1. Field of the Invention
The present invention pertains generally to the field of flame detection, more particularly to the field of flame detection by specifically enhanced optical means to provide for more rapid and accurate reporting of distant or remote fires. The use of RF transmitters is described also permitting a robust long range sensing system to be constructed economically.
2. Background of the Invention
Recent annual United States Federal expenditures for forest and other open area fire protection is about $4.7 billion dollars and about an equal amount is provided by state and county fire protection. An area of forestry burned equal to the size of Ohio or 133,000 square kilometers (approximately 48,000 square miles, 28.5 million acres) in five years from 1998 through 2002. Forest fire damage has increased by more than ten fold in the last fifteen years. The United States presently ranks seventh in total acreage lost but much worse in total value lost from open area fires. It is well known that open area fires destroy indeterminate wildlife, millions of acres of forest and forest products as well as creating about ⅓ of the pollution particulates and CO2 in the US alone. Worldwide wildfires are devastating the entire economy in many countries. Such is the case in Indonesia, North African countries and other countries without sufficient resources to extinguish large fires. Indonesia has lost as much as 50% of the useful forest products in many areas to fires in recent years. Flame and smoke detectors are marketed by as many as 60 companies in the US but have not found widespread use in the detection of forest and open area fires due to the limited range of detection and the lack of reporting systems. Therefore there is a need for flame detection and reporting systems which detect small remote fires and cover a wide area using economical sensors and technologies.
Briefly, the present invention pertains to a long range optical sensor and system for detecting the flame of forest fires or other fires while rejecting false alarms due to solar radiation. The sensor utilizes a collector optic that collects energy from a wide field of view and concentrates the energy onto a detector. The collector may be a non-imaging refractive or reflective collector and/or may match to a non-planar sensor. In one embodiment the sensor may be arrayed to achieve larger area coverage. In another, the sensor system may be scanned to increase the encompassed viewing area Larger areas may be covered by RF radio links or networks interconnecting multiple arrayed sensor modules. UVC reflective coatings may include enhanced aluminum with magnesium fluoride or silicon oxide coating, magnesium fluoride, or high phosphorous nickel phosphorous alloy. In one embodiment a UVC sensitive Geiger Mueller tube may be coupled to a non-imaging spherical reflective collector. A catadioptric UVC/infra-red flame sensor is disclosed.
In one embodiment, a coating of nickel phosphorous with the phosphorous at or above 20 atomic percentile has been found to have a good reflectivity at UVC.
A completely solar-blind sensor module may be based on a cylindrical, planar or other Geiger-Mueller tube or a solid state UVC detector with an optical collector.
The dramatically improved performance of the detector over present commercially available units can provide for enhanced response time for the responsible fire fighting agencies to protect homes, industries, forest resources and other jeopardized entities. The addition of a transmitter or transponder augments the remote sensing system.
These and further benefits and features of the present invention are herein described in detail with reference to exemplary embodiments in accordance with the invention.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The United States ranks seventh in total area of forest lost in recent years, yet we have perhaps the best resources available to reduce this. This invention provides for much needed additional fire protection not presently available to detect and report small wildfires at the earliest possible time.
The present invention utilizes optical collectors and sensors in unconventional arrangements particularly adapted for fire detection. In particular, non-imaging collectors may be used with non-planar detectors, or imaging collectors may be used with non-planar detectors that do not offer a flat surface to match the image plane. Non-imaging collectors may include spherical reflectors and other related shapes that may be economical to produce but have severe aberrations with respect to an imaging application. The aberrations, however may match a non-planar detector, providing good energy collecting performance over an extended field of view (FOV). An exemplary non-planar detector is a Geiger Mueller (GM) tube designed for UVC detection. The GM tube presents a linear tubular shape with sensitive wire electrodes within the tube. In one embodiment, the length dimension of the detector may run perpendicular to a focal plane, where a conventional planar detector would be mounted. (See
A typical high-end optical flame detector with electronically enhanced detection to determine flicker, multiple band energy and spectral scanning will detect a test fire of a petroleum fuel, i.e. kerosene, in a 25 cm pan with a flame height of about 1 meter or a corrugated paper panel of about 0.5×1 meter stacked 0.25 meter high, at a distance of 20 to 30 meters. Satellites operated by the US government can detect a minimal forest fire of about 2 kilometers diameter on a clear day or night in a single pass over the area within about 90 minutes using imaging methods, if instructed to do so. From this point the satellite will monitor the growth of the fire for about a 0.5 to 2 minute period while within detection range during each 90 minute orbit if it is not cloudy in the area. The present invention combines specific non-imaging optical components and detectors to permit detection of a single kitchen (1 cm^2) match flame at a distance of 100 meters whether in bright sunlight or darkness. A small fire such as the test described above with burning kerosene in a 25 centimeter pan can be detected in sunlight at 300 meters or more. A true forest fire can be detected as much as 8 kilometers away with a very small collector of 10 to 20 cm diameter. Since optical losses are related to the square of the distance from source to detector (Intensity=1/Dist^2), this is an improvement of about 75 to 100 to 1 for a collector equipped detector over an available detector which has no collector. The enhanced performance is achieved as follows.
Flame Photonics
Flame photonics are complicated and involve the fact that a fire emits radiation from sound to ultraviolet, with deep infrared (heat) to visible radiation obeying Planck's laws of radiation. Stephan-Boltzmann law would assign increased radiant energy as the fourth power of the absolute temperature and Wien's displacement law will provide for increased energy at shorter wavelength at higher temperature. Wood (cellulose) fires reach about 1000 degrees Kelvin with occasional bursts from terpenes to 1200-1300 K, providing substantial radiant energy at 2.5 to 5 microns in the infrared. Typical terrestrial sky temperature is rarely higher than 300K. However fire also emits even shorter wavelengths outside the wavelength and temperature considerations for blackbody radiation. Due to the rapid decomposition of material, the outer orbital electrons in the material decay rapidly to lower shells with the emission of photons in the visible and ultraviolet range. Especially of interest is the fact that this radiation extends into the very short UV range of UVC (UVA longest at ˜400-320 nm, UVB at 320 to 260 nm and UVC shortest at 260-185 nm). There also are discreet visible emissions present as visible colors due to emission lines of the various materials burning. See
Principles of Operation
One distinct merit in the present invention is that the range of flame detection can be increased dramatically by the implementation of the specially designed and coordinated optical collector component. Another merit is that by using a collimated optical collector, the field of view can be limited and as such the angular position can be determined providing location information in very short time to the forestry or other departments. Yet another advantage is that the sensor can be completely solar blind in broad daylight disallowing solar interference creating false alarms. The dramatically improved performance of the detector over present commercially available units will provide for enhanced response time for the responsible fire fighting agencies, home owners or jeopardized entities.
The range of detection of the flame is so improved by increasing the area of the viewing optical collector which permits more energy to be deposited on the detector. This however must be done such that the increased energy is not providing false alarms due to increased solar or other energy placed upon the detector. Also any increase is directly related to the reflectivity of the collector material at the wavelength of the detector and second order related to the distance of the original path and also second order to the distance of the reflected path to the sensor. This last fact is very often overlooked in energy calculations for detectors when imaging principles are considered. The present optical methods do not rely on imaging principles as will be described.
By collimating the energy in a small field of view with the collector it is possible to achieve a higher gain at the detector as is common in a telescope. In order to achieve a high sensitivity and a wide field of view multiple sensor packets can be combined. Further sensitivity can be achieved with a single collimating collector/detector unit by scanning the unit. An additional method of improved angular and range resolution is achieved by using a torroidal optical reflector and a segmented detector. While segmented UVC optical detectors are not yet commercially available, single element silicon carbide (SiC) and diamond like coating (DLC) devices have been tested in Russia and slightly broader band units have been tested in the US. Within a short time it is anticipated that a circular, segmented solid-state UVC detector will be available. This will permit such an arrangement with a single multi-element detector. Multiple single element detectors can be used also in the mean time.
Since the Geiger-Mueller (GM) detector does not conduct when no UVC is present, the only power requirement is the oscillator bias. This will draw only a few tens of microwatts for some brands of UVC detectors. Thus the sensor can remain active on small batteries for years and with solar cells the power is sufficient for continuous monitoring. Commercial sensors are available for monitoring boiler flames and pilot lights as well as some flame detectors used for protection. Therefore the cost is minimal at a few tens of dollars US for the completed UVC detector and amplifier package. The digitally coded RF transmitter, if used, is off unless a fire is detected and so draws no current during the off time. A small low current receiver can be used with the system for periodic remote checking and will be powered by solar cells and a battery.
Collector Designs
Collectors for both radiant and emission energies can be made to coincide in the same unit. Since the solar blind issue can be resolved by selecting a UVC only detector, a simple solution to the increased range is to use only the one detector with a UVC compatible collector to increase the range. For efficient imaging optical quality reflection of UVC it is necessary to have a very smooth surface with little deviation from the ideal form. The surface must have high efficiency reflection as well. Such imaging optics are very expensive. However since the image quality is of no concern, the figure and finish for flame detection need not be as good as for imaging. The reflectivity does need to be high. Enhanced aluminum for UV reflection is an aluminum surface deposited in a vacuum followed by a coating of silicon dioxide, silicon monoxide, or magnesium fluoride to protect the aluminum from oxidation. The protective coating is typically ¼ wave at the band of interest and multiple layers may be deposited for greater toughness. The protective coating is typically applied in the same vacuum chamber process, without breaking the vacuum, to prevent any oxidation of the aluminum surface before the protective coating is applied. This surface can be made to reflect with 90% efficiency or better in the entire ultraviolet A-B- and C bandpass. UV enhanced aluminum with a reflectivity greater than 85% from 250 nm to 500 nm may be obtained from several sources, such as Melles Griot, Emund Scientific, and Nova Phase, Inc.
By comparison, an aluminum surface brightly polished but not coated will not reflect better than 50% and will rapidly degrade from this point to nearly zero UVC reflection due to oxidation. An enhanced aluminum surface is preferred in the embodiment of the invention. Gold and silver will not reflect efficiently at all. An optional coating is found to be about 75 to 80% reflective in UVC is nickel phosphorous (NiP) with very high phosphorous of 20% At wt phosphorous or more achieved by electrodeposition, deposited in accordance to U.S. Pat. No. 6,406,611, which is incorporated herein by reference in its entirety. Therefore a low cost collector was made by electrodeposition of NiP 20% At wt P to 0.05 mm then electrodeposition of nickel to a thickness of 0.25 mm. This collector was replicated many times from the same polished hemispherical mandrel by conventional electroforming principles. A further enhancement in cost and time was achieved by using a commercial hemispherical dome for security cameras, coated with a conductive film then coated with either enhanced aluminum or NiP 20% At wt phosphorous.
Similar procedures with other geometric reflective or refractive designs are discussed in the articles of provisional application 60/787,032, titled “Multispectral Flame Detection and Reporting”, filed Mar. 29, 2006. For example a parabolic collector of revolution or a linear parabolic collector could be made with the same procedures to enhance the gain and provide a more narrowed field of view (FOV) either vertically or horizontally.
Field-of-View
Commercially available flame sensors use a variety of detectors or in some more expensive units, multiple detectors for increased bandwidth. None of the known flame sensors use a collector or collimator to increase the collected energy substantially. The typical field of view is broad to about 90 degrees due to the detector simply “staring”. See
A simple spherical collector is considered to be a very poor optical lens or mirror for imaging as the low ‘f’ number or the ratio of the distance to the image plane and the diameter of the major sphere is a small number which leads to very poor imaging qualities if the image is large or off-axis. However in this invention the image is of no concern and in fact non-imaging low ‘f’ number collectors are desirable as will be described. If the fire is small and directly in line with the collector and cylindrical detector in
Therefore one may cover wide areas by concentrating the optical energy and use only four sensors arrayed to recover coverage area (angle) up to 360 degrees yet have the advantage of gain of 100 or more without solar interference. Other designs with greater angular resolution (smaller FOV) will have higher energy detected gain and may use scanning principles to view up to 360 degrees. Additionally the use of flat segments can be used to provide a stationary 360 field of view using multiple detectors as shown in provisional application 60/787,032. An additional enhancement for flame detection is the use of catadioptric optical methods. In order to assure no false alarms an extension to the present processes described is to use a collector which is reflective at one bandwidth and transparent at another. With the proper design, it is possible to reflect IR and transmit UVC. This can be done with a high grade of quartz. Also the possibility of reflecting UVC and transmitting IR is possible using magnesium fluoride, strontium fluoride or other IR transmitting materials known. A design would encompass either two collectors in series or in parallel (basically two units) or a single collector with a reflective surface for one bandwidth energy and a design for refractive collection of energy on a second detector. This may be referred to as catadioptric.
Demonstration by way of the following examples has been accomplished.
These embodiments are typical and are not all inclusive as those skilled in the arts of UV and IR optics, flame chemistry and photonics and those skilled in digital RF communications will find similar new applications for advanced sensing of remote fire and reporting the signals from these advanced sensors. The use of refractive optics with non-imaging sensors is an option. The primary objective of this application is to demonstrate the remarkable improvements achieved by the construction and testing of these demonstrated advanced flame sensors. It is demonstrated that totally solar insensitive devices with flame detection improvement of as much as 100:1 sensitivity of intensity has been accomplished through this effort. These tests also indicate that these improved sensors could be used in remote locations at very low capital or maintenance cost. Remote reporting by digital RF transponders further enhances the utility of these sensors as autonomous remote fire sensors thus enabling a viable remote system.
The shape of the spherical concentrator 104 may be determined by structures made by economical processes such as injection molding, electroforming or other economical replication processes. The UVC reflective coating 106 may then be applied to the surface.
It may be observed from
Thus, it may be observed that although the spherical mirror would be considered to be unusable for imaging applications because of the extreme spherical aberration, the shape of the sensor cooperates with the spherical distribution of energy such that the spherical aberration is accommodated and poses no degradation in performance.
In an alternative embodiment, the sensor of
Note that the optimum bandpass is about 1.0-2.5 microns. In order to calculate the distance a specific IR sensor might be expected to detect a fire, the flame temperature 1000 K, (wavelength) and flame size (1 m2) are considered. The energy ratio of fire to background is then compared at a specific wavelength with the background at 300 K.
Power(z,area,T):=Area·2·π∫1um1.8umSpectral_Radiant_Excitance(λ,T)dλ∫0θ(z)sin(θ)·cos(θ)dθ
The maximum calculated range for an available InGaAs detector and a suitable collection mirror (lens) of 0.05-0.1 m^2 is found to be about 8 km for a fire of one meter^2 cross section in daylight away from direct sunlight.
This would provide a field of view of about 10 degrees with about 8 degrees elevation viewing from a post at 20 meters elevation and a clear line of sight. Optional optical designs will provide wider FOV with less range. Optical units such as this could easily be used in a scanning mode to increase the FOV.
One should understand that numerous variations may be made by one skilled in the art based on the teachings herein. Such variations include but are not limited to variations in the design of the collectors or the combinations of detectors and collectors for broadband or multispectral applications. Lenses or mirrors can be used for the collection of energy from a flame.
The present invention has been described above with the aid of functional building blocks illustrating the performance of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed. Any such alternate boundaries are thus within the scope and spirit of the claimed invention. One skilled in the art will recognize that these functional building blocks can be implemented by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof. While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit under 35 USC 119(e) of prior provisional application 60/787,032, titled “Multispectral Flame Detection and Reporting”, filed Mar. 29, 2006 by Darell E. Engelhaupt, which is incorporated herein by reference in its entirety. Other US patent documents referenced herein are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1959702 | Barker | May 1934 | A |
4166917 | Dorfeld et al. | Sep 1979 | A |
4455487 | Wendt | Jun 1984 | A |
4640628 | Seki et al. | Feb 1987 | A |
4691196 | Kern et al. | Sep 1987 | A |
4742236 | Kawakami et al. | May 1988 | A |
4765413 | Spector et al. | Aug 1988 | A |
4785292 | Kern et al. | Nov 1988 | A |
4904986 | Pinckaers | Feb 1990 | A |
4913647 | Bonne et al. | Apr 1990 | A |
5189398 | Mizutani | Feb 1993 | A |
5218345 | Muller | Jun 1993 | A |
5257013 | Lewkowicz | Oct 1993 | A |
5311167 | Plimpton et al. | May 1994 | A |
5339070 | Yalowitz et al. | Aug 1994 | A |
5416325 | Buontempo et al. | May 1995 | A |
5612676 | Plimpton et al. | Mar 1997 | A |
5625342 | Hall et al. | Apr 1997 | A |
5644134 | Astheimer | Jul 1997 | A |
5675395 | Martin et al. | Oct 1997 | A |
5734335 | Brogi | Mar 1998 | A |
5961314 | Myhre et al. | Oct 1999 | A |
6057549 | Castleman | May 2000 | A |
6064064 | Castleman | May 2000 | A |
6071114 | Cusack et al. | Jun 2000 | A |
6078050 | Castleman | Jun 2000 | A |
6116505 | Withrow | Sep 2000 | A |
6135760 | Cusack et al. | Oct 2000 | A |
6150956 | Laufer | Nov 2000 | A |
6153881 | Castleman | Nov 2000 | A |
6208252 | Danilychev | Mar 2001 | B1 |
6239435 | Castleman | May 2001 | B1 |
6329921 | Tindall et al. | Dec 2001 | B1 |
6406611 | Engelhaupt et al. | Jun 2002 | B1 |
6507023 | Parham et al. | Jan 2003 | B1 |
6515283 | Castleman et al. | Feb 2003 | B1 |
6516116 | Murray et al. | Feb 2003 | B1 |
6518574 | Castleman | Feb 2003 | B1 |
6927394 | Parham et al. | Aug 2005 | B2 |
7123154 | Smith | Oct 2006 | B1 |
7154095 | Luck et al. | Dec 2006 | B2 |
7155029 | King et al. | Dec 2006 | B2 |
20030020617 | Tice et al. | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
60787032 | Mar 2006 | US |