The invention relates to an optical device comprising an optical element which can be deformed so as to modify its optical characteristics.
The invention may be used in any apparatus or device in which optical characteristics of an optical element have to be changed, such as the focus of a lens or the pitch of a diffraction grating.
The Patent of United States published under reference US 2001/0040735A1 describes a variable-focus lens. The variable-focus lens is constructed by making small changes in the equatorial diameter of an elastically deformable lens. The lens may be deformed by radial tension exerted in a plane generally perpendicular to the optical axis. The radial tension may be exerted by mechanical means or by rings embedded in or attached to the equator of the lens, whose diameter can be altered by heating or by the application of an electric or magnetic field.
The technique described in the prior art document not only implies the use of complicated and numerous actuators for changing the focus of the lens, but it is also difficult to implement in small devices or apparatus.
It is an object of the invention to propose an improved optical device for deforming an optical element.
To this end, the optical device according to the invention comprises:
When a voltage difference is applied between the two electrodes, the Maxwell stress phenomenon causes the polymer film to lengthen in planar direction, and this elongation is transmitted to the deformable optical element. The optical characteristics of the optical element change as result of its deformation.
Since the optical element is in direct contact with the polymer film, the optical device is of small size.
Since the elongation of the polymer film depends on the voltage difference applied between the electrodes, the deformation of the optical element is easily controllable.
In particular, said optical element is a circular lens or a diffraction grating.
The optical device can thus be used for varying the focus of a lens or the pitch of a diffraction grating.
In a preferred embodiment, the optical element is made of silicone rubber or made of cyclic olefin copolymer.
Such materials have characteristics that lead to a good compromise between optical quality and the ability to deform.
In a preferred embodiment, the polymer film is made of silicone rubber or acrylic dielectric elastomer.
Such materials allow a substantial deformation so that the optical characteristics of the optical element can be modified in a large proportion.
In a preferred embodiment, the first electrode and the second electrode have the shape of a circle.
In a preferred embodiment, the first electrode and the second electrode have the shape of a ring.
If electrodes are made of transparent material, a light beam can pass through the polymer film and the optical element along its optical axis. This feature relates in particular to the circular lens.
Electrodes having the shape of rings allow the use of either transparent or non-transparent materials for the electrodes.
The invention also relates to a polymer film sandwiched between two electrodes intended to receive a voltage difference, for deforming an optical element in contact with said polymer film or said electrodes.
The property of such a film and the particular arrangement of the polymer film with respect to the electrodes is advantageously used for deforming the optical element under an electrical control.
The invention also relates to a method of changing the optical characteristics of an optical element, said method comprising the steps of:
Such a method can be used for changing electrically the optical characteristic of an optical element.
Detailed explanations and other aspects of the invention will be given below.
The particular aspects of the invention will now be explained with reference to the embodiments described hereinafter and considered in connection with the accompanying drawings, in which identical parts or sub-steps are designated in the same manner:
The invention utilizes the Maxwell stress phenomenon. This phenomenon relates to the deformation of a polymer material sandwiched between two electrodes. When a voltage difference is applied between said electrodes, the electrostatic forces resulting from the free charges squeeze and stretch the polymer.
This optical device is advantageously symmetrical around axis AA, which corresponds to the optical axis of the optical element 104.
The first electrode 102 is connected to a wire 105, and the second electrode 103 is connected to a wire 106. Wires 105 and 106 are intended to be connected to a voltage difference V.
The electrodes are made of compliant (soft) material so that they can deform with the polymer film. The electrodes may be deposited via spraying, screen printing, or photolithography. The electrodes can be made of graphite paste, very thin metal wires, or very thin metal films.
The electrodes are advantageously made of transparent material, so that a light beam can pass through the lens, the polymer film, and the electrodes. In that case, the electrodes are made, for example, of material known as “pdot” used in polymer LED displays.
In a second state depicted in
The strain of the polymer film (generally of the order of several tens percents) has a quadratic relation to the voltage difference V. It must be of the order of a few kV, depending on the thickness of the polymer film. To reduce the voltage, a multi-layered structure may be advantageously made.
In a second state depicted in
The first electrode 202 is connected to a wire 205, and the second electrode 203 is connected to a wire 206. Wires 205 and 206 are intended to be connected to a voltage difference V.
The electrodes are made of compliant (soft) material so that they can deform with the polymer film. The electrodes may be deposited via spraying, screen printing, or photolithography. The electrodes may be made of graphite paste, very thin metal wires, or very thin metal films.
In a second state depicted in
The electrodes are advantageously made of transparent material, so that a light beam can pass through the grating, the polymer film, and the electrodes. In that case, the electrodes are made, for example, of material known as “pdot” used in polymer LED displays.
The strain of the polymer film (generally of the order of several tens percents) has a quadratic relation to the voltage difference V. It must be of the order of a few kV, depending on the thickness of the polymer film. To reduce the voltage, a multi-layered structure may be advantageously made.
The deformation of the film polymer depends on the modulus of the material used, the shape of the material, as well as boundary conditions.
The invention is not limited to the shapes described for the polymer film. Indeed, other shapes could be defined for deforming in a non-uniform way the optical element mapped on said polymer film.
The invention also relates to a polymer film sandwiched between two electrodes for deforming an optical element.
The invention also relates to a method of changing the optical characteristics of an optical element, said method comprising the steps of:
Number | Date | Country | Kind |
---|---|---|---|
02293263 | Dec 2002 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/05822 | 12/5/2003 | WO | 00 | 6/24/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/059364 | 7/15/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6004442 | Choulga et al. | Dec 1999 | A |
6369954 | Berge et al. | Apr 2002 | B1 |
6844960 | Kowarz | Jan 2005 | B2 |
6859233 | Sasama | Feb 2005 | B1 |
6965467 | Yamamoto et al. | Nov 2005 | B2 |
20010040735 | Schachar | Nov 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20060072181 A1 | Apr 2006 | US |