Embodiments described herein relate to optical interconnect modules, and more particularly optical sub-assembly systems in optical interconnects.
Cloud computing, enterprise networks, and data center networks continue to drive increased bandwidth demand of optical waveguides for metro and long haul wires, and also rack-to-rack wires within data centers to 100 Gbps and beyond. Increased bandwidth demand has motivated overall high data transmission speed on entire optical systems.
Optical interconnect techniques continue to gain attention as potential solutions for high-speed data transmission between systems, and over a variety of distances. For example, optical interconnect solutions have been proposed for a number of applications, such as between racks in a data center, between household consumer electronics, and between boards or chips within server systems. Optical interconnects are particularly suitable for adoption within transmitter and receiver systems.
In a conventional optical sub-assembly (OSA) design, a transmitter module incudes a transmission laser, a driver integrated circuit (IC), and a printed circuit board (PCB), while a receiver module includes a photodetector (PD), a trans-impedance amplifier (TIA), and a PCB. The optical path between the transmission laser (commonly a vertical cavity surface emitting laser (VCSEL)) and PD is typically an optical fiber, such as a fiber ribbon and optical waveguides. Complex beam routers including a focusing lens, a prism, and a fiber connector are used to precisely align the optical fiber with the optical path. Mechanical structures including screws, clips, alignment pins and structural housing are commonly used to secure and align the beam routers.
However, an optical interconnect typically requires coupling of fiber assembly and lasers which involves an external lens alignment, adding complexity and energy loss. A less complicated assembly technique is needed to improve efficiency and reduce cost.
The application discloses a SOI substrate-based optical interconnect module. A 3-D optical waveguide is employed to connect the optical signal between transmitting and receiving parts.
An active optoelectronic package layer on bond pads is assembled on a SOI silicon substrate side. A passive straight silicon waveguides terminated with 45 degree reflectors is fabricated on the silicon-on-oxide surface (aka device surface) of the SOI substrate to form an optical path to transmit optical signals from multiple VCSEL input ports to multiple PD output ports. The active and passive sides are designed and developed as an on-chip optical interconnect module.
Active devices such as VCSEL, PD, Driver, and TIA arrays are flip-chip assembled via electrical traces and solder bumps on the silicon substrate side of above-mentioned SOI substrate. High-speed electrical traces, are designed and developed on the silicon substrate layer to connect the driver IC and VCSEL chips as well as to connect PD and TIA arrays. Improved RF performance of active devices by depositing electrical transmission lines on the SOI substrate. The data rate of above-mentioned optical interconnect modules can be operated at 25 Gbps per channel and can be extended as high as 50 Gbps per channel.
The silicon waveguides terminated with 45 degree reflectors are realized on (100) silicon device layer using chemical wet etching. The side walls of waveguide are formed on (110) oriented crystal facets.
The 3D optical path can be a basic and compact configuration in on-chip optical interconnect application.
The Driver and TIA arrays can be realized using CMOS fabrication or hybrid integration on the rear side of silicon substrate.
The VCSEL array can be fabricated on the front side of the SOI silicon substrate and the PD array can be realized using Si—Ge fabrication or hybrid integration on the rear side of silicon substrate.
A method of fabricating an optical interconnect apparatus, comprising: providing a silicon substrate having two substantially parallel first and second surfaces; depositing an insulating layer on the first surface; patterning a plurality of conductive lines on the insulating layer; growing bonding pillars or solder bumps with gold or nickel coating for flip chip to mount active optical devices such as a vertical cavity surface emitting laser (VCSEL) and a photodetector (PD); turning the silicon substrate over to work on second surface; patterning a straight portion of the silicon waveguide on the second silicon surface; patterning two 45 degree end reflectors on the straight portion of the silicon waveguide, wherein the patterning comprises variable exposure intensity in lithography process, wherein the two 45 degree end reflectors are aligned with active optical devices VCSEL and PD; removing excess silicon outside the silicon waveguide to expose the oxide layer; and depositing a layer of oxide on the waveguide. This method may include depositing an adhesive layer on the first surface by providing an anisotropic conductive film (ACF). The method of patterning the plurality of conductive lines may include two ways, 1) forming trenches and filling in metal in the trenches, followed by removing excess metal by polishing (CMP) or by selective etch to clean up metal outside the trenches, or 2) depositing a metal layer, patterning the metal layer into lines, followed by removing excess metal by polishing (CMP) or by selective etch. In summary, the disclosed configuration separates the active electronic-devices on silicon substrate layer and passive optical-devices on silicon device layer of SOI. The active devices can be realized by CMOS fabrication or hybrid integration when germanium device is included. The passive devices can be realized by MEMS (non-COMS) fabrication.
Having thus described some embodiments in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.
The present disclosure is further described below in combination with the drawings and embodiments. It should be understood that, the specific embodiments described herein are merely used to explain the present disclosure rather than limiting the present disclosure. In addition, it should be stated that, in order to facilitate the description, merely a part of structures related to the present disclosure rather than the whole structure are illustrated in the drawings.
In various embodiments, description is made with reference to figures. However, certain embodiments may be practiced without one or more of these specific details, or in combination with other known methods and configurations. In the following description, numerous specific details are set forth, such as specific configurations, dimensions and processes, etc., in order to provide a thorough understanding of the embodiments. In other instances, well-known semiconductor processes and manufacturing techniques have not been described in particular detail in order to not unnecessarily obscure the embodiments. Reference throughout this specification to “one embodiment” means that a particular feature, structure, configuration, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment” in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, configurations, or characteristics may be combined in any suitable manner in one or more embodiments.
The terms “above”, “over”, “to”, “between”, and “on” as used herein may refer to a relative position of one layer with respect to other layers. One layer “above”, “over”, or “on” another layer or bonded “to” or in “contact” with another layer may be directly in contact with the other layer or may have one or more intervening layers. One layer “between” layers may be directly in contact with the layers or may have one or more intervening layers.
It needs to be noted that, specific details are illustrated in the description below for fully understanding the disclosure. However, the disclosure can be implemented in other ways different from those described herein, and it may be similarly generalized by one skilled in the art without departing from the concept of the disclosure. Therefore, the disclosure will not be limited to the specific embodiments disclosed below.
Optical interconnect is a means of communication by optical fiber cables. Compared to traditional cables, optical fibers are capable of a much higher bandwidth, from 10 Gbit/s up to 100 Gbit/s. Optical communication systems often apply a vertical-cavity surface-emitting laser VCSEL for convenient configurations and easy assembling.
The vertical-cavity surface-emitting laser, or VCSEL is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers (also in-plane lasers) which emit from surfaces formed by cleaving the individual chip out of a wafer. Vertical cavity self-emitting laser or VCSEL laser emitting light at wavelengths from 650 nm to 1300 nm are typically based on gallium arsenide (GaAs) wafers with diffraction Bragg reflectors (DBRs) formed from GaAs and aluminum gallium arsenide (AlxGa(1-x)As).
There are now two main methods of restricting the current in a VCSEL characterized by two types of VCSELs: ion-implanted VCSELs and Oxide VCSELs. An additional adhesive layer, such as a non-conductive film (NCF), may also be applied to enhance adhesion of the components to the silicon substrate. The high speed electrical traces, including an RF transmission devices, are designed on the waveguide surface to connect the driver IC and VCSEL arrays as well as to connect trans-impedance amplifier (TIA) arrays. Typically a VCSEL array has four VCSEL lasers packed in a row.
In accordance with an embodiment, the data rate of the optical engine can be operated at 25 Giga-bits per second (Gbps) per channel, and can be extended to higher data rates such as 50 Gbps per channel. VCSEL applications include fiber optic communications, precision sensing, computer mice and laser printers.
Embodiments disclosed below describe optical interconnects and application platforms. In one aspect, the optical interconnects and platforms in accordance with embodiments may be assembled without the optical lenses and fiber ribbons commonly utilized in conventional optical interconnect assemblies. In addition, assembly time can be reduced compared to conventional techniques through use of semiconductor process technologies for the formation of transmission lines and flip chip integration of the active devices such as the driver IC chip, laser, PD, and receiver (e.g. TIA) chip. In addition, the fabrication techniques may allow for improved RF performance of the electrical signals and increased data rates of the optical interconnects. The embodiments illustrated below may be integrated as a PCB-based optical interconnect. In particular, the embodiment may be utilized to improve optical coupling with the VCSEL/PD by monolithically integrating a silicon wafer interposer with a VCSEL laser within a packaging platform like PCB, and a polymer waveguide. A metal plate maybe integrated into the silicon wafer for providing mechanical strength. The metal plate may be made of stainless steel or other compatible metal.
As shown in
The silicon substrate 140 must has high transmission quality at the working wavelength of the optical interconnect device. High transmission quality includes low absorption and low scattering from the silicon wafer material or wafer surfaces at the working wavelength. For infrared light in the range of 1300 nm to several microns often used in communication applications, silicon material has low absorption. The substrate 140 has two well-polished top 160 and bottom surface 170. The top and bottom surfaces can be parallel or slightly wedged to each other for low optical reflection noise. The thickness of the SOI substrate 140 is chosen to be thin so it does not cause transmission loss optically and yet has enough strength to support photonics elements on both top and bottom surfaces during its fabrication process and its long term operation. Typically the thickness is in the range of 50 microns to 2 millimeters.
Although in many optical interconnect modules, a waveguide may be formed separately and attached to one surface of a substrate, using an adhesive layer, this application discloses a silicon waveguide fabricated inside the silicon layer above the oxide on a SOI substrate. As an integrated part of the substrate, the silicon waveguide has high transmission at interfaces and easy alignment in the optical path. Meanwhile fabrication cost from attaching waveguide is much reduced.
As shown in the diagram 200 in
Such formed waveguide has a straight portion 124 and two 45 degree sections 125a and 125b which serve like bending mirrors. Light travels from the other side of the substrate into the waveguide, reflects off one end to the horizontal portion 124 in the waveguide, hits the second end through total internal reflection and reflects off by the second 45 degree reflector and returns back to the substrate side of the SOI wafer. There will be no bonding step to integrate the waveguide.
Typically the SOI wafer surfaces are (100) crystalline silicon, so the silicon waveguide is fabricated in (100) silicon crystal facet, and the waveguide sidewalls are formed on (110) crystal facet.
It is recommended to seal the waveguide hermetically with a stable material having a refractive index lower than that of silicon to guarantee total internal reflection. Native oxide grown in ambient over the exposed silicon surface is about 100 nm thickness. Given that silicon's index at 1100 nm or longer is about 3.50, and oxide film has low index 1.45, a thick oxide film can be a good cladding for the waveguide, but the native oxide will not provide a good seal to stop light in vicinity of high index and high leakage materials. Therefore the waveguide should not be exposed open to ambient, instead needs to be coated with a cladding layer such as silicon oxide at least several wavelengths thick. Such option is not shown in the figures.
An insulating film 129c is either deposited or grown on the silicon surface 170. The insulating film 129c may include organics such as polyimide for flexibility. The surface 160 is a platform to carry interconnects for active optical devices, such as laser diodes in a transmitter or photodetectors in a receiver, electronic contacts. First, electrical traces 110x (various transmission lines) are patterned on the clean top surface of SOI as transmission lines of the optical interconnect. Please note that in
After patterning transmission lines 110x on the top surface, proper bonding pillars 141x are formed on the transmission lines 110x as contacting spots for connecting to active optical devices or other electronics. Again not all bonding bumps are shown as 141x in
A metal plate may be included in the substrate to strengthen the interposer. The metal plate maybe made of compatible materials such as stainless steel.
The SOI substrate forms a mechanical support structure for a PCB board, silicon waveguide or waveguides in a multi-channel system, and a connector to an optical fiber cable. Without the SOI substrate as an interposer, a film based PCB maybe too fragile to support the electronic devices and waveguides.
Active optical devices in this system such as vertical cavity surface emission laser (VCSEL) 121, laser driver 121A, photodiode (PD) 127, trans-impedance amplifier (TIA not shown in the figure), RF circuits, and other electronic devices are attached to transmission lines 110x engraved as metal-in-trench structures on bottom surface of the SOI substrate. Other optoelectronic devices maybe assembled on a PCB unit packaged to wafer surface. Direct patterning transmission lines on the surface enables high speed performance.
An adhesion film maybe deposited on the surface over the transmission lines 110x and interconnecting posts 141x to passivate and insulate them from the active devices which are arranged above. Another way to insulate maybe to apply a non-conductive film (NCF), over the top surface followed by heating to enhance adhesion of the parts. A cleaning process is also applied to expose the bonding pillars 141x to properly connect to the active devices. The adhesion film or NCF is not shown in
The above described active optoelectronics assembly including the optoelectronic connections forms an optical engine. The optical engine is assembled to external circuits packaged through bond pads on a PCB 150.
Another option for this interconnect from transmission lines to active devices is through an optoelectronic packaging technique such as the anisotropic conductive film (ACF), not shown in
ACF technology is widely used in optoelectronic packaging for higher signal densities and smaller overall packages. In this process, the anisotropic material, for example, a thermosetting resin containing conductive particles, is first deposited on the PCB 150 using a lamination process. The optical engine on the SOI substrate is then placed in position over the PCB and the two sides are pressed together to mount the optical engine to the PCB board. In many cases this mounting process is done with no heat or a minimal amount of heat that is just sufficient to cause the anisotropic material to become slightly tacky. In using a thermosetting resin containing conductive particles, the particles are trapped between the PCB and the optoelectronics elements, thereby creating an electrical connection there between. In other locations where it is not terminated with electrodes, particles are insulated by the thermosetting resin. For bonding, the amount of thermal energy required is higher due to the need to first flow the adhesive and allow the two sides to come together into electrical contact, and then to cure the adhesive and create a lasting reliable bond. The temperatures, times, and pressure required for these processes must be controlled properly.
The active devices, such as (VCSEL) 121 or VCSEL array (for example a standard 1×4 VCSEL), photodetector (PD) 127, receiver chip or trans-impedance-amplifier (TIA) arrays, and in addition, driver IC 121A, and RF device, are flip chip assembled to the bonding pillars 141x on the bottom side 129c of the SOI substrate 140 to form the optical engine. The high speed transmission lines 110x, and the RF device, are therefore designed on the surface 129c to connect the driver IC 121A to VCSEL 121 as well as to connect the receiver chip TIA arrays and other electrical lines. In accordance with the embodiments, formation of the electrical traces 110x on the substrate may lead to improved RF signals performance from the high dielectric constant of the silicon material, typically ranging in 3-4 for infrared light. The data rate of the optical engine can be operated at 25 Giga-bits per second (Gbps) per channel, and can be extended to higher data rates such as 50 Gbps per channel.
In some cases, the optical engine is assembled with a flexible printed circuit board (FCB). In an embodiment, the optical engine is assembled within a periphery of an opening in the PCB. While not separately illustrated, such a configuration is compatible with other embodiments, including that described with regard to
In
The 45 degree reflectors are introduced in a silicon waveguide to form a 3D optical path on a single chip, which enables a compact configuration in on-chip optical interconnect application.
The fabrication sequence may include the first step 802: provide a SOI substrate having a Si surface for optoelectronics and a Si-on-insulator surface for waveguides. The two surfaces may be parallel or slightly wedged to each other to avoid problems caused by ghost reflections. In step 804, deposit an isolation layer on top surface to isolate the silicon from the metal lines. In step 806, pattern trenches on top surface and fill in metal to form transmission lines, or deposit metal layer and pattern it into lines with etching Laser writing is also a way to get lines formed. The metal layer may be aluminum, tungsten, etc. If it is copper, process will need to follow copper plating techniques. In step 808, grow bonding pillars or solder bumps with gold or nickel coating for flip chip mounting with bond pads. In step 810, assemble active optical devices (VCSEL/PD) with transmission lines via interconnecting pillars, solder bumps. In step 812, deposit an anisotropic conductive film (ACF) on top surface (optional). In step 814, attach PCB to pads or ACF. In step 816, turn substrate over to work on making waveguides on bottom surface. In step 818, pattern strip waveguides on si-on-insulator surface and expose oxide surface outside the waveguide area. In step 820, pattern 45 degree reflectors at both ends of each silicon waveguide, reflectors are aligned with active optical devices VCSEL and PD.
However, embodiments are not limited to this particular sequence, and alternative fabrication sequences are envisioned.
In utilizing the various aspects of the embodiments, it would become apparent to one skilled in the art that combinations or variations of the above embodiments are possible for fabricating optical interconnects. Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the appended claims are not necessarily limited to the specific features or acts described. The specific features and acts disclosed are instead to be understood as embodiments of the claims useful for illustration.
This application claims the benefit of U.S. Provisional Patent Applications No. 62/508,940, titled “OPTICAL COUPLING STRUCTURE” filed on May 19, 2017, and No. 62/509,892, titled “OPTICAL INTERCONNECT MODULES” filed on May 23, 2017, which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62508940 | May 2017 | US | |
62509892 | May 2017 | US |