Embodiments relate generally to cell optics, and more particularly to cleaning cell optics.
Methane (CH4) is an odorless and colorless naturally occurring organic molecule, which is present in the atmosphere at average ambient levels of approximately 1.85 ppm as of 2018 and is projected to continually climb. While methane is found globally in the atmosphere, a significant amount is collected or “produced” through anthropogenic processes including exploration, extraction, and distribution of petroleum in the form of natural gas. Natural gas, an odorless and colorless gas, is a primary source of energy used to produce electricity and heat. The main component of natural gas is methane (93.9 mol % CH4 typ.). While extraction of natural gas is a large source of methane released to atmosphere, major contributors of methane also include livestock farming (enteric fermentation), and solid waste and wastewater treatment (anaerobic digestion). Optical cells may be used to detect methane and other trace gasses.
A system embodiment may include: an optical head enclosure of a sensor; one or more imbedded nozzles disposed on a surface of the optical head enclosure; an inlet of the one or more imbedded nozzles, where the inlet comprises a nozzle channel for receiving a cleaning solution; a flow channel internal to the optical head enclosure, where the nozzle channel may be connected to the flow channel, and where the flow channel comprises an outlet for dispersing the cleaning solution received from the nozzle channel; where the inlet may comprise a break to stop a nozzle of a cleaning device from reaching a mirror of the sensor; where the outlet may direct the cleaning solution from the inlet onto the mirror.
In additional system embodiments, the cleaning solution may be compressed air. In additional system embodiments, the cleaning solution may be a liquid. In additional system embodiments, the inlet may be disposed at an angle relative to the surface of the optical head enclosure. In additional system embodiments, the inlet may extend outward from the surface of the optical head enclosure. In additional system embodiments, a length or width of the outlet may be greater than a length or width of the nozzle channel.
In additional system embodiments, the break may be a change in angle between the nozzle channel and the flow channel. In additional system embodiments, the break may be a physical barrier between the nozzle channel and the flow channel. In additional system embodiments, the break may be a change in width or length between the nozzle channel and the flow channel.
In additional system embodiments, the sensor may be a trace-gas sensor. In additional system embodiments, the sensor may be an open path Herriot cell. In additional system embodiments, the nozzle of the cleaning device may be a straw.
A method embodiment may include: inserting a nozzle of a cleaning device into a nozzle channel of an inlet of one or more imbedded nozzles disposed on a surface of a optical head enclosure; and dispersing a cleaning solution from the cleaning device onto a mirror disposed within the optical head enclosure.
In additional method embodiments, the dispersed cleaning solution dusts the mirror. In additional method embodiments, the nozzle channel may be connected to a flow channel, where the flow channel may comprise an outlet for dispersing the cleaning solution received from the nozzle channel, and where the outlet may direct the cleaning solution from the inlet onto the mirror. In additional method embodiments, the inlet may comprise a break to stop the nozzle of the cleaning device from reaching the mirror.
A device embodiment may include an optical head enclosure of a sensor, comprising: an outer surface comprising one or more apertures for allowing ambient gas to enter the sensor disposed in the interior of the optical head enclosure; one or more imbedded nozzles disposed on an outer surface of the optical head enclosure; and an inlet of the one or more imbedded nozzles, wherein the inlet comprises a nozzle channel for receiving a cleaning solution to be directed toward the sensor disposed in the interior of the optical head enclosure.
Additional device embodiments may include: a flow channel connected to the nozzle channel, where the flow channel comprises an outlet for dispersing the cleaning solution received from the nozzle channel. In additional device embodiments, the outlet directs the cleaning solution from the inlet onto a mirror of the sensor. Additional device embodiments may include: a break disposed in the inlet to stop a nozzle of a cleaning device from reaching a mirror of the sensor.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principals of the invention. Like reference numerals designate corresponding parts throughout the different views. Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which:
There exists a need to clean particulate matter that collects on sensitive optics within a trace gas sensor gently and noninvasively. The trace gas sensor may include one or more mirrors, such as in an open path Herriot cell optics. The reflective surface of the mirrors may be easily scratched by foreign bodies. Cleaning the mirrors in an external environment, such as an oil field, is challenging.
In the disclosed system and method, compressed air may be used to “dust” the mirrors and remove accumulated particulates from the reflective surface of the mirrors. By imbedding a nozzle within the housing of the optical head, particulate matter can be removed quickly and easily while minimizing the risk of damaging the reflective surface of the mirrors. An imbedded nozzle may be built into a sidewall of the optical head enclosure. The imbedded nozzle may channel allow the airflow to be directed towards the mirror surface at an optimal angle for maximizing dust removal. This optimal angle may vary based on the dimensions of the optical cell, mirrors, housing, or the like. This imbedded nozzle serves dual purposes. The imbedded nozzle channels airflow from the compressed air canister towards the mirror or reflective surface. The imbedded surface also prevents a straw from the canister from becoming a projectile that may scratch the mirror's reflective surface.
The flow channel 400 may be internal to the optical head enclosure 100. In some embodiments, at least a portion of the flow channel 400 may be disposed between the outer surface 110 and inner surface 402 of the optical head enclosure 100. The nozzle channel 202 may be connected to the flow channel 400. The flow channel 400 may include the outlet 404 for dispersing the cleaning solution 706 received from the nozzle channel 202. The outlet 404 may direct the cleaning solution 706 from the inlet 202 onto the mirror 406. A length or width of the outlet 404 may be greater than a length or width of the nozzle channel 202.
The inlet 200 may include a break 704 to stop the nozzle 702 of the cleaning device 700 from reaching a mirror 406 of the sensor. The break 704 allows a user in the field, such as an oil field, to dust the mirror 406 of the sensor without risk of accidentally scratching the mirror 406 by contacting the mirror with the nozzle 702 of the cleaning device. The break 704 may be a change in angle between the nozzle channel 202 and the flow channel 400. The break 704 may be a physical barrier between the nozzle channel 202 and the flow channel 400. The break 704 may be a change in width or length between the nozzle channel 202 and the flow channel 400. The change in width or length between the nozzle channel 202 and the flow channel 400 may be such as to prevent the nozzle 702 of the cleaning device 700 from extending past the break 704 and into the flow channel 400.
The one or more vehicles 2002, 2004, 2006, 2010 may include an unmanned aerial vehicle (UAV) 2002, an aerial vehicle 2004, a handheld device 2006, and a ground vehicle 2010. In some embodiments, the UAV 2002 may be a quadcopter or other device capable of hovering, making sharp turns, and the like. In other embodiments, the UAV 2002 may be a winged aerial vehicle capable of extended flight time between missions. The UAV 2002 may be autonomous or semi-autonomous in some embodiments. In other embodiments, the UAV 2002 may be manually controlled by a user. The aerial vehicle 2004 may be a manned vehicle in some embodiments. The handheld device 2006 may be any device having one or more trace gas sensors operated by a user 2008. In one embodiment, the handheld device 2006 may have an extension for keeping the one or more trace gas sensors at a distance from the user 2008. The ground vehicle 2010 may have wheels, tracks, and/or treads in one embodiment. In other embodiments, the ground vehicle 2010 may be a legged robot. In some embodiments, the ground vehicle 2010 may be used as a base station for one or more UAVs 2002. In some embodiments, one or more aerial devices, such as the UAV 2002, a balloon, or the like, may be tethered to the ground vehicle 2010. In some embodiments, one or more trace gas sensors may be located in one or more stationary monitoring devices 2026. The one or more stationary monitoring devices may be located proximate one or more potential gas sources 2020, 2022. In some embodiments, the one or more stationary monitoring devices may be relocated.
The one or more vehicles 2002, 2004, 2006, 2010 and/or stationary monitoring devices 2026 may transmit data including trace gas data to a ground control station (GCS) 2012. The GCS may include a display 2014 for displaying the trace gas concentrations to a GCS user 2016. The GCS user 2016 may be able to take corrective action if a gas leak 2024 is detected, such as by ordering a repair of the source 2020 of the trace gas leak. The GCS user 2016 may be able to control movement of the one or more vehicles 2002, 2004, 2006, 2010 in order to confirm a presence of a trace gas leak in some embodiments.
In some embodiments, the GCS 2012 may transmit data to a cloud server 2018. In some embodiments, the cloud server 2018 may perform additional processing on the data. In some embodiments, the cloud server 2018 may provide third party data to the GCS 2012, such as wind speed, temperature, pressure, weather data, or the like.
It is contemplated that various combinations and/or sub-combinations of the specific features and aspects of the above embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments may be combined with or substituted for one another in order to form varying modes of the disclosed invention. Further, it is intended that the scope of the present invention is herein disclosed by way of examples and should not be limited by the particular disclosed embodiments described above.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/955,536, filed Dec. 31, 2019, the contents of which are hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3780566 | Smith et al. | Dec 1973 | A |
4135092 | Milly | Jan 1979 | A |
4233564 | Kerbel | Nov 1980 | A |
4507558 | Bonne | Mar 1985 | A |
4988833 | Lai | Jan 1991 | A |
5047639 | Wong | Sep 1991 | A |
5075619 | Said | Dec 1991 | A |
5173749 | Tell et al. | Dec 1992 | A |
5291265 | Kebabian | Mar 1994 | A |
5317156 | Cooper et al. | May 1994 | A |
5822058 | Adler-Golden et al. | Oct 1998 | A |
6064488 | Brand et al. | May 2000 | A |
6509566 | Wamsley et al. | Jan 2003 | B1 |
6549630 | Bobisuthi | Apr 2003 | B1 |
7800751 | Silver et al. | Sep 2010 | B1 |
7833480 | Blazewicz et al. | Nov 2010 | B2 |
8294899 | Wong | Oct 2012 | B2 |
8451120 | Johnson, Jr. et al. | May 2013 | B2 |
8730461 | Andreussi | May 2014 | B2 |
9183371 | Narendra et al. | Nov 2015 | B2 |
9183731 | Bokhary | Nov 2015 | B1 |
9235974 | Johnson, Jr. et al. | Jan 2016 | B2 |
9250175 | McManus | Feb 2016 | B1 |
9494511 | Wilkins | Nov 2016 | B2 |
9599529 | Steele et al. | Mar 2017 | B1 |
9599597 | Steele et al. | Mar 2017 | B1 |
10023311 | Lai et al. | Jul 2018 | B2 |
10023323 | Roberts et al. | Jul 2018 | B1 |
10126200 | Steele et al. | Nov 2018 | B1 |
10268198 | Mantripragada et al. | Apr 2019 | B2 |
10325485 | Schuster | Jun 2019 | B1 |
10365646 | Farnsworth et al. | Jul 2019 | B1 |
10429546 | Ulmer | Oct 2019 | B1 |
10830034 | Cooley et al. | Nov 2020 | B2 |
10962437 | Nottrott et al. | Mar 2021 | B1 |
11299268 | Christensen et al. | Apr 2022 | B2 |
11519855 | Black et al. | Dec 2022 | B2 |
20020005955 | Kramer et al. | Jan 2002 | A1 |
20030160174 | Grant et al. | Aug 2003 | A1 |
20030189711 | Orr et al. | Oct 2003 | A1 |
20030230716 | Russell et al. | Dec 2003 | A1 |
20040012787 | Galle et al. | Jan 2004 | A1 |
20040017762 | Sogawa et al. | Jan 2004 | A1 |
20040212804 | Neff et al. | Oct 2004 | A1 |
20060015290 | Warburton et al. | Jan 2006 | A1 |
20060044562 | Hagene et al. | Mar 2006 | A1 |
20060232772 | Silver | Oct 2006 | A1 |
20060234621 | Desrochers et al. | Oct 2006 | A1 |
20070137318 | Desrochers et al. | Jun 2007 | A1 |
20080169934 | Lang et al. | Jul 2008 | A1 |
20080243372 | Bodin et al. | Oct 2008 | A1 |
20090201507 | Kluczynski et al. | Aug 2009 | A1 |
20090263286 | Isomura et al. | Oct 2009 | A1 |
20090326792 | McGrath | Dec 2009 | A1 |
20100004798 | Bodin et al. | Jan 2010 | A1 |
20100131207 | Lippert et al. | May 2010 | A1 |
20100140478 | Wilson et al. | Jun 2010 | A1 |
20100147081 | Thomas | Jun 2010 | A1 |
20110074476 | Heer et al. | Mar 2011 | A1 |
20110150035 | Hanson et al. | Jun 2011 | A1 |
20110164251 | Richter | Jul 2011 | A1 |
20110242659 | Eckles | Oct 2011 | A1 |
20110257944 | Du et al. | Oct 2011 | A1 |
20120120397 | Furtaw et al. | May 2012 | A1 |
20130044314 | Koulikov et al. | Feb 2013 | A1 |
20130076900 | Mrozek et al. | Mar 2013 | A1 |
20130208262 | Andreussi | Aug 2013 | A1 |
20140172323 | Marino | Jun 2014 | A1 |
20140204382 | Christensen | Jul 2014 | A1 |
20140236390 | Mohamadi | Nov 2014 | A1 |
20140336957 | Hanson et al. | Nov 2014 | A1 |
20150072633 | Massarella et al. | Mar 2015 | A1 |
20150275114 | Tumiatti et al. | Oct 2015 | A1 |
20150295543 | Brown et al. | Oct 2015 | A1 |
20150316473 | Kester et al. | Nov 2015 | A1 |
20160018373 | Pagé et al. | Jan 2016 | A1 |
20160104250 | Allen et al. | Apr 2016 | A1 |
20160146696 | Steele et al. | May 2016 | A1 |
20160161456 | Risk et al. | Jun 2016 | A1 |
20160202225 | Feng et al. | Jul 2016 | A1 |
20160214715 | Meffert | Jul 2016 | A1 |
20160307447 | Johnson et al. | Oct 2016 | A1 |
20160357192 | McGrew et al. | Dec 2016 | A1 |
20170003684 | Knudsen et al. | Jan 2017 | A1 |
20170057081 | Krohne et al. | Mar 2017 | A1 |
20170089829 | Bartholomew et al. | Mar 2017 | A1 |
20170093122 | Bean et al. | Mar 2017 | A1 |
20170097274 | Thorpe et al. | Apr 2017 | A1 |
20170115218 | Huang et al. | Apr 2017 | A1 |
20170134497 | Harter et al. | May 2017 | A1 |
20170158353 | Schmick | Jun 2017 | A1 |
20170199647 | Richman et al. | Jul 2017 | A1 |
20170206648 | Marra et al. | Jul 2017 | A1 |
20170235018 | Foster et al. | Aug 2017 | A1 |
20170259920 | Lai et al. | Sep 2017 | A1 |
20170307519 | Black et al. | Oct 2017 | A1 |
20170336281 | Waxman et al. | Nov 2017 | A1 |
20170339820 | Foster et al. | Nov 2017 | A1 |
20180023974 | Otani et al. | Jan 2018 | A1 |
20180045561 | Leen et al. | Feb 2018 | A1 |
20180045596 | Prasad et al. | Feb 2018 | A1 |
20180050798 | Kapuria | Feb 2018 | A1 |
20180059003 | Jourdainne et al. | Mar 2018 | A1 |
20180067066 | Giedd et al. | Mar 2018 | A1 |
20180109767 | Li et al. | Apr 2018 | A1 |
20180127093 | Christensen et al. | May 2018 | A1 |
20180188129 | Choudhury et al. | Jul 2018 | A1 |
20180259955 | Noto | Sep 2018 | A1 |
20180266241 | Ferguson et al. | Sep 2018 | A1 |
20180266946 | Kotidis et al. | Sep 2018 | A1 |
20180209902 | Myshak et al. | Oct 2018 | A1 |
20180284088 | Verbeck, IV | Oct 2018 | A1 |
20180292374 | Dittberner et al. | Oct 2018 | A1 |
20180321692 | Castillo-Effen et al. | Nov 2018 | A1 |
20180322699 | Gray et al. | Nov 2018 | A1 |
20190011920 | Heinonen et al. | Jan 2019 | A1 |
20190011935 | Ham et al. | Jan 2019 | A1 |
20190025199 | Koulikov | Jan 2019 | A1 |
20190033194 | DeFreez et al. | Jan 2019 | A1 |
20190049364 | Rubin | Feb 2019 | A1 |
20190077506 | Shaw et al. | Mar 2019 | A1 |
20190086202 | Guan et al. | Mar 2019 | A1 |
20190095687 | Shaw et al. | Mar 2019 | A1 |
20190154874 | Shams et al. | May 2019 | A1 |
20190178743 | Mcneil | Jun 2019 | A1 |
20190195789 | Pan et al. | Jun 2019 | A1 |
20190204189 | Mohr, Jr. et al. | Jul 2019 | A1 |
20190212419 | Jeong et al. | Jul 2019 | A1 |
20190220019 | Tan et al. | Jul 2019 | A1 |
20190228573 | Sen et al. | Jul 2019 | A1 |
20190234868 | Tanomura et al. | Aug 2019 | A1 |
20190331652 | Ba et al. | Oct 2019 | A1 |
20200109976 | Ajay et al. | Apr 2020 | A1 |
20200249092 | Podmore et al. | Aug 2020 | A1 |
20200400635 | Potyrailo et al. | Dec 2020 | A1 |
20210017926 | Alkadi et al. | Jan 2021 | A1 |
20210109074 | Smith et al. | Apr 2021 | A1 |
20210140934 | Smith et al. | May 2021 | A1 |
20210190745 | Buckingham et al. | Jun 2021 | A1 |
20210190918 | Li et al. | Jun 2021 | A1 |
20210247369 | Nottrott et al. | Aug 2021 | A1 |
20210255158 | Smith et al. | Aug 2021 | A1 |
20210300591 | Tian | Sep 2021 | A1 |
20210321174 | Sun et al. | Oct 2021 | A1 |
20210364427 | Smith et al. | Nov 2021 | A1 |
20210382475 | Smith et al. | Dec 2021 | A1 |
20220113290 | Smith et al. | Apr 2022 | A1 |
20220268952 | Liang et al. | Aug 2022 | A1 |
20220341806 | Miller et al. | Oct 2022 | A1 |
20230194487 | Buckingham et al. | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
3401499 | Nov 1999 | AU |
104458588 | Mar 2015 | CN |
205749271 | Nov 2016 | CN |
106769977 | May 2017 | CN |
107703075 | Feb 2018 | CN |
109780452 | May 2019 | CN |
211508182 | Sep 2020 | CN |
112213443 | Jan 2021 | CN |
29601472 | May 1996 | DE |
69333010 | Apr 2004 | DE |
102014013822 | Mar 2016 | DE |
1371962 | Jul 2011 | EP |
3047073 | Aug 2019 | FR |
2538563 | Nov 2016 | GB |
200975823 | Apr 2009 | JP |
20170062813 | Jun 2017 | KR |
101770254 | Aug 2017 | KR |
522226 | Mar 2003 | TW |
1999054700 | Oct 1999 | WO |
02066950 | Aug 2002 | WO |
2008021311 | Feb 2008 | WO |
2015073687 | May 2015 | WO |
2016045791 | Mar 2016 | WO |
2016162673 | Oct 2016 | WO |
2017069979 | Apr 2017 | WO |
2018121478 | Jul 2018 | WO |
2018227153 | Dec 2018 | WO |
2019246280 | Dec 2019 | WO |
2020007684 | Jan 2020 | WO |
2020028353 | Feb 2020 | WO |
2020086499 | Apr 2020 | WO |
2020206006 | Oct 2020 | WO |
2020206020 | Oct 2020 | WO |
2021055902 | Mar 2021 | WO |
2021158916 | Aug 2021 | WO |
2022093864 | May 2022 | WO |
2022211837 | Oct 2022 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US22/38951, mailed Nov. 28, 2022. |
Kelly J F et al. “A capillary absorption spectrometer for stable carbon isotope ratio (C/C) analysis in very small samples”, Review of Scientific Instruments, American Institute of Physics, 2 Huntington Quadrangle, Melville, NY 11747, vol. 83, No. 2, Feb. 1, 2012 (Feb. 1, 2012), pp. 23101-23101, XP012161835, ISSN: 0034-6748, DOI: 10.1063/1.3680593. |
Krings et al., Atmos. Meas. Tech., 11, 721-739, Feb. 7, 2018. |
Lilian Joly, The evolution of AMULSE (Atmospheric Measurements by Ultra-Light Spectrometer) and its interest in atmospheric applications. Results of the Atmospheric Profiles of Greenhouse gasEs (APOGEE) weather balloon release campaign for satellite retrieval validation, p. 1-28, Sep. 25, 2019, Atmospheric Measurement Techniques Discussion (Joly). |
International Search Report and Written Opinion for PCT/US23/13893, mailed Jun. 30, 2023. |
U.S. Appl. No. 62/687,147, filed Jun. 19, 2018, Brendan James Smith. |
International Search Report and Written Opinion for PCT/US19/38011 mailed Sep. 9, 2019. |
International Search Report and Written Opinion for PCT/US19/38015, mailed Oct. 18, 2019. |
International Search Report and Written Opinion for PCT/US19/44119, mailed Oct. 17, 2019. |
International Search Report and Written Opinion for PCT/US20/26228 mailed Jul. 1, 2020. |
International Search Report and Written Opinion for PCT/US20/26232 mailed Jun. 26, 2020. |
International Search Report and Written Opinion for PCT/US20/26246 mailed Jun. 29, 2020. |
International Search Report and Written Opinion for PCT/US20/51696, mailed Feb. 3, 2021. |
International Search Report and Written Opinion for PCT/US2020/044978, mailed Oct. 26, 2020. |
International Search Report and Written Opinion for PCT/US2021/016821 mailed Apr. 26, 2021. |
International Search Report and Written Opinion for PCT/US2021/024177, mailed Jun. 23, 2021. |
International Search Report and Written Opinion for PCT/US2021/056708, mailed Jan. 27, 2022. |
International Search Report and Written Opinion for PCT/US21/42061, mailed Nov. 26, 2021. |
International Search Report and Written Opinion for PCT/US21/44532, mailed Jan. 11, 2022. |
International Search Report and Written Opinion of PCT/US19/57305, mailed Jan. 2, 2020. |
International Search Report and Written Opinion of PCT/US20/54117, mailed Dec. 22, 2020. |
Joly, “Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) Dedicated to Vertical Profile In Situ Measurements of Carbon Dioxide (CO2) Under Weather Balloons: Instrumental Development and Field Application,” Sensors 2016, 16, 1609. |
Khan, “Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles”, Remote Snse. 2012, 4, 1355-1368. |
Villa. “An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives”. Sensors. Web . Jul. 12, 2016. |
White, “Development of an Unmanned Aerial Vehicle for the Measurement of Turbulence in the Atmospheric Boundary Layer”, Atmosphere, v.8, issue 10, 195, pp. 1-25. |
“SAFESITE Multi-Threat Detection System”, Jul. 11, 2012 (Jul. 11, 2012), pp. 1-6, XP055245980. |
International Search Report and Written Opinion for PCT/US21/56710, mailed Feb. 23, 2022. |
Clilverd, Mark A. et al., Energetic particle injection, acceleration, and loss during the geomagnetic disturbances which upset Galaxy 15, Journal of Geophysical Research, vol. 117, A12213, doi: 10.1029/2012JA018175, 2012, pp. 1-16 (Year:2012). |
Kem, Christoph et al., Spatial Distribution of Halogen Oxides in the Plume of Mount Pagan Volcano, Mariana Islands, Geophysical Research Letters 10.1029/2018GL079245, Sep. 27, 2018, pp. 9588-9596 (Year:2018). |
Liao, J. et al. Observations of Inorganic bromine(HOBr, BrO, and Br2) speciation at Barrow, Alaska in spring 2009, Journal of Geophysical Research, vol. 117, D00R16, doi:10.1029/2011JD016641, 2012, pp. 1-11 (Year:2012). |
Liu, Siwen et al., Development of a UAV-Based System to Monitor Air Quality over an Oil Field, Montana Technological University, Montana tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses, Fall 2018, pp. 1-85 (Year:2018). |
Miyama, Toru et al., Estimating allowable carbon emission for CO2 concentration stabilization using a GCM-based Earth system model, Geophysical Research Letters, vol. 36,L19709, doi:10.1029/2009GL039678, 2009, pp. 0094-8276 (Year:2009). |
Oppenheimer Clive et al., Ultraviolet Sensing of Volcanic Sulfur Emissions, Elements (An Internatioknal Magazine of Mineralogy, Geochemistry, and Petrology), Apr. 2010, vol. 6, pp. 87-92 (Year: 2010). |
Parazoo, Nicholas C. et al., Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT, Geophysical Research Letters, vol. 40.2829-2833, doi: 10.1002/grl.50452, 2013 pp. 2829-2833 (Year:2013). |
Queiber, Manuel et al., A new frontier in CO2 flux measurements using a highly portable DIAL laser system, Scientific Reports, DOI: 10.1038/srep33834 1, Sep. 22, 2016, pp. 1-13(Year:2016). |
Queiber, Manuel et al., Large-area quantification of subaerial CO2 anomalies with portable laser remote sensing and 2d tomography, The Leading Edge Mar. 2018, pp. 306-313 (Year:2018). |
International Search Report and Written Opinion for PCT/US2023/023933 mailed Sep. 26, 2023. |
International Search Report and Written Opinion for PCT/US23/23905 mailed Oct. 5, 2023. |
Development of a mobile tracer correlation method for assessment of air emissions from landfills and other area sources, Atmospheric Environment 102 (2015) 323-330. T.A. Foster-Wittig et. al. 2015. |
Measurements of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR Absorption Spectroscopy, Environ. Sci. Technol. 2001, 35, 21-25, B. Galle et. al. 2001. |
Cabreira et al. “Survey on Coverage Path Planning with Unmanned Aerial Vehicles”, published: Drones, published: Jan. 2019, pp. 1-38, year 2019. |
Feng, Lingbing, Nowak, Gen, O'Neill, T.J., Welsh, A.H. “Cutoff; A spatio-temporal imputation method.” Journal of Hydrology 519 (2014) : 3591-3605 (Year:2014). |
Number | Date | Country | |
---|---|---|---|
20210199565 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62955536 | Dec 2019 | US |