Nucleotide sequence encoding carbamoyl phosphate synthetase II

Information

  • Patent Grant
  • 6183996
  • Patent Number
    6,183,996
  • Date Filed
    Thursday, September 10, 1998
    25 years ago
  • Date Issued
    Tuesday, February 6, 2001
    23 years ago
Abstract
The present invention provides a nucleotide sequence encoding carbamoyl phosphate synthetase II of Plasmodium falciparum. Carbamoyl phosphate synthetase II catalyses the first committed and rate-limiting step in the de novo pyrimidine biosynthetic pathway. P. falciparum relies exclusively on pyrimidine synthesis de novo because of its inability to salvage pyrimidines. Mature human red blood cells, however, have no recognized requirement for a pyrimidine nucleotide. Accordingly, this enzyme represents a prime chemotherapeutic locus. The present invention relates to the use of the sequence encoding carbamoyl phosphate synthetase II in the recombinant production of carbamoyl phosphate synthetase II and to antisense molecules, ribozymes and other gene inactivation agents designed from this sequence.
Description




FIELD OF THE INVENTION




The present invention relates to nucleotide sequences encoding carbamoyl phosphate synthetase II of


Plasmodium falciparum,


to methods of producing this enzyme using recombinant DNA technology and to the use of this sequence and enzyme in the design of therapeutics.




BACKGROUND OF THE INVENTION




The urgency for the design of novel chemotherapeutic agents for the treatment of malaria has been renewed in recent times due to the evolution of human malarial parasites, primarily


Plasmodium falciparum,


which are resistant to traditional drugs. Research into a vaccine seems a very plausible alternative, but after years of investigation, no clinically acceptable product has come to date. At the same time, there is also an increasing decline in the efficacy of insecticides against mosquito vectors. At present, more than two-thirds of the world's population—approximately 500 million people—are thought to live in malaria areas (Miller, 1989). It ranks eighth in the World Health Organization's (WHO) list of ten most prevalent diseases of the world (270 million infections a year) and ranks ninth of the ten most deadly diseases, claiming over 2 million lives a year (Cox, 1991; Marshall, 1991). Though chiefly confined to poor nations, there are recent reports of infections in the United States (Marshall, 1991) and Australia (Johnson, 1991), and ever increasing cases of travellers' malaria (Steffen and Behrens, 1992).




Comparative biochemical studies between the malaria parasite,


P. falciparum


and its host have revealed differences in a number of metabolic pathways. One such distinction is that the parasite relies exclusively on pyrimidine synthesis de novo because of its inability to salvage preformed pyrimidines (Sherman, 1979). Moreover, the mature human red blood cell has no recognised requirement for pyrimidine nucleotides (Gero and O'Sullivan, 1990). Major efforts have been directed towards the development of inhibitors of the pyrimidine biosynthetic pathway (Hammond et al., 1985; Scott et al., 1986; Prapunwattana et al., 1988; Queen et al., 1990; Krungkrai et al., 1992), confirming its potential as a chemotherapeutic locus. Current research into the molecular biology of the key pyrimidine enzymes is envisioned as a powerful tool, not only to get a better understanding of the parasite's biochemistry, but also to explore specific differences between the parasite and the mammalian enzymes.




Glutamine-dependent carbamoyl phosphate synthetase (CPSU, EC 6.3.5.5) catalyses the first committed and rate-limiting step in the de novo pyrimidine biosynthetic pathway of eukaryotic organisms (Jones, 1980). Moreover, because it catalyzes a complex reaction involving three catalytic units and several substrates and intermediates, it is a very interesting enzyme to study from a biochemical point of view. The structural relationship of CPSII to other pyrimidine enzymes varies in different organisms, making it a good subject for evolutionary studies.




The paucity of material that can be obtained from malarial cultures has hampered the isolation of adequate amounts of pure protein for analysis. The difficulty in purifying CPS is further augmented by its inherent instability. Studies using crude extracts from


P. berghei


(a rodent malaria) revealed a high molecular weight protein containing CPS activity, which was assumed to be associated with ATCase (Hill et al., 1981), a situation also found in yeast (Makoff and Radford, 1978). However, recent analysis by Krungkrai and co-workers (1990) detected separate CPSII and ATCase activities in


P. berghei.


Although CPS activity has been detected in


P. falciparum


(Reyes et al., 1982) until this current study there is no indication of its size nor its linkage with other enzymes in the pathway.




The glutamine-dependent activity of CPSII can be divided into two steps: (1) a glutaminase (GLNase) reaction which hydrolyzes glutamine (Gln) and transfers ammonia to the site of the carbamoyl phosphate synthetase; and (2) a synthetase reaction. where carbamoyl phosphate is synthesised from two molecules of adenosine triphosphate (ATP), bicarbonate and ammonia. The second activity involves three partial reactions: (a) the activation of bicarbonate by ATP; (b) the reaction of the activated species carboxyphosphate with ammonia to form carbamate; and (c) the ATP-dependent phosphorylation of carbamate to form carbamoyl phosphate (powers and Meister, 1978). Hence, there are two major domains in CPSII, the glutamine amidotransferase domain (GAT) and the carbamoyl phosphate synthetase domain (CPS) or simply synthetase domain. The glutaminase domain (GLNase) is a subdomain of GAT, while there are two ATP-binding subdomains in the synthetase domain.




In view of the similarities between the glutamine amidotransferase domain of CPS and other amidotransferases, it has been proposed that these subunits arose by divergent evolution from a common ancestral gene (=20 kDa) representing the GLNase domain and that particular evolution of the CPS GAT domain (=42 kDa which includes the putative structural domain only present in CPS) must have involved fusions and/or insertions of other sequences (Werner et al., 1935). The GAT of mammalian CPSI gene has been proposed to be formed by a simple gene fusion event at the 5′ end of this ancestral gene with an unknown gene (Nyunoya et al., 1985).




The genes for the larger synthetase domains of various organisms were postulated to have undergone a gene duplication of an ancestral kinase gene resulting in a polypeptide with two homologous halves (Simmer et al., 1990). Unlike the subunit structure of


E. coli


and arginine-specific CPS of yeast, a further fusion of the genes encoding GAT and the synthetase domains was suggested to have formed the single gene specific for pyrimidine biosynthesis in higher eukaryotes. Conversely, Simmer and colleagues (1990) proposed that the arginine-specific CPS's (like cpa1 and cpa2 in yeast) as well as rat mitochondrial CPSI arose by defusion from the pyrimidine chimera.




DESCRIPTION OF THE INVENTION




The present inventors have isolated and characterised the complete gene encoding the CPSII enzyme from


P. falciparum


(pfCPSII). Reported here is the sequence including 5′ and 3′ untranslated regions. In so doing, the present inventors have identified the respective glutaminase and synthetase domains. Unlike CPSII genes in yeast,


D. discoideum,


and mammals, there is no evidence for linkage to the subsequent enzyme, aspartate transcarbamoylase (ATCase). This is in contrast to the report by Hill et al., (1981) for the enzymes from


P. berghei.


The present inventors have, however, found two large inserts in the


P. falciparum


gene of a nature that does not appear to have been previously described.




Accordingly, in a first aspect, the present invention consists in a nucleic acid molecule encoding carbamoyl phosphate synthetase II of


Plasmodium falciparum,


the nucleic acid molecule including a sequence substantially as shown in Table 1 from 1 to 7176, or from 1 to 750, or from 751 to 1446, or from 1447 to 2070, or from 2071 to 3762, or from 3763 to 5571, or from 5572 to 7173, of from 1 to 3360, or from 2071 to 6666, or from 2071 to 7173, or a functionally equivalent sequence.




In a preferred embodiment of the present invention, the nucleic acid molecule includes a sequence shown in Table 1 from −1225 to 7695 or a functionally equivalent sequence.




In a second aspect, the present invention consists in an isolated polypeptide, the polypeptide including an amino acid sequence substantially as shown in Table 1 from 1 to 2391, from 483 to 690, from 691 to 1254, 1858 to 2391, from 1 to 1120, from 691 to 2222, or from 691 to 2391.




As used herein the term “functionally equivalent sequence” is intended to cover minor variations in the nucleic acid sequence which, due to degeneracy in the code, do not result in the sequence encoding a different polypeptide.




In a third aspect the present invention consists in a method of producing


Plasmodium falciparum


carbamoyl phosphate synthetase II, the method comprising culturing a cell transformed with the nucleic acid molecule of the first aspect of the present invention under conditions which allow expression of the nucleic acid sequence, and recovering the expressed carbamoyl phosphate synthetase II.




The cells may be either bacteria or eukaryotic cells. Examples of preferred cells include


E.coli,


yeast, and


Dictyostelium discoideum.






As will be readily understood by persons skilled in this field, the elucidation of the nucleotide sequence for CPSII enables the production of a range of therapeutic agents. These include antisense nucleotides, ribozymes, and the targeting of RNA and DNA sequences using other approaches, e.g., triplex formation.




As can be seen from a consideration of the sequence set out in Table 1 the


Plasmodium falciparum


CPSII gene includes two inserted sequences not found in other carbamoyl phosphate synthetase genes. The first inserted sequence separates the putative structural domain and the glutiminase domain whilst the second inserted sequence separates the two ATP binding subdomains of the synthetase subunit CPSa and CPSb.














TABLE 1









Nucleotide and Deduced






Amino Acid Sequence of the Carbamoyl Phosphate






Synthetase II Gene from


Plasmodium falciparum


[SEQ ID NOS:1 and 2]












        .         .         .         .         .         .







−1225




GAATTCCTTCAGCCAAAAAAAATGACAACGCAAATTTTAAGAAAAGAAAAACAATCGACT




−1156














         .         .         .         .         .         .






−1165




CGTCTTTGAATGAGGTTAGAAATTCGATACGTGAAAGGGACTTAAGAAGGCTTAACAGAG




−1106














         .         .         .         .         .         .






−1105




AAAAGAGTAAAATCTTATAAGCATTTGAAGGAAAAAATAATAAAATAAAAAAATAAAAAG




−1046














         .         .         .         .         .         .






−1045




ATAAAAAATATTTATATTTGATATGTAGTATATATAATGATTATTCATATTAATAACATA




−986














         .         .         .         .         .         .






 −985




GATAAAAAACTTTTTTTTTTTTTTTTTTTCTTTATATTTATTAACAATACATTTAAGTTA




−926














         .         .         .         .         .         .






 −925




TTTTATATATATATATATATATATATATATATATATATATATATATGTTTGTGTGTTCAT




−866














         .         .         .         .         .         .






 −865




TTGTTTATAAAATTACTTGAAATATAAAACTTATTAATATATTTCCAATTAATATGAATA




−806














         .         .         .         .         .         .






 −805




CAATTATTAATATTTTCATGTGTACACATTAATATAGTTTTACACTTCTTATAATAAAAC




−746














         .         .         .         .         .         .






 −745




CATCCTATATATTATACACAATATATAATACTCCCCAATATTGTGGTTCCTATAATTTTA




−686














         .         .         .         .         .         .






 −685




TTTATATATTTATTTATTAATTTATTCATTTATTTATTTTTTTTCTTAGTTTATAAAATA




−626














         .         .         .         .         .         .






 −625




GTAATTCTACTAATTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAATT




−566














         .         .         .         .         .         .






 −565




TACATATGAAAAATGAACTTGTATATGTAAATTTATAAATATTTTAAACATAAATATAAA




−506














         .         .         .         .         .         .






 −505




TGTATAAAAAAAAAAAAGAAAAATGGGAAAAAATAATATAGATATATATATAAATATATA




−446














         .         .         .         .         .         .






 −445




TATATATATAATTATTGGGGATATTCTCTGAATCATAGGTCTTAAACAGTTTTATTCTTT




−385














         .         .         .         .         .         .






 −385




TAACATCACAAAGTTGTTATTAAAAGTATATATATCTTATTGGTTCCTATATAAAACTAT




−326














         .         .         .         .         .         .






 −325




AGTATTCTATAATATATTCTGTATATTTCATTTTATCATTTGTAAGCAATCCCTATTTAT




−266














         .         .         .         .         .         .






 −265




TATAATTATTATTTTTTTTTTTATAAAAGAGGTATAAAACAGTTTATTCAATTTTTTTCC




−206














         .         .         .         .         .         .






 −205




TAAAGGAGCAACCTTCAGTCAATTTACATTTTCCACCGGTTGGTTGGCACAACATAATGT




−146














         .         .         .         .         .         .






 −145




TACAGCTAAAAAAAGAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATATATATAT




−86














         .         .         .         .         .         .






  −85




ATATATATATATATACATAATATGTACAATGCTACCATACAAGTATATAAATTTTTCAAC




−26














         .         .






  −25




ATTGTTGTGATGTTGCATTTTTCTT




−1














              .         .         .         .         .




 .






    1




ATGTATATTTCTTTTAAATATAATTTATATATATATATATATATATATATATATATATTT




60






    1




M  Y  I  S  F  K  Y  N  L  Y  I  Y  I  Y  I  Y  I  Y  I  F




20














         .         .         .         .         .         .






   61




GTTCTTATAGATTTTAAAACAGTTGGGAGGTTAATTCTTGAAGATGGTAACGAATTTGTA




120






   21




V  L  I  D  F  K  T  V  G  R  L  I  L  E  D  G  N  E  F  V




40














         .         .         .         .         .         .






  121




GGGTACAGTGTAGGTTACGAAGGGTCTAAAGGAAATAATAGTATATCATGTCATAAGGAG




180






   41




G  Y  S  V  G  Y  E  G  C  K  G  N  N  S  I  S  C  H  K  E




60














         .         .         .         .         .         .






  181




TATAGAAATATTATTAATAATGATAATAGCAAGAATAGTAATAATTCATTTTGTAATAAT




240






   61




Y  R  N  I  I  N  N  D  N  S  K  N  S  N  N  S  F  C  N  N




80














         .         .         .         .         .         .






  241




GAACAAAACAATTTGAAAGATCATTTATTATATAAAAATAGTCGATTAGAAAATGAAGAT




300






   81




E  E  N  N  L  K  D  D  L  L  Y  K  N  S  R  L  E  N  E  D




100














         .         .         .         .         .         .






  301




TTTATTGTTACAGGTGAAGTTATATTTAATACAGCTATGGTTGGATATCCTGAAGCTTTA




360






  101




F  X  V  T  G  E  V  Z  F  N  T  A  M  V  G  Y  P  E  A  L




120














         .         .         .         .         .         .






  361




ACGGACCCAAGTTATTTTGGTCAAATATTAGTTTTAACATTTCCTTCTATTGGTAATTAT




420






  121




T  D  P  S  Y  F  G  Q  I  L  V  L  T  F  P  S  I  G  N  Y




140














         .         .         .         .         .         .






  421




GGTATTGAAAAAGTAAAACATGATGAAACGTTTGGATTAGTACAAAATTTTGAAAGTAAT




480






  141




G  I  E  K  V  K  H  D  E  T  F  G  L  V  Q  N  F  E  S  N




160














         .         .         .         .         .         .






  481




AAAATTCAAGTACAAGGTTTAGTTATTTGTGAATATTCGAAGCAATCATATCATTACAAT




540






  161




K  X  Q  V  Q  G  L  V  X  C  E  Y  S  K  Q  S  Y  H  Y  N




180














         .         .         .         .         .         .






  541




TCTTATATTACCTTAAGTGAATGGTTAAAGATTTATAAAATTCCATGTATAGGTGCTATA




600






  181




S  Y  I  T  L  S  E  W  L  K  I  Y  K  I  P  C  I  G  G  I




200














         .         .         .         .         .         .






  601




GATACAAGAGCCTTAACAAAACTTTTAAGAGAAAAAGGTAGTATGTTAGGTAAAATACTT




660






  201




D  T  R  A  L  T  K  L  L  R  E  K  G  S  M  L  G  K  I  V




220














         .         .         .         .         .         .






  661




ATATATAAAAACAGACAACATATTAATAAATTATATAAAGAAATTAATCTTTTTGATCCT




720






  221




I  Y  K  N  R  Q  H  I  N  K  L  Y  K  E  I  N  L  F  D  P




240














         .         .         .         .         .         .






  721




GGTAATATAGATACTCTAAAATATGTATGTAATCATTTTATACGTGTTATTAAGTTGAAT




780






  241




G  N  I  D  T  L  K  Y  V  C  


N  H  F  I  R  V  I  K  L  N  






260














         .         .         .         .         .         .






  781




AATATTACATATAATTATAAAAATAAGGAAGAATTTAATTATACCAATGAAATGATTACT




840






  261






N  I  T  Y  N  Y  K  N  K  E  E  F  N  Y  T  N  E  N  I  T  






280














         .         .         .         .         .         .






  841




AATGATTCTTCAATGGAAGATCATGATAATGAAATTAATGGTAGTATTTCTAATTTTAAT




900






  281






N  D  S  S  M  E  D  H  D  N  Z  I  N  G  S  I  S  N  F  N  






300














         .         .         .         .         .         .






  901




AATTGTCCAAGTATCTCTAGTTTTGATAAAAGTGAATCGAAAAATGTTATTAATCATACA




960






  301






N  C  P  S  I  S  S  F  D  K  S  E  S  K  N  V  I  N  H  T  






320














         .         .         .         .         .         .






  961




TTGTTAAGAGATAAAATGAACCTAATAACTTCATCTGAAGAATATCTGAAACATCTTCAT




1020






  321






L  L  R  D  K  M  N  L  I  T  S  S  E  E  Y  L  K  D  L  H  






340














         .         .         .         .         .         .






 1021




AATTGTAATTTTAGTAATAGTAGTGATAAAAATGATTCTTTTTTTAAGTTATATGGTATA




1080






  341






N  C  N  F  S  N  S  S  D  K  N  D  S  F  F  K  L  Y  G  I  






360














         .         .         .         .         .         .






 1021




TGTGAATATGATAAATATTTAATTGACCTTGAAGAAAATGCTAGCTTTCATTATAATAAT




1140






  351






C  E  Y  D  K  Y  L  I  D  L  E  E  N  A  S  F  H  Y  N  N  






380














         .         .         .         .         .         .






 1141




GTAGATGAATATGGATATTATGATGTTAATAAAAATACAAATATTCTATCTAATAATAAA




1200






  381






V  D  E  Y  G  Y  Y  D  V  N  K  N  T  N  I  L  S  N  N  K  






400














         .         .         .         .         .         .






 1201




ATAGAACAAAACAACAATAACGAAAATAACAAAAATAACAAAAATAACAACAATAACGAG




1260






  401






I  E  Q  N  N  N  N  Z  N  N  K  N  N  K  N  N  N  N  N  E  






420














         .         .         .         .         .         .






 1261




GTTGATTATATAAAGAAAGATGAGGATAATAATGTCAATAGTAAGGTCTTTTATAGCCAA




1320






  421






V  D  Y  I  K  K  D  E  D  N  N  V  N  S  K  V  F  Y  S  Q  






440














         .         .         .         .         .         .






 1321




TATAATAATAATGCACAAAATAATGAACATACCGAATTTAATTTAAATAATGATTATTCT




1380






  441






Y  N  N  N  A  Q  N  N  E  H  T  E  F  N  L  N  N  D  Y  S  






460














         .         .         .         .         .         .






 1381




ACTTATATTAGAAAGAAAATGAAAAATCAAGAATTCCTTAATTTGGTAAACAAAAGAAAA




1440






  461






T  Y  I  R  K  K  M  K  N  E  E  F  L  N  L  V  N  K  R  K  






480














         .         .         .         .         .         .






 1441




GTAGACCATAAAGAAAAAATTATTGTTATTGTTGATTGTGGTATTAAAAATAGTATAATC




1500






  481






V  D  


H  K  E  K  I  I  V  I  V  D  C  G  I  K  N  S  I  I




500














         .         .         .         .         .         .






 1501




AAAAATTTAATAAGACACGGTATGGATCTTCCATTAACATATATTATTGTACCTTATTAT




1560






  501




K  N  L  I  R  H  G  M  D  L  P  L  T  Y  I  I  V  P  Y  Y




520














         .         .         .         .         .         .






 1561




TACAATTTTAATCATATAGATTATGATGCAGTTCTTTTATCTAATGGTCCTGGAGATCCT




1620






  521




Y  N  F  N  H  I  D  Y  D  A  V  L  L  S  N  G  P  G  D  P




540














         .         .         .         .         .         .






 1621




AAAAAGTGTGATTTCCTTATAAAAAATTTGAAAGATAGTTTAACAAAAAATAAAATTATA




1680






  541




K  K  C  D  F  L  I  K  N  L  K  D  S  L  T  K  N  K  I  I




560














         .         .         .         .         .         .






 1681




TTTGGTATTTGTTTAGGTAATCAACTATTAGGTATATCATTAGGTTGTGACACATATAAA




1740






  561




F  G  I  C  L  G  N  Q  L  L  G  I  S  L  G  C  D  T  Y  K




580














         .         .         .         .         .         .






 1741




ATGAAATATGGTAATAGAGGTGTTAATCAACCCGTAATACAATTAGTAGATAATATATGT




1800






  581




M  K  Y  G  N  R  G  V  N  Q  P  V  I  Q  L  V  D  N  I  C




600














         .         .         .         .         .         .






 1801




TACATTACCTCACAAAATCATGGATACTGTTTAAAGAAAAAATCAATTTTAAAAAGAAAA




1860






  601




Y  I  T  S  Q  N  H  G  Y  C  L  K  K  K  S  I  L  K  R  K




620














         .         .         .         .         .         .






 1861




GAGCTTGCGATTAGTTATATAAATGCTAATGATAAATCTATACAAGGTATTTCACATAAA




1920






  621




E  L  A  I  S  Y  I  N  A  N  D  I  S  I  E  G  I  S  H  K




640














         .         .         .         .         .         .






 1921




AATGGAAGATTTTATAGTGTCCAGTTTCATCCTCAGGGTAATAATGGTCCTGAAGATACA




1980






  641




N  G  R  F  Y  S  V  Q  F  H  F  E  G  N  N  G  P  E  D  T




660














         .         .         .         .         .         .






 1981




TCATTTTTATTTAACAATTTTCTTTTAGATATCTTTAATAAGAAAAAACAATATAGAGAA




2040






  661




S  F  L  F  K  N  F  L  L  D  I  F  N  K  K  K  Q  Y  R  E




680














         .         .         .         .         .         .






 2041




TATTTAGGATATAATATTATTTATATAAAAAAGAAAGTGCTTCTTTTAGGTAGTGGTGGT




2100






  681




Y  L  G  Y  N  I  I  Y  I  K  K  K  V  L  L  L  G  S  G  G




700














         .         .         .         .         .         .






 2101




TTATGTATAGGACAAGCAGCACAATTCGATTATTCAGGAACA(AAGCAATTAAAAGTTTA




2160






  701




L  C  I  G  Q  A  G  E  F  D  Y  S  G  T  Q  A  I  K  S  L




720














         .         .         .         .         .         .






 2161




AAAGAATGTGGTATATATGTTATATTAGTTAATCCTAACATAGCAACTGTTCAAACATCA




2220






  721




K  E  C  G  I  Y  V  I  L  V  N  F  N  I  A  T  V  Q  T  S




740














         .         .         .         .         .         .






 2221




AAAGGTTTGGCAGATAAGGTATACTTTTTACCAGTTAATTGTGAATTTGTAGAAAAAATT




2280






  741




K  G  L  A  D  K  V  Y  F  L  P  V  N  C  E  F  V  E  K  I




760














         .         .         .         .         .         .






 2281




ATTAAAAAGGAAAAACCTGATTTTATTTTATGTACATTTGGTGGTCACACAGCTTTAAAT




2340






  761




I  K  K  E  K  P  D  F  I  L  C  T  F  G  G  Q  T  A  L  N




780













 2341




TGTGCTTTAATGTTAGATCAAAAAAAAGTATTGAAAAAGAATAATTGTCAATGTTTAGGT




2400






  781




C  A  L  M  L  D  Q  K  K  V  L  K  K  N  N  C  C  C  L  G




800














         .         .         .         .         .         .






 2401




ACATCTTTAGAATCTATAAGAATAACAGAAAATAGAACATTATTTGCTGAAAAATTAAAA




2460






  801




T  S  L  E  S  I  R  I  T  E  N  R  T  L  F  A  E  K  L  K




820














         .         .         .         .         .         .






 2461




GAAATTAATGAAAGAATAGCTCCATATGGTAGTGCAAAAAATGTTAATCAAGCTATTGAT




2520






  821




E  I  N  E  R  I  A  P  Y  G  S  A  K  N  V  N  Q  A  I  D




840














         .         .         .         .         .         .






 2521




ATAGCTAATAAAATAGGATATCCAATATTAGTACGTACAACATTTTCGTTAGGAGGATTA




2580






  841




I  A  N  K  I  G  Y  P  I  L  V  R  T  T  F  S  L  G  G  L




860














         .         .         .         .         .         .






 2581




AATAGTAGTTTCATAAATAATGAAGAAGAACTTATCGAAAAATGTAATAAAATATTTTTA




2640






  861




N  S  S  F  I  N  N  E  E  E  L  I  E  K  C  N  K  I  F  L




880














         .         .         .         .         .         .






 2641




CAAACTGATAATGAAATATTTATAGATAAATCATTACAAGGATGGAAAGAAATAGAATAT




2700






  881




Q  T  D  N  E  T  F  I  D  K  S  L  Q  G  W  K  E  I  E  Y




900














         .         .         .         .         .         .






 2701




GAATTATTAAGAGATAATAAAAATAATTGTATAGCTATATGTAATATGGAAAATATAGAT




2760






  901




E  J  L  R  D  N  K  N  N  C  I  A  I  C  N  M  E  N  I  D




920














         .         .         .         .         .         .






 2761




CCATTAGGTATACATACAGGAGATAGTATAGTTGTTGCACCTTCACAAACATTAAGTAAT




2820






  921




P  L  G  I  H  T  G  D  S  I  V  V  A  P  S  Q  T  L  S  N




940














         .         .         .         .         .         .






 2821




TATGAATATTATAAATTTAGAGAAATAGCATTAAAGGTAATTACACATTTAAATATTATA




2880






  941




Y  L  Y  Y  K  F  R  E  I  A  L  K  V  I  T  H  L  N  I  I




960














         .         .         .         .         .         .






 2881




GGAGAATGTAATATACAATTTGGTATAAATCCACAAACAGGAGAATATTGTATTATTGAA




2940






  961




G  E  C  N  I  Q  F  G  I  N  P  Q  T  G  E  Y  C  I  I  E




980














         .         .         .         .         .         .






 2941




GTTAATGCTAGGCTTAGTAGAAGTTCAGCATTACCTTCTAAAGCTACTGGTTATCCACTT




3000






  981




V  N  A  R  L  S  R  S  S  A  L  A  S  K  A  T  G  Y  P  L




1000














         .         .         .         .         .         .






 3001




GCTTATATATCAGCAAAAATAGCCTTGGGATATGATTTGATAAGTTTAAAAAATAGCATA




3060






 1001




A  Y  I  S  A  K  I  A  L  G  Y  D  L  I  S  L  K  N  S  I




1020














         .         .         .         .         .         .






 3061




ACTAAAAAAACAACTGCCTGTTTTGAACCCTCTCTAGATTACATTACAACAAAAATACCA




3120






 1021




T  K  K  T  T  A  C  F  E  P  S  L  D  Y  I  T  T  K  I  P




1040














         .         .         .         .         .         .






 3121




CGATCGGATTTAAATAAATTTGAGTTTGCTTCTAATACAATGAATAGTAGTATGAAAAGT




3180






 1041




R  W  D  L  N  K  F  E  F  A  S  N  T  M  N  S  S  M  K  S




1060














         .         .         .         .         .         .






 3181




GTAGGAGAAGTTATGTCTATAGGTAGAACCTTTGAAGAATCTATACAAAAATCTTTAAGA




3240






 1061




V  G  E  V  M  S  I  G  R  T  F  E  E  S  I  Q  K  S  L  R




1080














         .         .         .         .         .         .






 3241




TGTATTGATGATAATTATTTAGGATTTAGTAATACGTATTGTATAGATTGGGATGAAAAG




3300






 1081




C  I  D  D  N  Y  L  G  F  S  N  T  Y  C  I  D  W  D  E  K




1100














         .         .         .         .         .         .






 3301




AAAATTATTCAAGAATTAAAAAATCCATCACCAAAAAGAATTGATGCTATACATCAAGCT




3360






 1101




K  I  I  E  E  L  K  N  P  S  P  K  R  I  D  A  I  H  Q  A




1120














         .         .         .         .         .         .






 3361




TTCCATTTAAATATGCCTATGGATAAAATACATGAGCTGACACATATTGATTATTGGTTC




3420






 1121




F  H  L  N  M  P  M  D  K  I  H  E  L  T  H  I  D  Y  W  F




1140














         .         .         .         .         .         .






 3421




TTACATAAATTTTATAATATATATAATTTAGAAAATAAGTTGAAAACGTTAAAATTAGAG




3480






 1141




L  H  K  F  Y  N  I  Y  N  L  Q  N  K  L  K  T  L  K  L  E




1160














         .         .         .         .         .         .






 3481




CAATTATCTTTTAATGATTTGAAGTATTTTAAGAAGCATGGTTTTAGTGATAAGCAAATA




3540






 1161




Q  L  S  F  N  D  L  X  Y  F  K  K  W  G  F  S  D  K  Q  I




1180














         .         .         .         .         .         .






 3541




GCTCACTACTTATCCTTCAACACAAGCGATAATAATAATAATAATAATAATATTAGCTCA




3600






 1181




A  H  Y  L  S  F  N  T  S  D  N  N  N  N  N  N  N  I  S  S




1200














         .         .         .         .         .         .






 3601




TGTAGGGTTACAGAAAATGATGTTATGAAATATA&AGAAAAGCTAGGATTATTTCCACAT




3660






 1201




C  R  V  T  E  N  D  V  M  K  Y  R  E  K  L  G  L  F  P  H




1220














         .         .         .         .         .         .






 3661




ATTAAAGTTATTGATACCTTATCAGCCGAATTTCCGGCTTTAACTAATTATTTATATTTA




3720






 1221




I  K  V  I  D  T  L  S  A  E  F  P  A  L  T  N  Y  L  Y  L




1240














         .         .         .         .         .         .






 3721




ACTTATCAAGGTCAAGAACATGATGTTCTCCCATTAAATATGAAAAGGAAAAAGATATGC




3780






 1241




T  Y  Q  G  Q  E  H  D  V  L  P  L  N  M  


K  R  K  K  I  C  






1260














         .         .         .         .         .         .






 3781




ACGCTTAATAATAAACGAAATGCAAATAAGAAAAAAGTCCATGTCAAGAACCACTTATAT




3840






 1261






T  L  N  N  K  R  N  A  N  K  K  K  V  R  V  K  N  X  L  Y  






1280














         .         .         .         .         .         .






 3841




AATGAAGTAGTTGATGATAAGGATACACAATTACACAAAGAAAATAATAATAATAATAAT




3900






 1281






N  E  V  V  D  D  K  D  T  Q  L  H  K  E  N  N  N  N  N  N  






1300














         .         .         .         .         .         .






 3901




ATGAATTCTGGAAATGTAGAAAATAAATGTAAATTGAATAAAGAATCCTATGGCTATAAT




3960






 1301






M  N  S  G  N  V  E  N  K  C  K  L  N  K  E  S  Y  G  Y  N  






1320














         .         .         .         .         .         .






 3961




AATTCTTCTAATTGTATCAATACAAATAATATTAATATAGAAAATAATATTTGTCATGAT




4020






 1321






N  S  S  N  G  I  N  T  N  N  I  N  I  E  N  N  I  C  H  D  






1340














         .         .         .         .         .         .






 4021




ATATCTATAAACAAAAATATAAAAGTTACAATAAACAPLTTCCAATAATTCTATATCAAT




4080






 1341






I  S  I  N  K  N  I  K  V  T  I  N  N  S  N  N  S  I  S  N  






1360














         .         .         .         .         .         .






 4081




AATGAAAATGTTGAAACAAACTTAAATTGTGTATCTGAAAGGGCCGGTAGCCATCATATA




4140






 1361






N  E  N  V  E  T  N  L  N  C  V  S  E  R  A  G  S  H  H  I  






1380














         .         .         .         .         .         .






 4141




TATGGTAAAGAAGAAAAGAGTATAGGATCTGATGATACAAATATTTTAAGTGCACAAAAT




4200






 1381






Y  G  K  E  E  K  S  I  G  S  D  D  T  N  I  L  S  A  C  N  






1400














         .         .         .         .         .         .






 4201




TCAAATAATAACTTTTCATGTAATAATGAGAATATGAATAAAGCAAACGTTGATGTTAAT




4260






 1401






S  N  N  N  F  S  C  N  N  E  N  M  N  K  A  N  V  D  V  N  






1420














         .         .         .         .         .         .






 4261




GTACTAGAAAATGATACGAAAAAACGAGAAGATATAAATACTACAACAGTATTTATGGAA




4320






 1421






V  L  E  N  D  T  K  K  R  E  D  I  N  T  T  T  V  F  N  E  






1440














         .         .         .         .         .         .






 4321




GGTCAAAATAGTGTTATTAATAATAAGAATAAAGAGAATAGTTCTTTATTGAAAGGTGAT




4380






 1441






G  Q  N  S  V  I  N  N  K  N  K  E  N  S  S  L  L  K  G  D  






1460














         .         .         .         .         .         .






 4381




GAAGAAGATATTGTGATGGTAAATTTAAAAAAGGAAAATAATTATAATAGTGTAATTAAT




4440






 1461






E  E  D  I  V  N  V  N  L  K  K  E  N  N  Y  N  S  V  Y  N  






1480














         .         .         .         .         .         .






 4441




AATGTAGATTGTAGGAAAAAGGATATGGATGGAAAAAATATAAATGATGAATGTAAAACA




4500






 1481






N  V  D  C  R  K  K  D  M  D  G  K  N  I  N  D  E  C  K  T  






1500














         .         .         .         .         .         .






 4501




TATAAGAAAAATAAATATAAAGATATGGGATTAAATAATAATATAGTAGATGAGTTATCC




4560






 1501






Y  K  K  N  K  Y  K  D  M  G  L  N  N  N  I  V  D  E  L  S  






1520














         .         .         .         .         .         .






 4561




AATGGAACATCACATTCAACTAATGATCATTTATATTTAGATAATTTTAATACATCAGAT




4620






 1521






N  G  T  S  H  S  T  N  D  H  L  Y  L  D  N  F  N  T  S  D  






1540














         .         .         .         .         .         .






 4621




GAAGAAATAGGGAATAATAAAAATATGGATATGTATTTATCTAAGGAAAAAAGTATATCT




4680






 1541






E  E  I  G  N  N  K  N  M  D  M  Y  L  S  K  E  K  S  I  S  






1560














         .         .         .         .         .         .






 4681




AATAAAAACCCTGGTAATTCTTATTATGTTGTAGATTCCGTATATAATAATGAATACAAA




4740






 1561






N  K  N  P  G  N  S  Y  Y  V  V  D  S  V  Y  N  N  E  Y  K  






1580














         .         .         .         .         .         .






 4741




ATTAATAAGATGAAAGAGTTAATAGATAACGAAAATTTAAATGATGAATATAATAATAAT




4800






 1581






I  N  K  M  K  E  L  I  D  N  E  N  L  N  D  E  Y  N  N  N  






1600














         .         .         .         .         .         .






 4801




GTTAATATGAATTGTTCTAATTATAATAATGCTAGTGCATTTGTAAATGGAAAGGATAGA




4860






 1601






V  N  M  N  C  S  N  Y  N  N  A  S  A  F  V  N  G  K  D  K  






1620














         .         .         .         .         .         .






 4861




AATGATAATTTAGAAAATGATTGTATTGAAAAAAATATGGATCATACATACAAACATTAT




4920






 1621






N  D  N  L  E  N  D  C  I  E  K  N  M  D  H  T  Y  K  H  Y  






1640














         .         .         .         .         .         .






 4921




AATCGTTTAAACAATCGTAGAAGTACAAATGAGAGGATGATGCTTATGGTAAACAATGAA




4980






 1641






N  R  L  N  N  R  R  S  T  N  E  R  M  M  L  M  V  N  N  E  






1660














         .         .         .         .         .         .






 4981




AAAGAGAGCAATCATGAGAAGGGCCATAGAAGAAATGGTTTAAATAAAAAAAATAAAGAA




5040






 1661






K  E  S  N  H  E  K  C  H  R  R  N  G  L  N  K  K  N  K  E  






1680














         .         .         .         .         .         .






 5041




AAAAATATGGAAAAAAATAAGGGAAAAAATAAAGACAAAAAGAATTATCATTATGTTAAT




5100






 1681






K  N  M  E  K  N  K  G  K  N  K  D  K  K  N  Y  H  Y  V  N  






1700














         .         .         .         .         .         .






 5101




CATAAAAGGAATAATGAATATAATAGTAACAATATTGAATCGAAGTTTAATAATTATGTT




5160






 1701






H  K  R  N  N  E  Y  N  S  N  N  I  E  S  K  F  N  N  Y  V  






1720














         .         .         .         .         .         .






 5161




GATGATATAAATAAAAAAGAATATTATGAAGATGAAAATGATATATATTATTTTACACAT




5220






 1721






D  D  I  N  K  K  E  Y  Y  E  D  E  N  D  I  Y  Y  F  T  H  






1740














         .         .         .         .         .         .






 5221




TCGTCACAAGGTAACAATGACGATTTAAGTAATGATAATTATTTAAGTAGTGAAGAATTG




5280






 1741






S  S  Q  G  N  N  D  D  L  S  N  D  N  Y  L  S  S  E  E  L  






1760














         .         .         .         .         .         .






 5281




AATACTGATGAGTATGATGATGATTATTATTATGATGAACATGAAGAAGATGACTATGAC




5340






 1761






N  T  D  E  Y  D  D  D  Y  Y  Y  D  E  D  E  E  D  D  Y  D  






1780














         .         .         .         .         .         .






 5341




GATGATAATGATGATGATGATGATGATGATGATGATGGGGAGGATGAGGAGGATAATGAT




5400






 1781






D  D  N  D  D  D  D  D  D  D  D  D  G  E  D  E  E  D  N  D  






1800














         .         .         .         .         .         .






 5401




TATTATAATGATGATGGTTATGATAGCTATAATTCTTTATCATCTTCAAGAATATCAGAT




5460






 1801






Y  Y  N  D  D  G  Y  D  S  Y  N  S  L  S  S  S  R  I  S  D  






1820














         .         .         .         .         .         .






 5461




GTATCATCTGTTATATATTCAGGGAACGAAAATATATTTAATGAAAAATATAATGATATA




5520






 1821






V  S  S  V  I  Y  S  G  N  E  N  T  F  N  E  K  Y  N  D  I  






1840














         .         .         .         .         .         .






 5521




GGTTTTAAAATAATCGATAATAGGAATGAAAAAGAGAAAGAGAAAAAGAAATGTTTTATT




5580






 1841






G  F  K  I  I  D  N  R  N  E  K  E  K  E  K  K  K  


C  F  I




1860














         .         .         .         .         .         .






 5581




GTATTAGGTTGTGGTTGTTATCGTATTGGTAGTTCTGTAGAATTTGATTGGAGTGCTATA




5640






 1861




V  L  G  C  G  C  Y  R  I  Q  S  S  V  E  F  D  W  S  A  I




1880














         .         .         .         .         .         .






 5641




CATTGTGTAAAGACCATAAGAAAATTAAACCATAAAGCTATATTAATAAATTGTAACCCA




5700






 1881




H  C  V  K  T  I  R  K  L  N  H  K  A  I  L  T  N  C  N  F




1900














         .         .         .         .         .         .






 5701




GAAACTGTAAGTACAGATTATGATGAAAGTGATCGTCTATATTTTGATGAAATAACAACA




5760






 1901




E  T  V  S  T  D  Y  D  E  S  D  R  L  Y  F  D  E  I  T  T




1920














         .         .         .         .         .         .






 5761




GAAGTTATAAAATTTATATATAACTTTGAAAATAGTAATGGTGTGATTATAGCTTTTGGT




5820






 1921




E  V  I  K  F  I  Y  N  F  E  N  S  N  G  V  I  I  A  F  G




1940














         .         .         .         .         .         .






 5821




GGACAAACATCAAATAATTTAGTATTTAGTTTATATAAAAATAATGTAAATATATTACGA




5880






 1941




G  Q  T  S  N  N  L  V  F  S  L  Y  K  N  N  V  N  I  L  G




1960














         .         .         .         .         .         .






 5881




TCAGTGCACAAAGTGTTGATTCTTGTGAAAATAGGAATAAATTTTCGCACTTATGTGATT




5940






 1961




S  V  H  K  V  L  I  V  V  K  I  G  I  N  F  R  T  Y  V  I




1980














         .         .         .         .         .         .






 5941




CTTAAAATTGATCAACCGAAATGGAATAAATTTACAAAATTATCCAAGGCTATACAATTT




6000






 1981




L  K  I  D  Q  P  K  W  N  K  F  T  K  L  S  K  A  I  Q  F




2000














         .         .         .         .         .         .






 6001




GCTAATGAGGTAAAATTTCCTGTATTAGTAAGACCATCGTATGTATTATCTGGTGCAGCT




6060






 2001




A  N  E  V  K  F  F  V  L  V  R  P  S  Y  V  L  S  G  A  A




2020














         .         .         .         .         .         .






 6061




ATGAGAGTTGTAAATTGTTTTGAAGAATTAAAAAACTTTTTAATGAAGGCAGCTATTGTT




6120






 2021




M  R  V  V  N  C  F  E  E  L  K  N  F  L  M  K  A  A  I  V




2040














         .         .         .         .         .         .






 6121




AGTAAAGATAATCCTGTTCTAATATCAAAATTTATTGAGAATGCTAAAGAAATAGAAATA




6180






 2041




S  K  D  N  P  V  V  I  S  K  F  T  E  N  A  K  E  I  E  I




2060














         .         .         .         .         .         .






 6181




GATTGTGTTAGTAAAAATGGTAAAATAATTAATTATGCTATATCTGAACATGTTGAAAAT




6240






 2061




D  C  V  S  K  N  G  K  I  I  N  Y  A  I  S  E  H  V  E  N




2080














         .         .         .         .         .         .






 6241




CCTGGTGTACATTCAGGTGATCCAACATTAATATTACCTGCACAAAATATATATGTTGAA




6300






 2081




A  G  V  H  S  C  D  A  T  L  I  L  P  A  Q  N  I  Y  V  E




2100














         .         .         .         .         .         .






 6301




ACACATAGGAAAATAAAGAAAATATCCGAAAACATTTCAAAATCATTAAATATATCTGGT




6360






 2101




T  H  R  K  I  K  K  I  S  E  K  I  S  K  S  L  N  I  S  G




2120














         .         .         .         .         .         .






 6361




CCATTTAATATACAATTTATATCTCATCAAAATGAAATAAAAATTATTGAATGTAATTTA




6420






 2121




P  F  N  I  Q  F  I  C  H  Q  N  E  I  K  I  I  E  C  N  L




2140














         .         .         .         .         .         .






 6421




AGAGCATCTAGAACTTTTCCATTTATATCAAAAGCTCTAAATCTAAACTTTATAGATTTA




6480






 2141




R  A  S  R  T  F  P  F  I  S  K  A  L  N  L  N  F  I  D  L




2160














         .         .         .         .         .         .






 6481




GCTACAAGGATATTAATGGGTTATGACGTCAAACCAATTAATATATCATTAATTGATTTA




6540






 2161




A  T  R  I  L  N  G  Y  D  V  K  P  I  N  I  S  L  I  D  L




2180














         .         .         .         .         .         .






 6541




GAATATACAGCTGTAAAAGCACCGATTTTCTCATTTAATAGATTACATGGATCAGATTGT




6600






 2181




E  Y  T  A  V  K  A  P  I  F  S  F  N  R  L  H  G  S  D  C




2200














         .         .         .         .         .         .






 6601




ATACTAGGTGTAGAAATGAAATCTACAGGTGAAGTAGCATGTTTTGGTTTAAATAAATAT




6660






 2201




I  L  C  V  E  M  K  S  T  G  E  V  A  C  F  G  L  N  K  Y




2220














         .         .         .         .         .         .






 6661




GAAGCTTTATTAAAATCATTAATAGCTACAGGTATGAAGTTACCCAAAAAATCAATACTT




6720






 2221




E  A  L  L  K  S  L  I  A  T  G  M  K  L  F  K  K  S  I  L




2240














         .         .         .         .         .         .






 6721




ATAAGTATTAAAAATTTAAATAATAAATTAGCTTTTGAAGAACCGTTCCAATTATTATTT




6780






 2241




I  S  I  K  N  L  N  N  K  L  A  F  E  E  P  F  C  L  L  F




2260














         .         .         .         .         .         .






 6781




TTAATGGGATTTACAATATATGCGACTCAAGGTACGTATCATTTCTACTCTAAATTTTTA




6840






 2261




L  N  G  F  T  I  Y  A  T  E  G  T  Y  D  F  Y  S  K  F  L




2280














         .         .         .         .         .         .






 6841




CAATCTTTTAATCTTAATAAAGGTTCTAAATTTCATCAAACACTTATTAAAGTTCATAAT




6900






 2281




E  S  F  N  V  N  K  G  S  K  F  H  Q  R  L  I  K  V  H  N




2300














         .         .         .         .         .         .






 6901




AAAAATGCAGAAAATATATCACCAAATACAACAGATTTAATTATGAATCATAAAGTTGAA




6960






 2301




K  N  A  E  N  I  S  P  N  T  T  D  L  I  M  N  H  K  V  E




2320














         .         .         .         .         .         .






 6961




ATGGTTATTAATATAACTGATACATTAAAAACAAAGGTTAGTTCAAATGGTTATAAAATT




7020






 2321




M  V  I  N  I  T  D  T  L  K  T  K  V  S  S  N  G  Y  K  I




2340














         .         .         .         .         .         .






 7021




AGAAGATTAGCATCAGATTTCCAGGTTCCTTTAATAACTAATATGAAACTTTGTTCTCTT




7080






 2341




R  R  L  A  S  D  F  Q  V  P  L  I  T  N  M  K  L  C  S  L




2360














         .         .         .         .         .         .






 7081




TTTATTGACTCATTATATAGAAAATTCTCAAGACAAAAGGAAAGAAAATCATTCTATACC




7140






 2361




F  I  D  S  L  Y  R  K  F  S  R  Q  K  E  R  K  S  F  Y  T




2380














         .         .         .






 7141




ATAAAGAGTTATGACGAATATATAAGTTTGGTATAA




7176






 2381




I  K  S  Y  D  E  Y  I  S  L  V  *




2392














         .         .         .         .         .         .






 7177




GCAAGAAATTATTCAATAAATTCGATTTAACATTACTTATTTATGTATTTATTAACTTTC




7235














         .         .         .         .         .         .






 7237




ATTCCATAACAACATGAAAAGTATAAATATATAAATAGTAATATATAATATATAATATAT




7296














         .         .         .         .         .         .






 7297




ATATATATATATATATATATATTTATTTATTTAATTATATTTACGTTTAAATATTAATAA




7356














         .         .         .         .         .         .






 7357




ATGTTTTTATTAAATATGATCATTAATTTATATTGATTTATTTTTTTATAAATTTTTGTT




7416














         .         .         .         .         .         .






 7417




ATATATACAAATTTTATTTATTCACTCATATGTATAAACCAAAATGGTTTTTTCAATTTA




7476














         .         .         .         .         .         .






 7477




CAAATAATTTTATAATTTTAATAAATTTATTAATTATAAAAAAAATAAAAATATATAAAC




7536














         .         .         .         .         .         .






 7537




ATTAAAATGTATAAATTCTTTTAATTATATAATAATTTATAAATGTTATGATTTTTTTAA




7596














         .         .         .         .         .         .






 7597




AAAATTCAACGAAAAAAAAGAGGAACTGTATATACAAAAGGGACTATATATATGTATATA




7656














         .         .         .






 7657




TATATATATATATATATGTTTTTTTTTCCTTATTCTAGA




7695














The GAT domain is made up of two subdomains: a putative structural domain (1-750) and a glutaminase domain (1447-2070). These two subdomains are separated by a first inserted sequence (751-1446, underlined). The two ATP binding subdomains of the synthetase subunit, CPSa (2071-3762) and CPSb (5572-5173) are separated by a second inserted sequence (3763-5571, underlined).




As these inserted sequences are not found in other carbamoyl phosphate synthetase genes they represent prime targets for therapies including, but not limited to, antisense nucleotides, ribozymes and triplex forming nucleotides as there is a decreased likelihood of deleterious reaction with host homologues of the gene.




Antisense RNA molecules are known to be useful for regulating gene expression within the cell. Antisense RNA molecules which are complementary to portion(s) of CPSII can be produced from the CPSII sequence. These antisense molecules can be used as either diagnostic probes to determine whether or not the CPSII gene is present in a cell or can be used as a therapeutic to regulate expression of the CPSII gene, Antisense nucleotides prepared using the CPSII sequence include nucleotides having complementarity to the CPSII mRNA and capable of interfering with its function in vivo and genes containing CPSII sequence elements that can be just transcribed in living cells to produce antisense nucleotides. The genes may include promoter elements from messenger RNA (polymerase II) from cells, viruses, pathogens or structural RNA genes (polymerase I & III) or synthetic promoter elements. A review of antisense design is provided in “Gene Regulation; Biology of Antisense RNA and DNA” R. P. Erickson and J. G. Izant, Raven Press 1992. Reference may also be had to U.S. Pat. No. 5,208,149 which includes further examples on the design of antisense nucleotides. The disclosure of each of these references is incorporated herein by reference.




As used herein the term “nucleotides” include but are not limited to oligomers of all naturally-occurring deoxyribonucleotides and ribonucleotides as well as any nucleotide analogues. Nucleotide analogues encompass all compounds capable of forming sequence-specific complexes (eg duplexes or hetroduplexes) with another nucleotide including methylphosphonates or phosphorothioates but may have advantageous diffusion or stability properties. The definition of nucleotides includes natural or analogue bases linked by phosphodiester bonds, peptide bonds or any other covalent linkage. These nucleotides may be synthesised by any combination of in vivo in living cells, enzymatically in vitro or chemically.




Ribozymes useful in regulating expression of the CPSII gene include nucleotides having CPSII sequence for specificity and catalytic domains to promote the cleavage of CPSII mRNA in vitro or in vivo. The catalytic domains include hammerheads, hairpins, delta-virus elements, ribosome RNA introns and their derivatives. Further information regarding the design of ribozymes can be found in Haseloff, J. & Gerlach, W. L. (1988) Nature 334. 585; Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. & Cech, T. R. (1982) Cell 31, 147; International Patent Application No. WO 88/04300, U.S. Pat. No. 4,987,071 and U.S. Pat. No. 5,254,678. The disclosure of each of these references is incorporated herein by reference. The catalytic elements may enhance the artificial regulation of a CPSII target mRNA by accelerating degradation or some other mechanism.




Triple helix oligonucleotides can be used to inhibit transcription from the genome. Given the sequence provided herein for the CPSII gene it will now be possible to design oligonucleotides which will form triplexes thereby inhibiting transcription of the CPSII gene. Information regarding the generation of oligonucleotides suitable for triplex formation can be found in a Griffin et al (Science 245:967-971 (1989)) this disclosure of this reference is incorporated herein by reference.




Triplex agents include all nucleotides capable of binding to the CPSII gene through formation of the complex with DNA or chromatin. The interaction can be through formation of a triple-stranded Hoogsteen structure or other mechanisms such as strand invasion that relies on the CPSII sequence information.




Accordingly, in a fourth aspect the present invention consists in a ribozyme capable of cleaving carbamoyl phosphate synthetase II mRNA, the ribozyme including sequences complementary to portions of mRNA obtained from the nucleic acid molecule of the first aspect of the present invention.




In a preferred embodiment of this aspect of the present invention the ribozyme includes sequences complementary to mRNA obtained from the first or second inserted sequences of the nucleic acid molecule of the first aspect of the present invention.




In a fifth aspect the present invention consists in an antisense oligonucleotide capable of blocking expression of the nucleic acid molecule of the first aspect of the present invention.




As stated above, in one aspect the present invention relates to a method of producing CPSII by recombinant technology. The protein produced by this method and the polypeptides of the present invention will be useful in in vitro drug binding studies in efforts to develop other anti-malarial therapeutics.




In order that the nature of the present invention may be more clearly understood the method by which the


P. falciparum


CPSII gene was cloned will now be described with reference to the following Examples and Figures.











BRIEF DESCRIPTION OF THE DRAWINGS




FIG.


1


: A summary of a “gene walking” strategy used to clone and sequence the full length


P. falciparum


carbamoyl phosphate synthetase II gene.




FIG.


2


:


P. falciparum


carbamoyl phosphate synthetase II (pfCPSII) gene sequence with the 21 consensus GUC (GTC) ribozyme cleavage sites identified (underlined) (SEQ ID NO:1).




FIG.


3


: Output of RNA mfold analysis showing the GUC sites from CPSRz1/M10 a and CPSRz4/M15 more accessible than the M17 and M18 sites (Seq. Id. No:1).




FIGS.


4


A-C: A. Sequences for the phosphorothioated antisense DNA used in inhibition studies of


P. Falciparum


in culture (SEQ ID NOS:3-15); B. Map of the positions of the antisense sequences within the pfCPSII gene; C. Growth supression of


P. Falciparum


in vitro after a 24 hr incubation with the oligonucleotides.




FIG.


5


. Cultures of


P. Falciparum


and selected mammalian cell lines were incubated with 2.5 and 5.0 μM CPSRz1, CPSRz4 and 60-mer random oligonucleotide. Cell viability was assessed by measuring the % incorporation of tritiated hypoxanthine.











EXAMPLES




Cloning of the


P. falciparum


Carbamoyl Phosphate Synthetase II (pfCPSII) Gene




The conventional way to screen for genes of which the amino acid sequence had not been previously determined is via heterologous probing, i.e. with gene fragments of the target enzyme from closely related organisms. This has proved to be unsuccessful for several workers with


Plasmodium falciparum


largely due to the unusually high A-T content of its genome. After initial unfruitful attempts to isolate the CPSII gene in


Plasmodium falciparum


using a yeast ura2 gene fragment (Souciet et al., 1989), the present inventors opted to amplify part of the CPSII gene using the polymerase chain reaction (PCR) (Saiki et al., 1988) with a view to use the amplified product as probe for screening.




The present inventors isolated and cloned a PCR product using oligonucleotides designed from conserved sequences from the amino terminal GAT domain and the first half of the synthetase domain of the CPS gene. Nucleotide sequencing confirmed that a portion of the CPSII gene had been obtained. Total parasite DNA was fragmented with a restriction enzyme and subjected to Southern analysis using the CPSII-specific gene probe. The sizes of DNA fragments hybridizing to the gene probe were determined then the DNA in the corresponding bands were used for the construction of a “mini-library”. In this way a smaller population of clones were screened for the pf CPSII gene.




To isolate the full length pfCPSII gene, a series of mini-libraries were constructed utilising different segments of known sequence to gain information of the unknown flanking regions both towards the 5′ and 3′ termini of the gene using “gene-walking”. The strategy employed is summarised in FIG.


1


.




In the first Southern analysis, total


P. falciparum


DNA was digested with HindIII and EcoRI and hybridisation was carried out using the pfCPSII 453 bp PCR product. A 3.0 kb HindIII and a smaller EcoRI fragment hybridised to the probe. Subsequent screening of a HindIII pTZ18U mini-library resulted in the isolation of a recombinant that contained a 3.0 kb pfCPSII gene fragment, CPS2. The 453 bp PCR product was localised in the middle of this segment.




Two regions from both the 5′ and 3′ ends of CPS2 were used to isolate neighbouring sequences at either end in order to obtain the further gene sequences. A HindIII/EcoRI fragment from the 5′ end of CPS2 was instrumental in isolating a further 1.5 kb fragment, CPS1 consisting of the complete 5′ region of the gene and some non-encoding sequences.




A 550 bp inverse PCR (IPCR; Triglia et al., 1988) product was obtained with the aid of known sequences from the 3′ end of CPS2.




This IPCR product was used to screen for the 3′ region flanking CPS2, A 3.3 kb HindIII recombinant containing CPS3 as well as a related 3.3 kb XBaI clone (not presented in

FIG. 1

) were isolated by the mini-library technique. Using a 200 bp XbaI/HindIII fragment from the 3′ end of CPS 3, a 1.3 kb XbaI segment, CPS4 was cloned which contained the putative stop codon and some 3′ non-coding region.




Combining these four gene fragments (CPS1, CPS2, CPS3 and CPS4) excluding their overlaps, gives a total of 8.8 kb consisting of approximately 7.0 kb coding and 1.8 flanking sequences.




The complete nucleotide sequence of the CPSII gene in


P. falciparum,


together with its 5′ and 3′ flanking sequences, is presented in Table 1.




Design of Ribozymes




Our first generation ribozymes were designed using the consensus sequences cleavage site, GUC, found in naturally occurring hammerhead ribozymes (see Haseloff and Gerlach, 1988, the entire contents of which are incorporated herein by reference). In total, there are 21 GUC sites in the entire 7.1 kb coding region of pfCPSII (FIG.


1


and Table 2). To select the putative sites that are relatively more accessible to binding, the pfCPSII mRNA folding pattern was analysed using mfold Program (ANGIS/GCG). This was done in windows of 500 nucleotides, with 250 nucleotide overlaps between each window.




To screen for the best (most accessible) sites within the CPS II mRNA, a series of antisense DNA oligonucleotides were designed and synthesised from sequences around the selected (by mfold) GUC sequences mentioned above. Also included were two antisense oligonucleotides (M17 and M18) where the mfold program had indicated intramolecular base pairing of the GUC sequences may be occurring (FIG.


2


). As seen from the bio-assays of suppression of malarial growth by the antisense oligonucleotides, there appears to be a correlation between the predicted accessibility of each site and the effectiveness as judged by the % inhibition of growth (FIG.


3


). The antisense oligonucleotides M10 (Rz1 site) and M15 (Rz4 site) were much more effective in growth inhibition than M17 and M18 where the mfold program predicted internal base pairing.




These results led to the synthesis of ribozymes based on the Rz1 and Rz4 sites (ribozymes CPSRz1 and CPSRz4).












TABLE 2









GUC sites present in the coding region of pfCPSII. Nucleotide






numbers indicate the position of the G of the triplet in the gene sequence.

























 1.




 170







 2.




 281






 3.




 380






 4.




 905




CPSRz1 site/M10






 5.




1294






 6.




1306






 7.




1607






 8.




1939






 9.




1967






10.




2324






11.




2387






12.




3195






13.




3731




CPSRz4 site/M15






14.




3817






15.




3823






16.




4013






17.




432Z






18.




5223




M17






19.




5735






20.




6359






21.




6383














CPSRz1 and CPSRz4 as Antimalarials




The ability of CPSRz1 and CPSRz4 to cleave a 550 base mRNA fragment of pfCPSII was assessed. Growth inhibition studies on


P. falciparum


cultures were initially conducted using higher concentrations of ribozymes, at 2.5 and 5.0 μM. Both ribozymes were shown to be very effective at these concentrations as shown in the marked decrease in incorporation of tritiated hypoxanthine (FIG.


4


). In the same study, a series of mammalian cell lines in culture were treated with the same concentrations of the ribozymes, and no effect cell viability was observed. As a negative control, a 60-mer DNA oligonucleotide of random sequence was used.




As will be readily appreciated by those skilled in the art the isolation of this gene and its sequencing by the present inventors opens up a range of new avenues for treatment of


Plasmodium falciparum


infection. The present invention enables the production of quantities of the


Plasmodium falciparum


carbamoyl phosphate synthetase II enzyme using recombinant DNA technology. Characterisation of this enzyme may enable its use as a chemotherapeutic loci.




The isolation of this gene also will enable the production of antisense molecules, ribozymes or other gene inactivation agents which can be used to prevent the multiplication of the parasite in infected individuals.




It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.




REFERENCES




Cox, F. E. G. (1991) Malaria vaccines: while we are waiting. Parasitology Today 7: 189-190




Gero, A. M. and O'Sullivan, W. J. (199)) Purines and pyrimidines in malarial parasites. Blood Cells 16: 467-498




Hammond, D. J. Burchell, J. R. and Pudney, M. (1965) Inhibition of pyrimidine biosynthesis de novo in Plasmodium falciparum by 2.(4.t-butylcyclohexyl)-3-hydroxy-1, 4-naphthoquinine in vitro. Mol. Biochem. Parasitol 14: 97-109




Haseloff, J. And Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 334:585-591




Hill, B., Kilsby, J. Rogerson, G. W., McIntosh, R T. and Ginger, C. D. (1981). The Enzymes of pyrimidine biosynthesis in a range of parasitic protozoa and helminths. Mol. Biochem. Parasitol. Z: 123-134.




Johnson, C. Malaria back to plague us. Sydney Morning Herald, Nov. 13, 1991.




Jones, M. E. (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes and regulation of UMP biosynthesis. Annu. Rev. Biochem. 49: 253-279.




Krungkrai, J. Cerami, A. and Henderson, G. B. (1990) Pyrimidine biosynthesis in parasitic protozoa: purification of a monofunctional dihydroorotase from Plasmodium berghei and Crithidia fasciculata. Biochemistry 29: 6270-6275.




Krungkrai, J. Krungkrai, S. R. and Phakanont, K. (1992) Antimalarial activity of orotate analogs that inhibit dihydrootase and dihydroorotate dehydrogenase. Biochem. Pharmacol. 43: 1295-1301.




Marshal, E. (1991) Malaria parasite gaining ground against science. Science 2: 190,




Nyunoya, H., Broglie, K. E., Widgren, W. E. and Lusty C. J (1985) Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J. Biol. Chem. 260: 9346-9356.




Prapunwattana, P., O'Sullivan, W. J. and Yuthavong, Y. (1988) Depression of Plasmodium falciparum dihydroorotate dehydrogenase activity in in vitro culture by tetracycline. Mol. Biochemi. 27: 119-124.




Queen, S. A., Vander Jagt, D. L. and Reyes, P. (1990) In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism. Antimicrob. Agents Chemother. 34: 1393-1398.




Reyes, P., Rathod, P. K., Sanchez, D. J. Mrema, J. E. K., Rieckmann, K. H. and Heidrich, H. G. (1982) Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Mol. Biochem. Parasitol. 5: 275-290.




Rubino S. D., Nyunoya, H. and Lusty, C. J. (1986) JBC 261(24):11320-11327.




Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis K. B. and Erlich H. A. (1958) Science 239:487-491,




Scott, H. V., Gero, A. M. and O'Sullivan, W. J. (1986) In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo. Mol Biochem. Parasitol. 18: 3-15.




Sherman, I. W. (1979) Biochemistry of Plasmodium (malarial parasites) Microbiol. Rev. 43: 453-495.




Simmer, J. P., Kelly, R. E., Rinker, Jr., A. G., Scully, J. L. and Evans D. R. (1990) Mammalian carbamyl phosphate synthetase (CPS), J. Biol. Chem 265: 10395-10402.




Simmer, J. P., Kelly, R. E., Austin, G. R., Jr., Scully, J. L. and Evans, D. R. (1990) JBC 285(18):10395-10402.




Souciet, J. L., Nagy, M., Le Gouar, M., Lacroute, F. and Potier, S. (1989) Gene (Amst.) 79: 59-70.




Triglia, T., Peterson, M. G. and Kemp, D. J. (1988) PNAS 16:8186.




Werner, M., Feller, A. and Pierard, A. (1985) Nucleotide sequence of yeast genie CPA1 encoding the small subunit of arginine-pathway carbamoyl-phosphate synthetase. Eur. J. Biochem. 146: 371-381.







15




1


8920


DNA


Plasmodium falciparum



1
gaattccttc agccaaaaaa aatgacaacg caaattttaa gaaaagaaaa acaatcgact 60
cgtctttgaa tgaggttaga aattcgatac gtgaaaggga cttaagaagg cttaacagag 120
aaaagagtaa aatcttataa gcatttgaag gaaaaaataa taaaataaaa aaataaaaag 180
ataaaaaata tttatatttg atatgtagta tatataatga ttattcatat taataacata 240
gataaaaaac tttttttttt tttttttttc tttatattta ttaacaatac atttaagtta 300
ttttatatat atatatatat atatatatat atatatatat atatatgttt gtgtgttcat 360
ttgtttataa aattacttga aatataaaac ttattaatat atttccaatt aatatgaata 420
caattattaa tattttgatg tgtacacatt aatatagttt tacacttctt ataataaaac 480
catcctatat attatacaca atatataata ctccccaata ttgtggttcc tataatttta 540
tttatatatt tatttattaa tttattcatt tatttatttt ttttcttagt ttataaaata 600
gtaattctac taatttaaaa aaaaaaaaaa aaaaaaaaaa aaaaagaaaa aaaaaaaatt 660
tacatatgaa aaatgaactt gtatatgtaa atttataaat attttaaaca taaatataaa 720
tgtataaaaa aaaaaaagaa aaatgggaaa aaataatata gatatatata taaatatata 780
tatatatata attattgggg atattctctg aatcataggt cttaaacagt tttattcttt 840
taacatcaca aagttgttat taaaagtata tatatcttat tggttcctat ataaaactat 900
agtattctat aatatattct gtatatttca ttttatcatt tgtaagcaat ccctatttat 960
tataattatt attttttttt ttataaaaga ggtataaaac agtttattca atttttttcc 1020
taaaggagca accttcagtc aatttacatt ttccaccggt tggttggcac aacataatgt 1080
tacagctaaa aaaagaaaga aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa atatatatat 1140
atatatatat atatacataa tatgtacaat gctaccatac aagtatataa atttttcaac 1200
attgttgtga tgttgcattt ttcttatgta tatttctttt aaatataatt tatatatata 1260
tatatatata tatatatata tatttgttct tatagatttt aaaacagttg ggaggttaat 1320
tcttgaagat ggtaacgaat ttgtagggta cagtgtaggt tacgaagggt gtaaaggaaa 1380
taatagtata tcatgtcata aggagtatag aaatattatt aataatgata atagcaagaa 1440
tagtaataat tcattttgta ataatgaaga aaacaatttg aaagatgatt tattatataa 1500
aaatagtcga ttagaaaatg aagattttat tgttacaggt gaagttatat ttaatacagc 1560
tatggttgga tatcctgaag ctttaacgga cccaagttat tttggtcaaa tattagtttt 1620
aacatttcct tctattggta attatggtat tgaaaaagta aaacatgatg aaacgtttgg 1680
attagtacaa aattttgaaa gtaataaaat tcaagtacaa ggtttagtta tttgtgaata 1740
ttcgaagcaa tcatatcatt acaattctta tattacctta agtgaatggt taaagattta 1800
taaaattcca tgtataggtg gtatagatac aagagcctta acaaaacttt taagagaaaa 1860
aggtagtatg ttaggtaaaa tagttatata taaaaacaga caacatatta ataaattata 1920
taaagaaatt aatctttttg atcctggtaa tatagatact ctaaaatatg tatgtaatca 1980
ttttatacgt gttattaagt tgaataatat tacatataat tataaaaata aggaagaatt 2040
taattatacc aatgaaatga ttactaatga ttcttcaatg gaagatcatg ataatgaaat 2100
taatggtagt atttctaatt ttaataattg tccaagtatc tctagttttg ataaaagtga 2160
atcgaaaaat gttattaatc atacattgtt aagagataaa atgaacctaa taacttcatc 2220
tgaagaatat ctgaaagatc ttcataattg taattttagt aatagtagtg ataaaaatga 2280
ttcttttttt aagttatatg gtatatgtga atatgataaa tatttaattg accttgaaga 2340
aaatgctagc tttcattata ataatgtaga tgaatatgga tattatgatg ttaataaaaa 2400
tacaaatatt ctatctaata ataaaataga acaaaacaac aataacgaaa ataacaaaaa 2460
taacaaaaat aacaacaata acgaggttga ttatataaag aaagatgagg ataataatgt 2520
caatagtaag gtcttttata gccaatataa taataatgca caaaataatg aacataccga 2580
atttaattta aataatgatt attctactta tattagaaag aaaatgaaaa atgaagaatt 2640
ccttaatttg gtaaacaaaa gaaaagtaga ccataaagaa aaaattattg ttattgttga 2700
ttgtggtatt aaaaatagta taatcaaaaa tttaataaga cacggtatgg atcttccatt 2760
aacatatatt attgtacctt attattacaa ttttaatcat atagattatg atgcagttct 2820
tttatctaat ggtcctggag atcctaaaaa gtgtgatttc cttataaaaa atttgaaaga 2880
tagtttaaca aaaaataaaa ttatatttgg tatttgttta ggtaatcaac tattaggtat 2940
atcattaggt tgtgacacat ataaaatgaa atatggtaat agaggtgtta atcaacccgt 3000
aatacaatta gtagataata tatgttacat tacctcacaa aatcatggat actgtttaaa 3060
gaaaaaatca attttaaaaa gaaaagagct tgcgattagt tatataaatg ctaatgataa 3120
atctatagaa ggtatttcac ataaaaatgg aagattttat agtgtccagt ttcatcctga 3180
gggtaataat ggtcctgaag atacatcatt tttatttaag aattttcttt tagatatctt 3240
taataagaaa aaacaatata gagaatattt aggatataat attatttata taaaaaagaa 3300
agtgcttctt ttaggtagtg gtggtttatg tataggacaa gcaggagaat tcgattattc 3360
aggaacacaa gcaattaaaa gtttaaaaga atgtggtata tatgttatat tagttaatcc 3420
taacatagca actgttcaaa catcaaaagg tttggcagat aaggtatact ttttaccagt 3480
taattgtgaa tttgtagaaa aaattattaa aaaggaaaaa cctgatttta ttttatgtac 3540
atttggtggt cagacagctt taaattgtgc tttaatgtta gatcaaaaaa aagtattgaa 3600
aaagaataat tgtcaatgtt taggtacatc tttagaatct ataagaataa cagaaaatag 3660
aacattattt gctgaaaaat taaaagaaat taatgaaaga atagctccat atggtagtgc 3720
aaaaaatgtt aatcaagcta ttgatatagc taataaaata ggatatccaa tattagtacg 3780
tacaacattt tcgttaggag gattaaatag tagtttcata aataatgaag aagaacttat 3840
cgaaaaatgt aataaaatat ttttacaaac tgataatgaa atatttatag ataaatcatt 3900
acaaggatgg aaagaaatag aatatgaatt attaagagat aataaaaata attgtatagc 3960
tatatgtaat atggaaaata tagatccatt aggtatacat acaggagata gtatagttgt 4020
tgcaccttca caaacattaa gtaattatga atattataaa tttagagaaa tagcattaaa 4080
ggtaattaca catttaaata ttataggaga atgtaatata caatttggta taaatccaca 4140
aacaggagaa tattgtatta ttgaagttaa tgctaggctt agtagaagtt cagcattagc 4200
ttctaaagct actggttatc cacttgctta tatatcagca aaaatagcct tgggatatga 4260
tttgataagt ttaaaaaata gcataactaa aaaaacaact gcctgttttg aaccctctct 4320
agattacatt acaacaaaaa taccacgatg ggatttaaat aaatttgagt ttgcttctaa 4380
tacaatgaat agtagtatga aaagtgtagg agaagttatg tctataggta gaacctttga 4440
agaatctata caaaaatctt taagatgtat tgatgataat tatttaggat ttagtaatac 4500
gtattgtata gattgggatg aaaagaaaat tattgaagaa ttaaaaaatc catcaccaaa 4560
aagaattgat gctatacatc aagctttcca tttaaatatg cctatggata aaatacatga 4620
gctgacacat attgattatt ggttcttaca taaattttat aatatatata atttacaaaa 4680
taagttgaaa acgttaaaat tagagcaatt atcttttaat gatttgaagt attttaagaa 4740
gcatggtttt agtgataagc aaatagctca ctacttatcc ttcaacacaa gcgataataa 4800
taataataat aataatatta gctcatgtag ggttacagaa aatgatgtta tgaaatatag 4860
agaaaagcta ggattatttc cacatattaa agttattgat accttatcag ccgaatttcc 4920
ggctttaact aattatttat atttaactta tcaaggtcaa gaacatgatg ttctcccatt 4980
aaatatgaaa aggaaaaaga tatgcacgct taataataaa cgaaatgcaa ataagaaaaa 5040
agtccatgtc aagaaccact tatataatga agtagttgat gataaggata cacaattaca 5100
caaagaaaat aataataata ataatatgaa ttctggaaat gtagaaaata aatgtaaatt 5160
gaataaagaa tcctatggct ataataattc ttctaattgt atcaatacaa ataatattaa 5220
tatagaaaat aatatttgtc atgatatatc tataaacaaa aatataaaag ttacaataaa 5280
caattccaat aattctatat cgaataatga aaatgttgaa acaaacttaa attgtgtatc 5340
tgaaagggcc ggtagccatc atatatatgg taaagaagaa aagagtatag gatctgatga 5400
tacaaatatt ttaagtgcac aaaattcaaa taataacttt tcatgtaata atgagaatat 5460
gaataaagca aacgttgatg ttaatgtact agaaaatgat acgaaaaaac gagaagatat 5520
aaatactaca acagtattta tggaaggtca aaatagtgtt attaataata agaataaaga 5580
gaatagttct ttattgaaag gtgatgaaga agatattgtg atggtaaatt taaaaaagga 5640
aaataattat aatagtgtaa ttaataatgt agattgtagg aaaaaggata tggatggaaa 5700
aaatataaat gatgaatgta aaacatataa gaaaaataaa tataaagata tgggattaaa 5760
taataatata gtagatgagt tatccaatgg aacatcacat tcaactaatg atcatttata 5820
tttagataat tttaatacat cagatgaaga aatagggaat aataaaaata tggatatgta 5880
tttatctaag gaaaaaagta tatctaataa aaaccctggt aattcttatt atgttgtaga 5940
ttccgtatat aataatgaat acaaaattaa taagatgaaa gagttaatag ataacgaaaa 6000
tttaaatgat gaatataata ataatgttaa tatgaattgt tctaattata ataatgctag 6060
tgcatttgta aatggaaagg atagaaatga taatttagaa aatgattgta ttgaaaaaaa 6120
tatggatcat acatacaaac attataatcg tttaaacaat cgtagaagta caaatgagag 6180
gatgatgctt atggtaaaca atgaaaaaga gagcaatcat gagaagggcc atagaagaaa 6240
tggtttaaat aaaaaaaata aagaaaaaaa tatggaaaaa aataagggaa aaaataaaga 6300
caaaaagaat tatcattatg ttaatcataa aaggaataat gaatataata gtaacaatat 6360
tgaatcgaag tttaataatt atgttgatga tataaataaa aaagaatatt atgaagatga 6420
aaatgatata tattatttta cacattcgtc acaaggtaac aatgacgatt taagtaatga 6480
taattattta agtagtgaag aattgaatac tgatgagtat gatgatgatt attattatga 6540
tgaagatgaa gaagatgact atgacgatga taatgatgat gatgatgatg atgatgatga 6600
tggggaggat gaggaggata atgattatta taatgatgat ggttatgata gctataattc 6660
tttatcatct tcaagaatat cagatgtatc atctgttata tattcaggga acgaaaatat 6720
atttaatgaa aaatataatg atataggttt taaaataatc gataatagga atgaaaaaga 6780
gaaagagaaa aagaaatgtt ttattgtatt aggttgtggt tgttatcgta ttggtagttc 6840
tgtagaattt gattggagtg ctatacattg tgtaaagacc ataagaaaat taaaccataa 6900
agctatatta ataaattgta acccagaaac tgtaagtaca gattatgatg aaagtgatcg 6960
tctatatttt gatgaaataa caacagaagt tataaaattt atatataact ttgaaaatag 7020
taatggtgtg attatagctt ttggtggaca aacatcaaat aatttagtat ttagtttata 7080
taaaaataat gtaaatatat taggatcagt gcacaaagtg ttgattgttg tgaaaatagg 7140
aataaatttt cgcacttatg tgattcttaa aattgatcaa ccgaaatgga ataaatttac 7200
aaaattatcc aaggctatac aatttgctaa tgaggtaaaa tttcctgtat tagtaagacc 7260
atcgtatgta ttatctggtg cagctatgag agttgtaaat tgttttgaag aattaaaaaa 7320
ctttttaatg aaggcagcta ttgttagtaa agataatcct gttgtaatat caaaatttat 7380
tgagaatgct aaagaaatag aaatagattg tgttagtaaa aatggtaaaa taattaatta 7440
tgctatatct gaacatgttg aaaatgctgg tgtacattca ggtgatgcaa cattaatatt 7500
acctgcacaa aatatatatg ttgaaacaca taggaaaata aagaaaatat ccgaaaagat 7560
ttcaaaatca ttaaatatat ctggtccatt taatatacaa tttatatgtc atcaaaatga 7620
aataaaaatt attgaatgta atttaagagc atctagaact tttccattta tatcaaaagc 7680
tctaaatcta aactttatag atttagctac aaggatatta atgggttatg acgtcaaacc 7740
aattaatata tcattaattg atttagaata tacagctgta aaagcaccga ttttctcatt 7800
taatagatta catggatcag attgtatact aggtgtagaa atgaaatcta caggtgaagt 7860
agcatgtttt ggtttaaata aatatgaagc tttattaaaa tcattaatag ctacaggtat 7920
gaagttaccc aaaaaatcaa tacttataag tattaaaaat ttaaataata aattagcttt 7980
tgaagaaccg ttccaattat tatttttaat gggatttaca atatatgcga ctgaaggtac 8040
gtatgatttc tactctaaat ttttagaatc ttttaatgtt aataaaggtt ctaaatttca 8100
tcaaagactt attaaagttc ataataaaaa tgcagaaaat atatcaccaa atacaacaga 8160
tttaattatg aatcataaag ttgaaatggt tattaatata actgatacat taaaaacaaa 8220
ggttagttca aatggttata aaattagaag attagcatca gatttccagg ttcctttaat 8280
aactaatatg aaactttgtt ctctttttat tgactcatta tatagaaaat tctcaagaca 8340
aaaggaaaga aaatcattct ataccataaa gagttatgac gaatatataa gtttggtata 8400
agcaagaaat tattcaataa attcgattta acattactta tttatgtatt tattaacttt 8460
cattccataa caacatgaaa agtataaata tataaatagt aatatataat atataatata 8520
tatatatata tatatatata tatttattta tttaattata tttacgttta aatattaata 8580
aatgttttta ttaaatatga tcattaattt atattgattt atttttttat aaatttttgt 8640
tatatataca aattttattt attcactcat atgtataaac caaaatggtt ttttcaattt 8700
acaaataatt ttataatttt aataaattta ttaattataa aaaaaataaa aatatataaa 8760
cattaaaatg tataaattct tttaattata taataattta taaatgttat gattttttta 8820
aaaaattcaa cgaaaaaaaa gaggaactgt atatacaaaa gggactatat atatgtatat 8880
atatatatat atatatatgt ttttttttcc ttattctaga 8920




2


2391


PRT


Artificial Sequence




Description of Artificial Sequence protein





2
Met Tyr Ile Ser Phe Lys Tyr Asn Leu Tyr Ile Tyr Ile Tyr Ile Tyr
1 5 10 15
Ile Tyr Ile Phe Val Leu Ile Asp Phe Lys Thr Val Gly Arg Leu Ile
20 25 30
Leu Glu Asp Gly Asn Glu Phe Val Gly Tyr Ser Val Gly Tyr Glu Gly
35 40 45
Cys Lys Gly Asn Asn Ser Ile Ser Cys His Lys Glu Tyr Arg Asn Ile
50 55 60
Ile Asn Asn Asp Asn Ser Lys Asn Ser Asn Asn Ser Phe Cys Asn Asn
65 70 75 80
Glu Glu Asn Asn Leu Lys Asp Asp Leu Leu Tyr Lys Asn Ser Arg Leu
85 90 95
Glu Asn Glu Asp Phe Ile Val Thr Gly Glu Val Ile Phe Asn Thr Ala
100 105 110
Met Val Gly Tyr Pro Glu Ala Leu Thr Asp Pro Ser Tyr Phe Gly Gln
115 120 125
Ile Leu Val Leu Thr Phe Pro Ser Ile Gly Asn Tyr Gly Ile Glu Lys
130 135 140
Val Lys His Asp Glu Thr Phe Gly Leu Val Gln Asn Phe Glu Ser Asn
145 150 155 160
Lys Ile Gln Val Gln Gly Leu Val Ile Cys Glu Tyr Ser Lys Gln Ser
165 170 175
Tyr His Tyr Asn Ser Tyr Ile Thr Leu Ser Glu Trp Leu Lys Ile Tyr
180 185 190
Lys Ile Pro Cys Ile Gly Gly Ile Asp Thr Arg Ala Leu Thr Lys Leu
195 200 205
Leu Arg Glu Lys Gly Ser Met Leu Gly Lys Ile Val Ile Tyr Lys Asn
210 215 220
Arg Gln His Ile Asn Lys Leu Tyr Lys Glu Ile Asn Leu Phe Asp Pro
225 230 235 240
Gly Asn Ile Asp Thr Leu Lys Tyr Val Cys Asn His Phe Ile Arg Val
245 250 255
Ile Lys Leu Asn Asn Ile Thr Tyr Asn Tyr Lys Asn Lys Glu Glu Phe
260 265 270
Asn Tyr Thr Asn Glu Met Ile Thr Asn Asp Ser Ser Met Glu Asp His
275 280 285
Asp Asn Glu Ile Asn Gly Ser Ile Ser Asn Phe Asn Asn Cys Pro Ser
290 295 300
Ile Ser Ser Phe Asp Lys Ser Glu Ser Lys Asn Val Ile Asn His Thr
305 310 315 320
Leu Leu Arg Asp Lys Met Asn Leu Ile Thr Ser Ser Glu Glu Tyr Leu
325 330 335
Lys Asp Leu His Asn Cys Asn Phe Ser Asn Ser Ser Asp Lys Asn Asp
340 345 350
Ser Phe Phe Lys Leu Tyr Gly Ile Cys Glu Tyr Asp Lys Tyr Leu Ile
355 360 365
Asp Leu Glu Glu Asn Ala Ser Phe His Tyr Asn Asn Val Asp Glu Tyr
370 375 380
Gly Tyr Tyr Asp Val Asn Lys Asn Thr Asn Ile Leu Ser Asn Asn Lys
385 390 395 400
Ile Glu Gln Asn Asn Asn Asn Glu Asn Asn Lys Asn Asn Lys Asn Asn
405 410 415
Asn Asn Asn Glu Val Asp Tyr Ile Lys Lys Asp Glu Asp Asn Asn Val
420 425 430
Asn Ser Lys Val Phe Tyr Ser Gln Tyr Asn Asn Asn Ala Gln Asn Asn
435 440 445
Glu His Thr Glu Phe Asn Leu Asn Asn Asp Tyr Ser Thr Tyr Ile Arg
450 455 460
Lys Lys Met Lys Asn Glu Glu Phe Leu Asn Leu Val Asn Lys Arg Lys
465 470 475 480
Val Asp His Lys Glu Lys Ile Ile Val Ile Val Asp Cys Gly Ile Lys
485 490 495
Asn Ser Ile Ile Lys Asn Leu Ile Arg His Gly Met Asp Leu Pro Leu
500 505 510
Thr Tyr Ile Ile Val Pro Tyr Tyr Tyr Asn Phe Asn His Ile Asp Tyr
515 520 525
Asp Ala Val Leu Leu Ser Asn Gly Pro Gly Asp Pro Lys Lys Cys Asp
530 535 540
Phe Leu Ile Lys Asn Leu Lys Asp Ser Leu Thr Lys Asn Lys Ile Ile
545 550 555 560
Phe Gly Ile Cys Leu Gly Asn Gln Leu Leu Gly Ile Ser Leu Gly Cys
565 570 575
Asp Thr Tyr Lys Met Lys Tyr Gly Asn Arg Gly Val Asn Gln Pro Val
580 585 590
Ile Gln Leu Val Asp Asn Ile Cys Tyr Ile Thr Ser Gln Asn His Gly
595 600 605
Tyr Cys Leu Lys Lys Lys Ser Ile Leu Lys Arg Lys Glu Leu Ala Ile
610 615 620
Ser Tyr Ile Asn Ala Asn Asp Lys Ser Ile Glu Gly Ile Ser His Lys
625 630 635 640
Asn Gly Arg Phe Tyr Ser Val Gln Phe His Pro Glu Gly Asn Asn Gly
645 650 655
Pro Glu Asp Thr Ser Phe Leu Phe Lys Asn Phe Leu Leu Asp Ile Phe
660 665 670
Asn Lys Lys Lys Gln Tyr Arg Glu Tyr Leu Gly Tyr Asn Ile Ile Tyr
675 680 685
Ile Lys Lys Lys Val Leu Leu Leu Gly Ser Gly Gly Leu Cys Ile Gly
690 695 700
Gln Ala Gly Glu Phe Asp Tyr Ser Gly Thr Gln Ala Ile Lys Ser Leu
705 710 715 720
Lys Glu Cys Gly Ile Tyr Val Ile Leu Val Asn Pro Asn Ile Ala Thr
725 730 735
Val Gln Thr Ser Lys Gly Leu Ala Asp Lys Val Tyr Phe Leu Pro Val
740 745 750
Asn Cys Glu Phe Val Glu Lys Ile Ile Lys Lys Glu Lys Pro Asp Phe
755 760 765
Ile Leu Cys Thr Phe Gly Gly Gln Thr Ala Leu Asn Cys Ala Leu Met
770 775 780
Leu Asp Gln Lys Lys Val Leu Lys Lys Asn Asn Cys Gln Cys Leu Gly
785 790 795 800
Thr Ser Leu Glu Ser Ile Arg Ile Thr Glu Asn Arg Thr Leu Phe Ala
805 810 815
Glu Lys Leu Lys Glu Ile Asn Glu Arg Ile Ala Pro Tyr Gly Ser Ala
820 825 830
Lys Asn Val Asn Gln Ala Ile Asp Ile Ala Asn Lys Ile Gly Tyr Pro
835 840 845
Ile Leu Val Arg Thr Thr Phe Ser Leu Gly Gly Leu Asn Ser Ser Phe
850 855 860
Ile Asn Asn Glu Glu Glu Leu Ile Glu Lys Cys Asn Lys Ile Phe Leu
865 870 875 880
Gln Thr Asp Asn Glu Ile Phe Ile Asp Lys Ser Leu Gln Gly Trp Lys
885 890 895
Glu Ile Glu Tyr Glu Leu Leu Arg Asp Asn Lys Asn Asn Cys Ile Ala
900 905 910
Ile Cys Asn Met Glu Asn Ile Asp Pro Leu Gly Ile His Thr Gly Asp
915 920 925
Ser Ile Val Val Ala Pro Ser Gln Thr Leu Ser Asn Tyr Glu Tyr Tyr
930 935 940
Lys Phe Arg Glu Ile Ala Leu Lys Val Ile Thr His Leu Asn Ile Ile
945 950 955 960
Gly Glu Cys Asn Ile Gln Phe Gly Ile Asn Pro Gln Thr Gly Glu Tyr
965 970 975
Cys Ile Ile Glu Val Asn Ala Arg Leu Ser Arg Ser Ser Ala Leu Ala
980 985 990
Ser Lys Ala Thr Gly Tyr Pro Leu Ala Tyr Ile Ser Ala Lys Ile Ala
995 1000 1005
Leu Gly Tyr Asp Leu Ile Ser Leu Lys Asn Ser Ile Thr Lys Lys Thr
1010 1015 1020
Thr Ala Cys Phe Glu Pro Ser Leu Asp Tyr Ile Thr Thr Lys Ile Pro
1025 1030 1035 1040
Arg Trp Asp Leu Asn Lys Phe Glu Phe Ala Ser Asn Thr Met Asn Ser
1045 1050 1055
Ser Met Lys Ser Val Gly Glu Val Met Ser Ile Gly Arg Thr Phe Glu
1060 1065 1070
Glu Ser Ile Gln Lys Ser Leu Arg Cys Ile Asp Asp Asn Tyr Leu Gly
1075 1080 1085
Phe Ser Asn Thr Tyr Cys Ile Asp Trp Asp Glu Lys Lys Ile Ile Glu
1090 1095 1100
Glu Leu Lys Asn Pro Ser Pro Lys Arg Ile Asp Ala Ile His Gln Ala
1105 1110 1115 1120
Phe His Leu Asn Met Pro Met Asp Lys Ile His Glu Leu Thr His Ile
1125 1130 1135
Asp Tyr Trp Phe Leu His Lys Phe Tyr Asn Ile Tyr Asn Leu Gln Asn
1140 1145 1150
Lys Leu Lys Thr Leu Lys Leu Glu Gln Leu Ser Phe Asn Asp Leu Lys
1155 1160 1165
Tyr Phe Lys Lys His Gly Phe Ser Asp Lys Gln Ile Ala His Tyr Leu
1170 1175 1180
Ser Phe Asn Thr Ser Asp Asn Asn Asn Asn Asn Asn Asn Ile Ser Ser
1185 1190 1195 1200
Cys Arg Val Thr Glu Asn Asp Val Met Lys Tyr Arg Glu Lys Leu Gly
1205 1210 1215
Leu Phe Pro His Ile Lys Val Ile Asp Thr Leu Ser Ala Glu Phe Pro
1220 1225 1230
Ala Leu Thr Asn Tyr Leu Tyr Leu Thr Tyr Gln Gly Gln Glu His Asp
1235 1240 1245
Val Leu Pro Leu Asn Met Lys Arg Lys Lys Ile Cys Thr Leu Asn Asn
1250 1255 1260
Lys Arg Asn Ala Asn Lys Lys Lys Val His Val Lys Asn His Leu Tyr
1265 1270 1275 1280
Asn Glu Val Val Asp Asp Lys Asp Thr Gln Leu His Lys Glu Asn Asn
1285 1290 1295
Asn Asn Asn Asn Met Asn Ser Gly Asn Val Glu Asn Lys Cys Lys Leu
1300 1305 1310
Asn Lys Glu Ser Tyr Gly Tyr Asn Asn Ser Ser Asn Cys Ile Asn Thr
1315 1320 1325
Asn Asn Ile Asn Ile Glu Asn Asn Ile Cys His Asp Ile Ser Ile Asn
1330 1335 1340
Lys Asn Ile Lys Val Thr Ile Asn Asn Ser Asn Asn Ser Ile Ser Asn
1345 1350 1355 1360
Asn Glu Asn Val Glu Thr Asn Leu Asn Cys Val Ser Glu Arg Ala Gly
1365 1370 1375
Ser His His Ile Tyr Gly Lys Glu Glu Lys Ser Ile Gly Ser Asp Asp
1380 1385 1390
Thr Asn Ile Leu Ser Ala Gln Asn Ser Asn Asn Asn Phe Ser Cys Asn
1395 1400 1405
Asn Glu Asn Met Asn Lys Ala Asn Val Asp Val Asn Val Leu Glu Asn
1410 1415 1420
Asp Thr Lys Lys Arg Glu Asp Ile Asn Thr Thr Thr Val Phe Met Glu
1425 1430 1435 1440
Gly Gln Asn Ser Val Ile Asn Asn Lys Asn Lys Glu Asn Ser Ser Leu
1445 1450 1455
Leu Lys Gly Asp Glu Glu Asp Ile Val Met Val Asn Leu Lys Lys Glu
1460 1465 1470
Asn Asn Tyr Asn Ser Val Ile Asn Asn Val Asp Cys Arg Lys Lys Asp
1475 1480 1485
Met Asp Gly Lys Asn Ile Asn Asp Glu Cys Lys Thr Tyr Lys Lys Asn
1490 1495 1500
Lys Tyr Lys Asp Met Gly Leu Asn Asn Asn Ile Val Asp Glu Leu Ser
1505 1510 1515 1520
Asn Gly Thr Ser His Ser Thr Asn Asp His Leu Tyr Leu Asp Asn Phe
1525 1530 1535
Asn Thr Ser Asp Glu Glu Ile Gly Asn Asn Lys Asn Met Asp Met Tyr
1540 1545 1550
Leu Ser Lys Glu Lys Ser Ile Ser Asn Lys Asn Pro Gly Asn Ser Tyr
1555 1560 1565
Tyr Val Val Asp Ser Val Tyr Asn Asn Glu Tyr Lys Ile Asn Lys Met
1570 1575 1580
Lys Glu Leu Ile Asp Asn Glu Asn Leu Asn Asp Glu Tyr Asn Asn Asn
1585 1590 1595 1600
Val Asn Met Asn Cys Ser Asn Tyr Asn Asn Ala Ser Ala Phe Val Asn
1605 1610 1615
Gly Lys Asp Arg Asn Asp Asn Leu Glu Asn Asp Cys Ile Glu Lys Asn
1620 1625 1630
Met Asp His Thr Tyr Lys His Tyr Asn Arg Leu Asn Asn Arg Arg Ser
1635 1640 1645
Thr Asn Glu Arg Met Met Leu Met Val Asn Asn Glu Lys Glu Ser Asn
1650 1655 1660
His Glu Lys Gly His Arg Arg Asn Gly Leu Asn Lys Lys Asn Lys Glu
1665 1670 1675 1680
Lys Asn Met Glu Lys Asn Lys Gly Lys Asn Lys Asp Lys Lys Asn Tyr
1685 1690 1695
His Tyr Val Asn His Lys Arg Asn Asn Glu Tyr Asn Ser Asn Asn Ile
1700 1705 1710
Glu Ser Lys Phe Asn Asn Tyr Val Asp Asp Ile Asn Lys Lys Glu Tyr
1715 1720 1725
Tyr Glu Asp Glu Asn Asp Ile Tyr Tyr Phe Thr His Ser Ser Gln Gly
1730 1735 1740
Asn Asn Asp Asp Leu Ser Asn Asp Asn Tyr Leu Ser Ser Glu Glu Leu
1745 1750 1755 1760
Asn Thr Asp Glu Tyr Asp Asp Asp Tyr Tyr Tyr Asp Glu Asp Glu Glu
1765 1770 1775
Asp Asp Tyr Asp Asp Asp Asn Asp Asp Asp Asp Asp Asp Asp Asp Asp
1780 1785 1790
Gly Glu Asp Glu Glu Asp Asn Asp Tyr Tyr Asn Asp Asp Gly Tyr Asp
1795 1800 1805
Ser Tyr Asn Ser Leu Ser Ser Ser Arg Ile Ser Asp Val Ser Ser Val
1810 1815 1820
Ile Tyr Ser Gly Asn Glu Asn Ile Phe Asn Glu Lys Tyr Asn Asp Ile
1825 1830 1835 1840
Gly Phe Lys Ile Ile Asp Asn Arg Asn Glu Lys Glu Lys Glu Lys Lys
1845 1850 1855
Lys Cys Phe Ile Val Leu Gly Cys Gly Cys Tyr Arg Ile Gly Ser Ser
1860 1865 1870
Val Glu Phe Asp Trp Ser Ala Ile His Cys Val Lys Thr Ile Arg Lys
1875 1880 1885
Leu Asn His Lys Ala Ile Leu Ile Asn Cys Asn Pro Glu Thr Val Ser
1890 1895 1900
Thr Asp Tyr Asp Glu Ser Asp Arg Leu Tyr Phe Asp Glu Ile Thr Thr
1905 1910 1915 1920
Glu Val Ile Lys Phe Ile Tyr Asn Phe Glu Asn Ser Asn Gly Val Ile
1925 1930 1935
Ile Ala Phe Gly Gly Gln Thr Ser Asn Asn Leu Val Phe Ser Leu Tyr
1940 1945 1950
Lys Asn Asn Val Asn Ile Leu Gly Ser Val His Lys Val Leu Ile Val
1955 1960 1965
Val Lys Ile Gly Ile Asn Phe Arg Thr Tyr Val Ile Leu Lys Ile Asp
1970 1975 1980
Gln Pro Lys Trp Asn Lys Phe Thr Lys Leu Ser Lys Ala Ile Gln Phe
1985 1990 1995 2000
Ala Asn Glu Val Lys Phe Pro Val Leu Val Arg Pro Ser Tyr Val Leu
2005 2010 2015
Ser Gly Ala Ala Met Arg Val Val Asn Cys Phe Glu Glu Leu Lys Asn
2020 2025 2030
Phe Leu Met Lys Ala Ala Ile Val Ser Lys Asp Asn Pro Val Val Ile
2035 2040 2045
Ser Lys Phe Ile Glu Asn Ala Lys Glu Ile Glu Ile Asp Cys Val Ser
2050 2055 2060
Lys Asn Gly Lys Ile Ile Asn Tyr Ala Ile Ser Glu His Val Glu Asn
2065 2070 2075 2080
Ala Gly Val His Ser Gly Asp Ala Thr Leu Ile Leu Pro Ala Gln Asn
2085 2090 2095
Ile Tyr Val Glu Thr His Arg Lys Ile Lys Lys Ile Ser Glu Lys Ile
2100 2105 2110
Ser Lys Ser Leu Asn Ile Ser Gly Pro Phe Asn Ile Gln Phe Ile Cys
2115 2120 2125
His Gln Asn Glu Ile Lys Ile Ile Glu Cys Asn Leu Arg Ala Ser Arg
2130 2135 2140
Thr Phe Pro Phe Ile Ser Lys Ala Leu Asn Leu Asn Phe Ile Asp Leu
2145 2150 2155 2160
Ala Thr Arg Ile Leu Met Gly Tyr Asp Val Lys Pro Ile Asn Ile Ser
2165 2170 2175
Leu Ile Asp Leu Glu Tyr Thr Ala Val Lys Ala Pro Ile Phe Ser Phe
2180 2185 2190
Asn Arg Leu His Gly Ser Asp Cys Ile Leu Gly Val Glu Met Lys Ser
2195 2200 2205
Thr Gly Glu Val Ala Cys Phe Gly Leu Asn Lys Tyr Glu Ala Leu Leu
2210 2215 2220
Lys Ser Leu Ile Ala Thr Gly Met Lys Leu Pro Lys Lys Ser Ile Leu
2225 2230 2235 2240
Ile Ser Ile Lys Asn Leu Asn Asn Lys Leu Ala Phe Glu Glu Pro Phe
2245 2250 2255
Gln Leu Leu Phe Leu Met Gly Phe Thr Ile Tyr Ala Thr Glu Gly Thr
2260 2265 2270
Tyr Asp Phe Tyr Ser Lys Phe Leu Glu Ser Phe Asn Val Asn Lys Gly
2275 2280 2285
Ser Lys Phe His Gln Arg Leu Ile Lys Val His Asn Lys Asn Ala Glu
2290 2295 2300
Asn Ile Ser Pro Asn Thr Thr Asp Leu Ile Met Asn His Lys Val Glu
2305 2310 2315 2320
Met Val Ile Asn Ile Thr Asp Thr Leu Lys Thr Lys Val Ser Ser Asn
2325 2330 2335
Gly Tyr Lys Ile Arg Arg Leu Ala Ser Asp Phe Gln Val Pro Leu Ile
2340 2345 2350
Thr Asn Met Lys Leu Cys Ser Leu Phe Ile Asp Ser Leu Tyr Arg Lys
2355 2360 2365
Phe Ser Arg Gln Lys Glu Arg Lys Ser Phe Tyr Thr Ile Lys Ser Tyr
2370 2375 2380
Asp Glu Tyr Ile Ser Leu Val
2385 2390




3


21


DNA


Plasmodium falciparum



3
ttttctaatc gactattttt a 21




4


21


DNA


Plasmodium falciparum



4
gacatacttg gacaattatt a 21




5


21


DNA


Plasmodium falciparum



5
ccttactatt gacattatta t 21




6


21


DNA


Plasmodium falciparum



6
ggctataaaa gaccttacta t 21




7


21


DNA


Plasmodium falciparum



7
ggatctccag gaccattaga t 21




8


21


DNA


Plasmodium falciparum



8
cctaaacatt gacaattatt c 21




9


21


DNA


Plasmodium falciparum



9
tcatgttctt gaccttgata a 21




10


21


DNA


Plasmodium falciparum



10
gatatatcat gacaaatatt a 21




11


21


DNA


Plasmodium falciparum



11
gttaccttgt gacgaatgtg t 21




12


21


DNA


Plasmodium falciparum



12
tcattttgat gacatataaa t 21




13


29


DNA


Plasmodium falciparum



13
aacatcatgt tcttgacctt gataagtta 29




14


21


DNA


Plasmodium falciparum



14
cgtcggaact gaatttggct c 21




15


21


DNA


Plasmodium falciparum



15
cctcagtgct gacagcccat c 21






Claims
  • 1. A ribozyme capable of cleaving carbamoyl phosphate synthetase II mRNA, the ribozyme including sequences complementary to portions of mRNA obtained from the nucleic acid molecule as shown in SEQ ID NO:1.
  • 2. The ribozyme as claimed in claim 1 in which the ribozyme includes sequences complementary to portions of mRNA obtained from inserted sequence one or two of the nucleic acid molecule as shown by nucleotides 1976-2671 or 4988-6796 of SEQ. ID. NO: 1.
  • 3. An antisense oligonucleotide capable of blocking expression of the nucleic acid molecule as shown in SEQ ID No:1.
  • 4. A polynucleotide construct which produces in a cell the ribozyme as claimed in claim 1 or the antisense oligonucleotide as claimed in claim 3.
Priority Claims (3)
Number Date Country Kind
PL-6206 Dec 1992 AU
PL-6380 Dec 1992 AU
00617/93 Dec 1993 AU
Parent Case Info

This application is a continuation-in-part of application Ser. No. 08/446,885, filed Jul. 6, 1995, now U.S. Pat. No. 5,849,573.

US Referenced Citations (1)
Number Name Date Kind
5585479 Hoke et al. Dec 1996
Non-Patent Literature Citations (14)
Entry
Antisense '97: A roundtable on the state of the industry. Nature Biotechnology 15 (Jun. 1997): 519-524.
Gura, T. Antisense has growing pains. Science 270 (Oct. 1995): 575-577.
Rojanasakul, Y. Antisense oligonucleotide therapeutics: drug delivery and targeting. Adv. Drug Delivery Rev. 18(1996): 115-131.
Schofield, J.P., “Molecular studies on an ancient gene . . . ”, Clinical Science, vol. 84, No. 2, pp. 119-128 (1993).
Gero, et al., “Pyrimidine De Novo Synthesis During The Life Cycle . . . ”, J. Parasit., vol. 70, No. 4, pp. 536-541 (1984).
Lusty, et al., “Yeast Carbamyl Phosphate Synthetase”; Journal of Biological Chemistry, vol. 258, No. 23, pp. 14466-14477 (1983).
Kaseman, et al., “[41] Carbamyl Phosphate Synthesis (Glutamine-Utilizing) . . . ”, Methods in Enzymology, vol. 113, pp. 305-326, Academic Press, Inc. (1985).
Aoki, et al., “Regulatory Properties and Behavior of Activity . . . ”; The Journal of Biological Chemistry, vol. 257, No. 1, pp. 432-438 (1982).
Hill, et al., “Pyrimidine Biosynthesis in Plasmodium Berghei”; Int. J. Biochem., vol. 13, No. 3, pp. 303-310 (1981).
Stull et al, Antigene, ribozyme and aptamer nucleic . . . , Pharm. Res. vol. 12, No. 4 pp. 465-583 (1995).
Chansiri et al, “The structural gene for . . . ,” Mol. Biochem. Parasitol, vol. 74, pp. 239-243 (1995).
Gewirtz et al, Facilitating oligonucleotide delivery . . . , Proc. Natl. Acad. Sci. USA vol. 93, pp. 3161-3164 (1996).
Sambrook et al, “Molecular Cloning . . . ,” Cold. Spring. Harbour Laboratory Press, pp. 8.51-8.42 (1989).
Lewin, “Genes IV”, Oxford University Press, NY, pp. 506-507 (1990).
Continuation in Parts (1)
Number Date Country
Parent 08/446855 Jul 1995 US
Child 09/150741 US