1. Field of the Invention
The present invention relates to an ophthalmic apparatus, and more particularly to an ophthalmic apparatus for non-contact measurement of the physical quantity of lacrimal fluid collected on the lower eyelid.
2. Description of the Prior Art
Recent years have seen an increase in the numbers of people suffering from dry eyes caused by working with VDTs (visual display terminals) or working in rooms in which the air is dried out by air conditioning systems. Dry eyes can result in a number of ophthalmic conditions, such as damage to the corneal epithelium and conjunctiva. As such, the diagnosis of dry eye syndrome is becoming an important part of ophthalmic diagnostic procedure.
Conventional methods of diagnosing dry eye include examining vital stainings and volume of lacrimal fluid. However, such methods involve discomfort to the patient caused by the application of a solution or contacting the eye with an instrument. To detect the dry eyes in a non-contact manner, methods have been tried involving projecting a beam of coherent light onto the eye and examining interference fringes formed by the tear film layer. In the apparatus of such systems, color images of interference fringes (rainbow-colored interference patterns) formed by the tear film lipid layer of an eye to be examined are photoelectrically converted by a photoelectric element in a light-receiving system and shown on a display means. The presence of dry eye can then be readily diagnosed by examining the interference pattern indicating the condition of the tear film layer.
However, a problem with the interference fringes produced by tear film lipid layer with the conventional systems is the low contrast of the fringes, which makes it difficult to obtain a good ophthalmic diagnosis based on the fringes. Another problem is that the examiner directly observes the color patterns on the display screen to evaluate the grade of the dry eye condition, so only qualitative measurement is possible.
The object of the present invention is to provide an ophthalmic apparatus that enables diagnosis of dry eye condition by quantitatively measuring the physical quantity of lacrimal fluid collected on the border of the lower eyelid.
In accordance with the present invention, the above object is attained by an ophthalmic apparatus comprising a light control means formed with an aperture having a predetermined shape, means for projecting the aperture onto a surface of tear film collected on a lower eyelid, means for imaging the aperture projected on the tear film surface, and a means for evaluating a physical quantity of lacrimal fluid based on the image of the aperture thus obtained.
The tear film surface on the border of the lower eyelid (tear meniscus) functions like a concave mirror, so the magnification factor of the imaged aperture depends on the radius of meniscus curvature. In this invention, the magnification factor of the aperture image is obtained, giving the radius of meniscus curvature. The radius of meniscus curvature has a bearing on the volume of lacrimal fluid affecting the dry eye condition, so obtaining the radius of meniscus curvature makes it possible to evaluate quantitatively the degree of severity of the dry eye condition, or the phase into improvement thereof.
The above and other features of the present invention will become apparent from the following description made with reference to the drawings.
a and 1b are diagrams illustrating the state of tear film collected in the lower eyelid, and
a is an optical diagram of the principle of the measurement of the radius of meniscus curvature,
The relationship between tear volume V and radius of meniscus curvature r of the surface of the tear film 3 is that, since the cornea 4 and the eyelid 2 are both curved, a larger V results in a larger r. This relationship is illustrated by
In the present invention, the volume V of lacrimal fluid is determined by measuring the radius of meniscus curvature r (tear meniscus). For this, in accordance with the invention, a grid image is projected onto the tear film surface, and the physical quantity of the lacrimal fluid, that is, the radius of meniscus curvature r, is measured by analyzing the grid image.
In
With respect to
From the above two equations,
d1=(d/W)×{rW/(2W−r)},
d1={dr/(2W−r)}.
Here, if W>>r (for example, W=24, r=0.3), then 2W−r≈2W, providing the approximation formula d1 ≈(dr/2W), thus r=(d1/d)×2W.
If grid image d1 is magnified by a magnification of β to the size D shown in
In grid size (grid pitch), d is a constant, and W is the working distance value determined by the design. While this might be changed somewhat in the alignment, it is a small enough value to be disregarded. Thus, the curvature radius r of the tear meniscus for lacrimal fluid volume V can be found by measuring the size of the grid image D displayed on the monitor.
As shown in
The light from the projected grid 27 is reflected by the tear meniscus 28, forming a grid image in the vicinity of the tear meniscus. The grid image thus formed by the tear meniscus passes through objective lens 26, mirror 25, projection lens 29 and polarizing plate 30 and is picked up by a CCD camera 31, and the image is subjected to image processing by a processor 32. This processor 32 can, for example, be used to obtain the pitch of the grid image on the camera corresponding to d =D4+D5 by binarizing the image signal and obtaining the pixel coordinates for each aperture. The processor 32 also calculates the pitch d1 of the grid image formed by the tear meniscus, taking into account the lens magnification factor, and evaluates the radius of curvature r of the tear meniscus 28 in accordance with the above equation r=(d1/d)×2W.
As described above, in the formation of the grid image, the tear meniscus 28 has the function of a concave mirror, and, therefore, the factor by which the grid image formed is magnified depends on the radius of meniscus curvature r of the tear meniscus. Obtaining the radius of meniscus curvature makes it possible to evaluate quantitatively the severity of the dry eye condition. The outcome of each calculation and the evaluation can be displayed on a monitor 33.
The polarizing plate 23 arranged in the illumination and projection system and the polarizing plate 30 arranged in the imaging system both have the same orientation so as to transmit light in the same direction. As the tear meniscus is liquid, the polarized state is not readily broken down in the course of reflection, so using the polarizing plates makes it possible to improve the signal-to-noise (S/N) ratio during imaging.
As to what the degree of precision of r is when the working distance W is 24 mm, the grid pitch is the 8 mm of
r=(D/190.9)×{(2×24)/8)=0.0314×D.
In the case of the glass tube of 0.30 mm radius, the grid pitch D on the monitor was 9.55 mm, this being the mean value of ten measurements obtained using a ruler, so r=0.0314×9.55=0.30 mm, an accurate value. In the case of the piano wire of radius 0.15 mm, the average of ten measurements of D was 4.58 mm, so r=0.0314×4.58=0.14 mm. The degree of error is a mere 0.01 mm, confirming that the curvature radius of the meniscus can be measured with quite a degree of precision.
The tear meniscus 28 is a horizontally elongated shape, with the angle changing going toward the outside corner of the eye. So, by making the grid 27 rotatable, as shown in
As described in the foregoing, in accordance with the present invention, physical quantities such as the radius of meniscus curvature of tear film can be calculated based on a grid aperture image projected onto the tear film surface, thereby making it possible to quantitatively evaluate the degree of severity or change of a dry eye condition.
Number | Date | Country | Kind |
---|---|---|---|
10-071615 | Mar 1998 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4269197 | Gilbard | May 1981 | A |
4951683 | Davis | Aug 1990 | A |
5352445 | Lavaux | Oct 1994 | A |
5719659 | Suzuki | Feb 1998 | A |