The present invention is directed to optical concentrators, optical concentrator systems, and related methods such as those for solar applications that receive incident light and concentrate the light onto a target, such as a photovoltaic target or a target to be heated. In particular, the present invention is directed to optical concentrators having one or more line foci and related systems and methods.
U.S. Pat. No. 4,169,738 discloses conventional linear optical concentrators that include non-coplanar receivers.
Large height/width ratios are not as problematic if such optical concentrators are deployed as part of a fixed array on a panel that articulates as a whole. However, as shown in
The location of the two receivers, 81 and 82, at the base of the trough 80 limits self-refrigeration. Whereas the location does provide a direct thermal path to the back of the trough 80 where additional convective fins may be employed, the thermal load on the receiver planes is conducted toward the trough base through a relatively narrow interface. Such narrow interfaces generally have a higher thermal resistance. This increases the change in temperature between the receivers and the self-refrigerating device(s) tending to result in a higher operating temperature of the receivers and decreasing the efficiency of the receivers.
U.S. Pat. No. 4,269,168 relates to concentrating modules that focus light in two dimensions and which are generally referred to as point concentrators. The '168 design discloses methods of concentrating solar radiation onto stationary receivers while allowing the concentrating elements (i.e., cover, reflectors, etc.) to articulate about a common axis.
Furthermore, because of the use of a fresnel cover over the entire aperture, the modules in the '168 patent provide minimal field of view with respect to diffuse sky radiation (off-axis radiation, for example). This makes them unsuitable for use as part of a self-powering mechanism. Such self-powering mechanisms may use a portion of the energy converted by the receivers, including captured diffuse sky radiation, to power control articulation mechanisms. This enables the concentrator system to track primary radiation sources, such as the sun, without relying on an external source of power. Self-power is useful in many instances, including initiating tracking activities when a receiver is not aimed at a light source such as the sun, for example. The limited field of view with respect to background radiation, which in the case of the sun is diffuse sky radiation, results in a concentrator that can produce power only when pointed at the sun. Such a concentrator cannot provide power to control and/or articulation mechanisms when the concentrator is oriented away from the sun. Such circumstances typically arise at sunrise when the concentrator is oriented westward after sunset the previous day. Similar circumstances may arise due to temporary shadowing caused by cloud cover or other obstructions.
Certain kinds of devices, such as those with individually articulating concentrators, utilize a low overall height for the optical component, so that the concentrators can articulate past each other freely. These devices are described in U.S. patent application Ser. No. 11/454,441, filed on Jun. 15, 2006 and entitled “Planar Concentrating Photovoltaic Panel With Individually Articulating Concentrator Elements” and U.S. patent application Ser. No. 11/654,256, filed on Jan. 17, 2007, and entitled “Concentrated Solar Panel and Related Systems and Methods,” which are commonly-owned by the assignee of record of the present application and which are incorporated by reference herein in their entirety.
The present invention provides optical concentrators having an axis of concentration and one or more line foci substantially parallel to such concentrating axis, preferably plural line foci, provided by one or more optic(s). Exemplary concentrators in accordance with the present invention preferably comprise a primary concentrating optic having one or more reflecting surfaces each having a respective line focus at an intermediate position between a top and bottom of a volume under concentrated illumination. Advantageously, positioning a line focus at such an intermediate position allows distribution of the heat load of the optical concentrator among more than one receiver locations when plural receivers are used. Optical concentrators in accordance with the present invention are preferably designed so the full entrance aperture is active. By active it is meant that, ignoring transmission and reflection losses inherent to suitable optical materials, any ray incident within the perimeter of the entrance aperture and substantially parallel to the plane formed by the optical axis and the concentration axis is collected by a receiver. Other advantages of optical concentrators in accordance with the present invention include a height to width ratio of individual concentrators favorable to dense packing of such concentrator in arrays of plural concentrators without sacrificing articulation range. Advantageously, some concentrators in accordance with the present invention only need a single axis of tracking. Such concentrators may be oriented so the concentration axis is substantially east to west so the optical axis tracks the seasonal changes in sun elevation while accepting the daily cosine law loss effects. Alternatively, such concentrators may be oriented so the concentration axis is substantially north-south so the optical axis tracks the daily changes in sun elevation while accepting seasonal cosine law loss effects.
Optical concentrating systems are provided in accordance with the present invention. Such optical concentrating system may be used as solar collectors, for example. Such systems concentrate light onto a device located near the focus of the optical system for the purpose of converting absorbed radiation into another useful form of energy such as electricity by a photovoltaic cell or heat by an energy absorber or other transducer. Optical concentrators and devices in accordance with the present invention relate to systems that concentrate light in a single dimension in at least one stage of concentration and may be generally referred to as linear or line concentrators. Additional optics may be used in parallel or series in accordance with the present invention.
High area efficient optical concentrators are also provided in accordance with the present invention. Such optical concentrators are preferably designed to minimize blocking of rays parallel to a plane formed by the optical axis and the concentration axis and incident on the aperture of the primary element thereby maximizing the area efficiency of the optical concentrator. Such optical concentrators provide high area efficiency by being designed to be compact and by preferably comprising aperture(s) that allow plural optical concentrators to be provided in an area with minimal spacing.
Systems comprising plural optical concentrators are also provided in accordance with the present invention. Preferably, plural optical concentrators are arranged in arrays, preferably parallel arrays wherein respective optical axes are preferably spaced apart by a distance that allows individual concentrators to articulate without colliding and/or interfering with adjacent concentrators. Individual optical concentrators can be articulated about a pivot axis parallel to the trough length, while not impinging on adjacent optical concentrators articulating in kind about their respective pivot axes. Optical concentrators in accordance with the present invention are preferably designed with a height/width ratio suitable for such dense arrangement thereby allowing a high area efficient system.
Devices that use self-refrigerating methods to dissipate excess thermal energy are provided in accordance with the present invention. Devices having high optical radiation concentration in compact packages, specifically those with photovoltaic elements, require dissipation of thermal energy resulting from inefficient conversion of radiation into electricity. Such thermal energy dissipation is achieved in accordance with the present invention, by passive self-refrigerating methods, such as natural convection, for example.
In a representative embodiment, first and second reflective surfaces are opposed so as to define a volume under optical concentration between such surfaces. In a preferred embodiment, the volume is at least partially defined by a trough, which trough is at least partially defined by the first and second reflective surfaces. A line focus of the first reflective surface is proximal to the second reflective surface. Similarly, a line focus of the second reflective surface is proximal to the first reflective surface. In accordance with the present invention, one or both focal lines are positioned intermediate between the top and bottom of the volume under optical concentration. A first exit aperture is associated with the second reflective surface in a manner effective to capture incident light focused onto the first exit aperture, and a second exit aperture is associated with the first reflective surface in a manner effective to capture incident light focused onto the second aperture. A first receiver element(s) is preferably positioned in optical communication with the first exit aperture and a second receiver element(s) is preferably positioned in optical communication with the second exit aperture. In preferred embodiments, a receiver is located outside the volume under optical concentration. In some embodiments, a receiver is positioned outside the trough. Optionally, one or more additional optical elements may be used to further concentrate light captured by the first exit aperture as such light travels from an exit aperture to the target element(s).
In another representative embodiment, an optical concentrator comprising a trough having first and second sides, a bottom, and a cover that defines an interior volume of the trough is provided. A reflective surface on the first side has a focus (line) generally proximal to the second side intermediate the bottom and cover. A secondary aperture positioned intermediate the cover and bottom is formed in the second side to capture concentrated light reflected from the first side. A receiver is in optical communication with the secondary aperture so that light captured by the secondary aperture travels along one or more pathways to the receiver. Optionally, one or more optical elements are in the pathway to further concentrate the light as it travels from the secondary aperture to the receiver.
In an aspect of the present invention, an optical concentrator is provided. The optical concentrator preferably comprises a body comprising a top and a bottom, an entrance aperture that allows radiation to be concentrated to enter an interior space of the body, an exit that allows concentrated radiation to leave the interior space of the body, a radiation receiver operatively positioned relative to and in optical communication with the exit, and a reflective surface positioned within the interior space the body comprising a line foci that provides a linear region of focused radiation to the exit. In accordance with the present invention, the exit is positioned at an intermediate position between the top and bottom of the body.
In another aspect of the present invention an optical concentrator is provided. The optical concentrator preferably comprises an optical axis, an axis of concentration, a body comprising a top and a bottom and comprising an entrance aperture that allows radiation to be concentrated to enter an interior space of the body, an exit that allows concentrated radiation to leave the interior space of the body, and a radiation receiver operatively positioned relative to and in optical communication with the exit, and a reflective surface positioned within the interior space the body, wherein the optical concentrator comprises a first field of view having a first angle and capable of collecting rays from a radiation source that are substantially parallel to a plane formed by the optical axis and axis of concentration, and a second field of view having a second angle substantially greater than the first angle and capable of collecting diffuse radiation, wherein rays of said diffuse radiation are from a direction different than substantially parallel to the radiation source.
In yet another aspect of the present invention, a method of concentrating radiation in a solar concentrator is provided. The method comprises the steps of causing solar radiation to impinge on one or more reflective surfaces of an optical concentrator, focusing the radiation to one or more linear focused region with the one or more reflective surfaces of the optical concentrator, and directing the one or more linear focused regions to one or more receivers positioned at an intermediate location between a top and bottom of the optical concentrator.
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate several aspects of the present invention and together with description of the embodiments serve to explain the principles of the invention. A brief description of the drawings is as follows:
The embodiments of the present invention described below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the present invention.
An exemplary optical concentrator 100 in accordance with the present invention is illustrated in
As illustrated, optical concentrator 100 comprises primary optic system 108 having reflective surfaces 110, 112, 114, and 116. Optical concentrator 100 also includes first and second receivers, 118 and 120, respectively, that function to collect radiation, such as photovoltaic cells or the like. Optical concentrator 100 also preferably comprises one or more secondary optics such as optional secondary optic system 122 having first optic 124 operatively positioned relative to first receiver 118 and second optic 126 operatively positioned relative to second receiver 120. Preferably, receiver 118 and first optic 124 of the secondary optic system 122 (if used) are positioned at a first discontinuity (or gap) 128 between reflective surface 110 and reflective surface 112. First discontinuity 128 functions as an exit aperture for concentrated radiation to leave internal space 104 (the volume under optical concentration). Also, receiver 120 and second optic 126 of the secondary optic system 122 (if used) are positioned at a second discontinuity 130 between reflective surface 114 and reflective surface 116.
Surfaces 110, 112, 114, and 116 preferably comprise parabolic or parabolic-like surfaces. Preferably, the top surfaces 110 and 114 share a common foci with the bottom surfaces 112 and 116, respectively. Preferably, such foci are coincident or near coincident with the opposing side of the primary optic. Contemplated parabolic surfaces may either be formed as a single element or may be formed as separate sub-elements. Contemplated primary and secondary optic systems may be constructed of high-reflectivity, aluminum sheet metal manufactured by Alanod under the trade name MIRO™ (distributed by Andrew Sabel, Inc., Ketchum, Id.).
As mentioned, in some embodiments, primary optic system comprises plural reflective surfaces, where such surfaces are preferably formed from one or more sub-elements, and may have parabolic profiles. In other embodiments, primary optic system preferably comprises at least four parabolic surfaces including two on each side of the optical axis of the primary optic system where such two surfaces are separated by a discontinuity or gap. In some embodiments, optical concentrators comprise a ratio between the input aperture and the receiver area greater than ten, preferably between 12 and 20 depending on the desired concentration.
Devices, methods, and apparatus utilized for self-refrigeration may include: plural heat spreader elements in thermal contact with receiver elements, plural convective fins arranged around the heat spreader elements, and the like. Contemplated heat spreader elements are designed to interconnect at least one of the primary optic(s), at least one of the secondary optic(s) (if used), or a combination thereof. Contemplated convective fins may comprise independently at least one primary optic, at least one secondary optic (if used), at least one additional fin not part of the primary and second optic or a combination thereof. In some embodiments, a receiver or self-refrigerators are preferably arranged outside the primary optic. The receiver(s) may be in contact directly or indirectly with one or more of a primary or optional secondary concentrator optic allowing them to serve as self-refrigerating mechanisms for the receiver(s). Contemplated receivers can be arranged such that the field of view of the sky of the receiver encompasses a significant portion of the entrance aperture of the primary optic.
The primary optic 108 of optical concentrator 100 is schematically shown in
z=a(y±y0)2+t
In these forms, parabolic surfaces 114 and 116 focus rays parallel to the optical axis toward the focus located on the opposing side at (y0,y0), whereas the parabolic surfaces 110 and 112 focus parallel to the optical axis toward the focus located on the opposing side at (−y0,y0). It should be noted that the above equations illustrate one exemplary embodiment and that alternate embodiments result from perturbations to these general formulae.
In
In
As an example, another exemplary primary optic 154 for an optical concentrator in accordance with the present invention is schematically shown in
In
In
In accordance with the present invention, an optional secondary optic(s) may be formed as part of a primary optic(s) or formed as a separate entity from a primary optic(s). That is, a single reflective surface may be used to provide all or a portion of both the primary and secondary optic. In an alternative embodiment, a secondary optic(s) may be formed from a solid refractive material such that the surface at the entrance aperture refracts rays towards a receiver, and the walls of the secondary optic(s) are such that incident rays may totally internally reflect onto the receiver. Optional secondary optics may comprise plural reflective surfaces or may comprise at least one transparent refractive material.
The present invention has now been described with reference to several embodiments thereof. The entire disclosure of any patent or patent application identified herein is hereby incorporated by reference. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the structures described herein, but only by the structures described by the language of the claims and the equivalents of those structures.
The present application claims priority to U.S. Provisional Application No. 60/848,722 filed Sep. 30, 2006 and U.S. Provisional Application No. 60/848,721 filed Sep. 30, 2006, the entire contents of which are both incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60848722 | Sep 2006 | US | |
60848721 | Sep 2006 | US |