The present invention relates generally to laser welding and, more particularly, relates to lightpipes or lightguides having an optical horn.
Laser welding is commonly used to join plastic or resinous parts, such as thermoplastic parts, at a welding zone. An example of such use of lasers can be found in U.S. Pat. No. 4,636,609, which is expressly incorporated herein by reference.
As is well known, lasers provide a semi-focused beam of electromagnetic radiation at a specified frequency (i.e., coherent monochromatic radiation). There are a number of types of lasers available; however, infrared lasers or non-coherent sources provide a relatively economical source of radiative energy for use in heating a welding zone. One particular example of infrared welding is known as Through-Transmission Infrared (TTIr) Welding. TTIr welding employs an infrared laser capable of producing infrared radiation that is directed by lenses, diffractive optics, fiber optics, waveguides, lightpipes or lightguides through a first plastic part and into a second plastic part. This first plastic part is often referred to as the transmissive piece, since it generally permits the laser beam from the laser to pass therethrough. However, the second plastic part is often referred to as absorptive piece, since this piece generally absorbs the radiative energy of the laser beam to produce heat in the welding zone. This heat in the welding zone causes the transmissive piece and the absorptive piece to be melted and, with intimate contact, welded together.
However, in the case of those TTIr welding systems that employ a lightguide or lightpipe, the infrared laser light that exits the lightguide or lightpipe is often outwardly dispersed in a fan or cone shape as it passes through the transmissive piece. This dispersion of light may lead to oversized welding zones. That is, as the light exits the lightpipe or lightguide, the light fans outwardly and impacts a larger area of the absorptive piece and transmissive piece interface. This larger area is consequently heated causing a larger welding zone.
Accordingly, there exists a need in the relevant art to provide an apparatus for use with a lightpipe or lightguide that is capable of minimizing the size of a weld zone. Furthermore, there exists a need in the relevant art to provide an apparatus for use with a lightpipe or lightguide that is capable of focusing the laser light to a narrower area that could not otherwise be obtained simply with a conventional lightpipe or lightguide. Lastly, there exists a need in the relevant art to provide a lightpipe or lightguide with an optical horn capable of overcoming the disadvantages of the prior art.
According to the principles of the present invention, a laser welding apparatus is provided having an advantageous construction and method of using the same. The laser welding apparatus includes a laser source outputting a laser beam and a light transmitting device, chosen from the group consisting essentially of a lightpipe and a lightguide, positioned downstream from the laser source. The light transmitting device transmits the laser beam therethrough. An optical device receives the laser beam exiting the light transmitting device and is operable to converge light lobes exiting the light transmitting device to define a final beam width. The final beam width being narrower than a beam width exiting the light transmitting device.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. Furthermore, it should be understood that although the present invention is described in connection with TTIr welding, the present invention is equally applicable to other forms of welding and/or surface heating using light energy being passed through lightpipes or lightguides. It should also be understood that although the term lightguide will be used here throughout, lightguides are also known as waveguides and, thus, such terms should be understood as being interchangeable.
By way of background and with reference to
As can be seen in
More particularly, as seen in
Referring now to
In order to limit the angular distribution of the laser light, lightpipe or lightguide assembly 10 comprises a lightpipe 20 (
Similarly, as seen in
As should be appreciated, the present invention enables a laser welding apparatus, which employs a lightpipe or lightguide, to produce a substantially narrower laser welding beam capable of producing a narrower weld zone compared to conventional laser welding apparatuses. Consequently, laser welding apparatuses using lightpipes or lightguides may now be used for a greater range of delicate welding operations and/or improved weld features. Additionally, the reflecting of the side light lobes into a concentrated combined light lobe provided improved welding efficiency.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.