This application is related to the following co-pending U.S. Patent Applications filed on the same day as the present application and having the same assignee: (pending patent application Ser. Nos. 11/844,402 and 11/844,405).
1. Technical Field
The present invention relates in general to a circuit and method for measuring frequency response on an integrated circuit. In particular, the present invention relates to a system and method for measuring frequency response at specific integrated circuit locations.
2. Description of the Related Art
Many modern data processing systems include multiple central processing unit cores (CPUs) located on a single semiconductor substrate of an integrated circuit. Data processing systems including such integrated circuits will execute instructions of a single program across these multiple CPUs. One technique to employ the multiple CPUs in the execution of these instructions is to divide the instructions into groups of instructions or threads. Then each group or thread is directed to a central processing unit for execution. In directing a thread to a specific CPU for its instruction execution, it is desirable to determine which CPU would be able to execute the instructions most efficiently. The co-pending patent application “Using IR Drop Data for Instruction Thread Direction,” (pending patent application Ser. No. 11/671,613) addresses this feature. This co-pending application is related to several other co-pending patent applications which address the measurement of physical characteristics on an integrated circuit in order to regulate supply voltage, predict performance and address other functions. These other co-pending patent applications include On-Chip Adaptive Voltage Compensation,” (pending patent application Ser. No. 11/671,485); “Using Performance Data for Instruction Thread Direction,” (pending patent application Ser. No. 11/671,627); “Using Temperature Data for Instruction Thread Direction,” (pending patent application Ser. No. 11/671,640); “Integrated Circuit Failure Prediction,” patent application Ser. No. 11/671,599 issued as U.S. Pat. No. 7,560,945); “Instruction Dependent Dynamic Voltage Compensation,” (pending patent application Ser. No. 11/671,579); “Temperature Dependent Voltage Source Compensation,” (pending patent application Ser. No. 11/671,568); “Fan Speed Control from Adaptive Voltage Supply,” (pending patent application Ser. No. 11/671,555); and “Digital Adaptive Voltage Supply,” (pending patent application Ser. No. 11/671,531 issued as U.S. Pat. No. 7,714,635); each assigned to the IBM Corporation and herein incorporated by reference.
In a co-pending patent application entitled “Half Width Counting Leading Zero Circuit” also assigned to IBM and herein incorporated by reference, a more efficient count leading zero circuit is disclosed which can be used as part of a frequency response measurement circuit disclosed in this application. In addition, a second co-pending patent application entitled “Data Correction Circuit” (pending patent application Ser. No. 11/844,405) also assigned to IBM and herein incorporated by reference, addresses a correction circuit that is used to correct input values to the count leading zeros circuit.
One physical condition of the CPUs for determining performance is the variation in the frequency response of a semiconductor substrate portion containing the CPU. Such variation in the frequency response is inherently due to the manufacturing process. The number of CPU cores that can be implemented on a single semiconductor substrate is proportional to the area of the single semiconductor substrate. In a single semiconductor substrate with large area, the performance of individual devices contained in cores that are not within close spatial proximity differs due to minor changes in semiconductor manufacturing process across the single semiconductor substrate. The net effect of this is that CPUs that are separated offer different frequency responses or performance. Usually, the higher measured frequency response will indicate a more efficient central processing unit.
One way to address this difference in performance of the CPUs across the single semiconductor substrate is to measure frequency response at these different CPU locations. This was accomplished in the above co-pending patent applications by using a loop oscillator which generates an output frequency. This frequency is analyzed along with other physical characteristics of the CPU to predict instruction execution performance. This performance information can be used to direct instruction threads to specific CPUs for a faster instruction execution.
The loop oscillator output frequency must be analyzed to determine its performance component. When using digital circuitry, this loop oscillator frequency output, an analog output, must be converted to a digital form before the performance can be determined. What is needed is a more direct way to indicate this frequency response performance component.
In accordance with the present invention, a method is provided for measuring frequency response in an integrated circuit including the steps of first, providing a pulse having a first transition edge and a second transition edge. The pulse is provided to a plurality of serially connected components. The second step is counting the number of components that propagate the pulse before the second transition edge occurs.
In one embodiment of the present invention, a circuit for measuring' integrated circuit performance is provided that includes a clock for providing a single pulse gated by an enable input signal, a plurality of serially connected components connected to receive the pulse, and a group of latches and where each latch is connected to a unique one of the serially connected components to store the output of its component. The latches are further connected to each receive the pulse. The contents of the latches provides an indication of how many of the serially connect components propagated the pulse between the pulse rising edge and the pulse falling edge.
The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The following is intended to provide a detailed description of an example of the invention and should not be taken to be limiting of the invention itself. Rather, any number of variations may fall within the scope of the invention, which is defined in the claims following the description.
The voltage regulator of
This voltage regulator application illustrates the environment in which the frequency response measurement is employed. In this voltage regulator application, both of the bandgap reference measurement and the chip Vdd reference measurement are accomplished by measuring frequency signals from loop oscillators and, in the case of a digital implementation of this circuit, converted into a digital form.
As the pulse propagates through each successive inverter, it gets inverted. So half the inverters propagate an output that has a rising edge while the other half of the inverters produce a falling edge. The latches capture this raw falling or rising data. In order to provide uniform polarity for the captured data, inverters such as 226 are provided at the output of latch 222 by line 224 so that the output of all of the inverters that have propagated the pulse will be of the same polarity and likewise the output of the inverters that have not received and propagated the pulse will be of the same polarity as well. In this embodiment, those inverter/latch assemblies that have propagated the pulse will have a binary numeric value of “1” and those inverter/latch assemblies that have not propagated the pulse will have a binary numeric value of “0.”
To summarize, in block 280 the serially connected inverters start with inverter 216 and continue through inverter 250. Each of these inverters includes its respective output latch and, in this embodiment, the odd numbered latches include their own respective output inverter. The output of block 280 is a parallel N bit wide data word on line 259 that is stored in latch 260.
In this embodiment, the value stored in this array of latches is a numeric value representing the number of inverters that have propagated the pulse before the pulse trailing edge has occurred. This numeric value which is on line 259, is representative of the frequency response of the integrated circuit and indicates integrated circuit performance.
A preferred embodiment of the present invention is illustrated in
All of the measurement circuits are contained on the surface of this integrated circuit device in the preferred embodiment. These measurements are then used to scale an input control signal to a voltage regulation circuit which, in one embodiment, is also contained on the surface of the integrated circuit device or alternatively on another integrated circuit. The output of this voltage regulation device provides the integrated circuit operating voltage (Vdd).
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art, based upon the teachings herein, that changes and modifications may be made without departing from this invention and its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims. It will be understood by those with skill in the art that if a specific number of an introduced claim element is intended, such intent will be explicitly recited in the claim, and in the absence of such recitation no such limitation is present. For non-limiting example, as an aid to understanding, the following appended claims contain usage of the introductory phrases “at least one” and “one or more” to introduce claim elements. However, the use of such phrases should not be construed to imply that the introduction of a claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an”; the same holds true for the use in the claims of definite articles.
Number | Name | Date | Kind |
---|---|---|---|
4417470 | McCracken et al. | Nov 1983 | A |
5375146 | Chalmers | Dec 1994 | A |
5451894 | Guo | Sep 1995 | A |
5457719 | Guo et al. | Oct 1995 | A |
5737342 | Ziperovich | Apr 1998 | A |
5844826 | Nguyen | Dec 1998 | A |
5852616 | Kubinec | Dec 1998 | A |
5990725 | LoCascio | Nov 1999 | A |
6037732 | Alfano et al. | Mar 2000 | A |
6047248 | Georgiou et al. | Apr 2000 | A |
6058502 | Sakaguchi | May 2000 | A |
6070074 | Perahia et al. | May 2000 | A |
6076157 | Borkenhagen et al. | Jun 2000 | A |
6111414 | Chatterjee et al. | Aug 2000 | A |
6125334 | Hurd | Sep 2000 | A |
6141762 | Nicol et al. | Oct 2000 | A |
6172611 | Hussain et al. | Jan 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6351601 | Judkins, III | Feb 2002 | B1 |
6429796 | Buckley | Aug 2002 | B1 |
6481974 | Horng et al. | Nov 2002 | B2 |
6591210 | Lorenz | Jul 2003 | B1 |
6625635 | Elnozahy | Sep 2003 | B1 |
6713996 | Iorio | Mar 2004 | B2 |
6721581 | Subramanian | Apr 2004 | B1 |
6721892 | Osborn | Apr 2004 | B1 |
6838917 | Brass et al. | Jan 2005 | B2 |
6859113 | Giousouf | Feb 2005 | B2 |
6897673 | Savage et al. | May 2005 | B2 |
7086058 | Luick | Aug 2006 | B2 |
7093109 | Davis et al. | Aug 2006 | B1 |
7096140 | Nozuyama et al. | Aug 2006 | B2 |
7100061 | Halepete et al. | Aug 2006 | B2 |
7174194 | Chauvel et al. | Feb 2007 | B2 |
7184936 | Bhandari | Feb 2007 | B1 |
7211977 | Squibb | May 2007 | B2 |
7228446 | Jorgenson et al. | Jun 2007 | B2 |
7282966 | Narendra et al. | Oct 2007 | B2 |
7307439 | Takamiya et al. | Dec 2007 | B2 |
7330081 | Asa et al. | Feb 2008 | B1 |
7330983 | Chaparro | Feb 2008 | B2 |
7437581 | Grochowski et al. | Oct 2008 | B2 |
20020046399 | Debling | Apr 2002 | A1 |
20020065049 | Chauvel et al. | May 2002 | A1 |
20030030483 | Seki et al. | Feb 2003 | A1 |
20030057986 | Amick et al. | Mar 2003 | A1 |
20030067334 | Brass et al. | Apr 2003 | A1 |
20030079150 | Smith et al. | Apr 2003 | A1 |
20030126476 | Greene et al. | Jul 2003 | A1 |
20030184399 | Lanoue et al. | Oct 2003 | A1 |
20040023688 | Bazarjani et al. | Feb 2004 | A1 |
20040025061 | Lawrence | Feb 2004 | A1 |
20040090216 | Carballo et al. | May 2004 | A1 |
20040183613 | Kurd et al. | Sep 2004 | A1 |
20040268280 | Eleyan et al. | Dec 2004 | A1 |
20050114056 | Patel | May 2005 | A1 |
20050116733 | Barr et al. | Jun 2005 | A1 |
20050174102 | Saraswat et al. | Aug 2005 | A1 |
20050209740 | Vann, Jr. | Sep 2005 | A1 |
20050278520 | Hirai et al. | Dec 2005 | A1 |
20050289367 | Clark et al. | Dec 2005 | A1 |
20060066376 | Narendra | Mar 2006 | A1 |
20060149974 | Rotem et al. | Jul 2006 | A1 |
20060197697 | Nagata | Sep 2006 | A1 |
20060247873 | Fung et al. | Nov 2006 | A1 |
20070006007 | Woodbridge et al. | Jan 2007 | A1 |
20070074216 | Adachi et al. | Mar 2007 | A1 |
20070192650 | Shiota | Aug 2007 | A1 |
20070260895 | Aguilar et al. | Nov 2007 | A1 |
20080004755 | Dunstan et al. | Jan 2008 | A1 |
20080136400 | Chi et al. | Jun 2008 | A1 |
20090055454 | Singh et al. | Feb 2009 | A1 |
20090055456 | Singh | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
1716161 | Jan 2006 | CN |
WO 2006072106 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090055122 A1 | Feb 2009 | US |