Laser-based medical devices use laser radiation for medical treatments. The laser radiation type, power, and parameters vary depending upon the treatment. A laser source connects to a medical device using a delivery system having an optical fiber and an optical connector that couples to an interface of a medical device. The delivery system could be single use or reusable depending on the medical treatment and regulations.
The optical connector is a critical component the delivery system. Generally the size of optical fiber connectors have decreased over time due to the desirability of a higher density of connectors on telecommunications equipment; that is, more connectors per square inch of equipment space. Typical connectors for medical purposes comprise slightly modified optical connectors developed for telecommunication devices use, such as SMA-905 or SMA-906 modified connectors with a forward projecting ferrule with an exposed fiber facet. Such connectors are of small size and the mating components are also small, specifically, the ferrule securing the optical fiber and the cooperating female component. The small size of the graspable portion requires delicate manipulations to make the optical fiber connection to the medical device. The small sized connectors are not conducive to handling with gloves, nor making a quick connection. Also, it is easy to contaminate or damage the input fiber facet during mating with medical device as the facet is exposed and defines the furthermost portion of the connector. Any issue associated with the integrity of the connection between the laser source and medical device can impact the performance of the medical device and potentially the medical procedure.
Thus, improvements in connector design (both parts, at laser device output and at the input of delivery system) that are ergonomically advanced (including handling with gloves), safer, easier to mate, more robust, and less prone to damage or contamination of the fiber facet, more economical to manufacture and use, would be well received by the medical industry. Moreover, a means for confirming the integrity of the connection would be advantageous. Additionally, improvements in affordability would be well received.
A delivery system extending from a laser radiation source for connecting to a medical device that utilizes the laser radiation for medical treatment. The delivery system comprises an optical cable with an optical fiber extending from the laser source with a male launch connecter having a male ferrule on the optical cable. The launch connector couples to a receiving connector having a female ferrule that interfaces with the male ferrule on the medical device. The male launch connector having a body portion with an outer tubular portion projecting forward with an outermost or forwardmost edge and having a central axial recess defined therein. The optical fiber terminating at the male ferrule positioned in the central recess rearward of the forwardmost edge and presenting a forward facing fiber facet. In embodiments, the optical fiber fixed with respect to the body portion of the connector at an anchor point on the optical fiber rearwardly of the ferrule such that a dangling or cantilevered portion of the optical cable or fiber supports the ferrule. In embodiments the optical cable or fiber is the exclusive support of the male ferrule before the launch connector is connected to the receiving connector. The ferrule having freedom of movement provided by the flexibility of the optical cable forward of the anchor position. The ferrule may be constrained laterally by structure within or part of the body portion such as a tubular portion of the body portion thereby limiting the lateral freedom of movement. Such structure providing a circumferential gap around the ferrule for the entire length of the ferrule when the ferrule is axially centered within the tubular portion. In embodiments a resilient material may be attached to the rearward end portion of the male ferrule for controlling the radial or lateral freedom of movement that does provide some resistance to lateral movement beyond that provided by the optical fiber or cable.
In embodiments, the ferrule having registration surfaces such as an outer cylindrical surface that registers with a cooperating inwardly facing cylindrical surface on the female ferrule of the receiving connector without the female ferrule having an axial stop for the male ferrule in the optical registration receiver. The inventors have recognized that the criticality of the axial placement, that is, the forward rearwardly axial position of the male ferrule with respect to the female ferrule is substantially less that the criticality of the centration alignment, that is, the radial and axial alignment of the ferrule. Conventional optical fiber connector art rely upon axial stop surfaces that are part of the ferrule or rigidly and directly connected to the ferrule. Embodiments herein provide suspension of the ferrule in the male connector only by the optical cable or fiber rearward of the ferrule and a seating interface with the optical registration component, such as a female ferrule, in a cylindrical interface with no axial stop surfaces on the ferrule or directly fixed with respect to the ferrule. The forward-backward axial position of the ferrule is controlled by the optical cable or fiber extending rearward from the ferrule that is attached directly or indirectly to the connector body. Such an arrangement provides an economical, simple, and reliable connection configuration with the needed centration, that is, precise radial and axial alignment, and sufficient axial forward-rearward positional placement.
In embodiments of the invention, the optical fiber rearwardly of the ferrule is fixed to an elastomeric support member providing axial cushioning and or resilience when the ferrule engages with a portion of the connector of the medical device. In embodiments, the forward face of the male ferrule, for example a chamfer surface has a tapered to cooperate with a like shaped concave recess in the female ferrule of the receiving connector of the medical device. The fixation of the optical fiber with respect to the launch connector body may be in resilient elastomeric disks defining diaphragms.
In embodiments of the invention, the ferrule is slidingly received in a bore of an optical registration receiver, the optical registration receiver may have a tapered concave lead-in registration surface and a cylindrical registration surface, the male ferrule having a cooperating convex outer tapered surface and a cylindrical registration surface to closely engage the cylindrical registration surface of the optical registration receiver.
In embodiments of the invention, the outer tubular portion of the launch connector engages with a mechanical registration receiver of the receiving coupling attached to, for example, the medical device. r, the leading edge of the tubular outer portion and/or the outermost edge of the mechanical registration receiver may be tapered to provide an insertion tolerance.
A feature and advantage of embodiments of the invention is an optical fiber connector with graspable body portion and having a single fiber that has an internal floating ferrule and a graspable handle of an enlarged sized, in embodiments the diameter of a central lengthwise portion of the graspable portion is from 5 to 20 mm. In embodiments the diameter of a central lengthwise portion of the graspable portion is from 8 to 16 mm.
A feature and advantage of embodiments of the invention is an optical fiber launch connector with a single fiber that has an internal movable ferrule fixed only to the single optical fiber and optionally to sheaths on the fiber. The ferrule positionally constrained by but not positionally fixed by being partially positioned in the bore of an inner tubular portion of the launch connector.
A feature and advantage of embodiments of the invention is a optical fiber coupling with cooperating connectors, one connector being a launch connector with a ferrule supporting an optical fiber with a fiber facet, the other connector receiving the one connector and having an optical registration receiver that receives the ferrule. Each connector having the optical connecting portion of the connector recessed from the exterior of the connector.
In embodiments, a cooperating pair of optical fiber connectors for connecting a laser source to a medical device for delivery of laser energy, each connector having an outer mechanical coupling portion and an inner optical coupling portion, each of the outer mechanical coupling portions configured as an outer tubular portion with a forward edge, each outer tubular portion having a tubular wall and defining respective axial recesses, the optical coupling portions concentrically positioned within the axial recesses and spaced from the tubular walls, the optical coupling portions inset from the respective forward edges. In embodiments, one connector provides an optical cable with a optical fiber connecting to a ferrule and presenting a fiber facet. The ferrule having a central position, the ferrule received within a female portion of an optical registration receiver. In embodiments, one of the tubular mechanical coupling portions interlaced between the tubular mechanical coupling portion of the other coupling and the optical coupling portion of the other coupling. The tubular mechanical coupling portions slidingly engaged with one another. In embodiments the connector supplying the laser energy to the medical device, a launch connector, has its outer tubular portion extending within the outer tubular portion of the connector associated with the medical device. In embodiments, as the connectors are manually manipulated, the outer mechanical couplings engage first and bring the connectors into an axial alignment as the outer mechanical couplings are slidingly engaged and brought together, the connectors become axially aligned before the optical coupling portions engage each other. The optical coupling portions then are prealigned and as the optical coupling portions engage with tapered surfaces on one or both optical coupling portion, the optical couplings are brought into final operational alignment. In embodiments one optical coupling portion is laterally movable with respect to its respective mechanical coupling portion.
Referring to
Referring to
The mechanical connection portion of the launch connector is a mechanical registration guide configured as a tubular end portion 36.
The optical connection portion 40 of the launch connector 24 comprises a ferrule 78 with an optical fiber 80 fixed in a axial bore 81 therein such as by adhesive 82. The optical fiber may have two or more sheathings 86, 88 covering the fiber rearward of the ferrule 78. The ferrule 78 may have a frustoconical portion 90 with a tapered surface 92 at its forward end 94 and rearward of the tapered surface have a cylindrical surface 96. The ferrule may be formed of conventional materials such as glass, bronze, other metals, and ceramic materials.
The launch connector 24 has a graspable portion 100 for manual manipulation of the connector. The graspable portion may have a bulbous portion 102, a recessed portion 104, and a forward lip 106, all facilitating handling of the connector, particularly in a medical setting where users may be wearing gloves and ready and quick access and control of the connector is advantageous. The diameter d of the graspable portion may be from 5 to 20 mm in embodiments. In other embodiments the diameter of the graspable portion may be from 8 to 16 mm. The graspable portion 100 may be unitary or integral with the body portion 48 of the launch connector 24 and may be formed of polymers including, for example, thermoplastic elastomers.
The medical device connector 28 has the optical coupling portion 42 which couples with the optical connection portion 40 of the launch connector. The optical connection portion comprises an optical registration receiver configured as a female ferrule 112 formed of ceramic material, glass, metal, or other conventional materials. A recess 118 is defined by a reverse frustoconical surface 120 that conforms to the tapered surface 92 of the launch connector optical coupling portion configured as a male ferrule 40. The female ferrule is fixed to a body portion 122 of the medical device connector and the medical device connector is attached to a wall 126 or other structure of the medical device. The body portion, or other structure of the connector 28 provides a mechanical registration receiver 130 configured as a tubular portion 38 that conforms to and snugly receives the tubular portion 36 of the launch connector.
Referring to
Referring to
Similar to the embodiment of
Means 63, schematically shown, for confirming complete coupling is provided on the medical device and connecting to the laser source to prevent the laser for operating if the coupling is not fully coupled. Such can be by way of micro switches, 63.2, and other means known in the art. Such means may provide a lock-out of the laser radiation source. That is, unless the complete connection of the coupling is verified, the laser light source is not allowed to generate the laser radiation.
Referring to
Referring to
Referring to
The mechanical connection portions may be configured as bayonet connections, screw on connections, press fit connections, or detent connections.
The following U.S. patents are incorporated by reference for all purposes: U.S. Pat. Nos. 5,329,541; 5,907,650; 5,943,460; 6,238,103; 7,503,701; 8,419,293; 8,888,378; 9,329,350; 9,393,081; 9,395,496; and 9,429,713.
The invention is not restricted to the details of the foregoing embodiment (s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any incorporated by reference references, any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed The above references in all sections of this application are herein incorporated by references in their entirety for all purposes.
Although specific examples have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement calculated to achieve the same purpose could be substituted for the specific examples shown. This application is intended to cover adaptations or variations of the present subject matter. Therefore, it is intended that the invention be defined by the attached claims and their legal equivalents, as well as the following illustrative aspects. The above described aspects embodiments of the invention are merely descriptive of its principles and are not to be considered limiting. Further modifications of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 16/141,381, filed Sep. 25, 2018, now U.S. Pat. No. 10,663,677 which is a continuation of U.S. patent application Ser. No. 15/476,961, filed Mar. 31, 2017, now U.S. Pat. No. 10,082,632, which claims the benefit of U.S. Provisional Application No. 62/428,269, filed Nov. 30, 2016 and U.S. Provisional Application No. 62/317,296, filed Apr. 1, 2016, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3670630 | Tyson et al. | Jun 1972 | A |
4634214 | Cannon, Jr. et al. | Jan 1987 | A |
4747656 | Miyahara et al. | May 1988 | A |
4991929 | Bowen et al. | Feb 1991 | A |
5121454 | Iwano et al. | Jun 1992 | A |
5329541 | Brown | Jul 1994 | A |
5337386 | Noll et al. | Aug 1994 | A |
5574815 | Kneeland | Nov 1996 | A |
5640478 | Roller | Jun 1997 | A |
5907650 | Sherman et al. | May 1999 | A |
5943460 | Mead et al. | Aug 1999 | A |
6065882 | Roller et al. | May 2000 | A |
6238103 | Ezawa | May 2001 | B1 |
6282349 | Griffin | Aug 2001 | B1 |
6394665 | Hayashi | May 2002 | B1 |
6432047 | Gust | Aug 2002 | B1 |
6618405 | Kimura et al. | Sep 2003 | B2 |
6626582 | Farrar et al. | Sep 2003 | B2 |
6953288 | Foley | Oct 2005 | B2 |
7290915 | Solovay | Nov 2007 | B2 |
7503701 | Hiereth et al. | Mar 2009 | B2 |
7857523 | Masuzaki | Dec 2010 | B2 |
8064742 | Watanabe | Nov 2011 | B2 |
8419293 | Zerfas et al. | Apr 2013 | B2 |
8714836 | Daikuhara | May 2014 | B2 |
8888378 | Zerfas et al. | Nov 2014 | B2 |
9057847 | Lin | Jun 2015 | B2 |
9160130 | Daikuhara | Oct 2015 | B2 |
9329350 | Zerfas et al. | May 2016 | B2 |
9393081 | Hiereth et al. | Jul 2016 | B2 |
9395496 | Byer et al. | Jul 2016 | B2 |
9429713 | Thornton, Jr. | Aug 2016 | B2 |
9465173 | Becker | Oct 2016 | B2 |
9804339 | Fukuoka | Oct 2017 | B2 |
9933583 | Yan et al. | Apr 2018 | B2 |
20020081080 | Balle-Petersen | Jun 2002 | A1 |
20020159714 | Lampert | Oct 2002 | A1 |
20040213524 | Foley | Oct 2004 | A1 |
20050067237 | Schurmans | Mar 2005 | A1 |
20130084042 | Bouchard et al. | Apr 2013 | A1 |
20150374207 | Fukouka | Dec 2015 | A1 |
20170285276 | Altshuler et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
0992343 | Apr 2000 | EP |
WO2004097988 | Nov 2004 | WO |
WO2005119319 | Dec 2005 | WO |
WO2010124165 | Oct 2010 | WO |
WO2013126429 | Aug 2013 | WO |
WO2014151927 | Sep 2014 | WO |
Entry |
---|
International Search Report of application PCT/US2017/025635, dated Aug. 24, 2017, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20210048586 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62428269 | Nov 2016 | US | |
62317296 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16141381 | Sep 2018 | US |
Child | 16883601 | US | |
Parent | 15476961 | Mar 2017 | US |
Child | 16141381 | US |