Nucleic acid probe-based diagnostic assays for prokaryotic and eukaryotic organisms

Information

  • Patent Grant
  • 8946127
  • Patent Number
    8,946,127
  • Date Filed
    Monday, March 4, 2013
    11 years ago
  • Date Issued
    Tuesday, February 3, 2015
    9 years ago
Abstract
Use of the ssrA gene or tmRNA, an RNA transcript of the ssrA gene, or fragments thereof as target regions in a nucleic acid probe assay for the detection and identification of prokaryotic and/or eukaryotic organisms is described. Nucleotide sequence alignment of tmRNA sequences from various organisms can be used to identify regions of homology and non-homology within the sequences which in turn can be used to design both genus specific and species specific oligonucleotide probes. These newly identified regions of homology and non-homology provide the basis of identifying and detecting organisms at the molecular level. Oligonucleotide probes identified in this way can be used to detect tmRNA in samples thereby giving an indication of the viability of non-viral organisms present in various sample types.
Description
TECHNICAL FIELD

This invention relates to the identification of target sequences for use in nucleic acid assays for the detection and identification of prokaryotic and/or eukaryotic organisms.


BACKGROUND ART

The ssrA gene, which encodes a small stable high copy number RNA transcript (tmRNA), is found in all bacteria and has recently been identified in chloroplasts and diatoms. It has a dual function both as a tRNA and as an mRNA molecule and is involved in rescuing truncated mRNAs which have lost stop codons, facilitating trans-translation of truncated peptides prior to protease degradation (Keiler, K. C. et al. (1996), Science, 271, 990-993). The unique function of tmRNAs has directed researchers to analyse the relationship of the secondary structure of these molecules with their function. These studies have focussed on the conservation of the secondary structure of tmRNAs from different microorganisms, and on the evolutionary significance and functional_relevance of such structural conservation. Studies were carried out by Matveeva, O et al (1998), Vol. 16, No. 13, 1374-1375 to investigate oligonucleotide binding to RNA molecules using tmRNA as a model of RNA containing secondary structure. The studies did not have as their objective the identification of sites in tmRNA with the goal of designing antisense oligonucleotide for therapeutic purposes.


The number of nucleic acid targets/probes for bacterial diagnostics is currently limited. As such, the need to identify and characterise novel DNA and RNA targets for diagnostic purposes is now seen as a priority. Target nucleic acid sequences for the development of probes can be for example, plasmids, ribosomal RNA genes, intergenic regions, genes encoding virulence factors or random genomic DNA fragments. In addition, a number of RNA molecules have been described which are used as targets for RNA-based detection for example, ribosomal RNA and RNase P.


The basis of any nucleic acid-based probe assay is the requirement for well characterised nucleic acid sequences which are present in all prokaryotes and eukaryotes under study. For reliable detection of a prokaryotic or eukaryotic organism, the nucleic acid probes used should be highly specific (i.e. not cross-react with nucleic acids from other organisms) and highly sensitive (i.e. most or all strains of the organism to be detected should react with the probe). Therefore, preferred target sequences would be present in all strains of the organism concerned. Such sequences would have significant sequence variability to allow differentiation of the species concerned from other closely related species but, on the other hand, have sufficient sequence conservation to allow the detection of all strains of the species concerned. In general, the precise identification of a nucleic acid sequence, which could form the basis of a specific nucleic acid probe assay, is tedious, difficult and uncertain. To date there are few general approaches which would facilitate the development of nucleic acid probes for a wide variety of microorganisms. The nucleic acid sequences which have been identified as potentially useful targets for probe development are, for example, rRNA genes and RNA, and the rRNA 16S/23S intergenic region.


The majority of nucleic acid probe/target assays centre on the high copy number ribosomal RNAs (rRNA) and rRNA 16S/23 S spacer regions (European Patent No. 0 395 292) of the bacterial cell for the purposes of detection and identification. A number of successful commercial bacterial diagnostic kits have been marketed based on these rRNA probes/targets for the detection of a variety of microrganisms. These include a range of commercial probe kits based on the 16S rRNA gene marketed by Gen-probe Inc. San Diego Calif., and DNA probes based on the 16S/23S spacer region marketed by Innogenetics N.V. Ghent, Belgium. However, many of these diagnostic kits have limitations, including lack of sensitivity due to low copy-number target sequences and lack of specificity due to sequence identity between closely related organisms in many cases.


Nucleic acid-based methods that could be applied directly to samples to give an indication of the viability of any microbes present therein would be of enormous significance for food, industrial, environmental and medical applications.


A disadvantage of DNA-based methods is that they do not distinguish between living and dead organisms. Some studies have focussed on using rRNA and mRNA as indicators of cell viability (Sheridan, G. E. C. et al. (1998) Applied and Environmental Microbiology, 64, 1313-1318). However, these sequences are not satisfactory targets as rRNA and mRNA can be present in bacterial cells up to 48 hours after cell death.


With the advent of nucleic acid based microarray-like formatting, incorporating simultaneous monitoring of multiple nucleic acid targets, there is now a clear requirement to identify and characterise novel nucleic acid sequences for use as probes and/or target regions to detect and identify viable prokaryotic and eukaryotic cells.


DISCLOSURE OF INVENTION

The invention provides use of the ssrA gene or a fragment thereof as a target region in a nucleic acid probe assay for a prokaryotic or eukaryotic organism.


Thus, the invention has application in relation to all organisms other than viruses.


No other nucleic acid probe assay has been reported which uses regions of the ssrA gene as a target region to detect and identify species of prokaryotes and eukaryotes with the attendant advantages.


According to one embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of high homology from the 5′ end of the DNA molecule can be used as a universal target region.


In an alternative embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of high homology from the 3′ end of the DNA molecule can be used as a universal target region.


In a further embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of low homology can be used as a target region in a nucleic acid probe assay to distinguish between species.


In a still further embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of low homology can be used as a target region for the generation of a genus specific probe.


As hereinafter described nucleotide sequence alignments of ssrA gene sequences from different organisms show that the 5′ and 3′ regions of these molecules demonstrate a high degree of homology and are therefore useful as universal target regions. The ssrA genes also demonstrate a more significant degree of nucleotide sequence variability between closely related organisms than any other bacterial high copy number RNA. These variable regions are ideal targets for nucleic acid assays to distinguish between species.


The invention also provides use of tmRNA, an RNA transcript of the ssrA gene, or a fragment thereof as a target region in a nucleic acid probe assay for a prokaryotic or eukaryotic organism.


According to one embodiment of this aspect of the invention a fragment of a tmRNA molecule corresponding to a region of high homology from the 5′ end of the tmRNA molecule can be used as a universal target region.


Alternatively, a fragment of a tmRNA molecule corresponding to a region of high homology from the 3′ end of the tmRNA molecule can be used as a universal target region.


According to a further embodiment of this aspect of the invention a fragment of a tmRNA molecule corresponding to a region of low homology can be used as a target region in a nucleic acid probe assay to distinguish between species.


According to a still further embodiment a fragment of a tmRNA molecule corresponding to a region of low homology can be used as a target region for the generation of a genus specific probe.


The nucleic acid probe (DNA or RNA) in accordance with the invention typically consists of at least 10 nucleotides of the ssrA gene and/or tmRNA transcript or their complementary sequence and is used in a nucleic acid probe hybridisation assay for a prokaryotic or eukaryotic organism. Probe hybridisation to its complementary sequence is typically revealed by labelling the nucleic acid probe with a radioactive or non-radioactive (e.g. colorimetric or fluorimetric) label.


In preferred embodiments said ssrA gene fragment or said tmRNA fragment can be used as the basis of a primer to be used in an amplification procedure.


Universal oligonucleotide primers directed to the 5′ and 3′ regions of either the ssrA gene or the tmRNA sequence can be used in accordance with the invention to amplify the ssrA gene or its encoding tmRNA from a wide variety of bacteria, facilitating amplification of a wide range of organisms simultaneously, whilst also enabling specific nucleic acid probe hybridisation and detection.


Preferably, the product of the amplification procedure is used as a target region in a nucleic probe assay.


Further, preferably, a cDNA transcript of a tmRNA molecule is used as a probe in a nucleic acid hybridisation assay.


Such assays can be carried out in vitro or in situ.


The target region as defined herein can be used as the basis of an assay for distinguishing between living and dead prokaryotic or eukaryotic organisms.


In contrast to rRNA and mRNA which can be present in bacterial cells following cell death, tmRNA is rapidly degraded in dead organisms. Thus, tmRNA can be a useful target for distinguishing between living and dead prokaryotic or eukaryotic organisms either directly by nucleic acid probe hybridisation to isolated bacterial RNA, or by combined RNA amplification and nucleic acid probe hybridisation to the amplified product.


Preferably, the target region is used in a multiple probe format for broad scale detection and/or identification of prokaryotic or eukaryotic organisms.


An ssrA gene probe or a tmRNA transcript probe in accordance with the invention can be linked to a microarray gene chip system for the broad scale high throughput detection and identification of prokaryotic or eukaryotic organisms.


A target region in accordance with the invention can also be used as a probe in an assay to detect prokaryotic or eukaryotic organisms in a sample of matter.


Such a sample of matter can include biological samples such as samples of tissue from the respiratory tract, the uro-genital tract or the gastrointestinal tract, or body fluids such as blood and blood fractions, sputum or cerebrospinal fluid.


An assay in accordance with the invention can also be carried out on food samples, environmental samples including air, water, marine and soil samples, and plant and animal derived samples.


According to the invention a fragment of the ssrA gene or the tmRNA transcript can also be used in an assay to obtain a DNA profile of a prokaryotic or eukaryotic organism and, thereby, distinguish between strains of the same species.


Nucleic acid sequence alignments have shown that sequence variation occurs in the ssrA gene and the tmRNA transcript within individual species. This intra-species sequence variation can be used to distinguish between strains of the same species for epidemiology, tracing of infectious agents for example, in outbreaks, or for population studies.


Other applications of the invention include the use of the ssrA gene, the tmRNA transcript or a DNA sequence complementary thereto, or a fragment thereof, to design an agent directed against infectious prokaryotic or eukaryotic organisms for therapeutic purposes.


Such agents can include antisense mRNA or oligonucleotides, ribozymes, and antagonistic peptides and are suitable for use in any kind of medical condition.


Thus, the invention can be used for the detection of viable organisms only in biological samples using the tmRNA target. Thus, during and following any anti-infectious agent drug treatment, the tmRNA target can be used to monitor the efficacy of the therapy on those specific infectious agents (e.g. antimicrobial and/or anti-parasitic treatments).


In one embodiment, the target region is used to monitor the efficacy of drug therapies against infectious agents.


In another embodiment, the target region is used to monitor the viability and level of health-promoting organisms in the gastrointestinal tract.


This aspect of the invention relates, for example, to the introduction into the gut flora of health-promoting (probiotic) organisms contained in for example yoghurt or other food to improve health. There is an interest and need to continuously monitor the presence and levels of these organisms to ensure their continued function in promoting health. The tmRNA region can be used as a target to detect viable organisms, for example in faeces, so as to monitor the presence of the health promoting organisms.


In a further embodiment, the assay is used for the quantification of prokaryotic or eukaryotic organisms.


When using probe hybridisation and/or in vitro amplification to detect organisms in a sample it is possible to determine the number of organisms present, based on the signal intensity. Real-time methods of in vitro amplification can also be used to enable the quantification of organisms in a sample. Thus, the ability to quantify the number of organisms in a sample can be important in clinical situations for treatment purposes, for example for antibiotic or other treatments or for to monitoring treatment efficacy.


A still further application of the invention is the use of a database of ssrA gene sequences to identify a prokaryotic or eukaryotic organism.


The invention provides a variety of probes for the 5′ and 3′ homologous regions and the variable regions of the ssrA gene and tmRNA sequences, the probes being derived from these sequences or sequences complementary thereto. Representative sequences are as follows:










Actinobacillus actinomycetemcomitans ssrA








SEQ ID NO: 1







GGGGCTGATTCTGGATTCGACGGGATTAGCGAAGCCCGAAGTGCACGTC


GAGGTGCGGTAGGCCTCGTAAATAAACCGCAAAAAAATAGTCGCAAACG


ACGAACAATACGCTTTAGCAGCTTAATAACCTGCCTTTAGCCTTCGCTCC


CCAGCTTCCGCTCGTAAGACGGGGATAAAGCGGAGTCAAACCAAAACGA


GATCGTGTGGAAGCCACCGTTTGAGGATCGAAGCATTAAATTAAATCAA


AGTAGCTTAATTGTCGCGTGTCCGTCAGCAGGATTAAGTGAATTTAAAGA


CCGGACTAAACGTGTAGTGCTAACGGCAGAGGAATTTCGGACGGGGGTT


CAACTCCCCCCAGCTCCACCA






Actinobacillus actinomycetemcomitans tmRNA








SEQ ID NO: 2







GGGGCUGAUUCUGGAUUCGACGGGAUUAGCGAAGCCCGAAGUGCACGU


CGAGGUGCGGUAGGCCUCGUAAAUAAACCGCAAAAAAAUAGUCGCAAA


CGACGAACAAUACGCUUUAGCAGCUUAAUAACCUGCCUUUAGCCUUCG


CUCCCCAGCUUCCGCUCGUAAGACGGGGAUAAAGCGGAGUCAAACCAA


AACGAGAUCGUGUGGAAGCCACCGUUUGAGGAUCGAAGCAUUAAAUUA


AAUCAAAGUAGCUUAAUUGUCGCGUGUCCGUCAGCAGGAUUAAGUGAA


UUUAAAGACCGGACUAAACGUGUAGUGCUAACGGCAGAGGAAUUUCGG


ACGGGGGUUCAACUCCCCCCAGCUCCACCA






Aeromonas salmonicida ssrA, internal partial








SEQ ID NO: 3







AAGATTCACGAAACCCAAGGTGCATGCCGAGGTGCGGTAGGCCTCGTTA


ACAAACCGCAAAAAAATAGTCGCAAACGACGAAAACTACGCACTAGCAG


CtTAATAACCTGCATAGAGCCCTTCTACCCTAGCTTGCCTGTGTCCTAG


GGAATCGGAAGGTCATCCTTCACAGGATCGTGTGGAAGTCCTGCTCGG


GGCGGAAGCATTAAAACCAATCGAGCTAGTCAATTCGTGGCGTGTCTC


TCCGCAGCGGGTTGGCGAATGTAAAGAGTGACTAAGCATGTAGTACC


GAGGATGTAGTAATTTTGGACGGGG






Aeromonas salmonicida tmRNA, internal partial








SEQ ID NO: 4







AAGAUUCACGAAACCCAAGGUGCAUGCCGAGGUGCGGUAGGCCUCGUU


AACAAACCGCAAAAAAAUAGUCGCAAACGACGAAAACUACGCACUAGC


AGCUUAAUAACCUGCAUAGAGCCCUUCUACCCUAGCUUGCCUGUGUCC


UAGGGAAUCGGAAGGUCAUCCUUCACAGGAUCGUGUGGAAGUCCUGCU


CGGGGCGGAAGCAUUAAAACCAAUCGAGCUAGUCAAUUCGUGGCGUGU


CUCUCCGCAGCGGGUUGGCGAAUGUAAAGAGUGACUAAGCAUGUAGUA


CCGAGGAUGUAGUAAUUUUGGACGGGG






Alcaligenes eutrophus ssrA








SEQ ID NO: 5







TGGGCCGACCTGGTTTCGACGTGGTTACAAAGCAGTGAGGCATACCGAG


GACCCGTCACCTCGTTAATCAATGGAATGCAATAACTGCTAACGACGAAC


GTTACGCACTCGCTTAATTGCGGCCGTCCTCGCACTGGCTCGCTGACGGG


CTAGGGTCGCAAGACCACGCGAGGTATTTACGTCAGATAAGCTCCGGAA


GGGTCACGAAGCCGGGGACGAAAACCTAGTGACTCGCCGTCGTAGAGCG


TGTTCGTCCGATGCGCCGGTTAAATCAAATGACAGAACTAAGTATGTAGA


ACTCTCTGTGGAGGGCTTACGGACGCGGGTTCGATTCCCGCCGGCTCCAC


CA






Alcaligenes eutrophus tmRNA








SEQ ID NO: 6







UGGGCCGACCUGGUUUCGACGUGGUUACAAAGCAGUGAGGCAUACCGA


GGACCCGUCACCUCGUUAAUCAAUGGAAUGCAAUAACUGCUAACGACG


AACGUUACGCACUCGCUUAAUUGCGGCCGUCCUCGCACUGGCUCGCUG


ACGGGCUAGGGUCGCAAGACCACGCGAGGUAUUUACGUCAGAUAAGCU


CCGGAAGGGUCACGAAGCCGGGGACGAAAACCUAGUGACUCGCCGUCG


UAGAGCGUGUUCGUCCGAUGCGCCGGUUAAAUCAAAUGACAGAACUAA


GUAUGUAGAACUCUCUGUGGAGGGCUUACGGACGCGGGUUCGAUUCCC


GCCGGCUCCACCA






Aquifex aeolicus ssrA








SEQ ID NO: 7







GGGGGCGGAAAGGATTCGACGGGGACAGGCGGTCCCCGAGGAGCAGGC


CGGGTGGCTCCCGTAACAGCCGCTAAAACAGCTCCCGAAGCTGAACTCG


CTCTCGCTGCCTAATTAAACGGCAGCGCGTCCCCGGTAGGTTTGCGGGTG


GCCTACCGGAGGGCGTCAGAGACACCCGCTCGGGCTACTCGGTCGCACG


GGGCTGAGTAGCTGACACCTAACCCGTGCTACCCTCGGGGAGCTTGCCCG


TGGGCGACCCGAGGGGAAATCCTGAACACGGGCTAAGCCTGTAGAGCCT


CGGATGTGGCCGCCGTCCTCGGACGCGGGTTCGATTCCCGCCGCCTCCAC


CA






Aquifex aeolicus tmRNA








SEQ ID NO: 8







GGGGGCGGAAAGGAUUCGACGGGGACAGGCGGUCCCCGAGGAGCAGGC


CGGGUGGCUCCCGUAACAGCCGCUAAAACAGCUCCCGAAGCUGAACUC


GCUCUCGCUGCCUAAUUAAACGGCAGCGCGUCCCCGGUAGGUUUGCGG


GUGGCCUACCGGAGGGCGUCAGAGACACCCGCUCGGGCUACUCGGUCG


CACGGGGCUGAGUAGCUGACACCUAACCCGUGCUACCCUCGGGGAGCU


UGCCCGUGGGCGACCCGAGGGGAAAUCCUGAACACGGGCUAAGCCUGU


AGAGCCUCGGAUGUGGCCGCCGUCCUCGGACGCGGGUUCGAUUCCCGC


CGCCUCCACCA






Bacillus megaterium ssrA, internal partial








SEQ ID NO: 9







AGGGTAGTTCGAGCTTAGGTTGCGAGTCGAGGAGATGGCCTCGTTAAAA


CATCAACGCCAATAATAACTGGCAAATCTAACAATAACTTCGCTTTAGCT


GCATAATAGTAGCTTAGCGTTCCTCCCTCCATCGCCCATGTGGTAGGGTA


AGGGACTCACTTTAAGTGGGCTACGCCGGAGTTCGCCGTCTGAGGACGA


AGGAAGAGAATAATCAGACTAGCGACTGGGACGCCTGTTGGTAGGCAGA


ACAGCTCGCGAATGATCAATATGCCAACTACACTCGTAGACGCTTAAGTG


GCCATATTTCTGGACGTGG






Bacillus megaterium tmRNA, internal partial








SEQ ID NO: 10







AGGGUAGUUCGAGCUUAGGUUGCGAGUCGAGGAGAUGGCCUCGUUAA


AACAUCAACGCCAAUAAUAACUGGCAAAUCUAACAAUAACUUCGCUUU


AGCUGCAUAAUAGUAGCUUAGCGUUCCUCCCUCCAUCGCCCAUGUGGU


AGGGUAAGGGACUCACUUUAAGUGGGCUACGCCGGAGUUCGCCGUCUG


AGGACGAAGGAAGAGAAUAAUCAGACUAGCGACUGGGACGCCUGUUGG


UAGGCAGAACAGCUCGCGAAUGAUCAAUAUGCCAACUACACUCGUAGA


CGCUUAAGUGGCCAUAUUUCUGGACGUGG






Bacillus subtilis ssrA








SEQ ID NO: 11







GGGGACGTTACGGATTCGACAGGGATGGATCGAGCTTGAGCTGCGAGCC


GAGAGGCGATCTCGTAAACACGCACTTAAATATAACTGGCAAAACTAAC


AGTTTTAACCAAAACGTAGCATTAGCTGCCTAATAAGCGCAGCGAGCTCT


TCCTGACATTGCCTATGTGTCTGTGAAGAGCACATCCAAGTAGGCTACGC


TTGCGTTCCCGTCTGAGAACGTAAGAAGAGATGAACAGACTAGCTCTCG


GAAGGCCCGCCCGCAGGCAAGAAGATGAGTGAAACCATAAATATGCAGG


CTACGCTCGTAGACGCTTAAGTAATCGATGTTTCTGGACGTGGGTTCGAC


TCCCACCGTCTCCACCA






Bacillus subtilis tmRNA








SEQ ID NO: 12







GGGGACGUUACGGAUUCGACAGGGAUGGAUCGAGCUUGAGCUGCGAGC


CGAGAGGCGAUCUCGUAAACACGCACUUAAAUAUAACUGGCAAAACUA


ACAGUUUUAACCAAAACGUAGCAUUAGCUGCCUAAUAAGCGCAGCGAG


CUCUUCCUGACAUUGCCUAUGUGUCUGUGAAGAGCACAUCCAAGUAGG


CUACGCUUGCGUUCCCGUCUGAGAACGUAAGAAGAGAUGAACAGACUA


GCUCUCGGAAGGCCCGCCCGCAGGCAAGAAGAUGAGUGAAACCAUAAA


UAUGCAGGCUACGCUCGUAGACGCUUAAGUAAUCGAUGUUUCUGGACG


UGGGUUCGACUCCCACCGUCUCCACCA






Bordetella pertussis ssrA








SEQ ID NO: 13







GGGGCCGATCCGGATTCGACGTGGGTCATGAAACAGCTCAGGGCATGCC


GAGCACCAGTAAGCTCGTTAATCCACTGGAACACTACAAACGCCAACGA


CGAGCGTCTCGCTCTCGCCGCTTAAGCGGTGAGCCGCTGCACTGATCTGT


CCTTGGGTCAGGCGGGGGAAGGCAACTTCACAGGGGGCAACCCCGAACC


GCAGCAGCGACATTCACAAGGAATCGGCCACCGCTGGGGTCACACGGCG


TTGGTTTAAATTACGTGAATCGCCCTGGTCCGGCCCGTCGATCGGCTAAG


TCCAGGGTTAAATCCAAATAGATCGACTAAGCATGTAGAACTGGTTGCG


GAGGGCTTGCGGACGGGGGTTCAATTCCCCCCGGCTCCACCA






Bordetella pertussis tmRNA








SEQ ID NO: 14







GGGGCCGAUCCGGAUUCGACGUGGGUCAUGAAACAGCUCAGGGCAUGC


CGAGCACCAGUAAGCUCGUUAAUCCACUGGAACACUACAAACGCCAAC


GACGAGCGUCUCGCUCUCGCCGCUUAAGCGGUGAGCCGCUGCACUGAU


CUGUCCUUGGGUCAGGCGGGGGAAGGCAACUUCACAGGGGGCAACCCC


GAACCGCAGCAGCGACAUUCACAAGGAAUCGGCCACCGCUGGGGUCAC


ACGGCGUUGGUUUAAAUUACGUGAAUCGCCCUGGUCCGGCCCGUCGAU


CGGCUAAGUCCAGGGUUAAAUCCAAAUAGAUCGACUAAGCAUGUAGAA


CUGGUUGCGGAGGGCUUGCGGACGGGGGUUCAAUUCCCCCCGGCUCCA


CCA






Borrelia burgdorferi ssrA








SEQ ID NO: 15







GGGGATGTTTTGGATTTGACTGAAAATGTTAATATTGTAAGTTGCAGGCA


GAGGGAATCTCTTAAAACTTCTAAAATAAATGCAAAAAATAATAACTTTA


CAAGCTCAAATCTTGTAATGGCTGCTTAAGTTAGCAGAGGGTTTTGTTGA


ATTTGGCTTTGAGGTTCACTTATACTCTTTTCGACATCAAAGCTTGCTT


AAAAATGTTTTCAAGTTGATTTTTAGGGACTTTTATACTTGAGAGCAAT


TTGGTGGTTTGCTAGTATTTCCAAACCATATTGCTTAATAAAATACTAG


ATAAGCTTGTAGAAGCTTATAGTATTATTTTTAGGACGCGGGTTCAAT


TCCCGCCATCTCCACCA






Borrelia burgdorferi tmRNA








SEQ ID NO: 16







GGGGAUGUUUUGGAUUUGACUGAAAAUGUUAAUAUUGUAAGUUGCAG


GCAGAGGGAAUCUCUUAAAACUUCUAAAAUAAAUGCAAAAAAUAAUA


ACUUUACAAGCUCAAAUCUUGUAAUGGCUGCUUAAGUUAGCAGAGGGU


UUUGUUGAAUUUGGCUUUGAGGUUCACUUAUACUCUUUUCGACAUCAA


AGCUUGCUUAAAAAUGUUUUCAAGUUGAUUUUUAGGGACUUUUAUAC


UUGAGAGCAAUUUGGUGGUUUGCUAGUAUUUCCAAACCAUAUUGCUU


AAUAAAAUACUAGAUAAGCUUGUAGAAGCUUAUAGUAUUAUUUUUAG


GACGCGGGUUCAAUUCCCGCCAUCUCCACCA






Campylobacter jejuni ssrA








SEQ ID NO: 17







GGGAGCGACTTGGCTTCGACAGGAGTAAGTCTGCTTAGATGGCATGTCGC


TTTGGGCAAAGCGTAAAAAGCCCAAATAAAATTAAACGCAAACAACGTT


AAATTCGCTCCTGCTTACGCTAAAGCTGCGTAAGTTCAGTTGAGCCTGAA


ATTTAAGTCATACTATCTAGCTTAATTTTCGGTCATTTTTGATAGTGTA


GCCTTGCGTTTGACAAGCGTTGAGGTGAAATAAAGTCTTAGCCTTGCT


TTTGAGTTTTGGAAGATGAGCGAAGTAGGGTGAAGTAGTCATCTTTGC


TAAGCATGTAGAGGTCTTTGTGGGATTATTTTTGGACAGGGGTTCGATT


CCCCTCGCTTCCACCA






Campylobacter jejuni tmRNA








SEQ ID NO: 18







GGGAGCGACUUGGCUUCGACAGGAGUAAGUCUGCUUAGAUGGCAUGUC


GCUUUGGGCAAAGCGUAAAAAGCCCAAAUAAAAUUAAACGCAAACAAC


GUUAAAUUCGCUCCUGCUUACGCUAAAGCUGCGUAAGUUCAGUUGAGC


CUGAAAUUUAAGUCAUACUAUCUAGCUUAAUUUUCGGUCAUUUUUGA


UAGUGUAGCCUUGCGUUUGACAAGCGUUGAGGUGAAAUAAAGUCUUA


GCCUUGCUUUUGAGUUUUGGAAGAUGAGCGAAGUAGGGUGAAGUAGU


CAUCUUUGCUAAGCAUGUAGAGGUCUUUGUGGGAUUAUUUUUGGACA


GGGGUUCGAUUCCCCUCGCUUCCACCA






Chlamydia trachomatis (D/UW-3/CX) ssrA








SEQ ID NO: 19







GGGGGTGTAAAGGTTTCGACTTAGAAATGAAGCGTTAATTGCATGCGGA


GGGCGTTGGCTGGCCTCCTAAAAAGCCGACAAAACAATAAATGCCGAAC


CTAAGGCTGAATGCGAAATTATCAGCTTCGCTGATCTCGAAGATCTAAGA


GTAGCTGCTTAATTAGCAAAGTTGTTACCTAAATACGGGTGACCCGGTGT


TCGCGAGCTCCACCAGAGGTTTTCGAAACACCGTCATGTATCTGGTTAGA


ACTTAGGTCCTTTAATTCTCGAGGAAATGAGTTTGAAATTTAATGAGAGT


CGTTAGTCTCTATAGGGGTTTCTAGCTGAGGAGACATAACGTATAGTACC


TAGGAACTAAGCATGTAGAGGTTAGCGGGGAGTTTACTAAGGACGAGAG


TTCGACTCTCTCCACCTCCACCA






Chlamydia trachomatis (D/UW-3/CX) tmRNA








SEQ ID NO: 20







GGGGGUGUAAAGGUUUCGACUUAGAAAUGAAGCGUUAAUUGCAUGCG


GAGGGCGUUGGCUGGCCUCCUAAAAAGCCGACAAAACAAUAAAUGCCG


AACCUAAGGCUGAAUGCGAAAUUAUCAGCUUCGCUGAUCUCGAAGAUC


UAAGAGUAGCUGCUUAAUUAGCAAAGUUGUUACCUAAAUACGGGUGA


CCCGGUGUUCGCGAGCUCCACCAGAGGUUUUCGAAACACCGUCAUGUA


UCUGGUUAGAACUUAGGUCCUUUAAUUCUCGAGGAAAUGAGUUUGAA


AUUUAAUGAGAGUCGUUAGUCUCUAUAGGGGUUUCUAGCUGAGGAGA


CAUAACGUAUAGUACCUAGGAACUAAGCAUGUAGAGGUUAGCGGGGA


GUUUACUAAGGACGAGAGUUCGACUCUCUCCACCUCCACCA






Chlamydia trachomatis (mouse pneumonitis) ssrA








SEQ ID NO: 21







GGGGGTGTAAAGGTTTCGACTTAGAAATGAAGCGTTAATTGCATGCGGA


GGGCGTTGGCTGGCCTCCTAAAAAGCCGACAAAACAATAAATGCCGAAC


CTAAGGCTGAATGCGAAATTATCAGCTTCGCTGATCTTAATGATCTAAGA


GTTGCTGCTTAATTAGCAAAGTTGTTACCTAAGTACTGGTAACCCGGTGT


TCGCGAGCTCCACCAGAGGTTTTCGAAACGCCGTCATTTATCTGGTTAGA


ATTAGGGCCTTTTAACTCTCAAGGGAACTAATTTGAATTTTAATGAGAGT


CGTTGGTCTCTATAGAGGTTTCTAGCTGAGGAGATATAACGTAAAATATT


CTAGAAACTAAGCATGTAGAGGTTAGCGGGGAGTTTACTAAGGACGAGA


GTTCGAATCTCTCCACCTCCACCA






Chlamydia trachomatis (mouse pneumonitis) tmRNA








SEQ ID NO: 22







GGGGGUGUAAAGGUUUCGACUUAGAAAUGAAGCGUUAAUUGCAUGCG


GAGGGCGUUGGCUGGCCUCCUAAAAAGCCGACAAAACAAUAAAUGCCG


AACCUAAGGCUGAAUGCGAAAUUAUCAGCUUCGCUGAUCUUAAUGAUC


UAAGAGUUGCUGCUUAAUUAGCAAAGUUGUUACCUAAGUACUGGUAA


CCCGGUGUUCGCGAGCUCCACCAGAGGUUUUCGAAACGCCGUCAUUUA


UCUGGUUAGAAUUAGGGCCUUUUAACUCUCAAGGGAACUAAUUUGAA


UUUUAAUGAGAGUCGUUGGUCUCUAUAGAGGUUUCUAGCUGAGGAGA


UAUAACGUAAAAUAUUCUAGAAACUAAGCAUGUAGAGGUUAGCGGGG


AGUUUACUAAGGACGAGAGUUCGAAUCUCUCCACCUCCACCA






Chlorobium tepidum ssrA








SEQ ID NO: 23







GGGGATGACAGGCTATCGACAGGATAGGTGTGAGATGTCGTTGCACTCC


GAGTTTCAGCATGGACGGACTCGTTAAACAAGTCTATGTACCAATAGATG


CAGACGATTATTCGTATGCAATGGCTGCCTGATTAGCACAAGTTAATTCA


GAAGCCATCGTCCTGCGGTGAATGCGCTTACTCTGAAGCCGCCGGATGGC


ATAACCCGCGCTTGAGCCTACGGGTTCGCGCAAGTAAGCTCCGTACATTC


ATGCCCGAGGGGGTGTGCGGGTAACCAATCGGGATAAGGGGACGAACGC


TGCTGGCGGTGTAATCGGACCACGAAAAACCAACCACCAGAGATGAGTG


TGGTAACTGCATCGAGCAGTGTCCTGGACGCGGGTTCAAGTCCCGCCATC


TCCACCA






Chlorobium tepidum tmRNA








SEQ ID NO: 24







GGGGAUGACAGGCUAUCGACAGGAUAGGUGUGAGAUGUCGUUGCACUC


CGAGUUUCAGCAUGGACGGACUCGUUAAACAAGUCUAUGUACCAAUAG


AUGCAGACGAUUAUUCGUAUGCAAUGGCUGCCUGAUUAGCACAAGUUA


AUUCAGAAGCCAUCGUCCUGCGGUGAAUGCGCUUACUCUGAAGCCGCC


GGAUGGCAUAACCCGCGCUUGAGCCUACGGGUUCGCGCAAGUAAGCUC


CGUACAUUCAUGCCCGAGGGGGUGUGCGGGUAACCAAUCGGGAUAAGG


GGACGAACGCUGCUGGCGGUGUAAUCGGACCACGAAAAACCAACCACC


AGAGAUGAGUGUGGUAACUGCAUCGAGCAGUGUCCUGGACGCGGGUUC


AAGUCCCGCCAUCUCCACCA






Cyanophora paradoxa (alga) cyanelle ssrA








SEQ ID NO: 25







GGGGCTGTTTAGGTTTCGACGTTTTTTTCTAATTATGTTTGTTAAGCAA


GTCGAGGATTTGTTCTATCTCGAAAATCAAGAACTCTCAAAATTTAAAC


GCAACTAATATTGTACGTTTTAACCGTAAAGCAGCTTTCGCTGTTTAAT


CAATTATTTTAATTTAAAAACCTAATTTTTTTAGGAATTTATTTATTTAT


TGTTTATCCTGCTTAATGAATTAAAAAAAGCTATACTTGTGAATAAAC


GCATAATTTAAAAAAACGGACGTGGGTTCAAATCCCACCAGCTCCACCA






Cyanophora paradoxa (alga) cyanelle tmRNA








SEQ ID NO: 26







GGGGCUGUUUAGGUUUCGACGUUUUUUUCUAAUUAUGUUUGUUAAGC


AAGUCGAGGAUUUGUUCUAUCUCGAAAAUCAAGAACUCUCAAAAUUUA


AACGCAACUAAUAUUGUACGUUUUAACCGUAAAGCAGCUUUCGCUGUU


UAAUAAUUACUUUUAAUUUAAAAACCUAAUUUUUUUAGGAAUUUAUU


UAUUUAUUGUUUAUCCUGCUUAAUGAAUUAAAAAAAGCUAUACUUGU


GAAUAAACGCAUAAUUUAAAAAAACGGACGUGGGUUCAAAUCCCACCA


GCUCCACCA






Clostridium acetobutylicum ssrA, 3′ partial








SEQ ID NO: 27







AATCTGGCGTCGAGAGCGGGGAAACGAGCCTTACAAAGCTTTGAGTAAG


GAACGGAATTTATGAAGCTACTGAAGTGAAAAGCTTGTTTGTAGGCGTTT


CATGGAGGGAATGTTAAAATACAAACTGCACTCGGAGATGCTTAATGAA


ACCATTTTCGGACAGGGGTTCGATTCCCCTCGCCTCCACCA






Clostridium acetobutylicum tmRNA, 3′ partial








SEQ ID NO: 28







AAUCUGGCGUCGAGAGCGGGGAAACGAGCCUUACAAAGCUUUGAGUAA


GGAACGGAAUUUAUGAAGCUACUGAAGUGAAAAGCUUGUUUGUAGGC


GUUUCAUGGAGGGAAUGUUAAAAUACAAACUGCACUCGGAGAUGCUU


AAUGAAACCAUUUUCGGACAGGGGUUCGAUUCCCCUCGCCUCCACCA






Deinococcus radiodurans ssrA








SEQ ID NO: 29







GGGGGTGACCCGGTTTCGACAGGGGAACTGAAGGTGATGTTGCGTGTCG


AGGTGCCGTTGGCCTCGTAAACAAACGGCAAAGCCATTTAACTGGCAAC


CAGAACTACGCTCTCGCTGCTTAAGTGAGATGACGACCGTGCAGCCCGGC


CTTTGGCGTCGCGGAAGTCACTAAAAAAGAAGGCTAGCCCAGGCGATTC


TCCATAGCCGACGGCGAAACTTTATGGAGCTACGGCCTGCGAGAACCTG


CCCACTGGTGAGCGCCGGCCCGACAATCAAACAGTGGGATACACACGTA


GACGCACGCTGGACGGACCTTTGGACGGCGGTTCGACTCCGCCCACCTCC


ACCA






Deinococcus radiodurans tmRNA








SEQ ID NO: 30







GGGGGUGACCCGGUUUCGACAGGGGAACUGAAGGUGAUGUUGCGUGUC


GAGGUGCCGUUGGCCUCGUAAACAAACGGCAAAGCCAUUUAACUGGCA


ACCAGAACUACGCUCUCGCUGCUUAAGUGAGAUGACGACCGUGCAGCC


CGGCCUUUGGCGUCGCGGAAGUCACUAAAAAAGAAGGCUAGCCCAGGC


GAUUCUCCAUAGCCGACGGCGAAACUUUAUGGAGCUACGGCCUGCGAG


AACCUGCCCACUGGUGAGCGCCGGCCCGACAAUCAAACAGUGGGAUAC


ACACGUAGACGCACGCUGGACGGACCUUUGGACGGCGGUUCGACUCCG


CCCACCUCCACCA






Desulfovibrio desulfuricans ssrA,



internal partial







SEQ ID NO: 31







GGGACTGGAACCGTAGCGGCAGGTCGAGGCGCCGCTGGCCTCGTAAAAA


GCGGCACAAAAGTAATTGCCAACAACGATTACGACTACGCTTACGCTGC


CTAATAACAGCGAGGCAATGACCGTTTAACGGTCGCGCCGATCAGGGCC


ATGCCTGATAACCCTGATTGGCGACACTTATCAGGCTGGCGAAAACCGGC


TCTCGCCGGGGTTTTTCGCGAGGAGTTTACCGGCGGGATTGCTGCGTTGT


GCCTGGTCAGGGGCCAACAGCGCGGTGAAATACATACTTGACCTAAACC


TGTAATGCTTCGTGTGGAATGTTCTCGGACGGGG






Desulfovibrio desulfuricans tmRNA,



internal partial







SEQ ID NO: 32







GGGACUGGAACCGUAGCGGCAGGUCGAGGCGCCGCUGGCCUCGUAAAA


AGCGGCACAAAAGUAAUUGCCAACAACGAUUACGACUACGCUUACGCU


GCCUAAUAACAGCGAGGCAAUGACCGUUUAACGGUCGCGCCGAUCAGG


GCCAUGCCUGAUAACCCUGAUUGGCGACACUUAUCAGGCUGGCGAAAA


CCGGCUCUCGCCGGGGUUUUUCGCGAGGAGUUUACCGGCGGGAUUGCU


GCGUUGUGCCUGGUCAGGGGCCAACAGCGCGGUGAAAUACAUACUUGA


CCUAAACCUGUAAUGCUUCGUGUGGAAUGUUCUCGGACGGGG






Dichelobacter nodosus ssrA, 3′ partial








SEQ ID NO: 33







CTCGAGGTGCATGTCGAGAATGAGAGAATCTCGTTAAATACTTTCAAAAC


TTATAGTTGCAAACGACGACAACTACGCTTTAGCGGCTTAATTCCCGCTT


TCGCTTACCTAGATTTGTCTGTGGGTTTACCGTAAGCGACATTAACACAG


AATCGCTGGTTAACGCGTCCGCTGTTAATCGGTTAAATTAAGCGGAATCG


CTTGTAAAATGCCTGAGCGTTGGCTGTTTATGAGTTAAACCTAATTAACT


GCTCTAAACATGTAGTACCAAAAGTTAAGGATTCGCGGACGGGGGTTCA


AATCCCCCCGCCTCCACCA






Dichelobacter nodosus tmRNA, 3′ partial








SEQ ID NO: 34







CUCGAGGUGCAUGUCGAGAAUGAGAGAAUCUCGUUAAAUACUUUCAAA


ACUUAUAGUUGCAAACGACGACAACUACGCUUUAGCGGCUUAAUUCCC


GCUUUCGCUUACCUAGAUUUGUCUGUGGGUUUACCGUAAGCGACAUUA


ACACAGAAUCGCUGGUUAACGCGUCCGCUGUUAAUCGGUUAAAUUAAG


CGGAAUCGCUUGUAAAAUGCCUGAGCGUUGGCUGUUUAUGAGUUAAAC


CUAAUUAACUGCUCUAAACAUGUAGUACCAAAAGUUAAGGAUUCGCGG


ACGGGGGUUCAAAUCCCCCCGCCUCCACCA






Enterococcus faecalis ssrA








SEQ ID NO: 35







GGGGGCGTTACGGATTCGACAGGCATAGTTGAGCTTGAATTGCGTTTCGT


AGGTTACGGCTACGTTAAAACGTTACAGTTAAATATAACTGCTAAAAACG


AAAACAATTCTTTCGCTTTAGCTGCCTAAAAACCAGCTAGCGAAGATCCT


CCCGGCATCGCCCATGTGCTCGGGTCAGGGTCCTAATCGAAGTGGGATAC


GCTAAATTTTTCCGTCTGTAAAATTTAGAGGAGCTTACCAGACTAGCAAT


ACAGAATGCCTGTCACTCGGCACGCTGTAAAGCGAACCTTTAAATGAGTG


TCTATGAACGTAGAGATTTAAGTGGCAATATGTTTGGACGCGGGTTCGAC


TCCCGCCGTCTCCACCA






Enterococcus faecalis tmRNA








SEQ ID NO: 36







GGGGGCGUUACGGAUUCGACAGGCAUAGUUGAGCUUGAAUUGCGUUUC


GUAGGUUACGGCUACGUUAAAACGUUACAGUUAAAUAUAACUGCUAA


AAACGAAAACAAUUCUUUCGCUUUAGCUGCCUAAAAACCAGCUAGCGA


AGAUCCUCCCGGCAUCGCCCAUGUGCUCGGGUCAGGGUCCUAAUCGAA


GUGGGAUACGCUAAAUUUUUCCGUCUGUAAAAUUUAGAGGAGCUUACC


AGACUAGCAAUACAGAAUGCCUGUCACUCGGCACGCUGUAAAGCGAAC


CUUUAAAUGAGUGUCUAUGAACGUAGAGAUUUAAGUGGCAAUAUGUU


UGGACGCGGGUUCGACUCCCGCCGUCUCCACCA






Escherichia coli ssrA








SEQ ID NO: 37







GGGGCTGATTCTGGATTCGACGGGATTTGCGAAACCCAAGGTGCATGCC


GAGGGGCGGTTGGCCTCGTAAAAAGCCGCAAAAAATAGTCGCAAACGAC


GAAAACTACGCTTTAGCAGCTTAATAACCTGCTTAGAGCCCTCTCTCCCT


AGCCTCCGCTCTTAGGACGGGGATCAAGAGAGGTCAAACCCAAAAGAGA


TCGCGTGGAAGCCCTGCCTGGGGTTGAAGCGTTAAAACTTAATCAGGCTA


GTTTGTTAGTGGCGTGTCCGTCCGCAGCTGGCAAGCGAATGTAAAGACTG


ACTAAGCATGTAGTACCGAGGATGTAGGAATTTCGGACGCGGGTTCAAC


TCCCGCCAGCTCCACCA






Escherichia coli tmRNA








SEQ ID NO: 38







GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGAAACCCAAGGUGCAUGC


CGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAAAAUAGUCGCAAACG


ACGAAAACUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUCUCU


CCCUAGCCUCCGCUCUUAGGACGGGGAUCAAGAGAGGUCAAACCCAAA


AGAGAUCGCGUGGAAGCCCUGCCUGGGGUUGAAGCGUUAAAACUUAAU


CAGGCUAGUUUGUUAGUGGCGUGUCCGUCCGCAGCUGGCAAGCGAAUG


UAAAGACUGACUAAGCAUGUAGUACCGAGGAUGUAGGAAUUUCGGAC


GCGGGUUCAACUCCCGCCAGCUCCACCA






Haemophilus influenzae ssrA








SEQ ID NO: 39







GGGGCTGATTCTGGATTCGACGGGATTAGCGAAGCCCAAGGTGCACGTC


GAGGTGCGGTAGGCCTCGTAAATAAACCGCAAAAAAATAGTCGCAAACG


ACGAACAATACGCTTTAGCAGCTTAATAACCTGCATTTAGCCTTCGCGCT


CCAGCTTCCGCTCGTAAGACGGGGATAACGCGGAGTCAAACCAAAACGA


GATCGTGTGGAAGCCACCGTTTGAGGATCGAAGCACTAAATTGAATCAA


ACTAGCTTAAGTTTAGCGTGTCTGTCCGCATGCTTAAGTGAAATTAAAGA


CGAGACTAAACGTGTAGTACTGAAGGTAGAGTAATTTCGGACGGGGGTT


CAACTCCCCCCAGCTCCACCA






Haemophilus influenzae tmRNA








SEQ ID NO: 40







GGGGCUGAUUCUGGAUUCGACGGGAUUAGCGAAGCCCAAGGUGCACGU


CGAGGUGCGGUAGGCCUCGUAAAUAAACCGCAAAAAAAUAGUCGCAAA


CGACGAACAAUACGCUUUAGCAGCUUAAUAACCUGCAUUUAGCCUUCG


CGCUCCAGCUUCCGCUCGUAAGACGGGGAUAACGCGGAGUCAAACCAA


AACGAGAUCGUGUGGAAGCCACCGUUUGAGGAUCGAAGCACUAAAUUG


AAUCAAACUAGCUUAAGUUUAGCGUGUCUGUCCGCAUGCUUAAGUGAA


AUUAAAGACGAGACUAAACGUGUAGUACUGAAGGUAGAGUAAUUUCG


GACGGGGGUUCAACUCCCCCCAGCUCCACCA






Helicobacter pylori (ATCC 43504) ssrA,



internal partial







SEQ ID NO: 41







AGATTTCTTGTCGCGCAGATAGCATGCCAAGCGCTGCTTGTAAAACAGCA


ACAAAAATAACTGTAAACAACACAGATTACGCTCCAGCTTACGCTAAAG


CTGCGTGAGTTAATCTCCTTTTGGAGCTGGACTGATTAGAATTTCTAGC


GTTTTAATCGCTCCATAACCTTAAGCTAGACGCTTTTAAAAGGTGGTTC


GCCTTTTAAACTAAGAAACAAGAACTCTTGAAACTATCTTAAGGTTTTAG


AAAGTTGGACCAGAGCTAGTTTTAAGGCTAAAAACTAACCAATTTTCTA


AGCATTGTAGAAGTTTGTGTTTAGGGCAAGATTTTTGGACTGGG






Helicobacter pylori (ATCC 43504) tmRNA,



internal partial







SEQ ID NO: 42







AGAUUUCUUGUCGCGCAGAUAGCAUGCCAAGCGCUGCUUGUAAAACAG


CAACAAAAAUAACUGUAAACAACACAGAUUACGCUCCAGCUUACGCUA


AAGCUGCGUGAGUUAAUCUCCUUUUGGAGCUGGACUGAUUAGAAUUUC


UAGCGUUUUAAUCGCUCCAUAACCUUAAGCUAGACGCUUUUAAAAGGU


GGUUCGCCUUUUAAACUAAGAAACAAGAACUCUUGAAACUAUCUUAAG


GUUUUAGAAAGUUGGACCAGAGCUAGUUUUAAGGCUAAAAACUAACC


AAUUUUCUAAGCAUUGUAGAAGUUUGUGUUUAGGGCAAGAUUUUUGG


ACUGGG






Helicobacter pylori (strain 26695) ssrA








SEQ ID NO: 43







GGGGCTGACTTGGATTTCGACAGATTTCTTGTCGCACAGATAGCATGCCA


AGCGCTGCTTGTAAAACAGCAACAAAAATAACTGTAAACAACACAGATT


ACGCTCCAGCTTACGCTAAAGCTGCGTGAGTTAATCTCCTTTTGGAGCTG


GACTGATTAGAATTTCTAGCGTTTTAATCGCTCCATAACCTTAAGCTAGA


CGCTTTTAAAAGGTGGTTCGCCTTTTAAACTAAGAAACAAGAACTCTTGA


AACTATCTCAAGGTTTTAGAAAGTTGGACCAGAGCTAGTTTTAAGGCTAA


AAAACCAACCAATTTTCTAAGCATTGTAGAAGTTTGTGTTTAGGGCAAGA


TTTTTGGACTGGGGTTCGATTCCCCACAGCTCCACCA






Helicobacter pylori (strain 26695) tmRNA








SEQ ID NO: 44







GGGGCUGACUUGGAUUUCGACAGAUUUCUUGUCGCACAGAUAGCAUGC


CAAGCGCUGCUUGUAAAACAGCAACAAAAAUAACUGUAAACAACACAG


AUUACGCUCCAGCUUACGCUAAAGCUGCGUGAGUUAAUCUCCUUUUGG


AGCUGGACUGAUUAGAAUUUCUAGCGUUUUAAUCGCUCCAUAACCUUA


AGCUAGACGCUUUUAAAAGGUGGUUCGCCUUUUAAACUAAGAAACAAG


AACUCUUGAAACUAUCUCAAGGUUUUAGAAAGUUGGACCAGAGCUAGU


UUUAAGGCUAAAAAACCAACCAAUUUUCUAAGCAUUGUAGAAGUUUG


UGUUUAGGGCAAGAUUUUUGGACUGGGGUUCGAUUCCCCACAGCUCCA


CCA






Klebsiella aerogenes (NCTC 9528)ssrA,



internal partial







SEQ ID NO: 45







GGGATTCGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTGGCCTCGTAA


AAAGCCGCAAAAAAATAGTCGCAAACGACGAAAACTACGCTTTAGCAGC


TTAATAACCTGCTAAGAGCCCTCTCTCCCTAGCTTCCGCTCCTAAGACGG


GGAATAAAGAGAGGTCAAACCCAAAAGAGATCGCGTGGAAGCCCTGCCT


GGGGTTGAAGCGTTAAAACTAATCAGGCTAGTTTGTCAGTGGCGTGTCCG


TCCGCAGCTGGCCAGCGAATGTAAAGACTGGACTAAGCATGTAGTGCCG


AGGATGTAGGAATTTC






Klebsiella aerogenes (NCTC 9528) tmRNA,



internal partial







SEQ ID NO: 46







GGGAUUCGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGGCCUCGUA


AAAAGCCGCAAAAAAAUAGUCGCAAACGACGAAAACUACGCUUUAGCA


GCUUAAUAACCUGCUAAGAGCCCUCUCUCCCUAGCUUCCGCUCCUAAG


ACGGGGAAUAAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGGAAGCCC


UGCCUGGGGUUGAAGCGUUAAAACUAAUCAGGCUAGUUUGUCAGUGGC


GUGUCCGUCCGCAGCUGGCCAGCGAAUGUAAAGACUGGACUAAGCAUG


UAGUGCCGAGGAUGUAGGAAUUUC






Lactobacillus lactis (NCTC 662)ssrA,



internal partial







SEQ ID NO: 47







AAGCACAGTTCGAGCTTGAATTGCGTTTCGTAGGTTACGTCTACGTTAAA


ACGTTACAGTTAAATATAACTGCTAAAAACGAAAACAACTCTTACGCTTT


AGCTGCCTAAAAACAGTTAGCGTAGATCCTCTCGGCATCGCCCATGTGCT


CGAGTAAGGGTCTCAAATTTAGTGGGATACGTTAAACTTTTCCGTCTGTA


AAGTTTAAAAGAGATCATCAGACTAGCGATACAGAATGCCTGTCACTCG


GCAAGCTGTAAAGCGAAACCTCAAATGAGTTGACTATGAACGTAGATTTT


TAAGTGTCGATGTGTTT






Lactobacillus lactis (NCTC 662) tmRNA,



internal partial







SEQ ID NO: 48







AAGCACAGUUCGAGCUUGAAUUGCGUUUCGUAGGUUACGUCUACGUUA


AAACGUUACAGUUAAAUAUAACUGCUAAAAACGAAAACAACUCUUACG


CUUUAGCUGCCUAAAAACAGUUAGCGUAGAUCCUCUCGGCAUCGCCCA


UGUGCUCGAGUAAGGGUCUCAAAUUUAGUGGGAUACGUUAAACUUUU


CCGUCUGUAAAGUUUAAAAGAGAUCAUCAGACUAGCGAUACAGAAUGC


CUGUCACUCGGCAAGCUGUAAAGCGAAACCUCAAAUGAGUUGACUAUG


AACGUAGAUUUUUAAGUGUCGAUGUGUUU






Legionella pneumophila ssrA,



internal partial







SEQ ID NO: 49







GTGGGTTGCAAAACCGGAAGTGCATGCCGAGAAGGAGATCTCTCGTAAA


TAAGACTCAATTAAATATAAATGCAAACGATGAAAACTTTGCTGGTGGG


GAAGCTATCGCTGCCTAATAAGCACTTTAGTTAAACCATCACTGTGTACT


GGCCAATAAACCCAGTATCCCGTTCGACCGAGCCCGCTTATCGGTATCGA


ATCAACGGTCATAAGAGATAAGCTAGCGTCCTAATCTATCCCGGGTTATG


GCGCGAAACTCAGGGAATCGCTGTGTATCATCCTGCCCGTCGGAGGAGC


CACAGTTAAATTCAAAAGACAAGGCTATGCATGTAGAGCTAAAGGCAGA


GGACTTGCGGACGCGG






Legionella pneumophila tmRNA,



internal partial







SEQ ID NO: 50







GUGGGUUGCAAAACCGGAAGUGCAUGCCGAGAAGGAGAUCUCUCGUAA


AUAAGACUCAAUUAAAUAUAAAUGCAAACGAUGAAAACUUUGCUGGU


GGGGAAGCUAUCGCUGCCUAAUAAGCACUUUAGUUAAACCAUCACUGU


GUACUGGCCAAUAAACCCAGUAUCCCGUUCGACCGAGCCCGCUUAUCG


GUAUCGAAUCAACGGUCAUAAGAGAUAAGCUAGCGUCCUAAUCUAUCC


CGGGUUAUGGCGCGAAACUCAGGGAAUCGCUGUGUAUCAUCCUGCCCG


UCGGAGGAGCCACAGUUAAAUUCAAAAGACAAGGCUAUGCAUGUAGAG


CUAAAGGCAGAGGACUUGCGGACGCGG






Listeria grayi ssrA, internal partial








SEQ ID NO: 51







ACAGGGATAGGTCGAGCTTGAGTTGCGAGCCGGGGGGATCGGCCCGTCA


TCAACGTCAAAGCCAATAATAACTGGCAAACAAAACAACAATTTAGCTT


TCGCTGCCTAATAGCAGTCTGAATAGCTGATCCTCCGTGCATCACCCATG


TGCTACGGTAAGGGTCTCACTTTTAAGTGGGTTACGCTGGCTTATCTCC


GTCTGGGGCAAACGAGAAGAGCATAATCAGACTAGCTAGATAGAGCCCT


GACGCCGGGCAGACATCTATGCGAAATCCAAATACGGCAACTACGCTCG


TAGATGCTCAAGTGCCGATATTTCTGG






Listeria grayi tmRNA, internal partial








SEQ ID NO: 52







ACAGGGAUAGGUCGAGCUUGAGUUGCGAGCCGGGGGGAUCGGCCCGUC


AUCAACGUCAAAGCCAAUAAUAACUGGCAAACAAAACAACAAUUUAGC


UUUCGCUGCCUAAUAGCAGUCUGAAUAGCUGAUCCUCCGUGCAUCACC


CAUGUGCUACGGUAAGGGUCUCACUUUUAAGUGGGUUACGCUGGCUUA


UCUCCGUCUGGGGCAAACGAGAAGAGCAUAAUCAGACUAGCUAGAUAG


AGCCCUGACGCCGGGCAGACAUCUAUGCGAAAUCCAAAUACGGCAACU


ACGCUCGUAGAUGCUCAAGUGCCGAUAUUUCUGG






Listeria innocua ssrA, internal partial








SEQ ID NO: 53







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TCAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGTAAGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGT


CTGAGGTTAAATAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGT


TACCGGGCTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG


ATATTCAAGTGCCGATATTTCTGG






Listeria innocua tmRNA, internal partial








SEQ ID NO: 54







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAA


UCUCCGUCUGAGGUUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGACU


ACGCUCGUAGAUAUUCAAGUGCCGAUAUUUCUGG






Listeria monocytogenes (NCTC 7973)ssrA,



internal partial







SEQ ID NO: 55







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TCAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGTAAGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGT


CTGGGGTTAAATAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGT


TACCGGGCCGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG


ATATTTAAGTGCCGATATTTCTGG






Listeria monocytogenes (NCTC 7973)tmRNA,



internal partial







SEQ ID NO: 56







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAA


UCUCCGUCUGGGGUUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCCGAUGUUUAUGCGAAAUGCUAAUACGGUGACU


ACGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG






Listeria monocytogenes (NCTC 11994) ssrA,



internal partial







SEQ ID NO: 57







CAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTTTCGCTGC


CTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATGTGCTACG


GTAAGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGTCTGGGGT


TAAATAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG


CCGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAGATATTT






Listeria monocytogenes (NCTC 11994) tmRNA,



internal partial







SEQ ID NO: 58







CAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAGCUUUCGCUG


CCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGCCCAUGUGCU


ACGGUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAAUCUCCGUCU


GGGGUUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCUGU


UACCGGGCCGAUGUUUAUGCGAAAUGCUAAUACGGUGACUACGCUCGU


AGAUAUUU






Listeria murrayi ssrA, internal partial








SEQ ID NO: 59







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TCAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGTAAGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGT


CTGAGGTTAAATAGAAGAGCTTAATGAGACTAGCTGAATGGAAGCCTGT


TACCGGGCTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG


ATATTCAAGTGCCGATATTTCTGG






Listeria murrayi tmRNA, internal partial








SEQ ID NO: 60







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAA


UCUCCGUCUGAGGUUAAAUAGAAGAGCUUAAUGAGACUAGCUGAAUG


GAAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGAC


UACGCUCGUAGAUAUUCAAGUGCCGAUAUUUCUGG






Listeria welshimeri ssrA, internal partial








SEQ ID NO: 61







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TCAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGTAAGGGTCTCACTCTAAGTGGGCTACACTGGCTAATCTCCGT


CTGAGGTTAGTTGGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTT


ACCGGGCCGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAGA


TATTTAAGTGCCGATATTTCTGG






Listeria welshimeri tmRNA, internal partial








SEQ ID NO: 62







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGUAAGGGUCUCACUCUAAGUGGGCUACACUGGCUAA


UCUCCGUCUGAGGUUAGUUGGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCCGAUGUUUAUGCGAAAUGCUAAUACGGUGACU


ACGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG






Marinobacter hydrocarbonoclasticus ssrA,



internal partial







SEQ ID NO: 63







GCCGGTGACGAACCCTTGGGTGCATGCCGAGATGGCAGCGAATCTCGTA


AATCCAAAGCTGCAACGTAATAGTCGCAAACGACGAAAACTACGCACTG


GCGGCGTAAGCCGTTCCAGTCGTCCTGGCTGAGGCGCCTATAACTCAGTA


GCAACATCCCAGGACGTCATCGCTTATAGGCTGCTCCGTTCACCAGAGCT


CACTGGTGTTCGGCTAAGATTAAAGAGCTCGCCTCTTGCACCCTGACCTT


CGGGTCGCTTGAGGTTAAATCAATAGAAGGACACTAAGCATGTAGACCT


CAAGGCCTAGTGCTGGCGGACGCGG






Marinobacter hydrocarbonoclasticus tmRNA,



internal partial







SEQ ID NO: 64







GCCGGUGACGAACCCUUGGGUGCAUGCCGAGAUGGCAGCGAAUCUCGU


AAAUCCAAAGCUGCAACGUAAUAGUCGCAAACGACGAAAACUACGCAC


UGGCGGCGUAAGCCGUUCCAGUCGUCCUGGCUGAGGCGCCUAUAACUC


AGUAGCAACAUCCCAGGACGUCAUCGCUUAUAGGCUGCUCCGUUCACC


AGAGCUCACUGGUGUUCGGCUAAGAUUAAAGAGCUCGCCUCUUGCACC


CUGACCUUCGGGUCGCUUGAGGUUAAAUCAAUAGAAGGACACUAAGCA


UGUAGACCUCAAGGCCUAGUGCUGGCGGACGCGG






Mycobacterium avium ssrA, internal partial








SEQ ID NO: 65







TTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAACTGACCACC


GTAAGCGTCGTTGCAAATAGATAAGCGCCGATTCACATCAGCGCGACTTA


CCTCTCGCTGCCTAAGCGACAGCTAGTCCGTCAGCCCGGGAACGCCCTCG


ACCCGGAGCCTGGCGTCAGCTAGAGGGATCCACCGATGAGTTCGGTCGC


GGGACTCATCGGGACACCAACAGCGACTGGGATCGTCATCCTGGCTTGTT


CGCGTGACCAGGAGATCCGAGTAGAGGCATAGCGAACTGCGCACGGAGA


AGCCTTGAGGGAATGCCGTAGAACCCGGGTTCGATTCCCAA






Mycobacterium avium tmRNA, internal partial








SEQ ID NO: 66







UUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAACUGACCAC


CGUAAGCGUCGUUGCAAAUAGAUAAGCGCCGAUUCACAUCAGCGCGAC


UUACCUCUCGCUGCCUAAGCGACAGCUAGUCCGUCAGCCCGGGAACGC


CCUCGACCCGGAGCCUGGCGUCAGCUAGAGGGAUCCACCGAUGAGUUC


GGUCGCGGGACUCAUCGGGACACCAACAGCGACUGGGAUCGUCAUCCU


GGCUUGUUCGCGUGACCAGGAGAUCCGAGUAGAGGCAUAGCGAACUGC


GCACGGAGAAGCCUUGAGGGAAUGCCGUAGAACCCGGGUUCGAUUCCC


AA






Mycobacterium bovis ssrA, internal partial








SEQ ID NO: 67







TTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCACC


GTAAGCGTCGTTGCGACCAAATAAGCGCCGATTCACATCAGCGCGACTA


CGTCTCGCTGCCTAAGCGACGGCTAGTCTGTCAGACCGGGAACGCCCTCG


GCCCGGACCCTGGCATCAGCTAGAGGGATCCACCGATGAGTCCGGTCGC


GGGACTCCTCGGGACAACCACAGCGACTGGGATCGTCATCTCGGCTAGTT


CGCGTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACGGAGA


AGCCTTGAGGGAATGCCGTAGG






Mycobacterium bovis tmRNA, internal partial








SEQ ID NO: 68







UUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACCAC


CGUAAGCGUCGUUGCGACCAAAUAAGCGCCGAUUCACAUCAGCGCGAC


UACGUCUCGCUGCCUAAGCGACGGCUAGUCUGUCAGACCGGGAACGCC


CUCGGCCCGGACCCUGGCAUCAGCUAGAGGGAUCCACCGAUGAGUCCG


GUCGCGGGACUCCUCGGGACAACCACAGCGACUGGGAUCGUCAUCUCG


GCUAGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAACUGCG


CACGGAGAAGCCUUGAGGGAAUGCCGUAGG






Mycobacterium leprae ssrA








SEQ ID NO: 69







GGGGCTGAAAGGTTTCGACTTCGCGCATCGAATCAAGGGAAGCGTGCCG


GTGCAGGCAAGAGACCACCGTAAGCGTCGTTGCAGCAATATAAGCGCCG


ATTCATATCAGCGCGACTATGCTCTCGCTGCCTAAGCGATGGCTAGTCTG


TCAGACCGGGAACGCCCTCGTCCCGGAGCCTGGCATCAGCTAGAGGGAT


CTACCGATGGGTTCGGTCGCGGGACTCGTCGGGACACCAACCGCGACTG


GGATCGTCATCCTGGCTAGTTCGCGTGATCAGGAGATCCGAGTAGAGGC


ATAGCGAACTACGCACGGAGAAGCCTTGAGGGAAATGCCGTAGGACCCG


GGTTCGATTCCCGGCAGCTCCACCA






Mycobacterium leprae tmRNA








SEQ ID NO: 70







GGGGCUGAAAGGUUUCGACUUCGCGCAUCGAAUCAAGGGAAGCGUGCC


GGUGCAGGCAAGAGACCACCGUAAGCGUCGUUGCAGCAAUAUAAGCGC


CGAUUCAUAUCAGCGCGACUAUGCUCUCGCUGCCUAAGCGAUGGCUAG


UCUGUCAGACCGGGAACGCCCUCGUCCCGGAGCCUGGCAUCAGCUAGA


GGGAUCUACCGAUGGGUUCGGUCGCGGGACUCGUCGGGACACCAACCG


CGACUGGGAUCGUCAUCCUGGCUAGUUCGCGUGAUCAGGAGAUCCGAG


UAGAGGCAUAGCGAACUACGCACGGAGAAGCCUUGAGGGAAAUGCCGU


AGGACCCGGGUUCGAUUCCCGGCAGCUCCACCA






Mycobacterium paratuberculosis ssrA,



internal partial







SEQ ID NO: 71







TTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAACTGACCACC


GTAAGCGTCGTTGCAAATAGATAAGCGCCGATTCACATCAGCGCGACTTA


CCTCTCGCTGCCTAAGCGACAGCTAGTCCGTCAGCCCGGGAACGCCCTCG


ACCCGGAGCCTGGCGTCAGCTAGAGGGATCCACCGATGAGTTCGGTCGC


GGGACTCATCGGGACACCAACAGCGACTGGGATCGTCATCCTGGCTTGTT


CGCGTGACCAGGAGATCCGAGTAGAGGCATAGCGAACTGCGCACGGAGA


AGCCTTGAGGGAATGCCGTAGAACCCGGGTTCGATTCCCAA






Mycobacterium paratuberculosis tmRNA,



internal partial







SEQ ID NO: 72







UUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAACUGACCAC


CGUAAGCGUCGUUGCAAAUAGAUAAGCGCCGAUUCACAUCAGCGCGAC


UUACCUCUCGCUGCCUAAGCGACAGCUAGUCCGUCAGCCCGGGAACGC


CCUCGACCCGGAGCCUGGCGUCAGCUAGAGGGAUCCACCGAUGAGUUC


GGUCGCGGGACUCAUCGGGACACCAACAGCGACUGGGAUCGUCAUCCU


GGCUUGUUCGCGUGACCAGGAGAUCCGAGUAGAGGCAUAGCGAACUGC


GCACGGAGAAGCCUUGAGGGAAUGCCGUAGAACCCGGGUUCGAUUCCC


AA






Mycobacterium tuberculosis ssrA








SEQ ID NO: 73







GGGGCTGAACGGTTTCGACTTCGCGCATCGAATCAAGGGAAGCGTGCCG


GTGCAGGCAAGAGACCACCGTAAGCGTCGTTGCGACCAAATAAGCGCCG


ATTCACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACGGCTAGTCTG


TCAGACCGGGAACGCCCTCGGCCCGGACCCTGGCATCAGCTAGAGGGAT


CCACCGATGAGTCCGGTCGCGGGACTCCTCGGGACAACCACAGCGACTG


GGATCGTCATCTCGGCTAGTTCGCGTGACCGGGAGATCCGAGCAGAGGC


ATAGCGAACTGCGCACGGAGAAGCCTTGAGGGAATGCCGTAGGACCCGG


GTTCGATTCCCGGCAGCTCCACCA






Mycobacterium tuberculosis tmRNA








SEQ ID NO: 74







GGGGCUGAACGGUUUCGACUUCGCGCAUCGAAUCAAGGGAAGCGUGCC


GGUGCAGGCAAGAGACCACCGUAAGCGUCGUUGCGACCAAAUAAGCGC


CGAUUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACGGCUAG


UCUGUCAGACCGGGAACGCCCUCGGCCCGGACCCUGGCAUCAGCUAGA


GGGAUCCACCGAUGAGUCCGGUCGCGGGACUCCUCGGGACAACCACAG


CGACUGGGAUCGUCAUCUCGGCUAGUUCGCGUGACCGGGAGAUCCGAG


CAGAGGCAUAGCGAACUGCGCACGGAGAAGCCUUGAGGGAAUGCCGUA


GGACCCGGGUUCGAUUCCCGGCAGCUCCACCA






Mycoplasma capricolum ssrA








SEQ ID NO: 75







GGGGATGTCATGGATTTGACAGGATATCTTTAGTACATATAAGCAGTAGT


GTTGTAGACTATAAATACTACTAGGTTTAAAAAAACGCAAATAAAAACG


AAGAAACTTTTGAAATGCCAGCATTTATGATGAATAATGCATCAGCTGGA


GCAAACTTTATGTTTGCTTAATAACTACTAGTTTAGTTATAGTATTTCA


CGAATTATAGATATTTTAAGCTTTATTTATAACCGTATTACCCAAGCTT


AATAGAATATATGATTGCAATAAATATATTTGAAATCTAATTGCAAATG


ATATTTAACCTTTAGTTAATTTTAGTTAAATATTTTAATTAGAAAATTA


ACTAAACTGTAGAAAGTATGTATTAATATATCTTGGACGCGAGTTCG


ATTCTCGCCATCTCCACCA






Mycoplasma capricolum tmRNA








SEQ ID NO: 76







GGGGAUGUCAUGGAUUUGACAGGAUAUCUUUAGUACAUAUAAGCAGU


AGUGUUGUAGACUAUAAAUACUACUAGGUUUAAAAAAACGCAAAUAA


AAACGAAGAAACUUUUGAAAUGCCAGCAUUUAUGAUGAAUAAUGCAU


CAGCUGGAGCAAACUUUAUGUUUGCUUAAUAACUACUAGUUUAGUUA


UAGUAUUUCACGAAUUAUAGAUAUUUUAAGCUUUAUUUAUAACCGUA


UUACCCAAGCUUAAUAGAAUAUAUGAUUGCAAUAAAUAUAUUUGAAA


UCUAAUUGCAAAUGAUAUUUAACCUUUAGUUAAUUUUAGUUAAAUAU


UUUAAUUAGAAAAUUAACUAAACUGUAGAAAGUAUGUAUUAAUAUAU


CUUGGACGCGAGUUCGAUUCUCGCCAUCUCCACCA






Mycoplasma genitalium (ATTC 33530, #1) ssrA








SEQ ID NO: 77







GGGGATGTTTTGGGTTTGACATAATGCTGATAGACAAACAGTAGCATTGG


GGTATGCCCCTTACAGCGCTAGGTTCAATAACCGACAAAGAAAATAACG


AAGTGTTGGTAGAACCAAATTTGATCATTAACCAACAAGCAAGTGTTAAC


TTTGCTTTTGCATAAGTAGATACTAAAGCTACAGCTGGTGAATAGTCATA


GTTTGCTAGCTGTCATAGTTTATGACTCGAGGTTAAATCGTTCAATTTA


ACCTTTAAAAATAGAACTTGTTGTTTCCATGATTGTTTTGTGATCAATT


GGAAACAAGACAAAAATCCACAAAACTAAAATGTAGAAGCTGTTTGTT


GTGTCCTTTATGGAAACGGGTTCGATTCCCGTCATCTCCACCA






Mycoplasma genitalium (ATTC 33530, #1) tmRNA








SEQ ID NO: 78







GGGGAUGUUUUGGGUUUGACAUAAUGCUGAUAGACAAACAGUAGCAU


UGGGGUAUGCCCCUUACAGCGCUAGGUUCAAUAACCGACAAAGAAAAU


AACGAAGUGUUGGUAGAACCAAAUUUGAUCAUUAACCAACAAGCAAGU


GUUAACUUUGCUUUUGCAUAAGUAGAUACUAAAGCUACAGCUGGUGA


AUAGUCAUAGUUUGCUAGCUGUCAUAGUUUAUGACUCGAGGUUAAAU


CGUUCAAUUUAACCUUUAAAAAUAGAACUUGUUGUUUCCAUGAUUGU


UUUGUGAUCAAUUGGAAACAAGACAAAAAUCCACAAAACUAAAAUGU


AGAAGCUGUUUGUUGUGUCCUUUAUGGAAACGGGUUCGAUUCCCGUCA


UCUCCACCA






Mycoplasma genitalium (ATTC 33530, #2) tmRNA,



internal partial







SEQ ID NO: 79







ACATAATGCTGATAGACAAACAGTAGCATTGGGGTATGCCCCTTACAGC


GCTAGGTTCAATAACCGACAAAGAAAATAACGAAGTGTTGGTAGATCCA


AATTTGATCATTAACCAACAAGCAAGTGTTAACTTTGCTTTTGCATAAGT


AGATACTAAAGCTACAGCTGGTGAATAGTCATAGTTTGCTAGCTGTCATA


GTTTATGACTCGAGGTTAAATCGTTCAATTTAACCTTTAAAAATAGAACT


TGTTGTTTCCATGATTGTTTTGTGATCAATTGGAAACAAGACAAAAATCC


ACAAAACTAAAATGTAGAAGCTGTTTGTTGTGTCCTTTATGGAAACGGGT


TC






Mycoplasma genitalium (ATTC 33530, #2) tmRNA,



internal partial







SEQ ID NO: 80







ACAUAAUGCUGAUAGACAAACAGUAGCAUUGGGGUAUGCCCCUUACAG


CGCUAGGUUCAAUAACCGACAAAGAAAAUAACGAAGUGUUGGUAGAUC


CAAAUUUGAUCAUUAACCAACAAGCAAGUGUUAACUUUGCUUUUGCAU


AAGUAGAUACUAAAGCUACAGCUGGUGAAUAGUCAUAGUUUGCUAGC


UGUCAUAGUUUAUGACUCGAGGUUAAAUCGUUCAAUUUAACCUUUAA


AAAUAGAACUUGUUGUUUCCAUGAUUGUUUUGUGAUCAAUUGGAAAC


AAGACAAAAAUCCACAAAACUAAAAUGUAGAAGCUGUUUGUUGUGUCC


UUUAUGGAAACGGGUUC






Mycoplasma pneumophila ssrA








SEQ ID NO: 81







GGGGATGTAGAGGTTTTGACATAATGTTGAAAGGAAAACAGTTGCAGTG


GGGTATGCCCCTTACAGCTCTAGGTATAATAACCGACAAAAATAACGAC


GAAGTTTTGGTAGATCCAATGTTGATCGCTAACCAACAAGCAAGTATCAA


CTACGCTTTCGCTTAGAACATACTAAAGCTACACGAATTGAATCGCCATA


GTTTGGTTCGTGTCACAGTTTATGGCTCGGGGTTAACTGGTTCAACTTA


ATCCTTAAATTATGAACTTATCGTTTACTTGTTTGTCTTATGATCTAAA


GTAAGCGAGACATTAAAACATAAGACTAAACTGTAGAAGCTGTTTTACC


AATCCTTTATGGAAACGGGTTCGATTCCCGTCATCTCCACCA






Mycoplasma pneumophila tmRNA








SEQ ID NO: 82







GGGGAUGUAGAGGUUUUGACAUAAUGUUGAAAGGAAAACAGUUGCAG


UGGGGUAUGCCCCUUACAGCUCUAGGUAUAAUAACCGACAAAAAUAAC


GACGAAGUUUUGGUAGAUCCAAUGUUGAUCGCUAACCAACAAGCAAGU


AUCAACUACGCUUUCGCUUAGAACAUACUAAAGCUACACGAAUUGAAU


CGCCAUAGUUUGGUUCGUGUCACAGUUUAUGGCUCGGGGUUAACUGGU


UCAACUUAAUCCUUAAAUUAUGAACUUAUCGUUUACUUGUUUGUCUUA


UGAUCUAAAGUAAGCGAGACAUUAAAACAUAAGACUAAACUGUAGAA


GCUGUUUUACCAAUCCUUUAUGGAAACGGGUUCGAUUCCCGUCAUCUC


CACCA






Neisseria gonorrhoeae (ATCC 19424) ssrA,



internal partial







SEQ ID NO: 83







GGGGGTTGCGAAGCAGATGCGGGCATACCGGGGTCTCAGATTCCCGTAA


AACACTGAATTCAAATAGTCGCAAACGACGAAACTTACGCTTTAGCCGCT


TAAGGCTAGCCGTTGCAGCAGTCGGTCAATGGGCTGTGTGGCGAAAGCC


ACCGCAACGTCATCTTACATTGACTGGTTTCCAGCCGGGTTACTTGGCAG


GAAATAAGACTTAAGGTAACTGGTTTCCAAAAGGCCTGTTGGTCGGCATG


ATGGAAATAAGATTTTCAAATAGACACAACTAAGTATGTAGAACGCTTTG


TAGAGGACTTTCGGACGGGG






Neisseria gonorrhoeae (ATCC 19424) tmRNA,



internal partial







SEQ ID NO: 84







GGGGGUUGCGAAGCAGAUGCGGGCAUACCGGGGUCUCAGAUUCCCGUA


AAACACUGAAUUCAAAUAGUCGCAAACGACGAAACUUACGCUUUAGCC


GCUUAAGGCUAGCCGUUGCAGCAGUCGGUCAAUGGGCUGUGUGGCGAA


AGCCACCGCAACGUCAUCUUACAUUGACUGGUUUCCAGCCGGGUUACU


UGGCAGGAAAUAAGACUUAAGGUAACUGGUUUCCAAAAGGCCUGUUG


GUCGGCAUGAUGGAAAUAAGAUUUUCAAAUAGACACAACUAAGUAUG


UAGAACGCUUUGUAGAGGACUUUCGGACGGGG






Neisseria gonorrhoeae (FA 1090) ssrA








SEQ ID NO: 85







GGGGGCGACCTTGGTTTCGACGGGGGTTGCGAAGCAGATGCGGGCATAC


CGGGGTCTCAGATTCCCGTAAAACACTGAATTCAAATAGTCGCAAACGA


CGAAACTTACGCTTTAGCCGCTTAAGGCTAGCCGTTGCAGCAGTCGGTCA


ATGGGCTGTGTGGTGAAAGCCACCGCAACGTCATCTTACATTGACTGGTT


TCCAGCCGGGTTACTTGGCAGGAAATAAGACTTAAGGTAACTGGTTTCCA


AAAGGCCTGTTGGTCGGCATGATGGAAATAAGATTTTCAAATAGACACA


ACTAAGTATGTAGAACGCTTTGTAGAGGACTTTCGGACGGGGGTTCGATT


CCCCCCGCCTCCACCA






Neisseria gonorrhoeae (FA 1090) tmRNA








SEQ ID NO: 86







GGGGGCGACCUUGGUUUCGACGGGGGUUGCGAAGCAGAUGCGGGCAUA


CCGGGGUCUCAGAUUCCCGUAAAACACUGAAUUCAAAUAGUCGCAAAC


GACGAAACUUACGCUUUAGCCGCUUAAGGCUAGCCGUUGCAGCAGUCG


GUCAAUGGGCUGUGUGGUGAAAGCCACCGCAACGUCAUCUUACAUUGA


CUGGUUUCCAGCCGGGUUACUUGGCAGGAAAUAAGACUUAAGGUAACU


GGUUUCCAAAAGGCCUGUUGGUCGGCAUGAUGGAAAUAAGAUUUUCA


AAUAGACACAACUAAGUAUGUAGAACGCUUUGUAGAGGACUUUCGGAC


GGGGGUUCGAUUCCCCCCGCCUCCACCA






Neisseria meningitidis ssrA








SEQ ID NO: 87







GGGGGCGACCTTGGTTTCGACGGGGGTTGCGAAGCAGATGCGGGCATAC


CGGGGTCTCAGATTCCCGTAAAACACTGAATTCAAATAGTCGCAAACGA


CGAAACTTACGCTTTAGCCGCTTAAGGCTAGCCGTTGCAGCAGTCGGTCA


ATGGGCTGTGTGGCGAAAGCCACCGCAACGTCATCTTACATTGACTGGTT


TCCTGCCGGGTTATTTGGCAGGAAATGAGATTTAAGGTAACTGGTTTCCA


AAAGGCCTGTTGGTCGGCATGATGGAAATAAGATTTTCAAATAGACACA


ACTAAGTATGTAGAACGCTTTGTAGAGGACTTTCGGACGGGGGTTCGATT


CCCCCCGCCTCCACCA






Neisseria meningitidis tmRNA








SEQ ID NO: 88







GGGGGCGACCUUGGUUUCGACGGGGGUUGCGAAGCAGAUGCGGGCAUA


CCGGGGUCUCAGAUUCCCGUAAAACACUGAAUUCAAAUAGUCGCAAAC


GACGAAACUUACGCUUUAGCCGCUUAAGGCUAGCCGUUGCAGCAGUCG


GUCAAUGGGCUGUGUGGCGAAAGCCACCGCAACGUCAUCUUACAUUGA


CUGGUUUCCUGCCGGGUUAUUUGGCAGGAAAUGAGAUUUAAGGUAAC


UGGUUUCCAAAAGGCCUGUUGGUCGGCAUGAUGGAAAUAAGAUUUUC


AAAUAGACACAACUAAGUAUGUAGAACGCUUUGUAGAGGACUUUCGG


ACGGGGGUUCGAUUCCCCCCGCCUCCACCA






Nostoc muscorum PCC7120 ssrA








SEQ ID NO: 89







GGGTCCGTCGGTTTCGACAGGTTGGCGAACGCTACTCTGTGATTCAGGTC


GAGAGTGAGTCTCCTCTGCAAATCAAGGCTCAAAACAAAAGTAAATGCG


AATAACATCGTTAAATTTGCTCGTAAGGACGCTCTAGTAGCTGCCTAAAT


AGCCTCTTTCAGGTTCGAGCGTCTTCGGTTTGACTCCGTTAAGGACTGAA


GACCAACCCCCAACGGATGCTCTAGCAATGTTCTCTGGTTGGCTTGCTAG


CTAAGATTTAATCAGAGCATCCTACGTTCGGGATAATGAACGATTCCCGC


CTTGAGGGTCAGAAAGGCTAAACCTGTGAATGAGCGGGGGGTCAATACC


CAATTTGGACAGCAGTTCGACTCTGCTCGATCCACCA






Nostoc muscorum PCC7120 tmRNA








SEQ ID NO: 90







GGGUCCGUCGGUUUCGACAGGUUGGCGAACGCUACUCUGUGAUUCAGG


UCGAGAGUGAGUCUCCUCUGCAAAUCAAGGCUCAAAACAAAAGUAAAU


GCGAAUAACAUCGUUAAAUUUGCUCGUAAGGACGCUCUAGUAGCUGCC


UAAAUAGCCUCUUUCAGGUUCGAGCGUCUUCGGUUUGACUCCGUUAAG


GACUGAAGACCAACCCCCAACGGAUGCUCUAGCAAUGUUCUCUGGUUG


GCUUGCUAGCUAAGAUUUAAUCAGAGCAUCCUACGUUCGGGAUAAUGA


ACGAUUCCCGCCUUGAGGGUCAGAAAGGCUAAACCUGUGAAUGAGCGG


GGGGUCAAUACCCAAUUUGGACAGCAGUUCGACUCUGCUCGAUCCACCA






Odontella sinensis (diatom) chloroplast ssrA








SEQ ID NO: 91







GGGGCTGACTTGGTTTCGACATTTAAAAATTGTTACAGTATGATGCAGGT


CGAAGTTTCTAATCTTCGTAAAAAAAGAGAAATTTATAATAAATGCTAAT


AATTTAATTTCTTCTGTGTTTAAAAGTTTATCAACTAAGCAAAATAGTT


TAAATTTAAGTTTTGCTGTTTAAGTTTTATGCACATTTAATGATCTAGT


AAATAACTTTGTTCGCTATAATTTATATTTATAACTAGACTTTTGTCTT


TTTTATAGTTTAGAATAACTTTATCATTTCAAACCTCGTTCCATCTAGT


TGAACTAAACCTGTGAACGAATACTATAATAAAATTTTTAGATGGACG


TGGGTTCGACTCCCATCAGCTCCACCA






Odontella sinensis (diatom) chloroplast tmRNA








SEQ ID NO: 92







GGGGCUGACUUGGUUUCGACAUUUAAAAAUUGUUACAGUAUGAUGCA


GGUCGAAGUUUCUAAUCUUCGUAAAAAAAGAGAAAUUUAUAAUAAAU


GCUAAUAAUUUAAUUUCUUCUGUGUUUAAAAGUUUAUCAACUAAGCA


AAAUAGUUUAAAUUUAAGUUUUGCUGUUUAAGUUUUAUGCACAUUUA


AUGAUCUAGUAAAUAACUUUGUUCGCUAUAAUUUAUAUUUAUAACUA


GACUUUUGUCUUUUUUAUAGUUUAGAAUAACUUUAUCAUUUCAAACC


UCGUUCCAUCUAGUUGAACUAAACCUGUGAACGAAUACUAUAAUAAAA


UUUUUAGAUGGACGUGGGUUCGACUCCCAUCAGCUCCACCA






Porphyra purpureum (red alga) chloroplast



ssrA







SEQ ID NO: 93







GGGGCTGCAAGGTTTCTACATTGTGAAAAAACAAATATATGAAAGTAAA


ACGAGCTCATTATTAGAGCTTTTAGTTAAATAAATGCAGAAAATAATATT


ATTGCTTTTTCTCGAAAATTAGCTGTTGCATAAATAGTCTCAATTTTTG


TAATTCGAAGTGATAGACTCTTATACACTACGAATATTCTGTTAGAGT


TGCTCTTAATAAAAGAAAAGTAAAAAAATACAAATTCTTATGTTTTTTA


CCTGAATTGATTCAATTTAAGGTTAGTATTTTTTGATTTTTACAATGGA


CGTGGGTTCAAGTCCCACCAGCTCCACCA






Porphyra purpureum (red alga) chloroplast



tmRNA







SEQ ID NO: 94







GGGGCUGCAAGGUUUCUACAUUGUGAAAAAACAAAUAUAUGAAAGUA


AAACGAGCUCAUUAUUAGAGCUUUUAGUUAAAUAAAUGCAGAAAAUA


AUAUUAUUGCUUUUUCUCGAAAAUUAGCUGUUGCAUAAAUAGUCUCA


AUUUUUGUAAUUCGAAGUGAUAGACUCUUAUACACUACGAAUAUUCU


GUUAGAGUUGCUCUUAAUAAAAGAAAAGUAAAAAAAUACAAAUUCUU


AUGUUUUUUACCUGAAUUGAUUCAAUUUAAGGUUAGUAUUUUUUGAU


UUUUACAAUGGACGUGGGUUCAAGUCCCACCAGCUCCACCA






Porphyromonas gingivalis ssrA








SEQ ID NO: 95







GGGGCTGACCGGCTTTGACAGCGTGATGAAGCGGTATGTAAGCATGTAG


TGCGTGGGTGGCTTGCACTATAATCTCAGACATCAAAAGTTTAATTGGCG


AAAATAACTACGCTCTCGCTGCGTAATCGAAGAATAGTAGATTAGACGCT


TCATCGCCGCCAAAGTGGCAGCGACGAGACATCGCCCGAGCAGCTTTTTC


CCGAAGTAGCTCGATGGTGCGGTGCTGACAAATCGGGAACCGCTACAGG


ATGCTTCCTGCCTGTGGTCAGATCGAACGGAAGATAAGGATCGTGCATTG


GGTCGTTTCAGCCTCCGCTCGCTCACGAAAATTCCAACTGAAACTAAACA


TGTAGAAAGCATATTGATTCCATGTTTGGACGAGGGTTCAATTCCCTCCA


GCTCCACCA






Porphyromonas gingivalis tmRNA








SEQ ID NO: 96







GGGGCUGACCGGCUUUGACAGCGUGAUGAAGCGGUAUGUAAGCAUGUA


GUGCGUGGGUGGCUUGCACUAUAAUCUCAGACAUCAAAAGUUUAAUUG


GCGAAAAUAACUACGCUCUCGCUGCGUAAUCGAAGAAUAGUAGAUUAG


ACGCUUCAUCGCCGCCAAAGUGGCAGCGACGAGACAUCGCCCGAGCAG


CUUUUUCCCGAAGUAGCUCGAUGGUGCGGUGCUGACAAAUCGGGAACC


GCUACAGGAUGCUUCCUGCCUGUGGUCAGAUCGAACGGAAGAUAAGGA


UCGUGCAUUGGGUCGUUUCAGCCUCCGCUCGCUCACGAAAAUUCCAAC


UGAAACUAAACAUGUAGAAAGCAUAUUGAUUCCAUGUUUGGACGAGG


GUUCAAUUCCCUCCAGCUCCACCA






Proteus rettgeri ssrA (NCTC 10975),



internal partial







SEQ ID NO: 97







GGGATTTGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTGGCCTCGTAA


AAAGCCGCAAAAAAATAGTCGCAAACGACGAAAACTACGCTTTAGCAGC


TTAATAACCTGCTTAGAGCCCTCTCTCCCTAGCCTCCGCTCTTGGACGGG


GATCAAGAGAGGTCAAACCCAAAAGAGATCGCGTGGATGCCTTGCCTGG


GGTTGAAGCGTTAAACTTAATCAGGATAGTTTGTTGGTGGCGTGTCTGTC


CGCAGCTGGCAAATGAATTCAAAGACTAGACTAAGCATGTAGTACCGAG


GATGTAGAAATTTC






Proteus rettgeri tmRNA (NCTC 10975),



internal partial







SEQ ID NO: 98







GGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGGCCUCGUA


AAAAGCCGCAAAAAAAUAGUCGCAAACGACGAAAACUACGCUUUAGCA


GCUUAAUAACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUGGA


CGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGGAUGCCUUG


CCUGGGGUUGAAGCGUUAAACUUAAUCAGGAUAGUUUGUUGGUGGCG


UGUCUGUCCGCAGCUGGCAAAUGAAUUCAAAGACUAGACUAAGCAUGU


AGUACCGAGGAUGUAGAAAUUUC






Pseudoalteromonas haloplanktoni ssrA,



internal partial







SEQ ID NO: 99







GGAATTCAAGAAGCCCGAGGTGCATGTCGAGGTGCGGTTTGCCTCGTAA


AAAAGCCGCAATTTAAAGTAATCGCAAACGACGATAACTACTCTCTAGC


AGCTTAGGCTGGCTAGCGCTCCTTCCATGTATTCTTGTGGACTGGATTT


TGGAGTGTCACCCTAACACCTGATCGCGACGGAAACCCTGGCCGGGGTT


GAAGCGTTAAAACTAAGCGGCCTCGCCTTTATCTACCGTGTTTGTCCG


GGATTTAAAGGTTAATTAAATGACAATACTAAACATGTAGTACCGACGG


TCGAGGCTTTTCGGACGGGG






Pseudoalteromonas haloplanktoni tmRNA,



internal partial







SEQ ID NO: 100







GGAAUUCAAGAAGCCCGAGGUGCAUGUCGAGGUGCGGUUUGCCUCGUA


AAAAAGCCGCAAUUUAAAGUAAUCGCAAACGACGAUAACUACUCUCUA


GCAGCUUAGGCUGGCUAGCGCUCCUUCCAUGUAUUCUUGUGGACUGGA


UUUUGGAGUGUCACCCUAACACCUGAUCGCGACGGAAACCCUGGCCGG


GGUUGAAGCGUUAAAACUAAGCGGCCUCGCCUUUAUCUACCGUGUUUG


UCCGGGAUUUAAAGGUUAAUUAAAUGACAAUACUAAACAUGUAGUAC


CGACGGUCGAGGCUUUUCGGACGGGG






Pseudomonas aeruginosa ssrA








SEQ ID NO: 101







GGGGCCGATTAGGATTCGACGCCGGTAACAAAAGTTGAGGGGCATGCCG


AGTTGGTAGCAGAACTCGTAAATTCGCTGCTGCAAACTTATAGTTGCCAA


CGACGACAACTACGCTCTAGCTGCTTAATGCGGCTAGCAGTCGCTAGGGG


ATGCCTGTAAACCCGAAACGACTGTCAGATAGAACAGGATCGCCGCCAA


GTTCGCTGTAGACGTAACGGCTAAAACTCATACAGCTCGCTCCAAGCACC


CTGCCACTCGGGCGGCGCGGAGTTAACTCAGTAGAGCTGGCTAAGCATG


TAAAACCGATAGCGGAAAGCTGGCGGACGGGGGTTCAAATCCCCCCGGT


TCCACCA






Pseudomonas aeruginosa tmRNA








SEQ ID NO: 102







GGGGCCGAUUAGGAUUCGACGCCGGUAACAAAAGUUGAGGGGCAUGCC


GAGUUGGUAGCAGAACUCGUAAAUUCGCUGCUGCAAACUUAUAGUUGC


CAACGACGACAACUACGCUCUAGCUGCUUAAUGCGGCUAGCAGUCGCU


AGGGGAUGCCUGUAAACCCGAAACGACUGUCAGAUAGAACAGGAUCGC


CGCCAAGUUCGCUGUAGACGUAACGGCUAAAACUCAUACAGCUCGCUC


CAAGCACCCUGCCACUCGGGCGGCGCGGAGUUAACUCAGUAGAGCUGG


CUAAGCAUGUAAAACCGAUAGCGGAAAGCUGGCGGACGGGGGUUCAAA


UCCCCCCGGUUCCACCA






Salmonella typhimurium ssrA








SEQ ID NO: 103







GGGGCTGATTCTGGATTCGACGGGATTTGCGAAACCCAAGGTGCATGCC


GAGGGGCGGTTGGCCTCGTAAAAAGCCGCAAAAAAATAGTCGCAAACGA


CGAAACCTACGCTTTAGCAGCTTAATAACCTGCTTAGAGCCCTCTCTCCC


TAGCCTCCGCTCTTAGGACGGGGATCAAGAGAGGTCAAACCCAAAAGAG


ATCGCGCGGATGCCCTGCCTGGGGTTGAAGCGTTAAAACGAATCAGGCT


AGTCTGGTAGTGGCGTGTCCGTCCGCAGGTGCCAGGCGAATGTAAAGAC


TGACTAAGCATGTAGTACCGAGGATGTAGGAATTTCGGACGCGGGTTCA


ACTCCCGCCAGCTCCACCA






Salmonella typhimurium tmRNA








SEQ ID NO: 104







GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGAAACCCAAGGUGCAUGC


CGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAAAAAUAGUCGCAAAC


GACGAAACCUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUCUC


UCCCUAGCCUCCGCUCUUAGGACGGGGAUCAAGAGAGGUCAAACCCAA


AAGAGAUCGCGCGGAUGCCCUGCCUGGGGUUGAAGCGUUAAAACGAAU


CAGGCUAGUCUGGUAGUGGCGUGUCCGUCCGCAGGUGCCAGGCGAAUG


UAAAGACUGACUAAGCAUGUAGUACCGAGGAUGUAGGAAUUUCGGAC


GCGGGUUCAACUCCCGCCAGCUCCACCA






Shewanella putrefaciens ssrA








SEQ ID NO: 105







GGGGGCGATTCTGGATTCGACAGGATTCACGAAACCCTGGGAGCATGCC


GAGGGGCGGTTGGCCTCGTAAAAAGCCGCAAAGTTATAGTTGCAAACGA


CGATAACTACGCTCTAGCCGCTTAATGCCGCTAGCCATCTACCACACGCT


TTGCACATGGGCAGTGGATTTGATGGTCATCTCACATCGTGCTAGCGAGG


GAACCCTGTCTGGGGGTGAACCGCGAAACAGTACCGGACTCACCGTGTG


GGATCCTGTCTTTCGGAGTTCAAACGGTTAAACAATAGAAAGACTAAGC


ATGTAGCGCCTTGGATGTAGGTTTTCTGGACGCGGGTTCAAGTCCCGCCG


CCTCCACCA






Shewanella putrefaciens tmRNA








SEQ ID NO: 106







GGGGGCGAUUCUGGAUUCGACAGGAUUCACGAAACCCUGGGAGCAUGC


CGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAGUUAUAGUUGCAAAC


GACGAUAACUACGCUCUAGCCGCUUAAUGCCGCUAGCCAUCUACCACA


CGCUUUGCACAUGGGCAGUGGAUUUGAUGGUCAUCUCACAUCGUGCUA


GCGAGGGAACCCUGUCUGGGGGUGAACCGCGAAACAGUACCGGACUCA


CCGUGUGGGAUCCUGUCUUUCGGAGUUCAAACGGUUAAACAAUAGAAA


GACUAAGCAUGUAGCGCCUUGGAUGUAGGUUUUCUGGACGCGGGUUCA


AGUCCCGCCGCCUCCACCA






Staphylococcus aureus ssrA








SEQ ID NO: 107







GGGGACGTTCATGGATTCGACAGGGGTCCCCCGAGCTCATTAAGCGTGTC


GGAGGGTTGTCTTCGTCATCAACACACACAGTTTATAATAACTGGCAAAT


CAAACAATAATTTCGCAGTAGCTGCCTAATCGCACTCTGCATCGCCTAAC


AGCATTTCCTATGTGCTGTTAACGCGATTCAACCTTAATAGGATATGCTA


AACACTGCCGTTTGAAGTCTGTTTAGAAGAAACTTAATCAAACTAGCATC


ATGTTGGTTGTTTATCACTTTTCATGATGCGAAACCTATCGATAAACTA


CACACGTAGAAAGATGTGTATCAGGACCTTTGGACGCGGGTTCAAATC


CCGCCGTCTCCACCA






Staphylococcus aureus tmRNA








SEQ ID NO: 108







GGGGACGUUCAUGGAUUCGACAGGGGUCCCCCGAGCUCAUUAAGCGUG


UCGGAGGGUUGUCUUCGUCAUCAACACACACAGUUUAUAAUAACUGGC


AAAUCAAACAAUAAUUUCGCAGUAGCUGCCUAAUCGCACUCUGCAUCG


CCUAACAGCAUUUCCUAUGUGCUGUUAACGCGAUUCAACCUUAAUAGG


AUAUGCUAAACACUGCCGUUUGAAGUCUGUUUAGAAGAAACUUAAUCA


AACUAGCAUCAUGUUGGUUGUUUAUCACUUUUCAUGAUGCGAAACCUA


UCGAUAAACUACACACGUAGAAAGAUGUGUAUCAGGACCUUUGGACGC


GGGUUCAAAUCCCGCCGUCUCCACCA






Streptococcus gordonii ssrA








SEQ ID NO: 109







GGGGTCGTTACGGATTCGACAGGCATTATGAGGCATATTTTGCGACTCAT


CTAGCGGATGTAAAACGCCAGTTAAATATAACTGCAAAAAATAATACTT


CTTACGCTTTAGCTGCCTAAAAACCAGCGGGCGTGACCCGATTCGGATTG


CTTGTGTCTGATGACAGGTCTTATTATTAGCAAGCTACGGTAGAATCTTG


TCTAGTGATTTTACAAGAGATTGATAGACTCGCTTGATTTGGGCTTGAGT


TATGTGTCAAAATCAAGTTAAAACAATACATAGCCTATGGTTGTAGACAA


ATGTGTTGGCAGATGTTTGGACGTGGGTTCGACTCCCACCGGCTCCACCA






Streptococcus gordonii tmRNA








SEQ ID NO: 110







GGGGUCGUUACGGAUUCGACAGGCAUUAUGAGGCAUAUUUUGCGACUC


AUCUAGCGGAUGUAAAACGCCAGUUAAAUAUAACUGCAAAAAAUAAU


ACUUCUUACGCUUUAGCUGCCUAAAAACCAGCGGGCGUGACCCGAUUC


GGAUUGCUUGUGUCUGAUGACAGGUCUUAUUAUUAGCAAGCUACGGU


AGAAUCUUGUCUAGUGAUUUUACAAGAGAUUGAUAGACUCGCUUGAU


UUGGGCUUGAGUUAUGUGUCAAAAUCAAGUUAAAACAAUACAUAGCC


UAUGGUUGUAGACAAAUGUGUUGGCAGAUGUUUGGACGUGGGUUCGA


CUCCCACCGGCUCCACCA






Streptococcus mutans ssrA








SEQ ID NO: 111







GGGGTCGTTACGGATTCGACAGGCATTATGAGACCTATTTTGCGACTCAT


CTAGCGGATGTAAAACGCCAGTTAAATATAACTGCAAAAAATACAAATT


CTTACGCAGTAGCTGCCTAAAAACCAGCCTGTGTGATCAATAACAAATTG


CTTGTGTTTGTTGATTGGTCTTATTGTTAACAAGCTACGTTAGAACTGA


GTCAGGCTGTTCTAAAAGAGTTCTACTGACTCGCATCGTTAGAGTTTG


AGTTATGTATTGTAACGGTGTTAAATAAACACATAACCTATAGTTGTAG


ACAAATGGGTTAGCAGATGTTTGGACGTGGGTTCGACTCCCACCGGC


TCCACCA






Streptococcus mutans tmRNA








SEQ ID NO: 112







GGGGUCGUUACGGAUUCGACAGGCAUUAUGAGACCUAUUUUGCGACUC


AUCUAGCGGAUGUAAAACGCCAGUUAAAUAUAACUGCAAAAAAUACAA


AUUCUUACGCAGUAGCUGCCUAAAAACCAGCCUGUGUGAUCAAUAACA


AAUUGCUUGUGUUUGUUGAUUGGUCUUAUUGUUAACAAGCUACGUUA


GAACUGAGUCAGGCUGUUCUAAAAGAGUUCUACUGACUCGCAUCGUUA


GAGUUUGAGUUAUGUAUUGUAACGGUGUUAAAUAAACACAUAACCUA


UAGUUGUAGACAAAUGGGUUAGCAGAUGUUUGGACGUGGGUUCGACU


CCCACCGGCUCCACCA






Streptococcus pneumoniae ssrA








SEQ ID NO: 113







GGGGTCGTTACGGATTCGACAGGCATTATGAGGCATATTTTGCGACTCGT


GTGGCGACGTAAACGCTCAGTTAAATATAACTGCAAAAAATAACACTTCT


TACGCTCTAGCTGCCTAAAAACCAGCAGGCGTGACCCGATTTGGATTGCT


CGTGTTCAATGACAGGTCTTATTATTAGCGAGATACGATTAAGCCTTGTC


TAGCGGTTTGATAAGAGATTGATAGACTCGCAGTTTCTAGACTTGAGTTA


TGTGTCGAGGGGCTGTTAAAATAATACATAACCTATGGTTGTAGACAAAT


ATGTTGGCAGGTGTTTGGACGTGGGTTCGACTCCCACCGGCTCCACCA






Streptococcus pneumoniae tmRNA








SEQ ID NO: 114







GGGGUCGUUACGGAUUCGACAGGCAUUAUGAGGCAUAUUUUGCGACUC


GUGUGGCGACGUAAACGCUCAGUUAAAUAUAACUGCAAAAAAUAACAC


UUCUUACGCUCUAGCUGCCUAAAAACCAGCAGGCGUGACCCGAUUUGG


AUUGCUCGUGUUCAAUGACAGGUCUUAUUAUUAGCGAGAUACGAUUA


AGCCUUGUCUAGCGGUUUGAUAAGAGAUUGAUAGACUCGCAGUUUCUA


GACUUGAGUUAUGUGUCGAGGGGCUGUUAAAAUAAUACAUAACCUAU


GGUUGUAGACAAAUAUGUUGGCAGGUGUUUGGACGUGGGUUCGACUC


CCACCGGCUCCACCA






Streptococcus pyogenes ssrA








SEQ ID NO: 115







GGGGTTGTTACGGATTCGACAGGCATTATGAGGCATGTTTTGCGTCCCAT


CGGCAGATGTAAATTGCCAGTTAAATATAACTGCAAAAAATACAAACTC


TTACGCTTTAGCTGCCTAAAAACCAGCTAGCGTGACTTCTACAAGATTGC


TTGTGTCCTGTTAGAAGTCTCAAAATAGCAAGCTACGGTTACGAAATTGT


CTAGTTTCGTGACAAGAGATTGATAGACTCGCAAACTAATGGCTTGAGTT


ATGTGTCTTTAGTTTGTTAAATGAAGACATAACCTATGGACGTAGACAAA


TATGTTGGCAGGTGTTTGGACGTGGGTTCGACTCCCACCAGCTCCACCA






Streptococcus pyogenes tmRNA








SEQ ID NO: 116







GGGGUUGUUACGGAUUCGACAGGCAUUAUGAGGCAUGUUUUGCGUCCC


AUCGGCAGAUGUAAAUUGCCAGUUAAAUAUAACUGCAAAAAAUACAA


ACUCUUACGCUUUAGCUGCCUAAAAACCAGCUAGCGUGACUUCUACAA


GAUUGCUUGUGUCCUGUUAGAAGUCUCAAAAUAGCAAGCUACGGUUAC


GAAAUUGUCUAGUUUCGUGACAAGAGAUUGAUAGACUCGCAAACUAA


UGGCUUGAGUUAUGUGUCUUUAGUUUGUUAAAUGAAGACAUAACCUA


UGGACGUAGACAAAUAUGUUGGCAGGUGUUUGGACGUGGGUUCGACU


CCCACCAGCUCCACCA






Synechococcus sp. PCC6301 ssrA








SEQ ID NO: 117







GGGGCTGTAATGGTTTCGACGTGTTGGTGAATCCTTCACCGTGATTCAGG


CCGAGAGGGAGTCCACTCTCGTAAATCCAGGCTCAACCAAAAGTAACTG


CGAACAACATCGTTCCTTTCGCTCGTAAGGCTGCTCCTGTAGCTGCTTAA


ACGCCACAAACTTTCTGGCTCGAGCGTCTAGTCGTAGACTCCGTTAATA


CGCCTAGACTTAAACCCCCAACGGATGCTCGAGTGGCGGCCTCAGGTC


CGTCCTCTCGCTAAGCAAAAACCTGAGCATCCCGCCAACGGGGATAATC


GTTGGCTCCCGCACAGTGGGTCAACCGTGCTAAGCCTGTGAACGAGCG


GAAAGTTACTAGTCAATGCGGACAGCGGTTCGATTCCGCTCAGCTCCA


CCA






Synechococcus sp. PCC6301 tmRNA








SEQ ID NO: 118







GGGGCUGUAAUGGUUUCGACGUGUUGGUGAAUCCUUCACCGUGAUUCA


GGCCGAGAGGGAGUCCACUCUCGUAAAUCCAGGCUCAACCAAAAGUAA


CUGCGAACAACAUCGUUCCUUUCGCUCGUAAGGCUGCUCCUGUAGCUG


CUUAAACGCCACAAACUUUCUGGCUCGAGCGUCUAGUCGUAGACUCCG


UUAAUACGCCUAGACUUAAACCCCCAACGGAUGCUCGAGUGGCGGCCU


CAGGUCCGUCCUCUCGCUAAGCAAAAACCUGAGCAUCCCGCCAACGGG


GAUAAUCGUUGGCUCCCGCACAGUGGGUCAACCGUGCUAAGCCUGUGA


ACGAGCGGAAAGUUACUAGUCAAUGCGGACAGCGGUUCGAUUCCGCUC


AGCUCCACCA






Synechocystis sp. PCC6803 ssrA








SEQ ID NO: 119







GGGGCCGCAATGGTTTCGACAGGTTGGCGAAAGCTTGCCCGTGATACAG


GTCGAGAGTGAGTCTCCTCTCGCAAATCAAAGGCTCAAAAAAAAGTAAC


TGCGAATAACATCGTCAGCTTCAAACGGGTAGCCATAGCAGCCTAGTCTG


TAAAAGCTACATTTTCTTGTCAAAGACCGTTTACTTCTTTTCTGACTCC


GTTAAGGATTAGAGGTTAACCCCAACGGATGCTTTGTTTGGCTCTTCT


CTAGTTAGCTAAACAATCAAGACTCAGACTAGAGCATCCCACCATCAG


GGATAATCGATGGTCCCCGTCCTAGGGCTAGAAGGACTAAACCTGTG


AATGAGCGGAAAGTTAATACCCAGTTTGGACAGCAGTTCAATTCTGCTC


GGCTCCACCA






Synechocystis sp. PCC6803 tmRNA








SEQ ID NO: 120







GGGGCCGCAAUGGUUUCGACAGGUUGGCGAAAGCUUGCCCGUGAUACA


GGUCGAGAGUGAGUCUCCUCUCGCAAAUCAAAGGCUCAAAAAAAAGUA


ACUGCGAAUAACAUCGUCAGCUUCAAACGGGUAGCCAUAGCAGCCUAG


UCUGUAAAAGCUACAUUUUCUUGUCAAAGACCGUUUACUUCUUUUCUG


ACUCCGUUAAGGAUUAGAGGUUAACCCCAACGGAUGCUUUGUUUGGCU


CUUCUCUAGUUAGCUAAACAAUCAAGACUCAGACUAGAGCAUCCCACC


AUCAGGGAUAAUCGAUGGUCCCCGUCCUAGGGCUAGAAGGACUAAACC


UGUGAAUGAGCGGAAAGUUAAUACCCAGUUUGGACAGCAGUUCAAUUC


UGCUCGGCUCCACCA






Thermotoga maritima ssrA








SEQ ID NO: 121







GGGGGCGAACGGGTTCGACGGGGATGGAGTCCCCTGGGAAGCGAGCCGA


GGTCCCCACCTCCTCGTAAAAAAGGTGGGACAAAGAATAAGTGCCAACG


AACCTGTTGCTGTTGCCGCTTAATAGATAAGCGGCCGTCCTCTCCGAAGT


TGGCTGGGCTTCGGAAGAGGGCGTGAGAGATCCAGCCTACCGATTCAGC


TTCGCCTTCCGGCCTGAATCGGGAAAACTCAGGAAGGCTGTGGGAGAGG


ACACCCTGCCCGTGGGAGGTCCCTCCCGAGAGCGAAAACACGGGCTGCG


CTCGGAGAAGCCCAGGGGCCTCCATCTTCGGACGGGGGTTCGAATCCCCC


CGCCTCCACCA






Thermotoga maritima tmRNA








SEQ ID NO: 122







GGGGGCGAACGGGUUCGACGGGGAUGGAGUCCCCUGGGAAGCGAGCCG


AGGUCCCCACCUCCUCGUAAAAAAGGUGGGACAAAGAAUAAGUGCCAA


CGAACCUGUUGCUGUUGCCGCUUAAUAGAUAAGCGGCCGUCCUCUCCG


AAGUUGGCUGGGCUUCGGAAGAGGGCGUGAGAGAUCCAGCCUACCGAU


UCAGCUUCGCCUUCCGGCCUGAAUCGGGAAAACUCAGGAAGGCUGUGG


GAGAGGACACCCUGCCCGUGGGAGGUCCCUCCCGAGAGCGAAAACACG


GGCUGCGCUCGGAGAAGCCCAGGGGCCUCCAUCUUCGGACGGGGGUUC


GAAUCCCCCCGCCUCCACCA






Thermus thermophilus ssrA








SEQ ID NO: 123







GGGGGTGAAACGGTCTCGACGGGGGTCGCCGAGGGCGTGGCTGCGCGCC


GAGGTGCGGGTGGCCTCGTAAAAACCCGCAACGGCATAACTGCCAACAC


CAACTACGCTCTCGCGGCTTAATGACCGCGACCTCGCCCGGTAGCCCTGC


CGGGGGCTCACCGGAAGCGGGGACACAAACCCGGCTAGCCCGGGGCCAC


GCCCTCTAACCCCGGGCGAAGCTTGAAGGGGGCTCGCTCCTGGCCGCCCG


TCCGCGGGCCAAGCCAGGAGGACACGCGAAACGCGGACTACGCGCGTAG


AGGCCCGCCGTAGAGACCTTCGGACGGGGGTTCGACTCCCCCCACCTCCA


CCA






Thermus thermophilus tmRNA








SEQ ID NO: 124







GGGGGUGAAACGGUCUCGACGGGGGUCGCCGAGGGCGUGGCUGCGCGC


CGAGGUGCGGGUGGCCUCGUAAAAACCCGCAACGGCAUAACUGCCAAC


ACCAACUACGCUCUCGCGGCUUAAUGACCGCGACCUCGCCCGGUAGCCC


UGCCGGGGGCUCACCGGAAGCGGGGACACAAACCCGGCUAGCCCGGGG


CCACGCCCUCUAACCCCGGGCGAAGCUUGAAGGGGGCUCGCUCCUGGC


CGCCCGUCCGCGGGCCAAGCCAGGAGGACACGCGAAACGCGGACUACG


CGCGUAGAGGCCCGCCGUAGAGACCUUCGGACGGGGGUUCGACUCCCC


CCACCUCCACCA






Treponema pallidum ssrA








SEQ ID NO: 125







GGGGATGACTAGGTTTCGACTAGGGATGTGGGGTGTTGCGCTGCAGGTG


GAGTGTCGATCTCCTGATTCGGCGCCTTTATAACTGCCAATTCTGACAG


TTTCGACTACGCGCTCGCCGCGTAATCGCGGGCCTGTGTTTGCGCTGC


TCTGAGCGAACATATCGGCCCGACGCCAAACGGAGCTTGCTCTTACGTT


GTGCACGGCGGACGTAGGGGGACTTTTGTCTGTGCTAAGACTCTGGCG


CGTGCGGTGCAGGCCTAGCAGAGTCCGACAAACGCAGTACGCACCGCT


AAACCTGTAGGCGCGCAGCACTCGCTCTTTAGGACGGGGGTTCGATTC


CCCCCATCTCCACCA






Treponema pallidum tmRNA








SEQ ID NO: 126







GGGGAUGACUAGGUUUCGACUAGGGAUGUGGGGUGUUGCGCUGCAGG


UGGAGUGUCGAUCUCCUGAUUCGGCGCCUUUAUAACUGCCAAUUCUGA


CAGUUUCGACUACGCGCUCGCCGCGUAAUCGCGGGCCUGUGUUUGCGC


UGCUCUGAGCGAACAUAUCGGCCCGACGCCAAACGGAGCUUGCUCUUA


CGUUGUGCACGGCGGACGUAGGGGGACUUUUGUCUGUGCUAAGACUCU


GGCGCGUGCGGUGCAGGCCUAGCAGAGUCCGACAAACGCAGUACGCAC


CGCUAAACCUGUAGGCGCGCAGCACUCGCUCUUUAGGACGGGGGUUCG


AUUCCCCCCAUCUCCACCA






Vibrio cholerae ssrA








SEQ ID NO: 127







GGGGCTGATTCAGGATTCGACGGGAATTTTGCAGTCTGAGGTGCATGCCG


AGGTGCGGTAGGCCTCGTTAACAAACCGCAAAAAAATAGTCGCAAACGA


CGAAAACTACGCACTAGCAGCTTAATACCCTGCTCAGAGCCCTTCCTCCC


TAGCTTCCGCTTGTAAGACGGGGAAATCAGGAAGGTCAAACCAAATCAA


GCTGGCGTGGATTCCCCCACCTGAGGGATGAAGCGCGAGATCTAATTCA


GGTTAGCCATTCGTTAGCGTGTCGGTTCGCAGGCGGTGGTGAAATTAAAG


ATCGACTAAGCATGTAGTACCAAAGATGAATGGTTTTCGGACGGGGGTTC


AACTCCCCCCAGCTCCACCA






Vibrio cholerae tmRNA








SEQ ID NO: 128







GGGGCUGAUUCAGGAUUCGACGGGAAUUUUGCAGUCUGAGGUGCAUGC


CGAGGUGCGGUAGGCCUCGUUAACAAACCGCAAAAAAAUAGUCGCAAA


CGACGAAAACUACGCACUAGCAGCUUAAUACCCUGCUCAGAGCCCUUC


CUCCCUAGCUUCCGCUUGUAAGACGGGGAAAUCAGGAAGGUCAAACCA


AAUCAAGCUGGCGUGGAUUCCCCCACCUGAGGGAUGAAGCGCGAGAUC


UAAUUCAGGUUAGCCAUUCGUUAGCGUGUCGGUUCGCAGGCGGUGGUG


AAAUUAAAGAUCGACUAAGCAUGUAGUACCAAAGAUGAAUGGUUUUC


GGACGGGGGUUCAACUCCCCCCAGCUCCACCA






Yersinia pestis ssrA








SEQ ID NO: 129







GGGGCTGATTCTGGATTCGACGGGATTCGCGAAACCCAAGGTGCATGCC


GAGGTGCGGTGGCCTCGTAAAAAACCGCAAAAAAAATAGTTGCAAACGA


CGAAAACTACGCACTAGCAGCTTAATAACCTGCTTAGAGCCCTCTCTGCC


TAGCCTCCGCTCTTAGGACGGGGATCAAGAGAGGTCAAACCTAAAAGAG


CTCGTGTGGAAACCTTGCCTGGGGTGGAAGCATTAAAACTAATCAGGAT


AGTTTGTCAGTAGCGTGTCCATCCGCAGCTGGCCGGCGAATGTAATGATT


GGACTAAGCATGTAGTGCCGACGGTGTAGTAATTTCGGACGGGGGTTCA


AATCCCCCCAGCTCCACCA






Yersinia pestis tmRNA








SEQ ID NO: 130







GGGGCUGAUUCUGGAUUCGACGGGAUUCGCGAAACCCAAGGUGCAUGC


CGAGGUGCGGUGGCCUCGUAAAAAACCGCAAAAAAAAUAGUUGCAAAC


GACGAAAACUACGCACUAGCAGCUUAAUAACCUGCUUAGAGCCCUCUC


UGCCUAGCCUCCGCUCUUAGGACGGGGAUCAAGAGAGGUCAAACCUAA


AAGAGCUCGUGUGGAAACCUUGCCUGGGGUGGAAGCAUUAAAACUAAU


CAGGAUAGUUUGUCAGUAGCGUGUCCAUCCGCAGCUGGCCGGCGAAUG


UAAUGAUUGGACUAAGCAUGUAGUGCCGACGGUGUAGUAAUUUCGGA


CGGGGGUUCAAAUCCCCCCAGCUCCACCA






Campylobacter fetus ssrA, internal partial








SEQ ID NO: 131







AGGAGTAAGTCTGCTTAGATGGCATGTCGCTTTGGGCAAAGCGTAAAAA


GCCCAAATAAAATTAAACGCAAACAACGTTAAATTCGCTCCTGCTTACGC


TAAAGCTGCGTAAGTTCAGTTGAGCCTGAAATTTAAGTCATACTATCTAG


CTTAATTTTCGGTCATCTTTGATAGTGTAGCCTTGCGTTTGACAAGCGT


TGAGGTGAAATAAAGTCTTAGCCTTGCTTTTGAGTTTTGGAAGATGAG


CGAAGTAGGGTGAAGTAGTCATCTTTGCTAAGCATGTAGAGGTCTTTG


TGGGATTATTTTTGG






Campylobacter fetus tmRNA, internal partial








SEQ ID NO: 132







AGGAGUAAGUCUGCUUAGAUGGCAUGUCGCUUUGGGCAAAGCGUAAA


AAGCCCAAAUAAAAUUAAACGCAAACAACGUUAAAUUCGCUCCUGCUU


ACGCUAAAGCUGCGUAAGUUCAGUUGAGCCUGAAAUUUAAGUCAUACU


AUCUAGCUUAAUUUUCGGUCAUCUUUGAUAGUGUAGCCUUGCGUUUGA


CAAGCGUUGAGGUGAAAUAAAGUCUUAGCCUUGCUUUUGAGUUUUGG


AAGAUGAGCGAAGUAGGGUGAAGUAGUCAUCUUUGCUAAGCAUGUAG


AGGUCUUUGUGGGAUUAUUUUUGG






Campylobacter coli (BM2509) ssrA,



internal partial







SEQ ID NO: 133







AGGAGTAAGTCTGCTTAGATGGCATGTCGCTTTGGACAAAGCGTAAAAA


GTCCAAATTAAAATTAAACGCAAATAACGTTAAATTTGCTCCTGCTTACG


CTAAAGCTGCGTAAGTTCAGTTGAGCCCGAAACTCAAGTGATGCTATCTA


GCTTGAATTTTGGTCATCTTTGATAGTGTAGATTGAAAATTGACAACTT


TTAATCGAAGTTAAAGTCTTAGTCTAGCTTGAAATTTTGGAAGGTGAG


TTTAGCCAGATGAAGTTTTCACCTTTGCTAAACATGTAGAAGTCTTTGT


GGGGTTATTTTTGG






Campylobacter coli (BM2509) tmRNA,



internal partial







SEQ ID NO: 134







AGGAGUAAGUCUGCUUAGAUGGCAUGUCGCUUUGGACAAAGCGUAAA


AAGUCCAAAUUAAAAUUAAACGCAAAUAACGUUAAAUUUGCUCCUGCU


UACGCUAAAGCUGCGUAAGUUCAGUUGAGCCCGAAACUCAAGUGAUGC


UAUCUAGCUUGAAUUUUGGUCAUCUUUGAUAGUGUAGAUUGAAAAUU


GACAACUUUUAAUCGAAGUUAAAGUCUUAGUCUAGCUUGAAAUUUUG


GAAGGUGAGUUUAGCCAGAUGAAGUUUUCACCUUUGCUAAACAUGUA


GAAGUCUUUGUGGGGUUAUUUUUGG






Camplyobacter chicken isolate ssrA,



internal partial







SEQ ID NO: 135







ACAGGAGTAAGTCTGCTTAGATGGCATGTCGCTTTGGGCAAAGCGTAAA


AAGCCCAAATAAAATTAAACGCAAACAACGTTAAATTCGCTCCTGCTTAC


GCTAAAGCTGCGTAAGTTCAGTTGAGCCTGAAATTTAAGTCATACTATCT


AGCTTAATTTTCGGTCATTTTTGATAGTGTAGCCTTGCGTTTGACAAGC


GTTGAGGTGAAATAAGGTCTTAGCCTTGCTTTTGAGTTTTGGAAGATG


AGCGAAGTAGGGTGAAGTAGTCATCTTTGCTAAGCATGTAGAGGTCTTT


GTGGGATTATTTTTGG






Camplyobacter chicken isolate tmRNA,



internal partial







SEQ ID NO: 136







ACAGGAGUAAGUCUGCUUAGAUGGCAUGUCGCUUUGGGCAAAGCGUAA


AAAGCCCAAAUAAAAUUAAACGCAAACAACGUUAAAUUCGCUCCUGCU


UACGCUAAAGCUGCGUAAGUUCAGUUGAGCCUGAAAUUUAAGUCAUAC


UAUCUAGCUUAAUUUUCGGUCAUUUUUGAUAGUGUAGCCUUGCGUUU


GACAAGCGUUGAGGUGAAAUAAGGUCUUAGCCUUGCUUUUGAGUUUU


GGAAGAUGAGCGAAGUAGGGUGAAGUAGUCAUCUUUGCUAAGCAUGU


AGAGGUCUUUGUGGGAUUAUUUUUGG






Clostridium perfringens ssrA, internal partial








SEQ ID NO: 137







ACGGGGGTAGGATGGGTTTGATAAGCGAGTCGAGGGAAGCATGGTGCCT


CGATAATAAAGTATGCATTAAAGATAAACGCACGAGATAATTTTGCATTA


GCAGCTTAAGTTAGCGCTGCTCATCCTTCCTCAATTGCCCACGGTTGAGA


GTAAGGGTGTCATTTAAAAGTGGGGAACCGAGCCTAGCAAAGCTTTGAG


CTAGGAACGGAATTTATGAAGCTTACCAAAGAGGAAGTTTGTCTGTGGA


CGTTCTCTGAGGGAATTTTAAAACACAAGACTACACTCGTAGAAAGTCTT


ACTGGTCTGCTTTCGG






Clostridium perfringens tmRNA, internal partial








SEQ ID NO: 138







ACGGGGGUAGGAUGGGUUUGAUAAGCGAGUCGAGGGAAGCAUGGUGC


CUCGAUAAUAAAGUAUGCAUUAAAGAUAAACGCACGAGAUAAUUUUG


CAUUAGCAGCUUAAGUUAGCGCUGCUCAUCCUUCCUCAAUUGCCCACG


GUUGAGAGUAAGGGUGUCAUUUAAAAGUGGGGAACCGAGCCUAGCAA


AGCUUUGAGCUAGGAACGGAAUUUAUGAAGCUUACCAAAGAGGAAGU


UUGUCUGUGGACGUUCUCUGAGGGAAUUUUAAAACACAAGACUACACU


CGUAGAAAGUCUUACUGGUCUGCUUUCGG






Haemophilus ducreyi (NCTC 10945) ssrA,



internal partial







SEQ ID NO: 139







ACGGGATTAGCGAAGTCCAAGGTGCACGTCGAGGTGCGGTAGGCCTCGT


AACAAACCGCAAAAAAATAGTCGCAAACGACGAACAATACGCTTTAGCA


GCTTAATAACCTGCATTTAGCCTTCGCGCCCTAGCTTTCGCTCGTAAGAC


GGGGAGCACGCGGAGTCAAACCAAAACGAGATCGTGTGGACGCTTCCGC


TTGTAGATGAAACACTAAATTGAATCAAGCTAGTTTATTTCTTGCGTGT


CTGTCCGCTGGAGATAAGCGAAATTAAAGACCAGACTAAACGTGTAGTA


CTGAAGATAGAGTAATTTCGGACCCGGGTTCGACTC






Haemophilus ducreyi (NCTC 10945) tmRNA,



internal partial







SEQ ID NO: 140







ACGGGAUUAGCGAAGUCCAAGGUGCACGUCGAGGUGCGGUAGGCCUCG


UAACAAACCGCAAAAAAAUAGUCGCAAACGACGAACAAUACGCUUUAG


CAGCUUAAUAACCUGCAUUUAGCCUUCGCGCCCUAGCUUUCGCUCGUA


AGACGGGGAGCACGCGGAGUCAAACCAAAACGAGAUCGUGUGGACGCU


UCCGCUUGUAGAUGAAACACUAAAUUGAAUCAAGCUAGUUUAUUUCUU


GCGUGUCUGUCCGCUGGAGAUAAGCGAAAUUAAAGACCAGACUAAACG


UGUAGUACUGAAGAUAGAGUAAUUUCGGACCCGGGUUCGACUC






Listeria innocua (food isolate #1) ssrA,



internal partial







SEQ ID NO: 141







GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAACCAGTAGCAT


AGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACTCTA


AGTGGGCTACACTAGTTAATCTCCGTCTGAGGTTAAATAGAAGAGCTTAA


TCAGACTAGCTGAATGGAAGCCTGTTACCGGGCTGATGTTTATGCGAAAT


GCTAATACGGTGACTACGCTCGTAGATATTCAA






Listeria innocua (food isolate #1) tmRNA,



internal partial







SEQ ID NO: 142







GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAACCAGUAGCA


UAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGUCUCACU


CUAAGUGGGCUACACUAGUUAAUCUCCGUCUGAGGUUAAAUAGAAGAG


CUUAAUCAGACUAGCUGAAUGGAAGCCUGUUACCGGGCUGAUGUUUAU


GCGAAAUGCUAAUACGGUGACUACGCUCGUAGAUAUUCAA






Listeria innocua (food isolate #2) ssrA,



internal partial







SEQ ID NO: 143







GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCAT


AGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACTCTA


AGTGGGCTACACTAGTTAATCTCCGTCTGAGGTTAAATAGAAGAGCTTAA


TCAGACTAGCTGAATGGAAGCCTGTTACCGGGCCGATGTTTATGCGAAAT


GCTAATACGGTGACTACGCTCGTAGATATTTAA






Listeria innocua (food isolate #2) tmRNA,



internal partial







SEQ ID NO: 144







GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCA


UAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGUCUCACU


CUAAGUGGGCUACACUAGUUAAUCUCCGUCUGAGGUUAAAUAGAAGAG


CUUAAUCAGACUAGCUGAAUGGAAGCCUGUUACCGGGCCGAUGUUUAU


GCGAAAUGCUAAUACGGUGACUACGCUCGUAGAUAUUUAA






Listeria innocua (food isolate #3) ssrA,



internal partial







SEQ ID NO: 145







GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGAAT


AGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACTCTA


AGTGGGCTACACTAGTTAATCTCCGTCTGAGGTTAAATAGAAGAGCTTAA


TCGGACTAGCTGAATGGAAGCCTGTTACCGGGCCGATGTTTATGCGAAAT


GCTAATACGGTGACTACGCTCGTAGATATTTAA






Listeria innocua (food isolate #3) tmRNA,



internal partial







SEQ ID NO: 146







GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGAA


UAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGUCUCACU


CUAAGUGGGCUACACUAGUUAAUCUCCGUCUGAGGUUAAAUAGAAGAG


CUUAAUCGGACUAGCUGAAUGGAAGCCUGUUACCGGGCCGAUGUUUAU


GCGAAAUGCUAAUACGGUGACUACGCUCGUAGAUAUUUAA






Listeria innocua (ATCC 12210) ssrA,



internal partial







SEQ ID NO: 147







GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCAT


AGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACTCTA


AGTGGGCTACACTAGTTAATCTCCGTCTGGGGTTAAATAGAAGAGCTTAA


TCAGACTAGCTGAATGGAAGCCTGTTACTGGGCCGATGTTTATGCGAAAT


GCTAATACGGTGACTACGCTCGTAGATATTTAA






Listeria innocua (ATCC 12210) tmRNA,



internal partial







SEQ ID NO: 148







GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCA


UAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGUCUCACU


CUAAGUGGGCUACACUAGUUAAUCUCCGUCUGGGGUUAAAUAGAAGAG


CUUAAUCAGACUAGCUGAAUGGAAGCCUGUUACUGGGCCGAUGUUUAU


GCGAAAUGCUAAUACGGUGACUACGCUCGUAGAUAUUUAA






Listeria ivanovii (NCTC 11846) ssrA,



internal partial







SEQ ID NO: 149







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TTAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGTAAGGGTCTCACTTTAAGTGGGCTACACTAAATAATCTCCGT


CTGGGGTTAGTTAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTT


ACCGGGCTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAGA


TATTTAAGTGCCGATATTTCTGG






Listeria ivanovii (NCTC 11846) tmRNA,



internal partial







SEQ ID NO: 150







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUUAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGUAAGGGUCUCACUUUAAGUGGGCUACACUAAAUAA


UCUCCGUCUGGGGUUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGACU


CGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG






Listeria seeligeri (NCTC 11856) ssrA,



internal partial







SEQ ID NO: 151







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TCAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGAAAGGGTCTCACTTTAAGTGGGCTACACTAAATAATCTCCGT


CTGGGGTTAGTTAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTT


ACCGGGCTGATGTTTATGCGAAATACTAATACGGTGACTACGCTCGTAGA


TATTTAAGTGCCCATATTTCTGG






Listeria seeligeri (NCTC 11856) tmRNA,



internal partial







SEQ ID NO: 152







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGAAAGGGUCUCACUUUAAGUGGGCUACACUAAAUAA


UCUCCGUCUGGGGUUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUACUAAUACGGUGACU


ACGCUCGUAGAUAUUUAAGUGCCCAUAUUUCUGG






Salmonella enteritidis ssrA, internal partial








SEQ ID NO: 153







ACGGGATTTGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTGGCCTCGT


AAAAAGCCGCAAAAAAATAGTCGCAAACGACGAAACCTACGCTTTAGCA


GCTTAATAACCTGCTTAGAGCCCTCTCTCCCTAGCCTCCGCTCTTAGGA


CGGGGATCAAGAGAGGTCAAACCCAAAAGAGATCGCGTGGATGCCCTGC


CTGGGGTTGAAGCGTTAAAACGAATCAGGCTAGTCTGGTAGTGGCGTGT


CCGTCCGCAGGTGCCAGGCGAATGTAAAGACTGACTAAGCATGTAGTAC


ACGGGATGTAGGAATTTCGG






Salmonella enteritidis tmRNA, internal partial








SEQ ID NO: 154







ACGGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGGCCUCG


UAAAAAGCCGCAAAAAAAUAGUCGCAAACGACGAAACCUACGCUUUAG


CAGCUUAAUAACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUA


GGACGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGGAUGCC


CUGCCUGGGGUUGAAGCGUUAAAACGAAUCAGGCUAGUCUGGUAGUGG


CGUGUCCGUCCGCAGGUGCCAGGCGAAUGUAAAGACUGACUAAGCAUG


UAGUACCGAGGAUGUAGGAAUUUCGG






Staphylococcus epidermidis (NCTC 11047)



ssrA, internal partial







SEQ ID NO: 155







ACAGGGGTCCCCCGAGCTTATTAAGCGTGTCGGAGGGTTGGCTCCGTCAT


CAACACATTTCGGTTAAATATAACTGACAAATCAAACAATAATTTCGCAG


TAGCTGCGTAATAGCCACTGCATCGCCTAACAGCATCTCCTACGTGCTGT


TAACGCGATTCAACCCTAGTAGGATATGCTAAACACTGCCGCTTGAAGTC


TGTTTAGATGAAATATAATCAAGCTAGTATCATGTTGGTTGTTTATTGC


TTAGCATGATGCGAAAATTATCAATAAACTACACACGTAGAAAGATTTG


TATCAGGACCTCTGG






Staphylococcus epidermidis (NCTC 11047)



tmRNA, internal partial







SEQ ID NO: 156







ACAGGGGUCCCCCGAGCUUAUUAAGCGUGUCGGAGGGUUGGCUCCGUC


AUCAACACAUUUCGGUUAAAUAUAACUGACAAAUCAAACAAUAAUUUC


GCAGUAGCUGCGUAAUAGCCACUGCAUCGCCUAACAGCAUCUCCUACG


UGCUGUUAACGCGAUUCAACCCUAGUAGGAUAUGCUAAACACUGCCGC


UUGAAGUCUGUUUAGAUGAAAUAUAAUCAAGCUAGUAUCAUGUUGGU


UGUUUAUUGCUUAGCAUGAUGCGAAAAUUAUCAAUAAACUACACACGU


AGAAAGAUUUGUAUCAGGACCUCUGG






Streptococcus agalactiae (NCTC 8181)



ssrA, internal partial







SEQ ID NO: 157







ACAGGCATTATGAGGTATATTTTGCGACTCATCGGCAGATGTAAAATGCC


AGTTAAATATAACTGCAAAAAATACAAATTCTTACGCATTAGCTGCCTAA


AAAACAGCCTGCGTGATCTTCACAAGATTGTTTGCGTTTTGCTAGAAGGT


CTTATTTATCAGCAAACTACGTTTGGCTACTGTCTAGTTAGTTAAAAAGA


GATTTATAGACTCGCTATGTGAGGGCTTGAGTTATGTGTCATCACCTAGT


TAAATCAATACATAACCTATAGTTGTAGACAAATATATTAGCAGATGTTT


GG






Streptococcus agalactiae (NCTC 8181)



tmRNA, internal partial







SEQ ID NO: 158







ACAGGCAUUAUGAGGUAUAUUUUGCGACUCAUCGGCAGAUGUAAAAU


GCCAGUUAAAUAUAACUGCAAAAAAUACAAAUUCUUACGCAUUAGCUG


CCUAAAAAACAGCCUGCGUGAUCUUCACAAGAUUGUUUGCGUUUUGCU


AGAAGGUCUUAUUUAUCAGCAAACUACGUUUGGCUACUGUCUAGUUAG


UUAAAAAGAGAUUUAUAGACUCGCUAUGUGAGGGCUUGAGUUAUGUG


UCAUCACCUAGUUAAAUCAAUACAUAACCUAUAGUUGUAGACAAAUAU


AUUAGCAGAUGUUUGG






Bordetella bronchiseptica ssrA








SEQ ID NO: 159







GGGGCCGATCCGGATTCGACGTGGGTCATGAAACAGCTCAAGGCATGCC


GAGCACCAGTAAGCTCGTTAATCCACTGGAACACTACAAACGCCAACGA


CGAGCGTTTCGCTCTCGCCGCTTAAGCGGTGAGCCGCTGCACTGATCTGT


CCTTGGGTCACGCGGGGGAA






Bordetella bronchiseptica tmRNA








SEQ ID NO: 160







GGGGCCGAUCCGGAUUCGACGUGGGUCAUGAAACAGCUCAAGGCAUGCC


GAGCACCAGUAAGCUCGUUAAUCCACUGGAACACUACAAACGCCAACGAC


GAGCGUUUCGCUCUCGCCGCUUAAGCGGUGAGCCGCUGCACUGAUCUGUC


CUUGGGUCACGCGGGGGAA






Chlamydia pneumoniae (CWL029), ssrA








SEQ ID NO: 161







GGGGGTGTATAGGTTTCGACTTGAAAATGAAGTGTTAATTGCATGCGGAG


GGCGTTGGCTGGCCTCCTAAAAAGCCAACAAAACAATAAATGCCGAACC


TAAGGCTGAATGCGAAATTATTAGCTTGTTTGACTCAGTAGAGGAAAGAC


TAGCTGCTTAATTAGCAAAAGTTGTTAGCTAGATAATCTCTAGGTAACCC


GGTATCTGCGAGCTCCACCAGAGGCTTGCAAAATACCGTCATTTATCTGG


TTGGAACTTACTTTCTCTAATTCTCAAGGAAGTTCGTTCGAGATTTTTG


AGAGTCATTGGCTGCTATAGAGGCTTCTAGCTAAGGGAGTCCAATGTA


AACAATTCTAGAAGATAAGCATGTAGAGGTTAGCAGGGAGTTTGTCAA


GGACGAGAGTTCGAGTCTCTCCACCTCCACCA






Chlamydia pneumoniae (CWL029) tmRNA








SEQ ID NO: 162







GGGGGUGUAUAGGUUUCGACUUGAAAAUGAAGUGUUAAUUGCAUGCG


GAGGGCGUUGGCUGGCCUCCUAAAAAGCCAACAAAACAAUAAAUGCCG


AACCUAAGGCUGAAUGCGAAAUUAUUAGCUUGUUUGACUCAGUAGAG


GAAAGACUAGCUGCUUAAUUAGCAAAAGUUGUUAGCUAGAUAAUCUC


UAGGUAACCCGGUAUCUGCGAGCUCCACCAGAGGCUUGCAAAAUACCG


UCAUUUAUCUGGUUGGAACUUACUUUCUCUAAUUCUCAAGGAAGUUCG


UUCGAGAUUUUUGAGAGUCAUUGGCUGCUAUAGAGGCUUCUAGCUAA


GGGAGUCCAAUGUAAACAAUUCUAGAAGAUAAGCAUGUAGAGGUUAG


CAGGGAGUUUGUCAAGGACGAGAGUUCGAGUCUCUCCACCUCCACCA






Francisella tularensis ssrA








SEQ ID NO: 163







GGGGGCGAATATGGTTTCGACATGAATGTCAAAATCTAAGGTGCATGCC


GAGGAAGTACCGTAACCTCGTTAATAACAGTACAAATGCCAATAATAAC


TGGCAACAAAAAAGCAAACCGCGTAGCGGCTAACGACAGCAACTTTGCT


GCTGTTGCTAAAGCTGCCTAGTCTAGCTTAATAATCTAGATGCGCACGGA


TATGATAGTCTTTCTTATGACACTATCTATACATCCGTTCATATTCCGC


ATAAGACGGTCTTTGCTTTTTGTCTGGGAGTTAAGGCTGTATTTAACA


GACTCGCTAACTATTACCCTGGCTAATTGGGGAATAGTCAAGCTAAAC


TCAAATAGATTAGCCTAAGCATGTAGATCCAAAGATCTAGAGTTTGTG


GACGCGGGTTCAAATCCCGCCGCCTCCACCA






Francisella tularensis tmRNA








SEQ ID NO: 164







GGGGGCGAAUAUGGUUUCGACAUGAAUGUCAAAAUCUAAGGUGCAUG


CCGAGGAAGUACCGUAACCUCGUUAAUAACAGUACAAAUGCCAAUAAU


AACUGGCAACAAAAAAGCAAACCGCGUAGCGGCUAACGACAGCAACUU


UGCUGCUGUUGCUAAAGCUGCCUAGUCUAGCUUAAUAAUCUAGAUGCG


CACGGAUAUGAUAGUCUUUCUUAUGACACUAUCUAUACAUCCGUUCAU


AUUCCGCAUAAGACGGUCUUUGCUUUUUGUCUGGGAGUUAAGGCUGUA


UUUAACAGACUCGCUAACUAUUACCCUGGCUAAUUGGGGAAUAGUCAA


GCUAAACUCAAAUAGAUUAGCCUAAGCAUGUAGAUCCAAAGAUCUAGA


GUUUGUGGACGCGGGUUCAAAUCCCGCCGCCUCCACCA






Guillardia theta (plastid) ssrA








SEQ ID NO: 165







GGGGCTGATTTGGATTCGACATATAAATTTGCGTGTTTCATTATGAAGCA


AGTCAAGTTTAATGATCTTGTAAAAAACATTAAAGTACAAATAAATGCA


AGCAATATAGTTTCATTTAGTTCAAAACGTTTAGTCTCTTTTGCATAAG


CAAAATGTGTTAATAACTTTCTTAGTAGAAATTGGAGAAGTTTACTAA


GATTTATATTTACTCCATAATTATTTTAAAGATGGTAAAAAGGTGATT


CATCATTTGTATGTTTCTAAACTTTGTGAAAGAATAGTGGGCTCCATT


TATAATGAACGTGGGTTCAAATCCCACCAGCTCCACCA






Guillardia theta (plastid) tmRNA








SEQ ID NO: 166







GGGGCUGAUUUGGAUUCGACAUAUAAAUUUGCGUGUUUCAUUAUGAA


GCAAGUCAAGUUUAAUGAUCUUGUAAAAAACAUUAAAGUACAAAUAA


AUGCAAGCAAUAUAGUUUCAUUUAGUUCAAAACGUUUAGUCUCUUUU


GCAUAAGCAAAAUGUGUUAAUAACUUUCUUAGUAGAAAUUGGAGAAG


UUUACUAAGAUUUAUAUUUACUCCAUAAUUAUUUUAAAGAUGGUAAA


AAGGUGAUUCAUCAUUUGUAUGUUUCUAAACUUUGUGAAAGAAUAGU


GGGCUCCAUUUAUAAUGAACGUGGGUUCAAAUCCCACCAGCUCCACCA






Thalassiosira Weissflogii (plastid) ssrA








SEQ ID NO: 167







GGGGCTGATTTGGTTTCGACATTTAAAACTTCTTTCTATGTGTCAGGT


CAAAGTTTGTATTCTTTGTAAAAAAATACTAAAATACTAATAAATGCT


AATAATATAATACCGTTTATTTTTAAAGCAGTAAAAACAAAAAAAGAA


GCAATGGCTTTAAATTTTGCTGTATAGTTCATTAACTTAGGTTATTAA


CATATTTTTTATTATAACTGGACTTTTCTCTAGTTTATAGTTTAGAATA


AATTTAAATTTTGCAAAACTCGTTCGAAAATTTTCGGGCTAAACCTGT


AAACGCAAATACTAAGAAATTTTAGATGGACATGGGTTCAATTCCCA


TCAGTTCCACCA






Thalassiosira Weissflogii (plastid) tmRNA








SEQ ID NO: 168







GGGGCUGAUUUGGUUUCGACAUUUAAAACUUCUUUCUAUGUGUCAGG


UCAAAGUUUGUAUUCUUUGUAAAAAAAUACUAAAAUACUAAUAAAUG


CUAAUAAUAUAAUACCGUUUAUUUUUAAAGCAGUAAAAACAAAAAAA


GAAGCAAUGGCUUUAAAUUUUGCUGUAUAGUUCAUUAACUUAGGUUA


UUAAAUAUUUUUUCAUUAUAACUGGACUUUUCUCUAGUUUAUAGUUU


AGAAUAAAUUUAAAUUUUGCAAAACUCGUUCGAAAAUUUUCGGGCUA


AACCUGUAAACGCAAAUACUAAGAAAUUUUAGAUGGACAUGGGUUCA


AUUCCCAUCAGUUCCACCA






Helicobacter pylori ssrA,



(clinical isolate 1), internal partial







SEQ ID NO: 176







TGGGGATGTTACGGTTTCGACAGGGGTAGTTCGAGCTTAGGTGGCGAGTC


GAGGGGATCGGCCTCGTTAAAACGTCAAAGCCTATAACTGGCAAACAAC


AAAACAACTTCGCTTTAGCAGCTTAATAAGCTCTTAGCGGTTCCTCCCTC


CATCGCCCATGTGGTAGGGTAAGGGACTCAAATTAAGTGGGCTACGCTG


GATTCCACCGTCTGAGGATGAAAGAAGAGAACAACCAGACTAGCTACCC


GGACGCCCGTCGATAGGCAGATGGAGTAGCGAATCGCGAATATATCGAC


TACACTCGTAGAAGCTTAAGTGCCGATATTCTTGGACGTGGGTTCGACTC


CC






Helicobacter pylori tmRNA,



(clinical isolate 1), internal partial







SEQ ID NO: 177







UGGGGAUGUUACGGUUUCGACAGGGGUAGUUCGAGCUUAGGUGGCGA


GUCGAGGGGAUCGGCCUCGUUAAAACGUCAAAGCCUAUAACUGGCAAA


CAACAAAACAACUUCGCUUUAGCAGCUUAAUAAGCUCUUAGCGGUUCC


UCCCUCCAUCGCCCAUGUGGUAGGGUAAGGGACUCAAAUUAAGUGGGC


UACGCUGGAUUCCACCGUCUGAGGAUGAAAGAAGAGAACAACCAGACU


AGCUACCCGGACGCCCGUCGAUAGGCAGAUGGAGUAGCGAAUCGCGAA


UAUAUCGACUACACUCGUAGAAGCUUAAGUGCCGAUAUUCUUGGACGU


GGGUUCGACUCCC






Helicobacter pylori ssrA,



(clinical isolate 2), internal partial







SEQ ID NO: 178







TGGGGACGTTACGGTTTCGACAGGGATAGTTCGAGCTTAGGTTGCGAGTC


GAGGGGATCGGCCTCGTTAAAACGTCAAAGCCTATAATTGGCAAACAAA


ACAATCTTTCTTTAGCTGCTTAATTGCACTAAAGGTTCCTCCCTCCATC


GTCCATGTGGTAGGGTAAGGGACTCAAACTAAGTGGACTACGCCGGAGT


TCGCCGTCTGAGGACAAAGGAAGAGAACAACCAGACTAGCAACTTGGAA


GCCTGTCGATAGGCCGAAGAGTTCGCGAAATGCTAATATATCGACTAC


ACTCGTAGAAGCTTAAGTGCCGATATTTTTGGACGTGGGTTCGATTCCCT






Helicobacter pylori tmRNA,



(clinical isolate 2), internal partial







SEQ ID NO: 179







UGGGGACGUUACGGUUUCGACAGGGAUAGUUCGAGCUUAGGUUGCGA


GUCGAGGGGAUCGGCCUCGUUAAAACGUCAAAGCCUAUAAUUGGCAAA


CAAAACAAUCUUUCUUUAGCUGCUUAAUUGCACUAAAGGUUCCUCCCU


CCAUCGUCCAUGUGGUAGGGUAAGGGACUCAAACUAAGUGGACUACGC


CGGAGUUCGCCGUCUGAGGACAAAGGAAGAGAACAACCAGACUAGCAA


CUUGGAAGCCUGUCGAUAGGCCGAAGAGUUCGCGAAAUGCUAAUAUAU


CGACUACACUCGUAGAAGCUUAAGUGCCGAUAUUUUUGGACGUGGGUU


CGAUUCCCU






Listeria seeligeri (NCTC 11856)



ssrA, internal partial







SEQ ID NO: 180







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TCAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGAAAGGGTCTCACTTTAAGTGGGCTACACTAAATAATCTCCGT


CTGGGGTTAGTTAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTT


ACCGGGCTGATGTTTATGCGAAATACTAATACGGTGACTACGCTCGTAGA


TATTTAAGTGCCCATATTTCTGG






Listeria seeligeri (NCTC 11856)



tmRNA, internal partial







SEQ ID NO: 181







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGAAAGGGUCUCACUUUAAGUGGGCUACACUAAAUAA


UCUCCGUCUGGGGUUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUACUAAUACGGUGACU


ACGCUCGUAGAUAUUUAAGUGCCCAUAUUUCUGG






Listeria ivanovii (NCTC 11846)



ssrA, internal partial







SEQ ID NO: 182







ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGTCCTCGTTA


TTAACGTCAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT


TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATCGCCCATG


TGCTACGGTAAGGGTCTCACTTTAAGTGGGCTACACTAAATAATCTCCGT


CTGGGGTTAGTTAGAAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTT


ACCGGGCTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAGA


TATTTAAGTGCCGATATTTCTGG






Listeria ivanovii (NCTC 11846)



tmRNA, internal partial







SEQ ID NO: 183







ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCGUCCUCGU


UAUUAACGUCAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAG


CUUUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGCAUCGC


CCAUGUGCUACGGUAAGGGUCUCACUUUAAGUGGGCUACACUAAAUAA


UCUCCGUCUGGGGUUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGG


AAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGACU


CGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG






Mycobacterium africanum (clinical isolate)



ssrA, internal partial







SEQ ID NO: 184







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCGACCAAATAAGCGCCGATTCACATCAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACGGCTAGTCTGTCAGACCGGGAACGCCCT


CGGCCCGGACCCTGGCATCAGCTAGAGGGATCCACCGATGAGTCCGGTC


GCGGGACTCCTCGGGACAACCACAGCGACTGGGATCGTCATCTCGGCTA


GTTCGCGTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACGG


AGAAGCCTTGAGGGAATGCCGTA






Mycobacterium africanum (clinical isolate)



tmRNA, internal partial







SEQ ID NO: 185







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCGACCAAAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACGGCUAGUCUGUCAGACCGGGAAC


GCCCUCGGCCCGGACCCUGGCAUCAGCUAGAGGGAUCCACCGAUGAGU


CCGGUCGCGGGACUCCUCGGGACAACCACAGCGACUGGGAUCGUCAUC


UCGGCUAGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUA






Mycobacterium gordonae



(clinical isolate) ssrA, internal partial







SEQ ID NO: 186







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCATATAAGCGCCGATTCACATCAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACGGCTAGTCTGTCGGACCGGGAACGCCCT


CGCCCCGGACCCCGGCATCAGCTAGAGGGATCAACCGATGAGTTCGGTC


GCGGGACTCATCGGGACACCAACAGCGACTGGGATCGTCATCCTGGCTA


GTCCGTGTGACCAGGAGATCCGAGCAGAGACATAGCGGACTGCGCACGG


AGAAGCCTTGAGGGAATGCCGTA






Mycobacterium gordonae (clinical isolate)



tmRNA, internal partial







SEQ ID NO: 187







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAUAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACGGCUAGUCUGUCGGACCGGGAAC


GCCCUCGCCCCGGACCCCGGCAUCAGCUAGAGGGAUCAACCGAUGAGU


UCGGUCGCGGGACUCAUCGGGACACCAACAGCGACUGGGAUCGUCAUC


CUGGCUAGUCCGUGUGACCAGGAGAUCCGAGCAGAGACAUAGCGGACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUA






Mycobacterium kansasii (clinical isolate)



ssrA, internal partial







SEQ ID NO: 188







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCAAATAAGCGCCGATTCACATCAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACGGCTAGTCTGTCAGACCGGGACCGCCCT


CGACCCGGACTCTGGCATCAGCTAGAGGGATCAACCGATGAGTTCGGTC


GCGGGACTCGTCGGGACACCAACAGCGACTGGGATCGTCATCCTGGCTA


GTTCGCGTGACCAGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACGG


AGAAGCCTTGAGGGAATGCCGTA






Mycobacterium kansasii (clinical isolate)



tmRNA, internal partial







SEQ ID NO: 189







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAAAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACGGCUAGUCUGUCAGACCGGGACC


GCCCUCGACCCGGACUCUGGCAUCAGCUAGAGGGAUCAACCGAUGAGU


UCGGUCGCGGGACUCGUCGGGACACCAACAGCGACUGGGAUCGUCAUC


CUGGCUAGUUCGCGUGACCAGGAGAUCCGAGCAGAGGCAUAGCGAACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUA






Mycobacterium chelonae ssrA, internal partial








SEQ ID NO: 190







ACAGCGAGTCTCGACTTAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCATTGCAACCAATTAAGCGCCGATTCTCATCAGCGCGACT


ACGCACTCGCTGCCTAAGCGACTGCGTGTCTGTCAGACCGGGAGCGCCCT


CAGCCCGGACCCTGGCATCAGCTAGAGGGACAAACTACGGGTTCGGTCG


CGGGACCCGTAGGGACATCAAACAGCGACTGGGATCGTCATCTCGGCTT


GTTCGCGGGACCGAGAGATCCAAGTAGAGGCATAGCGAACTGCGCACGG


AGAAGCCTTAATGAACGGCCGTTG






Mycobacterium chelonae tmRNA, internal partial








SEQ ID NO: 191







ACAGCGAGUCUCGACUUAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCAUUGCAACCAAUUAAGCGCCGAUUCUCAUCAGCGCG


ACUACGCACUCGCUGCCUAAGCGACUGCGUGUCUGUCAGACCGGGAGC


GCCCUCAGCCCGGACCCUGGCAUCAGCUAGAGGGACAAACUACGGGUU


CGGUCGCGGGACCCGUAGGGACAUCAAACAGCGACUGGGAUCGUCAUC


UCGGCUUGUUCGCGGGACCGAGAGAUCCAAGUAGAGGCAUAGCGAACU


GCGCACGGAGAAGCCUUAAUGAACGGCCGUUG






Mycobacterium szulgai (ATCC 35799)



ssrA, internal partial







SEQ ID NO: 192







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCAATTAAGCGCCGAGAACACTCAGCGCGAC


TTCGCTCTCGCTGCCTAAGCGACAGCAAGTCCGTCAGACCGGGAAAGCCC


TCGACCCGGACCCTGGCGTCATCTAGAGGGATCCACCGGTGAGTTCGGTC


GCGGGACTCATCGGGACACCAACAGCGACTGGGATCGTCATCCTGGCTA


GTTCGCGTGACCAGGAGATCCGAGTAGAGACATAGCGAACTGCGCACGG


AGAAGCCTTGAGGGAATGCCGTAG






Mycobacterium szulgai (ATCC 35799)



tmRNA, internal partial







SEQ ID NO: 193







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGAGAACACUCAGCGCG


ACUUCGCUCUCGCUGCCUAAGCGACAGCAAGUCCGUCAGACCGGGAAA


GCCCUCGACCCGGACCCUGGCGUCAUCUAGAGGGAUCCACCGGUGAGU


UCGGUCGCGGGACUCAUCGGGACACCAACAGCGACUGGGAUCGUCAUC


CUGGCUAGUUCGCGUGACCAGGAGAUCCGAGUAGAGACAUAGCGAACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUAG






Mycobacterium malmoense (clinical isolate)



ssrA, internal partial







SEQ ID NO: 194







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCATATAAGCGCCGTTTCAACACAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACAGCTAGTCCGTCAGACCGGGAACGCCCT


CGACCCGGAGCCTGGCGTCAGCTGGAGGGATCCACCGGTGAGTCCGGTC


GCGGGACTCATCGGGACATACACAGCGACTGGGATCGTCATCCTGGCTG


GTTCGCGTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACGG


AGAAGCCTTGAGGGAATGCCGTAG






Mycobacterium malmoense (clinical isolate)



tmRNA, internal partial







SEQ ID NO: 195







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAUAUAAGCGCCGUUUCAACACAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACAGCUAGUCCGUCAGACCGGGAAC


GCCCUCGACCCGGAGCCUGGCGUCAGCUGGAGGGAUCCACCGGUGAGU


CCGGUCGCGGGACUCAUCGGGACAUACACAGCGACUGGGAUCGUCAUC


CUGGCUGGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUAG






Mycobacterium flavescens ssrA,



internal partial







SEQ ID NO: 196







ACTTCGAGCGTCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCAATTAAGCGCCGATTCCAATCAGCGCGACT


ACGCACTCGCTGCCTAAGCGACTGCGTGTCTGTCAGCCCGGGAGAGCCCT


CGACCCGGTGTCTGGCATCAGCTAGAGGGATAAACCGGTGGGTCCGGTC


GCGGGACTCATCGGGACATCAAACAGCGACTGGGATCGTCATCCTGACTT


GTTCGCGTGATCAGGAGATCCGAGTAGAGACATAGCGAACTGCGCACGG


AGAAGCCTTGAGGGAACGCCGTAG






Mycobacterium flavescens tmRNA,



internal partial







SEQ ID NO: 197







ACUUCGAGCGUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGAUUCCAAUCAGCGCG


ACUACGCACUCGCUGCCUAAGCGACUGCGUGUCUGUCAGCCCGGGAGA


GCCCUCGACCCGGUGUCUGGCAUCAGCUAGAGGGAUAAACCGGUGGGU


CCGGUCGCGGGACUCAUCGGGACAUCAAACAGCGACUGGGAUCGUCAU


CCUGACUUGUUCGCGUGAUCAGGAGAUCCGAGUAGAGACAUAGCGAAC


UGCGCACGGAGAAGCCUUGAGGGAACGCCGUAG






Mycobacterium marinum ssrA, internal partial








SEQ ID NO: 198







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGATGCAACTAGATAAGCGCCGATTCACATCAGCGCGAC


TACGCTCTCGCTGCCTAAGCGACGGCTAGTCTGTCGGACCGGGAACGCCC


TCGCCCCGGACCCCGGCATCAGCTAGAGGGATCAACCGATGAGTTCGGT


CGCGGGGCTCATCGGGACATCAACAGCGACTGGGATCGTCATCCTGGCT


AGTTCGCGTGACCAGGAGATCCGAGCAGAGACCTAGCGGACTGCGCACG


GAGAAGCCTTGAGGGAATGCCGTAG






Mycobacterium marinum tmRNA, internal partial








SEQ ID NO: 199







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGAUGCAACUAGAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACGGCUAGUCUGUCGGACCGGGAAC


GCCCUCGCCCCGGACCCCGGCAUCAGCUAGAGGGAUCAACCGAUGAGU


UCGGUCGCGGGGCUCAUCGGGACAUCAACAGCGACUGGGAUCGUCAUC


CUGGCUAGUUCGCGUGACCAGGAGAUCCGAGCAGAGACCUAGCGGACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUAG






Mycobacterium microti (environmental isolate)



ssrA, internal partial







SEQ ID NO: 200







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCGACCAAATAAGCGCCGATTCACATCAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACGGCTAGTCTGTCAGACCGGGAACGCCCT


CGGCCCGGACCCTGGCATCAGCTAGAGGGATCCACCGATGAGTCCGGTC


GCGGGACTCCTCGGGACAGCCACAGCGACTGGGATCGTCATCTCGGCTA


GTTCGCGTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACGG


AGAAGCCTTGAGGGAATGCCGTA






Mycobacterium microti (environmental isolate)



tmRNA, internal partial







SEQ ID NO: 201







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCGACCAAAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACGGCUAGUCUGUCAGACCGGGAAC


GCCCUCGGCCCGGACCCUGGCAUCAGCUAGAGGGAUCCACCGAUGAGU


CCGGUCGCGGGACUCCUCGGGACAGCCACAGCGACUGGGAUCGUCAUC


UCGGCUAGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAACU


GCGCACGGAGAAGCCUUGAGGGAAUGCCGUA






Mycobacterium smegmatis (ATCC 10143)



ssrA, internal partial







SEQ ID NO: 202







ACTTCGAGCATCGAATCCAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCAATTAAGCGCCGATTCCAATCAGCGCGACT


ACGCCCTCGCTGCCTAAGCGACGGCTGGTCTGTCAGACCGGGAGTGCCCT


CGGCCCGGATCCTGGCATCAGCTAGAGGGACCCACCCACGGGTTCGGTC


GCGGGACCTGTGGGGACATCAAACAGCGACTGGGATCGTCATCTCGGCT


TGTTCGTGTGACCGGGAGATCCGAGTAGAGACATAGCGAACTGCGCACG


GAGAAGCCTCGAGGACATGCCGTAG






Mycobacterium smegmatis (ATCC 10143)



ssrA, internal partial







SEQ ID NO: 203







ACUUCGAGCAUCGAAUCCAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGAUUCCAAUCAGCGCG


ACUACGCCCUCGCUGCCUAAGCGACGGCUGGUCUGUCAGACCGGGAGU


GCCCUCGGCCCGGAUCCUGGCAUCAGCUAGAGGGACCCACCCACGGGU


UCGGUCGCGGGACCUGUGGGGACAUCAAACAGCGACUGGGAUCGUCAU


CUCGGCUUGUUCGUGUGACCGGGAGAUCCGAGUAGAGACAUAGCGAAC


UGCGCACGGAGAAGCCUCGAGGACAUGCCGUAG






Mycobacterium xenopi (clinical isolate)



ssrA, internal partial







SEQ ID NO: 204







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACTAAATAAGCGCCGATTCACATCAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACAGCTAGTCCGTCAGGCCGGGAGTTCCCT


CGACCCGGATCCTGGCGTCAGCTAGAGGGATCCACCGATGGGTTCGGTC


GCGGGACCCATCGGGACACCACACAGCGACTGGGATCGCCGTCCCGGCT


AGTTCGCGAGACCGGGAGATCCGAGTAAGGGCAAAGCGAACTGCGCACG


GAGAAGCCTTGAGGGTATGCCGTA






Mycobacterium xenopi (clinical isolate)



tmRNA, internal partial







SEQ ID NO: 205







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACUAAAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACAGCUAGUCCGUCAGGCCGGGAGU


UCCCUCGACCCGGAUCCUGGCGUCAGCUAGAGGGAUCCACCGAUGGGU


UCGGUCGCGGGACCCAUCGGGACACCACACAGCGACUGGGAUCGCCGU


CCCGGCUAGUUCGCGAGACCGGGAGAUCCGAGUAAGGGCAAAGCGAAC


UGCGCACGGAGAAGCCUUGAGGGUAUGCCGUA






Mycobacterium intracellulare (NCTC 10425)



ssrA, internal partial







SEQ ID NO: 206







ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAACCGACCA


CCGTAAGCGTCGTTGCAAACAGATAAGCGCCGATTCACATCAGCGCGAC


TACGCTCTCGCTGCCTAAGCGACAGCTAGTCCGTCAGACCGGGAACGCCC


TCGACCCGGAGCCTGGCGTCAGCTAGAGGGATCCACCGATGAGTCCGGT


CGCGGGACTTATCGGGACACCAACAGCGACTGGGATCGTCATCTCGGCTT


GTTCGCGTGACCGGGAGATCCGAGTAGAGGCATAGCGAACTGCGCACGG


AGAAGTCTTGAGGGAATGCCGTAG






Mycobacterium intracellulare (NCTC 10425)



tmRNA, internal partial







SEQ ID NO: 207







ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAACCGACC


ACCGUAAGCGUCGUUGCAAACAGAUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACAGCUAGUCCGUCAGACCGGGAAC


GCCCUCGACCCGGAGCCUGGCGUCAGCUAGAGGGAUCCACCGAUGAGU


CCGGUCGCGGGACUUAUCGGGACACCAACAGCGACUGGGAUCGUCAUC


UCGGCUUGUUCGCGUGACCGGGAGAUCCGAGUAGAGGCAUAGCGAACU


GCGCACGGAGAAGUCUUGAGGGAAUGCCGUAG






Mycobacterium scrofulaceum (NCTC 10803)



ssrA, internal partial







SEQ ID NO: 208







ACATCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGAGACCA


CCGTAAGCGTCGTTGCAACCAATTAAGCGCCGATTCACATCAGCGCGACT


ACGCTCTCGCTGCCTAAGCGACAGCTAGTCCGTCAGACCGGGAAAGCCCT


CGACCCGGAGCCTGGCGTCAGCTAGAGGGATCAACCGATGAGTTCGGTC


GCGGGACTCATCGGGACACCAACAGCGACTGGGATCGTCATCCTGGCTA


GTCCGCGTGACCAGGAGATCCGAGCAGAGGCATAGCGGACTGCGCACGG


AGAAGTCTTGAGGGAATGCCGTTG






Mycobacterium scrofulaceum (NCTC 10803)



tmRNA, internal partial







SEQ ID NO: 209







ACAUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAGAGACC


ACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGAUUCACAUCAGCGCG


ACUACGCUCUCGCUGCCUAAGCGACAGCUAGUCCGUCAGACCGGGAAA


GCCCUCGACCCGGAGCCUGGCGUCAGCUAGAGGGAUCAACCGAUGAGU


UCGGUCGCGGGACUCAUCGGGACACCAACAGCGACUGGGAUCGUCAUC


CUGGCUAGUCCGCGUGACCAGGAGAUCCGAGCAGAGGCAUAGCGGACU


GCGCACGGAGAAGUCUUGAGGGAAUGCCGUUG






Nocardia asteroides ssrA, internal partial








SEQ ID NO: 210







ACTGTGTGCGCCGAGGTAGGGGAAGCGTGTCGGTGCAGGCTGGAGACCA


CCGTTAAGCGTCGCGGCAACCAATTAAGCGCCGATTCCAATCAGCGCGA


CTACGCCCTCGCTGCCTGATCAGCGACGGCTAGCTGTCGGCCCGGGTTGT


GTTCCCGAACCCGGATGCCGGCATCATCTCAGGGAACTCACCGTGTTCGC


CGGTCGCGGACGGACACGGGACAGCAAACAGCGACTGGGATCGTCATCT


CGGCTTGTTCGCGTGACCGGGAGATCCAAGTAGAGACATAGCGGACTGC


ACACGGAGAAGCCCTACTGACTCGACACAG






Nocardia asteroides tmRNA, internal partial








SEQ ID NO: 211







ACUGUGUGCGCCGAGGUAGGGGAAGCGUGUCGGUGCAGGCUGGAGACC


ACCGUUAAGCGUCGCGGCAACCAAUUAAGCGCCGAUUCCAAUCAGCGC


GACUACGCCCUCGCUGCCUGAUCAGCGACGGCUAGCUGUCGGCCCGGG


UUGUGUUCCCGAACCCGGAUGCCGGCAUCAUCUCAGGGAACUCACCGU


GUUCGCCGGUCGCGGACGGACACGGGACAGCAAACAGCGACUGGGAUC


GUCAUCUCGGCUUGUUCGCGUGACCGGGAGAUCCAAGUAGAGACAUAG


CGGCUGCACACGGAGAAGCCCUACUGACUCGACACAG






Salmonella enteritidis ssrA, internal partial








SEQ ID NO: 212







ACGGGATTTGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTGGCCTCGT


AAAAAGCCGCAAAAAAATAGTCGCAAACGACGAAACCTACGCTTTAGCA


GCTTAATAACCTGCTTAGAGCCCTCTCTCCCTAGCCTCCGCTCTTAGGA


CGGGGATCAAGAGAGGTCAAACCCAAAAGAGATCGCGTGGATGCCCTG


CCTGGGGTTGAAGCGTTAAAACGAATCAGGCTAGTCTGGTAGTGGCGT


GTCCGTCCGCAGGTGCCAGGCGAATGTAAAGACTGACTAAGCATGTAG


TACCGAGGATGTAGGAATTTCGG






Salmonella enteritidis tmRNA,



internal partial







SEQ ID No: 213







ACGGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGGCCUCG


UAAAAAGCCGCAAAAAAAUAGUCGCAAACGACGAAACCUACGCUUUAG


CAGCUUAAUAACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUA


GGACGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGGAUGCC


CUGCCUGGGGUUGAAGCGUUAAAACGAAUCAGGCUAGUCUGGUAGUGG


CGUGUCCGUCCGCAGGUGCCAGGCGAAUGUAAAGACUGACUAAGCAUG


UAGUACCGAGGAUGUAGGAAUUUCGG






Staphylococcus epidermidis (NCTC 11047)



ssrA, internal partial







SEQ ID NO: 214







ACAGGGGTCCCCCGAGCTTATTAAGCGTGTCGGAGGGTTGGCTCCGTCAT


CAACACATTTCGGTTAAATATAACTGACAAATCAAACAATAATTTCGCAG


TAGCTGCGTAATAGCCACTGCATCGCCTAACAGCATCTCCTACGTGCTGT


TAACGCGATTCAACCCTAGTAGGATATGCTAAACACTGCCGCTTGAAGTC


TGTTTAGATGAAATATAATCAAGCTAGTATCATGTTGGTTGTTTATTGC


TTAGCATGATGCGAAAATTATCAATAAACTACACACGTAGAAAGATTTG


TATCAGGACCTCTGG






Staphylococcus epidermidis (NCTC 11047)



tmRNA, internal partial







SEQ ID NO: 215







ACAGGGGUCCCCCGAGCUUAUUAAGCGUGUCGGAGGGUUGGCUCCGUC


AUCAACACAUUUCGGUUAAAUAUAACUGACAAAUCAAACAAUAAUUUC


GCAGUAGCUGCGUAAUAGCCACUGCAUCGCCUAACAGCAUCUCCUACG


UGCUGUUAACGCGAUUCAACCCUAGUAGGAUAUGCUAAACACUGCCGC


UUGAAGUCUGUUUAGAUGAAAUAUAAUCAAGCUAGUAUCAUGUUGGU


UGUUUAUUGCUUAGCAUGAUGCGAAAAUUAUCAAUAAACUACACACGU


AGAAAGAUUUGUAUCAGGACCUCUGG






Streptococcus agalactiae (NCTC 8181)



ssrA, internal partial







SEQ ID NO: 216







ACAGGCATTATGAGGTATATTTTGCGACTCATCGGCAGATGTAAAATGCC


AGTTAAATATAACTGCAAAAAATACAAATTCTTACGCATTAGCTGCCTAA


AAAACAGCCTGCGTGATCTTCACAAGATTGTTTGCGTTTTGCTAGAAGGT


CTTATTTATCAGCAAACTACGTTTGGCTACTGTCTAGTTAGTTAAAAAGA


GATTTATAGACTCGCTATGTGAGGGCTTGAGTTATGTGTCATCACCTAGT


TAAATCAATACATAACCTATAGTTGTAGACAAATATATTAGCAGATGTTT


GG






Streptococcus agalactiae (NCTC 8181)



tmRNA, internal partial







SEQ ID NO: 217







ACAGGCAUUAUGAGGUAUAUUUUGCGACUCAUCGGCAGAUGUAAAAU


GCCAGUUAAAUAUAACUGCAAAAAAUACAAAUUCUUACGCAUUAGCUG


CCUAAAAAACAGCCUGCGUGAUCUUCACAAGAUUGUUUGCGUUUUGCU


AGAAGGUCUUAUUUAUCAGCAAACUACGUUUGGCUACUGUCUAGUUAG


UUAAAAAGAGAUUUAUAGACUCGCUAUGUGAGGGCUUGAGUUAUGUG


UCAUCACCUAGUUAAAUCAAUACAUAACCUAUAGUUGUAGACAAAUAU


AUUAGCAGAUGUUUGG






Of the above sequences SEQ ID NOs 47 to 62, 65 to 68, 71 and 72, 98 and 99, 159 to 168 and 176-217 are novel sequences.


The above mentioned sequences can be used to form a database of ssrA gene sequences which can be used to identify a bacterial species, or for the generation of nucleic acid diagnostic assays.


Representative probes identified in accordance with the invention are as follows:



Salmonella:


1) Genius specific probe:












5′-CGAATCAGGCTAGTCTGGTAG-3′
SEQ ID NO: 218







Mycobacteria:


2) Oligonucleotide probe for detection of tuberculosis complex











TB01







SEQ ID NO: 219









5′-ACTCCTCGGACA (A/G) CCACAGCGA-3′







3) Oligonucleotide probes for detection of M. avium and M. paratuberculosis sequences











Probe 1:







SEQ ID NO: 220









PAV1-5′-GTTGCAAATAGATAAGCGCC-3′







Probe 2:







SEQ ID NO: 221









PAV2-5′-TCCGTCAGCCCGGGAACGCC-3′







Listeria:


4) Oligonucleotide probe used in the determination of tmRNA integrity after heat killing treatment of cells:











LVtm:
5′-TTTTGTTTTTCTTTGCCA-3′
SEQ ID NO: 222







Escherichia coli:


5) Oligonucleotide probe used in the determination of tmRNA integrity after heat killing treatment of cells:











Evtm:
5′-AGTTTTCGTCGTTTGCGA-3′
SEQ ID NO: 223







Further representative primers identified in accordance with the invention are as follows:

Mycobacteria:

1) Degenerative oligonucleotide primers for the amplification of all mycobacterial sequences









5′ Primer







SEQ ID NO: 224







10SAAM3-5′-CAGGCAA (G/C) (A/T/C) GACCACCGTAA-3′





3′ Primer







SEQ ID NO: 225







10SAAM4-5′GGATCTCC(C/T)G(A/G)TC(A/T)C(A/G)CG(A/G)


AC (A/T)A-3′







2) Oligonucleotide primers for the amplification of M. avium and M. paratuberculosis











5′ Primer:







SEQ ID NO: 226









AP1for-5′-TGCCGGTGCAGGCAACTG-3′







3′ Primer:







SEQ ID NO: 227









AP2rev-5′-CACGCGAACAAGCCAGGA-3′









BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:



FIG. 1 is a clustal alignment of E. coli and V. cholerae ssrA gene sequences;



FIG. 2 is a photograph of an agarose gel of total cellular RNA prepared from E. coli and V. cholerae cells;



FIG. 3 is a photograph of an autoradiogram of hybridisation of a V. cholerae oligonucleotide probe to tmRNA transcripts of E. coli and V. cholerae;



FIG. 4 is a photograph of an agarose gel of the amplified products of universal ssrA gene amplification primers from a panel of organisms;



FIG. 5A and FIG. 5B present a clustal alignment of the ssrA gene sequences from the Listeria species;



FIG. 6 is a clustal alignment of the L. monocytogenes and B. subtilus ssrA/tmRNA gene sequences;



FIG. 7 is a photograph of an agarose gel of the amplified products of Listeria genus specific PCR amplification primers from a panel of organisms;



FIG. 8 is a photograph of an autoradiogram of hybridised Listeria genus specific oligonucleotide probe to a panel of organisms as prepared in Example 4;



FIG. 9 is a photograph of an autoradiogram of hybridised L. monocytogenes species specific probe to a panel of organisms as prepared in Example 7;



FIG. 10 is a computer scanned image of a nylon membrane strip used in the multiple colorimetric probe detection of Listeria ssrA gene sequences as described in Example 6.



FIG. 11A and FIG. 11B present a clustal alignment of ssrA gene sequences from C. trachomatis strains;



FIG. 12 is a clustal alignment of ssrA gene sequences from H. pylori strains;



FIG. 13 is a clustal alignment of ssrA gene sequences from M. genitalium strains;



FIG. 14 is a clustal alignment of ssrA gene sequences from N. gonorrhoeae strains;



FIG. 15 is a clustal alignment of ssrA gene sequences from L. monocytogenes strains;



FIG. 16 is a clustal alignment of ssrA gene sequences from L. monocytogenes strains and the L. innocua strain;



FIG. 17 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Evtm) to total RNA samples isolated after medium heat treatment of E. coli cells;



FIG. 18 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Evtm) to total RNA samples isolated after extreme heat treatment of E. coli cells;



FIG. 19 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Lvtm) to total RNA samples isolated after medium heat treatment of L. monocytogenes cells;



FIG. 20 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Lvtm) to total RNA samples isolated after extreme heat treatment of L. monocytogenes cells; and



FIG. 21 is a photograph of an agarose gel of RT-PCR generated tmRNA products at various time points post heat treatment.





The invention will be further illustrated by the following Examples.


MODES FOR CARRYING OUT THE INVENTION
Example 1
Examination of the Primary Nucleotide Sequences of Available tmRNA Sequences

A comparative primary nucleotide sequence alignment of available tmRNA sequences using the Clustal W nucleic acid alignment programme demonstrated that tmRNA sequences from prokaryotes show a more significant degree of nucleotide sequence variability and non-homology than other bacterial high copy number RNA, as demonstrated in Table 1.









TABLE 1







Percentage nucleotide sequence homology between RNA molecules


from different bacteria.












Bacillus subtilus vs.





Escherichia coli vs. Vibrio


Mycobacterium





cholerae


tuberculosis














rRNA % homology
88
66


tmRNA % homology
68
25









These regions of non-homology between tmRNA sequences from different bacteria are located in the middle of the molecule, and the extent of nucleotide sequence non-homology within the tmRNA molecule indicated that genus as well as species specific probes could be generated to distinguish between and/or detect bacteria.


Nucleotide sequence alignments had previously shown that the 5′ and 3′ flanking regions of the tmRNA molecules share a high degree of homology both within species and within genus. This observation indicated that universal oligonucleotide primers could be generated to amplify the ssrA gene or its encoding tmRNA from a wide variety of bacteria.


We have now demonstrated that these regions of homology and non-homology within the nucleotide sequence of tmRNA molecules from different organisms can be used as the basis of identifying and detecting organisms at the molecular level.


Example 2
Development of a V. cholerae tmRNA Specific Probe

A nucleotide sequence alignment of the E. coli (SEQ ID NO. 37) and V. cholerae (SEQ ID NO. 127) ssrA sequences as depicted in FIG. 1, shows that these two bacterial species are phylogenetically closely related. There are however, regions of non-homology between the sequences as evidenced by the absence of asterix marks. An oligonucleotide probe, complementary to the variable region of the V. cholerae ssrA nucleotide sequence underlined in FIG. 1, was synthesised.


The sequence of the V. cholerae tmRNA specific probe is












5′-AACGAATGGCTAACCTGAA-3′
SEQ ID NO. 169






Total RNA was isolated from liquid cultures of E. coli and V. cholerae at the mid-exponential phase and the stationary phase of growth. Equivalent amounts of the isolated total RNA were electrophoresed on a denaturing formaldehyde agarose gel and blotted onto HYBOND-N nylon membrane as shown in FIG. 2 in which the Lanes 1-4 represent the following:


Lane 1: Total E. coli RNA mid-log phase


Lane 2: Total V. cholerae RNA mid-log phase


Lane 3: Total E. coli RNA stationary phase


Lane 4: Total V. cholerae RNA stationary phase


The resulting Northern blot was then hybridised with the V. cholerae tmRNA specific probe end-labelled with □P32. The results of the hybridisation experiment shown in FIG. 3 demonstrate the specificity of the probe as only V. cholerae tmRNAs were detected. Moreover, a greater degree of hybridisation signal intensity was observed with the V. cholerae tmRNA isolated from cultures during the stationary phase of growth, indicating that a higher copy number of the tmRNA molecule is present in V. cholerae cells during this phase.


Example 3
Generation of Universal ssrA/tmRNA Oligonucleotide Amplification Primers for the Characterisation of Unknown ssrA Gene and tmRNA Sequences

Clustal W alignment of all available ssrA gene and tmRNA sequences indicated that degenerate oligonucleotide primers could be designed to amplify ssrA gene and tmRNA nucleotide sequences for a wide variety of organisms.


Degenerate oligonucleotide primers were synthesised to PCR amplify ssrA gene sequences from total genomic DNA preparations from a broad range of bacteria.


The sequences of the synthesised degenerate oligonucleotides are as follows:









(a) tmU5′: 5′ in vitro PCR amplification primer







SEQ ID NO: 170







5′-GGG(A/C)(C/T)TACGG(A/T)TTCGAC-3′





(b) tmU3′: 3′ in vitro PCR amplification primer







SEQ ID NO: 171







5′-GGGA(A/G)TCGAACC(A/G)(C/G)GTCC-3′








    • Degenerate base positions are in parentheses.





The products of PCR reactions were electrophoresed on an agarose gel and a 350 base pair (approx.) PCR product was amplified in all cases, as shown in FIG. 4, demonstrating the “universality” of the degenerate tmRNA primers.


In FIG. 4 the lanes represent the following:


Lane A: Molecular weight marker V


Lane 1: Escherichia coli


Lane 2: Salmonella poona


Lane 3: Klebsiella aerogenes


Lane 4: Proteus mirabilis


Lane 5: Proteus rettgeri


Lane 6: Aeromonas hydrophilia


Lane 7: Staphyloccus aureus


Lane 8: Enterococcus faecalis


Lane 9: Lactobacillus lactis


Lane 10: Bacillus subtilus


Lane 11: Listeria monocytogenes


Lane 12: Listeria innocua


Lane 13: Listeria murrayi


Lane 14: Listeria welshimeri


Lane 15: Listeria grayi


Lane 16: Mycobacterium bovis


Lane B: Molecular weight marker V


The universal primers amplified the ssrA gene from both Gram positive and Gram negative bacteria, as shown in Table 2.









TABLE 2







Bacterial species tested with universal amplification primers.









PCR Product













Gram negative bacteria

Escherichia coli

+




Salmonella poona

+




Klebsiella aerogenes

+




Proteus mirabilis

+




Proteus rettgeri

+




Aeromonas hydrophilia

+


Gram positive bacteria

Staphyloccus aureus

+




Enterococcus faecalis

+




Lactobacillus lactis

+




Bacillus subtilus

+




Listeria monocytogenes

+




Listeria innocua

+




Listeria murrayi

+




Listeria welshimeri

+




Listeria grayi

+




Mycobacterium bovis

+









Example 4
Isolation and Characterisation of Previously Unknown Bacterial ssrA/tmRNA Nucleotide Sequences

The PCR products amplified from genomic DNA from the Listeria species of bacteria and that from the M. bovis bacterium, from Example 2, were subcloned into a T-tailed plasmid vector for the purposes of DNA sequencing. Three recombinant clones were selected for each species and sequenced by the di-deoxy sequencing method. The sequence of both DNA strands for each subclone was determined.


The nucleotide sequence determined for the M. bovis ssrA gene shared 100% homology with the Mycobacterium tuberculosis ssrA gene sequence.


A clustal W alignment of the novel ssrA gene sequences obtained for the Listeria species (SEQ ID NOS 51, 53, 55, 59 and 61) is shown in FIG. 5. This analysis indicated that genus-specific probes and oligonucleotide amplification primers can be generated for Listeria bacteria. Furthermore, the alignment also indicated that a species specific oligonucleotide probe can be generated which will distinguish L. monocytogenes from the other Listeria species.


In FIG. 5 the proposed genus specific oligonucleotide primers, Ltm 1 and Ltm 2, are boxed, as is the genus specific Listeria oligonucleotide probe, LGtm. The proposed L. monocytogenes species specific oligonucleotide probe sequence, LStm, is underlined and italicised.


To further illustrate that the ssrA gene/tmRNA nucleic acid target is a suitable target for bacterial diagnostics, a comparative alignment of the L. monocytogenes ssrA gene nucleotide sequence (SEQ ID NO. 55) with the available B. subtilis ssrA gene nucleotide sequence (SEQ ID NO. 11) (a phylogenetically closely related bacteria to Listeria) was carried out as shown in FIG. 6. Analysis of the sequence alignment showed a percentage nucleotide sequence homology of 41%, whereas the corresponding 16S rRNA alignment exhibits a nucleotide sequence percentage homology of 87%, (data not shown).


Example 5
Generation and Application of ssrA Gene/tmRNA Genus-Specific Amplification Primers, Genus-Specific and Species-Specific Probes for the Listeria Bacterial Species

Using the Listeria genus ssrA gene/tmRNA nucleotide sequence alignment of Example 4, regions of the ssrA gene/tmRNA nucleotide sequence were analysed to determine their suitability for the generation of genus-specific amplification primers, to and genus-specific and species-specific oligonucleotide probes. In this analysis, regions which demonstrated the greatest sequence differences to B. subtilis, were selected in the design of these amplification primers and probes.


The sequences of the synthesised oligonucleotides are as follows:









(a) Ltm1: 5′ Listeria genus specific amplification


primer







SEQ ID NO: 172







5′-AAAGCCAATAATAACTGG-3′





(b) Ltm2: 3′ Listeria genus specific amplification


primer







SEQ ID NO: 173







5′-CCAGAAATATCGGCACTT-3′





(c) LGtm: Listeria genus specific hybridisation


probe







SEQ ID NO: 174







5′-GTGAGACCCTTACCGTAG-3′





(d) LStm: L. monocytogenes species specific


hybridisation probe







SEQ ID NO: 175







5′-TCTATTTAACCCCAGACG-3′






The genus specific amplification primers Ltm1 and Ltm2 were used in a series of PCR reactions with total genomic DNA from twenty different strains as the template in each case. Only ssrA gene sequences from the Listeria species were amplified (260 base pair product) with these primers (FIG. 7 and Table 3) demonstrating that the ssrA gene/tmRNA is a suitable target for specific in vitro amplification of a bacterial genus. No amplification products were observed for any other bacterial species tested, although PCR products were obtained from the DNA from these bacterial species using the universal primers (tmU5′ and tmU3′) described in Example 2.


In FIG. 7 the lanes represent the following:


Lane A: Molecular weight marker V


Lane 1: E. coli


Lane 2: S. poona


Lane 3: K. aerogenes


Lane 4: P. mirabilis


Lane 5: P. rettgeri


Lane 6: A. hydrophilia


Lane 7: S. aureus


Lane 8: E. faecalis


Lane 9: L. lactis


Lane 10: B. subtilus


Lane 11: L. monocytogenes strain 1


Lane 12: L. monocytogenes strain 2


Lane 13: L. monocytogenes strain 3


Lane 14: L. monocytogenes strain 4


Lane 15: L. monocytogenes clinical isolate


Lane 16: L. innocua


Lane 17: L. murrayi


Lane 18: L. welshimeri


Lane 19: L. grayi


Lane 20: M. bovis


Lane B: Molecular weight marker V









TABLE 3







Bacterial species tested with Listeria specific amplification primers.









PCR Product













Gram negative

Escherichia coli




bacteria

Salmonella poona






Klebsiella aerogenes






Proteus mirabilis






Proteus rettgeri






Aeromonas hydrophilia




Gram positive

Staphyloccus aureus




bacteria

Entrococcus faecalis






Lactobacillus lactis






Bacillus subtilus






Listeria monocytogenes strain 1

+




Listeria monocytogenes strain 2

+




Listeria monocytogenes strain 3

+




Listeria monocytogenes strain 4

+




Listeria monocytogenes clinical

+



isolate




Listeria innocua

+




Listeria murrayi

+




Listeria welshimeri

+




Listeria grayi

+




Mycobacterium bovis











The Listeria genus specific oligonucleotide probe, LGtm, was hybridised to the Southern blot depicted in FIG. 4. Positive hybridisation signals were observed only with Listeria species as shown in FIG. 8 and Table 4, demonstrating the utility of the tmRNA sequence as a target in detecting a specific genus.


In FIG. 8 the lanes represent the following:


Lane A: Molecular weight marker V


Lane 1: Escherichia coli


Lane 2: Salmonella poona


Lane 3: Klebsiella aerogenes


Lane 4: Proteus mirabilis


Lane 5: Proteus rettgeri


Lane 6: Aeromonas hydrophilia


Lane 7: Staphyloccus aureus


Lane 8: Enterococcus faecalis


Lane 9: Lactobacillus lactis


Lane 10: Bacillus subtilus


Lane 11: Listeria monocytogenes


Lane 12: Listeria innocua


Lane 13: Listeria murrayi


Lane 14: Listeria welshimeri


Lane 15: Listeria grayi


Lane 16: Mycobacterium bovis


Lane B: Molecular weight marker V


The PCR products generated using the genus-specific amplification described in this Example, and shown in FIG. 7, were Southern blotted and hybridised to the L. monocytogenes species-specific oligonucleotide probe. A positive hybridisation signal was observed with three of the four typed strains and the clinical isolate of L. monocytogenes as shown in FIG. 9 and Table 4.


In FIG. 9 the lanes represent the following:


Lane A: Molecular weight marker V


Lane 1: E. coli


Lane 2: S. poona


Lane 3: K. aerogenes


Lane 4: P. mirabilis


Lane 5: P. rettgeri


Lane 6: A. hydrophilia


Lane 7: S. aureus


Lane 8: E. faecalis


Lane 9: L. lactis


Lane 10: B. subtilus


Lane 11: L. monocytogenes strain 1


Lane 12: L. monocytogenes strain 2


Lane 13: L. monocytogenes strain 3


Lane 14: L. monocytogenes strain 4


Lane 15: L. monocytogenes clinical isolate


Lane 16: L. innocua


Lane 17: L. murrayi


Lane 18: L. welshimeri


Lane 19: L. grayi


Lane 20: M. bovis


Lane B: Molecular weight marker V









TABLE 4







Specificity of the Listeria genus-specific probe and the



L. monocytogenes species-specific probe.











LGtm
LStm



Genus-
Species-



specific
specific



probe
probe














Gram negative

Escherichia coli





bacteria

Salmonella poona







Klebsiella aerogenes







Proteus mirabilis







Proteus rettgeri







Aeromonas hydrophilia





Gram positive

Staphyloccus aureus





bacteria

Entrococcus faecalis







Lactobacillus lactis







Bacillus subtilus







Listeria monocytogenes strain 1

+
+




Listeria monocytogenes strain 2

+
+




Listeria monocytogenes strain 3

+
+




Listeria monocytogenes strain 4

+





Listeria monocytogenes clinical

+
+



isolate




Listeria innocua

+





Listeria murrayi

+





Listeria welshimeri

+





Listeria grayi

+





Mycobacterium bovis












One of the typed L. monocytogenes strains, strain 4, failed to generate a positive signal with this probe. DNA sequencing of the PCR amplified ssrA gene from this strain demonstrated that it contained a probe target region identical to L. innocua. It should be noted however that the ssrA gene from this strain contains other regions where the sequence is identical to the previously characterised L. monocytogenes strain and that these sequences are different to the L. innocua sequence, as shown in FIG. 15. Therefore a species specific oligonucleotide directed to one of these variable regions can be synthesised which would recognise each strain type (isolate) within the species, for example L. monocytogenes.


Example 6
Multiple Colorimetric Probe Detection of Listeria ssrA Gene Sequences

LGTm (A), LStm (B) and a Campylobacter upsaliensis 16S-23S rRNA spacer (C-5′ CATTAAACTTTAGCAAGGAAGTG 3′) SEQ ID NO: 228 oligonucleotide probe were irreversibly bound to nylon membrane strips and hybridised to with amplified ssrA PCR product, using the genus specific primers Ltm1 and Ltm2 (Ltm1 was labelled with biotin at the 5′ end), from L. monocytogenes (1-6), L. innocua (7-10), L. ivanovii (11), L. murrayi (12), L. seeligeri (13), L. welshmeri (14) and L. grayii (15). The ssrA amplified PCR products, using tmU5′ and tmU3′ (tmU5′ was labelled with biotin at the 5′ end), were also hybridised to the nylon membrane strips from the Gram-positive bacteria, B. subtilus, L. lactis, S. aureus, S. epidermis, E. faecalis, C. perfringins (16-21) and the Gram-negative bacteria E. coli, S. enteritidis, P. Rettgeri, K. aerogenes (22-25). As shown in FIG. 10 after hybridisation, development of the colorimetric assay to biotin revealed the following: Strips 1-6 demonstrates that the ssrA amplified PCR product originated from L. monocytogenes combined with the confirmation that the PCR product amplified is from the genus Listeria—A and B give colour detection; Strips 7-15 demonstrate that these PCR products originated from the genus Listeria—only A gives colour detection; and Strips 16-25 demonstrate that the PCR products are not from the genus Listeria—no colour detection. C is a negative oligonucleotide control probe and D is a positive control colorimetric detection assay for all samples.


Example 7
Use of ssrA/tmRNA Sequences to Distinguish Between Species of Organisms

Clustal W alignments as shown in FIGS. 11 (SEQ ID NOS. 19 and 21), 12 (SEQ ID NOS. 41 and 43), 13 (SEQ ID NOS. 77 and 79), 14 (SEQ ID NOS. 83 and 85), 15 and 16 (SEQ ID NO. 53, 55 and 57), indicate that there are nucleotide differences within the ssrA/tmRNA sequences of different strains of the same bacteria. This suggests that the ssrA/tmRNA sequences could potentially be used to discriminate between individual and/or groups of strains within a bacterial species. This may have useful applications in epidemiology and bacterial population analysis.


Example 8
tmRNA Integrity Analysis after Medium and Extreme Heat Treatment of Bacterial Cells


E. coli and L. monocytogenes cultures were heat treated at 80° C., for 20 min. in the case of E. coli and 40 min. in the case of L. monocytogenes and at 120° C. for 15 min. (autoclaving) after overnight growth and tested for viability at 0 h, 1 h, 2 h, 6 h, 12 h, 24 h and 48 h after heat treatment. No viability was observed at each time period tested. Total RNA was also isolated at these time periods and electrophoresed on denaturing 1.2% agarose gels and Northern blotted. Each blot was hybridised to, in the case of E. coli (FIGS. 17 and 18) with a radioactively labelled oligonucleotide probe Evtm and in the case of L. monocytogenes (FIGS. 19 and 20) with a radiolabelled LVtm. No tmRNA transcript was detected with each sample tested, demonstrating that tmRNA transcript is degraded after heat treatment. The lanes represented with the notation +ve is a positive control total RNA sample.


Example 9
Use of the tmRNA Transcript in Distinguishing Between Viable and Non-Viable Bacteria

A 100 ml culture of L. monocytogenes was grown overnight in liquid culture. After growth, serial dilutions of the cells were carried out and viability was determined by spread plating on nutrient agar plates. Simultaneously, total RNA was isolated from a 1 ml aliquot of these cells. The remainder of the cells were heated at 65° C. for 20 min. Cells were then removed for both viability analysis and total RNA isolation. Samples were taken for viability and RNA isolation at time periods of 0 h, 2 h, 6 h and 24 h after treatment.


Spread plating on nutrient agar plates indicated that heat treatment killed L. monocytogenes cells, with no viable colony forming units observed. Each RNA sample isolated was then treated with DNase to remove any contaminating DNA and total RNA samples (100 ng) were subjected to Reverse Transcriptase-PCR amplification using the Listeria genus specific ssrA/tmRNA oligonucleotide primers Ltm1 and Ltm2. Negative control amplification reactions included primers, target, and Taq polymerase, but no Reverse Transcriptase. The results of the amplification reactions are shown in FIG. 12.


Amplified tmRNA RT-PCR products were only observed with the RNA sample which was not heat treated. All other samples gave no RT-PCR product indicating that the tmRNA molecules in these samples may have been degraded in the non-viable heat treated cells.


In FIG. 21 the lanes represent the following:


Lane A: Molecular weight marker V;


Lane 1: PCR amplification of RNA (no heat treatment of cells)






    • −Reverse Transcriptase (RT), +Taq polymerase (TP);


      Lane 2: RT-PCR of RNA (no heat treatment of cells), +RT, +TP;


      Lane 3: PCR amplification of RNA (at 0 time after heat treatment),

    • −RT, +TP;


      Lane 4: RT-PCR of RNA (at 0 time after heat treatment), +RT, +TP;


      Lane 5: PCR amplification of RNA (at 1 h time after heat treatment),

    • −RT, +TP;


      Lane 6: RT-PCR of RNA (at 1 h time after heat treatment),

    • +RT, +TP;


      Lane 7: PCR amplification of RNA (at 2 h time after heat treatment),

    • −RT, +TP;


      Lane 8: RT-PCR of RNA (at 2 h time after heat treatment),

    • +RT, +TP;


      Lane 9: PCR amplification of RNA (at 6 h time after heat treatment),

    • −RT, +TP;


      Lane 10: RT-PCR of RNA (at 6 h time after heat treatment),

    • +RT, +TP;


      Lane 11: PCR amplification of RNA (at 24 h time after heat treatment),

    • −RT, +TP;


      Lane 12: RT-PCR of RNA (at 24 h time after heat treatment),

    • +RT, +TP;


      Lane B: Molecular weight marker V.




Claims
  • 1. A method of detecting and/or identifying Mycobacteria tuberculosis in a sample in vitro, which comprises, determining the presence of a nucleotide sequence encoding an ssrA gene from Mycobacteria tuberculosis, wherein said isolated nucleic acid is selected from the group consisting of SEQ ID NOS: 67, 73, 184, 200, 219, 224, 225, or a nucleic acid encoding a tmRNA from Mycobacteria tuberculosis, wherein said isolated nucleic acid is selected from the group consisting of SEQ ID NO: 68, 74, 185, 201, or a fragment thereof consisting of at least ten nucleotides.
  • 2. The method according to claim 1, wherein a fragment of at least ten nucleotides of the ssrA gene or a fragment of at least ten nucleotides of the tmRNA, which corresponds to a region of high homology from the 5′ end or a region of high homology from the 3′ end of the DNA molecule is used as a universal target region.
  • 3. The method according to claim 1, wherein a fragment at least ten nucleotides of the ssrA gene or a fragment of at least ten nucleotides of the tmRNA, which corresponds to a region of low homology is used as a target region in a nucleic acid probe assay to distinguish between species.
  • 4. The method according to claim 1, wherein a fragment of at least ten nucleotides of the ssrA gene or a fragment of at least ten nucleotides of the tmRNA, which corresponds to a region of low homology is used as a target region for the generation of a genus specific probe.
  • 5. The method according to claim 1, which comprises an amplification procedure wherein said ssrA gene fragment or said tmRNA fragment is used as the basis of a primer.
  • 6. The method according to claim 5, further comprising obtaining a product of the amplification procedure and performing a nucleic acid probe assaying, wherein said product is used as a target region in the nucleic acid probe assay.
  • 7. The method according to claim 1, which comprises a nucleic acid hybridization assay in which a cDNA transcript of the tmRNA is used as a probe.
  • 8. The method according to claim 1, which comprises using a fragment of at least ten nucleotides of the ssrA gene or tmRNA as a target region and distinguishing living and dead organisms or broad scale detecting and/or identifying organisms using a multi-probe format.
  • 9. The according to claim 8 wherein an ssrA gene probe comprising at least ten nucleotides of the ssrA gene or a tmRNA transcript probe comprising at least ten nucleotides of the tmRNA is linked to a microarray gene chip system for the broad scale high throughput detection and identification of Mycobacteria tuberculosis.
  • 10. The method according to claim 1, which comprise detecting and/or identifying Mycobacteria tuberculosis in a sample of matter.
  • 11. The method according to claim 1, further comprising obtaining a DNA profile of Mycobacteria tuberculosis to thereby distinguish between strains of Mycobacteria tuberculosis.
  • 12. A method of monitoring the efficacy of drug therapies against Mycobacteria tuberculosis, which administering a drug to a patient in need thereof and detecting and/or identifying Mycobacteria tuberculosis with the method according to claim 1 prior to and subsequent to the administration of the drug.
  • 13. The method according to claim 1 wherein the Mycobacteria tuberculosis is quantified.
Parent Case Info

This application is a divisional application of co-pending application Ser. No. 12/772,741, filed May 3, 2010, which is a divisional of Ser. No. 09/959,964 (now U.S. Pat. No. 7,972,777 B1), filed Jan. 13, 2002, and for which priority is claimed under 35 U.S.C. §120; which is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/IE00/00066 which has an International filing date of May 15, 2000, which designated the United States of America and was published in English; which claims priority to PCT/IE99/00043, filed May 14, 1999, under 35 U.S.C. §119; the entire contents of all are hereby incorporated by reference.

US Referenced Citations (5)
Number Name Date Kind
6348315 Pluckthun et al. Feb 2002 B1
7115366 Felden Oct 2006 B1
7794944 Felden Sep 2010 B2
7910307 Felden Mar 2011 B2
20060216733 Felden Sep 2006 A1
Foreign Referenced Citations (3)
Number Date Country
0 395 292 Oct 1990 EP
WO-9848008 Oct 1998 WO
WO-0059918 Oct 2000 WO
Non-Patent Literature Citations (12)
Entry
Williams et al., Nucleic Acids Research, “The tmRNA Website”, vol. 26, No. 1, pp. 163-165 (1998).
Zwieb et al., Nucleic Acids Research, “The tmRNA database (tmRDB)”, vol. 26, No. 1, pp. 166-167 (1998).
Sheridan et al., Applied and Environmental Microbiology, “Detection of mRNA by Reverse Transcription-PCR as an Indicator of Viability in Escherichia coli Cells”, vol. 64, No. 4, pp. 1313-1318 (1998).
Watanabe et al., Biochimica and Biophysica Acta, “Identification of 10Sa RNA (tmRNA) Homologues from the Cyanobacterium synechococcus Sp. Strain PCC6301 and Related Organisms”, vol. 1396, pp. 97-104 (1998).
Brown et al., Nucleic Acids Research, “Nucleotide Sequence of the 10Sa RNA Gene of the Beta-Purple Eubacterium Alcaligenes eutrophus”, vol. 18, No. 9, p. 2820 (1990).
Chauhan et al., Molecular Microbiology, “The Gene for a Small Stable RNA (10Sa RNA) of Escherichia coli”, vol. 3, No. 11, pp. 1481-1485 (1989).
Ushida et al., Nucleic Acids Research, “tRNA-like Structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis”, vol. 22, No. 16, pp. 3392-3396 (1994).
Williams et al., RNA, “Phylogenetic Analysis of tmRNA Secondary Structure”, vol. 2, pp. 1306-1310 (1996).
Tjagi et al., Nucleic Acids Research, “Identification of the 10Sa RNA Structural Gene of Mycobacterium tuberculosis”, vol. 20, No. 1, p. 138 (1991).
Feldon et al., Biochimica and Biophysica ACTA, “Eubacterial tmRNAs: everywhere except the alpha-proteobacteria”, vol. 1446, pp. 145-148 (1999).
Keiler et al., Science, “Role of Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA”, vol. 271, pp. 990-993 (1996).
Matveeva et al., Nature Biotechnology, “Preduction of Antisense Oligonucleotide Efficacy by in vitro Methods”, vol. 16, pp. 1374-1375 (1998).
Related Publications (1)
Number Date Country
20130296179 A1 Nov 2013 US
Divisions (2)
Number Date Country
Parent 12772741 May 2010 US
Child 13784121 US
Parent 09959964 US
Child 12772741 US