This application relates to optical resonators such as micro resonators and their fabrication.
Optical materials may contain certain impurities that absorb light and thus cause undesired optical losses. As an example, many compounds having the chemical group OH are optically absorbing at the optical wavelengths in the infrared region including the 1.3 microns 1.55 microns for optical communications and other applications. Examples of such compounds include water (H2O) and various hydroxyl radicals. Therefore, it is desirable to reduce the OH content in optical components and devices for optical applications in the IR spectral range.
This application describes fabrication methods and optical resonators to achieve a low OH content. For example, a method for fabricating a resonator is described to include processing an optical material by using deuterium to replace hydrogen to form an optical resonator to minimize a compound that comprises OH in the optical resonator. As another example, a device is described to include an optical resonator structured to support at least one whispering gallery mode. The optical material of the resonator includes deuterium and is substantially free of a compound that comprises OH.
The features described here are in part based on the recognition that certain optical resonators are sensitive to optical absorption in a region where the optical resonator modes are present. Such optical absorption causes loss of light in the optical resonator modes and thus reduces the quality factor of the resonator. For example, whispering-gallery mode (WGM) resonators made of glass materials are susceptible to degradation in the quality factors caused by optical absorption by water (H2O) and hydroxyl (OH) radicals. This is in part because water and hydrogen gas are often present during processing of the glass materials to fabricate the WGM resonators and the processing usually leaves residual water or hydroxyl radicals in the final resonators. WGM resonators are different from other resonators in that the modes in the WGM resonators exist near the surface of the equator in a thin layer. Presence of water and hydroxyl radicals on or near the surface of the resonator hence may cause significant reduction in the quality factor.
Main sources of the residual water and hydroxyl radicals in the finished glass resonators include the use of the hydrogen gas and water-based polishing slurry during the fabrication. Water and hydroxyl radicals inside glass media are known to cause optical absorption at IR wavelengths used in telecommunication applications such as the wavelengths around 1310 nm and 1550 nm. In fabricating WGM micro resonators from glass materials, a number of steps may expose the resonator material to water, hydrogen or hydroxyls in a form of atmospheric water vapor, water-based polishing slurries, hydrogen/oxygen flame and others. Experimental observations show that contamination by water and hydroxyl can limit the effective Q factors of the WGM micro resonators.
Deuterium D is the isotope of hydrogen. Heavy water (D2O) and OD groups that include the OD content are known to exhibit optical absorption at the IR wavelengths at about 2 to 4 times less than that of water and OH groups. Therefore, deuterium may be used to replace hydrogen in fabrication of optical resonators to reduce the OH content in the final resonators. In addition, the finished resonators may be further treated with deuterium to minimize the OH content in the resonators, especially near the surface of a resonator where the WG modes are present.
WGM resonators may be made in different geometries to support a circular optical path with exterior curved surfaces to spatially confine the modes in the direction perpendicular to the plane in which the circular optical path is located.
The above three exemplary geometries in
Notably, the spatial extent of the WG modes in each resonator along the z direction 101 is limited above and below the plane 102 and hence it may not be necessary to have the entirety of the sphere 100, the spheroid 200, or the conical shape 300. Instead, only a portion of the entire shape around the plane 102 that is sufficiently large to support the whispering gallery modes may be used to for the WGM resonator. For example, rings, disks and other geometries formed from a proper section of a sphere may be used as a spherical WGM resonator.
In general, an optical coupler is used to couple optical energy into or out of the WGM resonator by evanescent coupling. Angle-polished fiber tips, waveguides, and GRIN lenses or prisms may be used as the optical couplers. In addition, evanescent couplers such as an coupler formed from photonic bandgap materials may be used for coupling with the resonators in the integrated OEOs.
In fabrication of the above and other WGM resonators, an optical material such as a glass material may be exposed to water and hydrogen in shaping the material under heat produced by a hydrogen flame. The reaction between hydrogen and oxygen produces water vapor which may be trapped in the optical material. As an example, a silica glass material such as a silica fiber preform may be heated by a hydrogen torch to melt the silica fiber perform to form a sphere or a spheroid for the WGM resonators. The surfaces of the WGM resonators may also be polished to reduce the surface roughness and the associated optical loss caused by scattering at the surface. Conventionally, such polishing is usually carried out by using water-based polishing slurry and such exposes the resonators to water and other OH groups.
Therefore, the regular water (H2O) and hydrogen gas (H2) used in these fabrication steps may be replaced with heavy water (D2O) and deuterium gas (D2), respectively, depending on the needs of a particular process. Deuteration is known to reduce optical absorption at the wavelengths of interest by a factor of 2 to 4. The quality factor of a whispering gallery mode resonator with hydrogen substantially replaced with deuterium can increase by the same factor if there are no other loss mechanisms limiting the Q at this level.
This deuteration can be either incorporated in the processing steps or can be performed after the shaping of the resonator is complete. An example of incorporation of deuteration in the processing step would be switching from H2O polishing slurries to D2O bases slurries. Another example is to use deuterium (D2) gas instead of hydrogen gas to form flame mixture with oxygen. Such deuteration does not require different tooling and processing steps and hence can be easily implemented.
Different from other optical resonators, the WG modes in WGM resonators are at the surfaces of the resonators and hence it is particularly important to reduce or eliminate absorbing OH groups near the surfaces of the resonators. To achieve this, finished resonators and other finished optical parts may be exposed to hot D2 gas or D2O vapor to expel any residual water or hydrogen in the resonators and finished optical parts, especially for the regions near the surfaces. This post-processing treatment and deuterium-based processing steps minimizes the undesired OH content in the final resonators and optical parts. In general, a process that displaces hydrogen with deuterium in glass or prevents hydrogen from getting into glass may be used to an improved Q factor of the resonators. Such a process can saturate the bulk and surface of the glass with deuterium without degradation of the surface quality of the micro-resonator.
Tests were conducted by switching from H2/O2 flame to D2/O2 flame in processing silica resonators with low OH contents. Measured absorptions showed at least two fold increase in the resonator Q values from about 4×109 in resonators fabricated by using a hydrogen flame to values exceeding 8.6×109 in resonators fabricated by using a deuterium flame.
Only a few implementations are disclosed. However, it is understood that variations and enhancements may be made.
This application claims the benefit of U.S. Provisional Patent Application No. 60/485,174 entitled “Process to improve quality factor of a micro-resonator” and filed Jul. 3, 2003, the entire disclosure of which is incorporated herein by reference as part of the specification of this application.
The research and development for inventions described in this application received funding under ATP Contract No. 70NANB1H3054. The U.S. Government may have rights to certain technical features described in this application.
Number | Name | Date | Kind |
---|---|---|---|
4515612 | Burrus, Jr. et al. | May 1985 | A |
4685945 | Freund | Aug 1987 | A |
4689065 | Krause | Aug 1987 | A |
5136818 | Bramson | Aug 1992 | A |
5723856 | Yao et al. | Mar 1998 | A |
5777778 | Yao | Jul 1998 | A |
5917179 | Yao | Jun 1999 | A |
5929430 | Yao et al. | Jul 1999 | A |
6138076 | Graf et al. | Oct 2000 | A |
6389197 | Iltchenko et al. | May 2002 | B1 |
6417957 | Yao | Jul 2002 | B1 |
6473218 | Maleki et al. | Oct 2002 | B1 |
6476959 | Yao | Nov 2002 | B2 |
6487233 | Maleki et al. | Nov 2002 | B2 |
6488861 | Iltchenko et al. | Dec 2002 | B2 |
6490039 | Maleki et al. | Dec 2002 | B2 |
6499318 | Lemaire et al. | Dec 2002 | B1 |
6535328 | Yao | Mar 2003 | B2 |
6567436 | Yao et al. | May 2003 | B1 |
6580532 | Yao et al. | Jun 2003 | B1 |
6594061 | Huang et al. | Jul 2003 | B2 |
6762869 | Maleki et al. | Jul 2004 | B2 |
6795481 | Maleki et al. | Sep 2004 | B2 |
6901189 | Savchenkov et al. | May 2005 | B1 |
6904772 | Berkey et al. | Jun 2005 | B2 |
6922497 | Savchenkov et al. | Jul 2005 | B1 |
20020018611 | Maleki et al. | Feb 2002 | A1 |
20020172457 | Tapalian et al. | Nov 2002 | A1 |
20030012504 | Iltchenko | Jan 2003 | A1 |
20040033023 | Tallent et al. | Feb 2004 | A1 |
20040037526 | Campion et al. | Feb 2004 | A1 |
20040091212 | Strecker et al. | May 2004 | A1 |
20050044893 | Coon et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
WO0196936 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
60485174 | Jul 2003 | US |