The present invention relates to an optical disc recording apparatus capable of marking the label side of an optical disc, and more particularly to an optical disc recording apparatus capable of marking the label side of an optical disc with alleviated noise.
In the age of multimedia, high volume high quality video and audio data and even high quality game software have occupied a great part of the market. These data need to be stored in a fast-accessing, low cost and high capacity storage medium, and is preferably able to efficiently make spare copies. Various recordable/rewritable optical discs and corresponding recording apparatus having the feature of making a spare copy of large amount of data in an inexpensive way are thus developed. An optical disc is commonly used for storing large amount of video and audio data, software, or material and configuration data in professional applications. Therefore, not only has the optical disc recording apparatus become indispensable peripheral equipment for both personal computers and laptops in today's computer industry, in the mainstream digital consumer market, optical disc recording apparatus have begun playing an important role. Users who frequently use the optical disc recording apparatus to create a spare copy of data into a commercial recordable/rewritable optical disc that is pre-designed with monotonous and common label side might suffer from distinguishing these recorded discs.
Conventionally, permanent markers or special pens are used to mark the recorded disc, but human's handwritings are subject to inconvenience or misunderstanding. Printed labels stuck on the non-data face of the recorded disc are another option to specify the information of the disc. The requirements on weight distribution and adhesion of the labels are critical because the uneven weight distribution would adversely affect the rotation of the disc and the fallen-off label could jam the machine.
In light of these issues, a special dye layer that can be burned to form a desired configuration is provided on the label layer of the optical disc. In this way, the label side can be provided with desired marks such as patterns or letters. Marking the label side of an optical disc is generally performed after data is written into the data side of the optical disc. The disc is taken out of the optical disc recorder, flipped to the other side and placed back into the optical disc recorder, and the optical head of the optical disc recorder then projects laser light onto the label side of the optical disc where the special dye is applied to induce a chemical reaction, thereby changing the color of the dye layer and forming a desired pattern on the label side.
Please refer to
The starting spoke for marking the optical disc 100 is located according to both the patterns in the outer ring 140 and the inner ring 160. The starting spoke can be any of the 400 spokes (Spoke No. 0˜399), and usually the optical disc recording apparatus defines Spoke No. 0 as the starting spoke. After the starting spoke is defined, all circumferential positions on the optical disc 100 can be defined by counting the number of the square waves generated by the spoke detector 70.
For marking the label side of the optical disc, the annular information area 110 is defined with a plurality of concentric tracks, and one track is marked at one time, starting with the inner track radially and the previously defined starting spoke circumferentially or angularly. By way of the coarse drive of the stepping motor, the fine tune of the optical head and the rotation of the optical disc, information can be recorded into designated positions in designated tracks.
The patterns or letters to be marked on the label side of the optical disc are provided by the host of the optical disc recording apparatus as a function of tracks and spokes.
In addition to the positioning technique mentioned above, focusing is another issue for marking the label side of the optical disc. Typically, the reflectivity of the label side is approximately 10%, which is much lower than the reflectivity of the data side (e.g. approximately 45%). Due to the low reflectivity of the label side, it is difficult for the lens of the optical head to focus the laser beam onto the label side of the optical disc in a closed-loop control manner. Accordingly, open-loop control is adapted and a learning step is executed before starting marking the label side of the optical disc. After an optical disc to be marked at the label side is loaded, the optical disc is rotated. In the learning step, the optical head emits a laser beam of a lower power onto the label side of the optical disc to realize the reflection levels of the optical disc. Accordingly, a strategy for controlling the lens of the optical head can be determined. The control strategy is then recorded into a memory of the optical disc recording apparatus. By way of the learning step, the correlation of the wobble levels to the rotating angles (or spokes) of the optical disc can be realized. In addition, offset voltages can be realized to be superposed on the focus servo control signal.
Please refer to
Referring back to
Therefore, the present invention provides an optical disc recording apparatus capable of marking a label side of an optical disc, which aims for alleviating the oscillation effect so as to improve the image quality of the marked pattern.
An optical disc recording apparatus having an optical head to write a label side of an optical disc according to an embodiment of the present invention includes a digital signal processor for outputting a focusing servo control signal; a digital-to-analog converter coupled to the digital signal processor for converting the focusing servo control signal into an analog output signal; a low pass filter coupled to the digital-to-analog converter for receiving and filtering the analog output signal to remove a high-frequency portion of the analog output signal; a driving circuit coupled to the low pass filter for receiving and amplifying the filtered analog output signal; and an actuator coupled to the driving circuit for controlling the movement in response to the amplified analog output signal.
In an embodiment, the low pass filter is an analog low pass filter.
In an embodiment, the focusing servo control signal includes an offset voltage component after a learning step of the optical disc recording apparatus. The analog output signal is generated in response to the focusing servo control signal with the offset voltage component and has stepped voltage levels.
An optical disc recording apparatus having an optical head to write a label side of an optical disc according to an embodiment of the present invention includes a digital signal processor for outputting a focusing servo control signal; a digital low pass filter coupled to the digital signal processor for receiving and filtering focusing servo control signal to remove a high-frequency portion of the focusing servo control signal; a digital-to-analog converter coupled to the digital low pass filter for converting the filtered focusing servo control signal into an analog output signal; a driving circuit coupled to the low pass filter for receiving and amplifying the analog output signal; and an actuator coupled to the driving circuit for controlling the movement in response to the amplified analog output signal.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
For improving the image quality of the pattern marked on the label side, a low pass filter is used to alleviate the oscillation effect. An embodiment of optical disc recording apparatus incorporating therein such a low pass filter is illustrated in
As usual, the optical disc recording apparatus performs a learning step before the real writing step after an optical disc to be marked is loaded therein, thereby realizing the wobbling levels of the optical disc corresponding to various spokes. After the learning step, the optical disc recording apparatus starts to mark on the label side of the optical disc. The DSP 21 outputs a digital focusing servo control signal that includes an offset voltage component. The digital focusing servo control signal is processed by the DAC 22 to generate an analog output signal with stepped voltage levels. For each voltage level step, high-frequency oscillation occurs. When the analog output signal passes through the low pass filter 25, the low pass filter 25 filters out the high-frequency portion in the analog output signal. The resulting analog output signal, as illustrated in
In the above embodiment, the low pass filter 25 is used to filter out the high-frequency portion in the analog output signal. Alternatively, the low pass filter 25 can be used between the DSP 21 and DAC 22 for processing the digital focusing servo control signal instead, as shown in
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
094144834 | Dec 2005 | TW | national |