1. Field of the Invention
The present invention relates to signal communications between the integrated circuits of separate electronic modules such as circuit boards, and more particularly to optical signal communications over an optical backplane which uses parallel optics or multi-wavelength optical communications, or both.
2. Discussion of the Related Art
High speed electrical systems route many high speed electrical signals to multiple destinations having one or more integrated circuits (ICs) or processors which process the signals. Such destinations include the nodes of communication systems, circuit modules, circuit boards, and other such electronic systems or sub-systems. The electrical signals may be transmitted over an electrical backplane that allows the electrical signals to be broadcast to some or all possible destination circuit boards. A destination circuit board merely taps into the electrical backplane through an electrical bus to read the electrical signals. An electrical address may be used to determine whether an electrical signal is destined for a particular circuit board.
One area where there has been considerable need for high data rate or high speed communications is between parallel processors in computers. The parallel processors and associated memory of such parallel processing computers must be interconnected in a manner which allows data to flow at very high speeds between each of the processors, with low latency. High speed data transfer in networks has also become increasingly important due to the wide-spread proliferation of personal computers, and other such computer devices which need to be linked together.
Various system architectures for electrical communications between processors have been proposed to facilitate such high speed data flow and low latency. However, many of these optical interconnect devices and methods require rather extensive and complex timing and conflict resolution systems associated with the transmitters and receiver.
An optical interconnect system in accordance with the invention includes a plurality of optical circuit boards coupled to an optical backplane. An optical transmitter may be implemented with some or all of the plurality of optical circuit boards. Each optical transmitter may be configured to transmit a multi-wavelength light signal. Each of a plurality of optical receivers may be separately associated with the plurality of optical circuit boards.
The above and other aspects, features and advantages of the present invention will become more apparent upon consideration of the following description of preferred embodiments taken in conjunction with the accompanying drawing figures, wherein:
In the following description, reference is made to the accompanying drawing figures which form a part hereof, and which show by way of illustration specific embodiments of the invention. It is to be understood by those of ordinary skill in this technological field that other embodiments may be utilized, and structural, electrical, as well as procedural changes may be made without departing from the scope of the present invention.
Circuit boards 41 may each include electrical-to-optical converter/transmitter 62 and optical-to-electrical converter/receiver 65. Converter/transmitter 62 is shown optically connected to optical connector 56 via single transmit fiber 68, while converter/receiver 65 is shown optically connected to optical connector 56 via a four-element fiber array 71. Converter/transmitter 62 and converter/receiver 65 may be electrically connected to conventional electronic circuitry 74 by electrical traces 77 and 80, respectively. Electronic circuitry 74 may include devices such as integrated circuit processor 83 and memory chips 86, for example.
As shown in
During operation, encoder 128 may receive electrical signals from electronic circuitry 74 (shown in
After passing through optical connectors 56 and 59, transmit fiber 95 directs the multi-wavelength beam of light to an associated demultiplexer of demultiplexing unit 89. The multi-wavelength beam of light may then be demultiplexed based upon wavelength, thus providing four discrete outputs, W1-W4. In this configuration, demultiplexer output at wavelength W1 is directed to converter/receiver 65, located at the first of four circuit boards 41. Similarly, demultiplexer outputs at wavelengths W2-W3 are directed to converter/receivers 65 that are respectively located at the second, third, and fourth circuit boards 41.
Each of the four demultiplexers of demultiplexing unit 89 are shown having an output at wavelength W1. Each of these four W1 wavelength outputs is directed by individual optical transmit fibers through optical connects 59 and 56 into converter/receivers 65 of circuit boards 41. It is to be understood that each of the four inputs of converter/receiver 65, at the first transmit/receive circuit board, has the same wavelength (W1).
Coupling the various transmitters and receivers of the four circuit boards in the manner depicted in
The received light may be fed into a suitable photodetector 152, such as a PIN photodetector array, which converts each individual optical signal into individual electrical signals that may be communicated to decoder 158 via electrical conductors 155. Decoder 158 is typically used to convert received electrical signals into suitable electrical signals useable by, for example, electronic circuitry 74 (
A plurality of electro-optical circuit boards 221 are shown mounted to front surface 224 of the circuit board. Circuit boards 221 may be disposed in a spaced-apart relationship within casing 209, extending perpendicularly from front surface 224. Electro-optical circuit boards 221 may be connected to electrical circuit board 215 using any suitable technique. As shown, each of the electro-optical circuit boards 221 include a plurality of electrical contacts 227 at edge tab 230, and mating electrical backplane connector strips 233. In some embodiments, circuit boards 221 may be connected to optical backplane 200 using optical connectors 236 and 239.
Circuit boards 221 may each include electrical-to-optical converter/transmitter 242 and optical-to-electrical converter/receiver 245, which are shown optically connected to optical connector 236 with four optical transmit fibers 248 and four optical receiving fibers 251. If desired, converter/transmitter 242 and converter/receiver 245 may be electrically connected to conventional electronic circuitry 254 by respective electrical traces 257 and 260. Electronic circuitry 254 may include devices such as integrated circuit processor 263 and memory chips 266.
In
Coupling the various transmitters and receivers of the four circuit boards in this manner permits the tracking of the origin or source of a received signal. For instance, each of the four circuit boards 221 is coupled to four distinct groupings of optical receiving fibers, identified in
The interconnection design depicted in
Similar to other embodiments, converter/transmitter 242 may include encoders 128 and associated lasers 134. However, in this embodiment, there is no need to vary the wavelength since each transmission channel has a dedicated optical transmission fiber. Recall that other embodiments multiplex a plurality of signals of varying wavelength onto a single optical transmission fiber.
During operation, encoder 128 may receive electrical signals from electronic circuitry 254 (shown in
After passing through optical connectors 236 and 239, optical transmit fibers 272 may be directed to optical backplane 200, where each of the individual fibers may be directed to the appropriate receiver using a multi-fiber ribbon cable, or other suitable fiber routing configuration. For example, in optical backplane 200, the first optical transmit fiber of the first transmitter (Tx1) is shown coupled to the first receiving portion of the first converter/receiver 245 (Rx1). Similarly, the first optical transmit fiber of the second, third, and fourth converter/transmitters 128 (Tx2, Tx3, and Tx4) may be respectively coupled to the second, third, and fourth receiving portions of the first converter/receiver 245 (Rx1). Note, the four inputs to the first converter/receiver 245 (Rx1) all originate from the first channel of each transmitter (Tx1, Tx2, Tx3, and Tx4). Portions of the remaining receivers and transmitters have been omitted for clarity, but those of ordinary skill will understand that these components may be connected in similar fashion.
Referring still to
Although many embodiments of the invention have been described using lasers as the light sources, this is not a requirement and various other light sources such as LEDs with associated spectral filters may be used to produce the unique wavelengths for each transmitter. If desired, various control systems may be added for controlling the light wavelength, the transmitted light signals, the order of transmitting, and the order of receiving the transmitted light signals, as may be required for particular applications.
While the invention has been described in detail with reference to disclosed embodiments, various modifications within the scope of the invention will be apparent to those of ordinary skill in this technological field. It is to be appreciated that features described with respect to one embodiment typically may be applied to other embodiments. Therefore, the invention properly is to be construed with reference to the claims.