The present invention relates generally to medical devices and, in particular, to devices for introducing an opacity enhancing material into a medical catheter or hollow lumen devices, such as balloons.
Balloons and catheters are used throughout the body in various lumens such as vascular, neurovascular and non-vascular lumens or cavities. In order to give the devices some radio visibility during use, the devices may have material embedded in the distal tip or various marker positions.
In some cases, the devices are insufflated with various solutions to make the devices visible under fluoroscopy. The problem with using a solution-filled device is that the device may become sticky or stiff, or have increased deflation or inflation times, making the device difficult to work with or hindering the ability of the practitioner to control the device in vivo.
There is a need for catheter devices that have increased visibility in vivo for imaging devices, but that are insertable in a deflated state, such that they are easier to control and to work with.
One aspect of the present invention relates to a catheter device comprising a elongated catheter body having a proximal end and distal end and a conduit within the catheter body; and a mixing chamber at the proximal end of the catheter body, wherein the mixing chamber has a first port for receiving a liquid and is in fluid communication with the conduit, wherein the mixing chamber is configured to allow an opacity enhancing substance in the mixing chamber to be suspended, dissolved or diluted with a liquid received from the input port to form an opacity enhancing liquid. When connected to a permeable catheter or balloon catheter, the mixing chamber can also be used to carry drugs that will be released at a treatment site through the permeable catheter or balloon catheter.
In an embodiment, the mixing chamber further comprises an opacity enhancing substance.
In a related embodiment, the opacity enhancing substance is in a dried, semidried or concentrated liquid form.
In another embodiment, the opacity enhancing substance is adhered to the inner surface of the chamber.
In another embodiment, the mixing chamber further comprises a membrane or screen that separate the mixing chamber into two or more sections.
In another embodiment, the catheter device further comprises a balloon at the distal end, wherein the balloon is in fluid communication with the mixing chamber through the conduit.
In another embodiment, the mixing chamber further comprises a second port for receiving the opacity enhancing substance.
In another embodiment, the mixing chamber is configured to create a turbulent flow to mix the opacity enhancing substance with the liquid.
In another embodiment, the opacity enhancing substance is selected from the group consisting of iodine compounds, barium sulfate, barium iridium, iron particles, tungsten, fluorescent dyes, gadolinium, and microbubbles.
In a related embodiment, the iodine compound is an ionic iodine compound or a non-ionic iodine compound.
In a related embodiment, the ionic iodine compound is selected from the group consisting of diatrizoic acid, metrizoic acid, ioglicic acid, or salts thereof.
In another related embodiment, the non-ionic iodine compound is selected from the group consisting of iopadimol, iohexol, ioxilan, iopromide, and iodixanol.
In another embodiment, the catheter is selected from the group consisting of balloon catheters, vascular catheters, cardiac catheters, arterial catheters, venous catheters, neurovascular catheters, intestinal catheters, esophageal catheters, urinary catheters, and Foley catheters.
In another related embodiment, the catheter device further comprises a stent at the distal end of the catheter body.
In another embodiment, the mixing chamber is configured to receive a removable and replaceable cartridge containing the opacity enhancing material.
In a related embodiment, the removable and replaceable cartridge further contains a drug, to be used with a permeable catheter or balloon catheter.
In another embodiment, the opacity enhancing material is contained in a pouch, packet, capsule or bag that is inserted into the mixing chamber through an aperture.
In another embodiment, the opacity enhancing material is contained in a tablet, pellet, pill, disc or wafer that is inserted into the mixing chamber through an aperture.
Another aspect of the present invention relates to a mixing device comprising a mixing chamber having a first port for connecting to a liquid delivery device, a second port for connecting to a catheter, and an opacity enhancing material inside the mixing chamber, wherein the mixing chamber is configured to allow the opacity enhancing substance to be suspended, dissolved or diluted with a liquid received from the input port to form an opacity enhancing liquid.
In one embodiment, the opacity enhancing substance is in a dried, semi-dried or concentrated liquid form.
In another embodiment, the opacity substance is adhered to the inner surface of the chamber.
In another embodiment, the mixing chamber further comprises a membrane or screen that separate the mixing chamber into two or more sections.
In another embodiment, the opacity enhancing material is contained in a removable and replaceable cartridge.
In another embodiment the mixing chamber further comprises a third port for receiving the opacity enhancing substance.
In another embodiment, the mixing chamber is configured to create a turbulent flow to mix the opacity enhancing substance with the liquid.
Another aspect of the present invention is a method of imaging a balloon catheter in a subject in need thereof, comprising the steps of: introducing into a lumen of the subject a balloon catheter device comprising a mixing chamber, wherein the mixing chamber is in fluid communication with the balloon catheter; admixing an opacity enhancing material with a liquid in the mixing chamber to form an opacity enhancing liquid, advancing the opacity enhancing liquid into the balloon catheter to inflate a balloon; and obtaining an image of the balloon in said subject.
In one embodiment, the opacity enhancing liquid further contains a therapeutic agent and the balloon catheter comprises a balloon that is permeable to the therapeutic agent.
The device and the method of the present invention may be used in procedures such angioplasty, angiography, balloon septostomy balloon sinuplasty, catheter ablation, administration of intravenous fluids, medication or parenteral nutrition with a peripheral venous catheter, drainage of fluid collections, e.g. an abdominal abscess, temporary blockage of a passage or lumen, expansion of a narrowed passage or lumen, expansion of a narrowing of the intestine, drainage of urine from the kidney by percutaneous nephrostomy, draining urine from the urinary bladder by urinary catheterization, and suprapubic catheterization.
Further objectives, features and advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
For the purposes of this disclosure, unless otherwise indicated, identical reference numerals used in different figures refer to the same component.
While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
The present invention provides a device that provides visibility/opacity of the device that allows the practitioner to see the device under imaging wherein the visibility/opacity substance could be free floating inside the device in a dried or semi-dried state that becomes active when a pharmaceutically acceptable solution is introduced into the device and mixed with the substance. Various catheter devices or hollow lumen structures are disclosed, wherein an opacity enhancing substance can be adhered to the inner lumen of the device or structure or positioned into the inner lumen as part of the application during or after the manufacturing process. In certain embodiments, the opacity enhancing substance is positioned loosely or fixed into a natural indentation, crevasse, hole, or other modulus that will allow the opacity enhancing substance to be attached to the inner lumen of the device or to be loosely adhered or fixed with a quick biodegradable technology that will allow the material to be suspended, activated or dissolved in the lumen of the catheter or the balloon using a pharmaceutically acceptable carrier to allow the lumen and or balloon end of the catheter to have increased visibility under imaging devices. When connected to a permeable catheter or balloon catheter, the mixing chamber can also be used to carry drugs that will be released at a treatment site through the permeable catheter or balloon catheter.
Examples of a “dried” state of the opacity substance include, but are not limited to a powder, granular, solid, cake, tablet or crystalline form. Examples of a “semi-dried,” or semi-liquid, state of the opacity substance include, but are not limited to a gel, slurry, paste, or a viscous liquid.
The terms “opacity enhancing substance,” “opacity substance,” and “visibility substance” refer to a medical contrast medium, or contrast agent, that increases or enhances the visibility of a medical device, such as a catheter or balloon, within the body of a subject for a medical imaging device or procedure. Exemplary opacity enhancing substances include, but are not limited to: iodine compounds, barium sulfate, barium iridium, iron particles, tungsten, fluorescent dyes, gadolinium, and microbubbles.
Iodine compounds can be ionic (high osmolar) or non-ionic (low osmolar) compounds. Exemplary ionic iodine compounds may comprise diatrizoic acid, metrizoic acid, ioglicic acid, or salts thereof. Exemplary non-ionic iodine compounds may comprise iopadimol, iohexol, ioxilan, iopromide, and iodixanol.
Microbubbles are bubbles composed of nitrogen or perfluorocarbon gas smaller than one millimeter in diameter, but larger than one micrometer encapsulated with a solid shell. The shell is made from a polymer, lipid or a protein such as serum albumin.
A medical imaging device or procedure is inclusive of any device or method used to locate, monitor or visualize a medical device, such as a catheter or balloon, within the body of a subject. Examples include, but are not limited to, X-ray, ultrasound, fluoroscopy, and magnetic resonance imaging.
A catheter is an elongated tube that can be inserted into a body cavity, lumen, duct, or vessel. The process of inserting a catheter is catheterization. In some uses, a catheter comprises a thin, flexible tube, or soft catheter. In other uses, it comprises a larger, solid tube, or hard catheter. A catheter left inside the body, either temporarily or permanently, may be referred to as an indwelling catheter. A permanently inserted catheter may be referred to as a permcath.
Catheter devices which are useful in the present invention include all types of balloon catheters. A balloon catheter is a type of soft, flexible catheter with an inflatable balloon at its tip which is used during a catheterization procedure to enlarge a narrow opening or passage within the body or to hold the catheter in place in a lumen during a procedure. The deflated balloon catheter is positioned, then inflated to perform the necessary procedure, and deflated again in order to be removed. In some embodiments, the balloon catheter may comprise a stent, which is located around the balloon, expands when the balloon is inflated, and remains in place when the balloon is deflated. Types of catheters useful in the present invention include, but are not limited to, vascular catheters, including cardiac catheters, arterial catheters, and venous catheters; neurovascular catheters; intestinal catheters; esophageal catheters and urinary catheters, such as Foley catheters.
Exemplary in vivo uses of a catheter of the present invention include, but are not limited to, angioplasty, angiography, balloon septostomy, balloon sinuplasty, catheter ablation, administration of intravenous fluids, medication or parenteral nutrition with a peripheral venous catheter, drainage of fluid collections, e.g. an abdominal abscess, temporary blockage of a passage or lumen, expansion of a narrowed passage or lumen, such as the intestine, drainage of urine from the kidney by percutaneous nephrostomy, draining urine from the urinary bladder as in urinary catheterization, e.g., the Foley catheter or even when the urethra is damaged as in suprapubic catheterization.
An exemplary catheter device with a balloon is depicted in
In the present invention, the hub can be modified to contain an opacity enhancing substance in a dry, semi-dry, gel or concentrated liquid form. The modified hub comprises a lumen or chamber for containing the substance. The liquid for inflating the balloon is introduced into the lumen or chamber, where it is mixed with the opacity enhancing substance. Suitable liquids for mixing with the opacity enhancing substance include any pharmacologically acceptable liquid, such as sterile water, saline, buffered solutions or any liquid known in the art as being suitable for the inflation of a balloon catheter. Subsequent to said mixing, the liquid enters into the catheter and inflates the balloon. Due to the presence of the opacity solution, the catheter and balloon are more visible for imaging.
For the present invention the hub of a balloon catheter can be modified to comprise a mixing chamber or lumen wherein the opacity enhancing substance is mixed with the liquid. In some embodiments, the mixing chamber or lumen is distal to the hub and is positioned in or proximal to the catheter (i.e., between the hub and the catheter). In still another embodiment, the invention contemplates that the mixing chamber or lumen is a separate article of manufacture that is attachable to the proximal end of the hub (i.e., the hub is between the mixing chamber and the catheter), wherein the liquid is introduced into the mixing chamber for mixing with the opacity enhancing substance, subsequently flowing through the hub into the catheter and inflating the balloon.
Some embodiments of the present device comprise a mesh, screen or membrane in the mixing chamber or as a component of a cylinder containing the opacity substance. In said embodiments, the pores or openings of the mesh, screen or membrane are sufficiently small to prevent the dried, semi-dried or gel opacity substance from passing through said pores or openings. However, said pores or openings allow the passage of liquid through the mesh, screen or membrane to admix with the opacity substance to form the opacity solution. Said pores or openings further allow the passage of the admixed opacity solution. In some embodiments, said pores or openings are of a uniform size. In other embodiments, said pores or openings are of differing sizes. In still other embodiments, said pores or openings may be larger on one side of the mixing chamber or cylinder and smaller on the other side of the mixing chamber or cylinder. In some embodiments, the said pores or openings of the mesh, screen or membrane create turbulence in the mixing chamber when the liquid is introduced to enhance the admixture with the opacity substance.
In some embodiments of the invention, the opacity substance is contained in a pouch, packet, capsule or bag that is a separate article of manufacture from the mixing chamber. Said pouch, packet, capsule or bag is inserted into the mixing chamber through an aperture. Said aperture is then closed with a cap being securely affixed into the mouth of the aperture by snap-fit, screw-fit or other adherent application. In a related embodiment, the pouch, packet, capsule or bag is made of a mesh or screen or membrane having pores or openings sufficiently small to prevent the dried, semi-dried or gel opacity substance from passing through said pores or openings. However, said pores or openings allow the passage of liquid through the mesh, screen or membrane to admix with the opacity substance to form the opacity solution. Said pores or openings further allow the passage of the admixed opacity solution out of the pouch, packet or bag. In another related embodiment, the pouch, packet, capsule or bag is made of a substance that is soluble in the liquid for inflating the balloon.
In another embodiment, the opacity substance is provided as a tablet, pellet, pill, disc or wafer that is a separate article of manufacture from the mixing chamber. The tablet, pellet, pill, disc or wafer is soluble in the liquid for inflating the balloon. Said tablet, pellet, pill, disc or wafer is inserted into the mixing chamber through an aperture. Said aperture is then closed with a cap being securely affixed into the mouth of the aperture by snap-fit, screw-fit or other adherent application.
The catheter device of the present invention may also be used for drug delivery to a treatment site. In one embodiment, the mixing chamber is connected to a catheter or balloon that is permeable to a therapeutic agent, and the therapeutic agent is added to the mixing chamber together with the opacity enhancing substance. The therapeutic agent may be in the form of a tablet, pellet, pill, disc or wafer. The therapeutic agent may be an antibiotic, an antimicrobial agent, an antiviral agent, an antibacterial agent, a thrombotic agent or a coagulant agent.
Mixing Chambers
The following are exemplary chambers for containing the opacity enhancing substance and mixing the substance with the liquid. The illustrations depicted and described are exemplifications of the concept for each of the types of chambers and are not intended to exactly show the shape or design of the chamber, nor to limit the scope of the disclosure to the exact shape or design shown in a drawing.
In certain instances, or with some opacity enhancing substances, it may be desirable to create additional turbulence within the chamber in order to more fully suspend or dissolve the opacity enhancing substance. An example of this concept is shown in
In
In some embodiments, the mixing chamber 30 is a separate article of manufacture from the catheter and can be attached to the hub of the catheter by way of a slip fitting, a Luer fitting, or a Luer lock fitting, for example. In an exemplary embodiment,
In some embodiments, the mixing chamber 30 can have at least one additional interchangeable element or plug 39 that forms part of the wall of the mixing chamber. This interchangeable element could be used, for example, to change the shape of the mixing chamber to modulate the turbulence of the mixing action when the liquid carrier is admixed with the opacity substance in the cylinder or mixing chamber. An exemplary, exploded view of such a device is depicted in
Control of Opacity
The intensity of the image and the level of opacity of the opacity solution in the catheter and balloon can be controlled by varying the amount of opacity enhancing substance used and the volume of liquid used to suspend or dissolve the opacity enhancing substance. In a preferred embodiment, the opacity enhancing substance is used in an amount large enough to allow an operator to visualize a medical device, such as a balloon catheter, inside the body using an imaging device, but small enough to allow the operator to see the anatomy through the image of the medical device.
In
In
The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the mentioned components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.
This application is a continuation application of U.S. patent application Ser. No. 13/173,414, filed Jun. 30, 2011, which claims the priority of U.S. Provisional Patent Application Nos. 61/344,355, filed on Jul. 6, 2010, and 61/344,543, filed on Aug. 17, 2010. The entirety of all of the aforementioned applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4406878 | DeBoer | Sep 1983 | A |
5221485 | Bosworth et al. | Jun 1993 | A |
5450847 | Kampfe et al. | Sep 1995 | A |
5592940 | Kampfe et al. | Jan 1997 | A |
6984373 | Wescott et al. | Jan 2006 | B2 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20040196735 | Barker et al. | Oct 2004 | A1 |
20040243055 | Tan | Dec 2004 | A1 |
20050101860 | Patrick et al. | May 2005 | A1 |
20060135959 | Yuan et al. | Jun 2006 | A1 |
20070191668 | Lubock et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2010026578 | Mar 2010 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/US2011/042760 and mailed Mar. 7, 2012. |
File history of U.S. Appl. No. 13/173,414, filed Jun. 30, 2011. |
Number | Date | Country | |
---|---|---|---|
20140180206 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61344355 | Jul 2010 | US | |
61344543 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13173414 | Jun 2011 | US |
Child | 14189771 | US |