLASTN
674
1e−89
91


6094
412
700430624H1
SATMONN01
g168527
BLASTN
839
1e−89
96


6095
412
700798989H1
SATMON036
g168527
BLASTN
1176
1e−89
90


6096
412
700438471H1
SATMON026
g168527
BLASTN
1183
1e−89
96


6097
412
700572903H1
SATMON030
g168527
BLASTN
771
1e−88
89


6098
412
700083411H1
SATMON011
g168527
BLASTN
1096
1e−88
92


6099
412
700442605H1
SATMON026
g168527
BLASTN
1170
1e−88
88


6100
412
700224532H1
SATMON011
g168527
BLASTN
1170
1e−88
92


6101
412
700572585H1
SATMON030
g168527
BLASTN
912
1e−87
87


6102
412
700083289H1
SATMON011
g168527
BLASTN
1155
1e−87
90


6103
412
700612607H1
SATMON033
g168527
BLASTN
634
1e−86
91


6104
412
700429569H1
SATMONN01
g168527
BLASTN
1115
1e−84
90


6105
412
700048813H1
SATMON003
g168527
BLASTN
844
1e−83
89


6106
412
700422905H1
SATMONN01
g168527
BLASTN
872
1e−83
93


6107
412
700106553H1
SATMON010
g168527
BLASTN
888
1e−83
87


6108
412
700101622H1
SATMON009
g168527
BLASTN
1105
1e−83
100


6109
412
700168331H1
SATMON013
g168527
BLASTN
1108
1e−83
90


6110
412
701183573H1
SATMONN06
g168527
BLASTN
1098
1e−82
89


6111
412
700355825H1
SATMON024
g168527
BLASTN
1102
1e−82
88


6112
412
700171967H1
SATMON013
g168527
BLASTN
1085
1e−81
92


6113
412
700239492H1
SATMON010
g168527
BLASTN
1086
1e−81
91


6114
412
701160628H1
SATMONN04
g168527
BLASTN
624
1e−79
89


6115
412
700020733H1
SATMON001
g168527
BLASTN
1048
1e−78
92


6116
412
700575032H1
SATMON030
g168527
BLASTN
493
1e−77
91


6117
412
700241204H1
SATMON010
g168527
BLASTN
812
1e−77
88


6118
412
700447091H1
SATMON027
g168527
BLASTN
991
1e−77
91


6119
412
700469827H1
SATMON025
g168527
BLASTN
643
1e−76
87


6120
412
700043868H1
SATMON004
g168527
BLASTN
1020
1e−76
100


6121
412
700167416H1
SATMON013
g168527
BLASTN
1021
1e−76
92


6122
412
700166313H1
SATMON013
g168527
BLASTN
1010
1e−75
93


6123
412
700477627H1
SATMON025
g168527
BLASTN
1010
1e−75
88


6124
412
700043873H1
SATMON004
g168527
BLASTN
1015
1e−75
100


6125
412
700027363H1
SATMON003
g168527
BLASTN
402
1e−73
92


6126
412
700569811H1
SATMON030
g168527
BLASTN
593
1e−71
89


6127
412
700551661H1
SATMON022
g168527
BLASTN
860
1e−71
86


6128
412
700613723H1
SATMON033
g168527
BLASTN
962
1e−71
86


6129
412
700171193H1
SATMON013
g168527
BLASTN
935
1e−69
89


6130
412
700164679H1
SATMON013
g168527
BLASTN
924
1e−68
88


6131
412
700570921H1
SATMON030
g168527
BLASTN
455
1e−67
88


6132
412
701160615H1
SATMONN04
g168527
BLASTN
694
1e−67
84


6133
412
700154717H1
SATMON007
g168527
BLASTN
893
1e−65
90


6134
412
700475530H1
SATMON025
g168527
BLASTN
328
1e−63
90


6135
412
700203726H1
SATMON003
g168527
BLASTN
410
1e−63
91


6136
412
700241493H1
SATMON010
g168527
BLASTN
796
1e−63
89


6137
412
700438637H1
SATMON026
g168527
BLASTN
493
1e−62
96


6138
412
700100702H1
SATMON009
g168527
BLASTN
848
1e−61
98


6139
412
700223081H1
SATMON011
g168527
BLASTN
649
1e−56
89


6140
412
700099413H1
SATMON009
g168527
BLASTN
767
1e−55
83


6141
412
700613195H1
SATMON033
g168527
BLASTN
633
1e−53
83


6142
412
700158857H1
SATMON012
g168527
BLASTN
745
1e−53
89


6143
412
700439831H1
SATMON026
g168527
BLASTN
498
1e−50
95


6144
412
700017622H1
SATMON001
g168527
BLASTN
662
1e−46
89


6145
412
700224833H1
SATMON011
g168527
BLASTN
636
1e−44
89


6146
412
700099061H1
SATMON009
g168527
BLASTN
637
1e−44
95


6147
412
700577851H1
SATMON031
g168527
BLASTN
637
1e−44
95


6148
412
700100884H1
SATMON009
g168527
BLASTN
637
1e−44
95


6149
412
700466638H1
SATMON025
g168527
BLASTN
640
1e−44
85


6150
412
700614366H1
SATMON033
g415314
BLASTN
644
1e−44
88


6151
412
700084389H1
SATMON011
g168527
BLASTN
545
1e−43
90


6152
412
700090184H1
SATMON011
g168527
BLASTN
615
1e−42
100


6153
412
700099462H1
SATMON009
g168527
BLASTN
615
1e−42
100


6154
412
700098372H1
SATMON009
g168527
BLASTN
596
1e−40
99


6155
412
700432379H1
SATMONN01
g168527
BLASTN
341
1e−39
94


6156
412
700101636H1
SATMON009
g168527
BLASTN
524
1e−38
92


6157
412
700090392H1
SATMON011
g168527
BLASTN
532
1e−35
90


6158
412
700282016H1
SATMON022
g415314
BLASTN
534
1e−35
86


6159
412
700042404H1
SATMON004
g168527
BLASTN
525
1e−34
100


6160
412
700465190H1
SATMON025
g168527
BLASTN
509
1e−33
87


6161
412
700260024H1
SATMON017
g168527
BLASTN
210
1e−32
94


6162
412
700579166H1
SATMON031
g168527
BLASTN
413
1e−32
96


6163
412
700049441H1
SATMON003
g168527
BLASTN
303
1e−31
90


6164
412
700618285H1
SATMON033
g168527
BLASTN
454
1e−28
85


6165
412
700259602H1
SATMON017
g168527
BLASTN
297
1e−26
89


6166
412
700467465H1
SATMON025
g168527
BLASTN
420
1e−26
96


6167
412
700215437H1
SATMON016
g168527
BLASTN
306
1e−20
86


6168
412
700265281H1
SATMON017
g168527
BLASTN
359
1e−19
89


6169
6503
700083127H1
SATMON011
g168528
BLASTX
124
1e−10
92


6170
9238
700336628H1
SATMON019
g168527
BLASTN
435
1e−34
74


6171
9238
700017544H1
SATMON001
g168527
BLASTN
513
1e−33
74


6172
-L1485987
LIB148-042-
LIB148
g415314
BLASTN
566
1e−38
76




Q1-E1-D11


6173
-L30602419
LIB3060-012-
LIB3060
g168527
BLASTN
723
1e−51
96




Q1-K1-E8


6174
-L30611342
LIB3061-002-
LIB3061
g168527
BLASTN
633
1e−43
77




Q1-K1-H10


6175
-L30662912
LIB3066-008-
LIB3066
g2911148
BLASTX
147
1e−29
84




Q1-K1-A2


6176
-L30664918
LIB3066-021-
LIB3066
g168527
BLASTN
838
1e−60
71




Q1-K1-B5


6177
-L30672727
LIB3067-039-
LIB3067
g168527
BLASTN
401
1e−42
82




Q1-K1-C10


6178
-L30782241
LIB3078-007-
LIB3078
g168527
BLASTN
393
1e−36
79




Q1-K1-A1


6179
-L30783451
LIB3078-050-
LIB3078
g168527
BLASTN
199
1e−9
83




Q1-K1-G11


6180
-L30784158
LIB3078-035-
LIB3078
g168527
BLASTN
201
1e−14
91




Q1-K1-H5


6181
30424
LIB3060-024-
LIB3060
g415314
BLASTN
1355
1e−104
79




Q1-K1-D9


6182
412
LIB3078-022-
LIB3078
g168527
BLASTN
2209
1e−175
95




Q1-K1-D10


6183
412
LIB3060-021-
LIB3060
g168527
BLASTN
2203
1e−174
99




Q1-K1-G10


6184
412
LIB189-006-
LIB189
g168527
BLASTN
2121
1e−167
99




Q1-E1-D2


6185
412
LIB189-010-
LIB189
g168527
BLASTN
1749
1e−164
98




Q1-E1-C4


6186
412
LIB189-029-
LIB189
g168527
BLASTN
2067
1e−163
98




Q1-E1-A5


6187
412
LIB36-021-
LIB36
g168527
BLASTN
2011
1e−158
97




Q1-E1-D12


6188
412
LIB36-003-
LIB36
g168527
BLASTN
1988
1e−156
95




Q1-E1-B4


6189
412
LIB36-017-
LIB36
g168527
BLASTN
1503
1e−155
98




Q1-E1-D7


6190
412
LIB189-018-
LIB189
g168527
BLASTN
1977
1e−155
97




Q1-E1-D11


6191
412
LIB189-014-
LIB189
g168527
BLASTN
1941
1e−152
97




Q1-E1-D11


6192
412
LIB3078-049-
LIB3078
g168527
BLASTN
1810
1e−151
94




Q1-K1-G10


6193
412
LIB3078-012-
LIB3078
g168527
BLASTN
1874
1e−151
93




Q1-K1-E8


6194
412
LIB36-018-
LIB36
g168527
BLASTN
1466
1e−150
97




Q1-E1-B9


6195
412
LIB36-012-
LIB36
g168527
BLASTN
1901
1e−149
98




Q1-E1-H9


6196
412
LIB189-027-
LIB189
g168527
BLASTN
1903
1e−149
95




Q1-E1-C5


6197
412
LIB84-005-
LIB84
g168527
BLASTN
1889
1e−148
96




Q1-E1-A11


6198
412
LIB189-018-
LIB189
g168527
BLASTN
1814
1e−144
97




Q1-E1-G7


6199
412
LIB3079-004-
LIB3079
g168527
BLASTN
1724
1e−140
91




Q1-K1-A10


6200
412
LIB189-028-
LIB189
g168527
BLASTN
1740
1e−140
99




Q1-E1-F11


6201
412
LIB84-029-
LIB84
g168527
BLASTN
1795
1e−140
99




Q1-E1-A6


6202
412
LIB3060-002-
LIB3060
g168527
BLASTN
1779
1e−139
95




Q1-K2-A8


6203
412
LIB3067-049-
LIB3067
g168527
BLASTN
1098
1e−137
88




Q1-K1-F5


6204
412
LIB3062-026-
LIB3062
g168527
BLASTN
1428
1e−135
89




Q1-K1-C8


6205
412
LIB3059-011-
LIB3059
g168527
BLASTN
1651
1e−128
87




Q1-K1-C4


6206
412
LIB3061-002-
LIB3061
g168527
BLASTN
1618
1e−125
89




Q1-K2-H10


6207
412
LIB3060-008-
LIB3060
g168527
BLASTN
990
1e−122
97




Q1-K1-H3


6208
412
LIB3060-020-
LIB3060
g168527
BLASTN
1322
1e−121
89




Q1-K1-E10


6209
412
LIB189-032-
LIB189
g168527
BLASTN
680
1e−120
94




Q1-E1-E7


6210
412
LIB36-019-
LIB36
g168527
BLASTN
1197
1e−115
97




Q1-E1-F11


6211
412
LIB3062-038-
LIB3062
g168527
BLASTN
1498
1e−115
91




Q1-K1-D1


6212
412
LIB189-029-
LIB189
g168527
BLASTN
1175
1e−113
95




Q1-E1-A4


6213
412
LIB36-022-
LIB36
g168527
BLASTN
1393
1e−107
98




Q1-E1-F12


6214
412
LIB3079-001-
LIB3079
g168527
BLASTN
1243
1e−103
82




Q1-K1-H3


6215
412
LIB189-014-
LIB189
g168527
BLASTN
855
1e−99
91




Q1-E1-D12


6216
412
LIB189-026-
LIB189
g168527
BLASTN
1167
1e−93
94




Q1-E1-C1


6217
412
LIB3079-001-
LIB3079
g168527
BLASTN
480
1e−78
84




Q1-K1-H5


6218
412
LIB36-008-
LIB36
g168527
BLASTN
576
1e−75
97




Q1-E1-C5


6219
412
LIB83-015-
LIB83
g168527
BLASTN
446
1e−59
92




Q1-E1-G7


6220
412
LIB3062-024-
LIB3062
g168527
BLASTN
455
1e−53
77




Q1-K1-D2


6221
412
LIB3062-026-
LIB3062
g168527
BLASTN
561
1e−50
78




Q1-K1-C4


6222
412
LIB83-013-
LIB83
g168527
BLASTN
637
1e−44
95




Q1-E1-E12


6223
412
LIB83-002-
LIB83
g168527
BLASTN
564
1e−43
97




Q1-E1-F4







SOYBEAN NADP-DEPENDENT MALIC ENZYME















6224
-700698057
700698057H1
SOYMON015
g168527
BLASTN
513
1e−67
90


6225
-700744209
700744209H1
SOYMON013
g1679885
BLASTX
138
1e−12
69


6226
-700979875
700979875H2
SOYMON009
g20468
BLASTN
236
1e−8
82


6227
-701013601
701013601H1
SOYMON019
g20469
BLASTX
184
1e−18
60


6228
-701054477
701054477H1
SOYMON032
g169326
BLASTN
1122
1e−84
94


6229
-701206630
701206630H1
SOYMON035
g1679885
BLASTX
142
1e−14
85


6230
11537
700653458H1
SOYMON003
g20468
BLASTN
1173
1e−88
83


6231
11537
700650905H1
SOYMON003
g20468
BLASTN
886
1e−74
83


6232
11537
701141562H1
SOYMON038
g20468
BLASTN
532
1e−52
78


6233
11537
701144577H1
SOYMON031
g20468
BLASTN
624
1e−50
81


6234
11537
700748911H1
SOYMON013
g18460
BLASTX
91
1e−14
100


6235
11795
700667578H1
SOYMON006
g169326
BLASTN
1118
1e−84
95


6236
11795
701056334H1
SOYMON032
g169326
BLASTN
658
1e−82
94


6237
11795
700742616H1
SOYMON012
g169326
BLASTN
848
1e−61
95


6238
12499
701051365H1
SOYMON032
g169326
BLASTN
1237
1e−94
92


6239
12499
701102792H1
SOYMON028
g169326
BLASTN
1169
1e−88
92


6240
12499
701098731H2
SOYMON028
g169326
BLASTN
1031
1e−82
91


6241
15256
700744584H1
SOYMON013
g20469
BLASTX
96
1e−9
85


6242
1729
701000647H1
SOYMON018
g20468
BLASTN
766
1e−61
81


6243
1729
700738988H1
SOYMON012
g2150026
BLASTN
745
1e−53
85


6244
1729
700956234H1
SOYMON022
g20468
BLASTN
740
1e−52
74


6245
1729
700888666H1
SOYMON024
g2150026
BLASTN
626
1e−43
83


6246
1729
700752533H1
SOYMON014
g2150026
BLASTN
431
1e−34
80


6247
1729
700685485H1
SOYMON008
g459441
BLASTX
163
1e−15
82


6248
1729
700998862H1
SOYMON018
g20469
BLASTX
147
1e−14
73


6249
1729
700729313H1
SOYMON009
g2150029
BLASTX
85
1e−10
75


6250
17352
700846094H1
SOYMON021
g20468
BLASTN
700
1e−49
76


6251
17352
701062346H1
SOYMON033
g20468
BLASTN
658
1e−45
86


6252
17352
700866471H1
SOYMON016
g169326
BLASTN
511
1e−39
84


6253
21165
701129419H1
SOYMON037
g169326
BLASTN
1098
1e−85
92


6254
21165
701099310H1
SOYMON028
g169326
BLASTN
534
1e−54
87


6255
21165
701103522H1
SOYMON028
g169326
BLASTN
764
1e−54
92


6256
21165
701050730H1
SOYMON032
g169326
BLASTN
460
1e−43
88


6257
21165
701045037H1
SOYMON032
g169326
BLASTN
536
1e−43
89


6258
21165
701050806H1
SOYMON032
g169326
BLASTN
515
1e−41
89


6259
21165
700749793H1
SOYMON013
g169326
BLASTN
258
1e−40
86


6260
23648
701045082H1
SOYMON032
g169326
BLASTN
825
1e−80
94


6261
23648
701118383H1
SOYMON037
g169326
BLASTN
475
1e−30
88


6262
24404
700737869H1
SOYMON012
g169326
BLASTN
460
1e−44
86


6263
3053
701212666H1
SOYMON035
g20468
BLASTN
868
1e−63
84


6264
3053
701212028H1
SOYMON035
g20468
BLASTN
631
1e−61
80


6265
3053
700977561H1
SOYMON009
g20468
BLASTN
841
1e−61
79


6266
3053
700905407H1
SOYMON022
g20468
BLASTN
843
1e−61
84


6267
3053
700792066H1
SOYMON011
g20468
BLASTN
776
1e−55
79


6268
3053
701128564H1
SOYMON037
g20468
BLASTN
708
1e−50
78


6269
3053
700946436H1
SOYMON024
g20468
BLASTN
683
1e−48
75


6270
3053
701137311H1
SOYMON038
g20468
BLASTN
379
1e−39
80


6271
3053
700977732H1
SOYMON009
g20468
BLASTN
279
1e−37
77


6272
32402
700843745H1
SOYMON021
g2150027
BLASTX
164
1e−15
88


6273
7467
700998015H1
SOYMON018
g2150026
BLASTN
600
1e−46
73


6274
7467
701051278H1
SOYMON032
g2150026
BLASTN
594
1e−40
79


6275
7467
700742622H1
SOYMON012
g2150026
BLASTN
582
1e−39
79


6276
7467
700672459H1
SOYMON006
g2911148
BLASTX
201
1e−20
90


6277
7467
700668110H1
SOYMON006
g2911148
BLASTX
201
1e−20
90


6278
7467
701067027H1
SOYMON034
g169326
BLASTN
356
1e−20
78


6279
7467
700740551H1
SOYMON012
g2150027
BLASTX
138
1e−11
60


6280
7507
700725450H1
SOYMON009
g20468
BLASTN
888
1e−65
81


6281
7507
700863501H1
SOYMON027
g20468
BLASTN
873
1e−63
79


6282
7507
700961324H1
SOYMON022
g20468
BLASTN
748
1e−53
77


6283
7507
700648881H1
SOYMON003
g20468
BLASTN
443
1e−46
76


6284
7507
700727322H1
SOYMON009
g2150027
BLASTX
196
1e−19
90


6285
32402
LIB3055-009-
LIB3055
g2150028
BLASTN
458
1e−27
80




Q1-N1-E5


6286
7467
LIB3051-044-
LIB3051
g169326
BLASTN
633
1e−42
76




Q1-K1-A10


6287
7507
LIB3050-004-
LIB3050
g20468
BLASTN
635
1e−42
80




Q1-E1-B1







MAIZE NAD-DEPENDENT MALIC ENZYME















6022
18769
700076676H1
SATMON007
g20469
BLASTX
181
1e−18
77


6023
18769
700155440H1
SATMON007
g20469
BLASTX
140
1e−12
73


6288
-701172938
701172938H2
SATMONN05
g438131
BLASTX
95
1e−18
77


6289
18115
700217870H1
SATMON016
g438131
BLASTX
157
1e−14
84


6290
-700455719
700455719H1
SATMON029
g1129068
BLASTX
137
1e−14
72







SOYBEAN NAD-DEPENDENT MALIC ENZYME















6291
-700565009
700565009H1
SOYMON002
g438131
BLASTX
126
1e−10
73


6292
-701041607
701041607H1
SOYMON029
g437104
BLASTX
124
1e−21
76


6293
-GM32323
LIB3051-012-
LIB3051
g438131
BLASTX
152
1e−31
89




Q1-E1-H7







MAIZE PEP CARBOXYKINASE















6294
-700442004
700442004H1
SATMON026
g607751
BLASTN
348
1e−21
71


6295
-700579766
700579766H1
SATMON031
g607751
BLASTN
223
1e−16
79


6296
-700619673
700619673H1
SATMON034
g607751
BLASTN
281
1e−15
87


6297
15221
700620909H1
SATMON034
g607751
BLASTN
657
1e−66
88


6298
15221
700620957H1
SATMON034
g607751
BLASTN
657
1e−51
88


6299
1650
700098127H1
SATMON009
g607751
BLASTN
1241
1e−100
91


6300
1650
700243074H1
SATMON010
g607751
BLASTN
1190
1e−90
92


6301
1650
700098909H1
SATMON009
g607751
BLASTN
662
1e−89
89


6302
1650
700578805H1
SATMON031
g607751
BLASTN
783
1e−84
92


6303
1650
700577590H1
SATMON031
g607751
BLASTN
1116
1e−84
91


6304
1650
700576768H1
SATMON031
g607751
BLASTN
885
1e−83
93


6305
1650
700025522H1
SATMON004
g607751
BLASTN
1097
1e−82
93


6306
1650
700197175H1
SATMON014
g607751
BLASTN
1067
1e−80
93


6307
1650
700432603H1
SATMONN01
g607751
BLASTN
659
1e−76
92


6308
1650
700193379H1
SATMON014
g607751
BLASTN
976
1e−72
91


6309
1650
700196761H1
SATMON014
g607751
BLASTN
718
1e−50
92


6310
1650
700441535H1
SATMON026
g607751
BLASTN
391
1e−36
84


6311
1650
700158221H1
SATMON012
g607751
BLASTN
307
1e−28
92


6312
20890
700101572H1
SATMON009
g607751
BLASTN
1300
1e−99
90


6313
20890
700099023H1
SATMON009
g607751
BLASTN
1139
1e−86
89


6314
20890
700577054H1
SATMON031
g607751
BLASTN
587
1e−79
90


6315
20890
700458441H1
SATMON029
g607751
BLASTN
1025
1e−76
85


6316
22085
700101950H1
SATMON009
g607751
BLASTN
273
1e−19
85


6317
22085
700101726H1
SATMON009
g607751
BLASTN
282
1e−12
92


6318
22085
700045944H1
SATMON004
g607751
BLASTN
268
1e−11
91


6319
22085
700099310H1
SATMON009
g607751
BLASTN
269
1e−11
89


6320
22085
700097484H1
SATMON009
g607751
BLASTN
245
1e−9
88


6321
22085
700101996H1
SATMON009
g607751
BLASTN
245
1e−9
85


6322
28836
700168982H1
SATMON013
g607751
BLASTN
195
1e−9
78


6323
3602
700098761H1
SATMON009
g607751
BLASTN
688
1e−94
87


6324
3602
700240336H1
SATMON010
g607751
BLASTN
1023
1e−76
89


6325
3602
701158475H1
SATMONN04
g607751
BLASTN
907
1e−66
86


6326
8009
700028978H1
SATMON003
g607751
BLASTN
681
1e−83
89


6327
8009
700440427H1
SATMON026
g607751
BLASTN
726
1e−72
89


6328
8009
700440419H1
SATMON026
g607751
BLASTN
715
1e−67
87


6329
8009
700578684H1
SATMON031
g607751
BLASTN
720
1e−66
84


6330
-L1433016
LIB143-017-
LIB143
g607751
BLASTN
344
1e−17
77




Q1-E1-G12


6331
-L1892500
LIB189-018-
LIB189
g607751
BLASTN
483
1e−29
77




Q1-E1-A7


6332
-L30604864
LIB3060-022-
LIB3060
g607751
BLASTN
266
1e−11
89




Q1-K1-A10


6333
1650
LIB3069-045-
LIB3069
g607751
BLASTN
1868
1e−146
91




Q1-K1-A5


6334
1650
LIB189-002-
LIB189
g607751
BLASTN
1532
1e−118
92




Q1-E1-F5


6335
1650
LIB84-013-
LIB84
g607751
BLASTN
1316
1e−100
88




Q1-E1-D8


6336
1650
LIB143-049-
LIB143
g607751
BLASTN
1233
1e−93
91




Q1-E1-D10


6337
20890
10-LIB189-
LIB189
g607751
BLASTN
1467
1e−113
86




016-Q1-E1-C9


6338
22085
LIB3060-018-
LIB3060
g607751
BLASTN
288
1e−41
73




Q1-K1-C8


6339
22085
LIB3060-028-
LIB3060
g567102
BLASTX
132
1e−38
66




Q1-K1-F4


6340
22085
LIB143-052-
LIB143
g607751
BLASTN
288
1e−32
84




Q1-E1-B12


6341
22085
LIB3060-025-
LIB3060
g607751
BLASTN
280
1e−28
85




Q1-K1-F9


6342
22085
LIB3060-005-
LIB3060
g607751
BLASTN
280
1e−27
84




Q1-K1-G11


6343
22085
LIB3060-045-
LIB3060
g607751
BLASTN
280
1e−22
79




Q1-K1-A8


6344
22085
LIB3060-036-
LIB3060
g607751
BLASTN
280
1e−17
85




Q1-K1-G2


6345
22085
LIB3060-045-
LIB3060
g607751
BLASTN
280
1e−17
88




Q1-K1-E8


6346
22085
LIB3060-001-
LIB3060
g607751
BLASTN
280
1e−12
90




Q1-K2-G11


6347
22085
LIB3060-007-
LIB3060
g607751
BLASTN
280
1e−12
92




Q1-K1-A4


6348
22085
LIB3060-007-
LIB3060
g607751
BLASTN
273
1e−11
91




Q1-K1-D2


6349
22085
LIB189-007-
LIB189
g607751
BLASTN
259
1e−10
88




Q1-E1-H6


6350
28836
LIB143-067-
LIB143
g607751
BLASTN
281
1e−12
91




Q1-E1-E12


6351
3602
LIB3060-024-
LIB3060
g607751
BLASTN
1188
1e−112
81




Q1-K1-F3


6352
8009
LIB189-023-
LIB189
g607751
BLASTN
758
1e−110
85




Q1-E1-H8


6353
8009
LIB3060-013-
LIB3060
g607751
BLASTN
1184
1e−99
87




Q1-K1-F1







SOYBEAN PEP CARBOXYKINASE















6354
-700654736
700654736H1
SOYMON004
g567102
BLASTX
204
1e−21
86


6355
-700848574
700848574H1
SOYMON021
g567101
BLASTN
741
1e−52
80


6356
-700866163
700866163H1
SOYMON016
g567102
BLASTX
60
1e−10
71


6357
-700868677
700868677H1
SOYMON016
g914915
BLASTX
163
1e−15
65


6358
-700943040
700943040H1
SOYMON024
g567101
BLASTN
405
1e−23
82


6359
-700972225
700972225H1
SOYMON005
g567101
BLASTN
588
1e−47
82


6360
-700996224
700996224H1
SOYMON018
g567101
BLASTN
563
1e−38
83


6361
-701045039
701045039H1
SOYMON032
g914914
BLASTN
581
1e−54
82


6362
12737
700605402H2
SOYMON004
g567101
BLASTN
809
1e−58
76


6363
12737
700888213H1
SOYMON024
g607751
BLASTN
361
1e−19
75


6364
13320
701040204H1
SOYMON029
g914914
BLASTN
1002
1e−74
81


6365
13320
701042078H1
SOYMON029
g914914
BLASTN
865
1e−63
81


6366
13320
700849715H1
SOYMON021
g914914
BLASTN
745
1e−53
83


6367
17750
700959272H1
SOYMON022
g567102
BLASTX
154
1e−13
53


6368
17750
700961793H1
SOYMON022
g567102
BLASTX
119
1e−9
50


6369
20486
700726640H1
SOYMON009
g567102
BLASTX
131
1e−16
75


6370
24418
700605382H2
SOYMON004
g914914
BLASTN
814
1e−59
76


6371
24418
701052653H1
SOYMON032
g567101
BLASTN
760
1e−54
79


6372
24418
700847843H1
SOYMON021
g567101
BLASTN
447
1e−50
82


6373
24418
701051337H1
SOYMON032
g914914
BLASTN
715
1e−50
78


6374
24418
700656509H1
SOYMON004
g914914
BLASTN
655
1e−45
72


6375
24418
701101473H1
SOYMON028
g567101
BLASTN
417
1e−43
80


6376
24418
701053551H1
SOYMON032
g607752
BLASTX
126
1e−14
72


6377
26845
701046671H1
SOYMON032
g567101
BLASTN
528
1e−35
67


6378
26845
701103555H1
SOYMON028
g607751
BLASTN
352
1e−18
63


6379
-GM20322
LIB3056-013-
LIB3056
g567101
BLASTN
766
1e−53
81




Q1-N1-F3


6380
-GM36301
LIB3051-054-
LIB3051
g607751
BLASTN
273
1e−11
91




Q1-K1-G11


6381
-GM37519
LIB3051-063-
LIB3051
g567101
BLASTN
911
1e−67
81




Q1-K1-D7


6382
11698
LIB3051-065-
LIB3051
g567102
BLASTX
167
1e−32
58




Q1-K1-G9


6383
12737
LIB3051-003-
LIB3051
g567101
BLASTN
820
1e−58
75




Q1-E1-C4


6384
24418
LIB3051-104-
LIB3051
g914914
BLASTN
1096
1e−89
77




Q1-K1-G11


6385
24418
LIB3051-042-
LIB3051
g567101
BLASTN
1019
1e−84
78




Q1-K1-C1


6386
24418
LIB3051-116-
LIB3051
g914914
BLASTN
918
1e−67
73




Q1-K1-B4


6387
24418
LIB3051-046-
LIB3051
g914914
BLASTN
863
1e−65
76




Q1-K1-E11







SOYBEAN PUTATIVE PEP CARBOXYKINASE















6388
-700868431
700868431H1
SOYMON016
g2827717
BLASTX
94
1e−9
81







MAIZE PYRUVATE, PHOSPHATE DIKINASE















6389
-700044189
700044189H1
SATMON004
g168579
BLASTN
155
1e−10
89


6390
-700098830
700098830H1
SATMON009
g257804
BLASTN
317
1e−76
93


6391
-700267212
700267212H1
SATMON017
g168579
BLASTN
1115
1e−84
86


6392
-700268101
700268101H1
SATMON017
g257809
BLASTN
698
1e−66
96


6393
-700404827
700404827H1
SATMON026
g168583
BLASTN
445
1e−57
89


6394
-700426407
700426407H1
SATMONN01
g168579
BLASTN
365
1e−21
81


6395
-700430716
700430716H1
SATMONN01
g22451
BLASTN
210
1e−8
83


6396
-700438208
700438208H1
SATMON026
g168584
BLASTN
325
1e−50
94


6397
-700438250
700438250H1
SATMON026
g168579
BLASTN
263
1e−28
94


6398
-700442440
700442440H1
SATMON026
g168579
BLASTN
492
1e−63
84


6399
-700442486
700442486H1
SATMON026
g168579
BLASTN
399
1e−34
76


6400
-700442534
700442534H1
SATMON026
g168579
BLASTN
280
1e−26
86


6401
-700445755
700445755H1
SATMON027
g168579
BLASTN
537
1e−45
91


6402
-700448312
700448312H1
SATMON027
g168579
BLASTN
201
1e−16
93


6403
-700458259
700458259H1
SATMON029
g168579
BLASTN
635
1e−57
87


6404
-700460850
700460850H1
SATMON031
g168579
BLASTN
227
1e−14
92


6405
-700576979
700576979H1
SATMON031
g168579
BLASTN
239
1e−9
89


6406
-700582461
700582461H1
SATMON031
g168584
BLASTN
310
1e−34
86


6407
-700613790
700613790H1
SATMON033
g168579
BLASTN
473
1e−69
90


6408
-700615033
700615033H1
SATMON033
g168579
BLASTN
1209
1e−94
89


6409
-700807115
700807115H1
SATMON036
g168579
BLASTN
961
1e−71
85


6410
-700807148
700807148H1
SATMON036
g168579
BLASTN
1046
1e−78
85


6411
-700807285
700807285H1
SATMON036
g168579
BLASTN
850
1e−61
81


6412
241
700616008H1
SATMON033
g168579
BLASTN
1750
1e−136
99


6413
241
700084360H1
SATMON011
g168579
BLASTN
1706
1e−133
99


6414
241
700097569H1
SATMON009
g168579
BLASTN
1635
1e−127
100


6415
241
700099686H1
SATMON009
g168579
BLASTN
1540
1e−124
100


6416
241
700097065H1
SATMON009
g168579
BLASTN
1565
1e−124
100


6417
241
700097577H1
SATMON009
g168579
BLASTN
1601
1e−124
99


6418
241
700098157H1
SATMON009
g168579
BLASTN
1588
1e−123
99


6419
241
700095354H1
SATMON008
g168579
BLASTN
1578
1e−122
99


6420
241
700097024H1
SATMON009
g168579
BLASTN
1561
1e−121
98


6421
241
700101705H1
SATMON009
g168579
BLASTN
1563
1e−121
99


6422
241
700100753H1
SATMON009
g168579
BLASTN
1569
1e−121
98


6423
241
700209526H1
SATMON016
g168579
BLASTN
1548
1e−120
98


6424
241
700101967H1
SATMON009
g168579
BLASTN
1550
1e−120
100


6425
241
700100971H1
SATMON009
g168579
BLASTN
1552
1e−120
97


6426
241
700097028H1
SATMON009
g168579
BLASTN
876
1e−119
99


6427
241
700100216H1
SATMON009
g168579
BLASTN
1068
1e−118
98


6428
241
700100408H1
SATMON009
g168579
BLASTN
1413
1e−118
99


6429
241
700098443H1
SATMON009
g168579
BLASTN
1518
1e−117
99


6430
241
700099779H1
SATMON009
g168579
BLASTN
1502
1e−116
97


6431
241
700099086H1
SATMON009
g168579
BLASTN
1503
1e−116
99


6432
241
700101887H1
SATMON009
g168579
BLASTN
1506
1e−116
99


6433
241
700097164H1
SATMON009
g168579
BLASTN
1489
1e−115
98


6434
241
700100751H1
SATMON009
g168579
BLASTN
1492
1e−115
97


6435
241
700101890H1
SATMON009
g168579
BLASTN
1498
1e−115
99


6436
241
700100212H1
SATMON009
g168579
BLASTN
1042
1e−114
99


6437
241
700100040H1
SATMON009
g168579
BLASTN
1484
1e−114
99


6438
241
700101179H1
SATMON009
g168579
BLASTN
1486
1e−114
99


6439
241
700097777H1
SATMON009
g168579
BLASTN
1097
1e−113
97


6440
241
700621494H1
SATMON034
g168579
BLASTN
1184
1e−113
97


6441
241
700621492H1
SATMON034
g168579
BLASTN
1184
1e−113
97


6442
241
700620055H1
SATMON034
g168579
BLASTN
1205
1e−113
98


6443
241
700099278H1
SATMON009
g168579
BLASTN
1468
1e−113
99


6444
241
700100235H1
SATMON009
g168579
BLASTN
1036
1e−112
97


6445
241
700097726H1
SATMON009
g168579
BLASTN
1452
1e−112
99


6446
241
700099458H1
SATMON009
g168579
BLASTN
1452
1e−112
97


6447
241
700101405H1
SATMON009
g168579
BLASTN
1457
1e−112
99


6448
241
700098006H1
SATMON009
g168579
BLASTN
1458
1e−112
98


6449
241
700098988H1
SATMON009
g168579
BLASTN
1460
1e−112
98


6450
241
700101193H1
SATMON009
g168579
BLASTN
1460
1e−112
100


6451
241
700099029H1
SATMON009
g168579
BLASTN
1450
1e−111
100


6452
241
700099494H1
SATMON009
g168579
BLASTN
1451
1e−111
99


6453
241
700624034H1
SATMON034
g168579
BLASTN
887
1e−110
92


6454
241
700099587H1
SATMON009
g168579
BLASTN
1432
1e−110
97


6455
241
700097537H1
SATMON009
g168579
BLASTN
1434
1e−110
98


6456
241
700099280H1
SATMON009
g168579
BLASTN
1437
1e−110
98


6457
241
700099242H1
SATMON009
g168579
BLASTN
924
1e−109
98


6458
241
700097259H1
SATMON009
g168579
BLASTN
1275
1e−109
98


6459
241
700099789H1
SATMON009
g168579
BLASTN
1422
1e−109
96


6460
241
700097672H1
SATMON009
g168579
BLASTN
1425
1e−109
95


6461
241
700099985H1
SATMON009
g168579
BLASTN
870
1e−108
99


6462
241
700045762H1
SATMON004
g168579
BLASTN
1410
1e−108
100


6463
241
700101542H1
SATMON009
g168579
BLASTN
1008
1e−107
98


6464
241
700099788H1
SATMON009
g168579
BLASTN
1255
1e−107
99


6465
241
700265183H1
SATMON017
g168579
BLASTN
1394
1e−107
97


6466
241
700072495H1
SATMON007
g168579
BLASTN
1395
1e−107
96


6467
241
700578123H1
SATMON031
g168579
BLASTN
1398
1e−107
98


6468
241
700445628H1
SATMON027
g168579
BLASTN
1401
1e−107
96


6469
241
700098025H1
SATMON009
g168579
BLASTN
1403
1e−107
98


6470
241
700457276H1
SATMON029
g168579
BLASTN
1380
1e−106
100


6471
241
700045419H1
SATMON004
g168579
BLASTN
1385
1e−106
100


6472
241
700457282H1
SATMON029
g168579
BLASTN
1385
1e−106
100


6473
241
700042861H1
SATMON004
g168579
BLASTN
1387
1e−106
99


6474
241
700099765H1
SATMON009
g168579
BLASTN
1177
1e−105
96


6475
241
700213650H1
SATMON016
g168579
BLASTN
1367
1e−105
99


6476
241
700157249H1
SATMON012
g168579
BLASTN
1370
1e−105
100


6477
241
700441931H1
SATMON026
g168579
BLASTN
1370
1e−105
98


6478
241
700097944H1
SATMON009
g168579
BLASTN
1372
1e−105
97


6479
241
700423208H1
SATMONN01
g168579
BLASTN
630
1e−104
97


6480
241
700442667H1
SATMON026
g168579
BLASTN
1259
1e−104
98


6481
241
700044521H1
SATMON004
g168579
BLASTN
1355
1e−104
100


6482
241
700208177H1
SATMON016
g168579
BLASTN
1365
1e−104
97


6483
241
700444555H1
SATMON027
g168579
BLASTN
1227
1e−103
99


6484
241
700580211H1
SATMON031
g168579
BLASTN
1238
1e−103
99


6485
241
700577814H1
SATMON031
g168579
BLASTN
1345
1e−103
98


6486
241
700100895H1
SATMON009
g168579
BLASTN
1347
1e−103
97


6487
241
700100893H1
SATMON009
g168579
BLASTN
1347
1e−103
98


6488
241
700442655H1
SATMON026
g168579
BLASTN
1351
1e−103
99


6489
241
700101289H1
SATMON009
g168579
BLASTN
1353
1e−103
99


6490
241
700446244H1
SATMON027
g168579
BLASTN
778
1e−102
99


6491
241
700210293H1
SATMON016
g168579
BLASTN
943
1e−102
98


6492
241
700404894H1
SATMON026
g168579
BLASTN
1202
1e−102
97


6493
241
700577581H1
SATMON031
g168579
BLASTN
1331
1e−102
98


6494
241
700041646H1
SATMON004
g168579
BLASTN
1335
1e−102
98


6495
241
700442593H1
SATMON026
g168579
BLASTN
1338
1e−102
99


6496
241
700581301H1
SATMON031
g168579
BLASTN
1338
1e−102
98


6497
241
700043360H1
SATMON004
g168579
BLASTN
1340
1e−102
100


6498
241
700044853H1
SATMON004
g168579
BLASTN
1340
1e−102
100


6499
241
700581894H1
SATMON031
g168579
BLASTN
1342
1e−102
98


6500
241
700582749H1
SATMON031
g168579
BLASTN
853
1e−101
99


6501
241
700046068H1
SATMON004
g168579
BLASTN
864
1e−101
98


6502
241
700045115H1
SATMON004
g168579
BLASTN
1320
1e−101
100


6503
241
700053428H1
SATMON009
g168579
BLASTN
1321
1e−101
99


6504
241
700100830H1
SATMON009
g168579
BLASTN
1321
1e−101
99


6505
241
700441945H1
SATMON026
g168579
BLASTN
1326
1e−101
98


6506
241
700576780H1
SATMON031
g168579
BLASTN
1326
1e−101
97


6507
241
700442663H1
SATMON026
g168579
BLASTN
1326
1e−101
99


6508
241
700439640H1
SATMON026
g168579
BLASTN
1005
1e−100
97


6509
241
700098515H1
SATMON009
g168579
BLASTN
1211
1e−100
97


6510
241
700430478H1
SATMONN01
g168579
BLASTN
1307
1e−100
98


6511
241
700802781H1
SATMON036
g168579
BLASTN
1307
1e−100
99


6512
241
700045313H1
SATMON004
g168579
BLASTN
1316
1e−100
99


6513
241
700045790H1
SATMON004
g168579
BLASTN
1316
1e−100
99


6514
241
700440018H1
SATMON026
g168579
BLASTN
1317
1e−100
99


6515
241
700100827H1
SATMON009
g168579
BLASTN
1317
1e−100
99


6516
241
700617476H1
SATMON033
g168579
BLASTN
558
1e−99
96


6517
241
700577914H1
SATMON031
g168579
BLASTN
1002
1e−99
96


6518
241
700440805H1
SATMON026
g168579
BLASTN
1295
1e−99
100


6519
241
700097121H1
SATMON009
g168579
BLASTN
1295
1e−99
90


6520
241
700043644H1
SATMON004
g168579
BLASTN
1296
1e−99
97


6521
241
700045549H1
SATMON004
g168579
BLASTN
1301
1e−99
99


6522
241
700578928H1
SATMON031
g168579
BLASTN
1303
1e−99
99


6523
241
700467315H1
SATMON025
g168579
BLASTN
490
1e−98
98


6524
241
700583117H1
SATMON031
g168579
BLASTN
955
1e−98
95


6525
241
700801426H1
SATMON036
g168579
BLASTN
1256
1e−98
99


6526
241
700041748H1
SATMON004
g168579
BLASTN
1286
1e−98
97


6527
241
700043365H1
SATMON004
g168579
BLASTN
1294
1e−98
98


6528
241
700042742H1
SATMON004
g168579
BLASTN
1294
1e−98
97


6529
241
700041509H1
SATMON004
g168579
BLASTN
870
1e−97
99


6530
241
700098536H1
SATMON009
g168584
BLASTN
910
1e−97
97


6531
241
700100481H1
SATMON009
g168579
BLASTN
1109
1e−97
93


6532
241
700578290H1
SATMON031
g168579
BLASTN
1232
1e−97
99


6533
241
700045316H1
SATMON004
g168579
BLASTN
1272
1e−97
97


6534
241
700043494H1
SATMON004
g168579
BLASTN
1275
1e−97
97


6535
241
700044584H1
SATMON004
g168579
BLASTN
1276
1e−97
99


6536
241
700619616H1
SATMON034
g168579
BLASTN
1278
1e−97
87


6537
241
700041517H1
SATMON004
g168579
BLASTN
1281
1e−97
96


6538
241
700100133H1
SATMON009
g168579
BLASTN
496
1e−96
94


6539
241
700456453H1
SATMON029
g168579
BLASTN
669
1e−96
97


6540
241
700440516H1
SATMON026
g168579
BLASTN
1015
1e−96
100


6541
241
700042888H1
SATMON004
g168579
BLASTN
1172
1e−96
99


6542
241
700157245H1
SATMON012
g168579
BLASTN
1259
1e−96
98


6543
241
700261321H1
SATMON017
g168579
BLASTN
1261
1e−96
99


6544
241
700045657H1
SATMON004
g168579
BLASTN
1265
1e−96
95


6545
241
700042469H1
SATMON004
g168579
BLASTN
1265
1e−96
98


6546
241
700434549H1
SATMONN01
g168579
BLASTN
1269
1e−96
91


6547
241
700433527H1
SATMONN01
g168579
BLASTN
795
1e−95
99


6548
241
701177258H1
SATMONN05
g168579
BLASTN
900
1e−95
96


6549
241
700440442H1
SATMON026
g168579
BLASTN
997
1e−95
97


6550
241
700432310H1
SATMONN01
g168579
BLASTN
1074
1e−95
97


6551
241
700026635H1
SATMON003
g168579
BLASTN
1077
1e−95
96


6552
241
700043320H1
SATMON004
g168579
BLASTN
1129
1e−95
98


6553
241
700025682H1
SATMON004
g168579
BLASTN
1256
1e−95
98


6554
241
700441415H1
SATMON026
g168579
BLASTN
580
1e−94
96


6555
241
700460762H1
SATMON031
g168579
BLASTN
624
1e−94
97


6556
241
700053387H1
SATMON009
g168584
BLASTN
649
1e−94
96


6557
241
700044829H1
SATMON004
g168579
BLASTN
960
1e−94
100


6558
241
700576848H1
SATMON031
g168579
BLASTN
1207
1e−94
98


6559
241
700195073H1
SATMON014
g168579
BLASTN
1245
1e−94
98


6560
241
700044956H1
SATMON004
g168579
BLASTN
1246
1e−94
97


6561
241
700441974H1
SATMON026
g168579
BLASTN
588
1e−93
97


6562
241
700045323H1
SATMON004
g168579
BLASTN
673
1e−93
98


6563
241
700584010H1
SATMON031
g168579
BLASTN
753
1e−93
92


6564
241
700098611H1
SATMON009
g168579
BLASTN
1137
1e−93
97


6565
241
700043635H1
SATMON004
g168584
BLASTN
1231
1e−93
99


6566
241
700441843H1
SATMON026
g168579
BLASTN
1232
1e−93
98


6567
241
700621537H1
SATMON034
g168579
BLASTN
638
1e−92
93


6568
241
700438416H1
SATMON026
g168579
BLASTN
1013
1e−92
97


6569
241
700043045H1
SATMON004
g168579
BLASTN
1117
1e−92
99


6570
241
700433859H1
SATMONN01
g168579
BLASTN
1148
1e−92
96


6571
241
700580039H1
SATMON031
g168579
BLASTN
1159
1e−92
96


6572
241
700208040H1
SATMON016
g168579
BLASTN
1171
1e−92
98


6573
241
700043891H1
SATMON004
g168579
BLASTN
1211
1e−92
97


6574
241
701175175H1
SATMONN05
g168579
BLASTN
1212
1e−92
98


6575
241
700210840H1
SATMON016
g168579
BLASTN
1214
1e−92
96


6576
241
700086935H1
SATMON011
g168579
BLASTN
1221
1e−92
87


6577
241
700044111H1
SATMON004
g168579
BLASTN
700
1e−91
98


6578
241
700576815H1
SATMON031
g168579
BLASTN
912
1e−91
96


6579
241
700438522H1
SATMON026
g168579
BLASTN
1105
1e−91
97


6580
241
700578239H1
SATMON031
g168579
BLASTN
1119
1e−91
98


6581
241
700044219H1
SATMON004
g168579
BLASTN
1200
1e−91
100


6582
241
700220031H1
SATMON011
g168579
BLASTN
1203
1e−91
96


6583
241
700454149H1
SATMON029
g168579
BLASTN
1203
1e−91
95


6584
241
700578265H1
SATMON031
g168579
BLASTN
1074
1e−90
98


6585
241
700442849H1
SATMON026
g168579
BLASTN
891
1e−89
94


6586
241
700044381H1
SATMON004
g168579
BLASTN
1033
1e−89
95


6587
241
700578031H1
SATMON031
g168579
BLASTN
1175
1e−89
96


6588
241
700802158H1
SATMON036
g168579
BLASTN
1183
1e−89
91


6589
241
700581537H1
SATMON031
g168579
BLASTN
434
1e−88
97


6590
241
700447772H1
SATMON027
g168579
BLASTN
628
1e−88
96


6591
241
700044908H1
SATMON004
g168579
BLASTN
1166
1e−88
97


6592
241
700806626H1
SATMON036
g168579
BLASTN
1167
1e−88
95


6593
241
700580766H1
SATMON031
g168579
BLASTN
1168
1e−88
98


6594
241
700100482H1
SATMON009
g168579
BLASTN
1169
1e−88
87


6595
241
700428285H1
SATMONN01
g168579
BLASTN
707
1e−87
97


6596
241
700158124H1
SATMON012
g168579
BLASTN
918
1e−87
98


6597
241
700439158H1
SATMON026
g168579
BLASTN
922
1e−87
93


6598
241
700577046H1
SATMON031
g168579
BLASTN
989
1e−87
97


6599
241
700098026H1
SATMON009
g168579
BLASTN
1151
1e−87
87


6600
241
700099229H1
SATMON009
g168579
BLASTN
1154
1e−87
98


6601
241
700045027H1
SATMON004
g168579
BLASTN
1162
1e−87
97


6602
241
701177010H1
SATMONN05
g22452
BLASTN
413
1e−86
94


6603
241
700044687H1
SATMON004
g168579
BLASTN
660
1e−86
99


6604
241
700438501H1
SATMON026
g168579
BLASTN
714
1e−86
95


6605
241
700044229H1
SATMON004
g168579
BLASTN
965
1e−86
100


6606
241
700447355H1
SATMON027
g168579
BLASTN
1074
1e−86
96


6607
241
700806248H1
SATMON036
g168579
BLASTN
1082
1e−86
96


6608
241
700044220H1
SATMON004
g168579
BLASTN
1132
1e−85
97


6609
241
700193031H1
SATMON014
g168579
BLASTN
1121
1e−84
92


6610
241
700581571H1
SATMON031
g168584
BLASTN
461
1e−83
95


6611
241
700100987H1
SATMON009
g168579
BLASTN
1006
1e−83
93


6612
241
700439748H1
SATMON026
g168579
BLASTN
1107
1e−83
97


6613
241
700441474H1
SATMON026
g168579
BLASTN
570
1e−82
96


6614
241
700042302H1
SATMON004
g168579
BLASTN
586
1e−82
98


6615
241
700616327H1
SATMON033
g168579
BLASTN
604
1e−82
88


6616
241
700194736H1
SATMON014
g168584
BLASTN
625
1e−82
96


6617
241
700578367H1
SATMON031
g168579
BLASTN
674
1e−82
96


6618
241
700042652H1
SATMON004
g168579
BLASTN
693
1e−82
98


6619
241
700397564H1
SATMONN01
g168579
BLASTN
965
1e−82
89


6620
241
700434288H1
SATMONN01
g168584
BLASTN
1096
1e−82
92


6621
241
700429519H1
SATMONN01
g168579
BLASTN
1098
1e−82
89


6622
241
700438174H1
SATMON026
g168579
BLASTN
1102
1e−82
90


6623
241
700583672H1
SATMON031
g168579
BLASTN
894
1e−81
88


6624
241
700441307H1
SATMON026
g168579
BLASTN
1088
1e−81
99


6625
241
701176710H1
SATMONN05
g22452
BLASTN
477
1e−79
94


6626
241
700581577H1
SATMON031
g168579
BLASTN
551
1e−79
94


6627
241
700428336H1
SATMONN01
g168579
BLASTN
948
1e−79
92


6628
241
700018165H1
SATMON001
g168579
BLASTN
1020
1e−79
98


6629
241
700405414H1
SATMON029
g168579
BLASTN
1058
1e−79
98


6630
241
700239413H1
SATMON010
g168579
BLASTN
965
1e−78
95


6631
241
700581594H1
SATMON031
g168579
BLASTN
607
1e−76
89


6632
241
700433062H1
SATMONN01
g168579
BLASTN
642
1e−76
85


6633
241
700581979H1
SATMON031
g168579
BLASTN
1019
1e−76
85


6634
241
700441332H1
SATMON026
g168579
BLASTN
1023
1e−76
94


6635
241
700441363H1
SATMON026
g168579
BLASTN
1016
1e−75
94


6636
241
700807116H1
SATMON036
g168581
BLASTN
686
1e−74
99


6637
241
700800557H1
SATMON036
g168579
BLASTN
985
1e−73
86


6638
241
700803903H1
SATMON036
g168579
BLASTN
391
1e−72
87


6639
241
700257764H1
SATMON017
g168579
BLASTN
974
1e−72
94


6640
241
700207392H1
SATMON016
g168579
BLASTN
960
1e−71
100


6641
241
700193933H1
SATMON014
g168579
BLASTN
969
1e−71
88


6642
241
700806409H1
SATMON036
g168581
BLASTN
543
1e−69
96


6643
241
700195405H1
SATMON014
g168579
BLASTN
740
1e−69
87


6644
241
700579292H1
SATMON031
g168579
BLASTN
746
1e−69
94


6645
241
700427458H1
SATMONN01
g168584
BLASTN
337
1e−68
88


6646
241
700624196H1
SATMON034
g168579
BLASTN
648
1e−66
90


6647
241
700805096H1
SATMON036
g168579
BLASTN
900
1e−66
86


6648
241
700042161H1
SATMON004
g168579
BLASTN
903
1e−66
91


6649
241
700578768H1
SATMON031
g168584
BLASTN
908
1e−66
93


6650
241
700802865H1
SATMON036
g168584
BLASTN
705
1e−65
94


6651
241
700580152H1
SATMON031
g168579
BLASTN
863
1e−63
96


6652
241
700041938H1
SATMON004
g168584
BLASTN
845
1e−61
100


6653
241
700196549H1
SATMON014
g168579
BLASTN
848
1e−61
91


6654
241
700425162H1
SATMONN01
g22451
BLASTN
805
1e−60
100


6655
241
701160579H1
SATMONN04
g168579
BLASTN
380
1e−59
96


6656
241
700456514H1
SATMON029
g168579
BLASTN
822
1e−59
92


6657
241
700441507H1
SATMON026
g168579
BLASTN
697
1e−58
96


6658
241
700099603H1
SATMON009
g168579
BLASTN
804
1e−58
98


6659
241
700442758H1
SATMON026
g168579
BLASTN
326
1e−56
90


6660
241
700804296H1
SATMON036
g168579
BLASTN
687
1e−54
84


6661
241
700438664H1
SATMON026
g168579
BLASTN
277
1e−53
96


6662
241
700441510H1
SATMON026
g168579
BLASTN
388
1e−52
96


6663
241
700428514H1
SATMONN01
g168579
BLASTN
491
1e−52
96


6664
241
700101932H1
SATMON009
g168579
BLASTN
384
1e−50
92


6665
241
700262656H1
SATMON017
g168579
BLASTN
542
1e−49
93


6666
241
700583279H1
SATMON031
g168579
BLASTN
449
1e−47
95


6667
241
700624652H1
SATMON034
g168579
BLASTN
623
1e−47
96


6668
241
700612451H1
SATMON033
g168579
BLASTN
672
1e−47
89


6669
241
700335324H1
SATMON019
g168581
BLASTN
637
1e−46
71


6670
241
700440390H1
SATMON026
g168579
BLASTN
361
1e−45
95


6671
241
700097825H1
SATMON009
g168579
BLASTN
650
1e−45
100


6672
241
701163821H1
SATMONN04
g168581
BLASTN
606
1e−44
98


6673
241
700438560H1
SATMON026
g168584
BLASTN
623
1e−43
96


6674
241
700805587H1
SATMON036
g168579
BLASTN
632
1e−43
84


6675
241
700100859H1
SATMON009
g168579
BLASTN
612
1e−42
97


6676
241
700580595H1
SATMON031
g168579
BLASTN
295
1e−39
81


6677
241
700441529H1
SATMON026
g168584
BLASTN
302
1e−37
97


6678
241
700045548H1
SATMON004
g22451
BLASTN
511
1e−36
99


6679
241
700097365H1
SATMON009
g168579
BLASTN
544
1e−36
97


6680
241
700424468H1
SATMONN01
g168579
BLASTN
547
1e−36
94


6681
241
700457633H1
SATMON029
g168584
BLASTN
275
1e−35
96


6682
241
700425102H1
SATMONN01
g168579
BLASTN
472
1e−33
92


6683
241
700097811H1
SATMON009
g168579
BLASTN
501
1e−32
87


6684
241
700404795H1
SATMON026
g168584
BLASTN
483
1e−31
98


6685
241
700431218H1
SATMONN01
g168579
BLASTN
302
1e−29
96


6686
241
700097835H1
SATMON009
g168579
BLASTN
337
1e−29
89


6687
241
700100627H1
SATMON009
g168579
BLASTN
444
1e−28
94


6688
241
700618263H1
SATMON033
g168579
BLASTN
286
1e−27
88


6689
241
700583801H1
SATMON031
g168579
BLASTN
350
1e−26
95


6690
241
700099807H1
SATMON009
g168579
BLASTN
233
1e−24
94


6691
241
700097573H1
SATMON009
g168579
BLASTN
305
1e−23
92


6692
241
700427553H1
SATMONN01
g168584
BLASTN
344
1e−23
93


6693
241
700098562H1
SATMON009
g168579
BLASTN
309
1e−16
95


6694
241
700799964H1
SATMON036
g168584
BLASTN
234
1e−13
94


6695
3862
700266534H1
SATMON017
g257804
BLASTN
923
1e−77
97


6696
3862
700455813H1
SATMON029
g257804
BLASTN
879
1e−66
98


6697
3862
700099255H1
SATMON009
g168579
BLASTN
460
1e−29
91


6698
5767
700098424H1
SATMON009
g22449
BLASTN
1555
1e−120
98


6699
5767
700099971H1
SATMON009
g168583
BLASTN
1468
1e−113
96


6700
5767
700044869H1
SATMON004
g168583
BLASTN
1242
1e−99
98


6701
5767
700097037H1
SATMON009
g168579
BLASTN
1264
1e−96
89


6702
5767
700095363H1
SATMON008
g168583
BLASTN
310
1e−78
97


6703
5767
700101364H1
SATMON009
g22449
BLASTN
1006
1e−75
94


6704
5767
700101568H1
SATMON009
g22449
BLASTN
1013
1e−75
95


6705
5767
700045180H1
SATMON004
g22449
BLASTN
901
1e−74
90


6706
5767
700042559H1
SATMON004
g22449
BLASTN
998
1e−74
94


6707
5767
700045393H1
SATMON004
g22449
BLASTN
865
1e−63
100


6708
5767
700099658H1
SATMON009
g22449
BLASTN
531
1e−35
92


6709
-L1433809
LIB143-024-
LIB143
g168579
BLASTN
256
1e−23
81




Q1-E1-F11


6710
-L30592709
LIB3059-017-
LIB3059
g2443401
BLASTN
431
1e−27
68




Q1-K1-F2


6711
-L30593789
LIB3059-022-
LIB3059
g168584
BLASTN
361
1e−21
89




Q1-K1-D6


6712
-L30594314
LIB3059-032-
LIB3059
g168579
BLASTN
488
1e−29
63




Q1-K1-G4


6713
-L30594987
LIB3059-056-
LIB3059
g168579
BLASTN
406
1e−41
73




Q1-K1-G11


6714
-L30596613
LIB3059-054-
LIB3059
g168579
BLASTN
568
1e−52
78




Q1-K1-F4


6715
-L30602598
LIB3060-018-
LIB3060
g168579
BLASTN
580
1e−79
73




Q1-K1-B4


6716
-L30602793
LIB3060-014-
LIB3060
g168583
BLASTN
513
1e−62
77




Q1-K1-C6


6717
-L30602820
LIB3060-017-
LIB3060
g168579
BLASTN
151
1e−12
89




Q1-K1-B1


6718
-L30603538
LIB3060-045-
LIB3060
g168583
BLASTN
382
1e−34
88




Q1-K1-E12


6719
-L30603998
LIB3060-036-
LIB3060
g168579
BLASTN
678
1e−90
82




Q1-K1-H4


6720
-L30605229
LIB3060-050-
LIB3060
g168579
BLASTN
305
1e−16
80




Q1-K1-D5


6721
-L30611520
LIB3061-002-
LIB3061
g168581
BLASTN
492
1e−41
82




Q1-K2-D12


6722
-L30615750
LIB3061-042-
LIB3061
g168579
BLASTN
223
1e−11
96




Q1-K1-H11


6723
-L30783291
LIB3078-051-
LIB3078
g168579
BLASTN
538
1e−70
73




Q1-K1-G3


6724
-L30784553
LIB3078-011-
LIB3078
g168579
BLASTN
671
1e−90
83




Q1-K1-B7


6725
-L361816
LIB36-020-
LIB36
g168579
BLASTN
738
1e−69
82




Q1-E1-A10


6726
-L362168
LIB36-005-
LIB36
g168579
BLASTN
304
1e−15
72




Q1-E1-D11


6727
-L362639
LIB36-007-
LIB36
g168584
BLASTN
332
1e−36
86




Q1-E1-F2


6728
-L831870
LIB83-009-
LIB83
g168579
BLASTN
250
1e−11
100




Q1-E1-E9


6729
-L831984
LIB83-010-
LIB83
g168584
BLASTN
382
1e−41
89




Q1-E1-B1


6730
241
LIB36-016-
LIB36
g168579
BLASTN
2261
1e−179
99




Q2-E2-E10


6731
241
LIB3060-003-
LIB3060
g168579
BLASTN
2186
1e−173
99




Q1-K1-C3


6732
241
LIB3078-052-
LIB3078
g168579
BLASTN
2188
1e−173
99




Q1-K1-H5


6733
241
LIB3078-033-
LIB3078
g168579
BLASTN
2176
1e−172
98




Q1-K1-A12


6734
241
LIB36-016-
LIB36
g168579
BLASTN
2164
1e−171
98




Q2-E2-C3


6735
241
LIB3060-054-
LIB3060
g168579
BLASTN
1973
1e−168
97




Q1-K1-E4


6736
241
LIB36-016-
LIB36
g168579
BLASTN
2130
1e−168
98




Q2-E2-C5


6737
241
LIB36-014-
LIB36
g168579
BLASTN
1968
1e−167
96




Q1-E1-D2


6738
241
LIB3059-058-
LIB3059
g168579
BLASTN
2112
1e−167
98




Q1-K1-A12


6739
241
LIB3060-006-
LIB3060
g168579
BLASTN
1699
1e−165
97




Q1-K1-C1


6740
241
LIB3060-016-
LIB3060
g168579
BLASTN
2051
1e−165
99




Q1-K1-F8


6741
241
LIB3060-045-
LIB3060
g168579
BLASTN
2098
1e−165
97




Q1-K1-E3


6742
241
LIB3060-026-
LIB3060
g168579
BLASTN
1162
1e−164
94




Q1-K1-D6


6743
241
LIB3060-012-
LIB3060
g168579
BLASTN
1897
1e−164
98




Q1-K1-A7


6744
241
LIB83-003-
LIB83
g168579
BLASTN
2077
1e−164
96




Q1-E1-G2


6745
241
LIB143-022-
LIB143
g168579
BLASTN
2087
1e−164
98




Q1-E1-G5


6746
241
LIB3060-044-
LIB3060
g168579
BLASTN
1768
1e−163
95




Q1-K1-F6


6747
241
LIB3060-025-
LIB3060
g168579
BLASTN
2058
1e−162
96




Q1-K1-B10


6748
241
LIB36-005-
LIB36
g168579
BLASTN
2059
1e−162
97




Q1-E1-C7


6749
241
LIB3060-052-
LIB3060
g168579
BLASTN
1831
1e−161
97




Q1-K1-D5


6750
241
LIB3059-024-
LIB3059
g168579
BLASTN
1932
1e−161
99




Q1-K1-F6


6751
241
LIB36-002-
LIB36
g168579
BLASTN
2051
1e−161
98




Q1-E1-B10


6752
241
LIB3060-052-
LIB3060
g168579
BLASTN
1740
1e−160
97




Q1-K1-E8


6753
241
LIB3060-016-
LIB3060
g168579
BLASTN
2030
1e−160
97




Q1-K1-G8


6754
241
LIB84-004-
LIB84
g168579
BLASTN
2034
1e−160
97




Q1-E1-C3


6755
241
LIB3060-051-
LIB3060
g168579
BLASTN
2037
1e−160
98




Q1-K1-E9


6756
241
LIB84-013-
LIB84
g168579
BLASTN
2018
1e−159
98




Q1-E1-A5


6757
241
LIB3078-002-
LIB3078
g168579
BLASTN
2027
1e−159
97




Q1-K1-E2


6758
241
LIB189-006-
LIB189
g168579
BLASTN
1791
1e−158
99




Q1-E1-G6


6759
241
LIB3060-044-
LIB3060
g168579
BLASTN
1692
1e−157
98




Q1-K1-F8


6760
241
LIB36-004-
LIB36
g168579
BLASTN
1892
1e−157
98




Q1-E1-B11


6761
241
LIB3078-013-
LIB3078
g168579
BLASTN
1853
1e−156
97




Q1-K1-H10


6762
241
LIB36-015-
LIB36
g168579
BLASTN
1988
1e−156
98




Q1-E1-F9


6763
241
LIB189-020-
LIB189
g168579
BLASTN
1972
1e−155
98




Q1-E1-G9


6764
241
LIB36-004-
LIB36
g168579
BLASTN
1972
1e−155
99




Q1-E1-F10


6765
241
LIB3060-005-
LIB3060
g168579
BLASTN
1974
1e−155
99




Q1-K1-B6


6766
241
LIB3060-052-
LIB3060
g168579
BLASTN
1979
1e−155
94




Q1-K1-H7


6767
241
LIB189-007-
LIB189
g168579
BLASTN
1130
1e−154
99




Q1-E1-G11


6768
241
LIB83-006-
LIB83
g168579
BLASTN
1964
1e−154
98




Q1-E1-C7


6769
241
LIB189-009-
LIB189
g168579
BLASTN
1405
1e−150
97




Q1-E1-G9


6770
241
LIB3060-036-
LIB3060
g168579
BLASTN
1910
1e−150
94




Q1-K1-H3


6771
241
LIB189-013-
LIB189
g168579
BLASTN
1732
1e−149
93




Q1-E1-D10


6772
241
LIB36-014-
LIB36
g168579
BLASTN
1519
1e−147
95




Q1-E1-D12


6773
241
LIB3078-055-
LIB3078
g168579
BLASTN
1860
1e−146
90




Q1-K1-E2


6774
241
LIB3060-004-
LIB3060
g168579
BLASTN
1830
1e−143
97




Q1-K1-D9


6775
241
LIB189-020-
LIB189
g168579
BLASTN
1823
1e−142
92




Q1-E1-G4


6776
241
LIB3060-008-
LIB3060
g168579
BLASTN
1511
1e−140
90




Q1-K1-D10


6777
241
LIB189-008-
LIB189
g168579
BLASTN
1379
1e−139
95




Q1-E1-B5


6778
241
LIB3059-040-
LIB3059
g168579
BLASTN
1437
1e−139
91




Q1-K1-E1


6779
241
LIB3078-051-
LIB3078
g168579
BLASTN
1474
1e−139
96




Q1-K1-G2


6780
241
LIB84-029-
LIB84
g168579
BLASTN
1508
1e−136
98




Q1-E1-E6


6781
241
LIB36-004-
LIB36
g168579
BLASTN
1310
1e−134
94




Q1-E1-D1


6782
241
LIB3059-012-
LIB3059
g168579
BLASTN
1720
1e−134
89




Q1-K1-D10


6783
241
LIB3059-044-
LIB3059
g168579
BLASTN
1725
1e−134
87




Q1-K1-E2


6784
241
LIB3059-043-
LIB3059
g168579
BLASTN
1588
1e−133
87




Q1-K1-F7


6785
241
LIB189-008-
LIB189
g168579
BLASTN
1705
1e−133
91




Q1-E1-H1


6786
241
LIB83-003-
LIB83
g168579
BLASTN
1422
1e−131
97




Q1-E1-D3


6787
241
LIB189-002-
LIB189
g168579
BLASTN
1656
1e−131
97




Q1-E1-C11


6788
241
LIB36-002-
LIB36
g168579
BLASTN
1546
1e−129
96




Q1-E1-F3


6789
241
LIB189-015-
LIB189
g168579
BLASTN
1062
1e−127
94




Q1-E1-F3


6790
241
LIB189-013-
LIB189
g168579
BLASTN
1639
1e−127
97




Q1-E1-F6


6791
241
LIB3061-007-
LIB3061
g168579
BLASTN
1625
1e−126
85




Q1-K1-A1


6792
241
LIB3060-054-
LIB3060
g168579
BLASTN
879
1e−123
89




Q1-K1-D4


6793
241
LIB3078-028-
LIB3078
g168579
BLASTN
1066
1e−123
93




Q1-K1-A6


6794
241
LIB3059-047-
LIB3059
g168579
BLASTN
1576
1e−122
85




Q1-K1-H7


6795
241
LIB36-021-
LIB36
g168579
BLASTN
1465
1e−121
100




Q1-E1-F1


6796
241
LIB3059-002-
LIB3059
g168579
BLASTN
1273
1e−119
81




Q1-K2-A4


6797
241
LIB189-015-
LIB189
g168579
BLASTN
1530
1e−118
94




Q1-E1-G8


6798
241
LIB189-007-
LIB189
g168579
BLASTN
1517
1e−117
96




Q1-E1-F9


6799
241
LIB3079-013-
LIB3079
g168579
BLASTN
1367
1e−115
90




Q1-K1-G8


6800
241
LIB36-015-
LIB36
g168579
BLASTN
1333
1e−113
95




Q1-E1-D2


6801
241
LIB3059-018-
LIB3059
g168579
BLASTN
1210
1e−112
86




Q1-K1-H2


6802
241
LIB3078-007-
LIB3078
g168579
BLASTN
508
1e−111
90




Q1-K1-E1


6803
241
LIB3060-038-
LIB3060
g168579
BLASTN
1443
1e−111
98




Q1-K1-H3


6804
241
LIB36-020-
LIB36
g168579
BLASTN
1446
1e−111
95




Q1-E1-A9


6805
241
LIB3061-026-
LIB3061
g168579
BLASTN
1435
1e−110
86




Q1-K1-D7


6806
241
LIB36-021-
LIB36
g168579
BLASTN
1381
1e−109
96




Q1-E1-G7


6807
241
LIB3059-028-
LIB3059
g168579
BLASTN
884
1e−108
88




Q1-K1-G7


6808
241
LIB189-029-
LIB189
g168579
BLASTN
982
1e−108
87




Q1-E1-D4


6809
241
LIB3060-020-
LIB3060
g168579
BLASTN
1053
1e−108
77




Q1-K1-F2


6810
241
LIB36-007-
LIB36
g168579
BLASTN
1348
1e−108
94




Q1-E1-E9


6811
241
LIB3059-017-
LIB3059
g168579
BLASTN
1096
1e−106
87




Q1-K1-C3


6812
241
LIB3061-051-
LIB3061
g168581
BLASTN
931
1e−104
90




Q1-K1-H5


6813
241
LIB3061-009-
LIB3061
g168579
BLASTN
1032
1e−102
76




Q1-K1-F12


6814
241
LIB3061-041-
LIB3061
g168579
BLASTN
1326
1e−101
88




Q1-K1-C5


6815
241
LIB36-013-
LIB36
g168579
BLASTN
1328
1e−101
91




Q1-E1-B6


6816
241
LIB84-016-
LIB84
g168579
BLASTN
1308
1e−100
97




Q1-E1-A7


6817
241
LIB84-002-
LIB84
g168579
BLASTN
716
1e−99
90




Q1-E1-D6


6818
241
LIB3060-039-
LIB3060
g168579
BLASTN
1166
1e−99
92




Q1-K1-E5


6819
241
LIB3078-011-
LIB3078
g168579
BLASTN
558
1e−95
84




Q1-K1-E7


6820
241
LIB3060-052-
LIB3060
g168579
BLASTN
596
1e−95
89




Q1-K1-H8


6821
241
LIB3060-026-
LIB3060
g168579
BLASTN
817
1e−94
82




Q1-K1-D7


6822
241
LIB3059-003-
LIB3059
g168579
BLASTN
954
1e−93
86




Q1-K1-F1


6823
241
LIB189-006-
LIB189
g22451
BLASTN
1136
1e−88
97




Q1-E1-C4


6824
241
LIB189-029-
LIB189
g168579
BLASTN
746
1e−87
92




Q1-E1-C2


6825
241
LIB84-003-
LIB84
g168584
BLASTN
1143
1e−86
99




Q1-E1-C2


6826
241
LIB36-014-
LIB36
g168579
BLASTN
760
1e−83
97




Q1-E1-A2


6827
241
LIB3078-011-
LIB3078
g22451
BLASTN
1085
1e−83
100




Q1-K1-D6


6828
241
LIB3059-031-
LIB3059
g168581
BLASTN
914
1e−81
93




Q1-K1-E3


6829
241
LIB189-023-
LIB189
g168581
BLASTN
755
1e−80
100




Q1-E1-E7


6830
241
LIB83-009-
LIB83
g168579
BLASTN
1003
1e−74
92




Q1-E1-D12


6831
241
LIB83-010-
LIB83
g168584
BLASTN
546
1e−65
98




Q1-E1-G9


6832
241
LIB189-017-
LIB189
g22451
BLASTN
822
1e−61
93




Q1-E1-A5


6833
241
LIB3061-002-
LIB3061
g168579
BLASTN
421
1e−57
87




Q1-K1-D12


6834
241
LIB3059-058-
LIB3059
g168579
BLASTN
624
1e−55
86




Q1-K1-A4


6835
241
LIB3059-023-
LIB3059
g168579
BLASTN
728
1e−51
85




Q1-K1-C3


6836
241
LIB189-027-
LIB189
g168579
BLASTN
649
1e−49
87




Q1-E1-F4


6837
241
LIB3059-020-
LIB3059
g22389
BLASTN
475
1e−48
91




Q1-K1-E10


6838
241
LIB3060-045-
LIB3060
g168579
BLASTN
569
1e−47
89




Q1-K1-H10


6839
241
LIB84-003-
LIB84
g22451
BLASTN
668
1e−47
90




Q1-E1-A10


6840
241
LIB3059-037-
LIB3059
g22389
BLASTN
475
1e−35
91




Q1-K1-H8


6841
5767
LIB3060-051-
LIB3060
g22449
BLASTN
1640
1e−164
99




Q1-K1-C1


6842
5767
LIB3060-015-
LIB3060
g168583
BLASTN
1920
1e−162
99




Q1-K1-G11


6843
5767
LIB3060-017-
LIB3060
g168583
BLASTN
2060
1e−162
100




Q1-K1-A8


6844
5767
LIB3060-014-
LIB3060
g22449
BLASTN
1933
1e−159
97




Q1-K1-C3


6845
5767
LIB3060-010-
LIB3060
g22449
BLASTN
1285
1e−156
99




Q1-K1-H5


6846
5767
LIB3060-045-
LIB3060
g22449
BLASTN
1020
1e−76
95




Q1-K1-C7


6847
5767
LIB3060-027-
LIB3060
g22449
BLASTN
1025
1e−76
95




Q1-K1-E7







SOYBEAN PYRUVATE, PHOSPHATE DIKINASE















6848
-700646607
700646607H1
SOYMON014
g18461
BLASTN
947
1e−70
81


6849
30854
700787466H2
SOYMON011
g577775
BLASTN
825
1e−59
80


6850
30854
LIB3054-008-
LIB3054
g577775
BLASTN
1279
1e−97
80




Q1-N1-C5







MAIZE PYROPHOSPHATASE















6851
-700043816
700043816H1
SATMON004
g1049254
BLASTN
476
1e−30
76


6852
-700049210
700049210H1
SATMON003
g1747293
BLASTN
216
1e−10
85


6853
-700098741
700098741H1
SATMON009
g1747293
BLASTN
1093
1e−82
85


6854
-700100718
700100718H1
SATMON009
g1747293
BLASTN
595
1e−40
86


6855
-700105040
700105040H1
SATMON010
g1747293
BLASTN
463
1e−28
76


6856
-700150777
700150777H1
SATMON007
g1747293
BLASTN
708
1e−50
89


6857
-700155610
700155610H1
SATMON007
g1049254
BLASTN
311
1e−15
64


6858
-700163331
700163331H1
SATMON013
g534915
BLASTN
751
1e−53
77


6859
-700171438
700171438H1
SATMON013
g2258073
BLASTN
256
1e−10
76


6860
-700193866
700193866H1
SATMON014
g166633
BLASTN
494
1e−32
64


6861
-700202576
700202576H1
SATMON003
g2668746
BLASTX
214
1e−23
84


6862
-700206487
700206487H1
SATMON003
g2570501
BLASTX
174
1e−17
86


6863
-700216624
700216624H1
SATMON016
g1747293
BLASTN
936
1e−82
84


6864
-700217292
700217292H1
SATMON016
g2668746
BLASTX
214
1e−23
100


6865
-700240889
700240889H1
SATMON010
g2570500
BLASTN
639
1e−47
84


6866
-700242309
700242309H1
SATMON010
g1747293
BLASTN
621
1e−42
69


6867
-700347658
700347658H1
SATMON023
g2668746
BLASTX
215
1e−23
95


6868
-700349391
700349391H1
SATMON023
g1049255
BLASTX
174
1e−17
52


6869
-700427206
700427206H1
SATMONN01
g1049254
BLASTN
292
1e−33
90


6870
-700451045
700451045H1
SATMON028
g1049255
BLASTX
55
1e−10
72


6871
-700454151
700454151H1
SATMON029
g2668745
BLASTN
172
1e−10
90


6872
-700454532
700454532H1
SATMON029
g2668745
BLASTN
259
1e−38
93


6873
-700475488
700475488H1
SATMON025
g1747293
BLASTN
1126
1e−84
90


6874
-700552133
700552133H1
SATMON022
g457744
BLASTX
176
1e−19
68


6875
-700571086
700571086H1
SATMON030
g1747293
BLASTN
1429
1e−110
88


6876
-700572341
700572341H1
SATMON030
g1747293
BLASTN
475
1e−70
89


6877
-700611864
700611864H1
SATMON022
g2668745
BLASTN
203
1e−9
84


6878
-701166871
701166871H1
SATMONN04
g1049255
BLASTX
105
1e−13
72


6879
107
700622451H1
SATMON034
g2668745
BLASTN
1645
1e−129
100


6880
107
700571235H1
SATMON030
g2668745
BLASTN
1406
1e−125
98


6881
107
700266126H1
SATMON017
g2668745
BLASTN
1145
1e−121
100


6882
107
700621607H1
SATMON034
g2668745
BLASTN
1375
1e−121
99


6883
107
700345080H1
SATMON021
g2668745
BLASTN
1195
1e−117
100


6884
107
700624257H1
SATMON034
g2668745
BLASTN
825
1e−115
100


6885
107
700030359H1
SATMON003
g2668745
BLASTN
1470
1e−114
100


6886
107
700214462H1
SATMON016
g2668745
BLASTN
1223
1e−110
98


6887
107
700356050H1
SATMON024
g2668745
BLASTN
1430
1e−110
100


6888
107
701181128H1
SATMONN06
g2668745
BLASTN
1368
1e−105
98


6889
107
700349795H1
SATMON023
g2668745
BLASTN
1370
1e−105
95


6890
107
700473278H1
SATMON025
g2668745
BLASTN
1355
1e−104
100


6891
107
700157057H1
SATMON012
g2668745
BLASTN
1345
1e−103
100


6892
107
700622505H1
SATMON034
g2668745
BLASTN
762
1e−100
96


6893
107
700219661H1
SATMON011
g2668745
BLASTN
942
1e−98
99


6894
107
700619032H1
SATMON034
g2668745
BLASTN
989
1e−98
96


6895
107
700620065H1
SATMON034
g2668745
BLASTN
1069
1e−98
94


6896
107
700569179H1
SATMON030
g2668745
BLASTN
1233
1e−97
98


6897
107
700156773H1
SATMON012
g2668745
BLASTN
1276
1e−97
99


6898
107
700207120H1
SATMON017
g2668745
BLASTN
740
1e−96
99


6899
107
700030407H1
SATMON003
g2668745
BLASTN
480
1e−95
98


6900
107
700457309H1
SATMON029
g2668745
BLASTN
979
1e−95
99


6901
107
700195681H1
SATMON014
g2668745
BLASTN
1246
1e−95
99


6902
107
700444838H1
SATMON027
g2668745
BLASTN
1249
1e−95
96


6903
107
700581619H1
SATMON031
g2668745
BLASTN
943
1e−94
96


6904
107
700351021H1
SATMON023
g2668745
BLASTN
853
1e−91
92


6905
107
700205723H1
SATMON003
g2668745
BLASTN
1138
1e−91
95


6906
107
700159712H1
SATMON012
g2668745
BLASTN
1199
1e−91
94


6907
107
700158937H1
SATMON012
g2668745
BLASTN
1132
1e−90
96


6908
107
700336255H1
SATMON019
g2668745
BLASTN
489
1e−85
94


6909
107
700422922H1
SATMONN01
g2668745
BLASTN
642
1e−84
95


6910
107
700347429H1
SATMON023
g2668745
BLASTN
891
1e−83
92


6911
107
700350695H1
SATMON023
g2668745
BLASTN
960
1e−83
91


6912
107
700212988H1
SATMON016
g2668745
BLASTN
988
1e−82
96


6913
107
700345278H1
SATMON021
g2668745
BLASTN
989
1e−82
95


6914
107
700264475H1
SATMON017
g2668745
BLASTN
1089
1e−82
99


6915
107
700211923H1
SATMON016
g2668745
BLASTN
991
1e−81
94


6916
107
700620974H1
SATMON034
g2668745
BLASTN
907
1e−80
92


6917
107
700156401H1
SATMON012
g2668745
BLASTN
1058
1e−79
90


6918
107
700172547H1
SATMON013
g2668745
BLASTN
1042
1e−78
96


6919
107
700552384H1
SATMON022
g2668745
BLASTN
916
1e−76
96


6920
107
700219926H1
SATMON011
g2668745
BLASTN
1005
1e−75
100


6921
107
700357492H1
SATMON024
g2668745
BLASTN
610
1e−74
99


6922
107
700343365H1
SATMON021
g2668745
BLASTN
891
1e−74
94


6923
107
700018618H1
SATMON001
g2668745
BLASTN
1001
1e−74
93


6924
107
700570755H1
SATMON030
g2668745
BLASTN
845
1e−71
93


6925
107
700194777H1
SATMON014
g2668745
BLASTN
940
1e−69
100


6926
107
700453790H1
SATMON029
g2668745
BLASTN
925
1e−68
92


6927
107
700197306H1
SATMON014
g2668745
BLASTN
928
1e−68
85


6928
107
700355750H1
SATMON024
g2668745
BLASTN
393
1e−66
93


6929
107
700172940H1
SATMON013
g2668745
BLASTN
902
1e−66
97


6930
107
700102133H1
SATMON010
g2668745
BLASTN
850
1e−62
100


6931
107
700350332H1
SATMON023
g2668745
BLASTN
539
1e−57
97


6932
107
700450285H1
SATMON028
g2668745
BLASTN
750
1e−53
100


6933
107
700165003H1
SATMON013
g2668745
BLASTN
548
1e−52
83


6934
107
700016136H1
SATMON001
g2668745
BLASTN
527
1e−50
85


6935
107
700171557H1
SATMON013
g2668745
BLASTN
714
1e−50
95


6936
107
700238156H1
SATMON010
g2668745
BLASTN
715
1e−50
96


6937
107
700425175H1
SATMONN01
g2668745
BLASTN
698
1e−49
94


6938
107
700354402H1
SATMON024
g2668745
BLASTN
616
1e−48
91


6939
107
700159204H1
SATMON012
g2668745
BLASTN
617
1e−42
94


6940
107
700623602H1
SATMON034
g2668745
BLASTN
460
1e−38
100


6941
107
700612844H1
SATMON033
g2668745
BLASTN
421
1e−36
84


6942
107
700621062H2
SATMON034
g2668745
BLASTN
285
1e−25
89


6943
107
700335685H1
SATMON019
g2668745
BLASTN
339
1e−25
91


6944
1381
700454845H1
SATMON029
g1747293
BLASTN
746
1e−72
85


6945
1381
700455149H1
SATMON029
g1747293
BLASTN
836
1e−66
84


6946
1381
700455537H1
SATMON029
g1747293
BLASTN
330
1e−29
80


6947
1381
700615620H1
SATMON033
g1747294
BLASTX
105
1e−16
98


6948
1381
700454648H1
SATMON029
g1747293
BLASTN
288
1e−15
78


6949
13843
700334949H1
SATMON019
g2570500
BLASTN
680
1e−55
83


6950
13843
700346817H1
SATMON021
g2570500
BLASTN
705
1e−54
83


6951
13843
700103380H1
SATMON010
g2570500
BLASTN
710
1e−54
83


6952
13843
700348280H1
SATMON023
g2570500
BLASTN
669
1e−51
83


6953
13843
700453203H1
SATMON028
g2570500
BLASTN
659
1e−50
82


6954
13843
700381101H1
SATMON023
g2570500
BLASTN
621
1e−47
82


6955
13843
700347617H1
SATMON023
g2570500
BLASTN
592
1e−44
85


6956
13843
700043259H1
SATMON004
g2570500
BLASTN
530
1e−39
84


6957
13843
701184447H1
SATMONN06
g2570500
BLASTN
481
1e−35
78


6958
18427
700355977H1
SATMON024
g1747295
BLASTN
1056
1e−81
92


6959
18427
700265262H1
SATMON017
g1747295
BLASTN
626
1e−77
90


6960
20656
700075743H1
SATMON007
g1747295
BLASTN
734
1e−52
87


6961
20656
700571658H1
SATMON030
g1747295
BLASTN
480
1e−29
84


6962
21076
700088795H1
SATMON011
g1049254
BLASTN
420
1e−24
64


6963
21076
700241354H1
SATMON010
g166634
BLASTX
201
1e−20
58


6964
21267
700050595H1
SATMON003
g1747293
BLASTN
445
1e−32
83


6965
21267
700090051H1
SATMON011
g1747293
BLASTN
239
1e−23
74


6966
24066
700423113H1
SATMONN01
g457744
BLASTX
124
1e−23
54


6967
24266
700577157H1
SATMON031
g2570500
BLASTN
1001
1e−74
89


6968
2531
700099364H1
SATMON009
g2570500
BLASTN
669
1e−51
86


6969
2531
700336387H1
SATMON019
g2570500
BLASTN
389
1e−47
85


6970
2531
700217095H1
SATMON016
g2570500
BLASTN
451
1e−33
86


6971
2531
700155869H1
SATMON007
g2570500
BLASTN
385
1e−27
89


6972
2531
700575534H1
SATMON030
g2570500
BLASTN
365
1e−26
88


6973
2531
700163562H1
SATMON013
g2570501
BLASTX
145
1e−24
94


6974
2544
700076138H1
SATMON007
g1747295
BLASTN
1334
1e−102
90


6975
2544
700381158H1
SATMON023
g1747295
BLASTN
962
1e−92
89


6976
2544
700050877H1
SATMON003
g1747295
BLASTN
933
1e−85
87


6977
2544
700450220H1
SATMON028
g1747295
BLASTN
1105
1e−85
90


6978
2544
700050516H1
SATMON003
g1747295
BLASTN
574
1e−75
91


6979
2544
700620486H1
SATMON034
g1049254
BLASTN
734
1e−54
94


6980
293
700474550H1
SATMON025
g1049254
BLASTN
1359
1e−110
97


6981
293
700218212H1
SATMON016
g1049254
BLASTN
1411
1e−108
99


6982
293
700468143H1
SATMON025
g1049254
BLASTN
1397
1e−107
97


6983
293
700101735H1
SATMON009
g1049254
BLASTN
1364
1e−104
98


6984
293
700454255H1
SATMON029
g1049254
BLASTN
1333
1e−102
97


6985
293
700051815H1
SATMON003
g1049254
BLASTN
1256
1e−95
96


6986
293
700623739H1
SATMON034
g1049254
BLASTN
1245
1e−94
92


6987
293
700577880H1
SATMON031
g1049254
BLASTN
1218
1e−92
94


6988
293
700457170H1
SATMON029
g1049254
BLASTN
1198
1e−91
93


6989
293
700476606H1
SATMON025
g1049254
BLASTN
1204
1e−91
92


6990
293
700620920H1
SATMON034
g1049254
BLASTN
1179
1e−89
94


6991
293
700100479H1
SATMON009
g1747293
BLASTN
1164
1e−88
87


6992
293
700551082H1
SATMON022
g1747293
BLASTN
1151
1e−87
92


6993
293
700156615H1
SATMON012
g1049254
BLASTN
1152
1e−87
94


6994
293
700161538H1
SATMON012
g1049254
BLASTN
1143
1e−86
98


6995
293
700157125H1
SATMON012
g1049254
BLASTN
1115
1e−84
93


6996
293
700173068H1
SATMON013
g1049254
BLASTN
1121
1e−84
94


6997
293
700050620H1
SATMON003
g1049254
BLASTN
481
1e−82
90


6998
293
700622261H1
SATMON034
g1049254
BLASTN
614
1e−76
97


6999
293
700043120H1
SATMON004
g1747293
BLASTN
1014
1e−75
87


7000
293
700215855H1
SATMON016
g1049254
BLASTN
985
1e−73
100


7001
293
700098048H1
SATMON009
g1049254
BLASTN
912
1e−72
95


7002
293
700021133H1
SATMON001
g1049254
BLASTN
546
1e−71
93


7003
293
700021236H1
SATMON001
g1049254
BLASTN
963
1e−71
90


7004
293
700431153H1
SATMONN01
g1747293
BLASTN
510
1e−68
85


7005
293
700441425H1
SATMON026
g1747293
BLASTN
569
1e−67
82


7006
293
700160941H1
SATMON012
g1747293
BLASTN
504
1e−66
87


7007
293
700160760H1
SATMON012
g1747293
BLASTN
906
1e−66
86


7008
293
700439081H1
SATMON026
g1049254
BLASTN
909
1e−66
92


7009
293
700444194H1
SATMON027
g1747293
BLASTN
887
1e−65
84


7010
293
700217965H1
SATMON016
g1747293
BLASTN
855
1e−62
91


7011
293
700456962H1
SATMON029
g1747293
BLASTN
496
1e−61
78


7012
293
700438388H1
SATMON026
g1049254
BLASTN
668
1e−52
98


7013
293
700623436H1
SATMON034
g1747293
BLASTN
696
1e−49
82


7014
293
700472039H1
SATMON025
g1049254
BLASTN
629
1e−43
98


7015
293
700624180H1
SATMON034
g1747293
BLASTN
395
1e−35
82


7016
293
700162157H1
SATMON012
g1747294
BLASTX
185
1e−18
97


7017
293
700162372H1
SATMON012
g1049255
BLASTX
132
1e−10
100


7018
3131
700624482H1
SATMON034
g1747295
BLASTN
1155
1e−95
87


7019
3131
700075221H1
SATMON007
g1747295
BLASTN
1228
1e−93
89


7020
3131
700213731H1
SATMON016
g1747295
BLASTN
1095
1e−84
89


7021
3131
700215864H1
SATMON016
g1747295
BLASTN
1120
1e−84
90


7022
3131
700465076H1
SATMON025
g1747295
BLASTN
1084
1e−81
89


7023
3131
700077092H1
SATMON007
g1747295
BLASTN
998
1e−74
83


7024
32364
700204306H1
SATMON003
g2668745
BLASTN
471
1e−28
74


7025
32671
700451634H1
SATMON028
g1747293
BLASTN
578
1e−73
87


7026
32856
700166756H1
SATMON013
g534915
BLASTN
744
1e−53
76


7027
32856
700042535H1
SATMON004
g534915
BLASTN
644
1e−44
73


7028
337
700242009H1
SATMON010
g1747293
BLASTN
1049
1e−78
90


7029
337
700624035H1
SATMON034
g1747293
BLASTN
1008
1e−75
85


7030
337
700266136H1
SATMON017
g1747293
BLASTN
999
1e−74
84


7031
337
700220713H1
SATMON011
g1747293
BLASTN
752
1e−56
90


7032
3384
700237775H1
SATMON010
g2258073
BLASTN
911
1e−67
81


7033
3384
700342456H1
SATMON021
g2258073
BLASTN
648
1e−64
78


7034
3384
700073654H1
SATMON007
g2668745
BLASTN
860
1e−63
78


7035
3384
700577805H1
SATMON031
g2258073
BLASTN
840
1e−61
78


7036
3384
700028881H1
SATMON003
g534915
BLASTN
835
1e−60
78


7037
3384
700215076H1
SATMON016
g534915
BLASTN
824
1e−59
78


7038
3384
700017479H1
SATMON001
g534915
BLASTN
766
1e−55
80


7039
3384
700204495H1
SATMON003
g534915
BLASTN
373
1e−51
81


7040
3384
700196795H1
SATMON014
g2570500
BLASTN
579
1e−39
80


7041
3384
700018612H1
SATMON001
g2668745
BLASTN
518
1e−34
76


7042
3384
700102142H1
SATMON010
g2668745
BLASTN
539
1e−34
78


7043
3384
700348430H1
SATMON023
g534915
BLASTN
489
1e−30
78


7044
3384
700439515H1
SATMON026
g534915
BLASTN
437
1e−27
75


7045
3384
700074977H1
SATMON007
g534915
BLASTN
434
1e−25
76


7046
3384
700023120H1
SATMON003
g534916
BLASTX
208
1e−22
78


7047
3384
700615213H1
SATMON033
g2570501
BLASTX
125
1e−21
93


7048
3384
700074109H1
SATMON007
g2668746
BLASTX
197
1e−20
72


7049
3384
700026094H1
SATMON003
g534916
BLASTX
184
1e−18
75


7050
3384
700549517H1
SATMON022
g2668746
BLASTX
172
1e−17
75


7051
3384
700030347H1
SATMON003
g2668746
BLASTX
171
1e−16
77


7052
3384
700221176H1
SATMON011
g2668746
BLASTX
171
1e−16
77


7053
3384
700433360H1
SATMONN01
g2668746
BLASTX
95
1e−13
74


7054
3817
700047790H1
SATMON003
g1747295
BLASTN
412
1e−57
85


7055
3817
700266224H1
SATMON017
g1747295
BLASTN
473
1e−50
85


7056
3817
700209335H1
SATMON016
g1747295
BLASTN
503
1e−42
86


7057
3817
700089769H1
SATMON011
g1747295
BLASTN
487
1e−40
85


7058
3817
700151762H1
SATMON007
g1747295
BLASTN
457
1e−37
87


7059
3817
700449259H1
SATMON028
g1747295
BLASTN
339
1e−19
81


7060
5000
700026151H1
SATMON003
g2903
BLASTX
261
1e−28
54


7061
5000
700347165H1
SATMON021
g2624379
BLASTX
223
1e−24
51


7062
5000
700430341H1
SATMONN01
g2903
BLASTX
185
1e−18
56


7063
5000
700457781H1
SATMON029
g2903
BLASTX
133
1e−16
49


7064
5861
700104993H1
SATMON010
g2258073
BLASTN
456
1e−27
73


7065
5861
700203452H1
SATMON003
g2258073
BLASTN
428
1e−26
72


7066
5861
700105585H1
SATMON010
g534916
BLASTX
149
1e−13
84


7067
5861
700240805H1
SATMON010
g534916
BLASTX
131
1e−11
82


7068
5861
700030336H1
SATMON003
g534916
BLASTX
120
1e−9
82


7069
5861
700217859H1
SATMON016
g534916
BLASTX
120
1e−9
82


7070
6315
700473069H1
SATMON025
g1747295
BLASTN
1200
1e−91
89


7071
6315
700151232H1
SATMON007
g1747295
BLASTN
1130
1e−85
90


7072
6315
700103088H1
SATMON010
g1747295
BLASTN
1132
1e−85
88


7073
6315
700450086H2
SATMON028
g1747295
BLASTN
591
1e−84
90


7074
6315
700458843H1
SATMON029
g1747295
BLASTN
822
1e−67
89


7075
6315
700165715H1
SATMON013
g1747295
BLASTN
494
1e−63
89


7076
6315
700352887H1
SATMON024
g1747295
BLASTN
606
1e−41
86


7077
707
700206525H1
SATMON003
g1747295
BLASTN
1386
1e−106
91


7078
707
700096774H1
SATMON008
g1747295
BLASTN
1264
1e−96
90


7079
707
700466734H1
SATMON025
g1747295
BLASTN
1078
1e−89
90


7080
707
700332548H1
SATMON019
g1747295
BLASTN
1179
1e−89
89


7081
707
700085122H1
SATMON011
g1747295
BLASTN
1171
1e−88
92


7082
707
700207180H1
SATMON017
g1747295
BLASTN
1159
1e−87
88


7083
707
700333910H1
SATMON019
g1747295
BLASTN
1134
1e−85
92


7084
707
700223824H1
SATMON011
g1747295
BLASTN
1122
1e−84
91


7085
707
700222034H1
SATMON011
g1747295
BLASTN
1102
1e−82
88


7086
707
700570554H1
SATMON030
g1747295
BLASTN
848
1e−81
86


7087
707
700241783H1
SATMON010
g1747295
BLASTN
1090
1e−81
89


7088
707
700224305H1
SATMON011
g1747295
BLASTN
1031
1e−77
85


7089
707
700458382H1
SATMON029
g1747295
BLASTN
993
1e−73
89


7090
707
700151266H1
SATMON007
g1747295
BLASTN
671
1e−47
86


7091
707
700470565H1
SATMON025
g1747295
BLASTN
404
1e−46
86


7092
707
700207802H1
SATMON016
g1747295
BLASTN
543
1e−43
87


7093
7540
700049926H1
SATMON003
g1747295
BLASTN
718
1e−50
87


7094
7540
700458612H1
SATMON029
g1747295
BLASTN
670
1e−46
83


7095
-L1431590
LIB143-006-
LIB143
g16347
BLASTN
286
1e−13
61




Q1-E1-C9


7096
-L1433414
LIB143-026-
LIB143
g2258073
BLASTN
480
1e−29
70




Q1-E1-C3


7097
-L1482832
LIB148-009-
LIB148
g2258073
BLASTN
1086
1e−81
78




Q1-E1-D8


7098
-L30593394
LIB3059-029-
LIB3059
g1747295
BLASTN
488
1e−91
82




Q1-K1-A12


7099
-L30593582
LIB3059-031-
LIB3059
g1747293
BLASTN
807
1e−71
86




Q1-K1-C7


7100
-L30674379
LIB3067-042-
LIB3067
g2668745
BLASTN
305
1e−21
68




Q1-K1-H8


7101
-L30675338
LIB3067-035-
LIB3067
g1747293
BLASTN
436
1e−25
80




Q1-K1-H12


7102
-L30784040
LIB3078-029-
LIB3078
g1747293
BLASTN
523
1e−53
70




Q1-K1-D6


7103
107
LIB3059-036-
LIB3059
g2668745
BLASTN
1965
1e−166
100




Q1-K1-B10


7104
107
LIB3061-035-
LIB3061
g2668745
BLASTN
948
1e−138
93




Q1-K1-C9


7105
107
LIB3061-032-
LIB3061
g2668745
BLASTN
1685
1e−138
96




Q1-K1-A12


7106
107
LIB3062-044-
LIB3062
g2668745
BLASTN
1492
1e−134
95




Q1-K1-F8


7107
107
LIB3068-025-
LIB3068
g2668745
BLASTN
1687
1e−132
96




Q1-K1-E5


7108
107
LIB3067-022-
LIB3067
g2668745
BLASTN
1581
1e−128
91




Q1-K1-D11


7109
107
LIB3067-016-
LIB3067
g2668745
BLASTN
1305
1e−126
97




Q1-K1-G4


7110
107
LIB3067-029-
LIB3067
g2668745
BLASTN
1560
1e−125
90




Q1-K1-C6


7111
107
LIB189-031-
LIB189
g2668745
BLASTN
897
1e−81
85




Q1-E1-D3


7112
24066
LIB3069-047-
LIB3069
g166634
BLASTX
173
1e−45
55




Q1-K1-C4


7113
24266
LIB3069-006-
LIB3069
g2570500
BLASTN
717
1e−57
83




Q1-K1-F4


7114
293
LIB3060-032-
LIB3060
g1049254
BLASTN
2144
1e−170
97




Q1-K1-D3


7115
293
LIB3066-051-
LIB3066
g1049254
BLASTN
1603
1e−158
99




Q1-K1-D3


7116
293
LIB3060-026-
LIB3060
g1049254
BLASTN
1642
1e−155
92




Q1-K1-G5


7117
293
LIB143-018-
LIB143
g1049254
BLASTN
1249
1e−151
99




Q1-E1-D7


7118
293
LIB189-005-
LIB189
g1049254
BLASTN
1911
1e−150
98




Q1-E1-G2


7119
293
LIB3059-035-
LIB3059
g1049254
BLASTN
1860
1e−146
89




Q1-K1-G7


7120
293
LIB3060-013-
LIB3060
g1049254
BLASTN
1236
1e−144
95




Q1-K1-D3


7121
293
LIB3060-010-
LIB3060
g1049254
BLASTN
1171
1e−142
90




Q1-K1-G9


7122
293
LIB143-031-
LIB143
g1049254
BLASTN
1777
1e−139
97




Q1-E1-F9


7123
293
LIB3067-034-
LIB3067
g1049254
BLASTN
1558
1e−121
93




Q1-K1-B4


7124
293
LIB3067-010-
LIB3067
g1049254
BLASTN
901
1e−120
90




Q1-K1-A11


7125
293
LIB3060-015-
LIB3060
g1049254
BLASTN
1309
1e−106
87




Q1-K1-G3


7126
293
LIB3059-024-
LIB3059
g1049254
BLASTN
1255
1e−95
98




Q1-K1-G11


7127
293
LIB3060-038-
LIB3060
g1049254
BLASTN
1109
1e−83
87




Q1-K1-B1


7128
293
LIB143-008-
LIB143
g1747293
BLASTN
1042
1e−77
85




Q1-E1-B6


7129
293
LIB143-021-
LIB143
g1747293
BLASTN
951
1e−70
84




Q1-E1-A12


7130
293
LIB143-037-
LIB143
g1747293
BLASTN
858
1e−68
89




Q1-E1-C3


7131
293
LIB3079-004-
LIB3079
g1747293
BLASTN
826
1e−59
83




Q1-K1-D5


7132
293
LIB143-028-
LIB143
g1747293
BLASTN
598
1e−40
88




Q1-E1-F3


7133
293
LIB3068-043-
LIB3068
g633598
BLASTN
552
1e−34
78




Q1-K1-A2


7134
3131
LIB3066-031-
LIB3066
g1747295
BLASTN
1114
1e−98
85




Q1-K1-E3


7135
31637
LIB143-001-
LIB143
g1747293
BLASTN
472
1e−74
81




Q1-E1-G11


7136
32364
LIB3066-001-
LIB3066
g2668745
BLASTN
612
1e−40
73




Q1-K1-B7


7137
32671
LIB143-061-
LIB143
g1747293
BLASTN
1414
1e−116
85




Q1-E1-E10


7138
32671
LIB189-020-
LIB189
g1747293
BLASTN
1281
1e−97
86




Q1-E1-C10


7139
32856
LIB189-028-
LIB189
g534915
BLASTN
986
1e−73
73




Q1-E1-C4


7140
3384
LIB143-026-
LIB143
g534915
BLASTN
1284
1e−98
78




Q1-E1-C1


7141
3384
LIB3068-013-
LIB3068
g534915
BLASTN
1074
1e−80
78




Q1-K1-H2


7142
3384
LIB3062-033-
LIB3062
g2668745
BLASTN
1009
1e−75
76




Q1-K1-D2


7143
3384
LIB3062-057-
LIB3062
g2668745
BLASTN
801
1e−58
73




Q1-K1-B7


7144
3384
LIB3062-001-
LIB3062
g16347
BLASTN
802
1e−57
77




Q1-K2-H5


7145
3384
LIB189-022-
LIB189
g2668745
BLASTN
646
1e−43
75




Q1-E1-D5


7146
3384
LIB189-012-
LIB189
g2570501
BLASTX
138
1e−32
72




Q1-E1-F4


7147
5000
LIB36-015-
LIB36
g2624379
BLASTX
236
1e−41
51




Q1-E1-D6


7148
5000
LIB83-016-
LIB83
g4198
BLASTN
534
1e−33
61




Q1-E1-H7


7149
707
LIB148-019-
LIB148
g1747295
BLASTN
1506
1e−116
89




Q1-E1-H8


7150
707
LIB3066-040-
LIB3066
g1747295
BLASTN
1459
1e−112
82




Q1-K1-D6


7151
707
LIB148-004-
LIB148
g1747295
BLASTN
1268
1e−109
84




Q1-E1-B10


7152
707
LIB3068-036-
LIB3068
g1747295
BLASTN
889
1e−102
83




Q1-K1-A10


7153
7540
LIB143-025-
LIB143
g1747295
BLASTN
903
1e−66
86




Q1-E1-C10


7154
7540
LIB148-033-
LIB148
g1747295
BLASTN
857
1e−65
87




Q1-E1-A7







SOYBEAN PYROPHOSPHATASE















7155
-700651291
700651291H1
SOYMON003
g1049254
BLASTN
732
1e−52
84


7156
-700652792
700652792H1
SOYMON003
g2653445
BLASTN
474
1e−39
88


7157
-700656683
700656683H1
SOYMON004
g1747293
BLASTN
679
1e−59
84


7158
-700660662
700660662H1
SOYMON004
g16347
BLASTN
540
1e−36
79


7159
-700744202
700744202H1
SOYMON013
g485741
BLASTN
554
1e−44
74


7160
-700755514
700755514H1
SOYMON014
g1747293
BLASTN
743
1e−53
78


7161
-700837007
700837007H1
SOYMON020
g16347
BLASTN
776
1e−55
78


7162
-700865679
700865679H1
SOYMON016
g2653445
BLASTN
250
1e−36
92


7163
-700890647
700890647H1
SOYMON024
g790474
BLASTN
826
1e−60
81


7164
-700942978
700942978H1
SOYMON024
g790478
BLASTN
605
1e−63
82


7165
-700944280
700944280H1
SOYMON024
g790479
BLASTX
119
1e−10
76


7166
-700974544
700974544H1
SOYMON005
g1103711
BLASTN
854
1e−62
83


7167
-700984449
700984449H1
SOYMON009
g1103711
BLASTN
287
1e−12
71


7168
-700989248
700989248H1
SOYMON011
g534915
BLASTN
276
1e−14
67


7169
-701002440
701002440H1
SOYMON018
g2653445
BLASTN
784
1e−56
76


7170
-701003295
701003295H1
SOYMON019
g1049255
BLASTX
73
1e−8
53


7171
-701012101
701012101H1
SOYMON019
g2653445
BLASTN
592
1e−40
77


7172
-701097188
701097188H1
SOYMON028
g2653445
BLASTN
557
1e−37
75


7173
-701105007
701105007H1
SOYMON036
g2653445
BLASTN
455
1e−61
86


7174
-701106870
701106870H1
SOYMON036
g790478
BLASTN
623
1e−47
75


7175
-701122796
701122796H1
SOYMON037
g2258074
BLASTX
71
1e−15
73


7176
-701124682
701124682H1
SOYMON037
g485743
BLASTN
713
1e−50
81


7177
-701132123
701132123H1
SOYMON038
g790478
BLASTN
627
1e−43
81


7178
-701136557
701136557H1
SOYMON038
g16347
BLASTN
376
1e−33
77


7179
-701148551
701148551H1
SOYMON031
g2653445
BLASTN
756
1e−54
78


7180
-701206188
701206188H1
SOYMON035
g166633
BLASTN
399
1e−48
81


7181
-701211207
701211207H1
SOYMON035
g2653445
BLASTN
387
1e−28
77


7182
11662
700987644H1
SOYMON009
g1747294
BLASTX
122
1e−17
60


7183
13047
700955418H1
SOYMON022
g2653445
BLASTN
585
1e−82
91


7184
13047
701054053H1
SOYMON032
g2653445
BLASTN
1080
1e−81
87


7185
13047
700846717H1
SOYMON021
g2653445
BLASTN
1000
1e−79
91


7186
13047
700952212H1
SOYMON022
g2653445
BLASTN
1055
1e−79
90


7187
13047
701156608H1
SOYMON031
g2653445
BLASTN
648
1e−78
91


7188
13047
700959847H1
SOYMON022
g2653445
BLASTN
932
1e−76
91


7189
13047
700986383H1
SOYMON009
g2653445
BLASTN
1029
1e−76
87


7190
13047
700892594H1
SOYMON024
g2653445
BLASTN
1005
1e−74
87


7191
13047
700995882H1
SOYMON011
g2653445
BLASTN
515
1e−68
90


7192
13047
701099843H1
SOYMON028
g2653445
BLASTN
850
1e−61
90


7193
14021
700973215H1
SOYMON005
g2668745
BLASTN
435
1e−39
80


7194
14021
701109310H1
SOYMON036
g2668745
BLASTN
281
1e−25
83


7195
14021
700847609H1
SOYMON021
g534916
BLASTX
98
1e−12
74


7196
14580
700952058H1
SOYMON022
g2653445
BLASTN
954
1e−70
88


7197
14580
700756103H1
SOYMON014
g2653445
BLASTN
562
1e−66
84


7198
15316
700847173H1
SOYMON021
g534916
BLASTX
123
1e−10
66


7199
15316
700847165H1
SOYMON021
g534916
BLASTX
121
1e−9
66


7200
15698
700844601H1
SOYMON021
g2653445
BLASTN
976
1e−72
91


7201
15698
700904602H1
SOYMON022
g2653445
BLASTN
466
1e−62
85


7202
15698
701002118H1
SOYMON018
g2653445
BLASTN
860
1e−62
87


7203
16
701044831H1
SOYMON032
g485744
BLASTX
163
1e−17
73


7204
16
700891764H1
SOYMON024
g790479
BLASTX
172
1e−16
68


7205
16
700953633H1
SOYMON022
g485744
BLASTX
161
1e−15
73


7206
16
700753981H1
SOYMON014
g485744
BLASTX
159
1e−14
70


7207
16
701104248H1
SOYMON036
g485744
BLASTX
57
1e−8
68


7208
1820
700888545H1
SOYMON024
g2653445
BLASTN
271
1e−39
84


7209
1820
700954577H1
SOYMON022
g2653445
BLASTN
177
1e−37
80


7210
1820
700869270H1
SOYMON016
g2653445
BLASTN
173
1e−16
80


7211
1820
700792533H1
SOYMON017
g2653445
BLASTN
182
1e−15
80


7212
1820
700734996H1
SOYMON010
g2653445
BLASTN
173
1e−14
78


7213
19232
701061126H1
SOYMON033
g790474
BLASTN
935
1e−69
81


7214
19232
700962864H1
SOYMON022
g790474
BLASTN
874
1e−64
82


7215
20872
700754883H1
SOYMON014
g790478
BLASTN
824
1e−59
81


7216
20872
700971147H1
SOYMON005
g1103711
BLASTN
564
1e−54
79


7217
20885
700904547H1
SOYMON022
g485743
BLASTN
971
1e−72
86


7218
20885
700665391H1
SOYMON005
g485743
BLASTN
969
1e−71
86


7219
20885
700941185H1
SOYMON024
g2653445
BLASTN
868
1e−63
83


7220
20885
700660695H1
SOYMON004
g2653445
BLASTN
825
1e−59
85


7221
20885
701127185H1
SOYMON037
g1747293
BLASTN
463
1e−54
83


7222
24940
701209525H1
SOYMON035
g2653445
BLASTN
789
1e−56
91


7223
24940
701213556H1
SOYMON035
g2653445
BLASTN
574
1e−38
93


7224
27239
700668618H1
SOYMON006
g1049255
BLASTX
179
1e−17
61


7225
2813
700797861H1
SOYMON017
g16347
BLASTN
731
1e−52
79


7226
2813
700944850H1
SOYMON024
g2570500
BLASTN
738
1e−52
82


7227
2813
701056207H1
SOYMON032
g2570500
BLASTN
556
1e−46
80


7228
2813
700605115H2
SOYMON003
g2570500
BLASTN
478
1e−42
80


7229
2813
700897063H1
SOYMON027
g2570500
BLASTN
596
1e−40
80


7230
2813
700561829H1
SOYMON002
g2570500
BLASTN
570
1e−38
80


7231
2813
701204883H1
SOYMON035
g2668745
BLASTN
545
1e−36
77


7232
2813
700754984H1
SOYMON014
g2570500
BLASTN
527
1e−35
75


7233
2813
700854552H1
SOYMON023
g2570500
BLASTN
536
1e−35
79


7234
2813
700873337H1
SOYMON018
g2570500
BLASTN
505
1e−33
75


7235
2813
700873349H1
SOYMON018
g2570500
BLASTN
506
1e−33
75


7236
2813
700952403H1
SOYMON022
g2668745
BLASTN
499
1e−32
76


7237
2813
700846561H1
SOYMON021
g2570500
BLASTN
488
1e−31
75


7238
2813
700953987H1
SOYMON022
g2570500
BLASTN
461
1e−29
75


7239
2813
700568667H1
SOYMON002
g2570500
BLASTN
296
1e−24
79


7240
2813
700895231H1
SOYMON024
g2258074
BLASTX
207
1e−22
80


7241
2813
701101791H1
SOYMON028
g2668746
BLASTX
147
1e−13
77


7242
4106
701011114H1
SOYMON019
g2653445
BLASTN
904
1e−76
90


7243
4106
700674046H1
SOYMON007
g2653445
BLASTN
989
1e−73
90


7244
4106
700967038H1
SOYMON029
g2653445
BLASTN
963
1e−71
90


7245
4106
700740792H1
SOYMON012
g2653445
BLASTN
911
1e−67
90


7246
4106
700872817H1
SOYMON018
g2653445
BLASTN
903
1e−66
89


7247
4106
700738286H1
SOYMON012
g2653446
BLASTX
95
1e−10
91


7248
4845
700566516H1
SOYMON002
g2653445
BLASTN
1358
1e−104
94


7249
4845
700978728H1
SOYMON009
g2653445
BLASTN
917
1e−88
95


7250
4845
700907549H1
SOYMON022
g2653445
BLASTN
1168
1e−88
94


7251
4845
700908149H1
SOYMON022
g2653445
BLASTN
1156
1e−87
92


7252
4845
700559351H1
SOYMON001
g2653445
BLASTN
973
1e−86
90


7253
4845
700898914H1
SOYMON027
g2653445
BLASTN
1140
1e−86
93


7254
4845
700946269H1
SOYMON024
g2653445
BLASTN
1132
1e−85
91


7255
4845
701011513H1
SOYMON019
g2653445
BLASTN
1124
1e−84
92


7256
4845
700785951H2
SOYMON011
g2653445
BLASTN
1114
1e−83
92


7257
4845
701003561H1
SOYMON019
g2653445
BLASTN
1093
1e−82
92


7258
4845
700755340H1
SOYMON014
g2653445
BLASTN
1097
1e−82
93


7259
4845
700756774H1
SOYMON014
g2653445
BLASTN
950
1e−81
92


7260
4845
700564820H1
SOYMON002
g2653445
BLASTN
989
1e−81
87


7261
4845
700902381H1
SOYMON027
g2653445
BLASTN
1055
1e−79
95


7262
4845
700970334H1
SOYMON005
g2653445
BLASTN
978
1e−77
86


7263
4845
700656490H1
SOYMON004
g2653445
BLASTN
941
1e−73
91


7264
4845
700871681H1
SOYMON018
g2653445
BLASTN
974
1e−72
92


7265
4845
701153255H1
SOYMON031
g2653445
BLASTN
758
1e−65
94


7266
4845
701049483H1
SOYMON032
g2653445
BLASTN
865
1e−65
88


7267
4845
700796611H1
SOYMON017
g2653445
BLASTN
577
1e−59
86


7268
4845
700863103H1
SOYMON023
g2653445
BLASTN
771
1e−59
91


7269
4845
700795148H1
SOYMON017
g2653445
BLASTN
631
1e−57
83


7270
4845
701099340H1
SOYMON028
g2653445
BLASTN
678
1e−47
86


7271
4845
701097793H1
SOYMON028
g2653445
BLASTN
571
1e−38
88


7272
5440
701049119H1
SOYMON032
g2653445
BLASTN
1116
1e−84
89


7273
5440
701135152H1
SOYMON038
g2653445
BLASTN
703
1e−72
90


7274
5440
701001376H1
SOYMON018
g2653445
BLASTN
611
1e−67
89


7275
5440
701011545H1
SOYMON019
g2653445
BLASTN
907
1e−66
87


7276
5440
700738622H1
SOYMON012
g2653445
BLASTN
827
1e−60
88


7277
5440
700844506H1
SOYMON021
g2653445
BLASTN
838
1e−60
87


7278
5440
700547904H1
SOYMON001
g2653445
BLASTN
820
1e−59
87


7279
5440
701136362H1
SOYMON038
g2653445
BLASTN
825
1e−59
85


7280
5440
700794050H1
SOYMON017
g2653445
BLASTN
793
1e−57
84


7281
5440
700952580H1
SOYMON022
g2653445
BLASTN
798
1e−57
88


7282
5440
700563827H1
SOYMON002
g2653445
BLASTN
735
1e−56
82


7283
5440
700952567H1
SOYMON022
g2653445
BLASTN
783
1e−56
88


7284
5440
700953831H1
SOYMON022
g2653445
BLASTN
746
1e−53
87


7285
5440
700749982H1
SOYMON013
g2653445
BLASTN
397
1e−50
87


7286
5440
700686154H1
SOYMON008
g2653445
BLASTN
458
1e−48
84


7287
5440
700904783H1
SOYMON022
g2653445
BLASTN
461
1e−48
88


7288
5440
700952870H1
SOYMON022
g2653445
BLASTN
685
1e−48
87


7289
5440
700961948H1
SOYMON022
g2653445
BLASTN
675
1e−47
82


7290
5440
701210118H1
SOYMON035
g2653445
BLASTN
418
1e−45
85


7291
5440
700906779H1
SOYMON022
g2653445
BLASTN
631
1e−43
84


7292
5440
700833390H1
SOYMON019
g2653445
BLASTN
239
1e−36
87


7293
5440
700990989H1
SOYMON011
g2653445
BLASTN
545
1e−36
85


7294
5440
701103017H1
SOYMON028
g2653445
BLASTN
439
1e−27
85


7295
5440
700978736H1
SOYMON009
g2653446
BLASTX
124
1e−16
57


7296
7894
700795920H1
SOYMON017
g2653445
BLASTN
1016
1e−75
87


7297
7894
700888375H1
SOYMON024
g2653445
BLASTN
742
1e−66
88


7298
8040
701121224H1
SOYMON037
g534915
BLASTN
298
1e−14
77


7299
8040
700743066H1
SOYMON012
g2668746
BLASTX
140
1e−12
80


7300
8531
701005139H1
SOYMON019
g2258073
BLASTN
871
1e−63
79


7301
8531
701008308H1
SOYMON019
g534915
BLASTN
789
1e−57
76


7302
8531
700559054H1
SOYMON001
g2570500
BLASTN
790
1e−57
77


7303
8531
700790983H1
SOYMON011
g2258073
BLASTN
431
1e−52
77


7304
8531
701007949H1
SOYMON019
g2570500
BLASTN
404
1e−41
70


7305
8531
701123827H1
SOYMON037
g534915
BLASTN
436
1e−26
75


7306
8531
701013616H1
SOYMON019
g534915
BLASTN
431
1e−25
78


7307
8531
701013624H1
SOYMON019
g534916
BLASTX
210
1e−22
84


7308
8531
700888553H1
SOYMON024
g534916
BLASTX
174
1e−17
91


7309
8531
701106256H1
SOYMON036
g534916
BLASTX
174
1e−17
84


7310
8531
701214976H1
SOYMON035
g534916
BLASTX
165
1e−16
88


7311
8531
700565624H1
SOYMON002
g2570501
BLASTX
169
1e−16
85


7312
8531
701121092H1
SOYMON037
g2570501
BLASTX
110
1e−15
60


7313
8531
700788808H2
SOYMON011
g534916
BLASTX
159
1e−15
88


7314
8531
701099192H1
SOYMON028
g534916
BLASTX
159
1e−15
96


7315
8531
700889521H1
SOYMON024
g534916
BLASTX
162
1e−15
90


7316
8531
700971218H1
SOYMON005
g534916
BLASTX
137
1e−12
90


7317
8531
701099236H1
SOYMON028
g534916
BLASTX
131
1e−10
75


7318
8531
700648547H1
SOYMON003
g534916
BLASTX
49
1e−9
57


7319
8531
700834052H1
SOYMON019
g534916
BLASTX
118
1e−9
92


7320
9059
700906027H1
SOYMON022
g2653445
BLASTN
1150
1e−86
94


7321
9059
700751263H1
SOYMON014
g2653445
BLASTN
1131
1e−85
95


7322
9059
701208611H1
SOYMON035
g2653445
BLASTN
666
1e−83
91


7323
9059
700832676H1
SOYMON019
g2653445
BLASTN
1078
1e−80
93


7324
9059
700979128H1
SOYMON009
g2653445
BLASTN
381
1e−71
90


7325
9059
700751040H1
SOYMON014
g2653445
BLASTN
872
1e−63
86


7326
9059
700957555H1
SOYMON022
g2653445
BLASTN
565
1e−40
86


7327
13047
LIB3028-012-
LIB3028
g2653445
BLASTN
1120
1e−116
89




Q1-B1-B8


7328
13047
LIB3028-012-
LIB3028
g2653445
BLASTN
1424
1e−115
91




Q1-B1-A6


7329
16
LIB3040-003-
LIB3040
g633598
BLASTN
523
1e−51
74




Q1-E1-F6


7330
16
LIB3051-114-
LIB3051
g790478
BLASTN
457
1e−48
79




Q1-K1-G5


7331
16
LIB3039-020-
LIB3039
g790478
BLASTN
338
1e−30
74




Q1-E1-A2


7332
1820
LIB3065-010-
LIB3065
g2653445
BLASTN
173
1e−10
88




Q1-N1-H3


7333
20885
LIB3051-070-
LIB3051
g2653445
BLASTN
1058
1e−110
77




Q1-K1-B12


7334
27239
LIB3051-010-
LIB3051
g1747293
BLASTN
544
1e−34
73




Q1-E1-G8


7335
2813
LIB3028-026-
LIB3028
g2570500
BLASTN
1029
1e−77
80




Q1-B1-B7


7336
4845
LIB3039-007-
LIB3039
g2653445
BLASTN
1826
1e−143
94




Q1-E1-H3


7337
4845
LIB3050-012-
LIB3050
g2653445
BLASTN
1597
1e−124
91




Q1-E1-B11


7338
8040
LIB3049-005-
LIB3049
g2570501
BLASTX
154
1e−32
61




Q1-E1-A7


7339
8531
LIB3050-013-
LIB3050
g2570500
BLASTN
748
1e−53
72




Q1-E1-G8


7340
8531
LIB3073-025-
LIB3073
g534915
BLASTN
711
1e−49
78




Q1-K1-D6


7341
8531
LIB3050-012-
LIB3050
g2258074
BLASTX
93
1e−31
74




Q1-E1-D1









*Table Headings
Cluster ID

A cluster ID is arbitrarily assigned to all of those clones which belong to the same cluster at a given stringency and a particular clone will belong to only one cluster at a given stringency. If a cluster contains only a single clone (a “singleton”), then the cluster ID number will be negative, with an absolute value equal to the clone ID number of its single member. The cluster ID entries in the table refer to the cluster with which the particular clone in each row is associated.


Clone ID

The clone ID number refers to the particular clone in the PhytoSeq database. Each clone ID entry in the table refers to the clone whose sequence is used for (1) the sequence comparison whose scores are presented and/or (2) assignment to the particular cluster which is presented. Note that a clone may be included in this table even if its sequence comparison scores fail to meet the minimum standards for similarity. In such a case, the clone is included due solely to its association with a particular cluster for which sequences of one or more other member clones possess the required level of similarity.


Library

The library ID refers to the particular cDNA library from which a given clone is obtained. Each cDNA library is associated with the particular tissue(s), line(s) and developmental stage(s) from which it is isolated.


NCBI gi

Each sequence in the GenBank public database is arbitrarily assigned a unique NCBI gi (National Center for Biotechnology Information GenBank Identifier) number. In this table, the NCBI gi number which is associated (in the same row) with a given clone refers to the particular GenBank sequence which is used in the sequence comparison. This entry is omitted when a clone is included solely due to its association with a particular cluster.


Method

The entry in the “Method” column of the table refers to the type of BLAST search that is used for the sequence comparison. “CLUSTER” is entered when the sequence comparison scores for a given clone fail to meet the minimum values required for significant similarity. In such cases, the clone is listed in the table solely as a result of its association with a given cluster for which sequences of one or more other member clones possess the required level of similarity.


Score

Each entry in the “Score” column of the table refers to the BLAST score that is generated by sequence comparison of the designated clone with the designated GenBank sequence using the designated BLAST method. This entry is omitted when a clone is included solely due to its association with a particular cluster. If the program used to determine the hit is HMMSW then the score refers to HMMSW score.


P-Value

The entries in the P-Value column refer to the probability that such matches occur by chance.


% Ident

The entries in the “% Ident” column of the table refer to the percentage of identically matched nucleotides (or residues) that exist along the length of that portion of the sequences which is aligned by the BLAST comparison to generate the statistical scores presented. This entry is omitted when a clone is included solely due to its association with a particular cluster.

Claims
  • 1-9. (canceled)
  • 10. A substantially purified nucleic acid molecule comprising a nucleic acid sequence wherein said nucleic acid sequence: (a) hybridizes under high stringency conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, or(b) shares at least 90% or greater identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 11. The substantially purified nucleic acid molecule of claim 10, wherein said nucleic acid molecule encodes a maize or soybean carbon assimilation pathway enzyme.
  • 12. A substantially purified nucleic acid molecule comprising a nucleic acid sequence that shares between 100% and 90% sequence identity with a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 13. The substantially purified nucleic acid molecule of claim 12, wherein said nucleic acid sequence shares between 100% and 95% sequence identity with a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 14. The substantially purified nucleic, acid molecule of claim 13, wherein said nucleic acid sequence shares between 100% and 98% sequence identity with a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 15. The substantially purified nucleic acid molecule of claim 14, wherein said nucleic acid sequence shares between 100% and 99% sequence identity with a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 16. The substantially purified nucleic acid molecule of claim 15, wherein said nucleic acid sequence exhibits 100% sequence identity with a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 17. A substantially purified polypeptide, wherein said polypeptide is encoded by a nucleic acid molecule comprising a nucleic acid sequence, wherein said nucleic acid sequence: (a) hybridizes under high stringency conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, or(b) shares at least 90% or greater identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 18. A transformed plant comprising a nucleic acid molecule which comprises: (a) an exogenous promoter region which functions in a plant cell to cause the production of an mRNA molecule; which is linked to;(b) a structural nucleic acid molecule, wherein said structural nucleic acid molecule comprises a nucleic acid sequence, wherein said nucleic acid sequence (i) hybridizes under high stringency conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341; or(ii) shares at least 90% or greater identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, or which is linked to(c) a 3′ non-translated sequence that functions in said plant cell to cause the termination of transcription and the addition of polyadenylated ribonucleotides to said 3′ end of said mRNA molecule.
  • 19. The transformed plant according to claim 18, wherein said nucleic acid sequence is a complete complement of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 20. The transformed plant according to claim 19, wherein said plant is selected from the group consisting of cotton, soybean, maize and wheat.
  • 21. The transformed plant according to claim 20, wherein said plant is cotton.
  • 22. The transformed plant according to claim 20, wherein said plant is soybean.
  • 23. The transformed plant according to claim 20, wherein said plant is maize.
  • 24. The transformed plant according to claim 20, wherein said plant is wheat.
  • 25. A transformed seed comprising a transformed plant cell comprising a nucleic acid molecule which comprises: (a) an exogenous promoter region which functions in said plant cell to cause the production of an mRNA molecule; which is linked to;(b) a structural nucleic acid molecule, wherein said structural nucleic acid molecule comprises a nucleic acid sequence, wherein said nucleic acid sequence (i) hybridizes under high stringency conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341; or(ii) shares at least a 90% or greater identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, which is linked to(c) a 3′ non-translated sequence that functions in said plant cell to cause the termination of transcription and the addition of polyadenylated ribonucleotides to said 3′ end of said mRNA molecule.
  • 26. The transformed seed according to claim 25, wherein said nucleic acid sequence is a complete complement of a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341.
  • 27. The transformed seed according to claim 25, wherein said exogenous promoter region functions in a seed cell.
  • 28. The transformed seed according to claim 25, wherein said seed is selected from the group consisting of a cotton, soybean, maize and wheat seed.
  • 29. The transformed seed according to claim 28, wherein said seed is a cotton seed.
  • 30. The transformed seed according to claim 28, wherein said seed is a soybean seed.
  • 31. The transformed seed according to claim 28, wherein said seed is a maize seed.
  • 32. The transformed seed according to claim 28, wherein said seed is a wheat seed.
  • 33. A method of producing a genetically transformed plant, comprising the steps of: (a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising (i) a promoter which functions in a plant cell to cause the production of an RNA sequence,(ii) a structural nucleic acid molecule, wherein said structural nucleic acid molecule comprises a nucleic acid sequence, wherein said nucleic acid sequence (A) hybridizes under high stringency conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341; or(B) shares at least a 90% or greater identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341 and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, which is linked to(iii) a 3′ non-translated sequence which functions in plant cells to cause the addition of polyadenylated nucleotides to the 3′ end of RNA sequence,(b) obtaining a transformed plant cell with said structural nucleic acid molecule that encodes one or more proteins, wherein said structural nucleic acid molecule is transcribed and results in expression of said protein(s); and(c) regenerating from said transformed plant cell a genetically transformed plant.
  • 34. A method for reducing expression of a protein in a plant cell comprising growing a transformed plant cell containing a nucleic acid molecule wherein the non-transcribed strand of said nucleic acid molecule encodes a protein or fragment thereof, and wherein the transcribed strand of said nucleic acid molecule is complementary to a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, and whereby said transcribed strand reduces or depresses expression of said protein.
  • 35. A method for causing overexpression of a protein in a plant cell comprising growing a transformed plant cell containing a nucleic acid molecule that encodes a protein or fragment thereof, wherein said nucleic acid molecule comprises a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, and whereby said nucleic acid molecule increases expression of said protein.
  • 36. A method of producing a plant containing reduced levels of a protein comprising: (a) transforming a plant cell with a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, wherein said nucleic acid molecule is transcribed and results in decreased expression or co-suppression of endogenous protein synthesis activity, and(b) regenerating said plant comprising said plant cell and producing subsequent progeny from said plant.
  • 37. A method of growing a transgenic plant comprising (a) planting a transformed seed comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 7341, and a complete complement of SEQ ID NO: 1 through SEQ ID NO: 7341, and(b) growing a plant from said seed.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) of application No. 60/076,712 filed Mar. 6, 1998, the entirety of which is herein incorporated by reference.

Provisional Applications (1)
Number Date Country
60076712 Mar 1998 US
Continuations (3)
Number Date Country
Parent 11244330 Oct 2005 US
Child 12213935 US
Parent 09987899 Nov 2001 US
Child 11244330 US
Parent 09262979 Mar 1999 US
Child 09987899 US