The current invention is in the field of nuclear medical imaging. Particularly, the invention relates to projection space mapping of time-of-flight (TOF) PET image data.
Nuclear medicine is a unique medical specialty wherein radiation is used to acquire images which show the function and anatomy of organs, bones or tissues of the body. Radiopharmaceuticals are introduced into the body, either by injection or ingestion, and are attracted to specific organs, bones or tissues of interest. Such radiopharmaceuticals produce gamma photon emissions which emanate from the body and are captured by a scintillation crystal, with which the photons interact to produce flashes of light or “events.” Events are detected by an array of photodetectors, such as photomultiplier tubes, and their spatial locations or positions are calculated and stored. In this way, an image of the organ or tissue under study is created from detection of the distribution of the radioisotopes in the body.
One particular nuclear medicine imaging technique is known as Positron Emission Tomography, or PET. PET is used to produce images for diagnosing the biochemistry or physiology of a specific organ, tumor or other metabolically active site. Measurement of the tissue concentration of a positron emitting radionuclide is based on coincidence detection of the two gamma photons arising from positron annihilation. When a positron is annihilated by an electron, two 511 keV gamma photons are simultaneously produced and travel in approximately opposite directions. Gamma photons produced by an annihilation event can be detected by a pair of oppositely disposed radiation detectors capable of producing a signal in response to the interaction of the gamma photons with a scintillation crystal. Annihilation events are typically identified by a time coincidence between the detection of the two 511 keV gamma photons in the two oppositely disposed detectors, i.e., the gamma photon emissions are detected virtually simultaneously by each detector. When two oppositely disposed gamma photons each strike an oppositely disposed detector to produce a time coincidence event, they also identify a line of response, or LOR, along which the annihilation event has occurred. An example of a PET method and apparatus is described in U.S. Pat. No. 6,858,847, which patent is incorporated herein by reference in its entirety.
After being sorted into parallel projections, the LORs defined by the coincidence events are used to reconstruct a three-dimensional distribution of the positron-emitting radionuclide within the patient. In two-dimensional PET, each 2D transverse section or “slice” of the radionuclide distribution is reconstructed independently of adjacent sections. In fully three-dimensional PET, the data are sorted into sets of LORs, where each set is parallel to a particular detector angle, and therefore represents a two dimensional parallel projection p(s, φ) of the three dimensional radionuclide distribution within the patient, where s corresponds to the location of the event along the imaging plane perpendicular to the scanner axis and φ corresponds to the angle of the detector plane with respect to the x axis in (x, y) coordinate space (in other words, φ corresponds to a particular LOR direction). Coincidence events are integrated or collected for each LOR and stored as a sinogram. In this format, a single fixed point in f(x,y) traces a sinusoid in the sinogram. In each sinogram, there is one row containing the LORs for a particular azimuthal angle φ; each such row corresponds to a one-dimensional parallel projection of the tracer distribution at a different coordinate along the scanner axis.
An event is registered if both crystals detect an annihilation photon within a coincidence time window τ (e.g., on the order of 4-5 ns), depending on the timing properties of the scintillator and the field of view. A pair of detectors is sensitive only to coincidence events occurring in the volume between the two detectors, thereby eliminating the need for physical collimation, and thus significantly increasing sensitivity. Accurate corrections can be made for the self-absorption of photons within the patient (i.e., attenuation correction) so that accurate measurements of tracer concentration can be made.
The number of time coincidences detected per second within a field of view (FOV) of a detector is the count rate of the detector. The count rate at each of two oppositely disposed detectors, A and B, can be referred to as singles counts, or singles, SA and SB. The time required for a gamma photon to travel from its point of origin to a point of detection is referred to as the time of flight, or TOF, of the gamma photon. TOF is dependent upon the speed of light c and the distance traveled. A time coincidence, or coincidence event, is identified if the time difference between the arrival of signals in a pair of oppositely disposed detectors is within the coincidence time window τ. In conventional PET, the coincidence detection time window τ is wide enough so that an annihilation event occurring anywhere within the object would produce annihilation gamma photons reaching their respective detectors within the coincidence window. Coincidence time windows of 4.5-12 nsec are common for conventional PET, and are largely determined by the time resolution capabilities of the detectors and electronics.
Time-of-flight (TOF) positron emission tomography (PET) (“TOF-PET”) is based on the measurement of the difference Δt between the detection times of the two gamma photons arising from the positron annihilation event. This measurement allows the annihilation event to be localized along the LOR with a resolution of about 75-120 mm FWHM, assuming a time resolution of 500-800 ps (picoseconds). Though less accurate than the spatial resolution of the scanner, this approximate localization is effective in reducing the random coincidence rate and in improving both the stability of the reconstruction and the signal-to-noise ratio (SNR), especially when imaging large objects.
Opportunities exist to better optimize projection data for TOF-PET systems.
Therefore, provided is a TOF-PET data acquisition system. The system includes a PET nuclear imaging device, a processor in communication with the PET nuclear imaging device, one or more RAIDs attached to the processor, and a direct memory access (DMA) rebinner card also attached to the processor.
Further provided is a chip architecture for a Petlink™ direct memory access rebinner (PDR) card. The architecture includes a Router FPGA, two Logic FPGAs in communication with the Router FPGA, and an array of memory chips attached to each Logic FPGA.
Finally, provided is a method of on-line time-of-flight “mashing.” The method includes the steps of conducting a nuclear imaging PET scan, outputting the data from the nuclear imaging scan to a processor, acquiring the data from the nuclear imaging scanner using a direct memory access (DMA) rebinner card, and outputting the acquired data.
Embodiments of the invention will now be described in greater detail in the following by way of example only and with reference to the attached drawings, in which:
a)-(b) are examples of transaxial TOF mashing and TOF axial rebinning.
As required, disclosures herein provide detailed embodiments of the present invention; however, the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. Therefore, there is no intent that specific structural and functional details should be limiting, but rather the intention is that they provide a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ aspects of the present invention.
“Mashing” is a convenient short-hand expression in common use which refers to less precise transaxial angular sampling in the projection data space. TOF mashing enables acquisition of projection data sets that take up less memory space while preserving image resolution.
The primary output of TOF PET/CT device 110 may be a data stream over fiber optic line 170. However, any method of sending data from TOF PET/CT device 110 to a processor may be used. Fiber optic stream 170 may have 64-bit detector pair packets. Each packet may comprise a 6-bit field for TOF encoding.
During data acquisition, each TOF bin (out of 60) may be over sampled at 78 ps. Fiber optic stream 170 may be coupled to a data acquisition processor 120. Processor 120 may contain local Redundant Array of Independent Disks (RAID) 160 and a direct memory access (DMA) rebinner card 150. DMA rebinner card 150 may be a Petlink™ DMA rebinner (PDR) made by Siemens, or DMA rebinner card 150 may be any other card capable of supporting on-line TOF mashing along with TOF-MSRB and nearest-neighbor rebinning into a “linear” projection data space.
The primary output from PDR 150 is a stream of 32-bit bin-address packets. The 30-bit bin-address field in this packet may be directly applied for histogramming into the final “mashed” projection data set. The CPU 130 on processor 120 receives these 32-bit packets and performs on-line histogramming as directed by the 30-bit bin-address content of each packet. CPU 130 may histogram directly into a server-resident DRAM 140. Thereafter, the instantly-completed projection data set may be transferred to local RAID 160. Alternatively, the bin-address packets may be stored directly to RAID 160 (or similar storage medium) in a list-mode data acquisition, for later processing. Processor 120 may have an output device capable of outputting the data so that it may be analyzed or reconstructed into 3-D image data, including but not limited to an internet connection, a printer, a monitor, etc.
Stage 2 may generate a final transaxial sinogram index (SI 17) from DESI 17 and the incoming 6-bit TOF value (TOFA 6). In addition, a transaxially rebinned TOF value is outputted (TOFB 6). Stage 2 may also generate a SWAP bit for controlling the detector pair orientation—i.e. A×B vs. B×A. It may also generate a single bit indicator for “inside FOV diameter” (DOK1).
Stage 3 may generate an 8-bit uncorrected “plane” (PLU 8) and “segment” (axial angle or SGU 8) indexes with an “encoded ring difference” (ERD 8) value from the axial detector-pair indexes (AY, BY, etc.). The TOF values may pass unmodified though Stage 3 so TOFC=TOSB.
Stage 4 may generate a 14-bit “delta” correction for both the plane (DPL 14) and segment (DSG 14). In addition, Stage 4 may generate a 4-bit TOF value (TOFD 4) which represents TOF values −7 through +7.
Stage 5 may generate corrected-for-true-axial-position plane (PLC 10) and segment (SGC 10) indexes. Stage 6 may calculate the 20-bit sinogram number (SN 20)—i.e. an index into the 3-D array of sinograms. The POK bit maybe be true for LOR not exceeding an oblique angle limit. Stage 7 may calculate the final 40-bit bin-address value (BA 40) using FPGA-resident integer multipliers and adders. A “sinogram-size” constant (SS 18) may be set, for example, to 1118272 (352*84) for the NN 4× case. Similarly, a “projection-size” constant (PS 32) may be set, for example, to 15777216 (336*84*559). A single-bit control for TOF enable (TOFEn) may be provided by Windows™ application software via PCI bus. Similarly, Num_TOF_Bins is a parameter that may be set to 15 for this example. A general purpose FPGA-register-driven bin-address-offset value (BAOFF 40) may be supported. 64-bit bin-address packets may be output to the Router FPGA.
a) and 4(b) are diagrams illustrating the mechanisms for both improved transaxial and axial LOR mapping (TOF-MSRB) into the projection space—made possible by the TOF data.
Row 610 shows the results of the more traditional (non-linearly-sampled or native “LOR”) LOR-to-projection-bin mapping. This mapping used no nearest-neighbor rebinning, no transaxial TOF mashing, and no axial TOF rebinning (i.e. no TOF-MSRB). Due to no mashing, the transaxial-angle sampling is the normal 336 views across 180 degrees. A total of 15 prompt-only TOF bins were generated with a 16th “TOF” bin containing the combined delays. Each bin represents 312 ps (4.68 cm) of gamma-pair arrival time difference—which is properly sampled for this advanced version of TOF PET. This LOR rebinning was produced by a software utility which—while feasible for implementation within the PDR hardware architecture—is offered as a more derivative function. This projection space was reconstructed using UW-OSEM, 1 iteration, 14 subsets—i.e. no crystal-efficiency normalization and no attenuation correction. Traditional “arc correction” was applied during reconstruction. Note the set of 3 3-D images in row 610 are extracted from the single “LOR” 3-D volume. Note that all 9 2-D images in
Row 620 of
Row 630 of
The invention having been thus described, it will be apparent to those skilled in the art that the same may be varied in many ways without departing from the spirit and scope of the invention. Any and all such modifications are intended to be included within the scope of the following claims.
This application claims priority under 35 U.S.C. § 119(e) from copending provisional applications Ser. No. 60/801,529 filed May 18, 2006, and Ser. No. 60/863,590 filed Oct. 31, 2006.
Number | Name | Date | Kind |
---|---|---|---|
20050253074 | Jones et al. | Nov 2005 | A1 |
20050253075 | Jones et al. | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070269093 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60801529 | May 2006 | US | |
60863590 | Oct 2006 | US |