The present invention relates to an optical scan type object detecting apparatus capable of detecting an object located far away.
In recent years, in the fields, such as a car and an aircraft, in order to detect obstacles existing forward in the proceeding direction, for example, an optical scan type object detecting apparatus has been developed and already put into actual use, which emits a laser light flux while scanning, receives a reflected light flux reflected by hitting objects, and acquires information of obstacles on the basis of a time difference between the time of emitting the laser light flux and the time of receiving the reflected light flux.
Such an object detecting apparatus, in addition to the detection of obstacles of a moving body as mentioned above, can be applied to a crime prevention use in which the apparatus is installed under the eaves of a building so as to detect suspicious persons and to a geographical feature investigation use in which the apparatus is mounted on a helicopter, an airplane, etc. so as to acquire geographical information from the sky. Furthermore, the apparatus can be applied to a gas detection use to measure gas concentration in atmospheric air, and to an aerosol detection use etc. to measure dust in atmospheric air.
In a general optical scan type object detecting apparatus, a light projecting system is constituted by a semiconductor laser serving as a light source and a collimating lens, and a light receiving system is constituted by a light receiving lens (or mirror) and a light detecting element such as a photodiode. Moreover, in many cases, a reflective mirror equipped with a reflective surface is disposed between the light projecting system and the light receiving system. In such a laser scanning type object detecting apparatus, a light flux emitted from the light projecting system is projected so as to scan by the rotation of the reflective mirror, whereby there is a merit that it is possible to measure an object two-dimensionally in a wide range not only one point. In this connection, as a light source, an LED etc. may be used other than a laser.
In the case where a laser light source is taken for an example, as a general scanning technique of a laser light flux, a technique has been known that makes a laser light flux scan by projecting the laser light flux onto a mirror or a polygon mirror with a plurality of mirror surfaces and by rocking the mirror or rotating the polygon mirror.
In a laser radar that projects a light flux from, for example, a semiconductor laser so as to scan for an object by rotating a mirror unit in which a plurality of pairs of a first mirror and a second mirror is disposed, Patent Literature 1 discloses a technique that makes it possible to scan on a plurality of different sub-scanning positions during one rotation by changing an intersecting angle between the first mirror and the second mirror for each of the pairs.
PTL 1: WO2014/168137A
By the way, in the cross section of a light flux projected so as to scan for an object, in the case where a dimension in the sub-scanning direction is comparatively small relative to a dimension in the main scanning direction, since a range detectable by one scanning in the sub-scanning direction becomes narrow, in order to detect the whole object region, it becomes necessary to repeat the scanning a number of times. Then, in the Patent Literature 1, the scanning is performed for an object by using a light flux with a cross section in which a dimension in the sub-scanning direction is larger relative to a dimension in the main scanning direction, whereby the number of scanning times is reduced, and the scanning efficiency is improved. With this, there are merits, such as simplification of the constitution of mirrors. Generally, Since the light emitting surface of a semiconductor laser has a certain area, it is technically possible to set the cross section of a light flux emitted from a semiconductor laser such that a dimension in the sub-scanning direction becomes larger relative to a dimension in the main scanning direction.
On the other hand, there is a request that it is wanted to detect an object located far away more. However, since there is a limit in the intensity of a light flux emitted from a semiconductor laser etc., at the time of projecting a light flux emitted from the semiconductor laser etc. so as to scan for an object located far away, the light flux scattered from such an object is weak, and, moreover, the intensity of this scattered light flux further lowers in inverse proportion to the square of the distance. Therefore, even if a part of such the scattered light flux is received by the light receiving element located with a separated distance, distinction with noise cannot be performed, which leads to a problem that detection of an object becomes difficult.
For such a problem, there is a way of thinking that, in the case of using a light source with more high output, since the intensity of a scattered light flux from an object also increases according to it, it becomes easy for even a separated light receiving element to detect the scattered light flux. However, in the case of irradiating a light flux with high intensity under the environment where human being exists, it can be said that influence for a human body must be taken enough into consideration. However, for example, if it is a light flux with a wavelength of 1.4 μm or more and 2.6 μm or less, it is supposed that it will be hard to provide an obstacle to human eyes. Therefore, in the case where the wavelength of an emitted light flux is limited to 1.4 μm or more and 2.6 μm or less, it becomes possible to use a light source that emits a light flux with high intensity for a laser radar.
As a light source to emit a light flux that has a wavelength of 1.4 μm or more and 2.6 μm or less and has high intensity rather than a semiconductor laser, a fiber laser has been known. A fiber laser is those that put excitation light into a special optical fiber in which rare earth is added to the core of an optical fiber, confine only the light of a specific wavelength in the core so as to amplify, and, emit it as laser beam of more high intensity. Here, due to the characteristics of fiber laser, since a light emitting point becomes a point, in the case of using the fiber laser as a light source of a laser radar, a cross section of a light flux projected so as to scan an object becomes circular, and a dimension in the sub-scanning direction relative to a dimension in the main scanning direction becomes 1 to 1, which results in a problem that a scanning efficiency gets worse.
The present invention has been achieved in view of the above-mentioned circumstances, and an object of the present invention is to provide an optical scan type object detecting apparatus that can detect an object located far away and can secure a high scanning efficiency.
An optical scan type object detecting apparatus that reflects one aspect of the present invention order to realize at least one of the above-mentioned object is an optical scan type object detecting apparatus that includes:
According to the present invention, it is possible to provide an optical scan type object detecting apparatus that can detect an object located far away and can secure a high scanning efficiency.
Hereinafter, an embodiment of the present invention will be described with reference to the attached drawings.
As shown in
In the shaping lens CY, a surface on the lens LS side is a flat surface CYa orthogonal to the optical axis of the lens LS, and a surface on a side opposite to the lens LS is a concave curved surface CYb. The surface on the lens LS side may be made the concave curved surface CYb, and the surface on a side opposite to the lens LS may be made the flat surface CYa. Alternatively, the both surfaces may be made a concave curved surface.
In the case where the shaping lens CY is cut with a vertical plane that passes the optical axis of the lens LS and faces toward in the Z direction mentioned later, the concave curved surface CYb is represented with a curved line symmetrical to the optical axis, and in the case where the shaping lens CY is cut with a horizontal plane that passes the optical axis of the lens LS and faces toward in the Y direction mentioned later, the concave curved surface CYb is represented with a straight line orthogonal to the optical axis, and further, a cross sectional shape cut with a plane parallel to a vertical plane is all uniform. Since it has such a shape, when a circular light flux enters the shaping lens CY, the light flux is emitted after being shaped such that a dimension in the Y direction in its external shape is not changed, but a dimension in the Z direction is increased. That is, the shaping lens CY shapes such that in the external shape of a light flux after having been emitted with respect to a light flux before having entered, a dimension in the Z direction as a second direction corresponding to the sub-scanning direction becomes larger than a dimension in the Y direction as a first direction corresponding to the main scanning direction.
In the present embodiment, the collimating lens CL and the shaping lens CY constitute a light projecting optical system (an optical system for projecting light), and the lens LS constitutes a light receiving optical system (an optical system for receiving light). Furthermore, the fiber laser FL, the collimating lens CL, and the shaping lens CY constitute a light projecting system LPS, and the lens LS and the photodiode PD constitute a light receiving system RPS. The optical axis of the light projecting system LPS and the optical axis of the light receiving system RPS are approximately orthogonal to the rotation axis RO of the mirror unit MU, and both the optical axes are parallel to each other. Here, it is assumed that the direction of the rotation axis RO of the mirror unit MU is made the Z direction, the optical axis direction of the light projecting system LPS is made the X direction, and the direction orthogonal to the Z direction and the X direction is made the Y direction.
With reference to
Next, an object detecting operation of the laser radar LR is described. In
In
However, even if the scattered light flux from the object OBJ is reflected on the whole surface of each of the second mirror surface M2 and the first mirror surface M1, the scattered light flux is narrowed by the lens LS (in here, it is made a circle, however, not limited to the circle) functioning as an aperture stop. Accordingly, a light flux finally entering the photodiode PD become a part of the light flux. That is, among the scattered light flux having come from the object and having entered through the window portion WS, only a light flux indicated with hatching is collected by the lens LS, and, received by the photodiode PD. Here, it is assumed that the light flux to be collected by the lens SL is called a received light flux RB. As shows with a one-dot chain line in
According to the present embodiment, the use of the fiber laser FL makes it possible to emit a light flux with comparatively high intensity. In addition, since the emitted light flux emitted from the fiber laser FL and having a circular cross section can be converted into a spot light flux having a longitudinally-long cross section by the shaping lens CY, while the number of times of scanning the detection range G is suppressed to be small and high scanning efficiency is secured, it becomes possible to detect effectively a photographic object located far away.
Furthermore, in the present embodiment, since the collimating lens CL is disposed between the fiber laser FL and the shaping lens CY, it is possible to acquire an effect that the positioning of the collimating lens CL for emitting a collimated light flux becomes easy. However, as a modified example to modify the arrangement example, it is also possible to dispose the shaping lens CY between the fiber laser FL and the collimating lens CL. According to this modified example, a light flux emitted from the fiber laser FL can be made to enter the shaping lens CY before being collimated. Accordingly, with this, the shaping lens CY can be miniaturized more, which leads to contribute to the miniaturization of the laser radar LR.
By the way, in the emitted light flux SB shown in
According to the present embodiment, in the case of detecting a photographic object located with a short distance, as shown in
In the present embodiment, the diverging light flux emitted from the fiber laser FL enters the convex surface CYc of the composite element CY′ with which the light flux is converted into an approximately parallel light flux, and, with the concave curved surface CYb, the parallel light flux is shaped so as to have a longitudinally-long cross section, and then, the light flux is emitted, and, enters the first mirror surface M1 of the rotating mirror unit MU. According to the present embodiment, the single composite element CV′ is provided with the functions of both the collimating lens and the shaping lens, whereby the number of parts can be reduced, which leads to contribute to the miniaturization of the laser radar LR. The matters other than those are similar to the above-mentioned embodiment. Accordingly, description for them is omitted.
The present invention should not be limited to the embodiments described in the specification, and it is clear for a person skilled in the art from the embodiment and the technical concept written in the present specification that the present invention includes the other embodiment and modified examples. The description and embodiment in the specification are prepared merely for the purpose of exemplification, and the scope of the present invention is shown by the claims mentioned later. For example, all the contents of the present invention having been described by using the drawings can be applied to the embodiments, and can be applied to crime prevention sensors to detect suspicious persons by being loaded onto aircrafts, such as a helicopter, or by being installed in a building and etc.
Number | Date | Country | Kind |
---|---|---|---|
2016-018721 | Feb 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/003328 | 1/31/2017 | WO | 00 |