This application is a National Phase application of International Application No. PCT/JP2013/001423, filed Mar. 6, 2013, which claims priority to Japanese Patent Application No.: 2012-049983, filed Mar. 7, 2012, the entireties of which are all hereby incorporated by reference.
This invention relates to an optical sensor, an electronic apparatus, etc.
For example, Patent Literature 1 has disclosed a technology of preventing crosstalk of light between a light absorbing film (light blocking material) that an image sensor as a kind of optical sensor has and an adjacent photoelectric conversion element (light receiving element).
PTL 1: JP-A-2006-13520
An optical sensor in which an angle limiting filter that limits an incident angle of an incident light to a light receiving element is formed using the light blocking material as described above, for example, and a spectroscopic filter is formed on the angle limiting filter is considered. For example, the angle limiting filter is used for improving spectroscopic characteristics of the spectroscopic filter. In the case where the spectroscopic filter is formed on the angle limiting filter, if the light incident from the side surface of the spectroscopic filter passes through the angle limiting filter, reduction of spectroscopic characteristics is problematic.
According to some aspects of the invention, an optical sensor, an electronic apparatus, etc. that suppress reduction of spectroscopic characteristics may be provided.
An aspect of the invention relates to an optical sensor including a light receiving element, an optical filter that transmits a light having a specific wavelength of incident lights with respect to a light receiving region of the light receiving element, and an angle limiting filter that limits an incident angle of the incident light transmitted through the optical filter, wherein, supposing that a limitation angle of the angle limiting filter is θA, a height from an upper surface of the angle limiting filter to an upper surface of the optical filter is RTP, and a distance from an end of the optical filter to an end of an aperture of the angle limiting filter in a plan view with respect to the upper surface of the angle limiting filter is an overlap distance OV, tan−1(OV/RTP)>θA is satisfied.
According to the aspect of the invention, the overlap distance OV as the distance from the end of the optical filter to the end of the aperture of the angle limiting filter satisfies tan−1(OV/RTP)>θA. Thereby, reduction of spectroscopic characteristics may be suppressed.
Further, in the aspect of the invention, supposing that a width of the aperture of the angle limiting filter is d and a height of the angle limiting filter is RA, the limitation angle may be θA=tan−1(d/RA).
Accordingly, the limitation angle may be set by adjustment of the aperture width and the height of the angle limiting filter, and the overlap distance that satisfies tan−1(OV/RTP)>θA with respect to the set limitation angle may be set.
Furthermore, the aspect of the invention may further include a protective film formed between the angle limiting filter and the optical filter, wherein, supposing that a height of the protective film is RP and a height of the optical filter is RT, the height from the upper surface of the angle limiting filter to the upper surface of the optical filter may be RTP=RP+RT.
Note that, in the aspect of the invention, not limited to that, but, in the case where the protective film is not provided, RTP=RT may hold. Alternatively, in the case where another layer having a thickness RP′ is further provided between the angle limiting filter and the optical filter, RTP=RP+RP′+RT may hold.
Further, in the aspect of the invention, supposing that a wavelength of the incident light is λ, the height of the angle limiting filter is RA, and the width of the aperture of the angle limiting filter is d, d2/(λ×RA)≧2 may be satisfied.
Accordingly, the angle limiting filter may be formed in a size that satisfies the condition of d2/(λ×RA)≧2. Thereby, the limitation angle for limiting the incident angle of the light reaching the light receiving element may be controlled with high accuracy.
Furthermore, in the aspect of the invention, the limitation angle may satisfy θA=tan−1(d/RA)<60°.
Since the limitation angle of 60° is obtained without the angle limiting filter, the angle limitation of the angle limiting filter may be enabled by setting the limitation angle that satisfies tan−1(d/RA)<60°.
Further, in the aspect of the invention, the optical sensor may be a spectroscopic sensor for spectroscopically separating the incident light.
Furthermore, in the aspect of the invention, the optical sensor may be an illuminance sensor for measuring illuminance of the incident light.
In addition, in the aspect of the invention, the optical sensor may be an elevation sensor for measuring an elevation angle of a light source.
Further, another aspect of the invention relates to an electronic apparatus including any one of the optical sensors.
As below, preferred embodiments of the invention will be explained in detail. Note that the embodiments explained as below do not unduly limit the invention described in claims, and all of the configurations explained embodiments are not necessarily essential as solving means of the invention.
The bandpass filter 140 is a thin-film filter in which thin films are stacked, for example. The thin-film filter has different transmission wavelengths in response to incident angles, and, if the incident angle is not limited, the wavelength band detected by a light receiving element formed by the impurity region 110 and the semiconductor 100 becomes broader. In the comparative example in
Now, the designed characteristics of the thin-film filter forming the bandpass filter 140 are not exerted until the incident light passes through all of the stacked layers. That is, like light LY shown in
For example,
In this case, assuming that the light beam LY entering from the wall surface of the bandpass filter 140 passes through only a part of the short-pass filter SPF, the band limitation characteristics of the short-pass filter SPF are reduced and the lights at the longer wavelength side also pass. As shown by G1 in
The optical sensor in
The bandpass filter 140 includes a long-pass filter LPF formed on the protective film 130 and a short-pass filter SPF formed on the long-pass filter LPF. The long-pass filter LPF and the short-pass filter SPF are thin-film filters in which thin films are stacked and have the spectroscopic characteristics explained in
The impurity region 110 is an impurity region of first conductivity-type (e.g., n-type) and the semiconductor substrate 100 is an impurity region of second conductivity-type (e.g., p-type). A light receiving element is formed by p-n junction of the impurity region 110 and the semiconductor substrate 100. The light receiving element is a photodiode, for example.
The angle limiting filter 120 is formed by a wiring process of a semiconductor process. When a light linearly entering the light receiving element from the top surface of the angle limiting filter 120 is assumed, if the incident angle is smaller than θA, the incident light linearly reaches the light receiving element. If the incident angle is larger than θA, the incident light is blocked by the light blocking materials 121 to 124 and does not directly reach the light receiving element. The angle θA is referred to as “limitation angle (control angle)”. Note that, if the incident light is larger than θA, the light due to diffraction or reflection may indirectly reach the light receiving element. By the blocking of lights, the incident light at the incident angle larger than the limitation angle θA may be prevented from directly reaching the light receiving element. The light blocking materials 121 to 124 are materials that block at least the lights in the transmission band of the bandpass filter 140. Specifically, the light blocking materials 121 to 124 are metal layers (e.g., aluminum wiring layers) used for metal wiring. The protective film 130 stacked on the angle limiting filter 120 is formed using a material that transmits at least the lights in the transmission band of the bandpass filter 140. Specifically, the protective film 130 is formed by an insulating layer (e.g., an SiO2 layer) of the semiconductor process.
Note that the more detailed configuration and formation process of the optical sensor of the embodiment will be described later with
As shown in
Further, suppose that the width of the aperture of the angle limiting filter 120 is d. For example, d=3 μm. Here, “aperture” of the angle limiting filter 120 is a region where no blocking material exists on the surface at the side on which the incident light enters, and where the incident light enters in a plan view with respect to the angle limiting filter 120. Note that the outer circumference of the aperture is not necessarily closed by the light blocking material, but the light blocking material may be discontinuously provided along the outer circumference of the aperture. Further, “aperture width” refers to a distance from the wall surface of the light blocking material to the wall surface of the light blocking material opposed to that wall surface, and, when the aperture has a rectangular shape, for example, corresponds to the length of the side of the rectangle. “The wall surface of the light blocking material” is a boundary surface between the material filling the aperture (e.g., SiO2) and the light blocking material, and the surface intersecting with (in the narrow sense, perpendicular to) the surface of the semiconductor substrate 100.
From the height RA of the angle limiting filter 120 and the aperture width d, the limitation angle is θA=tan−1(d/RA). For example, when RA=5 μm and d=3 μm, θA=31°. The lights at the incident angles larger than the limitation angle θA are blocked and do not enter the light receiving element. With respect to the limitation angle θA, the overlap distance OV between the angle limiting filter 120 and the bandpass filter 140 is set to satisfy the following formula (1). Here, “angles” including “limitation angle” refer to angles with respect to the direction perpendicular to the surface of the semiconductor substrate 100.
θA=tan−1(d/RA)<θT=tan−1(OV/(RT+RP)) (1)
As shown in
Note that, in the above description, the case where the optical filter is the bandpass filter and the bandpass filter 140 includes the short-pass filter SPF and the long-pass filter LPF has been explained as an example, however, the embodiment is not limited to the case. For example, the optical filter may be another filter having spectroscopic characteristics than the bandpass filter. Further, the bandpass filter 140 may not include the separately stacked short-pass filter SPF and long-pass filter LPF.
According to the above described embodiment, as shown in
Here, “upper surface of angle limiting filter 120” refers to the upside surface of the layer of the angle limiting filter 120 formed by the semiconductor process and a boundary surface between the layer of the angle limiting filter 120 and the layer formed on the angle limiting filter 120 (e.g., the protective film 130). Further, “upper surface of optical filter 140” refers to the upside surface of the stacked optical filter 140. “Upper” is a direction away from the surface of the semiconductor substrate 100, and the normal direction at the side at which the angle limiting filter 120 etc. are formed of the normal directions of the surface of the semiconductor substrate 100. Furthermore, “light receiving region” refers to a region where the incident lights that have passed through the angle limiting filter 120 may reach in the impurity region 110 forming the light receiving element.
Accordingly, as has been explained with
Further, in the embodiment, supposing that the aperture width of the angle limiting filter 120 is d and the height of the angle limiting filter 120 is RA, the limitation angle is θA=tan−1(d/RA).
Accordingly, the limitation angle θA may be set by adjustment of the aperture width d and the height RA of the angle limiting filter 120, and the overlap distance OV that satisfies tan−1(OV/RTP)>θA with respect to the limitation angle θA may be set.
Further, in the embodiment, when the protective film 130 formed between the angle limiting filter 120 and the optical filter 140 is included and the height (thickness) of the protective film 130 is RP and the height (thickness) of the optical filter 140 is RT, the height from the upper surface of the angle limiting filter 120 to the upper surface of the optical filter 140 is RTP=RP+RT.
Note that, in
Next, a method of setting the aperture width d and the height RA of the angle limiting filter 120 will be explained. In the embodiment, an overlap distance OV that satisfies the above formula (1) is set with respect to the aperture width d and the height RA set according to the method to be described. Note that, as below, the height RA of the angle limiting filter 120 will be referred to as “R” and the limitation angle θA will be referred to as “θ”.
In the embodiment, the aperture width d and the height R of the angle limiting filter are set to satisfy the following formula (2). Thereby, angle controllability that the measured limitation angle is controllable by adjustment of the aperture width d and the height R and a light reaching ratio as a ratio of an amount of light entering the aperture of the angle limiting filter and an amount of light reaching the light receiving element may be improved. In this regard, the detailed explanation will be made using
d2/(λ×R)≧2 (2)
First,
As described above, in the angle limiting filter of the comparative example, the light reaching ratio is lower than 50%, and, if the incident light is dark, the sensor sensitivity may be insufficient.
B1 in
Next,
For example, if the angle limiting filter with θ=15° of the above described comparative example is designed in the range of d2/(λ×R)≧2, d=4.02 μm, R=15 μm may be set as expressed by the following formula (3). Further, regarding the angle limiting filter with θ=20°, d=3.64 μm, R=10 μm may be set as expressed by the following formula (4).
d2/(λ×R)=4.022/(0.5×15)=2.15≧2 (3)
d2/(λ×R)=3.642/(0.5×10)=2.65≧2 (4)
Next, a relationship between the condition of the above described formula (2) and the maximum light reaching ratio will be described in more detail.
In the characteristics shown by E1, the gradient of the tangent rapidly changes near the aperture width d=2.3 μm. Hereinafter, the point is referred to as “boundary point”. It is known that, when the aperture width d is smaller than the boundary point, the light reaching ratio rapidly falls. That is, supposing that a range of d≦2.3 μm to the boundary point is a first characteristic region R1, the light reaching ratio rises with a constant (nearly constant) first gradient in the first characteristic region R1. Supposing that a range of 2.3 μm≦d≦8 μm equal to or larger than the boundary point is a second characteristic region R2, the light reaching ratio changes with a constant (nearly constant) second gradient smaller than the first gradient in the second characteristic region R2.
In the characteristics shown by E2, the boundary point is d=3 μm, and the first characteristic region is d≦3 μm and the second characteristic region is 3 μm≦d≦8 μm. Also, in the characteristics shown by E2, it is known that, when the aperture width d is smaller than the boundary point, the light reaching ratio is lower to below 0.5.
As shown in
Note that, in the embodiment, it is desirable to form the angle limiting filter to be near d2/(λ×R)=2 as the boundary point. At the boundary point, the height R of the angle limiting filter may be minimized and the optical sensor may be downsized. That is, since the limitation angle θ=tan−1(d/R), the aspect ratio d/R is fixed when θ is determined. Therefore, at the boundary point at which d is minimum in the range in which d2/(λ×R)≧2 is satisfied, R is also minimized.
According to the above described embodiment, as has been explained with the above described formula (2), when the wavelength of the incident light is λ, the height of the angle limiting filter is R (=RA), and the width of the aperture of the angle limiting filter is d, d2/(λ×R)≧2 is satisfied.
Thereby, the incident limitation angle θ of the incident light may be controlled with high accuracy. Further, the light reaching ratio may be improved. That is, compared to the measured values for d2/λR<2 shown in
Further, in the embodiment, the limitation angle θ(=θA) of the angle limiting filter satisfies θ=tan−1(d/R)<60°.
Now, without the angle limiting filter, suppose that an incident light with intensity Li enters the light receiving element at an incident angle α. In this case, light intensity Lp on the light receiving surface of the light receiving element is expressed by Lp=Li×cos α.
Regarding Lp=Li×cos α, Lp/Li=½ at α=60°, and is equal to that the control angle is 60°. That is, when the incident angle at which the light reaching ratio is ½ is defined as the limitation angle θ, the limitation angle is θ=60° without the angle limiting filter. Accordingly, if there is an angle limiting filter with the control angle θ>60°, the limitation angle is θ=60° and the angle controllability of the angle limiting filter is lost. In this regard, according to the embodiment, the limitation angle is set to θ<60°, and thereby, the angle controllability of the angle limiting filter may be exerted.
The detailed configuration example of the optical sensor of the above described embodiment will be explained. Note that, as below, the case where the optical sensor is a spectroscopic sensor that performs spectrometric measurement with respect to an object to be measured in a plurality of wavelength bands will be explained as an example, however, the embodiment is not limited to that as will be described later.
The spectroscopic sensor shown in
The semiconductor substrate 10 includes a P-type or N-type silicon substrate (silicon wafer), for example. On the semiconductor substrate 10, the circuit 20, the photodiodes 31, 32, the angle limiting filters 41, 42 are formed by the semiconductor process.
The angle limiting filters 41, 42 are formed in lattice shapes in the plan view, for example, and limit incident angles of incident lights to the photodiodes 31, 32. The circuit 20 includes an amplifier, an A/D conversion circuit, etc. that process output signals from the photodiodes 31, 32, for example.
Note that the spectroscopic sensor of the embodiment is not limited to the configuration in
The photodiodes 31, 32 are formed on the semiconductor substrate 10. As will be described later, the photodiodes 31, 32 are formed by formation of impurity regions by ion implantation or the like. For example, the photodiodes 31, 32 are realized by P-N junction between N-type impurity regions formed on P-substrates and P-substrates. Alternatively, the photodiodes are realized by P-N junction between P-type impurity regions formed on deep N-wells (N-type impurity regions) and the deep N-wells.
The angle limiting filters 41, 42 are formed using a light blocking material (e.g., light absorbing material or light reflection material) having light blocking effects with respect to the wavelengths detected by the photodiodes 31, 32. Specifically, the angle limiting filters 41, 42 are formed at the wiring forming step of the semiconductor process and formed using conducting plugs such as tungsten (in the broad sense, light absorbing material) plugs, for example. Further, the angle limiting filters 41, 42 may be formed to include conducting layers such as aluminum (in the broad sense, light reflection material) wiring layers.
The aspect ratios of the aperture widths of the bottom sides and the heights of the angle limiting filters 41, 42 are set in response to the transmission wavelength bands of the optical bandpass filters 61, 62 (e.g., BW1, BW2 to be described later with
The inclined structure 50 is formed on the angle limiting filters 41, 42, and has inclined surfaces at different inclination angles in response to the transmission wavelengths of the optical bandpass filters 61, 62. Specifically, a plurality of the inclined surfaces at the inclination angle θ1 with respect to the surface of the semiconductor substrate 10 are formed on the photodiode 31, and a plurality of the inclined surfaces at the inclination angle θ2 different from the inclination angle θ1 are formed on the photodiode 32. As will be described later, the inclined structure 50 is formed by processing insulating films of SiO2 or the like, for example, by etching or CMP, a gray-scale lithography technology, or the like.
The optical bandpass filters 61, 62 are formed by a multilayer thin film 70 stacked on the inclined structure 50. The transmission wavelength bands of the optical bandpass filters 61, 62 are determined by the inclination angles θ1, θ2 of the inclined structure 50 and the incident light limitation angles (aspect ratios) of the angle limiting filters 41, 42. The optical bandpass filters 61, 62 have configurations in which transmission wavelengths are varied in response to the inclination angles, and thus, not stacked at separate steps with respect to each transmission wavelength, but stacked at the same multilayer film forming step.
Note that the case where the optical sensor is the spectroscopic sensor has been explained as above, however, the embodiment is not limited to that. For example, the optical sensor of the embodiment may be applied to an illuminance sensor or an elevation sensor.
Here, the illuminance sensor is an optical sensor that measures illuminance (lux or lumen/square meter) of natural light and illumination light. In the embodiment, the incident angle is limited by the angle limiting filter and entrance of unwanted lights from other than the object to be measured may be limited. For example, application of the embodiment to a system that automatically lights a headlight of a bicycle in response to brightness in a traveling direction is considered. For example, when entering a tunnel, the system does not react with unwanted lights, and thereby, appropriate automatic lighting may be realized.
Further, the elevation sensor is an optical sensor that measures an elevation angle as an angle formed between a direction of the sun or an illumination light source and a reference surface. The reference surface is a horizontal surface, for example. In the embodiment, the incident angle is limited by the angle limiting filter, and thus, the elevation angle may be measured. For example, application of the embodiment to a solar power system is considered. In this case, the direction of the sun is measured with high accuracy and a solar panel is directed toward the direction, and thereby, high-efficiency power generation may be realized.
Now, in the optical sensor in related art, difficulty in downsizing is problematic. For example, in the spectroscopic sensor that acquires a continuous spectrum, it is necessary to provide a prism for generation of the continuous spectrum or the like and secure an optical path length, and the device becomes larger. Accordingly, it is difficult to provide many sensors and constantly provide sensors for an object to be inspected.
In this regard, according to the embodiment, photodiodes (light receiving elements) are formed by the impurity regions for photodiodes 31, 32 (impurity regions for light receiving elements) formed on the semiconductor substrate 10.
Further, in the embodiment, the angle limiting filters 41, 42 are formed using light blocking materials formed by the semiconductor process on the impurity regions for photodiodes 31, 32.
In this manner, the respective component elements of the optical sensor may be formed by the semiconductor process, and downsizing of the optical sensor or the like may be realized. That is, the photodiodes 31, 32 and the angle limiting filters 41, 42 are formed by the semiconductor process, and thereby, microfabrication may be easily performed and downsizing may be realized. Further, compared to the case where members are bonded, the transmission wavelength selectivity may be improved. Furthermore, compared to the case where optical fibers are used as the angle limiting filters, reduction of transmission light due to reduction of the limitation angle (numerical aperture) may be suppressed and the wavelength selectivity may be improved.
Here, the semiconductor process is a process in which transistors, resistor elements, capacitors, insulating layers, wiring layers, etc. are formed on a semiconductor substrate. For example, the semiconductor process is a process including an impurity introduction process, a thin-film formation process, a photolithography process, an etching process, a planarizing process, and a thermal treatment process.
Further, the light receiving regions of the photodiodes are regions on the impurity regions for photodiodes 31, 32 that incident lights that have passed through the angle limiting filters 41, 42 enter. For example, in
Furthermore, the light blocking material is a light absorbing material or light reflection material. The light absorbing material is tungsten, for example, and the light reflection material is aluminum, for example.
Note that the angle limiting filters 41, 42 are not limited to the case where they are closed along the outer circumferences of the light receiving regions, but may have discontinuous parts along the outer circumferences or may be discontinuously provided along the outer circumferences.
Further, in the embodiment, the optical bandpass filters 61, 62 are formed by multilayer thin films inclined at the angles θ1, θ2 in response to the transmission wavelengths with respect to the semiconductor substrate 10. More specifically, the optical bandpass filters 61, 62 are formed by a plurality of sets of multilayer thin films having different transmission wavelengths. For example, as shown in
In this manner, the optical bandpass filters 61, 62 may be formed by the multilayer thin films inclined at the angles θ1, θ2 in response to the transmission wavelengths. Thereby, it is not necessary to stack the multilayer thin films having film thicknesses in response to the transmission wavelengths at separate steps with respect to each transmission wavelength, and the forming step of the multilayer thin films may be simplified.
Further, the embodiment includes the inclined structure 50 provided on the angle limiting filters 41, 42. Furthermore, the inclined structure 50 has the inclined surfaces inclined at the angles θ1, θ2 in response to the transmission wavelengths of the optical bandpass filters 61, 62 with respect to the semiconductor substrate 10, and the multilayer thin films are formed on the inclined surfaces.
In this manner, the multilayer thin films are formed on the inclined surfaces of the inclined structure 50, and thereby, the multilayer thin films inclined at the angles θ1, θ2 in response to the transmission wavelengths of the optical bandpass filters 61, 62 may be formed.
As described above, the transmission wavelength bands of the optical bandpass filters are set by the inclination angles of the multilayer thin films and the limitation angles of the angle limiting filters. In this regard, specific explanation will be made using
As shown in
The multilayer thin films of the optical bandpass filter 61 have the inclination angle θ1 with respect to the light receiving surface of the photodiode 31, and thereby, the light beams perpendicular to the light receiving surface enter at the angle of θ1 with respect to the multilayer thin films of the optical bandpass filter 61. Further, supposing that the limitation angle of the angle limiting filter 41 is Δθ, the light beams entering at θ1−Δθ to θ1+Δθ with respect to the multilayer thin films of the optical bandpass filter 61 reach the light receiving surface of the photodiode 31. Similarly, the light beams entering at θ2−Δθ to θ2+Δθ with respect to the multilayer thin films of the optical bandpass filter 62 reach the light receiving surface of the photodiode 32.
As shown in
Note that the limitation angles of the angle limiting filters 41, 42 are set to Δθ≦30°. Desirably, the limitation angles of the angle limiting filters 41, 42 are set to Δθ≦20°.
An example of a method of manufacturing the spectroscopic sensor of the embodiment when the inclined structure is formed by the semiconductor process will be explained using
First, as shown by S1 in
Then, as shown by S2, insulating films are formed, contact holes are formed in the insulating film, the contact holes are embedded, and thereby, first AL wires are formed. Then, at the same step as above, via contacts and second AL wires are formed, and the step is repeated at the necessary number of times.
Then, as shown by S3, insulating films having level differences or density patterns are formed by anisotropic dry etching of deposited SiO2, a polishing step by CMP is performed on the insulating films, and thereby, the inclined surfaces of the inclined structure are formed.
Then, as shown by S4, sputtering of TiO2 (titanium oxide film) and sputtering of SiO2 are alternately performed, and thereby, multilayer thin films are formed on the inclined surfaces. The TiO2 film is a thin film having a higher refractive index and the SiO2 film is a thin film having a lower refractive index.
In the above description, the case where the angle limiting filters are formed by the wiring process has been explained as an example, however, the embodiment is not limited to that, but the angle limiting filters may be formed by drilling the semiconductor substrate from the rear surface, for example (e.g., JP-A-2011-205088). Further, in the above description, the case where the inclined structure is formed integrally with the angle limiting filters by the semiconductor process has been explained as an example, however, the embodiment is not limited to that, but the inclined structure may be separately formed using a die or the like, for example, and the inclined structure may be bonded onto the angle limiting filters (e.g., JP-A-2011-203247).
The electronic apparatus shown in
The LED 950 irradiates an object to be observed with white light, for example. The optical sensor device 900 spectroscopically separates reflection lights and transmission lights from the object to be observed, and acquires signals having respective wavelengths. The microcomputer 970 controls the LED driver 960 and acquires signals from the optical sensor 910. The microcomputer 970 displays display based on the acquired signals on the display device 990 (e.g., a liquid crystal display device) and stores data based on the acquired signals in the memory device 980 (e.g., a memory, a magnetic disc).
Note that the embodiment has been explained in detail as described above, however, a person who skilled in the art could readily understand that many modifications may be made without substantially departing from the new matter and effects of the invention. Therefore, the modified examples may fall within the scope of the invention. For example, in the specification or drawings, the terms described with the broader or synonymous different terms at least once may be replaced by the different terms in any part of the specification or drawings. Further, the configurations and operations of the optical sensor, the electronic apparatus, etc. are not limited to those explained in the embodiment, but various modifications may be made.
Number | Date | Country | Kind |
---|---|---|---|
2012-049983 | Mar 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/001423 | 3/6/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/132852 | 9/12/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6590660 | Jung | Jul 2003 | B2 |
7446359 | Lee et al. | Nov 2008 | B2 |
20070139765 | Daniel | Jun 2007 | A1 |
20070290284 | Shaffer | Dec 2007 | A1 |
20100264297 | Kurahashi | Oct 2010 | A1 |
20110090505 | Kuze et al. | Apr 2011 | A1 |
20110215432 | Uematsu et al. | Sep 2011 | A1 |
20110216315 | Uematsu | Sep 2011 | A1 |
20110242526 | Van Bommel | Oct 2011 | A1 |
20120236297 | Uematsu et al. | Sep 2012 | A1 |
20130120760 | Raguin | May 2013 | A1 |
Number | Date | Country |
---|---|---|
61-205827 | Sep 1986 | JP |
2001-050814 | Feb 2001 | JP |
2006-013520 | Jan 2006 | JP |
2011-203247 | Oct 2011 | JP |
2012-194054 | Oct 2012 | JP |
2009-148134 | Dec 2009 | WO |
Entry |
---|
Supplementary European Search Report, dated Oct. 21, 2015, of the corresponding European Application No. 13758563.4.; (6 pages). |
Number | Date | Country | |
---|---|---|---|
20150036133 A1 | Feb 2015 | US |