Diseases that affect vision can be treated with a variety of therapeutic agents, but the delivery of drugs to the eye continues to be challenging. Injections of therapeutic via the eye can be painful, involve some risk of infection, hemorrhage and retinal detachment. Depending on the frequency, intra-ocular injections can be time-consuming for both patient and physician. Consequently, in at least some instances the drug may be administered less often than the prescribed frequency resulting in sub-optimal treatment benefit. Further, bolus intra-ocular injections may not provide the ideal pharmacokinetics and pharmacodynamics. A bolus injection of drug into the vitreous humor of a patient can result in a peak drug concentration several times higher than the desired therapeutic amount and then before the patient is able to get the next injection drop to a drug concentration that is far below therapeutic effectiveness.
In one aspect, disclosed is an implantable therapeutic device to treat a patient. The device includes a hollow refillable housing for implantation within the posterior segment of an eye through a penetration in the sclera of the eye. The housing has a proximal end region. A proximal retention structure protrudes outward from the proximal end region and has an access portion opening. A penetrable barrier is positioned at least in part within the access portion opening and is configured to be repeatedly penetrated. A rigid porous structure is positioned within a region of the housing away from the access portion opening. A reservoir chamber extends along an axis between the penetrable barrier and the porous structure. The reservoir chamber includes a volume sized to deliver therapeutic amounts of a therapeutic agent to the eye for an extended period of time. The access portion opening opens into the reservoir chamber. A cover is coupled to at least an upper surface of the proximal retention structure.
In some variations, one or more of the following can optionally be included in any feasible combination in the above methods, apparatus, devices, and systems.
The access portion opening can be over-molded by the cover. The cover can encapsulate and bond the proximal retention structure and an upper surface of the penetrable barrier can be positioned within the access portion opening. The cover can encapsulate and bond to at least an upper surface of the proximal retention structure. The cover can encapsulate and bond to a lower surface of the proximal retention structure. The cover can maintain a seal of the reservoir chamber volume. The cover and the proximal retention structure can have the same shape profile. The cover and the penetrable barrier can be penetrated during filling of the reservoir chamber. The cover and the penetrable barrier can be configured to reseal after penetration of the reservoir chamber. The proximal retention structure can include one or more through-holes. The penetrable barrier can be pre-molded and the cover can be over-molded. The penetrable barrier can be a soft, high strength material and the cover can be a high durometer material. The cover can be a translucent material. The device can further include an anchor positioned within the access portion opening and in contact with at least a portion of the penetrable barrier. The penetrable barrier can further include a distal region that is flared and positioned within a proximal end region of the reservoir chamber.
In an interrelated aspect, disclosed is an implantable therapeutic device to treat a patient having a hollow refillable housing for implantation within the posterior segment of an eye through a penetration in the sclera of the eye. The housing has a proximal end region. A proximal retention structure is protruding outward from the proximal end region and includes an access portion opening. A penetrable barrier is positioned at least in part within the access portion opening. The penetrable barrier is configured to be repeatedly penetrated. A rigid porous structure is positioned within a region of the housing away from the access portion opening. A reservoir chamber extends along an axis between the penetrable barrier and the porous structure. The reservoir chamber has a volume sized to deliver therapeutic amounts of a therapeutic agent to the eye for an extended period of time. The access portion opening opens into the reservoir chamber. An anchor is positioned within the access portion opening and in contact with at least a portion of the penetrable barrier.
In some variations, one or more of the following can optionally be included in any feasible combination in the above methods, apparatus, devices, and systems.
The penetrable barrier can be pre-molded with soft, high strength material. The anchor can be formed of a high durometer material that resists deformation. The penetrable barrier can be bonded to the anchor creating a single septum structure. The anchor can engage an undercut feature in the proximal end of housing. The penetrable barrier can apply radial compression to the anchor. The device can further include a cover covering an upper surface of the proximal retention structure. The device can further include a sealing element positioned within a proximal end region of the reservoir chamber and coupled to the penetrable barrier.
More details of the devices, systems and methods are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings
These and other aspects will now be described in detail with reference to the following drawings. Generally speaking the figures are not to scale in absolute terms or comparatively but are intended to be illustrative. Also, relative placement of features and elements may be modified for the purpose of illustrative clarity.
Described herein are implantable devices, systems and methods of use for the delivery of one or more therapeutics for the treatment of diseases. The devices and systems described herein can deliver therapeutics to select regions and structures of the body over a variety of periods of time.
The devices and systems described herein have improved penetrable access portions for the repeated injection and long-term treatment and implantation of the device. It should be appreciated that the penetrable access portions as described herein can be used with a number of various different implantable therapeutic devices including one or more of those devices described U.S. Pat. Nos. 8,399,006; 8,623,395; PCT Pat. Publication No. WO2012/019136; PCT Pat. Publication No. WO2012/019047; and PCT Pat. Publication No. WO 2012/065006; the entire disclosures of which are incorporated herein by reference thereto.
Eye Anatomy
The cornea 12 extends to and connects with the sclera 24 at a location called the limbus 14 of the eye. The conjunctiva 16 of the eye is disposed over the sclera 24 and the Tenon's capsule (not shown) extends between the conjunctiva 16 and the sclera 24. The eye 10 also includes a vascular tissue layer called the choroid 28 that is disposed between a portion of the sclera 24 and the retina 26. The ciliary body 20 is continuous with the base of the iris 18 and is divided anatomically into pars plica and pars plana, a posterior flat area approximately 4 mm long. The pars plana region 25 is an example of a region of the eye suitable for placement and retention of the devices described herein. The eye 10 can include an insertion of the tendon of the superior rectus muscle to couple the sclera 24 of the eye to the superior rectus muscle. The devices described herein can be positioned in many locations of the pars plana region 25, for example away from tendon of the superior rectus muscle and one or more of posterior to the tendon, anterior to the tendon, under the tendon, or with nasal or temporal placement of the therapeutic device.
It should be appreciated that the devices and systems described herein can be positioned in many locations of the eye and need not be implanted specifically as shown in the figures or as described herein. The devices and systems described herein can be used to deliver therapeutic agent(s) for an extended period of time to one or more of the following tissues: intraocular, intravascular, intraarticular, intrathecal, pericardial, intraluminal and intraperitoneal. Although specific reference is made below to the delivery of treatments to the eye, it also should be appreciated that medical conditions besides ocular conditions can be treated with the devices and systems described herein. For example, the devices and systems can deliver treatments for inflammation, infection, and cancerous growths. Any number of drug combinations can be delivered using any of the devices and systems described herein.
It should be appreciated that the devices and systems described herein can incorporate any of a variety of features described herein and that elements or features of one implementation of a device and system described herein can be incorporated alternatively or in combination with elements or features of another implementation of a device and system described herein as well as the various implants and features described in U.S. Pat. Nos. 8,399,006; 8,623,395; PCT Pat. Publication No. WO2012/019136; PCT Pat. Publication No. WO2012/019047; and PCT Pat. Publication No. WO 2012/065006. For example, the septum features described herein may be used with any of the various implementations of a device or system. For the sake of brevity, explicit descriptions of each of those combinations may be omitted although the various combinations are to be considered herein. Additionally, described herein are different methods for implantation and access of the devices. The various implants can be implanted, filled, refilled etc. according to a variety of different methods and using a variety of different devices and systems. Provided are some representative descriptions of how the various devices may be implanted and accessed, however, for the sake of brevity explicit descriptions of each method with respect to each implant or system may be omitted.
Implants
In a first implementation and as shown in
Again with respect to
Still with respect to
The housing 130 can have a dimension such that its length generally exceeds its width or diameter. The housing 130 can have a diameter sized within a range, for example, from at least about 0.5 mm to at least about 4 mm, from at least about 1 mm to at least about 3 mm. In some implementations the diameter of the housing 130 at its widest point can be about 2 mm, for example. The housing 130 can have a length sized so as to extend from the conjunctiva 16 to the vitreous body 30 along axis 100A to release the therapeutic agent into the vitreous body 30. The housing 130 can have a length sized within a range, for example, from at least about 2 mm to at least about 14 mm, from at least about 4 mm to at least about 10 mm. In some implementations, the length of the housing 130 can be about 7 mm, for example. The above dimensions are provided as example dimensions and are not intended to be limiting. It should be appreciated that a variety and combination of dimensions are to be considered herein.
The housing 130 and reservoir chamber 160 can each (although not necessarily both) have an elliptical or oval cross-sectional shape, for example. This elongation of the device along one direction can allow for increased drug in the reservoir chamber 160 with a decrease interference in vision, for example, as the major axis of the ellipse can be aligned substantially with the circumference of the pars plana region 25 of the eye extending substantially around the cornea 12 of the eye, and the minor axis of the ellipse can be aligned radially with the eye so as to decrease interference with vision as the short axis of the ellipse extends toward the optical axis of the eye corresponding to the patient's line of sight through the pupil. Although reference is made to an elliptical or oval cross-section, many cross-sectional sizes and shapes can be used such as circular, square or rectangular with a short dimension extending toward the pupil of the eye and the long dimension extending along the pars plana of the eye.
One or more regions of the housing 130 of the devices described herein can be formed of a substantially rigid, biocompatible material. In some implementations, the walls of the housing 130 including at least the proximal retention structure 120 down to and including the porous structure 150 are substantially rigid such that the reservoir chamber 160 has a substantially constant volume when the therapeutic agent is released from the device so as to maintain a stable release rate profile, for example when the patient moves. The reservoir chamber 160 can remain substantially rigid and have a substantially constant volume even during injection of the therapeutic agent into the device, for example a device already implanted in the eye.
One or more regions of the housing 130, one or more regions of the retention structure 120 as well as other portions of the devices described herein, alone or in combination, can be formed of one or more of many biocompatible materials including, but not limited to materials such as acrylates, polymethylmethacrylate, siloxanes, metals, titanium stainless steel, polycarbonate, polyetheretherketone (PEEK), polyethylene, polyethylene terephthalate (PET), polyimide, polyimide-imide, polypropylene, polysulfone, polyurethane, polyvinylidene fluoride, polyphenylene polyphenylsulfone or PTFE, and others. Alternatively or in combination, one or more portions of the devices described herein, such as the housing 130, can be formed at least in part from an optically transmissive material such that the housing 130 can be translucent or transparent, such that when the device 100 is loaded with therapeutic agent the reservoir chamber 160 can be visualized outside the patient prior to implantation, for example when injected with a formulation of therapeutic agent prior to implantation in the physician's office. This visualization of the reservoir chamber 160 can be helpful to ensure that the reservoir chamber 160 is properly filled with therapeutic agent by the treating physician or assistant prior to implantation. For example, transparency can enable visualization, for example, using an indirect ophthalmoscope, of the contents of the reservoir chamber 160 of an implanted device allowing one to confirm that no air is trapped in the device and/or verify the clarity of the device contents. A cloudy appearance, for example, may indicate that some degree of contamination, microbial or otherwise, has occurred. The biocompatible, optically transmissive materials can include one or more of acrylate, polyacrylate, methlymethacraylate, polymethlymethacrylate (PMMA), polyacarbonate, glass or siloxane.
The porous structure 150 can include one or more of a release control element, a release control mechanism, permeable membrane, a semi-permeable membrane, a material having at least one hole disposed therein, channels formed in a rigid material, straight channels, nano-channels, nano-channels etched in a rigid material, laser drilled holes, laser etched nano-channels, a capillary channel, a plurality of capillary channels, one or more tortuous channels, sintered material, sintered rigid material, sintered glass, sintered ceramic, sintered metal, sintered titanium, tortuous micro-channels, sintered nano-particles, an open cell foam or a hydrogel such as an open cell hydrogel. Porous structures considered herein are described in U.S. Pat. Nos. 8,399,006; 8,623,395; PCT Publication No. WO2012/019136; PCT Publication No. WO2012/019047; and PCT Publication No. WO 2012/065006; the entire disclosures of which are incorporated herein by reference thereto.
Again with respect to
The retention structure 120 can include a narrowed portion 121 and a wider, flanged portion 122 extending proximally from the narrowed portion 121. The narrowed portion 121 can have a cross-section sized to fit in an elongate incision or a puncture through the pars plana region 25 without causing gaping of the tissue near either end of the incision. For example, an incision can be made with a device having a straight, flat blade, for example a 3.2 mm blade. Penetrating the sclera with such a blade can result in exposed scleral tissue that may need to be sealed (e.g. 6.4 mm or 2×3.2 mm). A cross-sectional region of an implant positioned within the cut region of the sclera, for example having a perimeter of 6.4 mm and a diameter of about 2 mm, could open the wound such that there would be relatively large voids on either side of the device, for example about 2.2 mm between either side of the device and the farthest aspects of the exposed sclera. These voids can result in cut portions of the sclera remaining exposed and unsealed. The geometry of the narrowed portion 121 of the devices described herein can be designed to minimize the length of cut scleral tissue that remains exposed and/or unsealed.
The narrowed portion 121 can have a first cross-sectional distance across, or first dimensional width, and a second cross-sectional distance across, or second dimensional width, in which the first cross-sectional distance across is greater than the second cross-sectional distance across providing the narrowed portion 121 with an elongate cross-sectional profile. The elongate cross section of the narrowed portion 121 can be sized in many ways to fit the incision. The elongate cross section can have a first dimension longer than a second dimension and can have one or more of many shapes such as dilated slit, dilated slot, lentoid, oval, ovoid, or elliptical. It should also be appreciated that the narrowed portion 121 can have other cross sectional shapes, for example, a circular shape, if desired. The dilated slit shape and dilated slot shape can correspond to the shape assumed by the scleral tissue when cut and dilated. The lentoid shape can correspond to a biconvex lens shape. The elongate cross-section of the narrowed portion 121 can include a first curve along a first axis and a second curve along a second axis that is different than the first curve. The narrowed portion 121 can be sized and configured to receive the sclera 24 upon implantation in the eye 10 when the flanged portion 122 is positioned between the sclera 24 and the conjunctiva 16 and the distal end of the housing 130 extends into the vitreous body 30.
Flanged portion 122 of the retention structure 120 can include a first distance across and a second distance across. The first distance across can be greater than the second distance across (see
As mentioned above, the penetrable barrier 140 can be positioned, at least in part, within access portion opening 180 sealing the reservoir chamber 160 on a proximal end region of the device 100. The penetrable barrier 140 can be a septum configured to receive and be repeatedly penetrated by a sharp object such as a needle for injection of the therapeutic agent into the reservoir chamber 160. The penetrable barrier 140 can be configured to re-seal when the sharp object is removed. The penetrable barrier 140 can be a pre-molded soft, high strength material. In some implementations, the penetrable barrier 140 can be formed from one or more elastic materials such as siloxane, rubber, or another liquid injection molding silicone elastomer such as NUSIL MED-4810 (NuSil Silicone Technology, Carpinteria, CA). In some implementations, the penetrable barrier 140 can include an opaque material and/or a colored material such that it can be visualized by the treating physician.
Repeated injection as well as long-term implantation of the device 100 can affect the integrity of the penetrable barrier 140. For example, repeated injection through the penetrable barrier 140 can at least partially damage the device and negatively affect the seal between the inner surfaces of the housing 130, retention structure 120 and the outer surfaces of the penetrable barrier 140. Further, over time after implantation the penetrable barrier 140 can loosen relative to the housing 130. Described herein are features to improve the integrity of the penetrable barrier 140, its sealing engagement with the access portion opening 180 of the housing 130 and/or retention structure 120, and the effectiveness of the access region for repeated injection and long-term implantation of the re-fillable devices described herein.
As described above and as best shown in
As best shown in
In some implementations, the distal region 142 can have a diameter that is the same as or greater than the narrowed portion 121 of the retention structure 120 such that the distal region 142 helps to prevent withdrawal of the penetrable barrier 140 out of the access region 180. For example, the distal region 142 can have one or more tabs, a flared skirt, flange, rib or other feature of enlarged diameter compared to the middle and/or upper regions 141, 144 and sized to reside within and mate with at least a portion of the retention structure 120 located distal to the narrowed portion 121 and/or an upper region of the reservoir chamber 160 such as with an inner wall of the housing 130. In some implementations, the flange can have an upper surface configured to contact an inner wall surface near the upper end of the reservoir chamber 160 that surrounds the opening 180 of the access portion. The features of the distal region 142 having an enlarged diameter compared to the middle or upper regions 144, 141, such as the one or more tabs can also aid in forming a seal and retaining the penetrable barrier 140 within the access portion opening 180. For example, as best shown in
The penetrable barrier 140 can be adhered within the device 100, for example, in at least a portion of the access portion opening 180 of the retention structure 120. Alternatively, the penetrable barrier 140 can be positioned into a proximal region of the device 100 in an adhesion-free manner and rely on the mating features between the external surface of the penetrable barrier 140 with the corresponding surfaces of the access portion opening 180 against which the penetrable barrier 140 abuts and seals.
As mentioned above, the devices described herein can be coupled to a cover 110 that can be configured to improve the integrity of the penetrable barrier 140 and its sealing engagement with the access portion opening 180 for repeated injection and long-term implantation. This provides a benefit to a device intended to be implanted long-term and re-filled while implanted, such as those described herein. The cover 110 can cap, coat, bond, encapsulate, cover, or otherwise couple to one or more components of the devices described herein. For example, at least a portion of a proximal end region of the device 100, including one or more combinations of the upper surface of the penetrable barrier 140 positioned within the opening of the access portion 180, an upper surface of the proximal retention structure 120 including the flanged portion 122, a lower surface of the proximal retention structure 120 including the flanged portion 122, the narrowed portion 121 of the retention structure 120, and at least a portion of an outer surface of the housing 130 near the proximal end region.
The cover 110 and the proximal retention structure 120 (or any other region coupled to the cover 110 such as the flanged portion 122), can have corresponding shape profiles. The thickness of the over-molded cover 110 can vary from approximately 0.007″ to approximately 0.025″. The cover 110 can extend beyond the outer diameter of the flanged portion 122 as best shown in
The proximal retention structure 120 can include one or more through-holes, apertures, indentations or other features. Again with respect to
The cover 110 can be an over-molded, high durometer material such as a translucent, liquid silicone rubber like MED-4880 or MED-4860 (NuSil Silicone Technology, Carpinteria, CA). The penetrable barrier 140 positioned within the proximal end region of the housing 130 can be a pre-molded soft, high strength material such as a liquid injection molding silicone elastomer such as MED-4810 (NuSil Silicone Technology, Carpinteria, CA).
The penetrable barrier 140 can be pre-molded with a soft, high strength material such as a liquid injection molding silicone elastomer such as MED-4810 (NuSil Silicone Technology, Carpinteria, CA). The anchor 250 can be formed of a higher durometer material such as a translucent, liquid silicone rubber like MED-4880 (NuSil Silicone Technology, Carpinteria, CA). The pre-mold penetrable barrier 140 can be bonded to the annular anchor 250 creating a single septum structure for insertion within the proximal end of the housing 130. The pre-mold penetrable barrier 140 and anchor 250 can be bonded together within the housing 130 or can be bounded outside the device and loaded into positioned once a single septum structure is formed. The higher durometer of the anchor 250 can resist deformation and create a mechanical lock fixing the location of the septum in the housing 130. The pre-mold penetrable barrier 140 can apply radial compression to the outer anchor 250 and housing 130 to maintain septum seal performance. The radial compression of the penetrable barrier 140 can encourage re-sealing after penetration following filling or re-filling of the reservoir chamber, for example re-sealing of a needle track upon removal of the needle. The radial compression of the penetrable barrier 140 can be provided by the pre-mold penetrable barrier 140 being larger in dimension relative to the access portion of the housing 130 in which it is positioned and the access portion of the housing 130 being formed of a more rigid material than the softer, pre-mold penetrable barrier 140.
As described above, the penetrable barrier 140 can include a distal region 142 having a flared, flanged or otherwise enlarged diameter compared to the middle region 141 and/or upper region 144 of the penetrable barrier 140. The enlarged distal region 142 can be positioned within the access portion opening 180, for example, where the access portion opening 180 opens into the reservoir chamber 160 at a proximal end region of the reservoir chamber 160. As shown in
The housing 130 can be machined from a piece of material, or injection molded, so as to form the retention structure 120, flange 122 and/or the narrowed portion 121. As described above, the penetrable barrier 140 can be pre-molded and the cover 110 can be over-molded. Alternatively, the cover 110 can be pre-molded and bonded to the pre-molded penetrable barrier 140. The penetrable barrier 140 and cover 110 can be the same material and over-molded around the flange 122 using a single step injection molding process. Alternatively, the penetrable barrier 140 or cover 110 can be two different materials and over molded around the flange and cured in two independent steps. Further, the anchor 250 and/or sealing element 254 can be pre-molded and bonded to pre-molded penetrable barrier 140. The anchor 250 and/or sealing element 254 can be casted in the housing and the pre-penetrable barrier 140 can be compressed into the housing and bonded to the anchor 250 and/or sealing element 254. Alternatively, the sealing element 254 can be formed by a distal flared portion of the pre-molded penetrable barrier 140.
Therapeutics
Initial filling of the device 100 with one or more therapeutic agents can occur prior to insertion or after insertion in a patient's eye. The penetrable barrier 140 as well as the cover 110, if present, can be penetrated with a needle or access device attached to a syringe or injection device containing therapeutic agent. The cover 110 and the penetrable barrier 140 can be penetrated during filling and/or refilling of the reservoir chamber 160. The needle or access device can be inserted through the penetrable barrier 140 until a distal opening of the needle enters the reservoir chamber 160. The contents of the syringe or injection device can be injected into the reservoir chamber 160 and the needle or access device can be removed from the penetrable barrier 140. The cover 110 and the penetrable barrier 140 can be configured to reseal after penetration during filling and/or refilling of the reservoir chamber 160. The penetrable barrier 140 can reseal around the path created by the needle or access device upon its removal. The device 100 also can be periodically refilled with therapeutic agent following surgical placement as needed by accessing the implanted device 100 and without necessitating device removal. The conjunctiva 16 can be lifted or incised away. Alternatively, the conjunctiva can be pierced with the needle or access device used to fill the device 100 such that a single penetration is performed through each of the conjunctiva, cover 110 (if present), and penetrable barrier 140. Once the needle or access device is inserted and located at the appropriate depth within the reservoir chamber 160, injection of fresh therapeutic solution or exchange of pre-existing reservoir contents with fresh therapeutic solution can take place.
The therapeutic devices described herein can be implanted in the eye to treat the eye for as long as is helpful and beneficial to the patient. For example the device can be implanted for at least about 1 year, 2 years, 3 years, 4 year, 5 years and up to permanently for the life of the patient. Alternatively or in combination, the device can be removed when no longer helpful or beneficial for treatment of the patient. In other implementations, the device can be implanted for at least about 4 years to 10 years, for example a duration of treatment period for a chronic disease such as diabetic macular edema or age-related macular degeneration. The device can be periodically refilled in the physician's office with new therapeutic agent as indicated by disease progression. For diseases such as age-related macular degeneration, the device can be refilled as frequently as once every week, bi-weekly, monthly, bi-monthly, every 3 months, every 4 to 6 months, every 3 to 9 months, every 12 months, or any other period as indicated to treat a disease.
It should be appreciated that a variety of diseases and/or conditions can be treated with the devices and systems described herein, for example: glaucoma, macular degeneration, retinal disease, proliferative vitreoretinopathy, diabetic retinopathy, uveitis, keratitis, cytomegalovirus retinitis, cystoid macular edema, herpes simplex viral and adenoviral infections and other eye diseases, eye infections (including, but not limited to, infections of the skin, eyelids, conjunctivae, and/or lacrimal excretory system), orbital cellulitis, dacryoadenitis, hordeolum, blepharitis, conjunctivitis, keratitis, corneal infiltrates, ulcers, endophthalmitis, panophthalmitis, viral keratitis, fungal keratitis herpes zoster ophthalmicus, viral conjunctivitis, viral retinitis, uveitis, strabismus, retinal necrosis, retinal disease, vitreoretinopathy, diabetic retinopathy, cytomegalovirus retinitis, cystoids macular edema, herpes simplex viral and adenoviral injections, scleritis, mucormycosis, canaliculitis, acanthamoeba keratitis, toxoplasmosis, giardiasis, leishmanisis, malaria, helminth infection, etc. It also should be appreciated that medical conditions besides ocular conditions can be treated with the devices and systems described herein. For example, the devices can deliver drugs for the treatment of inflammation, infection, cancerous growth. It should also be appreciated that any number of drug combinations can be delivered using any of the devices and systems described herein.
The devices described herein can be used to deliver essentially any substance. As used herein, “substance,” “drug” or “therapeutic” is an agent or agents that ameliorate the symptoms of a disease or disorder or ameliorate the disease or disorder including, for example, small molecule drugs, proteins, nucleic acids, polysaccharides, and biologics or combination thereof. Therapeutic agent, therapeutic compound, therapeutic regimen, or chemotherapeutic include conventional drugs and drug therapies, including vaccines, which are known to those skilled in the art. Therapeutic agents include, but are not limited to, moieties that inhibit cell growth or promote cell death, that can be activated to inhibit cell growth or promote cell death, or that activate another agent to inhibit cell growth or promote cell death. Optionally, the therapeutic agent can exhibit or manifest additional properties, such as, properties that permit its use as an imaging agent, as described elsewhere herein. Exemplary therapeutic agents include, for example, cytokines, growth factors, proteins, peptides or peptidomimetics, bioactive agents, photosensitizing agents, radionuclides, toxins, anti-metabolites, signaling modulators, anti-cancer antibiotics, anti-cancer antibodies, angiogenesis inhibitors, radiation therapy, chemotherapeutic compounds or a combination thereof. The drug may be any agent capable of providing a therapeutic benefit. In an embodiment, the drug is a known drug, or drug combination, effective for treating diseases and disorders of the eye. In non-limiting, exemplary embodiments, the drug is an antiinfective agent (e.g., an antibiotic or antifungal agent), an anesthetic agent, an anti-VEGF agent, an anti-inflammatory agent, a biological agent (such as RNA), an intraocular pressure reducing agent (i.e., a glaucoma drug), or a combination thereof. Non-limiting examples of drugs are provided below.
The therapeutic agent can include a macromolecule, for example an antibody or antibody fragment. The therapeutic macromolecule can include a VEGF inhibitor, for example commercially available Lucentis™. The VEGF (Vascular Endothelial Growth Factor) inhibitor can cause regression of the abnormal blood vessels and improvement of vision when released into the vitreous humor of the eye. Examples of VEGF inhibitors include Lucentis™ Avastin™, Macugen™ and VEGF Trap. The therapeutic agent can include small molecules such as of a corticosteroid and analogues thereof. For example, the therapeutic corticosteroid can include one or more of trimacinalone, trimacinalone acetonide, dexamethasone, dexamethasone acetate, fluocinolone, fluocinolone acetate, or analogues thereof. Alternatively or in combination, the small molecules of therapeutic agent can include a tyrosine kinase inhibitor comprising one or more of axitinib, bosutinib, cediranib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, lestaurtinib, nilotinib, semaxanib, sunitinib, toceranib, vandetanib, or vatalanib, for example. The therapeutic agent can include an anti-VEGF therapeutic agent. Anti-VEGF therapies and agents can be used in the treatment of certain cancers and in age-related macular degeneration. Examples of anti-VEGF therapeutic agents suitable for use in accordance with the embodiments described herein include one or more of monoclonal antibodies such as bevacizumab (Avastin™) or antibody derivatives such as ranibizumab (Lucentis™), or small molecules that inhibit the tyrosine kinases stimulated by VEGF such as lapatinib (Tykerb™), sunitinib (Sutent™), sorafenib (Nexavar™) axitinib, or pazopanib. The therapeutic agent can include a therapeutic agent suitable for treatment of dry AMD such as one or more of Sirolimus™ (Rapamycin), Copaxone™ (Glatiramer Acetate), Othera™, Complement C5aR blocker, Ciliary Neurotrophic Factor, Fenretinide or Rheopheresis. The therapeutic agent can include a therapeutic agent suitable for treatment of wet AMD such as one or more of REDD14NP (Quark), Sirolimus™ (Rapamycin), ATG003; Regeneron™ (VEGF Trap) or complement inhibitor (POT-4). The therapeutic agent can include a kinase inhibitor such as one or more of bevacizumab (monoclonal antibody), BIBW 2992 (small molecule targeting EGFR/Erb2), cetuximab (monoclonal antibody), imatinib (small molecule), trastuzumab (monoclonal antibody), gefitinib (small molecule), ranibizumab (monoclonal antibody), pegaptanib (small molecule), sorafenib (small molecule), dasatinib (small molecule), sunitinib (small molecule), erlotinib (small molecule), nilotinib (small molecule), lapatinib (small molecule), panitumumab (monoclonal antibody), vandetanib (small molecule) or E7080 (targeting VEGFR2NEGFR2, small molecule commercially available from Esai, Co.)
A variety of therapeutic agents can be delivered using the drug delivery implants described herein, including: anesthetics, analgesics, cell transport/mobility impending agents such as colchicine, vincristine, cytochalasin B and related compounds; antiglaucoma drugs including beta-blockers such as timolol, betaxolol, atenolol, and prostaglandins, lipid-receptor agonists or prostaglandin analogues such as bimatoprost, travoprost, latanoprost, unoprostone etc; alpha-adrenergic agonists, brimonidine or dipivefrine, carbonic anhydrase inhibitors such as acetazolamide, methazolamide, dichlorphenamide, diamox; and neuroprotectants such as nimodipine and related compounds.
Additional examples include antibiotics such as tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, gentamycin, and erythromycin; antibacterials such as sulfonamides, sulfacetamide, sulfamethizole and sulfisoxazole; anti-fungal agents such as fluconazole, nitrofurazone, amphotericin B, ketoconazole, and related compounds; anti-viral agents such as trifluorothymidine, acyclovir, ganciclovir, DDI, AZT, foscamet, vidarabine, trifluorouridine, idoxuridine, ribavirin, protease inhibitors and anti-cytomegalovirus agents; antiallergenics such as methapyriline; chlorpheniramine, pyrilamine and prophenpyridamine; anti-inflammatories such as hydrocortisone, dexamethasone, fluocinolone, prednisone, prednisolone, methylprednisolone, fluorometholone, betamethasone and triamcinolone; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics, muscarinics and anti-cholinesterases such as pilocarpine, carbachol, di-isopropyl fluorophosphate, phospholine iodine, and demecarium bromide; mydriatics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine; sympathomimetics such as epinephrine and vasoconstrictors and vasodilators; Ranibizumab, Bevacizamab, and Triamcinolone.
Antiinflammatories, such as non-steroidal anti-inflammatories (NSAIDs) may also be delivered, such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (CELEBREX from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors), including a prodrug NEPAFENAC; immunosuppressive agents, for example Sirolimus (RAPAMUNE, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Anticlotting agents such as heparin, antifibrinogen, fibrinolysin, anti clotting activase, etc., can also be delivered.
Antidiabetic agents that may be delivered using the disclosed implants include acetohexamide, chlorpropamide, glipizide, glyburide, tolazamide, tolbutamide, insulin, aldose reductase inhibitors, etc. Some examples of anti-cancer agents include 5-fluorouracil, adriamycin, asparaginase, azacitidine, azathioprine, bleomycin, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, cyclosporine, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin, estramustine, etoposide, etretinate, filgrastin, floxuridine, fludarabine, fluorouracil, fluoxymesterone, flutamide, goserelin, hydroxyurea, ifosfamide, leuprolide, levamisole, lomustine, nitrogen mustard, melphalan, mercaptopurine, methotrexate, mitomycin, mitotane, pentostatin, pipobroman, plicamycin, procarbazine, sargramostin, streptozocin, tamoxifen, taxol, teniposide, thioguanine, uracil mustard, vinblastine, vincristine and vindesine.
Hormones, peptides, steroids, nucleic acids, saccharides, lipids, glycolipids, glycoproteins, and other macromolecules can be delivered using the present implants. Examples include: endocrine hormones such as pituitary, insulin, insulin-related growth factor, thyroid, growth hormones; heat shock proteins; immunological response modifiers such as muramyl dipeptide, cyclosporins, interferons (including α, β, and γ interferons), interleukin-2, cytokines, FK506 (an epoxy-pyrido-oxaazcyclotricosine-tetrone, also known as Tacrolimus), tumor necrosis factor, pentostatin, thymopentin, transforming factor beta2, erythropoetin; antineogenesis proteins (e.g., anti-VEGF, Interferons), among others and anticlotting agents including anticlotting activase. Further examples of macromolecules that can be delivered include monoclonal antibodies, brain nerve growth factor (BNGF), ciliary nerve growth factor (CNGF), vascular endothelial growth factor (VEGF), and monoclonal antibodies directed against such growth factors. Additional examples of immunomodulators include tumor necrosis factor inhibitors such as thalidomide.
In addition, nucleic acids can also be delivered wherein the nucleic acid may be expressed to produce a protein that may have a variety of pharmacological, physiological or immunological activities. Thus, the above list of drugs is not meant to be exhaustive. A wide variety of drugs or agents may be used in the present invention, without restriction on molecular weight, etc.
Other agents include anti-coagulant, an anti-proliferative, imidazole antiproliferative agent, a quinoxaline, a phsophonylmethoxyalkyl nucleotide analog, a potassium channel blocker, and/or a synthetic oligonucleotide, 5-[1-hydroxy-2-[2-(2-methoxyphenoxyl) ethylamino] ethyl]-2-methylbenzenesulfonamide, a guanylate cyclase inhibitor, such as methylene blue, butylated hydroxyanisole, and/or N-methylhydroxylamine, 2-(4-methylaminobutoxy) diphenylmethane, apraclonidine, a cloprostenol analog or a fluprostenol analog, a crosslinked carboxy-containing polymer, a sugar, and water, a non-corneotoxic serine-threonine kinase inhibitor, a nonsteroidal glucocorticoid antagonist, miotics (e.g., pilocarpine, carbachol, and acetylcholinesterase inhibitors), sympathomimetics (e.g., epinephrine and dipivalylepinephxine), beta-blockers (e.g., betaxolol, levobunolol and timolol), carbonic anhydrase inhibitors (e.g., acetazolamide, methazolamide and ethoxzolamide), and prostaglandins (e.g., metabolite derivatives of arachidonic acid, or any combination thereof.
Additional examples of beneficial drugs that may be employed and the specific conditions to be treated or prevented are disclosed in Remington, supra; The Pharmacological Basis of Therapeutics, by Goodman and Gilman, 19th edition, published by the MacMillan Company, London; and The Merck Index, 13th Edition, 1998, published by Merck & Co., Rahway, N.J., which is incorporated herein by reference.
While this specification contains many specifics, these should not be construed as limitations on the scope of what is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it is used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.”
Use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.
This application is a continuation of U.S. patent application Ser. No. 16/514,128 filed Jul. 17, 2019, which is a continuation of U.S. patent application Ser. No. 15/386,586 filed Dec. 21, 2016, now U.S. Pat. No. 10,398,593, which is a continuation of U.S. patent application Ser. No. 14/228,130, filed Mar. 27, 2014, now U.S. Pat. No. 9,526,654, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 61/806,267, filed Mar. 28, 2013, the full disclosures of which are hereby fully incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2564977 | Hu et al. | Aug 1951 | A |
2585815 | McLintock | Feb 1952 | A |
2886497 | Butler | May 1959 | A |
3232117 | Gilmont | Feb 1966 | A |
3416530 | Ness | Dec 1968 | A |
3618604 | Ness | Nov 1971 | A |
3641237 | Gould et al. | Feb 1972 | A |
3826258 | Abraham | Jul 1974 | A |
3828777 | Ness | Aug 1974 | A |
3831583 | Edmunds, Jr. et al. | Aug 1974 | A |
3845201 | Haddad et al. | Oct 1974 | A |
3902495 | Weiss et al. | Sep 1975 | A |
3914402 | Shel | Oct 1975 | A |
3916899 | Theeuwes et al. | Nov 1975 | A |
3926188 | Baker et al. | Dec 1975 | A |
3949748 | Malmin | Apr 1976 | A |
3949750 | Freeman | Apr 1976 | A |
3961628 | Arnold | Jun 1976 | A |
3977404 | Theeuwes | Aug 1976 | A |
3986510 | Higuchi et al. | Oct 1976 | A |
3995635 | Higuchi et al. | Dec 1976 | A |
4008719 | Theeuwes et al. | Feb 1977 | A |
4014333 | McIntyre | Mar 1977 | A |
4014334 | Theeuwes et al. | Mar 1977 | A |
4014335 | Arnold | Mar 1977 | A |
4034756 | Higuchi et al. | Jul 1977 | A |
4034758 | Theeuwes | Jul 1977 | A |
4057619 | Higuchi et al. | Nov 1977 | A |
4077407 | Theeuwes et al. | Mar 1978 | A |
4111201 | Theeuwes | Sep 1978 | A |
4111203 | Theeuwes | Sep 1978 | A |
4135514 | Zaffaroni et al. | Jan 1979 | A |
4160452 | Theeuwes | Jul 1979 | A |
4164559 | Miyata et al. | Aug 1979 | A |
4179497 | Cohen et al. | Dec 1979 | A |
4186184 | Zaffaroni | Jan 1980 | A |
4200098 | Ayer et al. | Apr 1980 | A |
4220152 | Dresback | Sep 1980 | A |
4220153 | Dresback | Sep 1980 | A |
4256108 | Theeuwes | Mar 1981 | A |
4298000 | Thill et al. | Nov 1981 | A |
4300557 | Refojo et al. | Nov 1981 | A |
4309776 | Berguer | Jan 1982 | A |
4326525 | Swanson et al. | Apr 1982 | A |
4327725 | Cortese et al. | May 1982 | A |
4343787 | Katz | Aug 1982 | A |
4439196 | Higuchi | Mar 1984 | A |
4439198 | Brightman, II et al. | Mar 1984 | A |
4475916 | Himmelstein | Oct 1984 | A |
4484922 | Rosenwald | Nov 1984 | A |
4519801 | Edgren | May 1985 | A |
4609374 | Ayer | Sep 1986 | A |
4627850 | Deters et al. | Dec 1986 | A |
4634418 | Binder | Jan 1987 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4673405 | Guittard et al. | Jun 1987 | A |
4693886 | Ayer | Sep 1987 | A |
4710167 | Lazorthes | Dec 1987 | A |
4712550 | Sinnett | Dec 1987 | A |
4730013 | Bondi et al. | Mar 1988 | A |
4737150 | Baeumle et al. | Apr 1988 | A |
4774091 | Yamahira et al. | Sep 1988 | A |
4777049 | Magruder et al. | Oct 1988 | A |
4781675 | White | Nov 1988 | A |
4781680 | Redmond et al. | Nov 1988 | A |
4840615 | Hancock et al. | Jun 1989 | A |
4851228 | Zentner et al. | Jul 1989 | A |
4853229 | Theeuwes | Aug 1989 | A |
4863457 | Lee | Sep 1989 | A |
4865846 | Kaufman | Sep 1989 | A |
4883459 | Calderon | Nov 1989 | A |
4959217 | Sanders et al. | Sep 1990 | A |
4979938 | Stephen et al. | Dec 1990 | A |
5049142 | Herrick et al. | Sep 1991 | A |
5053030 | Herrick et al. | Oct 1991 | A |
5084021 | Baldwin | Jan 1992 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5098443 | Parel et al. | Mar 1992 | A |
5128145 | Edgren et al. | Jul 1992 | A |
5141748 | Rizzo | Aug 1992 | A |
5147647 | Darougar | Sep 1992 | A |
5164188 | Wong | Nov 1992 | A |
5171270 | Herrick | Dec 1992 | A |
5174999 | Magruder et al. | Dec 1992 | A |
5213576 | Abiuso et al. | May 1993 | A |
5238687 | Magruder et al. | Aug 1993 | A |
5277912 | Lowe et al. | Jan 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5300114 | Gwon et al. | Apr 1994 | A |
5322691 | Darougar et al. | Jun 1994 | A |
5334189 | Wade | Aug 1994 | A |
5336175 | Mames | Aug 1994 | A |
5378475 | Smith et al. | Jan 1995 | A |
5413572 | Wong et al. | May 1995 | A |
5443505 | Wong et al. | Aug 1995 | A |
5466233 | Weiner et al. | Nov 1995 | A |
5476511 | Gwon et al. | Dec 1995 | A |
5516522 | Peyman et al. | May 1996 | A |
5554132 | Straits et al. | Sep 1996 | A |
5562915 | Lowe et al. | Oct 1996 | A |
5576480 | Hopkins et al. | Nov 1996 | A |
5578042 | Cumming | Nov 1996 | A |
5681572 | Seare, Jr. | Oct 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5704915 | Melsky et al. | Jan 1998 | A |
5725493 | Avery et al. | Mar 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766242 | Wong et al. | Jun 1998 | A |
5770076 | Chu et al. | Jun 1998 | A |
5773019 | Ashton et al. | Jun 1998 | A |
5797898 | Santini, Jr. et al. | Aug 1998 | A |
5807581 | Rosenblatt et al. | Sep 1998 | A |
5824072 | Wong | Oct 1998 | A |
5830173 | Avery et al. | Nov 1998 | A |
5830492 | Usala | Nov 1998 | A |
5830546 | Ehret et al. | Nov 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
5868697 | Richter et al. | Feb 1999 | A |
5902598 | Chen et al. | May 1999 | A |
5904144 | Hammang et al. | May 1999 | A |
5916584 | O'Donoghue et al. | Jun 1999 | A |
5928662 | Phillips | Jul 1999 | A |
5951512 | Dalton | Sep 1999 | A |
5968008 | Grams | Oct 1999 | A |
5972369 | Roorda et al. | Oct 1999 | A |
5985328 | Chu et al. | Nov 1999 | A |
5989216 | Johnson et al. | Nov 1999 | A |
5993414 | Haller | Nov 1999 | A |
6001386 | Ashton et al. | Dec 1999 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6123861 | Santini, Jr. et al. | Sep 2000 | A |
6183461 | Matsuura et al. | Feb 2001 | B1 |
6196993 | Cohan et al. | Mar 2001 | B1 |
6251090 | Avery et al. | Jun 2001 | B1 |
6303290 | Liu et al. | Oct 2001 | B1 |
6306426 | Olejnik et al. | Oct 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6331523 | Kljavin et al. | Dec 2001 | B1 |
6375972 | Guo et al. | Apr 2002 | B1 |
6395300 | Straub et al. | May 2002 | B1 |
6413540 | Yaacobi | Jul 2002 | B1 |
6416777 | Yaacobi | Jul 2002 | B1 |
6420399 | Graff et al. | Jul 2002 | B1 |
6472162 | Coelho et al. | Oct 2002 | B1 |
6551291 | de Juan, Jr. et al. | Apr 2003 | B1 |
6605066 | Gravagna et al. | Aug 2003 | B1 |
6663668 | Chaouk et al. | Dec 2003 | B1 |
6669950 | Yaacobi | Dec 2003 | B2 |
6685940 | Andya et al. | Feb 2004 | B2 |
6713081 | Robinson et al. | Mar 2004 | B2 |
6719750 | Varner et al. | Apr 2004 | B2 |
6740077 | Brandau et al. | May 2004 | B1 |
6756049 | Brubaker et al. | Jun 2004 | B2 |
6756058 | Brubaker et al. | Jun 2004 | B2 |
6932983 | Straub et al. | Aug 2005 | B1 |
6976982 | Santini, Jr. et al. | Dec 2005 | B2 |
6986900 | Yaacobi | Jan 2006 | B2 |
7026329 | Crain et al. | Apr 2006 | B2 |
7074426 | Kochinke | Jul 2006 | B2 |
7077848 | de Juan, Jr. et al. | Jul 2006 | B1 |
7083803 | Peyman | Aug 2006 | B2 |
7087237 | Peyman | Aug 2006 | B2 |
7090681 | Weber et al. | Aug 2006 | B2 |
7094222 | Siekas et al. | Aug 2006 | B1 |
7094226 | Yaacobi | Aug 2006 | B2 |
7117870 | Prescott | Oct 2006 | B2 |
7141023 | Diermann et al. | Nov 2006 | B2 |
7141152 | Le Febre | Nov 2006 | B2 |
7181287 | Greenberg | Feb 2007 | B2 |
7195774 | Carvalho et al. | Mar 2007 | B2 |
7195778 | Fleshner-Barak et al. | Mar 2007 | B2 |
7211272 | Renner et al. | May 2007 | B2 |
7276050 | Franklin | Oct 2007 | B2 |
7384648 | Olejnik et al. | Jun 2008 | B2 |
7468065 | Weber et al. | Dec 2008 | B2 |
7476510 | Kapur et al. | Jan 2009 | B2 |
7585517 | Cooper et al. | Sep 2009 | B2 |
7615141 | Schwartz et al. | Nov 2009 | B2 |
7621907 | Rodstrom | Nov 2009 | B2 |
7625927 | Klimko et al. | Dec 2009 | B2 |
7678078 | Peyman et al. | Mar 2010 | B1 |
7686016 | Wharton et al. | Mar 2010 | B2 |
7708711 | Tu et al. | May 2010 | B2 |
7709049 | Chappa | May 2010 | B2 |
7883717 | Varner et al. | Feb 2011 | B2 |
7893040 | Loftsson et al. | Feb 2011 | B2 |
7906136 | Wong et al. | Mar 2011 | B2 |
7909800 | Cazzini | Mar 2011 | B2 |
7914442 | Gazdzinski | Mar 2011 | B1 |
7939094 | Schwarz et al. | May 2011 | B2 |
7973068 | Demopulos et al. | Jul 2011 | B2 |
8096972 | Varner et al. | Jan 2012 | B2 |
8231608 | Pang et al. | Jul 2012 | B2 |
8231609 | Pang et al. | Jul 2012 | B2 |
8304524 | Bairstow et al. | Nov 2012 | B2 |
8399006 | de Juan, Jr. et al. | Mar 2013 | B2 |
8439865 | Lust et al. | May 2013 | B2 |
8486052 | Varner et al. | Jul 2013 | B2 |
8623395 | de Juan, Jr. et al. | Jan 2014 | B2 |
8795712 | de Juan, Jr. et al. | Aug 2014 | B2 |
8808727 | de Juan, Jr. et al. | Aug 2014 | B2 |
8992503 | Shekalim | Mar 2015 | B2 |
9126007 | Alpini et al. | Sep 2015 | B2 |
9883968 | Doud et al. | Feb 2018 | B2 |
20020026176 | Varner et al. | Feb 2002 | A1 |
20020086051 | Viscasillas | Jul 2002 | A1 |
20020106395 | Brubaker | Aug 2002 | A1 |
20020110591 | Brubaker et al. | Aug 2002 | A1 |
20020110592 | Brubaker et al. | Aug 2002 | A1 |
20020110635 | Brubaker et al. | Aug 2002 | A1 |
20030003129 | Yaacobi | Jan 2003 | A1 |
20030005945 | Onishi et al. | Jan 2003 | A1 |
20030014036 | Varner et al. | Jan 2003 | A1 |
20030118649 | Gao et al. | Jun 2003 | A1 |
20030119177 | Gruber et al. | Jun 2003 | A1 |
20030120217 | Abergel | Jun 2003 | A1 |
20030176854 | Rodstrom | Sep 2003 | A1 |
20030185872 | Kochinke | Oct 2003 | A1 |
20030212383 | Cote et al. | Nov 2003 | A1 |
20030233067 | McIntosh et al. | Dec 2003 | A1 |
20030235603 | Schwarz et al. | Dec 2003 | A1 |
20040011651 | Becker et al. | Jan 2004 | A1 |
20040019325 | Shekalim | Jan 2004 | A1 |
20040024371 | Plicchi et al. | Feb 2004 | A1 |
20040029832 | Zeldis | Feb 2004 | A1 |
20040092911 | Yaacobi | May 2004 | A1 |
20040106906 | Yaacobi | Jun 2004 | A1 |
20040131654 | Yaacobi | Jul 2004 | A1 |
20040131655 | Yaacobi | Jul 2004 | A1 |
20040133154 | Flaherty et al. | Jul 2004 | A1 |
20040171997 | Wilson et al. | Sep 2004 | A1 |
20040199128 | Morris et al. | Oct 2004 | A1 |
20040208910 | Ashton et al. | Oct 2004 | A1 |
20040209359 | Yayon et al. | Oct 2004 | A1 |
20040230183 | Breegi et al. | Nov 2004 | A1 |
20040247487 | Commercon et al. | Dec 2004 | A1 |
20040260380 | Marco et al. | Dec 2004 | A1 |
20040260381 | Marco et al. | Dec 2004 | A1 |
20050064010 | Cooper et al. | Mar 2005 | A1 |
20050074497 | Schultz | Apr 2005 | A1 |
20050112175 | Yaacobi | May 2005 | A1 |
20050112759 | Radisic et al. | May 2005 | A1 |
20050113806 | De Carvalho et al. | May 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050143363 | De Juan et al. | Jun 2005 | A1 |
20050154399 | Weber et al. | Jul 2005 | A1 |
20050163711 | Nycz et al. | Jul 2005 | A1 |
20050181018 | Peyman | Aug 2005 | A1 |
20050244467 | Nivaggioli et al. | Nov 2005 | A1 |
20050244469 | Whitcup et al. | Nov 2005 | A1 |
20050244472 | Hughes et al. | Nov 2005 | A1 |
20050255144 | Schultz | Nov 2005 | A1 |
20050256499 | Pettis et al. | Nov 2005 | A1 |
20050271703 | Anderson et al. | Dec 2005 | A1 |
20050271706 | Anderson et al. | Dec 2005 | A1 |
20050276837 | Anderson et al. | Dec 2005 | A1 |
20050277802 | Larsen et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050281861 | Hughes et al. | Dec 2005 | A1 |
20050281863 | Anderson et al. | Dec 2005 | A1 |
20050287188 | Anderson et al. | Dec 2005 | A1 |
20060013835 | Anderson et al. | Jan 2006 | A1 |
20060020248 | Prescott | Jan 2006 | A1 |
20060020253 | Prescott | Jan 2006 | A1 |
20060039952 | Yaacobi | Feb 2006 | A1 |
20060052754 | Fields | Mar 2006 | A1 |
20060057277 | Chappa | Mar 2006 | A1 |
20060073182 | Wong et al. | Apr 2006 | A1 |
20060104969 | Oray et al. | May 2006 | A1 |
20060110428 | deJuan et al. | May 2006 | A1 |
20060129215 | Helmus et al. | Jun 2006 | A1 |
20060154981 | Klimko et al. | Jul 2006 | A1 |
20060172941 | Rastelli et al. | Aug 2006 | A1 |
20060182783 | Hughes et al. | Aug 2006 | A1 |
20060200097 | Humayun et al. | Sep 2006 | A1 |
20060233858 | Tzekov et al. | Oct 2006 | A1 |
20060246112 | Snyder et al. | Nov 2006 | A1 |
20060257450 | Mudumba et al. | Nov 2006 | A1 |
20060258000 | Allen et al. | Nov 2006 | A1 |
20060258994 | Avery | Nov 2006 | A1 |
20070020336 | Loftsson et al. | Jan 2007 | A1 |
20070021357 | Tobia et al. | Jan 2007 | A1 |
20070026037 | Kloke et al. | Feb 2007 | A1 |
20070059336 | Hughes et al. | Mar 2007 | A1 |
20070071756 | Peyman | Mar 2007 | A1 |
20070072933 | Peyman | Mar 2007 | A1 |
20070077270 | Wen | Apr 2007 | A1 |
20070078359 | Luloh et al. | Apr 2007 | A1 |
20070088414 | Campbell et al. | Apr 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070119450 | Wharton et al. | May 2007 | A1 |
20070128644 | Munenaka | Jun 2007 | A1 |
20070131610 | Peng et al. | Jun 2007 | A1 |
20070131611 | Peng et al. | Jun 2007 | A1 |
20070134305 | Zilberman | Jun 2007 | A1 |
20070141111 | Suokas et al. | Jun 2007 | A1 |
20070191863 | De Juan et al. | Aug 2007 | A1 |
20070197491 | Robin et al. | Aug 2007 | A1 |
20070203174 | Klimko et al. | Aug 2007 | A1 |
20070212388 | Patravale et al. | Sep 2007 | A1 |
20070212397 | Roth | Sep 2007 | A1 |
20070219632 | Castillejos | Sep 2007 | A1 |
20070233037 | Gifford, et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070243230 | de Juan et al. | Oct 2007 | A1 |
20070260201 | Prausnitz et al. | Nov 2007 | A1 |
20070265599 | Castillejos | Nov 2007 | A1 |
20070269487 | de Juan et al. | Nov 2007 | A1 |
20080003219 | Peyman | Jan 2008 | A1 |
20080004329 | Jamieson et al. | Jan 2008 | A1 |
20080015545 | Sanchez et al. | Jan 2008 | A1 |
20080020045 | Chappa et al. | Jan 2008 | A1 |
20080027304 | Pardo et al. | Jan 2008 | A1 |
20080038316 | Wong et al. | Feb 2008 | A1 |
20080057561 | Takahashi et al. | Mar 2008 | A1 |
20080066739 | LeMahieu et al. | Mar 2008 | A1 |
20080066741 | LeMahieu et al. | Mar 2008 | A1 |
20080069854 | Xiao et al. | Mar 2008 | A1 |
20080089923 | Burkstrand et al. | Apr 2008 | A1 |
20080111282 | Xie et al. | May 2008 | A1 |
20080124372 | Hossainy et al. | May 2008 | A1 |
20080139674 | Archambeau et al. | Jun 2008 | A1 |
20080145406 | Asgharian et al. | Jun 2008 | A1 |
20080146679 | Archambeau et al. | Jun 2008 | A1 |
20080147021 | Jani | Jun 2008 | A1 |
20080152694 | Lobl et al. | Jun 2008 | A1 |
20080154241 | Burkstrand et al. | Jun 2008 | A1 |
20080161741 | Bene et al. | Jul 2008 | A1 |
20080167600 | Peyman | Jul 2008 | A1 |
20080172014 | Whitcup et al. | Jul 2008 | A1 |
20080181930 | Rodstrom et al. | Jul 2008 | A1 |
20080195218 | Jones | Aug 2008 | A1 |
20080207502 | Rastelli et al. | Aug 2008 | A1 |
20080213611 | Asgari | Sep 2008 | A1 |
20080216736 | David | Sep 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20080233053 | Gross et al. | Sep 2008 | A1 |
20080233171 | Whitcup et al. | Sep 2008 | A1 |
20080233172 | Whitcup et al. | Sep 2008 | A1 |
20080233173 | Whitcup et al. | Sep 2008 | A1 |
20080241219 | Whitcup et al. | Oct 2008 | A1 |
20080241220 | Whitcup et al. | Oct 2008 | A1 |
20080241221 | Whitcup et al. | Oct 2008 | A1 |
20080241222 | Whitcup et al. | Oct 2008 | A1 |
20080241223 | Nivaggioli et al. | Oct 2008 | A1 |
20080249501 | Yamasaki | Oct 2008 | A1 |
20080269318 | Romano | Oct 2008 | A1 |
20080286338 | Rosenthal et al. | Nov 2008 | A1 |
20080292679 | Lyons et al. | Nov 2008 | A1 |
20080293691 | Brigandi et al. | Nov 2008 | A1 |
20090005864 | Eggleston | Jan 2009 | A1 |
20090036827 | Cazzini | Feb 2009 | A1 |
20090043253 | Podaima | Feb 2009 | A1 |
20090047335 | Rastelli et al. | Feb 2009 | A1 |
20090061071 | McMorrow et al. | Mar 2009 | A1 |
20090074786 | Dor et al. | Mar 2009 | A1 |
20090081271 | Clarke et al. | Mar 2009 | A1 |
20090081272 | Clarke et al. | Mar 2009 | A1 |
20090082631 | Cronin et al. | Mar 2009 | A1 |
20090082863 | Schieber et al. | Mar 2009 | A1 |
20090087494 | Kompella et al. | Apr 2009 | A1 |
20090092654 | de Juan, Jr. et al. | Apr 2009 | A1 |
20090093752 | Richard et al. | Apr 2009 | A1 |
20090099626 | de Juan, Jr. et al. | Apr 2009 | A1 |
20090104243 | Utkhede et al. | Apr 2009 | A1 |
20090105749 | de Juan et al. | Apr 2009 | A1 |
20090124986 | Hayakawa | May 2009 | A1 |
20090124997 | Pettis et al. | May 2009 | A1 |
20090192493 | Meng et al. | Jul 2009 | A1 |
20090196903 | Kliman | Aug 2009 | A1 |
20090214601 | Chappa et al. | Aug 2009 | A1 |
20090220572 | Deschatelets et al. | Sep 2009 | A1 |
20090224064 | Brodbeck et al. | Sep 2009 | A1 |
20090234449 | De Juan, Jr. et al. | Sep 2009 | A1 |
20090240208 | Cowan | Sep 2009 | A1 |
20090240215 | Humayun et al. | Sep 2009 | A1 |
20090247458 | Watson et al. | Oct 2009 | A1 |
20090258069 | Burnier et al. | Oct 2009 | A1 |
20090259212 | Sabbah | Oct 2009 | A1 |
20090263346 | Taft et al. | Oct 2009 | A1 |
20090263495 | Watson et al. | Oct 2009 | A1 |
20090274730 | Watson et al. | Nov 2009 | A1 |
20090274771 | Watson et al. | Nov 2009 | A1 |
20090280470 | Fare et al. | Nov 2009 | A1 |
20090306025 | Lane | Dec 2009 | A1 |
20090306595 | Shih et al. | Dec 2009 | A1 |
20090318545 | Silver et al. | Dec 2009 | A1 |
20090324686 | Cooper et al. | Dec 2009 | A1 |
20090324687 | Cooper et al. | Dec 2009 | A1 |
20090324688 | Cooper et al. | Dec 2009 | A1 |
20090324689 | Cooper et al. | Dec 2009 | A1 |
20090324690 | Cooper et al. | Dec 2009 | A1 |
20090326448 | Huo et al. | Dec 2009 | A1 |
20100003333 | Watson et al. | Jan 2010 | A1 |
20100004189 | Watson et al. | Jan 2010 | A1 |
20100008997 | Watson et al. | Jan 2010 | A1 |
20100009008 | Watson et al. | Jan 2010 | A1 |
20100010452 | Paques et al. | Jan 2010 | A1 |
20100011888 | Pawliszyn et al. | Jan 2010 | A1 |
20100015157 | Andya et al. | Jan 2010 | A1 |
20100016786 | Drews et al. | Jan 2010 | A1 |
20100021464 | Archambeau et al. | Jan 2010 | A1 |
20100022943 | Mauch et al. | Jan 2010 | A1 |
20100022945 | Rodstrom | Jan 2010 | A1 |
20100023033 | Mauch et al. | Jan 2010 | A1 |
20100028442 | Archambeau et al. | Feb 2010 | A1 |
20100028443 | Watson et al. | Feb 2010 | A1 |
20100030136 | Dacquay et al. | Feb 2010 | A1 |
20100034870 | Sim et al. | Feb 2010 | A1 |
20100075950 | Gant et al. | Mar 2010 | A1 |
20100083963 | Wharton et al. | Apr 2010 | A1 |
20100100043 | Racenet | Apr 2010 | A1 |
20100100054 | Cormier et al. | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100114309 | de Juan, Jr. et al. | May 2010 | A1 |
20100158980 | Kopczynski et al. | Jun 2010 | A1 |
20100168535 | Robinson et al. | Jul 2010 | A1 |
20100174272 | Weiner | Jul 2010 | A1 |
20100185205 | Novakovic et al. | Jul 2010 | A1 |
20100189765 | Erickson et al. | Jul 2010 | A1 |
20100197512 | Trinkle et al. | Aug 2010 | A1 |
20100216702 | Szkudlinski et al. | Aug 2010 | A1 |
20100221309 | Myers et al. | Sep 2010 | A1 |
20100223979 | Ploehn et al. | Sep 2010 | A1 |
20100255061 | de Juan, Jr. et al. | Oct 2010 | A1 |
20100256597 | Prausnitz et al. | Oct 2010 | A1 |
20100266664 | Asgharian et al. | Oct 2010 | A1 |
20100286121 | Rohrs et al. | Nov 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100297046 | Schwartz et al. | Nov 2010 | A1 |
20100297120 | Beliveau et al. | Nov 2010 | A1 |
20100297193 | Archambeau et al. | Nov 2010 | A1 |
20100303917 | Watson et al. | Dec 2010 | A1 |
20100303918 | Watson et al. | Dec 2010 | A1 |
20100310664 | Watson et al. | Dec 2010 | A1 |
20100310665 | Watson et al. | Dec 2010 | A1 |
20100316723 | Watson et al. | Dec 2010 | A1 |
20100330146 | Chauhan et al. | Dec 2010 | A1 |
20110009571 | Taft et al. | Jan 2011 | A1 |
20110014264 | Helmus et al. | Jan 2011 | A1 |
20110033933 | Gharib et al. | Feb 2011 | A1 |
20110034448 | Chang et al. | Feb 2011 | A1 |
20110064740 | Burbidge et al. | Mar 2011 | A1 |
20110076278 | Khodadoust | Mar 2011 | A1 |
20110081384 | Archambeau et al. | Apr 2011 | A1 |
20110098686 | Varner et al. | Apr 2011 | A1 |
20110104155 | Rekik | May 2011 | A1 |
20110108025 | Fink et al. | May 2011 | A1 |
20110111006 | Wong et al. | May 2011 | A1 |
20110112188 | Tobia et al. | May 2011 | A1 |
20110117083 | Bais et al. | May 2011 | A1 |
20110118677 | Wiley | May 2011 | A1 |
20110125178 | Drews et al. | May 2011 | A1 |
20110159073 | deJuan et al. | Jun 2011 | A1 |
20110190723 | Fangrow | Aug 2011 | A1 |
20110206646 | Alfonso et al. | Aug 2011 | A1 |
20110208122 | Shekalim | Aug 2011 | A1 |
20120028918 | Gupta | Feb 2012 | A1 |
20120029445 | de Juan, Jr. et al. | Feb 2012 | A1 |
20120029470 | Juan, Jr. et al. | Feb 2012 | A1 |
20120095439 | de Juan, Jr. et al. | Apr 2012 | A1 |
20120183799 | Steele et al. | Jul 2012 | A1 |
20120184905 | Shekalim | Jul 2012 | A1 |
20120209077 | Racenet | Aug 2012 | A1 |
20130116664 | Tai et al. | May 2013 | A1 |
20130204209 | de Juan, Jr. et al. | Aug 2013 | A1 |
20130218081 | Roth | Aug 2013 | A1 |
20130245544 | de Juan, Jr. et al. | Sep 2013 | A1 |
20130274691 | de Juan, Jr. et al. | Oct 2013 | A1 |
20130274692 | Alster et al. | Oct 2013 | A1 |
20130289482 | Meng et al. | Oct 2013 | A1 |
20130289497 | Humayun et al. | Oct 2013 | A1 |
20130296810 | Humayun et al. | Nov 2013 | A1 |
20130304031 | Varner et al. | Nov 2013 | A1 |
20130324918 | de Juan, Jr. et al. | Dec 2013 | A1 |
20130324942 | de Juan, Jr. et al. | Dec 2013 | A1 |
20140031769 | de Juan, Jr. et al. | Jan 2014 | A1 |
20140031833 | Novakovic et al. | Jan 2014 | A1 |
20140073714 | Reich et al. | Mar 2014 | A1 |
20140121609 | de Juan, Jr. et al. | May 2014 | A1 |
20140221941 | Erickson et al. | Aug 2014 | A1 |
20140243795 | Varner et al. | Aug 2014 | A1 |
20140276482 | Astafieva et al. | Sep 2014 | A1 |
20140328894 | de Juan, Jr. et al. | Nov 2014 | A1 |
20140336619 | Stankus et al. | Nov 2014 | A1 |
20140358125 | de Juan, Jr. et al. | Dec 2014 | A1 |
20150080846 | de Juan, Jr. et al. | Mar 2015 | A1 |
20150133896 | Benner et al. | May 2015 | A1 |
20150202079 | Shekalim | Jul 2015 | A1 |
20150224200 | de Juan, Jr. et al. | Aug 2015 | A1 |
20150231265 | Gupta | Aug 2015 | A1 |
20150250647 | de Juan, Jr. et al. | Sep 2015 | A1 |
20150282983 | Benner et al. | Oct 2015 | A1 |
20150297402 | de Juan, Jr. et al. | Oct 2015 | A1 |
20150351796 | Richard et al. | Dec 2015 | A1 |
20160038488 | Horvath et al. | Feb 2016 | A1 |
20160128867 | Bachelder et al. | May 2016 | A1 |
20160258855 | Farinas et al. | Sep 2016 | A1 |
20160270955 | Shekalim | Sep 2016 | A1 |
20160302965 | Erickson et al. | Oct 2016 | A1 |
20170165108 | Bianchi et al. | Jun 2017 | A1 |
20170165110 | Erickson et al. | Jun 2017 | A1 |
20170258634 | de Juan, Jr. et al. | Sep 2017 | A1 |
20180147204 | Horvath et al. | May 2018 | A1 |
20180161202 | de Juan, Jr. et al. | Jun 2018 | A1 |
20180243130 | Doud et al. | Aug 2018 | A1 |
20180243131 | Erickson et al. | Aug 2018 | A1 |
20180289542 | de Juan, Jr. et al. | Oct 2018 | A1 |
20180292403 | de Juan, Jr. et al. | Oct 2018 | A1 |
20190336335 | de Juan, Jr. et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
2807535 | Feb 2012 | CA |
2807554 | Feb 2012 | CA |
1538826 | Oct 2004 | CN |
101052435 | Oct 2007 | CN |
101327356 | Dec 2008 | CN |
101600476 | Dec 2009 | CN |
101674824 | Mar 2010 | CN |
101754980 | Jun 2010 | CN |
101969897 | Feb 2011 | CN |
102365109 | Feb 2012 | CN |
102596097 | Jul 2012 | CN |
0033042 | Aug 1984 | EP |
0 228 185 | Nov 1986 | EP |
0498471 | Aug 1992 | EP |
0500143 | Aug 1992 | EP |
0671165 | Sep 1995 | EP |
0295248 | Apr 1999 | EP |
0944658 | Jun 2003 | EP |
1671624 | Jun 2006 | EP |
1385452 | Sep 2006 | EP |
1409065 | Jan 2007 | EP |
1337284 | Dec 2007 | EP |
1911481 | Apr 2008 | EP |
1521572 | Mar 2009 | EP |
01-149716 | Jun 1989 | JP |
01-197429 | Aug 1989 | JP |
H 11507343 | Jun 1999 | JP |
2001-518880 | Oct 2001 | JP |
2004-516889 | Jun 2004 | JP |
2004-524866 | Aug 2004 | JP |
2005-500097 | Jan 2005 | JP |
2006-526430 | Nov 2006 | JP |
2008-500878 | Jan 2008 | JP |
2009-514888 | Apr 2009 | JP |
2009-523821 | Jun 2009 | JP |
2009-529968 | Aug 2009 | JP |
2010-521470 | Jun 2010 | JP |
2010526074 | Jul 2010 | JP |
2414199 | Mar 2011 | RU |
200500507 | Jan 2005 | TW |
WO-8804573 | Jun 1988 | WO |
WO-9007545 | Jul 1990 | WO |
WO-9528984 | Nov 1995 | WO |
WO-9729850 | Aug 1997 | WO |
WO-9825982 | Jun 1998 | WO |
WO-9843611 | Oct 1998 | WO |
WO-9911244 | Mar 1999 | WO |
WO-0048660 | Aug 2000 | WO |
WO-0126714 | Apr 2001 | WO |
WO-0150943 | Jul 2001 | WO |
WO-0168016 | Sep 2001 | WO |
WO-02017831 | Mar 2002 | WO |
WO-02053128 | Jul 2002 | WO |
WO-02100318 | Dec 2002 | WO |
WO-03028765 | Apr 2003 | WO |
WO-03077972 | Sep 2003 | WO |
WO-03082188 | Oct 2003 | WO |
WO-2004000267 | Dec 2003 | WO |
WO-2004073765 | Sep 2004 | WO |
WO-2004098565 | Nov 2004 | WO |
WO-2004112653 | Dec 2004 | WO |
WO-2005016401 | Feb 2005 | WO |
WO-2005027906 | Mar 2005 | WO |
WO-2005028006 | Mar 2005 | WO |
WO-2005091922 | Oct 2005 | WO |
WO-2005107705 | Nov 2005 | WO |
WO-2005110362 | Nov 2005 | WO |
WO-2005110436 | Nov 2005 | WO |
WO-2005110473 | Nov 2005 | WO |
WO-2005117780 | Dec 2005 | WO |
WO-2006014484 | Feb 2006 | WO |
WO-2006015385 | Feb 2006 | WO |
WO-2006023530 | Mar 2006 | WO |
WO-2006031358 | Mar 2006 | WO |
WO-2006031388 | Mar 2006 | WO |
WO-2006044614 | Apr 2006 | WO |
WO-2006050221 | May 2006 | WO |
WO-2006068838 | Jun 2006 | WO |
WO-2006071554 | Jul 2006 | WO |
WO-2006082588 | Aug 2006 | WO |
WO-2006108054 | Oct 2006 | WO |
WO-2006125106 | Nov 2006 | WO |
WO-2006127962 | Nov 2006 | WO |
WO-2006138609 | Dec 2006 | WO |
WO-2007002184 | Jan 2007 | WO |
WO-2007012974 | Feb 2007 | WO |
WO-2007035473 | Mar 2007 | WO |
WO-2007035621 | Mar 2007 | WO |
WO-2007038453 | Apr 2007 | WO |
WO-2007044534 | Apr 2007 | WO |
WO-2007047744 | Apr 2007 | WO |
WO-2007056227 | May 2007 | WO |
WO-2007066339 | Jun 2007 | WO |
WO-2007084582 | Jul 2007 | WO |
WO-2007084765 | Jul 2007 | WO |
WO-2007101204 | Sep 2007 | WO |
WO-2007115259 | Oct 2007 | WO |
WO-2007117394 | Oct 2007 | WO |
WO-2007131050 | Nov 2007 | WO |
WO-2007133761 | Nov 2007 | WO |
WO-2007133762 | Nov 2007 | WO |
WO-2008003043 | Jan 2008 | WO |
WO-2008005240 | Jan 2008 | WO |
WO-2008011125 | Jan 2008 | WO |
WO-2008019265 | Feb 2008 | WO |
WO-2008033924 | Mar 2008 | WO |
WO-2008040062 | Apr 2008 | WO |
WO-2008045272 | Apr 2008 | WO |
WO-2008052145 | May 2008 | WO |
WO-2008060359 | May 2008 | WO |
WO-2008061043 | May 2008 | WO |
WO-2008076544 | Jun 2008 | WO |
WO-2008094989 | Aug 2008 | WO |
WO-2008115290 | Sep 2008 | WO |
WO-2008116165 | Sep 2008 | WO |
WO-2008137236 | Nov 2008 | WO |
WO-2008144340 | Nov 2008 | WO |
WO-2008144919 | Dec 2008 | WO |
WO-2008147883 | Dec 2008 | WO |
WO-2009012075 | Jan 2009 | WO |
WO-2009023615 | Feb 2009 | WO |
WO-2009040336 | Apr 2009 | WO |
WO-2009046164 | Apr 2009 | WO |
WO-2009055620 | Apr 2009 | WO |
WO-2009055671 | Apr 2009 | WO |
WO-2009055729 | Apr 2009 | WO |
WO-2009055824 | Apr 2009 | WO |
WO-2009061607 | May 2009 | WO |
WO-2009073192 | Jun 2009 | WO |
WO-2009086112 | Jul 2009 | WO |
WO-2009089409 | Jul 2009 | WO |
WO-2009094466 | Jul 2009 | WO |
WO-2009112878 | Sep 2009 | WO |
WO-2009117112 | Sep 2009 | WO |
WO-2009124096 | Oct 2009 | WO |
WO-2009128932 | Oct 2009 | WO |
WO-2009134929 | Nov 2009 | WO |
WO-2009137777 | Nov 2009 | WO |
WO-2010008424 | Jan 2010 | WO |
WO-2010021993 | Feb 2010 | WO |
WO-2010047753 | Apr 2010 | WO |
WO-2010062628 | Jun 2010 | WO |
WO-2010066714 | Jun 2010 | WO |
WO-2010075565 | Jul 2010 | WO |
WO-2010078063 | Jul 2010 | WO |
WO-2010088548 | Aug 2010 | WO |
WO-2010093945 | Aug 2010 | WO |
WO-2010095940 | Aug 2010 | WO |
WO-2010096822 | Aug 2010 | WO |
WO-2010125416 | Nov 2010 | WO |
WO-2010126908 | Nov 2010 | WO |
WO-2010135369 | Nov 2010 | WO |
WO-2010141729 | Dec 2010 | WO |
WO-2010147661 | Dec 2010 | WO |
WO-2011008896 | Jan 2011 | WO |
WO-2011008897 | Jan 2011 | WO |
WO-2011028850 | Mar 2011 | WO |
WO-2011034627 | Mar 2011 | WO |
WO-2011079232 | Jun 2011 | WO |
WO-2012019047 | Feb 2012 | WO |
WO-2012019136 | Feb 2012 | WO |
WO-2012065006 | May 2012 | WO |
WO-2013003620 | Jan 2013 | WO |
WO-2013022801 | Feb 2013 | WO |
WO-2013040247 | Mar 2013 | WO |
WO-2014150292 | Sep 2014 | WO |
WO-2014160884 | Oct 2014 | WO |
Entry |
---|
“MAbPac SCX-10 Column for Monoclonal Antibody Variant Analysis.” Dionex.Aug. 2010. [http://www.dionex.com/en-us/webdocs/87008-DS-MAbPac-SCX-10-Column-20Aug2010-LPN2567-03.pdf]. Web. Retrieved May 2012. 4 pages. |
AMD Preclinical Studies. Anti-Factor D Fab Specifically Inhibits the Alternative Pathway. The Association for Research in Vision and Ophthalmology, Inc. 2010. pp. 2984-2986. |
Andrews, “Effect of nonsteroidal anti-inflammatory drugs on LFA-1 and ICAM-1 expression in gastric mucosa,” Am J Physiol. Apr. 1994;266(4 Pt 1):G657-664. |
ARVO, Agenda for the Summer Eye Research Conference, (Jul. 2009). 7 pages. |
ASTM Designation: E 128-99. Standard Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use. Aug. 1999. Retrieved Jul. 4, 2014. 3 pages. |
Avery et al., “Intravitreal Bevacizumab (Avastin) for Neovascular Age-Related Macular Degeneration” Ophthalmology. Mar. 2006, vol. 113, No. 3:363-372. |
Avery et al., “Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy,” Ophthalmology. Oct. 2006, 113(10):1695-1705.e6. |
Bakri et al., “The effect of intravitreal triamcinolone acetonide on intraocular pressure,” Ophthalmic Surgery, Lasers and Imaging, Sep./Oct. 2003;34(5): 386-390. |
Bird et al., Transport Phenomena, John Wiley & Sons, Inc., New York, 1960, pp. 196-201. |
Block et al., “Solubility and dissolution of triamcinolone acetonide,” Journal of Pharmaceutical Sciences, Apr. 1973; 62(4):617-621. |
Breslin, C.W., et al., “Chapter 7. Slow Release Artificial Tears”, Symposium on Ocular Therapy pp. 77-83, 1977. |
Carbonaro, et al. “Nano-pore silicon membrane characterization by diffusion and electrical resistance.” Journal of Membrane Science. 241 (2004):249-255. |
Castro et al., “Effect of COX inhibitors on VEGF-induced retinal vascular leakage and experimental corneal and choroidal neovascularization,” Exp Eye Res. Aug. 2004;79(2):275-285. |
Chirila et al., “The Vitreous Humor” in Handbook of Biomaterial Properties, eds. Black & Hastings. Chapman & Hall, London, 1998; pp. 125-131. |
Cousins et al., “Program # 1251—Targeting Complement Factor 5 in Combination with Vascular Endothelial Growth Factor (VEGF) Inhibition for Neovascular Age Related Macular Degeneration (AMD): Results of a Phase 1 Study,” [Presentation Abstract], AMD Clinical Trials Session # 220, May 3, 2010. 2 pages. |
Deissler et al., “VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis) in microvascular retinal endothelial cells,” Br J Ophthalmol 2008;92:839-843. |
Del Amo, et al., Current & future ophthalmic drug delivery systems . . . , Drug Discovery Today, vol. 13, Nos. 3/4, Feb. 2008. pp. 135-143. |
Donoso et al., “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv Ophthalmol. Mar.-Apr. 2006;51(2):137-52. |
Duvvuri et al., Drug Delivery to the Retina: Challenges and Opportunities, Expert Opinion on Biological Therapy, 2003, vol. 3(1): 45-56. |
European Medicine Agency, Scientific Discussion; retrieved from the Internet; <http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000715/WC500043550.pdf>, EMEA 2007, 54 pages total. 2007. |
Funatsu et al. “Association of vitreous inflammatory factors with diabetic macular edema,” Ophthalmology 2009;116:73-79. |
Gaudana et al., Recent Perspectives in Ocular Drug Delivery, Pharmaceutical Research, 2008. 20 pages. |
Gaudreault et al., “Preclinical Pharmacokinetics of Ranibizumab (rhuFabV2) after a Single Intravitreal Administration,” Investigative Ophthalmology and Visual Science. 2005;46:726-733. Retrieved from the Internet: <<http://www.iovs.org/cgi/reprint/46/2/726>>. |
Gillies et al., “Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial,” Ophthalmology. Sep. 2006;113(9):1533-1538. |
Haller, An Overview of Sustained-release Drug Implants, Retinal Physician, Jan. 2008. 4 pages. |
Hastedt & Wright, “Diffusion in porous materials above the percolation threshold,” Pharm. Res. Sep. 1990; 7(9):893-901 (1990). |
Heier et al, “Ketorolac versus prednisolone versus combination therapy in the treatment of acute pseudophakic cystoid macular edema,” Ophthalmology. Nov. 2000;107(11):2034-2038;discussion 2039. |
Janoria et al., Novel Approaches to Retinal Drug Delivery, Expert Opinion Drug Delivery, 2007. pp. 371-388. |
Jena et al., “A Novel Technique for Surface Area and Particle Size Determination of Components of Fuel Cells and Batteries,” Porous Materials, Inc., Dec. 2006, 3 pages total. Downloaded from the Internet: <<http://www.pmiapp.com/publications/docs/A_Novel_technique_for_surface_area.pdf>>. |
Jornitz et al. “Filter Integrity Testing in Liquid Applications, Revisited; Part 1.” Pharmaceutical Technology. Oct. 2001. pp. 34-50. |
Kang et al., “Inhibitory effects of anti-inflammatory drugs on interleukin-6 bioactivity,” Biol Pharm Bull. Jun. 2001;24(6):701-703. |
Katz, I.M., et al., “A Soluble Sustained-Release Ophthalmic Delivery Unit”, 8:5 (May 1977) pp. 728-734. |
Lamberts, D.W., M.D., et al., “A Clinical Study of Slow-Releasing Artificial Tears”, Ophthalmology 85 (1978) pp. 794-800. |
Lee, D.A., et al., “Glaucoma Filtration Surgery in Rabbits Using Bioerodible Polymers and 5-Fluorouracil”, Ophthalmology 94:12 (1987) pp. 1523-1530. |
Lee, D.A., et al., “The Use of Bioerodible Polymers and 5-Fluorouracil in Glaucoma Filtration Surgery”, Investigative Ophthalmology & Visual Science 29-11 (1988) pp. 1692-1697. |
Li, et al., An electrochemical introculardrug delivery device, Science Direct, Sensors and Actuators, www.sciencedirect.com, Jul. 4, 2007. pp. 41-48. |
Lopez-Armada et al., “Modulation of cell recruitment by anti-inflammatory agents in antigen-induced arthritis,” Ann Rheum Dis Nov. 2002;61(11):1027-1030. |
Luncentis, INN-Ranibizumab, “Scientific Discussion,” European Medicines Agency. Retrieved from the Internet:<http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Assessment_Report _-_Variation/human/000715/WC500101009.pdf>. Oct. 21, 2010. pp. 1-32. |
Metal Powder Industries Federation, Porous Metal Design Guidebook, 2007, 24 pages total. Downloaded from the Internet: <<http://www.mpif.org/DesignCenter/porous.pdf>>. |
Miller, DP, et al., Thermophysical Properties of Trehalose and Its Concentrated Aqueous Solutions,Pharmaceutical Research, vol. 14, No. 5, 1997, pp. 578-590. |
Millipore. “Filter Integrity Test Methods.” Millipore Corporation. 1999. 12 pages. |
Molokhia et al, “Transscleral iontophoretic and intravitreal delivery of a macromolecule: Study of ocular distribution in vivo and postmortem with MRI”, Experimental Eye Research 88 (2009) 418-425. |
Moritera, T., et al., “Microspheres of Biodegradable Polymers as a Drug-Delivery System in the Vitreous”, Investigative Ophthalmology & Visual Science 32-6 (1991) pp. 1785-1790. |
MOTT Corporation, “Sintered Metal Powder Media,” American Filtration & Separation Society 2007, 2 pages total. Downloaded from the Internet:<<http://www.afssociety.org/education/0907oneminute.htm>>. |
Navarro, “The Optical Design of the Human Eye: a Critical Review,” J Optom, Jan.-Mar. 2009 2(1): 3-18. |
Nutan, MTH, et al., General Principles of Suspensions, in Pharmaceutical Suspensions From Formulation Development to Manufacturing, editors AK Kulshreshtha, et al., Spinger, 2010. pp. 39-65. |
Okabe et al., “Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device,” Investigative Ophthalmology and Visual Science. 2003;44:2702-2707. Downloaded from the Internet: <<http://www.iovs.org/cgi/reprint/44/6/2702>>. |
Rosenfeld, “The Latest Research: Intravitreal Bevacizumab for Proliferative Diabetic Retinopathy,” Review of Ophthalmology's Retina Online, Feb. 2006; retrieved from the Internet: http://www.revophth.com/archive/newsletter/0206_retina.htm. 2 pages. |
Saline (medicine)—Wikipedia, the free encyclopedia. http://web.archive.org/web/20110205192937/http://en.wikipedia.org/wiki/Saline (medicine). Apr. 27, 2012. 4 pages. |
Sanborn G.E., et al., Sustained-Release Ganciclovir Therapy for Treatment of Cytomegalovirus Retinitis, Use of an Intravitreal Device, Arch. Ophthalmol, vol. 110, 188-195 (Feb. 1992). |
Sheardown and Saltzman, Novel Drug Delivery Systems for Posterior Segment Ocular Disease, Opthalmology: Ocular Angiogenesis: Diseases, Mechanisms and Therapeutics, 2007, pp. 393-408. |
Smith et al., “Spectrophotometric determination of pKa values for fluorescein using activity coefficient corrections,” WaterSA 2002; 28(4):395-402. |
Smith, T.J., et al., “Intravitreal Sustained-Release Ganciclovir”, Arch. Ophthamol 110 (1992) pp. 255-258. |
Soheilian et al., “Pilot Study of Intravitreal Injection of Diclofenac for Treatment of Macular Edema of Various Etiologies,” Retina, Mar. 2010; 30(3): 509-515. |
Stay et al. Computer Simulation of Convective and Diffusive Transport of Controlled-Release Drugs in the vitreous Humor, Pharm Res 2003,20(1), pp. 96-102. |
Theodossiadis et al., “Intravitreal administration of the anti-tumor necrosis factor agent infliximab for neovascular age-related macular degeneration,” Am J Ophthalmol. May 2009;147(5):825-830. |
Weiner, A.L., “Chapter 13: Polymeric Drug Delivery Systems for the Eye”, Polymeric Site-Specific Pharmacotherapy, pp. 315-346, Edited by A.J. Domb (1994) John Wiley & Sons Ltd. |
Williams et al., “Treating Diabetic Macular Edema With Ocular NSAIDs,” Retinal Physician, Nov. 2007; retrieved from the Internet Nov. 11, 2007. http://www.retinalphysician.com/article.aspx?article=101096>, 5 pages total. |
Wright, P., et al. “Slow-Release Artificial Tear Inserts in the Treatment of Dry Eyes Resulting from the Oculomucocutaneous Syndrome”, British Journal of Ophthalmology 67 (1983). pp. 393-397. |
Yao et al. (Prevention of Laser Photocoagulation Induced Choroidal Neovascularization Lesions by Intravitreal Doses of Ranibizumab in Cynomolgus Monkeys, ARVO 2009 abstract D906). 2 pages. |
Number | Date | Country | |
---|---|---|---|
20230145887 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
61806267 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16514128 | Jul 2019 | US |
Child | 17974228 | US | |
Parent | 15386586 | Dec 2016 | US |
Child | 16514128 | US | |
Parent | 14228130 | Mar 2014 | US |
Child | 15386586 | US |