This present disclosure relates generally to ophthalmic illuminators. More particularly, the present disclosure relates to devices, systems, and methods of controlling chromaticity of ophthalmic illumination systems.
Ophthalmic microsurgical procedures frequently require precision cutting and/or removing of various eye tissues. During such surgical procedures, proper illumination of the eye is important, and ophthalmic illumination systems are typically used to illuminate to the surgical field. A user, such as a surgeon or other medical professional, may insert an illumination probe into the eye to illuminate the inside of the eye for a procedure. Typically, the probe is connected to an optical port of an ophthalmic illumination system. The ophthalmic illumination system, which may be housed in a surgical console, includes a light source. The illumination system may also include other optical elements, such as collimating and condensing optics, that facilitate transmission of a light beam generated by the light source into an optical fiber extending into the probe.
During design and assembly of the ophthalmic illumination system, manufacturers seek to optimize various parameters and characteristics of the light beam, including chromaticity. Unfortunately, the chromaticity of a light beam generated by a light source, such as a supercontinuum laser engine, may not be initially calibrated as desired and tends to change with time. Such chromaticity shifts may adversely impact the surgeon's view of the surgical field, and could elevate the risk of phototoxicity in some cases. Accordingly, a need exists for improved illuminator systems that can accurately and efficiently configure, control, and maintain chromaticity over time.
In general, the present disclosure relates to an ophthalmic illumination system with controlled chromaticity.
According to certain embodiments, an ophthalmic illumination system includes a broadband light source configured to emit a white laser beam, a first monochromatic light source configured to emit a first monochromatic laser beam having a first central wavelength, optics configured to receive a combined light beam comprising the white laser beam and the monochromatic laser, and a controller comprising a processor and a memory configured to control a chromaticity of the combined light beam by changing an output power of the first monochromatic light source.
In some examples, the controller is configured to change the output power of the first monochromatic light source based on an operating time of the broadband light source.
The ophthalmic illumination system may also include a plurality of chromaticity sensors configured to measure a chromaticity of the combined light beam. The controller may be configured to receive a signal from the chromaticity sensors indicating a measured chromaticity of the combined light beam, determine that the measured chromaticity is not within a target chromaticity range, calculate an output power adjustment for the first monochromatic light source that will modify chromaticity of the combined light beam to fall within the target chromaticity range, and generate a signal to change the output power of the first monochromatic light source, based on the calculated output power adjustment.
Certain embodiments include a sleeve configured to optically combine the white laser beam with the first monochromatic laser beam. Other embodiments include a dielectric filter configured to spectrally combine the white laser beam with the first monochromatic laser beam.
In some instances, the ophthalmic illumination system includes a second monochromatic light source configured to emit a second monochromatic laser beam having a second central wavelength. The combined light beam received by the optics may include the white laser beam, the first monochromatic laser beam, and the second monochromatic laser beam, and the controller may be configured to control the chromaticity of the combined light beam by changing the output power of the first monochromatic light source or the second monochromatic light source.
Certain embodiments disclose a method that includes generating white laser beam with a broadband light source, generating a first monochromatic laser beam having a first central wavelength with a first monochromatic light source, receiving a combined light beam comprising the white laser beam and the monochromatic laser with receiving optics, and controlling chromaticity of the combined light beam by changing an output power of the first monochromatic light source.
The method may include changing the output power of the first monochromatic light source based on an operating time of the broadband light source.
In some embodiments, the method includes measuring the chromaticity of the combined light beam using a plurality of chromaticity sensors, determining that the measured chromaticity is not within a target chromaticity range, calculating an output power adjustment for the monochromatic light source that will modify chromaticity of the combined light beam to fall within the target chromaticity range, and generating a signal to change the output power of the first monochromatic light source, based on the calculated output power adjustment.
In particular examples, the method may include optically combining the white laser beam with the first monochromatic laser beam with a sleeve or spectrally combining the white laser beam with the first monochromatic laser beam with a dielectric filter.
Certain methods include generating a second monochromatic laser beam having a second central wavelength with a second monochromatic light source and controlling the chromaticity of the combined light beam by changing the output power of the first monochromatic light source or the second monochromatic light source. The combined light beam may comprise the white laser beam, the first monochromatic laser beam, and the second monochromatic laser beam.
Certain embodiments may provide one or more technical advantages. For example, embodiments of the present disclosure may provide an improved view of a surgical field by optimizing and maintaining the chromaticity of a light source. This can be particularly beneficial over the life of a supercontinuum laser, which tends to shift toward red or blue over time. Further, certain embodiments may reduce risk of phototoxicity induced by overexposure to blue light during retinal procedures.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:
One skilled in the art will appreciate that the drawings, described below, are for illustration purposes only and do not limit the scope of the disclosure.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is intended. Alterations and modifications to the described systems, devices, and methods, and any further application of the principles of the present disclosure are fully contemplated as would normally occur to one skilled in the art to which the disclosure relates. In particular, it is fully contemplated that the systems, devices, and/or methods described with respect to one embodiment may be combined with the features, components, and/or steps described with respect to other embodiments of the present disclosure. For the sake of brevity, however, the numerous iterations of these combinations will not be described separately. Further, in some instances the same reference numbers are used throughout the drawings to refer to the same or like parts.
In general, the present disclosure relates to illumination systems for ophthalmic surgery, including vitrectomies. Often, the chromaticity of supercontinuum white lasers used in vitrectomy surgery changes (shifting either redder or bluer) with operating time. The present disclosure describes techniques for optically combining a white SC laser beam with a blue, green, and/or red laser beam to compensate for chromaticity shifts and maintain a constant chromaticity over the lifetime of the illumination system.
In certain examples, SC source 102 comprises an SC laser that generates a broad continuous spectra laser beam (e.g., between approximately 400 nm and 1700 nm). In certain embodiments, SC source 102 generates a white supercontinuum laser beam emitted at a calibrated chromaticity. SC source 102 may be calibrated at the time of manufacture to emit a light beam at a target chromaticity. If the chromaticity is not as desired, it may be set to or maintained at a target chromaticity by combining the light beam with beams generated by one or more monochromatic sources, as described herein. In certain embodiments, the target chromaticity is white or substantially achromatic. In other embodiments, the target chromaticity may correspond to a particular color.
Monochromatic (“mono”) sources 104, 106, and 108 each comprise a light source that generates a substantially monochromatic beam of light, such as a monochromatic blue, green, or red laser. The example of
The example shown in
In various embodiments of system 100, monochromatic light sources 104-108 may be any suitable light sources for producing a light beam with suitable spectral characteristics, including but not limited to a gas laser, dye laser, metal vapor laser, solid state laser, semiconductor laser, fiber laser, halogen tungsten lamp, high pressure arc lamp, light emitting diode (LED), super-luminescent diode, etc.
Fibers 112, 114, 116, and 118 are optical fibers that operate as a waveguide to transmit light from sources 102, 104, 106, and 108 respectively. Optical fibers 112, 114, 116, and 118 may each include an optically transmissive fiber optic core surrounded by a cladding material having a generally low index of refraction relative to the fiber core. The fiber optic core may be made of various materials, including but not limited to glass and plastics. Optical fibers 112, 114, 116, and 118 may include additional layers depending on the requirements of a particular application. For example, the optical fibers may include a buffer material encasing cladding material, as well as an outer protective jacket (such as a plastic or metal tube) for shielding the cable's interior components from damage. Each of optical fibers 112, 114, 116, and 118 may comprise one or more multimode fibers. Optical fibers have a fiber axis that is typically the optical axis of the fiber core.
In various examples, it is important that, after collimation, the beam diameter of the monochromatic laser beam is the same as the beam diameter of the white SC laser beam. This ensures that the SC white beam and the monochromatic beams focusing into and exiting out of the illuminator fiber have angular spreads essentially equal to one another, thereby eliminating the possibility of chromaticity variations with exit angle from the multimode fiber. Various techniques may be employed to achieve the desired equal beam diameters. In one example, the focal length of the collimating lens which collimates the beam diverging from a monochromatic source is selected so that the diameter of the collimated monochromatic beam matches the diameter of the collimated white SC beam. In another example, light from the monochromatic source(s) may be coupled in free space into a single mode fiber custom-designed to have a mode field diameter at the monochromatic wavelength such that the beam exiting the fiber has the desired beam numerical aperture (NA). Thus, in certain embodiments, fibers 114, 116, and 118 may comprise a fiber with such characteristics. Additionally or alternatively, certain examples may include optics to expand or condense component monochromatic light beams to the desired diameter.
In certain examples, sleeve 117 is a suitably-sized tube which physically couples fibers 112, 114, 116, and/or 118 to bundle them together and bring light beams transmitted therein close together. Sleeve 117 may be made of any suitable material, including but not limited to a polymer (e.g., plastic).
In certain examples, the core diameter of each fiber 112, 114, 116, and 118 is under 10 μm (e.g., 8 μm), and the outer diameter of the cladding is under 12 μm (e.g., 10 μm). The core diameter of a typical consumable illuminator fiber 122 is approximately 77.5 μm and, taking tolerances into account, the core diameter of such an illuminator fiber will be at least approximately 59.5 μm at any given point. Thus, fibers 112, 114, and 116 arranged as described above (triad with core and cladding only) may be encompassed within a sleeve 117 having an inner diameter of less than 30 μm, and the combined light beam 101 exiting therefrom may readily be focused into the core of a 59.5 μm tolerance core diameter of an illuminator fiber. Even in a quad arrangement with an additional light source and fiber would readily fit within a 40 μm sleeve and the exiting beams may be directed into the core of a consumable fiber.
As shown in
Accordingly, the rays of light beam 101 exiting collimating lens 110 are substantially parallel, and are subsequently condensed by condensing lens 118. Condensing lens 118 focuses light beam 101 so that it can be directed into a small diameter optical fiber such as illuminator fiber 122. Condensing lens 118 is a lens of suitable configuration for the system and may be a biconvex or plano-convex spherical or aspheric lens in certain examples. In a plano-convex aspheric lens, one surface is planar and the other surface is convex with a precise aspheric surface in order to focus the light to a minimum diameter spot. Condensing lens 118 may comprise one or more lenses suitable for focusing light beam 101 into optical coupler 120.
Collimating lens 110 and condensing lens 118 may be identical and comprise a 1:1 optical relay system, as shown in
Optical coupler 120 receives light beam 101 from condensing lens 118 and transmits light beam 101 through illuminator optical fiber 122 and illumination probe 126. Optical coupler 120 may include any suitable components to facilitate transmission of light beam 101 into optical fiber 122.
Optical fiber 122 may include a flexible configuration to allow generally unimpeded manipulation of illumination probe 126. Optical fiber 122 may include an optically transmissive fiber optic core surrounded by a cladding material having a generally low index of refraction relative to the fiber optic core. The fiber optic core may be made of various materials, including but not limited to, glass and plastics. Optical fiber 122 may also include additional layers depending on the requirements of a particular application. For example, optical fiber 122 may include a buffer material encasing cladding material, as well as an outer protective jacket (such as a plastic or metal tube) for shielding the cable's interior components from damage. Optical fiber 122 may comprise a multimode fiber, and may be consumable.
In certain embodiments, beam 101 is focused to a small spot size for delivery to optical fiber 122. In such embodiments, optical fiber 122 may be a nano-scaled fiber optic cable. Nano-scale optic fibers generally have a diameter (or other largest cross-sectional dimension) of less than 100 microns. When employed as fiber optic core of optical fiber 122 and illumination probe 126, the small diameter of nano-scale optic fiber may enable a reduction in the cross-sectional area of probe 126, which in turn may reduce the size of the surgical incision in sclera eye 128 through which probe 126 is inserted. Depending on the size of optical fiber 122, the incision may be small enough to render the resulting wound substantially self-healing, thereby eliminating the need to employ additional procedures to close the incision, such as sutures. Additionally, due to the small size of nano-scale optic fibers, it may be possible to integrate illumination probe 126 with another surgical instrument, such as an infusion cannula (not shown), to reduce the number of surgical incision required for inserting surgical instruments during a vitreoretinal procedure.
Optical fiber 122 extends to and through illumination probe 126 to transmit light beam 101 into eye 128. Probe 126 may comprise a hand piece held by the surgeon to allow manipulation of probe 126 in eye 128. As shown in
As noted above, the core diameter of a typical consumable illuminator fiber 122 may be approximately 77.5 μm. In certain examples, the core diameter and cladding thickness of fibers 112, 114, and 116 may cumulatively be small enough that a triad arrangement of fibers (or couplet or quad arrangements if fewer or additional mono sources and attendant fibers are included in the system) may be encompassed within sleeve 117 having an inner diameter that is smaller than the guaranteed minimum inner diameter of a consumable illuminator fiber (e.g., 59.5 μm, taking tolerances into account).
Controller 136 may be communicatively coupled to each light source (e.g., SC source 102, mono sources 104, 106, and 108) via a wired or wireless connection 142 and may include any suitable combination of hardware, firmware, and software. In particular, processor 138 may include one or more microprocessors, field-programmable gate arrays (FPGAs), controllers, or any other suitable computing devices or resources. Processor 138 may work, either alone or with other components depicted in
Among other things, controller 136 may be programmed to (or may store software in memory 140 that, when executed by processor 138, is operable to) increase or decrease the power of each light source of system 100 independently in order to set, adjust, maintain, and otherwise control the chromaticity of combined beam 101. As explained above, light beam 101 comprises a combination of constituent beams generated by the SC and monochromatic sources. Beam 101 propagates from the distal end of sleeve 117, toward collimating and condensing optics, through illuminator fiber 112, out of illumination probe 126, and into eye 128. Emitted beam 101 is perceived as a single beam of light having a particular chromaticity. The chromaticity of the combined beams may be adjusted by adjusting the power of each source.
As noted above, in certain embodiments, SC source 102 generates a white supercontinuum laser beam emitted at a pre-calibrated chromaticity. White light is often desirable for illuminating biological materials, including the eye, during surgery. Filament or gas discharge lamps, as well as LEDs, are often used to generate a white light beam in an ophthalmic illumination system, but the power and quality of the beam produced by such devices is inadequate for certain applications. And, while lasers provide very high quality light beams, they are typically confined to a very narrow spectral range. Supercontinuum lasers, however, are capable of producing a generally broadband light over a relatively wide spectral range. Supercontinuum lasers may operate by passing a generally narrow bandwidth pulsed pump beam through a dispersive, non-linear medium, such as a photonic crystal fiber. As the pump beam propagates through the dispersive, non-linear medium, a series of non-linear processes act upon the pump beam to cause spectral broadening of the initial pump beam. The result is a spectral continuum extending across the visible spectrum.
The color of light generated by each source 102, 104, 106, and 108—and combined beam 101—will at any given time have a measurable chromaticity value. The human eye has three different types of color-sensitive cone receptors, and the response of the eye to color may be described in terms of three tristimulus values defined by the International Commission on Illumination (CIE) in 1931.
Accordingly, a complete diagram of all visible colors is three-dimensional. However, as a practical matter, the concept of color can be divided into two parts—relative luminous flux (Y) and chromaticity (x, y). The CIE has defined a derivative color space specified by x, y, and Y, known as the CIE xyY color space. This scheme can be used to characterize and plot perceived colors in a two-dimensional (x,y) space known as chromaticity.
As noted above, the chromaticity of a supercontinuum laser beam may be precisely calibrated at the time of manufacture to have a target chromaticity value (or range of values) within the white region of
Accordingly, certain embodiments of system 100 offset undesirable chromaticity shifts by combining the SC laser beam with a beam of light generated by one or more monochromatic lasers, thereby setting or maintaining the chromaticity of laser beam 101 projected into eye 128 at a target value or within a target range. Because white light may be generated by mixing colors on opposite sides of a white region of
As depicted in
For example, in certain examples a target chromaticity range for beam 101 is between 0.30<x<0.40 and 0.30<y<0.40. SC source 102 may be initially calibrated to emit a beam having chromaticity near (⅓, ⅓) and it may be known to shift red over time. Accordingly, monochromatic laser source 104 emits a blue laser beam to compensate for the red shift. In another example, SC source 102 is known to shift blue over time, and monochromatic laser source 104 emits a red laser beam to offset the chromaticity shift. One skilled in the art will appreciate that additional variations are within the scope of the disclosure.
The accuracy and precision of chromatic correction and control in a system may be improved by adding a second monochromatic laser (
Further, systems with three monochromatic laser sources (e.g., red, green, and blue) as shown in
In certain examples of system 100, controller 136 may be programmed to (or may store software in memory 140 that, when executed by processor 138, is operable to) maintain, increase, or decrease the power of each monochromatic source of system 100 independently in order to control the chromaticity of combined light beam 101.
For example, if no chromaticity adjustment is needed (e.g., the SC laser beam is at the desired chromaticity) controller 136 may maintain the monochromatic sources in a no-power state (turned off). In the event monochromatic light is needed to offset a chromaticity shift, controller 136 may identify the shift, calculate an offset, and cause the appropriate monochromatic source(s) to generate a laser beam at a particular power level calculated to bring the chromaticity of beam 101 to a desired value or range. Thus, according to particular embodiments, controller 136 may precisely control the power of each monochromatic source independently to achieve incremental or continuous adjustments to the chromaticity of combined beam 101.
In certain embodiments, controller 136 may also maintain a target luminous flux. In the process of correcting for chromaticity change, where light powers from multiple monochromatic sources are either added or subtracted to maintain a given chromaticity of the combined beam 101, the resultant total luminous flux Ytot of the combined beam 101 (proportional to Ytot=YSC+YMono1+YMono2+YMono3) will generally change. If it is desired to ensure the actual luminous flux matches a target luminous flux at all times, regardless of chromaticity adjustments, controller 136 may execute an algorithm that senses the luminous flux relative increase ΔYtot/Ytot and then adjusts the powers of all light sources (SC and monochromatic) up or down proportionally the same amount to maintain a target luminous flux.
In certain embodiments, memory 140 may store data correlating cumulative operating time of light source 102 to an expected change in (x,y) chromaticity of beam 101. Stored correlation data may, for example, associate a plurality of (x,y) chromaticity change/shift values (e.g., Δx, Δy) to particular operating time milestones, such as hour-based milestones (e.g., every 10 hours, every 50 hours, every 100 hours, etc.). Stored correlation data may additionally or alternatively associate a plurality of absolute chromaticity values (e.g., x1,y1) to particular operating time milestones. Correlation data may be based on laboratory or real-world testing of light sources. For instance, based on testing of light sources representative of SC source 102, correlative data may specify that, at 50 hours of usage of SC source 102, the expected chromaticity of the emitted beam is (x1, y1), or the expected chromaticity shift of the emitted beam is (Δx1, Δy1); at 100 hours of usage, (x2, y2) or (Δx2, Δy2); at 150 hours (x3 y3) or (Δx3, Δy3), etc.
Additionally or alternatively, memory 140 may store values specifying a power level or change in power level that will compensate for the expected change in chromaticity of beam 101. For example, memory 140 may store a plurality of ΔP values, each of which specifies a power of one or more monochromatic sources (e.g., sources 104, 106, 108) to compensate for the expected chromaticity shift of beam 101 at a given time milestone. For instance, such data may specify that, at 50 hours of usage of SC source 102, the power of monochromatic source 104 is to be increased to a particular power value or by a particular amount; at 100 hours of usage, a second increase, etc. In systems that include a plurality of monochromatic sources, the power of one or more sources may be independently adjusted at each milestone.
Based on data stored in memory 140, processor 138 may send commands to adjust the power of the monochromatic sources according to the stored data. In certain embodiments, processor 138 generates power control signals that cause each monochromatic source to emit light at a specified power value. In certain embodiments, processor 138 generates signals to separately control each monochromatic source independently. Thus, in certain embodiments, controller 136 may store software in memory 140 that, when executed by processor 138, tracks the operating time of SC light source 102, identifies when cumulative operating time reaches a predefined milestone, and automatically adjusts the power of each monochromatic light source to compensate for the expected chromaticity shift associated with that milestone, such that the chromaticity remains within a target region or at a target value. This process may be executed continuously for a plurality of milestones such that the monochromatic sources are gradually adjusted over time to maintain target chromaticity of light beam 11.
Although the above-described embodiments correlate a change in chromaticity with total operating hours, other correlative data may be used in various embodiments. For example, certain embodiments may store and implement chromaticity adjustments based on expected changes in laser engine power over time, or emitted laser energy over time.
At step 1002, light (e.g., the emitted SC light beam or combined light beam 101) is generated. In certain embodiments, controller 136 may be configured to determine when SC light source 102 is emitting light in order to track usage time of the SC laser. In certain embodiments, controller 136 receives a signal when light source 102 begins emitting a SC laser beam.
At step 1004, having determined that light source 102 is emitting light, controller 136 tracks operating time of light source 102. Processor 138 and memory 140 may execute instructions to track cumulative operating time of SC light source 102, as well as the length of individual uses/sessions during which light source 102 is emitting a SC beam. Operating time may be tracked in any suitable increments, e.g., seconds, minutes, hours, etc.
At step 1006, controller 136 checks whether the tracked operating time reaches a threshold or milestone. Processor 138 may execute instructions to compare tracked operating time with predetermined chromaticity and operating time data stored in memory 140. For example, processor 138 may execute a software program which tracks operating time and periodically checks to determine whether total operating time has reached an hours-based threshold, e.g., 10 hours, 20 hours, etc. If not, the system returns to step 1002. If, however, the operating time has reached a predetermined threshold, system 100 proceeds to step 1008.
At step 1008, controller 136 determines an adjustment for each monochromatic light source in system 100. In certain embodiments, processor 138 may calculate power adjustment values for monochromatic sources 104, 106, and/or 108 based on pre-stored chromaticity shift data associated with the operating time threshold reached at step 1006. In certain embodiments, processor 138 may retrieve and/or translate pre-stored data that specifies power adjustment values for monochromatic sources 104, 106, and/or 108.
At step 1010, controller 136 generates a signal to control the power of monochromatic sources 104, 106, and/or 108 according to the determined adjustment values and to compensate for the expected chromaticity shift associated with the operating time threshold reached at step 1006. At step 1012, appropriate components of monochromatic sources 104, 106, and/or 108 are changed to achieve the power adjustment specified by the signal received from controller 136. The process may then return to step 1002.
Rather than adjusting monochromatic source power based on pre-loaded data, certain embodiments of system 100 may power levels based on real-time measurements of actual chromaticity of beam 101.
Based on a measurement response to received light 132, each chromaticity sensor 206 generates a signal that indicates a detected color or chromaticity value of the filtered reflected light 132 (e.g., a chromaticity (x,y) value or tristimulus XYZ value) and outputs the signal to controller 136, which may be communicatively coupled to chromaticity sensor module 134 via wired or wireless connection. Sensors 206 may each be precalibrated using a beam of known (x,y) chromaticity to ensure the chromatic accuracy. Sensors 206 are configured to provide chromaticity signals in real-time so that controller 136 can actively adjust and maintain chromaticity of light beam 104.
Although
In certain embodiments, controller 136 receives signals from one or more sensors 206a-c of chromaticity sensor module 134 and, based on the signals, control the chromaticity of light beam 104 by adjusting the power of one or more monochromatic light sources. Processor 138 and memory 140 may work together to automatically control and adjust the chromaticity of a laser beam based on a direct real-time chromaticity measurement of the laser beam 101.
In certain embodiments, memory 140 stores target chromaticity values for beam 101. For example, memory 140 may store target chromaticity (x,y) values or target tristimulus XYZ values corresponding to white for a supercontinuum laser beam 101. In certain embodiments, target values may comprise a range of values.
Signals generated by chromaticity sensor module 134 may be received by controller 136 and stored in memory 140. Processor 138 may execute software instructions to compare detected real-time chromaticity values received from sensor module 134 with target chromaticity values stored in memory 140 to calculate the difference between them, if any. In certain embodiments, processor 138 executes an algorithm to compute a difference between actual and target chromaticity values.
In the event processor 138 determines that actual chromaticity of beam 11 deviates from a target chromaticity value or range, it may additionally execute an algorithm to determine power adjustment for monochromatic sources 104, 106, and/or 108 necessary to adjust or maintain actual chromaticity of beam 101 at a target value or range. For example, processor 138 may use a Δx, Δy chromaticity value difference to determine a ΔP104 and ΔP106, where ΔP104 is power level for monochromatic source 104 and ΔP106 is a power level for source 106 that together will cause the chromaticity of combined beam 101 exiting sleeve 117 to align with the target chromaticity value or fall within the target chromaticity range. The determined power level may be positive or negative, absolute or relative, and may comprise a change in power or an actual output power. Algorithms used to determine positional adjustment for filters 112 and 114 will be calibrated to account for the specific characteristics of the light sources and system 100, and may be based on pre-stored data. For example, processor 138 may utilize a database (e.g., a lookup table) that contains pre-stored information correlating power levels of various sources with chromaticity values/changes of combined beam 101, pre-calibrated and specific to the components of system 100.
Processor 138 may additionally generate a signal to adjust the power of monochromatic sources 104 or 106 according to determined power values. Active feedback from chromaticity sensors may be used by controller 136 to ensure that, as the power level of one or more monochromatic sources is adjusted (e.g., increased or decreased), a target chromaticity of the combined laser beam 101 is actively maintained.
At step 1102, light (e.g., the emitted SC light beam or combined light beam 101) is generated. In certain embodiments, controller 136 may be configured to determine when SC light source 102 is emitting light in order to track usage time of the SC laser. In certain embodiments, controller 136 receives a signal when light source 102 begins emitting a SC laser beam.
At step 1104, components of system 100 measure the actual chromaticity of light beam 101 (which may comprise the SC beam only if no monochromatic sources is turned on, or a combination of SC and monochromatic beams). In certain examples, controller 136 receives one or more signals from chromaticity sensor module 134 indicating measured chromaticity of light beam 102.
At step 1106, controller 136 determines if the measured chromaticity of light beam 101 is equal to or within range of a target chromaticity. Processor 138 and memory 140 may execute instructions to compare a target chromaticity value or range with a measured chromaticity value indicated by the signal received from sensor module 134. If it is determined that the measured chromaticity is equal to a target chromaticity value or falls within a target chromaticity range, the process returns to step 1102. If not, the process proceeds to step 1108.
At step 1108, controller 136 calculates power values for monochromatic sources 104 and/or 106 to adjust the chromaticity of beam 101 to a target value or range. For example, processor 136 may determine that the power level of source 104 and/or source 106 should be increased by ΔP104 and ΔP106, respectively, to restore the chromaticity of beam 101 to a target range. Processor 136 may be programmed to account for specific characteristics of the monochromatic sources included in system 100. That is, the particular algorithms executed by processor 136 may include constants, inputs, and variables tailored for specific monochromatic light sources. Such data may be based on laboratory or real-world testing of the light sources included in system 100.
At step 1110, controller 136 generates and sends a signal to control the power level of sources 104 and/or 106. Controller 136 may communicate a signal to cause electromechanical components of system 100 to adjust the power level according to the adjustment calculated at step 1108. At step 1012, the power of sources 104 and/or 106 is set according to the signal received from controller 136. The process may then return to step 1002.
In particular, the light beams generated by SC source 102 and monochromatic source 104 of
Additionally or alternatively, certain examples may include a fiber 114 coupled to monochromatic source 104 that has a mode field diameter at the monochromatic wavelength such that the beam exiting the fiber has the desired beam NA, as described above. Moreover, certain examples may include expanding or condensing optics to modify the collimated light beams so that they each have the same beam diameter. For instance, the collimated light beam generated by monochromatic source 104 may be transmitted through a beam expander 168 to expand the beam to the desired size. In certain embodiments, beam expander 168 may comprise two positive lenses or one negative lens and one positive lens. One or more such techniques may be used in embodiments of system 100 to ensure that each monochromatic and SC beam may be combined (by dielectric filter 170) across the entire extent of their (equal) beam area.
Because the SC beam is broadband, special consideration must be given to combine the SC beam with a monochromatic beam. The SC beam will contain some light at the monochromatic laser wavelength, though the power at that wavelength will be quite small since the total power is distributed across the entire spectrum. The SC beam may thus be combined with a monochromatic beam by passing it through a specialized filter designed to reflect narrow bands of the collimated SC laser beam into a beam dump.
In certain embodiments, dielectric filter 170 is positioned off-axis to receive each of the beams generated by SC source 102 and monochromatic source 104 (in this example, at a 45-degree angle). Dielectric filter 170, which may comprise a dichroic mirror, may be designed to reflect near-100% of light over a narrowband wavelength region centered at the monochromatic laser wavelength, but near 0% reflectance at all wavelengths outside of the narrow reflection band. Accordingly, the SC collimated beam will transmit through the filter 170 at near 100% transmittance for all wavelengths except for the narrow wavelength band of high reflectance. For this narrow wavelength band, very little of the SC collimated beam will transmit through filter 170. However, since the SC beam is broadband white, the narrow spectral notch of light that is missing from the transmitted beam amounts to a tiny percentage of the total SC laser beam power. In addition, any SC light reflected by filter 170 (into, for example, a beam dump) can be replaced by laser light from the monochromatic laser added to the SC beam.
As shown in
In certain embodiments, dielectric filter 170 may be composed of multiple discrete layers, each having a different refractive index. The layers may be stacked to efficiently transmit/reflect particular spectral regions, while absorbing very little. Utilizing non-absorbent materials for filter 170 may help conserve power and improve system efficiency. Dielectric filter 170 may comprise a dichroic mirror or dichroic prism.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. It will also be appreciated that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which alternatives, variations and improvements are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3026449 | Rappaport | Mar 1962 | A |
4222375 | Martinez | Sep 1980 | A |
4656508 | Yokota | Apr 1987 | A |
4870952 | Martinez | Oct 1989 | A |
4883333 | Yanez | Nov 1989 | A |
4884133 | Kanno et al. | Nov 1989 | A |
5086378 | Prince | Feb 1992 | A |
5301090 | Hed | Apr 1994 | A |
5420768 | Kennedy | May 1995 | A |
5465170 | Arimoto | Nov 1995 | A |
5526190 | Hubble, III et al. | Jun 1996 | A |
5591160 | Reynard | Jan 1997 | A |
5598042 | Mix et al. | Jan 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5657116 | Kohayakawa | Aug 1997 | A |
5736410 | Zarling et al. | Apr 1998 | A |
5830139 | Abreu | Nov 1998 | A |
5859693 | Dunne et al. | Jan 1999 | A |
5997163 | Brown | Dec 1999 | A |
6000813 | Krietzman | Dec 1999 | A |
6015403 | Jones | Jan 2000 | A |
6036683 | Jean et al. | Mar 2000 | A |
6102696 | Osterwalder et al. | Aug 2000 | A |
6120460 | Abreu | Sep 2000 | A |
6123668 | Abreu | Sep 2000 | A |
D434753 | Druckenmiller et al. | Dec 2000 | S |
6183086 | Neubert | Feb 2001 | B1 |
6190022 | Tocci et al. | Feb 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6213943 | Abreu | Apr 2001 | B1 |
6217188 | Wainwright et al. | Apr 2001 | B1 |
6226126 | Conemac | May 2001 | B1 |
6268613 | Cantu et al. | Jul 2001 | B1 |
6270244 | Naum | Aug 2001 | B1 |
6272269 | Naum | Aug 2001 | B1 |
6336904 | Nikolchev | Jan 2002 | B1 |
6431731 | Krietzman | Aug 2002 | B1 |
6436035 | Toth et al. | Aug 2002 | B1 |
6459844 | Pan | Oct 2002 | B1 |
6606332 | Boscha | Aug 2003 | B1 |
6730940 | Steranka et al. | May 2004 | B1 |
6786628 | Steen et al. | Sep 2004 | B2 |
6893258 | Kert | May 2005 | B1 |
6917057 | Stokes et al. | Jul 2005 | B2 |
6960872 | Beeson et al. | Nov 2005 | B2 |
7025464 | Beeson et al. | Apr 2006 | B2 |
7063436 | Steen et al. | Jun 2006 | B2 |
7229202 | Sander | Jun 2007 | B2 |
7276737 | Camras et al. | Oct 2007 | B2 |
7301271 | Erchak et al. | Nov 2007 | B2 |
7325957 | Morejon et al. | Feb 2008 | B2 |
7344279 | Mueller et al. | Mar 2008 | B2 |
7349163 | Angelini et al. | Mar 2008 | B2 |
7403680 | Simbal | Jul 2008 | B2 |
7482636 | Murayama | Jan 2009 | B2 |
7494228 | Harbers et al. | Feb 2009 | B2 |
7556412 | Guillermo | Jul 2009 | B2 |
7561329 | Zahniser et al. | Jul 2009 | B2 |
7682027 | Buczek et al. | Mar 2010 | B2 |
7918583 | Chakmakjian et al. | Apr 2011 | B2 |
7990587 | Watanabe | Aug 2011 | B2 |
8223447 | Artsyukhovich | Jul 2012 | B2 |
8292434 | Horvath et al. | Oct 2012 | B2 |
8315280 | Zimare et al. | Nov 2012 | B2 |
8317382 | Smith | Nov 2012 | B2 |
8371694 | Artsyukhovich | Feb 2013 | B2 |
8371695 | Papac et al. | Feb 2013 | B2 |
8474977 | Hahn et al. | Jul 2013 | B2 |
8480233 | Smith | Jul 2013 | B2 |
8488930 | Papac | Jul 2013 | B2 |
8542962 | Smith | Sep 2013 | B2 |
8662670 | Papac et al. | Mar 2014 | B2 |
8992021 | Smith | Mar 2015 | B2 |
9055885 | Horvath | Jun 2015 | B2 |
9402643 | Auld | Aug 2016 | B2 |
9693686 | Smith | Jul 2017 | B2 |
9968416 | Smith | May 2018 | B2 |
10295718 | Mirsepassi | May 2019 | B2 |
10400967 | Smith | Sep 2019 | B2 |
10433718 | Liolios | Oct 2019 | B2 |
10441157 | Smith | Oct 2019 | B2 |
10507074 | Smith | Dec 2019 | B2 |
10537401 | Dos Santos | Jan 2020 | B2 |
20010052930 | Adair et al. | Dec 2001 | A1 |
20020003928 | Bischel et al. | Jan 2002 | A1 |
20020087149 | McCary | Jul 2002 | A1 |
20020137984 | Chhibber et al. | Sep 2002 | A1 |
20020145776 | Chow | Oct 2002 | A1 |
20030112421 | Smith | Jun 2003 | A1 |
20030132701 | Sato et al. | Jul 2003 | A1 |
20030147254 | Yoneda et al. | Aug 2003 | A1 |
20030169603 | Luloh et al. | Sep 2003 | A1 |
20030223248 | Cronin et al. | Dec 2003 | A1 |
20030223249 | Lee et al. | Dec 2003 | A1 |
20040004846 | Steen et al. | Jan 2004 | A1 |
20040090796 | Steen et al. | May 2004 | A1 |
20040124429 | Stokes et al. | Jul 2004 | A1 |
20040233655 | Zimmerman et al. | Nov 2004 | A1 |
20050018309 | McGuire, Jr. et al. | Jan 2005 | A1 |
20050024587 | Somani | Feb 2005 | A1 |
20050047172 | Sander | Mar 2005 | A1 |
20050063171 | Leitel et al. | Mar 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050110808 | Goldschmidt et al. | May 2005 | A1 |
20050140270 | Henson et al. | Jun 2005 | A1 |
20050171416 | Proniewicz | Aug 2005 | A1 |
20050190562 | Keuper et al. | Sep 2005 | A1 |
20050243539 | Evans et al. | Nov 2005 | A1 |
20050270775 | Harbers et al. | Dec 2005 | A1 |
20060203468 | Beeson et al. | Sep 2006 | A1 |
20060262272 | Anderson et al. | Nov 2006 | A1 |
20070102033 | Petrocy | May 2007 | A1 |
20070133211 | Yoneda et al. | Jun 2007 | A1 |
20070213618 | Li et al. | Sep 2007 | A1 |
20070219417 | Roberts et al. | Sep 2007 | A1 |
20070273290 | Ashdown | Nov 2007 | A1 |
20070284597 | Nawashiro et al. | Dec 2007 | A1 |
20070291491 | Li et al. | Dec 2007 | A1 |
20080030984 | Harbers et al. | Feb 2008 | A1 |
20080073616 | Dong et al. | Mar 2008 | A1 |
20080112153 | Iwasaki et al. | May 2008 | A1 |
20080144169 | Zahniser et al. | Jun 2008 | A1 |
20080175002 | Papac et al. | Jul 2008 | A1 |
20080208006 | Farr | Aug 2008 | A1 |
20080246919 | Smith | Oct 2008 | A1 |
20080246920 | Buczek | Oct 2008 | A1 |
20080262316 | Ajima et al. | Oct 2008 | A1 |
20080291682 | Falicoff et al. | Nov 2008 | A1 |
20090036955 | Han | Feb 2009 | A1 |
20090054957 | Shanbaky | Feb 2009 | A1 |
20090092750 | Yang et al. | Apr 2009 | A1 |
20090095960 | Murayama | Apr 2009 | A1 |
20090105698 | Hodel et al. | Apr 2009 | A1 |
20090131823 | Andreyko et al. | May 2009 | A1 |
20090154137 | Bierhuizen et al. | Jun 2009 | A1 |
20090154192 | Krattiger | Jun 2009 | A1 |
20090168395 | Mrakovich et al. | Jul 2009 | A1 |
20090182313 | Auld | Jul 2009 | A1 |
20090190371 | Root et al. | Jul 2009 | A1 |
20090203966 | Mizuyoshi | Aug 2009 | A1 |
20090219586 | Fujimoto et al. | Sep 2009 | A1 |
20090227847 | Tepper et al. | Sep 2009 | A1 |
20090267088 | Peng et al. | Oct 2009 | A1 |
20100100006 | Xu et al. | Apr 2010 | A1 |
20100127299 | Smith et al. | May 2010 | A1 |
20100157620 | Bhadri | Jun 2010 | A1 |
20100182569 | Artsyukhovich et al. | Jul 2010 | A1 |
20100228089 | Hoffman et al. | Sep 2010 | A1 |
20100261966 | Reimer | Oct 2010 | A1 |
20100317923 | Endo et al. | Dec 2010 | A1 |
20110009752 | Chen et al. | Jan 2011 | A1 |
20110037948 | Horvath | Feb 2011 | A1 |
20110037949 | Papac et al. | Feb 2011 | A1 |
20110038174 | Papac et al. | Feb 2011 | A1 |
20110044701 | Schenk | Feb 2011 | A1 |
20110122366 | Smith | May 2011 | A1 |
20110149246 | Artsyukhovich | Jun 2011 | A1 |
20110149247 | Artsyukhovich | Jun 2011 | A1 |
20110149591 | Smith | Jun 2011 | A1 |
20110149592 | Artsyukhovich | Jun 2011 | A1 |
20110292343 | Papac | Dec 2011 | A1 |
20110292344 | Papac | Dec 2011 | A1 |
20120075601 | Den Boef | Mar 2012 | A1 |
20120169995 | Mohr | Jul 2012 | A1 |
20140217924 | Sato | Aug 2014 | A1 |
20160128557 | Papac et al. | May 2016 | A1 |
20160346058 | Bacher | Dec 2016 | A1 |
20170356608 | Smith | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
1114608 | Mar 2003 | EP |
2006-87764 | Apr 2006 | JP |
2006-318773 | Nov 2006 | JP |
2015004902 | Jan 2015 | JP |
0054655 | Sep 2000 | WO |
2008133736 | Nov 2008 | WO |
Entry |
---|
Abstract Only: Yasujima, H., et al. JP2006087764A; Publication Date Apr. 6, 2006; Machine translation; espacenet.com. |
Liu, C.K., et al.; “High Efficiency Silicon-Based High Power LED Package Integrated with Micro-Thermoelectric Device”; Microsystems Packaging, Assembly and Circuits Technology, pp. 29-33; 2007 Taipei Conference; IMPACT 2007; worlwide web: www.ieee.org; DOI 10.1109/IMPACT.2007.4433562. |
PCT/US2012/052200 International Search Report dated Oct. 26, 2012. |
Number | Date | Country | |
---|---|---|---|
20180062344 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62379469 | Aug 2016 | US |