This patent document is related to and hereby incorporates by reference in their entirety the following co-filed U.S. patent applications: Ser. No. 10/666,319, entitled “Alignment Post for Optical Subassemblies Made With Cylindrical Rods, Tubes, Spheres, or Similar Features”; Ser. No. 10/666,363, entitled “Wafer-Level Packaging of Optoelectronic Devices”; Ser. No. 10/666,442, entitled “Integrated Optics and Electronics”; Ser. No. 10/666,444, entitled “Methods to Make Diffractive Optical Elements”; Ser. No. 10/666,091, entitled “Optoelectronic Device Packaging With Hermetically Sealed Cavity and Integrated Optical Element”; Ser. No. 10/665,662, entitled “Surface Emitting Laser Package Having Integrated Optical Element and Alignment Post”; and Ser. No. 10/665,660, entitled “Optical Receiver Package”.
Semiconductor optoelectronic devices such as laser diodes for optical transceivers can be efficiently fabricated using wafer processing techniques. Generally, wafer processing techniques simultaneously form a large number (e.g., thousands) of devices on a wafer. The wafer is then cut to separate individual chips. Simultaneous fabrication of a large number of chips keeps the cost per chip low, but each chip generally must be packaged and/or assembled into a system that protects the chip and provides both electrical and optical interfaces for use of the devices on the chip.
Assembly of a package or a system containing an optoelectronic device is often costly because of the need to align multiple optical components with a semiconductor device. For example, the transmitting side of an optical transceiver chip may include a Fabry Perot laser that emits an optical signal from an edge of the chip. However, a desired path of the optical signal may require light to emerge from another direction, e.g., the face of a package. A turning mirror can deflect the optical signal from its original direction to the desired direction. Additionally, a lens or other optical element may be necessary to focus or alter the optical signal and improve coupling of the optical signal into an external optical fiber. Alignment of a turning mirror to the edge of the chip, the lens to the turning mirror, and an optical fiber to the lens can be a time consuming/expensive process.
Wafer-level packaging is a promising technology for reducing the size and the cost of the packaging of optoelectronic devices. With wafer-level packaging, components that conventionally have been separately formed and attached are instead fabricated on a wafer that corresponds to multiple packages. The resulting structures can be attached either individually or simultaneously and later cut to separate individual packages.
Packaging techniques and structures that can reduce the size and/or cost of optoelectronic assemblies are sought.
In accordance with an aspect of the invention, a reflector and an edge-emitting laser are attached to a sub-mount. The sub-mount includes passive or active electrical components that electrically connect to the laser. The sub-mount may further include optical elements, and the reflector is positioned to reflect an optical signal from the laser through the sub-mount. An alignment post can then be mounted on the sub-mount where the optical signal emerges. Inserting the post into one end of a sleeve and inserting a ferrule containing an optical fiber into the opposite end of the sleeve will align the two thus achieving efficient coupling of the optical signal into the optical fiber.
The laser can be protected by a transparent encapsulant that is deposited on the sub-mount to encase the laser. Alternatively, a cap can attach to the sub-mount to form a cavity enclosing the laser, and the reflector can be built into the cap as a reflective portion of the cavity wall.
One specific embodiment of the invention is a device including a sub-mount, an edge-emitting laser, and a reflector. The sub-mount includes conductive traces, and the edge-emitting laser is electrically coupled to the conductive traces. The reflector is positioned to reflect the optical signal from the edge-emitting laser through the sub-mount. An alignment post can be attached to the sub-mount where the optical signal emerges. Additionally, an optical element such as a diffractive lens can be attached in the path of the optical signal or integrated into the sub-mount along the path of the optical signal.
In one variation of this embodiment, the reflector is a reflective portion of an interior wall of a cap that attaches to the sub-mount to hermetically seal the laser inside a cavity. Alternatively, a transparent encapsulant such as silicone can be applied to the sub-mount to encase and protect the laser.
Use of the same reference symbols in different figures indicates similar or identical items.
In accordance with an aspect of the invention, a package for an edge-emitting laser includes a sub-mount and a reflector that directs an optical signal from the laser through the sub-mount. The sub-mount can be a semiconductor substrate that includes passive or active circuit elements that attach to the die. An alignment post can be attached to the sub-mount where the optical signal emerges after reflection from the reflector. The reflector can be either a separate element or can be part of a cap that attaches to the sub-mount hermetically sealing the laser in a cavity. When the reflector is a separate element, a transparent encapsulant can be applied to the laser and the sub-mount to protect the laser.
A wafer-level fabrication process for these packages attaches multiple lasers to a sub-mount wafer. Reflectors are attached to the sub-mount wafer at positions to reflect optical signals from respective lasers. The reflectors can either be separate elements or may be reflective parts of cavities in a cap wafer. Environmental protection of the dice can either be provided by an encapsulant that is applied to encase the lasers or by hermetically sealing cavities formed by attaching a cap wafer to the sub-mount wafer. The sub-mount wafer is cut to separate individual packages. Alignment posts can be attached to the sub-mounts before or after separation of the packages to simplify alignment of the packages in an optical subassembly (OSA).
Each laser 110 is within one of the cavities 140 formed between a sub-mount wafer 120 and a cap wafer 130. In the embodiment of
Wafer 120 is predominantly made of silicon and/or other materials that are transparent to the wavelength (e.g., 1100 nm or longer) of the optical signals from lasers 110. Wafer 120 also includes circuit elements such as bonding pads 122, electrical traces 170, or vias (not shown) that connect lasers 110 to external terminals 124. In the illustrated embodiment, external terminals 124 are on the top surface of sub-mount wafer 120, but the external terminals could alternatively be provided on the bottom surface. Additionally, active devices (not shown) such as transistors, an amplifier, or a monitor/sensor can be incorporated in wafer 120.
Cap wafer 130 is fabricated to include depressions or cavities 140 in areas corresponding to lasers 110 on sub-mount wafer 120 and saw channels 144 in areas over external terminals 124. Wafer 130 can be made of silicon or any convenient material that is suitable for formation of cavities 140 of the desired shape. Cavities 140 can be formed in a variety of ways including but not limited to forming, coining, ultrasonic machining, and (isotropic, anisotropic, or plasma) etching.
All or part of the surface of cap wafer 130 including cavities 140 is either reflective or coated with a reflective material so that reflectors 150 are integrated into cap wafer 130 in the required locations to reflect optical signals from lasers 110 to the desired direction. In an exemplary embodiment, deposition of a reflective metal forms reflectors 150, but the metal may be restricted to selected areas to avoid wicking when solder bonds wafers 120 and 130 together. Reflectors 150 can be planar to merely reflect or turn the optical signal to the desired direction but can alternatively be non-planar to provide beam shaping if desired.
In an exemplary embodiment, cap wafer 130 is silicon, and anisotropic etching of the silicon forms cavities 140 having very smooth planar facets on the <111> planes of the silicon crystal structure. Reflectors 150 are facets coated with a reflective material such as a Ti/Pt/Au metal stack. The preferred angle of reflectors 150 is 45° relative to the surface of wafer 130, so that reflectors 150 reflect optical signals that lasers 110 emit parallel to the surface of wafer 120 to a direction perpendicular to the surface of sub-mount wafer 120. A silicon wafer that is cut off-axis by 9.74° can be used to achieve a 45° angle for each reflector 150. However, etching silicon that is cut on-axis or off-axis at different angles can produce reflectors 150 at angles, which may be suitable for many applications.
Optionally, optical elements 160 such as lenses or prisms can be attached to or integrated into sub-mount wafer 120 along the paths of the optical signals from lasers 110. In
Sub-mount wafer 120 and cap wafer 130 are aligned and bonded together. A variety of wafer bonding techniques including but not limited to soldering, bonding by thermal compression, or bonding with an adhesive could be employed for attaching wafers 120 and 130. In the exemplary embodiment of the invention, soldering using a gold/tin eutectic solder attaches wafers 120 and 130 to each other and hermetically seals cavities 140. Hermetic seals on cavities 140 protect the enclosed lasers 110 from environmental damage.
After wafers 120 and 130 are bonded, structure 100 can be cut to produce individual packages, each including a laser 110 hermetically sealed in a cavity 140. In particular, saw channels 144 permit sawing of cap wafer 130 along lines 136 without damaging underlying structures such as external terminals 124. After sawing cap wafer 130, sub-mount wafer 120 can be cut along lines 126 to separate individual packages.
Although
Sub-mount 300 can be fabricated using wafer processing techniques such as those described in a co-filed U.S. patent application Ser. No. 10/666,442, entitled “Integrated Optics And Electronics”. In the illustrated embodiment, sub-mount 300 includes a silicon substrate 310, which is transparent to optical signals using long wavelength light.
On silicon substrate 310, a lens 320 is formed, for example, by building up alternating layers of polysilicon and oxide to achieve the desired shape or characteristics of a diffractive or refractive lens. A co-filed U.S. patent application Ser. No. 10/666,442, entitled “Methods to Make Diffractive Optical Elements”, describes some processes suitable for fabrication of lens 320.
A planarized insulating layer 330 is formed on silicon substrate 310 to protect lens 320 and to provide a flat surface on which the metallization can be patterned. In an exemplary embodiment of the invention, layer 330 is a TEOS (tetra-ethyl-ortho-silicate) layer about 10,000 Å thick.
Conductive traces 340 can be patterned out of a metal layer, e.g., a 10,000-Å thick TiW/AlCu/TiW stack. In an exemplary embodiment, a process that includes evaporating metal onto layer 330 and a lift-off process to remove unwanted metal forms traces 340. An insulating layer 332 (e.g., another TEOS layer about 10,000 Å thick) can be deposited to bury and insulate traces 340. The insulating layer can include openings 338, which are optionally covered with Au (not shown), to provide the ability to make electrical connections using wire bonding. Any number of layers of buried traces can be built up in this fashion. A passivation layer 334 of a relatively hard and chemical resistant material such as silicon nitride in a layer about 4500 Å thick can be formed on top of the other insulating layers to protect the underlying structure. For bonding/soldering to a cap, a metal layer 360 (e.g., a Ti/Pt/Au stack about 5,000 Å thick) is formed on passivation layer 334.
The sub-mounts in the packages described above can incorporate passive or active circuitry.
Optical element 320 is in an area of substrate 310 that is free of electronic traces or components to accommodate the reflected path of the optical signal.
Solder ring 360 for attaching a cap is formed between active circuit 370 and external bond pads 344. An individual cap that is sized to permit access to external bond pads 344 can be attached to solder ring 360. Alternatively, in a wafer-level packaging process where multiple caps are fabricated in a cap wafer, the cap wafer can be partially etched to accommodate external pads 344 before the cap wafer is attached to a sub-mount wafer.
To assemble an optical device package using sub-mount 300 and cap 400 or 450, a laser is mounted on sub-mount 300 using conventional die attach and wire-bonding processes or alternatively flip-chip packaging processes. Electrical connections to traces 340 on sub-mount 300 can supply power to the laser and convey data signals to or from the chip. Cap 400 or 450 attaches to sub-mount 300 after the laser is attached. This can be done either at the single package level or at a wafer level as described above. A hermetic seal can be obtained by patterning AuSn (or other solder) onto sub-mount 300 or cap 400, so that when the wafers are placed together, a solder reflow process creates a hermetic seal protecting the enclosed laser.
In accordance with an aspect of the invention, a monitor chip 515 is also mounted on and electrically connected to sub-mount 520. Monitor chip 515 contains a photodiode that measures the intensity of the optical signal from laser 510. This enables monitoring of the laser in laser 510 to ensure consistent output.
A post 560 is aligned to the optical signal that is emitted from chip 510 after reflection from reflector 550. In particular, post 560 can be epoxied in place on sub-mount 520 at the location that the light beam exits. Post 560 can take many forms including, but not limited to, a hollow cylinder or a solid structure such as a cylinder or a sphere of an optically transparent material. Post 560 acts as an alignment feature for aligning an optical fiber in a connector to the light emitted from the laser in package 500.
An encapsulant 640 such as silicone or other suitable material that is transparent to the optical signal surrounds and protects dice 510 and 515.
The top surface of post 560 acts as a fiber stop and controls the “z” positions of ferrule 740 and therefore of optical fiber 730 relative to laser 510. The length of post 560 is thus selected for efficient coupling of the optical signal from package 500 into the optical fiber abutting post 560. In particular, the length of post 560 depends on any focusing elements that may be formed in and on sub-mount 520.
The fit of post 560 and ferrule 740 in sleeve 720 dictates the position in an “x-y” plane of post 560 and optical fiber 730. In this way, optical fiber 730 is centered in the x-y plane relative to post 560, thereby centering the light emitted from laser 510 on optical fiber 730. Accordingly, proper positioning of a post 560 having the desired length during manufacture of package 500 simplifies alignment of optical fiber 730 for efficient coupling of the optical signal.
External terminals package 500 or 600 are generally connected to a circuit board containing other components of an optical transmitter or an optical transceiver.
Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3816847 | Nagao | Jun 1974 | A |
4307934 | Palmer | Dec 1981 | A |
4680733 | Duforestel et al. | Jul 1987 | A |
4847848 | Inoue et al. | Jul 1989 | A |
4966430 | Weidel | Oct 1990 | A |
4993799 | Stein | Feb 1991 | A |
5104242 | Ishikawa | Apr 1992 | A |
5195156 | Freeman et al. | Mar 1993 | A |
5390271 | Priest | Feb 1995 | A |
5394490 | Kato et al. | Feb 1995 | A |
5394498 | Hinterlong et al. | Feb 1995 | A |
5485021 | Abe | Jan 1996 | A |
5512860 | Huscroft et al. | Apr 1996 | A |
5513289 | Hosokawa et al. | Apr 1996 | A |
5532524 | Townsley et al. | Jul 1996 | A |
5552918 | Krug et al. | Sep 1996 | A |
5565672 | Siegel et al. | Oct 1996 | A |
5566265 | Spaeth et al. | Oct 1996 | A |
5577142 | Mueller-Fiedler et al. | Nov 1996 | A |
5578863 | De Poorter | Nov 1996 | A |
5581414 | Snyder | Dec 1996 | A |
5602855 | Whetsel, Jr. | Feb 1997 | A |
5665982 | Torikai | Sep 1997 | A |
5742833 | Dea et al. | Apr 1998 | A |
5781422 | Lavin et al. | Jul 1998 | A |
5801402 | Shin | Sep 1998 | A |
5822352 | Mizutani et al. | Oct 1998 | A |
5835514 | Yuen et al. | Nov 1998 | A |
5867620 | Bunin et al. | Feb 1999 | A |
5875205 | Spaeth et al. | Feb 1999 | A |
5883988 | Yamamoto et al. | Mar 1999 | A |
5912872 | Feldman | Jun 1999 | A |
5917976 | Yamaguchi | Jun 1999 | A |
5940564 | Jewell | Aug 1999 | A |
5956370 | Ducaroir et al. | Sep 1999 | A |
5981945 | Spaeth et al. | Nov 1999 | A |
5998982 | Groeneveld et al. | Dec 1999 | A |
6016548 | Nakamura et al. | Jan 2000 | A |
6036872 | Wood et al. | Mar 2000 | A |
6037641 | Goel | Mar 2000 | A |
6047380 | Nolan et al. | Apr 2000 | A |
6079025 | Fung | Jun 2000 | A |
6085048 | Mikoshiba et al. | Jul 2000 | A |
6085328 | Klein et al. | Jul 2000 | A |
6089456 | Walsh et al. | Jul 2000 | A |
6115763 | Douskey et al. | Sep 2000 | A |
6126325 | Yamane et al. | Oct 2000 | A |
6144787 | Johnston et al. | Nov 2000 | A |
6187211 | Smith et al. | Feb 2001 | B1 |
6201829 | Schneider | Mar 2001 | B1 |
6228675 | Ruby et al. | May 2001 | B1 |
6230277 | Nakaoka et al. | May 2001 | B1 |
6234687 | Hall et al. | May 2001 | B1 |
6243508 | Jewell et al. | Jun 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6267515 | Okuda et al. | Jul 2001 | B1 |
6274890 | Oshio et al. | Aug 2001 | B1 |
6275513 | Chang-Hasnain et al. | Aug 2001 | B1 |
6303922 | Kasper | Oct 2001 | B1 |
6310364 | Uemura | Oct 2001 | B1 |
6354747 | Irie et al. | Mar 2002 | B1 |
6376280 | Ruby et al. | Apr 2002 | B1 |
6416238 | Gilliland et al. | Jul 2002 | B1 |
6422766 | Althaus et al. | Jul 2002 | B1 |
6429511 | Ruby et al. | Aug 2002 | B2 |
6445514 | Ohnstein et al. | Sep 2002 | B1 |
6460143 | Howard et al. | Oct 2002 | B1 |
6540412 | Yonemura et al. | Apr 2003 | B2 |
6556608 | Gilliland et al. | Apr 2003 | B1 |
6567439 | Auracher et al. | May 2003 | B1 |
6567590 | Okada et al. | May 2003 | B1 |
6599666 | Rolfson | Jul 2003 | B2 |
6608476 | Mirov et al. | Aug 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6684033 | Doh et al. | Jan 2004 | B1 |
6686580 | Glenn et al. | Feb 2004 | B1 |
6731882 | Althaus et al. | May 2004 | B1 |
6757308 | Eldring et al. | Jun 2004 | B1 |
6759723 | Silverbrook | Jul 2004 | B2 |
6774404 | Imai | Aug 2004 | B2 |
6777263 | Gan et al. | Aug 2004 | B1 |
6801196 | Bodley et al. | Oct 2004 | B1 |
6818464 | Heschel | Nov 2004 | B2 |
6874107 | Lesea | Mar 2005 | B2 |
6947224 | Wang et al. | Sep 2005 | B2 |
6977960 | Takinosawa | Dec 2005 | B2 |
6979810 | Chujo et al. | Dec 2005 | B2 |
6980823 | Challa et al. | Dec 2005 | B2 |
7134032 | Yamada et al. | Nov 2006 | B2 |
20010023920 | Ando et al. | Sep 2001 | A1 |
20020008326 | Mizusaki | Jan 2002 | A1 |
20020101641 | Kurchuk | Aug 2002 | A1 |
20020152408 | Inui et al. | Oct 2002 | A1 |
20020179921 | Cohn | Dec 2002 | A1 |
20030071283 | Heschel | Apr 2003 | A1 |
20030089902 | Yue | May 2003 | A1 |
20030116825 | Geefay et al. | Jun 2003 | A1 |
20030119308 | Geefay et al. | Jun 2003 | A1 |
20030142914 | Jewell et al. | Jul 2003 | A1 |
20030160256 | Durocher et al. | Aug 2003 | A1 |
20040086011 | Bhandarkar | May 2004 | A1 |
20040190836 | Kilian | Sep 2004 | A1 |
20050019042 | Kaneda | Jan 2005 | A1 |
20050052255 | Chiang | Mar 2005 | A1 |
20050058222 | Black et al. | Mar 2005 | A1 |
20050134349 | Krishnaswami | Jun 2005 | A1 |
20050191059 | Swenson et al. | Sep 2005 | A1 |
20060115280 | Chang | Jun 2006 | A1 |
20070019966 | Chiu et al. | Jan 2007 | A1 |
20070047963 | Dallesasse | Mar 2007 | A1 |
20070127929 | Nishihara et al. | Jun 2007 | A1 |
20070154147 | Weem | Jul 2007 | A1 |
20070154225 | Schulz | Jul 2007 | A1 |
20070166047 | Berger | Jul 2007 | A1 |
20070206964 | Lee et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
3834335 | Apr 1990 | DE |
4440935 | May 1996 | DE |
19810624 | Mar 1998 | DE |
19508222 | Jun 1998 | DE |
19810624 | Sep 1999 | DE |
19823691 | Dec 1999 | DE |
10150401 | Oct 2001 | DE |
0366974 | Jul 1989 | EP |
0713113 | May 1996 | EP |
0942302 | Sep 1999 | EP |
1104113 | May 2001 | EP |
1187373 | Mar 2002 | EP |
1199697 | Apr 2002 | EP |
1187373 | Jan 2005 | EP |
2007020008 | Jan 2007 | JP |
WO9850810 | Nov 1998 | WO |
WO-0101497 | Jan 2001 | WO |
WO2004042320 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050063642 A1 | Mar 2005 | US |