A depth camera can obtain depth images including information about a location of a human or other object in a physical space. The depth images may be used by an application in a computing system for a wide variety of applications. Many applications are possible, such as for military, entertainment, sports and medical purposes. For instance, depth images including information about a human can be mapped to a three-dimensional (3-D) human skeletal model and used to create an animated character or avatar.
To obtain a depth image, a depth camera typically projects infrared (IR) light onto one or more object in the camera's field of view. The IR light reflects off the object(s) and back to the camera, where it is incident on an image pixel detector array of the camera, and is processed to determine the depth image.
If a depth camera projects highly coherent IR light, then a speckle pattern may result, which reduces the resolution of the depth images obtained using the depth camera. Additionally, if an optical structure is used to achieve a desired illumination profile, the optical structure may produce undesirable diffraction artifacts, which also reduce the resolution of the depth images obtained using the depth camera.
Certain embodiments of the present technology are related to optical modules for use with depth cameras, and systems that include a depth camera, which can be referred to as depth camera systems. In accordance with an embodiment, a depth camera system includes an optical module that outputs light that illuminates the capture area. Additionally, the depth camera includes an image pixel detector array that detects a portion of the light, output by the optical module, which has reflected off one or more objects within the capture area and is incident on the image pixel detector array. In accordance with an embodiment, the optical module includes a plurality of laser emitting elements, each of which emits a corresponding laser beam, and a micro-lens array that includes a plurality of lenslets. In certain embodiments, laser beams emitted by adjacent ones of the laser emitting elements at least partially overlap one another prior to being incident on the micro-lens array. Additionally, for each lenslet of at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least two of the laser emitting elements. The inclusion of the plurality of laser emitting elements in the optical module reduces speckle contrast in the light that is output by the optical module and illuminates the capture area. The overlap of the laser beams emitted by adjacent ones of the laser emitting elements, and the at least partially filling of the lenslets of the micro-lens array with light corresponding to laser beams emitted by at least two of the laser emitting elements, reduces diffraction pattern artifacts in the light that is output by the optical module and illuminates the capture area.
In accordance with an embodiment, for each lenslet of the at least a majority of the lenslets of the micro-lens array, the lenslet is at least partially filled by light corresponding to laser beams emitted by at least five of the laser emitting elements. More preferably, each lenslet of the micro-lens array is completely filled by light corresponding to laser beams emitted by at least five of the laser emitting elements.
In accordance with an embodiment, the plurality of laser emitting elements include five or more edge emitting lasers. For a more specific example, the five or more edge emitting lasers can comprise five or more parallel laser stripes fabricated on a same semiconductor substrate. In alternative embodiments, the plurality of laser emitting elements comprises an array of vertical-cavity surface-emitting lasers (VCSELs).
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Certain embodiments of the present technology disclosed herein are related to optical modules for use with depth cameras, and systems that include a depth camera, which can be referred to as depth camera systems. The optical modules are designed to reduce speckle contrast and diffraction artifacts, as will be explained below. However, before providing additional details of such embodiments of the present technology, exemplary details of larger systems with which embodiments of the present technology can be used will first be described.
The computing system 112 may be a computer, a gaming system or console, or the like. According to an example embodiment, the computing system 112 may include hardware components and/or software components such that computing system 112 may be used to execute applications such as gaming applications, non-gaming applications, or the like. In one embodiment, computing system 112 may include a processor such as a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions stored on a processor readable storage device for performing the processes described herein.
The capture device 120 may include, for example, a camera that may be used to visually monitor one or more users, such as the user 118, such that gestures and/or movements performed by the one or more users may be captured, analyzed, and tracked to perform one or more controls or actions within the application and/or animate an avatar or on-screen character, as will be described in more detail below.
According to one embodiment, the tracking system 100 may be connected to an audiovisual device 116 such as a television, a monitor, a high-definition television (HDTV), or the like that may provide game or application visuals and/or audio to a user such as the user 118. For example, the computing system 112 may include a video adapter such as a graphics card and/or an audio adapter such as a sound card that may provide audiovisual signals associated with the game application, non-game application, or the like. The audiovisual device 116 may receive the audiovisual signals from the computing system 112 and may then output the game or application visuals and/or audio associated with the audiovisual signals to the user 118. According to one embodiment, the audiovisual device 16 may be connected to the computing system 112 via, for example, an S-Video cable, a coaxial cable, an HDMI cable, a DVI cable, a VGA cable, component video cable, or the like.
As shown in
In the example depicted in
Other movements by the user 118 may also be interpreted as other controls or actions and/or used to animate the player avatar, such as controls to bob, weave, shuffle, block, jab, or throw a variety of different power punches. Furthermore, some movements may be interpreted as controls that may correspond to actions other than controlling the player avatar 140. For example, in one embodiment, the player may use movements to end, pause, or save a game, select a level, view high scores, communicate with a friend, etc. According to another embodiment, the player may use movements to select the game or other application from a main user interface. Thus, in example embodiments, a full range of motion of the user 118 may be available, used, and analyzed in any suitable manner to interact with an application.
In example embodiments, the human target such as the user 118 may have an object. In such embodiments, the user of an electronic game may be holding the object such that the motions of the player and the object may be used to adjust and/or control parameters of the game. For example, the motion of a player holding a racket may be tracked and utilized for controlling an on-screen racket in an electronic sports game. In another example embodiment, the motion of a player holding an object may be tracked and utilized for controlling an on-screen weapon in an electronic combat game. Objects not held by the user can also be tracked, such as objects thrown, pushed or rolled by the user (or a different user) as well as self-propelled objects. In addition to boxing, other games can also be implemented.
According to other example embodiments, the tracking system 100 may further be used to interpret target movements as operating system and/or application controls that are outside the realm of games. For example, virtually any controllable aspect of an operating system and/or application may be controlled by movements of the target such as the user 118.
As shown in
As shown in
According to another example embodiment, TOF analysis may be used to indirectly determine a physical distance from the capture device 120 to a particular location on the targets or objects by analyzing the intensity of the reflected beam of light over time via various techniques including, for example, shuttered light pulse imaging.
In another example embodiment, the capture device 120 may use a structured light to capture depth information. In such an analysis, patterned light (i.e., light displayed as a known pattern such as grid pattern, a stripe pattern, or different pattern) may be projected onto the scene via, for example, the IR light component 224. Upon striking the surface of one or more targets or objects in the scene, the pattern may become deformed in response. Such a deformation of the pattern may be captured by, for example, the 3-D camera 226 and/or the RGB camera 228 and may then be analyzed to determine a physical distance from the capture device to a particular location on the targets or objects. In some implementations, the IR Light component 224 is displaced from the cameras 226 and 228 so triangulation can be used to determined distance from cameras 226 and 228. In some implementations, the capture device 120 will include a dedicated IR sensor to sense the IR light.
According to another embodiment, the capture device 120 may include two or more physically separated cameras that may view a scene from different angles to obtain visual stereo data that may be resolved to generate depth information. Other types of depth image sensors can also be used to create a depth image.
The capture device 120 may further include a microphone 230. The microphone 230 may include a transducer or sensor that may receive and convert sound into an electrical signal. According to one embodiment, the microphone 230 may be used to reduce feedback between the capture device 120 and the computing system 112 in the target recognition, analysis, and tracking system 100. Additionally, the microphone 230 may be used to receive audio signals (e.g., voice commands) that may also be provided by the user to control applications such as game applications, non-game applications, or the like that may be executed by the computing system 112.
In an example embodiment, the capture device 120 may further include a processor 232 that may be in operative communication with the image camera component 222. The processor 232 may include a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions including, for example, instructions for receiving a depth image, generating the appropriate data format (e.g., frame) and transmitting the data to computing system 112.
The capture device 120 may further include a memory component 234 that may store the instructions that may be executed by the processor 232, images or frames of images captured by the 3-D camera and/or RGB camera, or any other suitable information, images, or the like. According to an example embodiment, the memory component 234 may include random access memory (RAM), read only memory (ROM), cache, Flash memory, a hard disk, or any other suitable storage component. As shown in
As shown in
Computing system 112 includes gestures library 240, structure data 242, depth image processing and object reporting module 244 and application 246. Depth image processing and object reporting module 244 uses the depth images to track motion of objects, such as the user and other objects. To assist in the tracking of the objects, depth image processing and object reporting module 244 uses gestures library 240 and structure data 242.
Structure data 242 includes structural information about objects that may be tracked. For example, a skeletal model of a human may be stored to help understand movements of the user and recognize body parts. Structural information about inanimate objects may also be stored to help recognize those objects and help understand movement.
Gestures library 240 may include a collection of gesture filters, each comprising information concerning a gesture that may be performed by the skeletal model (as the user moves). The data captured by the cameras 226, 228 and the capture device 120 in the form of the skeletal model and movements associated with it may be compared to the gesture filters in the gesture library 240 to identify when a user (as represented by the skeletal model) has performed one or more gestures. Those gestures may be associated with various controls of an application. Thus, the computing system 112 may use the gestures library 240 to interpret movements of the skeletal model and to control application 246 based on the movements. As such, gestures library may be used by depth image processing and object reporting module 244 and application 246.
Application 246 can be a video game, productivity application, etc. In one embodiment, depth image processing and object reporting module 244 will report to application 246 an identification of each object detected and the location of the object for each frame. Application 246 will use that information to update the position or movement of an avatar or other images in the display.
The depth camera 226 is also shown as including a clock signal generator 262, which produces a clock signal that is provided to the driver 260. Additionally, the depth camera 226 is shown as including a microprocessor 264 that can control the clock signal generator 262 and/or the driver 260. The depth camera 226 is also shown as including an image pixel detector array 268, readout circuitry 270 and memory 266. The image pixel detector array 268 might include, e.g., 320×240 image pixel detectors, but is not limited thereto. Each image pixel detector can be, e.g., a complementary metal-oxide-semiconductor (CMOS) sensor or a charged coupled device (CCD) sensor, but is not limited thereto. Depending upon implementation, each image pixel detector can have its own dedicated readout circuit, or readout circuitry can be shared by many image pixel detectors. In accordance with certain embodiments, the components of the depth camera 226 shown within the block 280 are implemented in a single integrated circuit (IC), which can also be referred to as a single chip.
In accordance with an embodiment, the driver 260 produces a high frequency (HF) modulated drive signal in dependence on a clock signal received from clock signal generator 262. Accordingly, the driver 260 can include, for example, one or more buffers, amplifiers and/or modulators, but is not limited thereto. The clock signal generator 262 can include, for example, one or more reference clocks and/or voltage controlled oscillators, but is not limited thereto. The microprocessor 264, which can be part of a microcontroller unit, can be used to control the clock signal generator 262 and/or the driver 260. For example, the microprocessor 264 can access waveform information stored in the memory 266 in order to produce an HF modulated drive signal. The depth camera 226 can includes its own memory 266 and microprocessor 264, as shown in
In response to being driven by an HF modulated drive signal, the laser source 250 emits HF modulated light. For an example, a carrier frequency of the HF modulated drive signal and the HF modulated light can be in a range from about 30 MHz to many hundreds of MHz, but for illustrative purposes will be assumed to be about 100 MHz. The light emitted by the laser source 250 is transmitted through an optical structure 252, which can include a micro-lens array (MLA), towards one or more target object (e.g., a user 118). The laser source 250 and the optical structure 252 can be referred to, collectively, as an optical module 256. In accordance with certain embodiments of the present technology, discussed below with reference to
Assuming that there is a target object within the field of view of the depth camera, a portion of the light emitted by the optical module reflects off the target object, passes through an aperture field stop and lens (collectively 272), and is incident on the image pixel detector array 268 where an image is formed. In some implementations, each individual image pixel detector of the array 268 produces an integration value indicative of a magnitude and a phase of detected HF modulated laser beam originating from the optical module 256 that has reflected off the object and is incident of the image pixel detector. Such integrations values, or more generally time-of-flight (TOF) information, enable distances (Z) to be determined, and collectively, enable depth images to be produced. In certain embodiments, optical energy from the light source 250 and detected optical energy signals are synchronized to each other such that a phase difference, and thus a distance Z, can be measured from each image pixel detector. The readout circuitry 270 converts analog integration values generated by the image pixel detector array 268 into digital readout signals, which are provided to the microprocessor 264 and/or the memory 266, and which can be used to produce depth images.
A graphics processing unit (GPU) 308 and a video encoder/video codec (coder/decoder) 314 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 308 to the video encoder/video codec 314 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 340 for transmission to a television or other display. A memory controller 310 is connected to the GPU 308 to facilitate processor access to various types of memory 312, such as, but not limited to, a RAM (Random Access Memory).
The multimedia console 300 includes an I/O controller 320, a system management controller 322, an audio processing unit 323, a network interface 324, a first USB host controller 326, a second USB controller 328 and a front panel I/O subassembly 330 that are preferably implemented on a module 318. The USB controllers 326 and 328 serve as hosts for peripheral controllers 342(1)-342(2), a wireless adapter 348, and an external memory device 346 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 324 and/or wireless adapter 348 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.
System memory 343 is provided to store application data that is loaded during the boot process. A media drive 344 is provided and may comprise a DVD/CD drive, Blu-Ray drive, hard disk drive, or other removable media drive, etc. The media drive 344 may be internal or external to the multimedia console 300. Application data may be accessed via the media drive 344 for execution, playback, etc. by the multimedia console 300. The media drive 344 is connected to the I/O controller 320 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).
The system management controller 322 provides a variety of service functions related to assuring availability of the multimedia console 300. The audio processing unit 323 and an audio codec 332 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 323 and the audio codec 332 via a communication link. The audio processing pipeline outputs data to the A/V port 340 for reproduction by an external audio player or device having audio capabilities.
The front panel I/O subassembly 330 supports the functionality of the power button 350 and the eject button 352, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 300. A system power supply module 336 provides power to the components of the multimedia console 300. A fan 338 cools the circuitry within the multimedia console 300.
The CPU 301, GPU 308, memory controller 310, and various other components within the multimedia console 300 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.
When the multimedia console 300 is powered ON, application data may be loaded from the system memory 343 into memory 312 and/or caches 302, 304 and executed on the CPU 301. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 300. In operation, applications and/or other media contained within the media drive 344 may be launched or played from the media drive 344 to provide additional functionalities to the multimedia console 300.
The multimedia console 300 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 300 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 324 or the wireless adapter 348, the multimedia console 300 may further be operated as a participant in a larger network community.
When the multimedia console 300 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16 MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 Kbps), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.
In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.
With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., popups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.
After the multimedia console 300 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 301 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.
When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.
Input devices (e.g., controllers 342(1) and 342(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches. The cameras 226, 228 and capture device 120 may define additional input devices for the console 300 via USB controller 326 or other interface.
Computing system 420 comprises a computer 441, which typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 441 and includes both volatile and nonvolatile media, removable and non-removable media. The system memory 422 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 423 and random access memory (RAM) 460. A basic input/output system 424 (BIOS), containing the basic routines that help to transfer information between elements within computer 441, such as during start-up, is typically stored in ROM 423. RAM 460 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 459. By way of example, and not limitation,
The computer 441 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 441 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 446. The remote computer 446 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 441, although only a memory storage device 447 has been illustrated in
When used in a LAN networking environment, the computer 441 is connected to the LAN 445 through a network interface 437. When used in a WAN networking environment, the computer 441 typically includes a modem 450 or other means for establishing communications over the WAN 449, such as the Internet. The modem 450, which may be internal or external, may be connected to the system bus 421 via the user input interface 436, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 441, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
As explained above, the capture device 120 provides RGB images (also known as color images) and depth images to the computing system 112. The depth image may be a plurality of observed pixels where each observed pixel has an observed depth value. For example, the depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel in the 2-D pixel area may have a depth value such as a length or distance in, for example, centimeters, millimeters, or the like of an object in the captured scene from the capture device.
In one embodiment, the depth image may be colorized or grayscale such that different colors or shades of the pixels of the depth image correspond to and/or visually depict different distances of the targets from the capture device 120. Upon receiving the image, one or more high-variance and/or noisy depth values may be removed and/or smoothed from the depth image; portions of missing and/or removed depth information may be filled in and/or reconstructed; and/or any other suitable processing may be performed on the received depth image.
Techniques for Reducing Speckle Contrast and Diffraction Artifacts
As mentioned above, if a depth camera projects highly coherent light, then a speckle pattern may result, which reduces the resolution of the depth images obtained using the depth camera. The aforementioned speckle pattern is a result of the interference of many waves of the same frequency, having different phases and amplitudes, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly. Such speckle patterns will often occur where a laser source, or more generally, a light source, produces highly coherent light. As also mentioned above, if an optical structure is used to achieve a desired illumination profile, the optical structure may produce undesirable diffraction pattern artifacts, which also reduce the resolution of the depth images obtained using the depth camera. Such diffraction pattern artifacts, which can also be referred to as diffraction artifacts, will often occur where the optical structure is a periodic structure. An example of a periodic structure is a micro-lens array (MLA) including an N×M arrays of substantially identical lenslets.
Certain embodiments described herein are directed to depth camera systems that include optical modules that reduce speckle contrast and diffraction pattern artifacts, and thereby, provide for improved depth image resolution. Embodiments are also directed to the optical modules themselves, as well as methods for use with depth camera systems.
In certain embodiments, each light emitting element 712 is an edge emitting laser. For example, the plurality of light emitting elements 712 can include a plurality of parallel edge emitting laser stripes fabricated on a same semiconductor substrate. In other embodiments, the plurality of light emitting elements 712 can be an array of vertical-cavity surface-emitting lasers (VCSELs) fabricated on a same semiconductor substrate. These are just a few examples, which are not meant to be all encompassing.
Since
In accordance with specific embodiments, the laser beams emitted by adjacent ones of the laser emitting elements 712 at least partially overlap one another prior to being incident on the MLA 720, as shown in
The inclusion of the plurality of laser emitting elements 712 in the optical module 702, and the overlapping of the laser beams emitted from the laser emitting elements 712, reduces the speckle contrast in the light that is output by the optical module 702, which is used to illuminate a capture area within a field of view of the depth camera. Additionally, the overlapping of the laser beams emitted by the laser emitting elements 712, and the at least partially filling of the lenslets 722 of the MLA 720 with light corresponding to laser beams emitted by at least two of the laser emitting elements 712, is used to the reduce diffraction pattern artifacts in the light that is output by the optical module 702, which is used to illuminates the capture area.
In general, the greater the number of laser emitting elements 712 and the greater the amount of overlap between the laser beams emitted by the laser emitting elements 712, the lower the speckle contrast. This is because an increase in the number of laser emitting elements 712, which are specially separated from one another, decreases the coherence of the light collectively output by the laser emitting elements 712. In general, the lower the coherence of the light, the lower the speckle contrast. Where there is a desire to achieve a speckle contrast of 20% or less, the optical module 702 would likely need to include at least five laser emitting elements 712 that emit laser beams that at least partially overlap one another. More specifically, speckle contrast will reduce by approximately the square root of the number of separate light emitting elements 712 that emit laser beams that at least partially overlap one another.
Additionally, the greater the amount of laser beams that at least partially fill each lenslet 722 of the MLA 720, the lower the diffraction artifacts caused by the light output by the optical module 702. This is because the diffraction artifacts, associated with the multiple laser beams that at least partially fill a common lenslet, are essentially averaged, thereby causing the diffraction artifacts to be washed or smoothed out. In generally, the greater the f-number of a lenslet, the greater the amount of beam overlap necessary to reduce diffraction artifacts to a predetermined desire level.
In an exemplary embodiment, the optical module 702 includes approximately ten parallel edge emitting laser stripes fabricated on a same semiconductor substrate, with each laser beam emitted by each light emitting element 712 (i.e., each laser stripe in this embodiment) at least partially overlapping each of the other laser beams emitted by each of the other light emitting elements 712, and with each laser beam at least partially filling each of the lenslets 722 of the MLA 720. In another exemplary embodiment, the optical module 702 includes an array of VCELSs that includes hundreds of VCELSs, with each laser beam emitted by each light emitting element 712 (i.e., each VCSEL in this embodiment) at least partially overlapping each of the other laser beams emitted by each of the other light emitting elements 712, and with each laser beam at least partially filling each of the lenslets 722 of the MLA 720. Preferably, each laser beam emitted by each light emitting element 712 completely fills each lenslet 722 of the MLA 720. However, depending upon implementation, it may be difficult for lenslets 722 near at the periphery of the MLA 720 to be filled by every laser beam. In order for the laser beam emitted by each light emitting element 712 to at least partially overlap the laser beams emitted by each of the other light emitting elements 712, and for each laser beam to at least partially fill each lenslet 722 of the MLA 720, the center-to-center distance between adjacent light emitting elements 712 may need to be very small. For example, in accordance with certain embodiments of the optical module 702, the center-to-center distance between adjacent light emitting elements 712 is less than 100 μm, and the center-to-center distance between any one light emitting element 712 and the light emitting element 712 furthest from it is less than 1 mm. Other center-to-center distances are also possible and within the scope of an embodiment.
In accordance with certain embodiments, the light exiting the micro-lens array 720 is the light output by an optical module 702 that is used to illuminate a capture area. However, before illuminating the capture area the light might first pass through a glass or plastic plate (not shown) that is intended to conceal and/or protect the optical module 702. It is also possible, and within the scope of an embodiment, that one or more additional optical elements be located optically downstream from the micro-lens array 720. Such one or more additional optical elements, or a portion thereof, may or may not be part of the optical module 702.
In accordance with certain embodiments, a depth camera may include multiple optical modules 702 that simultaneously output light for use in illuminating a capture area. Multiple optical modules 702 may be used, for example, where the amount of light emitted by a single optical module 702 is less than the total amount of light desired. This is analogous to an conventional camera having a flash including multiple flash bulbs, because a single flash bulb is not as bright as desired. Where a depth camera includes multiple optical modules 702, each of the optical modules will includes its own plurality of laser emitting elements 712 and its own MLA 720. The different optical modules 702 can be located close enough to one another such that the light output be each of the different optical module 702 substantially overlap one another, and are collectively used to achieve an illumination profile that is substantially similar to a desired illumination profile.
Referring to
At step 1004 a portion of the IR light that has reflected off one or more objects within the capture area is detected. As can be appreciated by the above discussion of
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims. It is intended that the scope of the technology be defined by the claims appended hereto.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 14/034,189, filed Sep. 23, 2013, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4603421 | Scifres et al. | Jul 1986 | A |
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jun 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson et al. | Jun 1996 | A |
5526182 | Jewell | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng et al. | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6122109 | Peake | Sep 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620091 | Heusler et al. | Nov 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
7965754 | Saint Clair | Jun 2011 | B1 |
3035612 | Bell et al. | Oct 2011 | A1 |
3035614 | Bell et al. | Oct 2011 | A1 |
3035624 | Bell et al. | Oct 2011 | A1 |
8072470 | Marks | Dec 2011 | B2 |
8247252 | Gauggel | Aug 2012 | B2 |
8308302 | Lescure et al. | Nov 2012 | B2 |
20020019305 | Wu | Feb 2002 | A1 |
20020196414 | Manni et al. | Dec 2002 | A1 |
20060291509 | Mitra | Dec 2006 | A1 |
20070053066 | Mitra | Mar 2007 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20100165432 | Laycock | Jul 2010 | A1 |
20110298918 | McEldowney | Dec 2011 | A1 |
20120017153 | Matusda et al. | Jan 2012 | A1 |
20120051588 | McEldowney | Mar 2012 | A1 |
20120154535 | Yahav | Jun 2012 | A1 |
20120206782 | Chan et al. | Aug 2012 | A1 |
20130038941 | Pesach et al. | Feb 2013 | A1 |
20150085075 | Hudman | Mar 2015 | A1 |
20150097947 | Hudman | Apr 2015 | A1 |
20160064898 | Atiya | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
101254334 | Jun 2010 | CN |
0583061 | Feb 1994 | EP |
1184706 | Mar 2002 | EP |
1734771 | Dec 2006 | EP |
08044490 | Feb 1996 | JP |
9310708 | Jun 1993 | WO |
9717598 | May 1997 | WO |
9944698 | Sep 1999 | WO |
2005085934 | Sep 2005 | WO |
Entry |
---|
“Final Office Action Issued in U.S. Appl. No. 14/034,189”, dated Dec. 18, 2015, 19 Pages. |
“Non-Final Office Action Issued in U.S. Appl. No. 14/034,189”, dated Sep. 8, 2015, 19 Pages. |
“Notice of Allowance Issued in U.S. Appl. No. 14/034,189”, dated Jun. 8, 2016, 13 Pages. |
“Understanding of Laser, Laser Diodes, Laser Diode Packaging and its Relationship to Tungsten Copper”, Retrieved from <<http://www.torreyhillstech.com/Documents/Laser_package_white_paper.pdf>, Sep. 7, 2012, 18 Pages. |
Trisnadi, Jahja I., “Spreckle contrast reduction in laser projection displays,” SPIE International Society for Optics and Photonics Technology, Projection Displays VIII, Apr. 30, 2002, 7 pages. |
Ouyang, A, et al., “Laser spreckle reduction based on angular diversity induced by Piezoelectric Benders,” Journal of the European Optical Society, vol. 8, Apr. 28, 2013, 4 pages. |
“Diffraction Effects,” CVI Melles Griot Technical Guide, vol. 2, Issue 2, [www.cvimellesgriot.com], Jun. 2009, 3 pages. |
Liau, Z.L., et al., “Microlens Integration With Diode Lasers and Coherent Phase Locking of Laser Arrays,” The Lincoln Laboratory Journal, vol. 3, No. 3, Fall 1990, 10 pages. |
International Search Report & Written Opinion dated Jan. 15, 2015, in PCT Patent Application No. PCT/US2014/056422 filed Sep. 23, 2014. |
Kanade et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, pp. 196-202,The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
Miyagawa et al., “CCD-Based Range Finding Sensor”, Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices. |
Rosenhahn et al., “Automatic Human Model Generation”, 2005, pp. 41-48, University of Auckland (CITR), New Zealand. |
Aggarwal et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated Motion Workshop, 1997, University of Texas at Austin, Austin, TX. |
Shao et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSPRD), Japan. |
Kohler, “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, 1998, pp. 285-296, Germany. |
Kohler, “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg/Germany, 1996, pp. 147-154, Germany. |
Kohler, “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, 1997, Germany. |
Hasegawa et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, Jun. 2004, pp. 1579-1582, IEEE International conference on Multimedia and Expo (ICME), Taipei, Taiwan. |
Zhao, “Dressed Human Modeling, Detection, and Parts Localization”, 2001, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
He, “Generation of Human Body Models”, Apr. 2005, University of Auckland, New Zealand. |
Isard et al., “Condensation—Conditional Density Propagation for Visual Tracking”, 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands. |
Livingston, “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, 1998, University of North Carolina at Chapel Hill, North Carolina, USA. |
Wren et al., “Pfinder: Real-Time Tracking of the Human Body”, MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Caimbridge, MA. |
Breen et al., “Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality”, Technical Report ECRC-95-02, 1995, European Computer-Industry Research Center GmbH, Munich, Germany. |
Freeman et al., “Television Control by Hand Gestures”, Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA. |
Hongo et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France. |
Pavlovic et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Azarbayejani et al., “Visually Controlled Graphics”, Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Granieri et al., “Simulating Humans in VR”, The British Computer Society, Oct. 1994, Academic Press. |
Brogan et al., “Dynamically Simulated Characters in Virtual Environments”, Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications. |
Fisher et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC. |
“Virtual High Anxiety”, Tech Update, Aug. 1995, pp. 22. |
Sheridan et al., “Virtual Reality Check”, Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7. |
Stevens, “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages. |
“Simulation and Training”, 1994, HP Division Incorporated. |
English Machine-translation of Japanese Publication No. JP08-044490 published on Feb. 16, 1996. |
Number | Date | Country | |
---|---|---|---|
20160341829 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14034189 | Sep 2013 | US |
Child | 15228982 | US |