1. Field of the Invention
The present invention relates to an oil pump capable of suppressing an increase in friction and the occurrence of cavitation and pumping loss.
2. Description of the Related Art
Japanese Patent Application Publication No. 2010-96011 is available as an internal gear pump according to the related art. In Japanese Patent Application Publication No. 2010-96011 (reference symbols provided in the description of Japanese Patent Application Publication No. 2010-96011 are used as is), a passage 11 is provided to extend forward in a rotor rotation direction from a terminal end of a discharge port 7, and fluid pressure is introduced through the passage 11 from the discharge port 7 into a pump chamber 10 that has moved to a position where a capacity thereof is minimized.
A force for separating an inner rotor 4 from an outer rotor 3 is generated on an upper side of a part where the pump chamber 10 is confined by the fluid pressure, and a force for pressing teeth of the inner rotor 4 and teeth of the outer rotor 3 against each other is generated in the rotor on an opposite lower side. Thus, a tip clearance of a pump chamber 10 confining portion is reduced so that liquid leakage through the tip clearance is suppressed, and as a result, a reduction in volumetric efficiency is prevented.
A space g generated between a tooth tip of the inner rotor 4 and a tooth bottom of the outer rotor 3 in the position where the capacity of the pump chamber 10 is minimized communicates with the discharge port 7 via a groove 11a, and therefore, to connect the space g to the groove 11a, the groove 11a is provided in a position where the tooth tip of the inner rotor 4 slides against the tooth bottom of the outer rotor 3. Communication between the pump chamber 10 and both an intake port 6 and the discharge port 7 must be blocked temporarily between a discharge end point and an intake start point, and therefore the pump chamber 10 is provided with an escape portion 12 to let out (displace) a part of a starting end of the intake port 6 forward in the rotor rotation direction.
By providing the escape portion 12 to let out (displace) a part of a starting end of the intake port 6 forward in the rotor rotation direction, an intake timing is delayed such that when a cell communicates with the intake port, a rapid increase occurs in a cell surface area, leading to a rapid pressure reduction. As a result, an increase in friction and cavitation occur. An object of (a technical problem to be solved by) the present invention is to provide an oil pump capable of suppressing an increase in friction and the occurrence of cavitation and pumping loss.
As a result of much committed research undertaken by the inventor to solve the problem described above, the problem was solved by providing, as a first aspect of the present invention, an oil pump including: a rotor chamber having an intake port and a discharge port; an outer rotor having inner teeth and housed in the rotor chamber; and an inner rotor having outer teeth, wherein a partition surface between a starting end side of the intake port and a terminal end side of the discharge port is set as a first seal land, an intake groove portion that projects from the starting end side of the intake port toward the terminal end side of the discharge port and a discharge groove portion that projects from the terminal end side of the discharge port toward the starting end side of the intake port are formed in positions which are located on the first seal land and over which a cell formed when the outer teeth of the inner rotor and the inner teeth of the outer rotor are most deeply meshed passes, and the intake groove portion and the discharge groove portion are provided in intermediate tooth height direction positions of a meshing location between the outer teeth of the inner rotor and the inner teeth of the outer rotor.
Further, the problem described above was solved by providing, as a second aspect of the present invention, the oil pump according to the present invention, wherein the discharge groove portion is formed to be longer than the intake groove portion.
Furthermore, the problem described above was solved by providing, as a third aspect of the present invention, the oil pump according to the present invention, wherein the intake groove portion is formed to be longer than the discharge groove portion. The problem described above was also solved by providing, as a forth aspect of the present invention, the oil pump according to the present invention, wherein the intake groove portion is formed to have an equal length to the discharge groove portion.
In the first aspect of the present invention, the partition between the starting end side of the intake port and the terminal end side of the discharge port is set as the first seal land, the intake groove portion is formed to project from the starting end side of the intake port toward the terminal end side of the discharge port, and the discharge groove portion is formed from the terminal end side of the discharge port to the starting end side of the intake port.
In particular, the intake groove portion and the discharge groove portion are provided in an intermediate tooth height direction position of the meshing location between the outer teeth of the inner rotor and the inner teeth of the outer rotor, and therefore a pressure increase or decrease caused by rapid variation in a surface area of the cell moving over the first seal land can be prevented. Moreover, friction can be suppressed. Further, pumping loss occurring in a situation where the cell is caused to communicate with the discharge port in a compression stroke of the cell, the communication between the cell and the discharge port is blocked, and then compression is performed erroneously in a resulting sealed space can be suppressed.
With the second aspect of the invention, oil in the cell in the deepest meshing location between the outer teeth of the inner rotor and the inner teeth of the outer rotor moving over the first seal land can be discharged to the discharge groove portion over a long time period, and therefore discharge amount loss can be suppressed.
With the third aspect of the invention, oil in the cell in the deepest meshing location between the outer teeth of the inner rotor and the inner teeth of the outer rotor moving over the first seal land can be taken into the intake groove portion over a long time period, and therefore loss in an intake amount of the intake port can be suppressed.
With the forth aspect of the invention, oil in the cell in the deepest meshing location between the outer teeth of the inner rotor and the inner teeth of the outer rotor moving over the first seal land can be discharged to the discharge groove portion and taken into the intake groove portion with favorable balance, and therefore a reduction in the efficiency of the pump can be suppressed.
Embodiments of the present invention will be described below on the basis of the drawings. As shown in
The inner rotor 4 and the outer rotor 5, which has one more tooth than the inner rotor 4, are disposed eccentrically such that respective center positions thereof are offset, and housed in a rotor chamber 1a of the housing 1. In the inner rotor 4, a plurality of outer teeth 41 provided on an outer peripheral side mesh with a plurality of inner teeth 51 of the outer rotor 5. A tooth height of the outer teeth 41 provided on the inner rotor 4 may be set to be greater than a tooth height of the inner teeth 51 provided on the outer rotor 5.
The inner rotor 4 and the outer rotor 5 constitute an internal gear pump in which spaces (to be referred to hereafter as cells S) are formed between tooth side faces (parts forming a tooth thickness) of the inner rotor 4 and tooth side faces (parts forming a tooth thickness) of the outer rotor 5 in a deepest meshing condition. The deepest meshing condition is a condition in which an outer tooth 41 of the inner rotor 4 is inserted most deeply between adjacent inner teeth 51 of the outer rotor 5.
The rotor chamber 1a is formed in the housing 1 to house the outer rotor 5 and the inner rotor 4 (see
The intake port 2 and the discharge port 3 are arc-shaped grooves. Respective sides of the intake port 2 and the discharge port 3 on which the teeth (the outer teeth 41 and the inner teeth 51) and the cells S enter in a rotation direction of the inner rotor 4 and the outer rotor 5 are set as starting end sides, and sides from which the teeth (the outer teeth 41 and the inner teeth 51) and the cells S exit are set as terminal end sides (see
In the first seal land 11, the inner rotor 4 and the outer rotor 5 move over the first seal land 11 in the deepest meshed condition from the terminal end side 3t of the discharge port 3 toward the starting end side 2s of the intake port 2 (see
An intake groove portion 21 is formed in the first seal land 11 to extend from the starting end side 2s of the intake port 2 toward the terminal end side 3t of the discharge port 3. The intake groove portion 21 is a groove passage having a substantially intermediate meshing position between the outer teeth 41 of the inner rotor 4 and the inner teeth 51 of the outer rotor 5 as a locus. The intake groove portion 21 is connected to the starting end side 2s of the intake port 2 but not connected to the terminal end side 3t of the discharge port 3.
Further, a discharge groove portion 31 is formed in the first seal land 11 to extend from the terminal end side 3t of the discharge port 3 toward the starting end side 2s of the intake port 2. The discharge groove portion 31, similarly to the intake groove portion 21, is a groove passage having a substantially intermediate meshing position between the outer teeth 41 of the inner rotor 4 and the inner teeth 51 of the outer rotor 5 as a locus. The discharge groove portion 31 is connected to the terminal end side 3t of the discharge port 3 but not connected to the starting end side 2s of the intake port 2.
The intake groove portion 21 and the discharge groove portion 31 are respectively positioned in intermediate tooth height direction positions in a meshing location between the outer teeth 41 of the inner rotor 4 and the inner teeth 51 of the outer rotor 5. The intake groove portion 21 and the discharge groove portion 31 are disposed at a slight offset from each other in the height direction of the outer teeth 41 and the inner teeth 51.
A groove depth of the intake groove portion 21 and the discharge groove portion 31 is set to be shallower than (see
Opposing end portions of the intake groove portion 21 and the discharge groove portion 31 are close to each other but separated from each other (see
Here, the rotary center of the inner rotor 4 housed in the rotor chamber 1a is set as a center Qa, while a rotary center of the outer rotor 5 housed in the rotor chamber 1a is set as a center Qb. Respective positions of the center Qa and the center Qb are offset. Further, the cell S formed in the deepest meshing condition between the outer tooth 41 of the inner rotor 4 and the inner tooth 51 of the outer rotor 5 has a smaller surface area than the cells S formed in other positions, and therefore this cell S has a minimum surface area.
Next, operation conditions of the outer teeth 41 of the inner rotor 4 and the inner teeth 51 of the outer rotor 5 in the vicinity of the first seal land 11 will be described. An arbitrary outer tooth 41 that moves over the first seal land 11 in the rotation direction has been set for convenience and marked with a double circle (see
Further, using the aforesaid arbitrary outer tooth 41 as a reference, a cell on the intake side thereof, from among the cells S that move over the first seal land 11, will be referred to as an intake side cell Sa and a cell on the discharge side will be referred to as a discharge side cell Sb. When the intake side cell Sa passes over the first seal land 11, an expansion stroke takes place (see
Hence, the intake side cell Sa communicates with the intake groove portion 21 in the expansion stroke such that communication with the intake port 2 is established early. Therefore, a rapid pressure reduction in the intake side cell Sa can be prevented, and as a result, the occurrence of cavitation can be suppressed (see
In a second embodiment, the first seal land 11 is shifted to the intake port 2 side, and the intake groove portion 21 is formed to be longer than the discharge groove portion 31 (see
In a fourth embodiment, respective groove thicknesses of the intake groove portion 21 and the discharge groove portion 31 are not fixed. The thickness of the starting end side 2s of the intake port 2 and the thickness of the intake grove portion 21 connected thereto may be identical, the thickness of the terminal end side 3t of the discharge port 3 and the thickness of the discharge grove portion 31 connected thereto may be identical, and the respective end portions of the intake groove portion 21 and the discharge groove portion 31 may be positioned in intermediate tooth height direction positions in the meshing location between the outer teeth 41 of the inner rotor 4 and the inner teeth 51 of the outer rotor 5 (see
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2011-126786 | Jun 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4199305 | Pareja | Apr 1980 | A |
5466137 | Bierlein et al. | Nov 1995 | A |
7384251 | Fujiki et al. | Jun 2008 | B2 |
Number | Date | Country |
---|---|---|
43 30 586 | Sep 1994 | DE |
1 271 677 | Apr 1972 | GB |
2010-096011 | Apr 2010 | JP |
WO 2006136014 | Dec 2006 | WO |
Entry |
---|
European Search Report dated Sep. 5, 2012. |
Number | Date | Country | |
---|---|---|---|
20120308423 A1 | Dec 2012 | US |